of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / md / dm-thin-metadata.c
blobc219a053c7f66d1ebae80a19b005af38914dbe8c
1 /*
2 * Copyright (C) 2011-2012 Red Hat, Inc.
4 * This file is released under the GPL.
5 */
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
23 * - A space map managing the metadata blocks.
25 * - A space map managing the data blocks.
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
42 * Space maps have 2 btrees:
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
75 #define DM_MSG_PREFIX "thin metadata"
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
87 #define THIN_MAX_CONCURRENT_LOCKS 5
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
93 * Little endian on-disk superblock and device details.
95 struct thin_disk_superblock {
96 __le32 csum; /* Checksum of superblock except for this field. */
97 __le32 flags;
98 __le64 blocknr; /* This block number, dm_block_t. */
100 __u8 uuid[16];
101 __le64 magic;
102 __le32 version;
103 __le32 time;
105 __le64 trans_id;
108 * Root held by userspace transactions.
110 __le64 held_root;
112 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
116 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
118 __le64 data_mapping_root;
121 * Device detail root mapping dev_id -> device_details
123 __le64 device_details_root;
125 __le32 data_block_size; /* In 512-byte sectors. */
127 __le32 metadata_block_size; /* In 512-byte sectors. */
128 __le64 metadata_nr_blocks;
130 __le32 compat_flags;
131 __le32 compat_ro_flags;
132 __le32 incompat_flags;
133 } __packed;
135 struct disk_device_details {
136 __le64 mapped_blocks;
137 __le64 transaction_id; /* When created. */
138 __le32 creation_time;
139 __le32 snapshotted_time;
140 } __packed;
142 struct dm_pool_metadata {
143 struct hlist_node hash;
145 struct block_device *bdev;
146 struct dm_block_manager *bm;
147 struct dm_space_map *metadata_sm;
148 struct dm_space_map *data_sm;
149 struct dm_transaction_manager *tm;
150 struct dm_transaction_manager *nb_tm;
153 * Two-level btree.
154 * First level holds thin_dev_t.
155 * Second level holds mappings.
157 struct dm_btree_info info;
160 * Non-blocking version of the above.
162 struct dm_btree_info nb_info;
165 * Just the top level for deleting whole devices.
167 struct dm_btree_info tl_info;
170 * Just the bottom level for creating new devices.
172 struct dm_btree_info bl_info;
175 * Describes the device details btree.
177 struct dm_btree_info details_info;
179 struct rw_semaphore root_lock;
180 uint32_t time;
181 dm_block_t root;
182 dm_block_t details_root;
183 struct list_head thin_devices;
184 uint64_t trans_id;
185 unsigned long flags;
186 sector_t data_block_size;
189 * Set if a transaction has to be aborted but the attempt to roll back
190 * to the previous (good) transaction failed. The only pool metadata
191 * operation possible in this state is the closing of the device.
193 bool fail_io:1;
196 * Reading the space map roots can fail, so we read it into these
197 * buffers before the superblock is locked and updated.
199 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
200 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
203 struct dm_thin_device {
204 struct list_head list;
205 struct dm_pool_metadata *pmd;
206 dm_thin_id id;
208 int open_count;
209 bool changed:1;
210 bool aborted_with_changes:1;
211 uint64_t mapped_blocks;
212 uint64_t transaction_id;
213 uint32_t creation_time;
214 uint32_t snapshotted_time;
217 /*----------------------------------------------------------------
218 * superblock validator
219 *--------------------------------------------------------------*/
221 #define SUPERBLOCK_CSUM_XOR 160774
223 static void sb_prepare_for_write(struct dm_block_validator *v,
224 struct dm_block *b,
225 size_t block_size)
227 struct thin_disk_superblock *disk_super = dm_block_data(b);
229 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
230 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
231 block_size - sizeof(__le32),
232 SUPERBLOCK_CSUM_XOR));
235 static int sb_check(struct dm_block_validator *v,
236 struct dm_block *b,
237 size_t block_size)
239 struct thin_disk_superblock *disk_super = dm_block_data(b);
240 __le32 csum_le;
242 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
243 DMERR("sb_check failed: blocknr %llu: "
244 "wanted %llu", le64_to_cpu(disk_super->blocknr),
245 (unsigned long long)dm_block_location(b));
246 return -ENOTBLK;
249 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
250 DMERR("sb_check failed: magic %llu: "
251 "wanted %llu", le64_to_cpu(disk_super->magic),
252 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
253 return -EILSEQ;
256 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
257 block_size - sizeof(__le32),
258 SUPERBLOCK_CSUM_XOR));
259 if (csum_le != disk_super->csum) {
260 DMERR("sb_check failed: csum %u: wanted %u",
261 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
262 return -EILSEQ;
265 return 0;
268 static struct dm_block_validator sb_validator = {
269 .name = "superblock",
270 .prepare_for_write = sb_prepare_for_write,
271 .check = sb_check
274 /*----------------------------------------------------------------
275 * Methods for the btree value types
276 *--------------------------------------------------------------*/
278 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
280 return (b << 24) | t;
283 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
285 *b = v >> 24;
286 *t = v & ((1 << 24) - 1);
289 static void data_block_inc(void *context, const void *value_le)
291 struct dm_space_map *sm = context;
292 __le64 v_le;
293 uint64_t b;
294 uint32_t t;
296 memcpy(&v_le, value_le, sizeof(v_le));
297 unpack_block_time(le64_to_cpu(v_le), &b, &t);
298 dm_sm_inc_block(sm, b);
301 static void data_block_dec(void *context, const void *value_le)
303 struct dm_space_map *sm = context;
304 __le64 v_le;
305 uint64_t b;
306 uint32_t t;
308 memcpy(&v_le, value_le, sizeof(v_le));
309 unpack_block_time(le64_to_cpu(v_le), &b, &t);
310 dm_sm_dec_block(sm, b);
313 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
315 __le64 v1_le, v2_le;
316 uint64_t b1, b2;
317 uint32_t t;
319 memcpy(&v1_le, value1_le, sizeof(v1_le));
320 memcpy(&v2_le, value2_le, sizeof(v2_le));
321 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
322 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
324 return b1 == b2;
327 static void subtree_inc(void *context, const void *value)
329 struct dm_btree_info *info = context;
330 __le64 root_le;
331 uint64_t root;
333 memcpy(&root_le, value, sizeof(root_le));
334 root = le64_to_cpu(root_le);
335 dm_tm_inc(info->tm, root);
338 static void subtree_dec(void *context, const void *value)
340 struct dm_btree_info *info = context;
341 __le64 root_le;
342 uint64_t root;
344 memcpy(&root_le, value, sizeof(root_le));
345 root = le64_to_cpu(root_le);
346 if (dm_btree_del(info, root))
347 DMERR("btree delete failed\n");
350 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
352 __le64 v1_le, v2_le;
353 memcpy(&v1_le, value1_le, sizeof(v1_le));
354 memcpy(&v2_le, value2_le, sizeof(v2_le));
356 return v1_le == v2_le;
359 /*----------------------------------------------------------------*/
361 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
362 struct dm_block **sblock)
364 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
365 &sb_validator, sblock);
368 static int superblock_lock(struct dm_pool_metadata *pmd,
369 struct dm_block **sblock)
371 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
372 &sb_validator, sblock);
375 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
377 int r;
378 unsigned i;
379 struct dm_block *b;
380 __le64 *data_le, zero = cpu_to_le64(0);
381 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
384 * We can't use a validator here - it may be all zeroes.
386 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
387 if (r)
388 return r;
390 data_le = dm_block_data(b);
391 *result = 1;
392 for (i = 0; i < block_size; i++) {
393 if (data_le[i] != zero) {
394 *result = 0;
395 break;
399 dm_bm_unlock(b);
401 return 0;
404 static void __setup_btree_details(struct dm_pool_metadata *pmd)
406 pmd->info.tm = pmd->tm;
407 pmd->info.levels = 2;
408 pmd->info.value_type.context = pmd->data_sm;
409 pmd->info.value_type.size = sizeof(__le64);
410 pmd->info.value_type.inc = data_block_inc;
411 pmd->info.value_type.dec = data_block_dec;
412 pmd->info.value_type.equal = data_block_equal;
414 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
415 pmd->nb_info.tm = pmd->nb_tm;
417 pmd->tl_info.tm = pmd->tm;
418 pmd->tl_info.levels = 1;
419 pmd->tl_info.value_type.context = &pmd->bl_info;
420 pmd->tl_info.value_type.size = sizeof(__le64);
421 pmd->tl_info.value_type.inc = subtree_inc;
422 pmd->tl_info.value_type.dec = subtree_dec;
423 pmd->tl_info.value_type.equal = subtree_equal;
425 pmd->bl_info.tm = pmd->tm;
426 pmd->bl_info.levels = 1;
427 pmd->bl_info.value_type.context = pmd->data_sm;
428 pmd->bl_info.value_type.size = sizeof(__le64);
429 pmd->bl_info.value_type.inc = data_block_inc;
430 pmd->bl_info.value_type.dec = data_block_dec;
431 pmd->bl_info.value_type.equal = data_block_equal;
433 pmd->details_info.tm = pmd->tm;
434 pmd->details_info.levels = 1;
435 pmd->details_info.value_type.context = NULL;
436 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
437 pmd->details_info.value_type.inc = NULL;
438 pmd->details_info.value_type.dec = NULL;
439 pmd->details_info.value_type.equal = NULL;
442 static int save_sm_roots(struct dm_pool_metadata *pmd)
444 int r;
445 size_t len;
447 r = dm_sm_root_size(pmd->metadata_sm, &len);
448 if (r < 0)
449 return r;
451 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
452 if (r < 0)
453 return r;
455 r = dm_sm_root_size(pmd->data_sm, &len);
456 if (r < 0)
457 return r;
459 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
462 static void copy_sm_roots(struct dm_pool_metadata *pmd,
463 struct thin_disk_superblock *disk)
465 memcpy(&disk->metadata_space_map_root,
466 &pmd->metadata_space_map_root,
467 sizeof(pmd->metadata_space_map_root));
469 memcpy(&disk->data_space_map_root,
470 &pmd->data_space_map_root,
471 sizeof(pmd->data_space_map_root));
474 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
476 int r;
477 struct dm_block *sblock;
478 struct thin_disk_superblock *disk_super;
479 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
481 if (bdev_size > THIN_METADATA_MAX_SECTORS)
482 bdev_size = THIN_METADATA_MAX_SECTORS;
484 r = dm_sm_commit(pmd->data_sm);
485 if (r < 0)
486 return r;
488 r = save_sm_roots(pmd);
489 if (r < 0)
490 return r;
492 r = dm_tm_pre_commit(pmd->tm);
493 if (r < 0)
494 return r;
496 r = superblock_lock_zero(pmd, &sblock);
497 if (r)
498 return r;
500 disk_super = dm_block_data(sblock);
501 disk_super->flags = 0;
502 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
503 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
504 disk_super->version = cpu_to_le32(THIN_VERSION);
505 disk_super->time = 0;
506 disk_super->trans_id = 0;
507 disk_super->held_root = 0;
509 copy_sm_roots(pmd, disk_super);
511 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
512 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
513 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
514 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
515 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
517 return dm_tm_commit(pmd->tm, sblock);
520 static int __format_metadata(struct dm_pool_metadata *pmd)
522 int r;
524 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
525 &pmd->tm, &pmd->metadata_sm);
526 if (r < 0) {
527 DMERR("tm_create_with_sm failed");
528 return r;
531 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
532 if (IS_ERR(pmd->data_sm)) {
533 DMERR("sm_disk_create failed");
534 r = PTR_ERR(pmd->data_sm);
535 goto bad_cleanup_tm;
538 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
539 if (!pmd->nb_tm) {
540 DMERR("could not create non-blocking clone tm");
541 r = -ENOMEM;
542 goto bad_cleanup_data_sm;
545 __setup_btree_details(pmd);
547 r = dm_btree_empty(&pmd->info, &pmd->root);
548 if (r < 0)
549 goto bad_cleanup_nb_tm;
551 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
552 if (r < 0) {
553 DMERR("couldn't create devices root");
554 goto bad_cleanup_nb_tm;
557 r = __write_initial_superblock(pmd);
558 if (r)
559 goto bad_cleanup_nb_tm;
561 return 0;
563 bad_cleanup_nb_tm:
564 dm_tm_destroy(pmd->nb_tm);
565 bad_cleanup_data_sm:
566 dm_sm_destroy(pmd->data_sm);
567 bad_cleanup_tm:
568 dm_tm_destroy(pmd->tm);
569 dm_sm_destroy(pmd->metadata_sm);
571 return r;
574 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
575 struct dm_pool_metadata *pmd)
577 uint32_t features;
579 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
580 if (features) {
581 DMERR("could not access metadata due to unsupported optional features (%lx).",
582 (unsigned long)features);
583 return -EINVAL;
587 * Check for read-only metadata to skip the following RDWR checks.
589 if (get_disk_ro(pmd->bdev->bd_disk))
590 return 0;
592 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
593 if (features) {
594 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
595 (unsigned long)features);
596 return -EINVAL;
599 return 0;
602 static int __open_metadata(struct dm_pool_metadata *pmd)
604 int r;
605 struct dm_block *sblock;
606 struct thin_disk_superblock *disk_super;
608 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
609 &sb_validator, &sblock);
610 if (r < 0) {
611 DMERR("couldn't read superblock");
612 return r;
615 disk_super = dm_block_data(sblock);
617 /* Verify the data block size hasn't changed */
618 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
619 DMERR("changing the data block size (from %u to %llu) is not supported",
620 le32_to_cpu(disk_super->data_block_size),
621 (unsigned long long)pmd->data_block_size);
622 r = -EINVAL;
623 goto bad_unlock_sblock;
626 r = __check_incompat_features(disk_super, pmd);
627 if (r < 0)
628 goto bad_unlock_sblock;
630 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
631 disk_super->metadata_space_map_root,
632 sizeof(disk_super->metadata_space_map_root),
633 &pmd->tm, &pmd->metadata_sm);
634 if (r < 0) {
635 DMERR("tm_open_with_sm failed");
636 goto bad_unlock_sblock;
639 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
640 sizeof(disk_super->data_space_map_root));
641 if (IS_ERR(pmd->data_sm)) {
642 DMERR("sm_disk_open failed");
643 r = PTR_ERR(pmd->data_sm);
644 goto bad_cleanup_tm;
647 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
648 if (!pmd->nb_tm) {
649 DMERR("could not create non-blocking clone tm");
650 r = -ENOMEM;
651 goto bad_cleanup_data_sm;
654 __setup_btree_details(pmd);
655 dm_bm_unlock(sblock);
657 return 0;
659 bad_cleanup_data_sm:
660 dm_sm_destroy(pmd->data_sm);
661 bad_cleanup_tm:
662 dm_tm_destroy(pmd->tm);
663 dm_sm_destroy(pmd->metadata_sm);
664 bad_unlock_sblock:
665 dm_bm_unlock(sblock);
667 return r;
670 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
672 int r, unformatted;
674 r = __superblock_all_zeroes(pmd->bm, &unformatted);
675 if (r)
676 return r;
678 if (unformatted)
679 return format_device ? __format_metadata(pmd) : -EPERM;
681 return __open_metadata(pmd);
684 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
686 int r;
688 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
689 THIN_METADATA_CACHE_SIZE,
690 THIN_MAX_CONCURRENT_LOCKS);
691 if (IS_ERR(pmd->bm)) {
692 DMERR("could not create block manager");
693 return PTR_ERR(pmd->bm);
696 r = __open_or_format_metadata(pmd, format_device);
697 if (r)
698 dm_block_manager_destroy(pmd->bm);
700 return r;
703 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
705 dm_sm_destroy(pmd->data_sm);
706 dm_sm_destroy(pmd->metadata_sm);
707 dm_tm_destroy(pmd->nb_tm);
708 dm_tm_destroy(pmd->tm);
709 dm_block_manager_destroy(pmd->bm);
712 static int __begin_transaction(struct dm_pool_metadata *pmd)
714 int r;
715 struct thin_disk_superblock *disk_super;
716 struct dm_block *sblock;
719 * We re-read the superblock every time. Shouldn't need to do this
720 * really.
722 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
723 &sb_validator, &sblock);
724 if (r)
725 return r;
727 disk_super = dm_block_data(sblock);
728 pmd->time = le32_to_cpu(disk_super->time);
729 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
730 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
731 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
732 pmd->flags = le32_to_cpu(disk_super->flags);
733 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
735 dm_bm_unlock(sblock);
736 return 0;
739 static int __write_changed_details(struct dm_pool_metadata *pmd)
741 int r;
742 struct dm_thin_device *td, *tmp;
743 struct disk_device_details details;
744 uint64_t key;
746 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
747 if (!td->changed)
748 continue;
750 key = td->id;
752 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
753 details.transaction_id = cpu_to_le64(td->transaction_id);
754 details.creation_time = cpu_to_le32(td->creation_time);
755 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
756 __dm_bless_for_disk(&details);
758 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
759 &key, &details, &pmd->details_root);
760 if (r)
761 return r;
763 if (td->open_count)
764 td->changed = 0;
765 else {
766 list_del(&td->list);
767 kfree(td);
771 return 0;
774 static int __commit_transaction(struct dm_pool_metadata *pmd)
776 int r;
777 size_t metadata_len, data_len;
778 struct thin_disk_superblock *disk_super;
779 struct dm_block *sblock;
782 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
784 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
786 r = __write_changed_details(pmd);
787 if (r < 0)
788 return r;
790 r = dm_sm_commit(pmd->data_sm);
791 if (r < 0)
792 return r;
794 r = dm_tm_pre_commit(pmd->tm);
795 if (r < 0)
796 return r;
798 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
799 if (r < 0)
800 return r;
802 r = dm_sm_root_size(pmd->data_sm, &data_len);
803 if (r < 0)
804 return r;
806 r = save_sm_roots(pmd);
807 if (r < 0)
808 return r;
810 r = superblock_lock(pmd, &sblock);
811 if (r)
812 return r;
814 disk_super = dm_block_data(sblock);
815 disk_super->time = cpu_to_le32(pmd->time);
816 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
817 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
818 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
819 disk_super->flags = cpu_to_le32(pmd->flags);
821 copy_sm_roots(pmd, disk_super);
823 return dm_tm_commit(pmd->tm, sblock);
826 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
827 sector_t data_block_size,
828 bool format_device)
830 int r;
831 struct dm_pool_metadata *pmd;
833 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
834 if (!pmd) {
835 DMERR("could not allocate metadata struct");
836 return ERR_PTR(-ENOMEM);
839 init_rwsem(&pmd->root_lock);
840 pmd->time = 0;
841 INIT_LIST_HEAD(&pmd->thin_devices);
842 pmd->fail_io = false;
843 pmd->bdev = bdev;
844 pmd->data_block_size = data_block_size;
846 r = __create_persistent_data_objects(pmd, format_device);
847 if (r) {
848 kfree(pmd);
849 return ERR_PTR(r);
852 r = __begin_transaction(pmd);
853 if (r < 0) {
854 if (dm_pool_metadata_close(pmd) < 0)
855 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
856 return ERR_PTR(r);
859 return pmd;
862 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
864 int r;
865 unsigned open_devices = 0;
866 struct dm_thin_device *td, *tmp;
868 down_read(&pmd->root_lock);
869 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
870 if (td->open_count)
871 open_devices++;
872 else {
873 list_del(&td->list);
874 kfree(td);
877 up_read(&pmd->root_lock);
879 if (open_devices) {
880 DMERR("attempt to close pmd when %u device(s) are still open",
881 open_devices);
882 return -EBUSY;
885 if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
886 r = __commit_transaction(pmd);
887 if (r < 0)
888 DMWARN("%s: __commit_transaction() failed, error = %d",
889 __func__, r);
892 if (!pmd->fail_io)
893 __destroy_persistent_data_objects(pmd);
895 kfree(pmd);
896 return 0;
900 * __open_device: Returns @td corresponding to device with id @dev,
901 * creating it if @create is set and incrementing @td->open_count.
902 * On failure, @td is undefined.
904 static int __open_device(struct dm_pool_metadata *pmd,
905 dm_thin_id dev, int create,
906 struct dm_thin_device **td)
908 int r, changed = 0;
909 struct dm_thin_device *td2;
910 uint64_t key = dev;
911 struct disk_device_details details_le;
914 * If the device is already open, return it.
916 list_for_each_entry(td2, &pmd->thin_devices, list)
917 if (td2->id == dev) {
919 * May not create an already-open device.
921 if (create)
922 return -EEXIST;
924 td2->open_count++;
925 *td = td2;
926 return 0;
930 * Check the device exists.
932 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
933 &key, &details_le);
934 if (r) {
935 if (r != -ENODATA || !create)
936 return r;
939 * Create new device.
941 changed = 1;
942 details_le.mapped_blocks = 0;
943 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
944 details_le.creation_time = cpu_to_le32(pmd->time);
945 details_le.snapshotted_time = cpu_to_le32(pmd->time);
948 *td = kmalloc(sizeof(**td), GFP_NOIO);
949 if (!*td)
950 return -ENOMEM;
952 (*td)->pmd = pmd;
953 (*td)->id = dev;
954 (*td)->open_count = 1;
955 (*td)->changed = changed;
956 (*td)->aborted_with_changes = false;
957 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
958 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
959 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
960 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
962 list_add(&(*td)->list, &pmd->thin_devices);
964 return 0;
967 static void __close_device(struct dm_thin_device *td)
969 --td->open_count;
972 static int __create_thin(struct dm_pool_metadata *pmd,
973 dm_thin_id dev)
975 int r;
976 dm_block_t dev_root;
977 uint64_t key = dev;
978 struct disk_device_details details_le;
979 struct dm_thin_device *td;
980 __le64 value;
982 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
983 &key, &details_le);
984 if (!r)
985 return -EEXIST;
988 * Create an empty btree for the mappings.
990 r = dm_btree_empty(&pmd->bl_info, &dev_root);
991 if (r)
992 return r;
995 * Insert it into the main mapping tree.
997 value = cpu_to_le64(dev_root);
998 __dm_bless_for_disk(&value);
999 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1000 if (r) {
1001 dm_btree_del(&pmd->bl_info, dev_root);
1002 return r;
1005 r = __open_device(pmd, dev, 1, &td);
1006 if (r) {
1007 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1008 dm_btree_del(&pmd->bl_info, dev_root);
1009 return r;
1011 __close_device(td);
1013 return r;
1016 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1018 int r = -EINVAL;
1020 down_write(&pmd->root_lock);
1021 if (!pmd->fail_io)
1022 r = __create_thin(pmd, dev);
1023 up_write(&pmd->root_lock);
1025 return r;
1028 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1029 struct dm_thin_device *snap,
1030 dm_thin_id origin, uint32_t time)
1032 int r;
1033 struct dm_thin_device *td;
1035 r = __open_device(pmd, origin, 0, &td);
1036 if (r)
1037 return r;
1039 td->changed = 1;
1040 td->snapshotted_time = time;
1042 snap->mapped_blocks = td->mapped_blocks;
1043 snap->snapshotted_time = time;
1044 __close_device(td);
1046 return 0;
1049 static int __create_snap(struct dm_pool_metadata *pmd,
1050 dm_thin_id dev, dm_thin_id origin)
1052 int r;
1053 dm_block_t origin_root;
1054 uint64_t key = origin, dev_key = dev;
1055 struct dm_thin_device *td;
1056 struct disk_device_details details_le;
1057 __le64 value;
1059 /* check this device is unused */
1060 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1061 &dev_key, &details_le);
1062 if (!r)
1063 return -EEXIST;
1065 /* find the mapping tree for the origin */
1066 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1067 if (r)
1068 return r;
1069 origin_root = le64_to_cpu(value);
1071 /* clone the origin, an inc will do */
1072 dm_tm_inc(pmd->tm, origin_root);
1074 /* insert into the main mapping tree */
1075 value = cpu_to_le64(origin_root);
1076 __dm_bless_for_disk(&value);
1077 key = dev;
1078 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1079 if (r) {
1080 dm_tm_dec(pmd->tm, origin_root);
1081 return r;
1084 pmd->time++;
1086 r = __open_device(pmd, dev, 1, &td);
1087 if (r)
1088 goto bad;
1090 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1091 __close_device(td);
1093 if (r)
1094 goto bad;
1096 return 0;
1098 bad:
1099 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1100 dm_btree_remove(&pmd->details_info, pmd->details_root,
1101 &key, &pmd->details_root);
1102 return r;
1105 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1106 dm_thin_id dev,
1107 dm_thin_id origin)
1109 int r = -EINVAL;
1111 down_write(&pmd->root_lock);
1112 if (!pmd->fail_io)
1113 r = __create_snap(pmd, dev, origin);
1114 up_write(&pmd->root_lock);
1116 return r;
1119 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1121 int r;
1122 uint64_t key = dev;
1123 struct dm_thin_device *td;
1125 /* TODO: failure should mark the transaction invalid */
1126 r = __open_device(pmd, dev, 0, &td);
1127 if (r)
1128 return r;
1130 if (td->open_count > 1) {
1131 __close_device(td);
1132 return -EBUSY;
1135 list_del(&td->list);
1136 kfree(td);
1137 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1138 &key, &pmd->details_root);
1139 if (r)
1140 return r;
1142 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1143 if (r)
1144 return r;
1146 return 0;
1149 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1150 dm_thin_id dev)
1152 int r = -EINVAL;
1154 down_write(&pmd->root_lock);
1155 if (!pmd->fail_io)
1156 r = __delete_device(pmd, dev);
1157 up_write(&pmd->root_lock);
1159 return r;
1162 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1163 uint64_t current_id,
1164 uint64_t new_id)
1166 int r = -EINVAL;
1168 down_write(&pmd->root_lock);
1170 if (pmd->fail_io)
1171 goto out;
1173 if (pmd->trans_id != current_id) {
1174 DMERR("mismatched transaction id");
1175 goto out;
1178 pmd->trans_id = new_id;
1179 r = 0;
1181 out:
1182 up_write(&pmd->root_lock);
1184 return r;
1187 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1188 uint64_t *result)
1190 int r = -EINVAL;
1192 down_read(&pmd->root_lock);
1193 if (!pmd->fail_io) {
1194 *result = pmd->trans_id;
1195 r = 0;
1197 up_read(&pmd->root_lock);
1199 return r;
1202 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1204 int r, inc;
1205 struct thin_disk_superblock *disk_super;
1206 struct dm_block *copy, *sblock;
1207 dm_block_t held_root;
1210 * We commit to ensure the btree roots which we increment in a
1211 * moment are up to date.
1213 __commit_transaction(pmd);
1216 * Copy the superblock.
1218 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1219 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1220 &sb_validator, &copy, &inc);
1221 if (r)
1222 return r;
1224 BUG_ON(!inc);
1226 held_root = dm_block_location(copy);
1227 disk_super = dm_block_data(copy);
1229 if (le64_to_cpu(disk_super->held_root)) {
1230 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1232 dm_tm_dec(pmd->tm, held_root);
1233 dm_tm_unlock(pmd->tm, copy);
1234 return -EBUSY;
1238 * Wipe the spacemap since we're not publishing this.
1240 memset(&disk_super->data_space_map_root, 0,
1241 sizeof(disk_super->data_space_map_root));
1242 memset(&disk_super->metadata_space_map_root, 0,
1243 sizeof(disk_super->metadata_space_map_root));
1246 * Increment the data structures that need to be preserved.
1248 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1249 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1250 dm_tm_unlock(pmd->tm, copy);
1253 * Write the held root into the superblock.
1255 r = superblock_lock(pmd, &sblock);
1256 if (r) {
1257 dm_tm_dec(pmd->tm, held_root);
1258 return r;
1261 disk_super = dm_block_data(sblock);
1262 disk_super->held_root = cpu_to_le64(held_root);
1263 dm_bm_unlock(sblock);
1264 return 0;
1267 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1269 int r = -EINVAL;
1271 down_write(&pmd->root_lock);
1272 if (!pmd->fail_io)
1273 r = __reserve_metadata_snap(pmd);
1274 up_write(&pmd->root_lock);
1276 return r;
1279 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1281 int r;
1282 struct thin_disk_superblock *disk_super;
1283 struct dm_block *sblock, *copy;
1284 dm_block_t held_root;
1286 r = superblock_lock(pmd, &sblock);
1287 if (r)
1288 return r;
1290 disk_super = dm_block_data(sblock);
1291 held_root = le64_to_cpu(disk_super->held_root);
1292 disk_super->held_root = cpu_to_le64(0);
1294 dm_bm_unlock(sblock);
1296 if (!held_root) {
1297 DMWARN("No pool metadata snapshot found: nothing to release.");
1298 return -EINVAL;
1301 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1302 if (r)
1303 return r;
1305 disk_super = dm_block_data(copy);
1306 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1307 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1308 dm_sm_dec_block(pmd->metadata_sm, held_root);
1310 dm_tm_unlock(pmd->tm, copy);
1312 return 0;
1315 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1317 int r = -EINVAL;
1319 down_write(&pmd->root_lock);
1320 if (!pmd->fail_io)
1321 r = __release_metadata_snap(pmd);
1322 up_write(&pmd->root_lock);
1324 return r;
1327 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1328 dm_block_t *result)
1330 int r;
1331 struct thin_disk_superblock *disk_super;
1332 struct dm_block *sblock;
1334 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1335 &sb_validator, &sblock);
1336 if (r)
1337 return r;
1339 disk_super = dm_block_data(sblock);
1340 *result = le64_to_cpu(disk_super->held_root);
1342 dm_bm_unlock(sblock);
1344 return 0;
1347 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1348 dm_block_t *result)
1350 int r = -EINVAL;
1352 down_read(&pmd->root_lock);
1353 if (!pmd->fail_io)
1354 r = __get_metadata_snap(pmd, result);
1355 up_read(&pmd->root_lock);
1357 return r;
1360 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1361 struct dm_thin_device **td)
1363 int r = -EINVAL;
1365 down_write(&pmd->root_lock);
1366 if (!pmd->fail_io)
1367 r = __open_device(pmd, dev, 0, td);
1368 up_write(&pmd->root_lock);
1370 return r;
1373 int dm_pool_close_thin_device(struct dm_thin_device *td)
1375 down_write(&td->pmd->root_lock);
1376 __close_device(td);
1377 up_write(&td->pmd->root_lock);
1379 return 0;
1382 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1384 return td->id;
1388 * Check whether @time (of block creation) is older than @td's last snapshot.
1389 * If so then the associated block is shared with the last snapshot device.
1390 * Any block on a device created *after* the device last got snapshotted is
1391 * necessarily not shared.
1393 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1395 return td->snapshotted_time > time;
1398 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1399 int can_issue_io, struct dm_thin_lookup_result *result)
1401 int r;
1402 __le64 value;
1403 struct dm_pool_metadata *pmd = td->pmd;
1404 dm_block_t keys[2] = { td->id, block };
1405 struct dm_btree_info *info;
1407 down_read(&pmd->root_lock);
1408 if (pmd->fail_io) {
1409 up_read(&pmd->root_lock);
1410 return -EINVAL;
1413 if (can_issue_io) {
1414 info = &pmd->info;
1415 } else
1416 info = &pmd->nb_info;
1418 r = dm_btree_lookup(info, pmd->root, keys, &value);
1419 if (!r) {
1420 uint64_t block_time = 0;
1421 dm_block_t exception_block;
1422 uint32_t exception_time;
1424 block_time = le64_to_cpu(value);
1425 unpack_block_time(block_time, &exception_block,
1426 &exception_time);
1427 result->block = exception_block;
1428 result->shared = __snapshotted_since(td, exception_time);
1431 up_read(&pmd->root_lock);
1432 return r;
1435 /* FIXME: write a more efficient one in btree */
1436 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1437 dm_block_t begin, dm_block_t end,
1438 dm_block_t *thin_begin, dm_block_t *thin_end,
1439 dm_block_t *pool_begin, bool *maybe_shared)
1441 int r;
1442 dm_block_t pool_end;
1443 struct dm_thin_lookup_result lookup;
1445 if (end < begin)
1446 return -ENODATA;
1449 * Find first mapped block.
1451 while (begin < end) {
1452 r = dm_thin_find_block(td, begin, true, &lookup);
1453 if (r) {
1454 if (r != -ENODATA)
1455 return r;
1456 } else
1457 break;
1459 begin++;
1462 if (begin == end)
1463 return -ENODATA;
1465 *thin_begin = begin;
1466 *pool_begin = lookup.block;
1467 *maybe_shared = lookup.shared;
1469 begin++;
1470 pool_end = *pool_begin + 1;
1471 while (begin != end) {
1472 r = dm_thin_find_block(td, begin, true, &lookup);
1473 if (r) {
1474 if (r == -ENODATA)
1475 break;
1476 else
1477 return r;
1480 if ((lookup.block != pool_end) ||
1481 (lookup.shared != *maybe_shared))
1482 break;
1484 pool_end++;
1485 begin++;
1488 *thin_end = begin;
1489 return 0;
1492 static int __insert(struct dm_thin_device *td, dm_block_t block,
1493 dm_block_t data_block)
1495 int r, inserted;
1496 __le64 value;
1497 struct dm_pool_metadata *pmd = td->pmd;
1498 dm_block_t keys[2] = { td->id, block };
1500 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1501 __dm_bless_for_disk(&value);
1503 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1504 &pmd->root, &inserted);
1505 if (r)
1506 return r;
1508 td->changed = 1;
1509 if (inserted)
1510 td->mapped_blocks++;
1512 return 0;
1515 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1516 dm_block_t data_block)
1518 int r = -EINVAL;
1520 down_write(&td->pmd->root_lock);
1521 if (!td->pmd->fail_io)
1522 r = __insert(td, block, data_block);
1523 up_write(&td->pmd->root_lock);
1525 return r;
1528 static int __remove(struct dm_thin_device *td, dm_block_t block)
1530 int r;
1531 struct dm_pool_metadata *pmd = td->pmd;
1532 dm_block_t keys[2] = { td->id, block };
1534 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1535 if (r)
1536 return r;
1538 td->mapped_blocks--;
1539 td->changed = 1;
1541 return 0;
1544 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1546 int r;
1547 unsigned count, total_count = 0;
1548 struct dm_pool_metadata *pmd = td->pmd;
1549 dm_block_t keys[1] = { td->id };
1550 __le64 value;
1551 dm_block_t mapping_root;
1554 * Find the mapping tree
1556 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1557 if (r)
1558 return r;
1561 * Remove from the mapping tree, taking care to inc the
1562 * ref count so it doesn't get deleted.
1564 mapping_root = le64_to_cpu(value);
1565 dm_tm_inc(pmd->tm, mapping_root);
1566 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1567 if (r)
1568 return r;
1571 * Remove leaves stops at the first unmapped entry, so we have to
1572 * loop round finding mapped ranges.
1574 while (begin < end) {
1575 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1576 if (r == -ENODATA)
1577 break;
1579 if (r)
1580 return r;
1582 if (begin >= end)
1583 break;
1585 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1586 if (r)
1587 return r;
1589 total_count += count;
1592 td->mapped_blocks -= total_count;
1593 td->changed = 1;
1596 * Reinsert the mapping tree.
1598 value = cpu_to_le64(mapping_root);
1599 __dm_bless_for_disk(&value);
1600 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1603 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1605 int r = -EINVAL;
1607 down_write(&td->pmd->root_lock);
1608 if (!td->pmd->fail_io)
1609 r = __remove(td, block);
1610 up_write(&td->pmd->root_lock);
1612 return r;
1615 int dm_thin_remove_range(struct dm_thin_device *td,
1616 dm_block_t begin, dm_block_t end)
1618 int r = -EINVAL;
1620 down_write(&td->pmd->root_lock);
1621 if (!td->pmd->fail_io)
1622 r = __remove_range(td, begin, end);
1623 up_write(&td->pmd->root_lock);
1625 return r;
1628 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1630 int r;
1631 uint32_t ref_count;
1633 down_read(&pmd->root_lock);
1634 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1635 if (!r)
1636 *result = (ref_count != 0);
1637 up_read(&pmd->root_lock);
1639 return r;
1642 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1644 int r;
1646 down_read(&td->pmd->root_lock);
1647 r = td->changed;
1648 up_read(&td->pmd->root_lock);
1650 return r;
1653 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1655 bool r = false;
1656 struct dm_thin_device *td, *tmp;
1658 down_read(&pmd->root_lock);
1659 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1660 if (td->changed) {
1661 r = td->changed;
1662 break;
1665 up_read(&pmd->root_lock);
1667 return r;
1670 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1672 bool r;
1674 down_read(&td->pmd->root_lock);
1675 r = td->aborted_with_changes;
1676 up_read(&td->pmd->root_lock);
1678 return r;
1681 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1683 int r = -EINVAL;
1685 down_write(&pmd->root_lock);
1686 if (!pmd->fail_io)
1687 r = dm_sm_new_block(pmd->data_sm, result);
1688 up_write(&pmd->root_lock);
1690 return r;
1693 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1695 int r = -EINVAL;
1697 down_write(&pmd->root_lock);
1698 if (pmd->fail_io)
1699 goto out;
1701 r = __commit_transaction(pmd);
1702 if (r <= 0)
1703 goto out;
1706 * Open the next transaction.
1708 r = __begin_transaction(pmd);
1709 out:
1710 up_write(&pmd->root_lock);
1711 return r;
1714 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1716 struct dm_thin_device *td;
1718 list_for_each_entry(td, &pmd->thin_devices, list)
1719 td->aborted_with_changes = td->changed;
1722 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1724 int r = -EINVAL;
1726 down_write(&pmd->root_lock);
1727 if (pmd->fail_io)
1728 goto out;
1730 __set_abort_with_changes_flags(pmd);
1731 __destroy_persistent_data_objects(pmd);
1732 r = __create_persistent_data_objects(pmd, false);
1733 if (r)
1734 pmd->fail_io = true;
1736 out:
1737 up_write(&pmd->root_lock);
1739 return r;
1742 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1744 int r = -EINVAL;
1746 down_read(&pmd->root_lock);
1747 if (!pmd->fail_io)
1748 r = dm_sm_get_nr_free(pmd->data_sm, result);
1749 up_read(&pmd->root_lock);
1751 return r;
1754 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1755 dm_block_t *result)
1757 int r = -EINVAL;
1759 down_read(&pmd->root_lock);
1760 if (!pmd->fail_io)
1761 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1762 up_read(&pmd->root_lock);
1764 return r;
1767 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1768 dm_block_t *result)
1770 int r = -EINVAL;
1772 down_read(&pmd->root_lock);
1773 if (!pmd->fail_io)
1774 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1775 up_read(&pmd->root_lock);
1777 return r;
1780 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1782 int r = -EINVAL;
1784 down_read(&pmd->root_lock);
1785 if (!pmd->fail_io)
1786 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1787 up_read(&pmd->root_lock);
1789 return r;
1792 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1794 int r = -EINVAL;
1795 struct dm_pool_metadata *pmd = td->pmd;
1797 down_read(&pmd->root_lock);
1798 if (!pmd->fail_io) {
1799 *result = td->mapped_blocks;
1800 r = 0;
1802 up_read(&pmd->root_lock);
1804 return r;
1807 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1809 int r;
1810 __le64 value_le;
1811 dm_block_t thin_root;
1812 struct dm_pool_metadata *pmd = td->pmd;
1814 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1815 if (r)
1816 return r;
1818 thin_root = le64_to_cpu(value_le);
1820 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1823 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1824 dm_block_t *result)
1826 int r = -EINVAL;
1827 struct dm_pool_metadata *pmd = td->pmd;
1829 down_read(&pmd->root_lock);
1830 if (!pmd->fail_io)
1831 r = __highest_block(td, result);
1832 up_read(&pmd->root_lock);
1834 return r;
1837 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1839 int r;
1840 dm_block_t old_count;
1842 r = dm_sm_get_nr_blocks(sm, &old_count);
1843 if (r)
1844 return r;
1846 if (new_count == old_count)
1847 return 0;
1849 if (new_count < old_count) {
1850 DMERR("cannot reduce size of space map");
1851 return -EINVAL;
1854 return dm_sm_extend(sm, new_count - old_count);
1857 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1859 int r = -EINVAL;
1861 down_write(&pmd->root_lock);
1862 if (!pmd->fail_io)
1863 r = __resize_space_map(pmd->data_sm, new_count);
1864 up_write(&pmd->root_lock);
1866 return r;
1869 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1871 int r = -EINVAL;
1873 down_write(&pmd->root_lock);
1874 if (!pmd->fail_io)
1875 r = __resize_space_map(pmd->metadata_sm, new_count);
1876 up_write(&pmd->root_lock);
1878 return r;
1881 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1883 down_write(&pmd->root_lock);
1884 dm_bm_set_read_only(pmd->bm);
1885 up_write(&pmd->root_lock);
1888 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1890 down_write(&pmd->root_lock);
1891 dm_bm_set_read_write(pmd->bm);
1892 up_write(&pmd->root_lock);
1895 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1896 dm_block_t threshold,
1897 dm_sm_threshold_fn fn,
1898 void *context)
1900 int r;
1902 down_write(&pmd->root_lock);
1903 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1904 up_write(&pmd->root_lock);
1906 return r;
1909 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
1911 int r;
1912 struct dm_block *sblock;
1913 struct thin_disk_superblock *disk_super;
1915 down_write(&pmd->root_lock);
1916 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
1918 r = superblock_lock(pmd, &sblock);
1919 if (r) {
1920 DMERR("couldn't read superblock");
1921 goto out;
1924 disk_super = dm_block_data(sblock);
1925 disk_super->flags = cpu_to_le32(pmd->flags);
1927 dm_bm_unlock(sblock);
1928 out:
1929 up_write(&pmd->root_lock);
1930 return r;
1933 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
1935 bool needs_check;
1937 down_read(&pmd->root_lock);
1938 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
1939 up_read(&pmd->root_lock);
1941 return needs_check;
1944 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
1946 dm_tm_issue_prefetches(pmd->tm);