3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/pci.h>
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
26 #include "hw-me-regs.h"
28 #include "mei-trace.h"
31 * mei_me_reg_read - Reads 32bit data from the mei device
33 * @hw: the me hardware structure
34 * @offset: offset from which to read the data
36 * Return: register value (u32)
38 static inline u32
mei_me_reg_read(const struct mei_me_hw
*hw
,
41 return ioread32(hw
->mem_addr
+ offset
);
46 * mei_me_reg_write - Writes 32bit data to the mei device
48 * @hw: the me hardware structure
49 * @offset: offset from which to write the data
50 * @value: register value to write (u32)
52 static inline void mei_me_reg_write(const struct mei_me_hw
*hw
,
53 unsigned long offset
, u32 value
)
55 iowrite32(value
, hw
->mem_addr
+ offset
);
59 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
60 * read window register
62 * @dev: the device structure
64 * Return: ME_CB_RW register value (u32)
66 static inline u32
mei_me_mecbrw_read(const struct mei_device
*dev
)
68 return mei_me_reg_read(to_me_hw(dev
), ME_CB_RW
);
72 * mei_me_hcbww_write - write 32bit data to the host circular buffer
74 * @dev: the device structure
75 * @data: 32bit data to be written to the host circular buffer
77 static inline void mei_me_hcbww_write(struct mei_device
*dev
, u32 data
)
79 mei_me_reg_write(to_me_hw(dev
), H_CB_WW
, data
);
83 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
85 * @dev: the device structure
87 * Return: ME_CSR_HA register value (u32)
89 static inline u32
mei_me_mecsr_read(const struct mei_device
*dev
)
93 reg
= mei_me_reg_read(to_me_hw(dev
), ME_CSR_HA
);
94 trace_mei_reg_read(dev
->dev
, "ME_CSR_HA", ME_CSR_HA
, reg
);
100 * mei_hcsr_read - Reads 32bit data from the host CSR
102 * @dev: the device structure
104 * Return: H_CSR register value (u32)
106 static inline u32
mei_hcsr_read(const struct mei_device
*dev
)
110 reg
= mei_me_reg_read(to_me_hw(dev
), H_CSR
);
111 trace_mei_reg_read(dev
->dev
, "H_CSR", H_CSR
, reg
);
117 * mei_hcsr_write - writes H_CSR register to the mei device
119 * @dev: the device structure
120 * @reg: new register value
122 static inline void mei_hcsr_write(struct mei_device
*dev
, u32 reg
)
124 trace_mei_reg_write(dev
->dev
, "H_CSR", H_CSR
, reg
);
125 mei_me_reg_write(to_me_hw(dev
), H_CSR
, reg
);
129 * mei_hcsr_set - writes H_CSR register to the mei device,
130 * and ignores the H_IS bit for it is write-one-to-zero.
132 * @dev: the device structure
133 * @reg: new register value
135 static inline void mei_hcsr_set(struct mei_device
*dev
, u32 reg
)
137 reg
&= ~H_CSR_IS_MASK
;
138 mei_hcsr_write(dev
, reg
);
142 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
144 * @dev: the device structure
146 * Return: H_D0I3C register value (u32)
148 static inline u32
mei_me_d0i3c_read(const struct mei_device
*dev
)
152 reg
= mei_me_reg_read(to_me_hw(dev
), H_D0I3C
);
153 trace_mei_reg_read(dev
->dev
, "H_D0I3C", H_D0I3C
, reg
);
159 * mei_me_d0i3c_write - writes H_D0I3C register to device
161 * @dev: the device structure
162 * @reg: new register value
164 static inline void mei_me_d0i3c_write(struct mei_device
*dev
, u32 reg
)
166 trace_mei_reg_write(dev
->dev
, "H_D0I3C", H_D0I3C
, reg
);
167 mei_me_reg_write(to_me_hw(dev
), H_D0I3C
, reg
);
171 * mei_me_fw_status - read fw status register from pci config space
174 * @fw_status: fw status register values
176 * Return: 0 on success, error otherwise
178 static int mei_me_fw_status(struct mei_device
*dev
,
179 struct mei_fw_status
*fw_status
)
181 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
182 struct mei_me_hw
*hw
= to_me_hw(dev
);
183 const struct mei_fw_status
*fw_src
= &hw
->cfg
->fw_status
;
190 fw_status
->count
= fw_src
->count
;
191 for (i
= 0; i
< fw_src
->count
&& i
< MEI_FW_STATUS_MAX
; i
++) {
192 ret
= pci_read_config_dword(pdev
,
193 fw_src
->status
[i
], &fw_status
->status
[i
]);
202 * mei_me_hw_config - configure hw dependent settings
206 static void mei_me_hw_config(struct mei_device
*dev
)
208 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
209 struct mei_me_hw
*hw
= to_me_hw(dev
);
212 /* Doesn't change in runtime */
213 hcsr
= mei_hcsr_read(dev
);
214 dev
->hbuf_depth
= (hcsr
& H_CBD
) >> 24;
217 pci_read_config_dword(pdev
, PCI_CFG_HFS_1
, ®
);
219 ((reg
& PCI_CFG_HFS_1_D0I3_MSK
) == PCI_CFG_HFS_1_D0I3_MSK
);
221 hw
->pg_state
= MEI_PG_OFF
;
222 if (hw
->d0i3_supported
) {
223 reg
= mei_me_d0i3c_read(dev
);
224 if (reg
& H_D0I3C_I3
)
225 hw
->pg_state
= MEI_PG_ON
;
230 * mei_me_pg_state - translate internal pg state
231 * to the mei power gating state
235 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
237 static inline enum mei_pg_state
mei_me_pg_state(struct mei_device
*dev
)
239 struct mei_me_hw
*hw
= to_me_hw(dev
);
245 * mei_me_intr_clear - clear and stop interrupts
247 * @dev: the device structure
249 static void mei_me_intr_clear(struct mei_device
*dev
)
251 u32 hcsr
= mei_hcsr_read(dev
);
253 if (hcsr
& H_CSR_IS_MASK
)
254 mei_hcsr_write(dev
, hcsr
);
257 * mei_me_intr_enable - enables mei device interrupts
259 * @dev: the device structure
261 static void mei_me_intr_enable(struct mei_device
*dev
)
263 u32 hcsr
= mei_hcsr_read(dev
);
265 hcsr
|= H_CSR_IE_MASK
;
266 mei_hcsr_set(dev
, hcsr
);
270 * mei_me_intr_disable - disables mei device interrupts
272 * @dev: the device structure
274 static void mei_me_intr_disable(struct mei_device
*dev
)
276 u32 hcsr
= mei_hcsr_read(dev
);
278 hcsr
&= ~H_CSR_IE_MASK
;
279 mei_hcsr_set(dev
, hcsr
);
283 * mei_me_hw_reset_release - release device from the reset
285 * @dev: the device structure
287 static void mei_me_hw_reset_release(struct mei_device
*dev
)
289 u32 hcsr
= mei_hcsr_read(dev
);
293 mei_hcsr_set(dev
, hcsr
);
295 /* complete this write before we set host ready on another CPU */
300 * mei_me_host_set_ready - enable device
304 static void mei_me_host_set_ready(struct mei_device
*dev
)
306 u32 hcsr
= mei_hcsr_read(dev
);
308 hcsr
|= H_CSR_IE_MASK
| H_IG
| H_RDY
;
309 mei_hcsr_set(dev
, hcsr
);
313 * mei_me_host_is_ready - check whether the host has turned ready
318 static bool mei_me_host_is_ready(struct mei_device
*dev
)
320 u32 hcsr
= mei_hcsr_read(dev
);
322 return (hcsr
& H_RDY
) == H_RDY
;
326 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
331 static bool mei_me_hw_is_ready(struct mei_device
*dev
)
333 u32 mecsr
= mei_me_mecsr_read(dev
);
335 return (mecsr
& ME_RDY_HRA
) == ME_RDY_HRA
;
339 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
340 * or timeout is reached
343 * Return: 0 on success, error otherwise
345 static int mei_me_hw_ready_wait(struct mei_device
*dev
)
347 mutex_unlock(&dev
->device_lock
);
348 wait_event_timeout(dev
->wait_hw_ready
,
350 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT
));
351 mutex_lock(&dev
->device_lock
);
352 if (!dev
->recvd_hw_ready
) {
353 dev_err(dev
->dev
, "wait hw ready failed\n");
357 mei_me_hw_reset_release(dev
);
358 dev
->recvd_hw_ready
= false;
363 * mei_me_hw_start - hw start routine
366 * Return: 0 on success, error otherwise
368 static int mei_me_hw_start(struct mei_device
*dev
)
370 int ret
= mei_me_hw_ready_wait(dev
);
374 dev_dbg(dev
->dev
, "hw is ready\n");
376 mei_me_host_set_ready(dev
);
382 * mei_hbuf_filled_slots - gets number of device filled buffer slots
384 * @dev: the device structure
386 * Return: number of filled slots
388 static unsigned char mei_hbuf_filled_slots(struct mei_device
*dev
)
391 char read_ptr
, write_ptr
;
393 hcsr
= mei_hcsr_read(dev
);
395 read_ptr
= (char) ((hcsr
& H_CBRP
) >> 8);
396 write_ptr
= (char) ((hcsr
& H_CBWP
) >> 16);
398 return (unsigned char) (write_ptr
- read_ptr
);
402 * mei_me_hbuf_is_empty - checks if host buffer is empty.
404 * @dev: the device structure
406 * Return: true if empty, false - otherwise.
408 static bool mei_me_hbuf_is_empty(struct mei_device
*dev
)
410 return mei_hbuf_filled_slots(dev
) == 0;
414 * mei_me_hbuf_empty_slots - counts write empty slots.
416 * @dev: the device structure
418 * Return: -EOVERFLOW if overflow, otherwise empty slots count
420 static int mei_me_hbuf_empty_slots(struct mei_device
*dev
)
422 unsigned char filled_slots
, empty_slots
;
424 filled_slots
= mei_hbuf_filled_slots(dev
);
425 empty_slots
= dev
->hbuf_depth
- filled_slots
;
427 /* check for overflow */
428 if (filled_slots
> dev
->hbuf_depth
)
435 * mei_me_hbuf_max_len - returns size of hw buffer.
437 * @dev: the device structure
439 * Return: size of hw buffer in bytes
441 static size_t mei_me_hbuf_max_len(const struct mei_device
*dev
)
443 return dev
->hbuf_depth
* sizeof(u32
) - sizeof(struct mei_msg_hdr
);
448 * mei_me_write_message - writes a message to mei device.
450 * @dev: the device structure
451 * @header: mei HECI header of message
452 * @buf: message payload will be written
454 * Return: -EIO if write has failed
456 static int mei_me_write_message(struct mei_device
*dev
,
457 struct mei_msg_hdr
*header
,
461 unsigned long length
= header
->length
;
462 u32
*reg_buf
= (u32
*)buf
;
468 dev_dbg(dev
->dev
, MEI_HDR_FMT
, MEI_HDR_PRM(header
));
470 empty_slots
= mei_hbuf_empty_slots(dev
);
471 dev_dbg(dev
->dev
, "empty slots = %hu.\n", empty_slots
);
473 dw_cnt
= mei_data2slots(length
);
474 if (empty_slots
< 0 || dw_cnt
> empty_slots
)
477 mei_me_hcbww_write(dev
, *((u32
*) header
));
479 for (i
= 0; i
< length
/ 4; i
++)
480 mei_me_hcbww_write(dev
, reg_buf
[i
]);
486 memcpy(®
, &buf
[length
- rem
], rem
);
487 mei_me_hcbww_write(dev
, reg
);
490 hcsr
= mei_hcsr_read(dev
) | H_IG
;
491 mei_hcsr_set(dev
, hcsr
);
492 if (!mei_me_hw_is_ready(dev
))
499 * mei_me_count_full_read_slots - counts read full slots.
501 * @dev: the device structure
503 * Return: -EOVERFLOW if overflow, otherwise filled slots count
505 static int mei_me_count_full_read_slots(struct mei_device
*dev
)
508 char read_ptr
, write_ptr
;
509 unsigned char buffer_depth
, filled_slots
;
511 me_csr
= mei_me_mecsr_read(dev
);
512 buffer_depth
= (unsigned char)((me_csr
& ME_CBD_HRA
) >> 24);
513 read_ptr
= (char) ((me_csr
& ME_CBRP_HRA
) >> 8);
514 write_ptr
= (char) ((me_csr
& ME_CBWP_HRA
) >> 16);
515 filled_slots
= (unsigned char) (write_ptr
- read_ptr
);
517 /* check for overflow */
518 if (filled_slots
> buffer_depth
)
521 dev_dbg(dev
->dev
, "filled_slots =%08x\n", filled_slots
);
522 return (int)filled_slots
;
526 * mei_me_read_slots - reads a message from mei device.
528 * @dev: the device structure
529 * @buffer: message buffer will be written
530 * @buffer_length: message size will be read
534 static int mei_me_read_slots(struct mei_device
*dev
, unsigned char *buffer
,
535 unsigned long buffer_length
)
537 u32
*reg_buf
= (u32
*)buffer
;
540 for (; buffer_length
>= sizeof(u32
); buffer_length
-= sizeof(u32
))
541 *reg_buf
++ = mei_me_mecbrw_read(dev
);
543 if (buffer_length
> 0) {
544 u32 reg
= mei_me_mecbrw_read(dev
);
546 memcpy(reg_buf
, ®
, buffer_length
);
549 hcsr
= mei_hcsr_read(dev
) | H_IG
;
550 mei_hcsr_set(dev
, hcsr
);
555 * mei_me_pg_set - write pg enter register
557 * @dev: the device structure
559 static void mei_me_pg_set(struct mei_device
*dev
)
561 struct mei_me_hw
*hw
= to_me_hw(dev
);
564 reg
= mei_me_reg_read(hw
, H_HPG_CSR
);
565 trace_mei_reg_read(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
567 reg
|= H_HPG_CSR_PGI
;
569 trace_mei_reg_write(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
570 mei_me_reg_write(hw
, H_HPG_CSR
, reg
);
574 * mei_me_pg_unset - write pg exit register
576 * @dev: the device structure
578 static void mei_me_pg_unset(struct mei_device
*dev
)
580 struct mei_me_hw
*hw
= to_me_hw(dev
);
583 reg
= mei_me_reg_read(hw
, H_HPG_CSR
);
584 trace_mei_reg_read(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
586 WARN(!(reg
& H_HPG_CSR_PGI
), "PGI is not set\n");
588 reg
|= H_HPG_CSR_PGIHEXR
;
590 trace_mei_reg_write(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
591 mei_me_reg_write(hw
, H_HPG_CSR
, reg
);
595 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
597 * @dev: the device structure
599 * Return: 0 on success an error code otherwise
601 static int mei_me_pg_legacy_enter_sync(struct mei_device
*dev
)
603 struct mei_me_hw
*hw
= to_me_hw(dev
);
604 unsigned long timeout
= mei_secs_to_jiffies(MEI_PGI_TIMEOUT
);
607 dev
->pg_event
= MEI_PG_EVENT_WAIT
;
609 ret
= mei_hbm_pg(dev
, MEI_PG_ISOLATION_ENTRY_REQ_CMD
);
613 mutex_unlock(&dev
->device_lock
);
614 wait_event_timeout(dev
->wait_pg
,
615 dev
->pg_event
== MEI_PG_EVENT_RECEIVED
, timeout
);
616 mutex_lock(&dev
->device_lock
);
618 if (dev
->pg_event
== MEI_PG_EVENT_RECEIVED
) {
625 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
626 hw
->pg_state
= MEI_PG_ON
;
632 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
634 * @dev: the device structure
636 * Return: 0 on success an error code otherwise
638 static int mei_me_pg_legacy_exit_sync(struct mei_device
*dev
)
640 struct mei_me_hw
*hw
= to_me_hw(dev
);
641 unsigned long timeout
= mei_secs_to_jiffies(MEI_PGI_TIMEOUT
);
644 if (dev
->pg_event
== MEI_PG_EVENT_RECEIVED
)
647 dev
->pg_event
= MEI_PG_EVENT_WAIT
;
649 mei_me_pg_unset(dev
);
651 mutex_unlock(&dev
->device_lock
);
652 wait_event_timeout(dev
->wait_pg
,
653 dev
->pg_event
== MEI_PG_EVENT_RECEIVED
, timeout
);
654 mutex_lock(&dev
->device_lock
);
657 if (dev
->pg_event
!= MEI_PG_EVENT_RECEIVED
) {
662 dev
->pg_event
= MEI_PG_EVENT_INTR_WAIT
;
663 ret
= mei_hbm_pg(dev
, MEI_PG_ISOLATION_EXIT_RES_CMD
);
667 mutex_unlock(&dev
->device_lock
);
668 wait_event_timeout(dev
->wait_pg
,
669 dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
, timeout
);
670 mutex_lock(&dev
->device_lock
);
672 if (dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
)
678 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
679 hw
->pg_state
= MEI_PG_OFF
;
685 * mei_me_pg_in_transition - is device now in pg transition
687 * @dev: the device structure
689 * Return: true if in pg transition, false otherwise
691 static bool mei_me_pg_in_transition(struct mei_device
*dev
)
693 return dev
->pg_event
>= MEI_PG_EVENT_WAIT
&&
694 dev
->pg_event
<= MEI_PG_EVENT_INTR_WAIT
;
698 * mei_me_pg_is_enabled - detect if PG is supported by HW
700 * @dev: the device structure
702 * Return: true is pg supported, false otherwise
704 static bool mei_me_pg_is_enabled(struct mei_device
*dev
)
706 struct mei_me_hw
*hw
= to_me_hw(dev
);
707 u32 reg
= mei_me_mecsr_read(dev
);
709 if (hw
->d0i3_supported
)
712 if ((reg
& ME_PGIC_HRA
) == 0)
715 if (!dev
->hbm_f_pg_supported
)
721 dev_dbg(dev
->dev
, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
723 !!(reg
& ME_PGIC_HRA
),
724 dev
->version
.major_version
,
725 dev
->version
.minor_version
,
726 HBM_MAJOR_VERSION_PGI
,
727 HBM_MINOR_VERSION_PGI
);
733 * mei_me_d0i3_set - write d0i3 register bit on mei device.
735 * @dev: the device structure
736 * @intr: ask for interrupt
738 * Return: D0I3C register value
740 static u32
mei_me_d0i3_set(struct mei_device
*dev
, bool intr
)
742 u32 reg
= mei_me_d0i3c_read(dev
);
749 mei_me_d0i3c_write(dev
, reg
);
750 /* read it to ensure HW consistency */
751 reg
= mei_me_d0i3c_read(dev
);
756 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
758 * @dev: the device structure
760 * Return: D0I3C register value
762 static u32
mei_me_d0i3_unset(struct mei_device
*dev
)
764 u32 reg
= mei_me_d0i3c_read(dev
);
768 mei_me_d0i3c_write(dev
, reg
);
769 /* read it to ensure HW consistency */
770 reg
= mei_me_d0i3c_read(dev
);
775 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
777 * @dev: the device structure
779 * Return: 0 on success an error code otherwise
781 static int mei_me_d0i3_enter_sync(struct mei_device
*dev
)
783 struct mei_me_hw
*hw
= to_me_hw(dev
);
784 unsigned long d0i3_timeout
= mei_secs_to_jiffies(MEI_D0I3_TIMEOUT
);
785 unsigned long pgi_timeout
= mei_secs_to_jiffies(MEI_PGI_TIMEOUT
);
789 reg
= mei_me_d0i3c_read(dev
);
790 if (reg
& H_D0I3C_I3
) {
791 /* we are in d0i3, nothing to do */
792 dev_dbg(dev
->dev
, "d0i3 set not needed\n");
797 /* PGI entry procedure */
798 dev
->pg_event
= MEI_PG_EVENT_WAIT
;
800 ret
= mei_hbm_pg(dev
, MEI_PG_ISOLATION_ENTRY_REQ_CMD
);
802 /* FIXME: should we reset here? */
805 mutex_unlock(&dev
->device_lock
);
806 wait_event_timeout(dev
->wait_pg
,
807 dev
->pg_event
== MEI_PG_EVENT_RECEIVED
, pgi_timeout
);
808 mutex_lock(&dev
->device_lock
);
810 if (dev
->pg_event
!= MEI_PG_EVENT_RECEIVED
) {
814 /* end PGI entry procedure */
816 dev
->pg_event
= MEI_PG_EVENT_INTR_WAIT
;
818 reg
= mei_me_d0i3_set(dev
, true);
819 if (!(reg
& H_D0I3C_CIP
)) {
820 dev_dbg(dev
->dev
, "d0i3 enter wait not needed\n");
825 mutex_unlock(&dev
->device_lock
);
826 wait_event_timeout(dev
->wait_pg
,
827 dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
, d0i3_timeout
);
828 mutex_lock(&dev
->device_lock
);
830 if (dev
->pg_event
!= MEI_PG_EVENT_INTR_RECEIVED
) {
831 reg
= mei_me_d0i3c_read(dev
);
832 if (!(reg
& H_D0I3C_I3
)) {
840 hw
->pg_state
= MEI_PG_ON
;
842 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
843 dev_dbg(dev
->dev
, "d0i3 enter ret = %d\n", ret
);
848 * mei_me_d0i3_enter - perform d0i3 entry procedure
849 * no hbm PG handshake
850 * no waiting for confirmation; runs with interrupts
853 * @dev: the device structure
855 * Return: 0 on success an error code otherwise
857 static int mei_me_d0i3_enter(struct mei_device
*dev
)
859 struct mei_me_hw
*hw
= to_me_hw(dev
);
862 reg
= mei_me_d0i3c_read(dev
);
863 if (reg
& H_D0I3C_I3
) {
864 /* we are in d0i3, nothing to do */
865 dev_dbg(dev
->dev
, "already d0i3 : set not needed\n");
869 mei_me_d0i3_set(dev
, false);
871 hw
->pg_state
= MEI_PG_ON
;
872 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
873 dev_dbg(dev
->dev
, "d0i3 enter\n");
878 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
880 * @dev: the device structure
882 * Return: 0 on success an error code otherwise
884 static int mei_me_d0i3_exit_sync(struct mei_device
*dev
)
886 struct mei_me_hw
*hw
= to_me_hw(dev
);
887 unsigned long timeout
= mei_secs_to_jiffies(MEI_D0I3_TIMEOUT
);
891 dev
->pg_event
= MEI_PG_EVENT_INTR_WAIT
;
893 reg
= mei_me_d0i3c_read(dev
);
894 if (!(reg
& H_D0I3C_I3
)) {
895 /* we are not in d0i3, nothing to do */
896 dev_dbg(dev
->dev
, "d0i3 exit not needed\n");
901 reg
= mei_me_d0i3_unset(dev
);
902 if (!(reg
& H_D0I3C_CIP
)) {
903 dev_dbg(dev
->dev
, "d0i3 exit wait not needed\n");
908 mutex_unlock(&dev
->device_lock
);
909 wait_event_timeout(dev
->wait_pg
,
910 dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
, timeout
);
911 mutex_lock(&dev
->device_lock
);
913 if (dev
->pg_event
!= MEI_PG_EVENT_INTR_RECEIVED
) {
914 reg
= mei_me_d0i3c_read(dev
);
915 if (reg
& H_D0I3C_I3
) {
923 hw
->pg_state
= MEI_PG_OFF
;
925 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
927 dev_dbg(dev
->dev
, "d0i3 exit ret = %d\n", ret
);
932 * mei_me_pg_legacy_intr - perform legacy pg processing
933 * in interrupt thread handler
935 * @dev: the device structure
937 static void mei_me_pg_legacy_intr(struct mei_device
*dev
)
939 struct mei_me_hw
*hw
= to_me_hw(dev
);
941 if (dev
->pg_event
!= MEI_PG_EVENT_INTR_WAIT
)
944 dev
->pg_event
= MEI_PG_EVENT_INTR_RECEIVED
;
945 hw
->pg_state
= MEI_PG_OFF
;
946 if (waitqueue_active(&dev
->wait_pg
))
947 wake_up(&dev
->wait_pg
);
951 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
953 * @dev: the device structure
955 static void mei_me_d0i3_intr(struct mei_device
*dev
)
957 struct mei_me_hw
*hw
= to_me_hw(dev
);
959 if (dev
->pg_event
== MEI_PG_EVENT_INTR_WAIT
&&
960 (hw
->intr_source
& H_D0I3C_IS
)) {
961 dev
->pg_event
= MEI_PG_EVENT_INTR_RECEIVED
;
962 if (hw
->pg_state
== MEI_PG_ON
) {
963 hw
->pg_state
= MEI_PG_OFF
;
964 if (dev
->hbm_state
!= MEI_HBM_IDLE
) {
966 * force H_RDY because it could be
967 * wiped off during PG
969 dev_dbg(dev
->dev
, "d0i3 set host ready\n");
970 mei_me_host_set_ready(dev
);
973 hw
->pg_state
= MEI_PG_ON
;
976 wake_up(&dev
->wait_pg
);
979 if (hw
->pg_state
== MEI_PG_ON
&& (hw
->intr_source
& H_IS
)) {
981 * HW sent some data and we are in D0i3, so
982 * we got here because of HW initiated exit from D0i3.
983 * Start runtime pm resume sequence to exit low power state.
985 dev_dbg(dev
->dev
, "d0i3 want resume\n");
986 mei_hbm_pg_resume(dev
);
991 * mei_me_pg_intr - perform pg processing in interrupt thread handler
993 * @dev: the device structure
995 static void mei_me_pg_intr(struct mei_device
*dev
)
997 struct mei_me_hw
*hw
= to_me_hw(dev
);
999 if (hw
->d0i3_supported
)
1000 mei_me_d0i3_intr(dev
);
1002 mei_me_pg_legacy_intr(dev
);
1006 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1008 * @dev: the device structure
1010 * Return: 0 on success an error code otherwise
1012 int mei_me_pg_enter_sync(struct mei_device
*dev
)
1014 struct mei_me_hw
*hw
= to_me_hw(dev
);
1016 if (hw
->d0i3_supported
)
1017 return mei_me_d0i3_enter_sync(dev
);
1019 return mei_me_pg_legacy_enter_sync(dev
);
1023 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1025 * @dev: the device structure
1027 * Return: 0 on success an error code otherwise
1029 int mei_me_pg_exit_sync(struct mei_device
*dev
)
1031 struct mei_me_hw
*hw
= to_me_hw(dev
);
1033 if (hw
->d0i3_supported
)
1034 return mei_me_d0i3_exit_sync(dev
);
1036 return mei_me_pg_legacy_exit_sync(dev
);
1040 * mei_me_hw_reset - resets fw via mei csr register.
1042 * @dev: the device structure
1043 * @intr_enable: if interrupt should be enabled after reset.
1045 * Return: 0 on success an error code otherwise
1047 static int mei_me_hw_reset(struct mei_device
*dev
, bool intr_enable
)
1049 struct mei_me_hw
*hw
= to_me_hw(dev
);
1054 mei_me_intr_enable(dev
);
1055 if (hw
->d0i3_supported
) {
1056 ret
= mei_me_d0i3_exit_sync(dev
);
1062 hcsr
= mei_hcsr_read(dev
);
1063 /* H_RST may be found lit before reset is started,
1064 * for example if preceding reset flow hasn't completed.
1065 * In that case asserting H_RST will be ignored, therefore
1066 * we need to clean H_RST bit to start a successful reset sequence.
1068 if ((hcsr
& H_RST
) == H_RST
) {
1069 dev_warn(dev
->dev
, "H_RST is set = 0x%08X", hcsr
);
1071 mei_hcsr_set(dev
, hcsr
);
1072 hcsr
= mei_hcsr_read(dev
);
1075 hcsr
|= H_RST
| H_IG
| H_CSR_IS_MASK
;
1078 hcsr
&= ~H_CSR_IE_MASK
;
1080 dev
->recvd_hw_ready
= false;
1081 mei_hcsr_write(dev
, hcsr
);
1084 * Host reads the H_CSR once to ensure that the
1085 * posted write to H_CSR completes.
1087 hcsr
= mei_hcsr_read(dev
);
1089 if ((hcsr
& H_RST
) == 0)
1090 dev_warn(dev
->dev
, "H_RST is not set = 0x%08X", hcsr
);
1092 if ((hcsr
& H_RDY
) == H_RDY
)
1093 dev_warn(dev
->dev
, "H_RDY is not cleared 0x%08X", hcsr
);
1096 mei_me_hw_reset_release(dev
);
1097 if (hw
->d0i3_supported
) {
1098 ret
= mei_me_d0i3_enter(dev
);
1107 * mei_me_irq_quick_handler - The ISR of the MEI device
1109 * @irq: The irq number
1110 * @dev_id: pointer to the device structure
1112 * Return: irqreturn_t
1114 irqreturn_t
mei_me_irq_quick_handler(int irq
, void *dev_id
)
1116 struct mei_device
*dev
= (struct mei_device
*)dev_id
;
1117 struct mei_me_hw
*hw
= to_me_hw(dev
);
1120 hcsr
= mei_hcsr_read(dev
);
1121 if (!(hcsr
& H_CSR_IS_MASK
))
1124 hw
->intr_source
= hcsr
& H_CSR_IS_MASK
;
1125 dev_dbg(dev
->dev
, "interrupt source 0x%08X.\n", hw
->intr_source
);
1127 /* clear H_IS and H_D0I3C_IS bits in H_CSR to clear the interrupts */
1128 mei_hcsr_write(dev
, hcsr
);
1130 return IRQ_WAKE_THREAD
;
1134 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1137 * @irq: The irq number
1138 * @dev_id: pointer to the device structure
1140 * Return: irqreturn_t
1143 irqreturn_t
mei_me_irq_thread_handler(int irq
, void *dev_id
)
1145 struct mei_device
*dev
= (struct mei_device
*) dev_id
;
1146 struct mei_cl_cb complete_list
;
1150 dev_dbg(dev
->dev
, "function called after ISR to handle the interrupt processing.\n");
1151 /* initialize our complete list */
1152 mutex_lock(&dev
->device_lock
);
1153 mei_io_list_init(&complete_list
);
1155 /* check if ME wants a reset */
1156 if (!mei_hw_is_ready(dev
) && dev
->dev_state
!= MEI_DEV_RESETTING
) {
1157 dev_warn(dev
->dev
, "FW not ready: resetting.\n");
1158 schedule_work(&dev
->reset_work
);
1162 mei_me_pg_intr(dev
);
1164 /* check if we need to start the dev */
1165 if (!mei_host_is_ready(dev
)) {
1166 if (mei_hw_is_ready(dev
)) {
1167 dev_dbg(dev
->dev
, "we need to start the dev.\n");
1168 dev
->recvd_hw_ready
= true;
1169 wake_up(&dev
->wait_hw_ready
);
1171 dev_dbg(dev
->dev
, "Spurious Interrupt\n");
1175 /* check slots available for reading */
1176 slots
= mei_count_full_read_slots(dev
);
1178 dev_dbg(dev
->dev
, "slots to read = %08x\n", slots
);
1179 rets
= mei_irq_read_handler(dev
, &complete_list
, &slots
);
1180 /* There is a race between ME write and interrupt delivery:
1181 * Not all data is always available immediately after the
1182 * interrupt, so try to read again on the next interrupt.
1184 if (rets
== -ENODATA
)
1187 if (rets
&& dev
->dev_state
!= MEI_DEV_RESETTING
) {
1188 dev_err(dev
->dev
, "mei_irq_read_handler ret = %d.\n",
1190 schedule_work(&dev
->reset_work
);
1195 dev
->hbuf_is_ready
= mei_hbuf_is_ready(dev
);
1198 * During PG handshake only allowed write is the replay to the
1199 * PG exit message, so block calling write function
1200 * if the pg event is in PG handshake
1202 if (dev
->pg_event
!= MEI_PG_EVENT_WAIT
&&
1203 dev
->pg_event
!= MEI_PG_EVENT_RECEIVED
) {
1204 rets
= mei_irq_write_handler(dev
, &complete_list
);
1205 dev
->hbuf_is_ready
= mei_hbuf_is_ready(dev
);
1208 mei_irq_compl_handler(dev
, &complete_list
);
1211 dev_dbg(dev
->dev
, "interrupt thread end ret = %d\n", rets
);
1212 mutex_unlock(&dev
->device_lock
);
1216 static const struct mei_hw_ops mei_me_hw_ops
= {
1218 .fw_status
= mei_me_fw_status
,
1219 .pg_state
= mei_me_pg_state
,
1221 .host_is_ready
= mei_me_host_is_ready
,
1223 .hw_is_ready
= mei_me_hw_is_ready
,
1224 .hw_reset
= mei_me_hw_reset
,
1225 .hw_config
= mei_me_hw_config
,
1226 .hw_start
= mei_me_hw_start
,
1228 .pg_in_transition
= mei_me_pg_in_transition
,
1229 .pg_is_enabled
= mei_me_pg_is_enabled
,
1231 .intr_clear
= mei_me_intr_clear
,
1232 .intr_enable
= mei_me_intr_enable
,
1233 .intr_disable
= mei_me_intr_disable
,
1235 .hbuf_free_slots
= mei_me_hbuf_empty_slots
,
1236 .hbuf_is_ready
= mei_me_hbuf_is_empty
,
1237 .hbuf_max_len
= mei_me_hbuf_max_len
,
1239 .write
= mei_me_write_message
,
1241 .rdbuf_full_slots
= mei_me_count_full_read_slots
,
1242 .read_hdr
= mei_me_mecbrw_read
,
1243 .read
= mei_me_read_slots
1246 static bool mei_me_fw_type_nm(struct pci_dev
*pdev
)
1250 pci_read_config_dword(pdev
, PCI_CFG_HFS_2
, ®
);
1251 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1252 return (reg
& 0x600) == 0x200;
1255 #define MEI_CFG_FW_NM \
1256 .quirk_probe = mei_me_fw_type_nm
1258 static bool mei_me_fw_type_sps(struct pci_dev
*pdev
)
1261 /* Read ME FW Status check for SPS Firmware */
1262 pci_read_config_dword(pdev
, PCI_CFG_HFS_1
, ®
);
1263 /* if bits [19:16] = 15, running SPS Firmware */
1264 return (reg
& 0xf0000) == 0xf0000;
1267 #define MEI_CFG_FW_SPS \
1268 .quirk_probe = mei_me_fw_type_sps
1271 #define MEI_CFG_LEGACY_HFS \
1272 .fw_status.count = 0
1274 #define MEI_CFG_ICH_HFS \
1275 .fw_status.count = 1, \
1276 .fw_status.status[0] = PCI_CFG_HFS_1
1278 #define MEI_CFG_PCH_HFS \
1279 .fw_status.count = 2, \
1280 .fw_status.status[0] = PCI_CFG_HFS_1, \
1281 .fw_status.status[1] = PCI_CFG_HFS_2
1283 #define MEI_CFG_PCH8_HFS \
1284 .fw_status.count = 6, \
1285 .fw_status.status[0] = PCI_CFG_HFS_1, \
1286 .fw_status.status[1] = PCI_CFG_HFS_2, \
1287 .fw_status.status[2] = PCI_CFG_HFS_3, \
1288 .fw_status.status[3] = PCI_CFG_HFS_4, \
1289 .fw_status.status[4] = PCI_CFG_HFS_5, \
1290 .fw_status.status[5] = PCI_CFG_HFS_6
1292 /* ICH Legacy devices */
1293 const struct mei_cfg mei_me_legacy_cfg
= {
1298 const struct mei_cfg mei_me_ich_cfg
= {
1303 const struct mei_cfg mei_me_pch_cfg
= {
1308 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1309 const struct mei_cfg mei_me_pch_cpt_pbg_cfg
= {
1314 /* PCH8 Lynx Point and newer devices */
1315 const struct mei_cfg mei_me_pch8_cfg
= {
1319 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1320 const struct mei_cfg mei_me_pch8_sps_cfg
= {
1326 * mei_me_dev_init - allocates and initializes the mei device structure
1328 * @pdev: The pci device structure
1329 * @cfg: per device generation config
1331 * Return: The mei_device_device pointer on success, NULL on failure.
1333 struct mei_device
*mei_me_dev_init(struct pci_dev
*pdev
,
1334 const struct mei_cfg
*cfg
)
1336 struct mei_device
*dev
;
1337 struct mei_me_hw
*hw
;
1339 dev
= kzalloc(sizeof(struct mei_device
) +
1340 sizeof(struct mei_me_hw
), GFP_KERNEL
);
1345 mei_device_init(dev
, &pdev
->dev
, &mei_me_hw_ops
);