of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / media / dvb-frontends / nxt6000.c
blob73f9505367acaa6c034199911a967523655b87d7
1 /*
2 NxtWave Communications - NXT6000 demodulator driver
4 Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
5 Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
28 #include "dvb_frontend.h"
29 #include "nxt6000_priv.h"
30 #include "nxt6000.h"
34 struct nxt6000_state {
35 struct i2c_adapter* i2c;
36 /* configuration settings */
37 const struct nxt6000_config* config;
38 struct dvb_frontend frontend;
41 static int debug;
42 #define dprintk if (debug) printk
44 static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
46 u8 buf[] = { reg, data };
47 struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
48 int ret;
50 if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
51 dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
53 return (ret != 1) ? -EIO : 0;
56 static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
58 int ret;
59 u8 b0[] = { reg };
60 u8 b1[] = { 0 };
61 struct i2c_msg msgs[] = {
62 {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
63 {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
66 ret = i2c_transfer(state->i2c, msgs, 2);
68 if (ret != 2)
69 dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
71 return b1[0];
74 static void nxt6000_reset(struct nxt6000_state* state)
76 u8 val;
78 val = nxt6000_readreg(state, OFDM_COR_CTL);
80 nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
81 nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
84 static int nxt6000_set_bandwidth(struct nxt6000_state *state, u32 bandwidth)
86 u16 nominal_rate;
87 int result;
89 switch (bandwidth) {
90 case 6000000:
91 nominal_rate = 0x55B7;
92 break;
94 case 7000000:
95 nominal_rate = 0x6400;
96 break;
98 case 8000000:
99 nominal_rate = 0x7249;
100 break;
102 default:
103 return -EINVAL;
106 if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
107 return result;
109 return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
112 static int nxt6000_set_guard_interval(struct nxt6000_state *state,
113 enum fe_guard_interval guard_interval)
115 switch (guard_interval) {
117 case GUARD_INTERVAL_1_32:
118 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
120 case GUARD_INTERVAL_1_16:
121 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
123 case GUARD_INTERVAL_AUTO:
124 case GUARD_INTERVAL_1_8:
125 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
127 case GUARD_INTERVAL_1_4:
128 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
130 default:
131 return -EINVAL;
135 static int nxt6000_set_inversion(struct nxt6000_state *state,
136 enum fe_spectral_inversion inversion)
138 switch (inversion) {
140 case INVERSION_OFF:
141 return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
143 case INVERSION_ON:
144 return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
146 default:
147 return -EINVAL;
152 static int
153 nxt6000_set_transmission_mode(struct nxt6000_state *state,
154 enum fe_transmit_mode transmission_mode)
156 int result;
158 switch (transmission_mode) {
160 case TRANSMISSION_MODE_2K:
161 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
162 return result;
164 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
166 case TRANSMISSION_MODE_8K:
167 case TRANSMISSION_MODE_AUTO:
168 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
169 return result;
171 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
173 default:
174 return -EINVAL;
179 static void nxt6000_setup(struct dvb_frontend* fe)
181 struct nxt6000_state* state = fe->demodulator_priv;
183 nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
184 nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
185 nxt6000_writereg(state, VIT_BERTIME_2, 0x00); // BER Timer = 0x000200 * 256 = 131072 bits
186 nxt6000_writereg(state, VIT_BERTIME_1, 0x02); //
187 nxt6000_writereg(state, VIT_BERTIME_0, 0x00); //
188 nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
189 nxt6000_writereg(state, VIT_COR_CTL, 0x82); // Enable BER measurement
190 nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
191 nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
192 nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
193 nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
194 nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
195 nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
196 nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
197 nxt6000_writereg(state, CAS_FREQ, 0xBB); /* CHECKME */
198 nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
199 nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
200 nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
201 nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
202 nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
203 nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
204 nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
206 if (state->config->clock_inversion)
207 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
208 else
209 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
211 nxt6000_writereg(state, TS_FORMAT, 0);
214 static void nxt6000_dump_status(struct nxt6000_state *state)
216 u8 val;
219 printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT));
220 printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS));
221 printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT));
222 printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT));
223 printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
224 printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
225 printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
226 printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
227 printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
228 printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
230 printk("NXT6000 status:");
232 val = nxt6000_readreg(state, RS_COR_STAT);
234 printk(" DATA DESCR LOCK: %d,", val & 0x01);
235 printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
237 val = nxt6000_readreg(state, VIT_SYNC_STATUS);
239 printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
241 switch ((val >> 4) & 0x07) {
243 case 0x00:
244 printk(" VITERBI CODERATE: 1/2,");
245 break;
247 case 0x01:
248 printk(" VITERBI CODERATE: 2/3,");
249 break;
251 case 0x02:
252 printk(" VITERBI CODERATE: 3/4,");
253 break;
255 case 0x03:
256 printk(" VITERBI CODERATE: 5/6,");
257 break;
259 case 0x04:
260 printk(" VITERBI CODERATE: 7/8,");
261 break;
263 default:
264 printk(" VITERBI CODERATE: Reserved,");
268 val = nxt6000_readreg(state, OFDM_COR_STAT);
270 printk(" CHCTrack: %d,", (val >> 7) & 0x01);
271 printk(" TPSLock: %d,", (val >> 6) & 0x01);
272 printk(" SYRLock: %d,", (val >> 5) & 0x01);
273 printk(" AGCLock: %d,", (val >> 4) & 0x01);
275 switch (val & 0x0F) {
277 case 0x00:
278 printk(" CoreState: IDLE,");
279 break;
281 case 0x02:
282 printk(" CoreState: WAIT_AGC,");
283 break;
285 case 0x03:
286 printk(" CoreState: WAIT_SYR,");
287 break;
289 case 0x04:
290 printk(" CoreState: WAIT_PPM,");
291 break;
293 case 0x01:
294 printk(" CoreState: WAIT_TRL,");
295 break;
297 case 0x05:
298 printk(" CoreState: WAIT_TPS,");
299 break;
301 case 0x06:
302 printk(" CoreState: MONITOR_TPS,");
303 break;
305 default:
306 printk(" CoreState: Reserved,");
310 val = nxt6000_readreg(state, OFDM_SYR_STAT);
312 printk(" SYRLock: %d,", (val >> 4) & 0x01);
313 printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
315 switch ((val >> 4) & 0x03) {
317 case 0x00:
318 printk(" SYRGuard: 1/32,");
319 break;
321 case 0x01:
322 printk(" SYRGuard: 1/16,");
323 break;
325 case 0x02:
326 printk(" SYRGuard: 1/8,");
327 break;
329 case 0x03:
330 printk(" SYRGuard: 1/4,");
331 break;
334 val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
336 switch ((val >> 4) & 0x07) {
338 case 0x00:
339 printk(" TPSLP: 1/2,");
340 break;
342 case 0x01:
343 printk(" TPSLP: 2/3,");
344 break;
346 case 0x02:
347 printk(" TPSLP: 3/4,");
348 break;
350 case 0x03:
351 printk(" TPSLP: 5/6,");
352 break;
354 case 0x04:
355 printk(" TPSLP: 7/8,");
356 break;
358 default:
359 printk(" TPSLP: Reserved,");
363 switch (val & 0x07) {
365 case 0x00:
366 printk(" TPSHP: 1/2,");
367 break;
369 case 0x01:
370 printk(" TPSHP: 2/3,");
371 break;
373 case 0x02:
374 printk(" TPSHP: 3/4,");
375 break;
377 case 0x03:
378 printk(" TPSHP: 5/6,");
379 break;
381 case 0x04:
382 printk(" TPSHP: 7/8,");
383 break;
385 default:
386 printk(" TPSHP: Reserved,");
390 val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
392 printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
394 switch ((val >> 4) & 0x03) {
396 case 0x00:
397 printk(" TPSGuard: 1/32,");
398 break;
400 case 0x01:
401 printk(" TPSGuard: 1/16,");
402 break;
404 case 0x02:
405 printk(" TPSGuard: 1/8,");
406 break;
408 case 0x03:
409 printk(" TPSGuard: 1/4,");
410 break;
414 /* Strange magic required to gain access to RF_AGC_STATUS */
415 nxt6000_readreg(state, RF_AGC_VAL_1);
416 val = nxt6000_readreg(state, RF_AGC_STATUS);
417 val = nxt6000_readreg(state, RF_AGC_STATUS);
419 printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
420 printk("\n");
423 static int nxt6000_read_status(struct dvb_frontend *fe, enum fe_status *status)
425 u8 core_status;
426 struct nxt6000_state* state = fe->demodulator_priv;
428 *status = 0;
430 core_status = nxt6000_readreg(state, OFDM_COR_STAT);
432 if (core_status & AGCLOCKED)
433 *status |= FE_HAS_SIGNAL;
435 if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
436 *status |= FE_HAS_CARRIER;
438 if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
439 *status |= FE_HAS_VITERBI;
441 if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
442 *status |= FE_HAS_SYNC;
444 if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
445 *status |= FE_HAS_LOCK;
447 if (debug)
448 nxt6000_dump_status(state);
450 return 0;
453 static int nxt6000_init(struct dvb_frontend* fe)
455 struct nxt6000_state* state = fe->demodulator_priv;
457 nxt6000_reset(state);
458 nxt6000_setup(fe);
460 return 0;
463 static int nxt6000_set_frontend(struct dvb_frontend *fe)
465 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
466 struct nxt6000_state* state = fe->demodulator_priv;
467 int result;
469 if (fe->ops.tuner_ops.set_params) {
470 fe->ops.tuner_ops.set_params(fe);
471 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
474 result = nxt6000_set_bandwidth(state, p->bandwidth_hz);
475 if (result < 0)
476 return result;
478 result = nxt6000_set_guard_interval(state, p->guard_interval);
479 if (result < 0)
480 return result;
482 result = nxt6000_set_transmission_mode(state, p->transmission_mode);
483 if (result < 0)
484 return result;
486 result = nxt6000_set_inversion(state, p->inversion);
487 if (result < 0)
488 return result;
490 msleep(500);
491 return 0;
494 static void nxt6000_release(struct dvb_frontend* fe)
496 struct nxt6000_state* state = fe->demodulator_priv;
497 kfree(state);
500 static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
502 struct nxt6000_state* state = fe->demodulator_priv;
504 *snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;
506 return 0;
509 static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
511 struct nxt6000_state* state = fe->demodulator_priv;
513 nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );
515 *ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
516 nxt6000_readreg( state, VIT_BER_0 );
518 nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts
520 return 0;
523 static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
525 struct nxt6000_state* state = fe->demodulator_priv;
527 *signal_strength = (short) (511 -
528 (nxt6000_readreg(state, AGC_GAIN_1) +
529 ((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));
531 return 0;
534 static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
536 tune->min_delay_ms = 500;
537 return 0;
540 static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
542 struct nxt6000_state* state = fe->demodulator_priv;
544 if (enable) {
545 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);
546 } else {
547 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);
551 static struct dvb_frontend_ops nxt6000_ops;
553 struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
554 struct i2c_adapter* i2c)
556 struct nxt6000_state* state = NULL;
558 /* allocate memory for the internal state */
559 state = kzalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
560 if (state == NULL) goto error;
562 /* setup the state */
563 state->config = config;
564 state->i2c = i2c;
566 /* check if the demod is there */
567 if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
569 /* create dvb_frontend */
570 memcpy(&state->frontend.ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
571 state->frontend.demodulator_priv = state;
572 return &state->frontend;
574 error:
575 kfree(state);
576 return NULL;
579 static struct dvb_frontend_ops nxt6000_ops = {
580 .delsys = { SYS_DVBT },
581 .info = {
582 .name = "NxtWave NXT6000 DVB-T",
583 .frequency_min = 0,
584 .frequency_max = 863250000,
585 .frequency_stepsize = 62500,
586 /*.frequency_tolerance = *//* FIXME: 12% of SR */
587 .symbol_rate_min = 0, /* FIXME */
588 .symbol_rate_max = 9360000, /* FIXME */
589 .symbol_rate_tolerance = 4000,
590 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
591 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
592 FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
593 FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
594 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
595 FE_CAN_HIERARCHY_AUTO,
598 .release = nxt6000_release,
600 .init = nxt6000_init,
601 .i2c_gate_ctrl = nxt6000_i2c_gate_ctrl,
603 .get_tune_settings = nxt6000_fe_get_tune_settings,
605 .set_frontend = nxt6000_set_frontend,
607 .read_status = nxt6000_read_status,
608 .read_ber = nxt6000_read_ber,
609 .read_signal_strength = nxt6000_read_signal_strength,
610 .read_snr = nxt6000_read_snr,
613 module_param(debug, int, 0644);
614 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
616 MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
617 MODULE_AUTHOR("Florian Schirmer");
618 MODULE_LICENSE("GPL");
620 EXPORT_SYMBOL(nxt6000_attach);