of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
blob11393ebf1a68ef8f14a38d58f1321d7783a84d72
1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/kthread.h>
61 #include <linux/aer.h>
64 #include "mpt3sas_base.h"
66 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
69 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71 /* maximum controller queue depth */
72 #define MAX_HBA_QUEUE_DEPTH 30000
73 #define MAX_CHAIN_DEPTH 100000
74 static int max_queue_depth = -1;
75 module_param(max_queue_depth, int, 0);
76 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78 static int max_sgl_entries = -1;
79 module_param(max_sgl_entries, int, 0);
80 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82 static int msix_disable = -1;
83 module_param(msix_disable, int, 0);
84 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86 static int max_msix_vectors = -1;
87 module_param(max_msix_vectors, int, 0);
88 MODULE_PARM_DESC(max_msix_vectors,
89 " max msix vectors");
91 static int mpt3sas_fwfault_debug;
92 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
93 " enable detection of firmware fault and halt firmware - (default=0)");
95 static int
96 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
98 /**
99 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
102 static int
103 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
105 int ret = param_set_int(val, kp);
106 struct MPT3SAS_ADAPTER *ioc;
108 if (ret)
109 return ret;
111 /* global ioc spinlock to protect controller list on list operations */
112 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
113 spin_lock(&gioc_lock);
114 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
115 ioc->fwfault_debug = mpt3sas_fwfault_debug;
116 spin_unlock(&gioc_lock);
117 return 0;
119 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
120 param_get_int, &mpt3sas_fwfault_debug, 0644);
123 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
124 * @arg: input argument, used to derive ioc
126 * Return 0 if controller is removed from pci subsystem.
127 * Return -1 for other case.
129 static int mpt3sas_remove_dead_ioc_func(void *arg)
131 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
132 struct pci_dev *pdev;
134 if ((ioc == NULL))
135 return -1;
137 pdev = ioc->pdev;
138 if ((pdev == NULL))
139 return -1;
140 pci_stop_and_remove_bus_device_locked(pdev);
141 return 0;
145 * _base_fault_reset_work - workq handling ioc fault conditions
146 * @work: input argument, used to derive ioc
147 * Context: sleep.
149 * Return nothing.
151 static void
152 _base_fault_reset_work(struct work_struct *work)
154 struct MPT3SAS_ADAPTER *ioc =
155 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
156 unsigned long flags;
157 u32 doorbell;
158 int rc;
159 struct task_struct *p;
162 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
163 if (ioc->shost_recovery || ioc->pci_error_recovery)
164 goto rearm_timer;
165 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
167 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
168 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
169 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
170 ioc->name);
172 /* It may be possible that EEH recovery can resolve some of
173 * pci bus failure issues rather removing the dead ioc function
174 * by considering controller is in a non-operational state. So
175 * here priority is given to the EEH recovery. If it doesn't
176 * not resolve this issue, mpt3sas driver will consider this
177 * controller to non-operational state and remove the dead ioc
178 * function.
180 if (ioc->non_operational_loop++ < 5) {
181 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
182 flags);
183 goto rearm_timer;
187 * Call _scsih_flush_pending_cmds callback so that we flush all
188 * pending commands back to OS. This call is required to aovid
189 * deadlock at block layer. Dead IOC will fail to do diag reset,
190 * and this call is safe since dead ioc will never return any
191 * command back from HW.
193 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
195 * Set remove_host flag early since kernel thread will
196 * take some time to execute.
198 ioc->remove_host = 1;
199 /*Remove the Dead Host */
200 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
201 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
202 if (IS_ERR(p))
203 pr_err(MPT3SAS_FMT
204 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
205 ioc->name, __func__);
206 else
207 pr_err(MPT3SAS_FMT
208 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
209 ioc->name, __func__);
210 return; /* don't rearm timer */
213 ioc->non_operational_loop = 0;
215 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
216 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
217 FORCE_BIG_HAMMER);
218 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
219 __func__, (rc == 0) ? "success" : "failed");
220 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
221 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
222 mpt3sas_base_fault_info(ioc, doorbell &
223 MPI2_DOORBELL_DATA_MASK);
224 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
225 MPI2_IOC_STATE_OPERATIONAL)
226 return; /* don't rearm timer */
229 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
230 rearm_timer:
231 if (ioc->fault_reset_work_q)
232 queue_delayed_work(ioc->fault_reset_work_q,
233 &ioc->fault_reset_work,
234 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
235 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
239 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
240 * @ioc: per adapter object
241 * Context: sleep.
243 * Return nothing.
245 void
246 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
248 unsigned long flags;
250 if (ioc->fault_reset_work_q)
251 return;
253 /* initialize fault polling */
255 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
256 snprintf(ioc->fault_reset_work_q_name,
257 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
258 ioc->driver_name, ioc->id);
259 ioc->fault_reset_work_q =
260 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
261 if (!ioc->fault_reset_work_q) {
262 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
263 ioc->name, __func__, __LINE__);
264 return;
266 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
267 if (ioc->fault_reset_work_q)
268 queue_delayed_work(ioc->fault_reset_work_q,
269 &ioc->fault_reset_work,
270 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
271 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
275 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
276 * @ioc: per adapter object
277 * Context: sleep.
279 * Return nothing.
281 void
282 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
284 unsigned long flags;
285 struct workqueue_struct *wq;
287 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
288 wq = ioc->fault_reset_work_q;
289 ioc->fault_reset_work_q = NULL;
290 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
291 if (wq) {
292 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
293 flush_workqueue(wq);
294 destroy_workqueue(wq);
299 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
300 * @ioc: per adapter object
301 * @fault_code: fault code
303 * Return nothing.
305 void
306 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
308 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
309 ioc->name, fault_code);
313 * mpt3sas_halt_firmware - halt's mpt controller firmware
314 * @ioc: per adapter object
316 * For debugging timeout related issues. Writing 0xCOFFEE00
317 * to the doorbell register will halt controller firmware. With
318 * the purpose to stop both driver and firmware, the enduser can
319 * obtain a ring buffer from controller UART.
321 void
322 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
324 u32 doorbell;
326 if (!ioc->fwfault_debug)
327 return;
329 dump_stack();
331 doorbell = readl(&ioc->chip->Doorbell);
332 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
333 mpt3sas_base_fault_info(ioc , doorbell);
334 else {
335 writel(0xC0FFEE00, &ioc->chip->Doorbell);
336 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
337 ioc->name);
340 if (ioc->fwfault_debug == 2)
341 for (;;)
343 else
344 panic("panic in %s\n", __func__);
348 * _base_sas_ioc_info - verbose translation of the ioc status
349 * @ioc: per adapter object
350 * @mpi_reply: reply mf payload returned from firmware
351 * @request_hdr: request mf
353 * Return nothing.
355 static void
356 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
357 MPI2RequestHeader_t *request_hdr)
359 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
360 MPI2_IOCSTATUS_MASK;
361 char *desc = NULL;
362 u16 frame_sz;
363 char *func_str = NULL;
365 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
366 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
367 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
368 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
369 return;
371 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
372 return;
374 switch (ioc_status) {
376 /****************************************************************************
377 * Common IOCStatus values for all replies
378 ****************************************************************************/
380 case MPI2_IOCSTATUS_INVALID_FUNCTION:
381 desc = "invalid function";
382 break;
383 case MPI2_IOCSTATUS_BUSY:
384 desc = "busy";
385 break;
386 case MPI2_IOCSTATUS_INVALID_SGL:
387 desc = "invalid sgl";
388 break;
389 case MPI2_IOCSTATUS_INTERNAL_ERROR:
390 desc = "internal error";
391 break;
392 case MPI2_IOCSTATUS_INVALID_VPID:
393 desc = "invalid vpid";
394 break;
395 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
396 desc = "insufficient resources";
397 break;
398 case MPI2_IOCSTATUS_INVALID_FIELD:
399 desc = "invalid field";
400 break;
401 case MPI2_IOCSTATUS_INVALID_STATE:
402 desc = "invalid state";
403 break;
404 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
405 desc = "op state not supported";
406 break;
408 /****************************************************************************
409 * Config IOCStatus values
410 ****************************************************************************/
412 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
413 desc = "config invalid action";
414 break;
415 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
416 desc = "config invalid type";
417 break;
418 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
419 desc = "config invalid page";
420 break;
421 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
422 desc = "config invalid data";
423 break;
424 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
425 desc = "config no defaults";
426 break;
427 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
428 desc = "config cant commit";
429 break;
431 /****************************************************************************
432 * SCSI IO Reply
433 ****************************************************************************/
435 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
436 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
437 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
438 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
439 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
440 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
441 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
442 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
443 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
444 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
445 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
446 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
447 break;
449 /****************************************************************************
450 * For use by SCSI Initiator and SCSI Target end-to-end data protection
451 ****************************************************************************/
453 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
454 desc = "eedp guard error";
455 break;
456 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
457 desc = "eedp ref tag error";
458 break;
459 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
460 desc = "eedp app tag error";
461 break;
463 /****************************************************************************
464 * SCSI Target values
465 ****************************************************************************/
467 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
468 desc = "target invalid io index";
469 break;
470 case MPI2_IOCSTATUS_TARGET_ABORTED:
471 desc = "target aborted";
472 break;
473 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
474 desc = "target no conn retryable";
475 break;
476 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
477 desc = "target no connection";
478 break;
479 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
480 desc = "target xfer count mismatch";
481 break;
482 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
483 desc = "target data offset error";
484 break;
485 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
486 desc = "target too much write data";
487 break;
488 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
489 desc = "target iu too short";
490 break;
491 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
492 desc = "target ack nak timeout";
493 break;
494 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
495 desc = "target nak received";
496 break;
498 /****************************************************************************
499 * Serial Attached SCSI values
500 ****************************************************************************/
502 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
503 desc = "smp request failed";
504 break;
505 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
506 desc = "smp data overrun";
507 break;
509 /****************************************************************************
510 * Diagnostic Buffer Post / Diagnostic Release values
511 ****************************************************************************/
513 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
514 desc = "diagnostic released";
515 break;
516 default:
517 break;
520 if (!desc)
521 return;
523 switch (request_hdr->Function) {
524 case MPI2_FUNCTION_CONFIG:
525 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
526 func_str = "config_page";
527 break;
528 case MPI2_FUNCTION_SCSI_TASK_MGMT:
529 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
530 func_str = "task_mgmt";
531 break;
532 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
533 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
534 func_str = "sas_iounit_ctl";
535 break;
536 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
537 frame_sz = sizeof(Mpi2SepRequest_t);
538 func_str = "enclosure";
539 break;
540 case MPI2_FUNCTION_IOC_INIT:
541 frame_sz = sizeof(Mpi2IOCInitRequest_t);
542 func_str = "ioc_init";
543 break;
544 case MPI2_FUNCTION_PORT_ENABLE:
545 frame_sz = sizeof(Mpi2PortEnableRequest_t);
546 func_str = "port_enable";
547 break;
548 case MPI2_FUNCTION_SMP_PASSTHROUGH:
549 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
550 func_str = "smp_passthru";
551 break;
552 default:
553 frame_sz = 32;
554 func_str = "unknown";
555 break;
558 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
559 ioc->name, desc, ioc_status, request_hdr, func_str);
561 _debug_dump_mf(request_hdr, frame_sz/4);
565 * _base_display_event_data - verbose translation of firmware asyn events
566 * @ioc: per adapter object
567 * @mpi_reply: reply mf payload returned from firmware
569 * Return nothing.
571 static void
572 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
573 Mpi2EventNotificationReply_t *mpi_reply)
575 char *desc = NULL;
576 u16 event;
578 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
579 return;
581 event = le16_to_cpu(mpi_reply->Event);
583 switch (event) {
584 case MPI2_EVENT_LOG_DATA:
585 desc = "Log Data";
586 break;
587 case MPI2_EVENT_STATE_CHANGE:
588 desc = "Status Change";
589 break;
590 case MPI2_EVENT_HARD_RESET_RECEIVED:
591 desc = "Hard Reset Received";
592 break;
593 case MPI2_EVENT_EVENT_CHANGE:
594 desc = "Event Change";
595 break;
596 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
597 desc = "Device Status Change";
598 break;
599 case MPI2_EVENT_IR_OPERATION_STATUS:
600 if (!ioc->hide_ir_msg)
601 desc = "IR Operation Status";
602 break;
603 case MPI2_EVENT_SAS_DISCOVERY:
605 Mpi2EventDataSasDiscovery_t *event_data =
606 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
607 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
608 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
609 "start" : "stop");
610 if (event_data->DiscoveryStatus)
611 pr_info("discovery_status(0x%08x)",
612 le32_to_cpu(event_data->DiscoveryStatus));
613 pr_info("\n");
614 return;
616 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
617 desc = "SAS Broadcast Primitive";
618 break;
619 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
620 desc = "SAS Init Device Status Change";
621 break;
622 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
623 desc = "SAS Init Table Overflow";
624 break;
625 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
626 desc = "SAS Topology Change List";
627 break;
628 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
629 desc = "SAS Enclosure Device Status Change";
630 break;
631 case MPI2_EVENT_IR_VOLUME:
632 if (!ioc->hide_ir_msg)
633 desc = "IR Volume";
634 break;
635 case MPI2_EVENT_IR_PHYSICAL_DISK:
636 if (!ioc->hide_ir_msg)
637 desc = "IR Physical Disk";
638 break;
639 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
640 if (!ioc->hide_ir_msg)
641 desc = "IR Configuration Change List";
642 break;
643 case MPI2_EVENT_LOG_ENTRY_ADDED:
644 if (!ioc->hide_ir_msg)
645 desc = "Log Entry Added";
646 break;
647 case MPI2_EVENT_TEMP_THRESHOLD:
648 desc = "Temperature Threshold";
649 break;
652 if (!desc)
653 return;
655 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
659 * _base_sas_log_info - verbose translation of firmware log info
660 * @ioc: per adapter object
661 * @log_info: log info
663 * Return nothing.
665 static void
666 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
668 union loginfo_type {
669 u32 loginfo;
670 struct {
671 u32 subcode:16;
672 u32 code:8;
673 u32 originator:4;
674 u32 bus_type:4;
675 } dw;
677 union loginfo_type sas_loginfo;
678 char *originator_str = NULL;
680 sas_loginfo.loginfo = log_info;
681 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
682 return;
684 /* each nexus loss loginfo */
685 if (log_info == 0x31170000)
686 return;
688 /* eat the loginfos associated with task aborts */
689 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
690 0x31140000 || log_info == 0x31130000))
691 return;
693 switch (sas_loginfo.dw.originator) {
694 case 0:
695 originator_str = "IOP";
696 break;
697 case 1:
698 originator_str = "PL";
699 break;
700 case 2:
701 if (!ioc->hide_ir_msg)
702 originator_str = "IR";
703 else
704 originator_str = "WarpDrive";
705 break;
708 pr_warn(MPT3SAS_FMT
709 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
710 ioc->name, log_info,
711 originator_str, sas_loginfo.dw.code,
712 sas_loginfo.dw.subcode);
716 * _base_display_reply_info -
717 * @ioc: per adapter object
718 * @smid: system request message index
719 * @msix_index: MSIX table index supplied by the OS
720 * @reply: reply message frame(lower 32bit addr)
722 * Return nothing.
724 static void
725 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
726 u32 reply)
728 MPI2DefaultReply_t *mpi_reply;
729 u16 ioc_status;
730 u32 loginfo = 0;
732 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
733 if (unlikely(!mpi_reply)) {
734 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
735 ioc->name, __FILE__, __LINE__, __func__);
736 return;
738 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
740 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
741 (ioc->logging_level & MPT_DEBUG_REPLY)) {
742 _base_sas_ioc_info(ioc , mpi_reply,
743 mpt3sas_base_get_msg_frame(ioc, smid));
746 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
747 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
748 _base_sas_log_info(ioc, loginfo);
751 if (ioc_status || loginfo) {
752 ioc_status &= MPI2_IOCSTATUS_MASK;
753 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
758 * mpt3sas_base_done - base internal command completion routine
759 * @ioc: per adapter object
760 * @smid: system request message index
761 * @msix_index: MSIX table index supplied by the OS
762 * @reply: reply message frame(lower 32bit addr)
764 * Return 1 meaning mf should be freed from _base_interrupt
765 * 0 means the mf is freed from this function.
768 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
769 u32 reply)
771 MPI2DefaultReply_t *mpi_reply;
773 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
774 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
775 return 1;
777 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
778 return 1;
780 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
781 if (mpi_reply) {
782 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
783 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
785 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
787 complete(&ioc->base_cmds.done);
788 return 1;
792 * _base_async_event - main callback handler for firmware asyn events
793 * @ioc: per adapter object
794 * @msix_index: MSIX table index supplied by the OS
795 * @reply: reply message frame(lower 32bit addr)
797 * Return 1 meaning mf should be freed from _base_interrupt
798 * 0 means the mf is freed from this function.
800 static u8
801 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
803 Mpi2EventNotificationReply_t *mpi_reply;
804 Mpi2EventAckRequest_t *ack_request;
805 u16 smid;
807 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
808 if (!mpi_reply)
809 return 1;
810 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
811 return 1;
813 _base_display_event_data(ioc, mpi_reply);
815 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
816 goto out;
817 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
818 if (!smid) {
819 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
820 ioc->name, __func__);
821 goto out;
824 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
825 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
826 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
827 ack_request->Event = mpi_reply->Event;
828 ack_request->EventContext = mpi_reply->EventContext;
829 ack_request->VF_ID = 0; /* TODO */
830 ack_request->VP_ID = 0;
831 mpt3sas_base_put_smid_default(ioc, smid);
833 out:
835 /* scsih callback handler */
836 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
838 /* ctl callback handler */
839 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
841 return 1;
845 * _base_get_cb_idx - obtain the callback index
846 * @ioc: per adapter object
847 * @smid: system request message index
849 * Return callback index.
851 static u8
852 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
854 int i;
855 u8 cb_idx;
857 if (smid < ioc->hi_priority_smid) {
858 i = smid - 1;
859 cb_idx = ioc->scsi_lookup[i].cb_idx;
860 } else if (smid < ioc->internal_smid) {
861 i = smid - ioc->hi_priority_smid;
862 cb_idx = ioc->hpr_lookup[i].cb_idx;
863 } else if (smid <= ioc->hba_queue_depth) {
864 i = smid - ioc->internal_smid;
865 cb_idx = ioc->internal_lookup[i].cb_idx;
866 } else
867 cb_idx = 0xFF;
868 return cb_idx;
872 * _base_mask_interrupts - disable interrupts
873 * @ioc: per adapter object
875 * Disabling ResetIRQ, Reply and Doorbell Interrupts
877 * Return nothing.
879 static void
880 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
882 u32 him_register;
884 ioc->mask_interrupts = 1;
885 him_register = readl(&ioc->chip->HostInterruptMask);
886 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
887 writel(him_register, &ioc->chip->HostInterruptMask);
888 readl(&ioc->chip->HostInterruptMask);
892 * _base_unmask_interrupts - enable interrupts
893 * @ioc: per adapter object
895 * Enabling only Reply Interrupts
897 * Return nothing.
899 static void
900 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
902 u32 him_register;
904 him_register = readl(&ioc->chip->HostInterruptMask);
905 him_register &= ~MPI2_HIM_RIM;
906 writel(him_register, &ioc->chip->HostInterruptMask);
907 ioc->mask_interrupts = 0;
910 union reply_descriptor {
911 u64 word;
912 struct {
913 u32 low;
914 u32 high;
915 } u;
919 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
920 * @irq: irq number (not used)
921 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
922 * @r: pt_regs pointer (not used)
924 * Return IRQ_HANDLE if processed, else IRQ_NONE.
926 static irqreturn_t
927 _base_interrupt(int irq, void *bus_id)
929 struct adapter_reply_queue *reply_q = bus_id;
930 union reply_descriptor rd;
931 u32 completed_cmds;
932 u8 request_desript_type;
933 u16 smid;
934 u8 cb_idx;
935 u32 reply;
936 u8 msix_index = reply_q->msix_index;
937 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
938 Mpi2ReplyDescriptorsUnion_t *rpf;
939 u8 rc;
941 if (ioc->mask_interrupts)
942 return IRQ_NONE;
944 if (!atomic_add_unless(&reply_q->busy, 1, 1))
945 return IRQ_NONE;
947 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
948 request_desript_type = rpf->Default.ReplyFlags
949 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
950 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
951 atomic_dec(&reply_q->busy);
952 return IRQ_NONE;
955 completed_cmds = 0;
956 cb_idx = 0xFF;
957 do {
958 rd.word = le64_to_cpu(rpf->Words);
959 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
960 goto out;
961 reply = 0;
962 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
963 if (request_desript_type ==
964 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
965 request_desript_type ==
966 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
967 cb_idx = _base_get_cb_idx(ioc, smid);
968 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
969 (likely(mpt_callbacks[cb_idx] != NULL))) {
970 rc = mpt_callbacks[cb_idx](ioc, smid,
971 msix_index, 0);
972 if (rc)
973 mpt3sas_base_free_smid(ioc, smid);
975 } else if (request_desript_type ==
976 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
977 reply = le32_to_cpu(
978 rpf->AddressReply.ReplyFrameAddress);
979 if (reply > ioc->reply_dma_max_address ||
980 reply < ioc->reply_dma_min_address)
981 reply = 0;
982 if (smid) {
983 cb_idx = _base_get_cb_idx(ioc, smid);
984 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
985 (likely(mpt_callbacks[cb_idx] != NULL))) {
986 rc = mpt_callbacks[cb_idx](ioc, smid,
987 msix_index, reply);
988 if (reply)
989 _base_display_reply_info(ioc,
990 smid, msix_index, reply);
991 if (rc)
992 mpt3sas_base_free_smid(ioc,
993 smid);
995 } else {
996 _base_async_event(ioc, msix_index, reply);
999 /* reply free queue handling */
1000 if (reply) {
1001 ioc->reply_free_host_index =
1002 (ioc->reply_free_host_index ==
1003 (ioc->reply_free_queue_depth - 1)) ?
1004 0 : ioc->reply_free_host_index + 1;
1005 ioc->reply_free[ioc->reply_free_host_index] =
1006 cpu_to_le32(reply);
1007 wmb();
1008 writel(ioc->reply_free_host_index,
1009 &ioc->chip->ReplyFreeHostIndex);
1013 rpf->Words = cpu_to_le64(ULLONG_MAX);
1014 reply_q->reply_post_host_index =
1015 (reply_q->reply_post_host_index ==
1016 (ioc->reply_post_queue_depth - 1)) ? 0 :
1017 reply_q->reply_post_host_index + 1;
1018 request_desript_type =
1019 reply_q->reply_post_free[reply_q->reply_post_host_index].
1020 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1021 completed_cmds++;
1022 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1023 goto out;
1024 if (!reply_q->reply_post_host_index)
1025 rpf = reply_q->reply_post_free;
1026 else
1027 rpf++;
1028 } while (1);
1030 out:
1032 if (!completed_cmds) {
1033 atomic_dec(&reply_q->busy);
1034 return IRQ_NONE;
1037 wmb();
1038 if (ioc->is_warpdrive) {
1039 writel(reply_q->reply_post_host_index,
1040 ioc->reply_post_host_index[msix_index]);
1041 atomic_dec(&reply_q->busy);
1042 return IRQ_HANDLED;
1045 /* Update Reply Post Host Index.
1046 * For those HBA's which support combined reply queue feature
1047 * 1. Get the correct Supplemental Reply Post Host Index Register.
1048 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1049 * Index Register address bank i.e replyPostRegisterIndex[],
1050 * 2. Then update this register with new reply host index value
1051 * in ReplyPostIndex field and the MSIxIndex field with
1052 * msix_index value reduced to a value between 0 and 7,
1053 * using a modulo 8 operation. Since each Supplemental Reply Post
1054 * Host Index Register supports 8 MSI-X vectors.
1056 * For other HBA's just update the Reply Post Host Index register with
1057 * new reply host index value in ReplyPostIndex Field and msix_index
1058 * value in MSIxIndex field.
1060 if (ioc->msix96_vector)
1061 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1062 MPI2_RPHI_MSIX_INDEX_SHIFT),
1063 ioc->replyPostRegisterIndex[msix_index/8]);
1064 else
1065 writel(reply_q->reply_post_host_index | (msix_index <<
1066 MPI2_RPHI_MSIX_INDEX_SHIFT),
1067 &ioc->chip->ReplyPostHostIndex);
1068 atomic_dec(&reply_q->busy);
1069 return IRQ_HANDLED;
1073 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1074 * @ioc: per adapter object
1077 static inline int
1078 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1080 return (ioc->facts.IOCCapabilities &
1081 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1085 * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1086 * @ioc: per adapter object
1087 * Context: ISR conext
1089 * Called when a Task Management request has completed. We want
1090 * to flush the other reply queues so all the outstanding IO has been
1091 * completed back to OS before we process the TM completetion.
1093 * Return nothing.
1095 void
1096 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1098 struct adapter_reply_queue *reply_q;
1100 /* If MSIX capability is turned off
1101 * then multi-queues are not enabled
1103 if (!_base_is_controller_msix_enabled(ioc))
1104 return;
1106 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1107 if (ioc->shost_recovery)
1108 return;
1109 /* TMs are on msix_index == 0 */
1110 if (reply_q->msix_index == 0)
1111 continue;
1112 _base_interrupt(reply_q->vector, (void *)reply_q);
1117 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1118 * @cb_idx: callback index
1120 * Return nothing.
1122 void
1123 mpt3sas_base_release_callback_handler(u8 cb_idx)
1125 mpt_callbacks[cb_idx] = NULL;
1129 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1130 * @cb_func: callback function
1132 * Returns cb_func.
1135 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1137 u8 cb_idx;
1139 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1140 if (mpt_callbacks[cb_idx] == NULL)
1141 break;
1143 mpt_callbacks[cb_idx] = cb_func;
1144 return cb_idx;
1148 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1150 * Return nothing.
1152 void
1153 mpt3sas_base_initialize_callback_handler(void)
1155 u8 cb_idx;
1157 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1158 mpt3sas_base_release_callback_handler(cb_idx);
1163 * _base_build_zero_len_sge - build zero length sg entry
1164 * @ioc: per adapter object
1165 * @paddr: virtual address for SGE
1167 * Create a zero length scatter gather entry to insure the IOCs hardware has
1168 * something to use if the target device goes brain dead and tries
1169 * to send data even when none is asked for.
1171 * Return nothing.
1173 static void
1174 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1176 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1177 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1178 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1179 MPI2_SGE_FLAGS_SHIFT);
1180 ioc->base_add_sg_single(paddr, flags_length, -1);
1184 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1185 * @paddr: virtual address for SGE
1186 * @flags_length: SGE flags and data transfer length
1187 * @dma_addr: Physical address
1189 * Return nothing.
1191 static void
1192 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1194 Mpi2SGESimple32_t *sgel = paddr;
1196 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1197 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1198 sgel->FlagsLength = cpu_to_le32(flags_length);
1199 sgel->Address = cpu_to_le32(dma_addr);
1204 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1205 * @paddr: virtual address for SGE
1206 * @flags_length: SGE flags and data transfer length
1207 * @dma_addr: Physical address
1209 * Return nothing.
1211 static void
1212 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1214 Mpi2SGESimple64_t *sgel = paddr;
1216 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1217 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1218 sgel->FlagsLength = cpu_to_le32(flags_length);
1219 sgel->Address = cpu_to_le64(dma_addr);
1223 * _base_get_chain_buffer_tracker - obtain chain tracker
1224 * @ioc: per adapter object
1225 * @smid: smid associated to an IO request
1227 * Returns chain tracker(from ioc->free_chain_list)
1229 static struct chain_tracker *
1230 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1232 struct chain_tracker *chain_req;
1233 unsigned long flags;
1235 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1236 if (list_empty(&ioc->free_chain_list)) {
1237 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1238 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1239 "chain buffers not available\n", ioc->name));
1240 return NULL;
1242 chain_req = list_entry(ioc->free_chain_list.next,
1243 struct chain_tracker, tracker_list);
1244 list_del_init(&chain_req->tracker_list);
1245 list_add_tail(&chain_req->tracker_list,
1246 &ioc->scsi_lookup[smid - 1].chain_list);
1247 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1248 return chain_req;
1253 * _base_build_sg - build generic sg
1254 * @ioc: per adapter object
1255 * @psge: virtual address for SGE
1256 * @data_out_dma: physical address for WRITES
1257 * @data_out_sz: data xfer size for WRITES
1258 * @data_in_dma: physical address for READS
1259 * @data_in_sz: data xfer size for READS
1261 * Return nothing.
1263 static void
1264 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1265 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1266 size_t data_in_sz)
1268 u32 sgl_flags;
1270 if (!data_out_sz && !data_in_sz) {
1271 _base_build_zero_len_sge(ioc, psge);
1272 return;
1275 if (data_out_sz && data_in_sz) {
1276 /* WRITE sgel first */
1277 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1278 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1279 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1280 ioc->base_add_sg_single(psge, sgl_flags |
1281 data_out_sz, data_out_dma);
1283 /* incr sgel */
1284 psge += ioc->sge_size;
1286 /* READ sgel last */
1287 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1288 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1289 MPI2_SGE_FLAGS_END_OF_LIST);
1290 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1291 ioc->base_add_sg_single(psge, sgl_flags |
1292 data_in_sz, data_in_dma);
1293 } else if (data_out_sz) /* WRITE */ {
1294 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1295 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1296 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1297 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1298 ioc->base_add_sg_single(psge, sgl_flags |
1299 data_out_sz, data_out_dma);
1300 } else if (data_in_sz) /* READ */ {
1301 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1302 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1303 MPI2_SGE_FLAGS_END_OF_LIST);
1304 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1305 ioc->base_add_sg_single(psge, sgl_flags |
1306 data_in_sz, data_in_dma);
1310 /* IEEE format sgls */
1313 * _base_add_sg_single_ieee - add sg element for IEEE format
1314 * @paddr: virtual address for SGE
1315 * @flags: SGE flags
1316 * @chain_offset: number of 128 byte elements from start of segment
1317 * @length: data transfer length
1318 * @dma_addr: Physical address
1320 * Return nothing.
1322 static void
1323 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1324 dma_addr_t dma_addr)
1326 Mpi25IeeeSgeChain64_t *sgel = paddr;
1328 sgel->Flags = flags;
1329 sgel->NextChainOffset = chain_offset;
1330 sgel->Length = cpu_to_le32(length);
1331 sgel->Address = cpu_to_le64(dma_addr);
1335 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1336 * @ioc: per adapter object
1337 * @paddr: virtual address for SGE
1339 * Create a zero length scatter gather entry to insure the IOCs hardware has
1340 * something to use if the target device goes brain dead and tries
1341 * to send data even when none is asked for.
1343 * Return nothing.
1345 static void
1346 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1348 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1349 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1350 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1351 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1355 * _base_build_sg_scmd - main sg creation routine
1356 * @ioc: per adapter object
1357 * @scmd: scsi command
1358 * @smid: system request message index
1359 * Context: none.
1361 * The main routine that builds scatter gather table from a given
1362 * scsi request sent via the .queuecommand main handler.
1364 * Returns 0 success, anything else error
1366 static int
1367 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1368 struct scsi_cmnd *scmd, u16 smid)
1370 Mpi2SCSIIORequest_t *mpi_request;
1371 dma_addr_t chain_dma;
1372 struct scatterlist *sg_scmd;
1373 void *sg_local, *chain;
1374 u32 chain_offset;
1375 u32 chain_length;
1376 u32 chain_flags;
1377 int sges_left;
1378 u32 sges_in_segment;
1379 u32 sgl_flags;
1380 u32 sgl_flags_last_element;
1381 u32 sgl_flags_end_buffer;
1382 struct chain_tracker *chain_req;
1384 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1386 /* init scatter gather flags */
1387 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1388 if (scmd->sc_data_direction == DMA_TO_DEVICE)
1389 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1390 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1391 << MPI2_SGE_FLAGS_SHIFT;
1392 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1393 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1394 << MPI2_SGE_FLAGS_SHIFT;
1395 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1397 sg_scmd = scsi_sglist(scmd);
1398 sges_left = scsi_dma_map(scmd);
1399 if (sges_left < 0) {
1400 sdev_printk(KERN_ERR, scmd->device,
1401 "pci_map_sg failed: request for %d bytes!\n",
1402 scsi_bufflen(scmd));
1403 return -ENOMEM;
1406 sg_local = &mpi_request->SGL;
1407 sges_in_segment = ioc->max_sges_in_main_message;
1408 if (sges_left <= sges_in_segment)
1409 goto fill_in_last_segment;
1411 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1412 (sges_in_segment * ioc->sge_size))/4;
1414 /* fill in main message segment when there is a chain following */
1415 while (sges_in_segment) {
1416 if (sges_in_segment == 1)
1417 ioc->base_add_sg_single(sg_local,
1418 sgl_flags_last_element | sg_dma_len(sg_scmd),
1419 sg_dma_address(sg_scmd));
1420 else
1421 ioc->base_add_sg_single(sg_local, sgl_flags |
1422 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1423 sg_scmd = sg_next(sg_scmd);
1424 sg_local += ioc->sge_size;
1425 sges_left--;
1426 sges_in_segment--;
1429 /* initializing the chain flags and pointers */
1430 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1431 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1432 if (!chain_req)
1433 return -1;
1434 chain = chain_req->chain_buffer;
1435 chain_dma = chain_req->chain_buffer_dma;
1436 do {
1437 sges_in_segment = (sges_left <=
1438 ioc->max_sges_in_chain_message) ? sges_left :
1439 ioc->max_sges_in_chain_message;
1440 chain_offset = (sges_left == sges_in_segment) ?
1441 0 : (sges_in_segment * ioc->sge_size)/4;
1442 chain_length = sges_in_segment * ioc->sge_size;
1443 if (chain_offset) {
1444 chain_offset = chain_offset <<
1445 MPI2_SGE_CHAIN_OFFSET_SHIFT;
1446 chain_length += ioc->sge_size;
1448 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1449 chain_length, chain_dma);
1450 sg_local = chain;
1451 if (!chain_offset)
1452 goto fill_in_last_segment;
1454 /* fill in chain segments */
1455 while (sges_in_segment) {
1456 if (sges_in_segment == 1)
1457 ioc->base_add_sg_single(sg_local,
1458 sgl_flags_last_element |
1459 sg_dma_len(sg_scmd),
1460 sg_dma_address(sg_scmd));
1461 else
1462 ioc->base_add_sg_single(sg_local, sgl_flags |
1463 sg_dma_len(sg_scmd),
1464 sg_dma_address(sg_scmd));
1465 sg_scmd = sg_next(sg_scmd);
1466 sg_local += ioc->sge_size;
1467 sges_left--;
1468 sges_in_segment--;
1471 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1472 if (!chain_req)
1473 return -1;
1474 chain = chain_req->chain_buffer;
1475 chain_dma = chain_req->chain_buffer_dma;
1476 } while (1);
1479 fill_in_last_segment:
1481 /* fill the last segment */
1482 while (sges_left) {
1483 if (sges_left == 1)
1484 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1485 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1486 else
1487 ioc->base_add_sg_single(sg_local, sgl_flags |
1488 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1489 sg_scmd = sg_next(sg_scmd);
1490 sg_local += ioc->sge_size;
1491 sges_left--;
1494 return 0;
1498 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1499 * @ioc: per adapter object
1500 * @scmd: scsi command
1501 * @smid: system request message index
1502 * Context: none.
1504 * The main routine that builds scatter gather table from a given
1505 * scsi request sent via the .queuecommand main handler.
1507 * Returns 0 success, anything else error
1509 static int
1510 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1511 struct scsi_cmnd *scmd, u16 smid)
1513 Mpi2SCSIIORequest_t *mpi_request;
1514 dma_addr_t chain_dma;
1515 struct scatterlist *sg_scmd;
1516 void *sg_local, *chain;
1517 u32 chain_offset;
1518 u32 chain_length;
1519 int sges_left;
1520 u32 sges_in_segment;
1521 u8 simple_sgl_flags;
1522 u8 simple_sgl_flags_last;
1523 u8 chain_sgl_flags;
1524 struct chain_tracker *chain_req;
1526 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1528 /* init scatter gather flags */
1529 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1530 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1531 simple_sgl_flags_last = simple_sgl_flags |
1532 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1533 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1534 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1536 sg_scmd = scsi_sglist(scmd);
1537 sges_left = scsi_dma_map(scmd);
1538 if (sges_left < 0) {
1539 sdev_printk(KERN_ERR, scmd->device,
1540 "pci_map_sg failed: request for %d bytes!\n",
1541 scsi_bufflen(scmd));
1542 return -ENOMEM;
1545 sg_local = &mpi_request->SGL;
1546 sges_in_segment = (ioc->request_sz -
1547 offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1548 if (sges_left <= sges_in_segment)
1549 goto fill_in_last_segment;
1551 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1552 (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1554 /* fill in main message segment when there is a chain following */
1555 while (sges_in_segment > 1) {
1556 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1557 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1558 sg_scmd = sg_next(sg_scmd);
1559 sg_local += ioc->sge_size_ieee;
1560 sges_left--;
1561 sges_in_segment--;
1564 /* initializing the pointers */
1565 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1566 if (!chain_req)
1567 return -1;
1568 chain = chain_req->chain_buffer;
1569 chain_dma = chain_req->chain_buffer_dma;
1570 do {
1571 sges_in_segment = (sges_left <=
1572 ioc->max_sges_in_chain_message) ? sges_left :
1573 ioc->max_sges_in_chain_message;
1574 chain_offset = (sges_left == sges_in_segment) ?
1575 0 : sges_in_segment;
1576 chain_length = sges_in_segment * ioc->sge_size_ieee;
1577 if (chain_offset)
1578 chain_length += ioc->sge_size_ieee;
1579 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1580 chain_offset, chain_length, chain_dma);
1582 sg_local = chain;
1583 if (!chain_offset)
1584 goto fill_in_last_segment;
1586 /* fill in chain segments */
1587 while (sges_in_segment) {
1588 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1589 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1590 sg_scmd = sg_next(sg_scmd);
1591 sg_local += ioc->sge_size_ieee;
1592 sges_left--;
1593 sges_in_segment--;
1596 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1597 if (!chain_req)
1598 return -1;
1599 chain = chain_req->chain_buffer;
1600 chain_dma = chain_req->chain_buffer_dma;
1601 } while (1);
1604 fill_in_last_segment:
1606 /* fill the last segment */
1607 while (sges_left > 0) {
1608 if (sges_left == 1)
1609 _base_add_sg_single_ieee(sg_local,
1610 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1611 sg_dma_address(sg_scmd));
1612 else
1613 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1614 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1615 sg_scmd = sg_next(sg_scmd);
1616 sg_local += ioc->sge_size_ieee;
1617 sges_left--;
1620 return 0;
1624 * _base_build_sg_ieee - build generic sg for IEEE format
1625 * @ioc: per adapter object
1626 * @psge: virtual address for SGE
1627 * @data_out_dma: physical address for WRITES
1628 * @data_out_sz: data xfer size for WRITES
1629 * @data_in_dma: physical address for READS
1630 * @data_in_sz: data xfer size for READS
1632 * Return nothing.
1634 static void
1635 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1636 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1637 size_t data_in_sz)
1639 u8 sgl_flags;
1641 if (!data_out_sz && !data_in_sz) {
1642 _base_build_zero_len_sge_ieee(ioc, psge);
1643 return;
1646 if (data_out_sz && data_in_sz) {
1647 /* WRITE sgel first */
1648 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1649 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1650 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1651 data_out_dma);
1653 /* incr sgel */
1654 psge += ioc->sge_size_ieee;
1656 /* READ sgel last */
1657 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1658 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1659 data_in_dma);
1660 } else if (data_out_sz) /* WRITE */ {
1661 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1662 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1663 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1664 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1665 data_out_dma);
1666 } else if (data_in_sz) /* READ */ {
1667 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1668 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1669 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1670 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1671 data_in_dma);
1675 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1678 * _base_config_dma_addressing - set dma addressing
1679 * @ioc: per adapter object
1680 * @pdev: PCI device struct
1682 * Returns 0 for success, non-zero for failure.
1684 static int
1685 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1687 struct sysinfo s;
1688 u64 consistent_dma_mask;
1690 if (ioc->dma_mask)
1691 consistent_dma_mask = DMA_BIT_MASK(64);
1692 else
1693 consistent_dma_mask = DMA_BIT_MASK(32);
1695 if (sizeof(dma_addr_t) > 4) {
1696 const uint64_t required_mask =
1697 dma_get_required_mask(&pdev->dev);
1698 if ((required_mask > DMA_BIT_MASK(32)) &&
1699 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1700 !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1701 ioc->base_add_sg_single = &_base_add_sg_single_64;
1702 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1703 ioc->dma_mask = 64;
1704 goto out;
1708 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1709 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1710 ioc->base_add_sg_single = &_base_add_sg_single_32;
1711 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1712 ioc->dma_mask = 32;
1713 } else
1714 return -ENODEV;
1716 out:
1717 si_meminfo(&s);
1718 pr_info(MPT3SAS_FMT
1719 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1720 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1722 return 0;
1725 static int
1726 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1727 struct pci_dev *pdev)
1729 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1730 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1731 return -ENODEV;
1733 return 0;
1737 * _base_check_enable_msix - checks MSIX capabable.
1738 * @ioc: per adapter object
1740 * Check to see if card is capable of MSIX, and set number
1741 * of available msix vectors
1743 static int
1744 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1746 int base;
1747 u16 message_control;
1749 /* Check whether controller SAS2008 B0 controller,
1750 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1752 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1753 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1754 return -EINVAL;
1757 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1758 if (!base) {
1759 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1760 ioc->name));
1761 return -EINVAL;
1764 /* get msix vector count */
1765 /* NUMA_IO not supported for older controllers */
1766 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1767 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1768 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1769 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1770 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1771 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1772 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1773 ioc->msix_vector_count = 1;
1774 else {
1775 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1776 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1778 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1779 "msix is supported, vector_count(%d)\n",
1780 ioc->name, ioc->msix_vector_count));
1781 return 0;
1785 * _base_free_irq - free irq
1786 * @ioc: per adapter object
1788 * Freeing respective reply_queue from the list.
1790 static void
1791 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1793 struct adapter_reply_queue *reply_q, *next;
1795 if (list_empty(&ioc->reply_queue_list))
1796 return;
1798 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1799 list_del(&reply_q->list);
1800 irq_set_affinity_hint(reply_q->vector, NULL);
1801 free_cpumask_var(reply_q->affinity_hint);
1802 synchronize_irq(reply_q->vector);
1803 free_irq(reply_q->vector, reply_q);
1804 kfree(reply_q);
1809 * _base_request_irq - request irq
1810 * @ioc: per adapter object
1811 * @index: msix index into vector table
1812 * @vector: irq vector
1814 * Inserting respective reply_queue into the list.
1816 static int
1817 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1819 struct adapter_reply_queue *reply_q;
1820 int r;
1822 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1823 if (!reply_q) {
1824 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1825 ioc->name, (int)sizeof(struct adapter_reply_queue));
1826 return -ENOMEM;
1828 reply_q->ioc = ioc;
1829 reply_q->msix_index = index;
1830 reply_q->vector = vector;
1832 if (!alloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL))
1833 return -ENOMEM;
1834 cpumask_clear(reply_q->affinity_hint);
1836 atomic_set(&reply_q->busy, 0);
1837 if (ioc->msix_enable)
1838 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1839 ioc->driver_name, ioc->id, index);
1840 else
1841 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1842 ioc->driver_name, ioc->id);
1843 r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1844 reply_q);
1845 if (r) {
1846 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1847 reply_q->name, vector);
1848 kfree(reply_q);
1849 return -EBUSY;
1852 INIT_LIST_HEAD(&reply_q->list);
1853 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1854 return 0;
1858 * _base_assign_reply_queues - assigning msix index for each cpu
1859 * @ioc: per adapter object
1861 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1863 * It would nice if we could call irq_set_affinity, however it is not
1864 * an exported symbol
1866 static void
1867 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1869 unsigned int cpu, nr_cpus, nr_msix, index = 0;
1870 struct adapter_reply_queue *reply_q;
1872 if (!_base_is_controller_msix_enabled(ioc))
1873 return;
1875 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1877 nr_cpus = num_online_cpus();
1878 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1879 ioc->facts.MaxMSIxVectors);
1880 if (!nr_msix)
1881 return;
1883 cpu = cpumask_first(cpu_online_mask);
1885 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1887 unsigned int i, group = nr_cpus / nr_msix;
1889 if (cpu >= nr_cpus)
1890 break;
1892 if (index < nr_cpus % nr_msix)
1893 group++;
1895 for (i = 0 ; i < group ; i++) {
1896 ioc->cpu_msix_table[cpu] = index;
1897 cpumask_or(reply_q->affinity_hint,
1898 reply_q->affinity_hint, get_cpu_mask(cpu));
1899 cpu = cpumask_next(cpu, cpu_online_mask);
1902 if (irq_set_affinity_hint(reply_q->vector,
1903 reply_q->affinity_hint))
1904 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1905 "error setting affinity hint for irq vector %d\n",
1906 ioc->name, reply_q->vector));
1907 index++;
1912 * _base_disable_msix - disables msix
1913 * @ioc: per adapter object
1916 static void
1917 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1919 if (!ioc->msix_enable)
1920 return;
1921 pci_disable_msix(ioc->pdev);
1922 ioc->msix_enable = 0;
1926 * _base_enable_msix - enables msix, failback to io_apic
1927 * @ioc: per adapter object
1930 static int
1931 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1933 struct msix_entry *entries, *a;
1934 int r;
1935 int i;
1936 u8 try_msix = 0;
1938 if (msix_disable == -1 || msix_disable == 0)
1939 try_msix = 1;
1941 if (!try_msix)
1942 goto try_ioapic;
1944 if (_base_check_enable_msix(ioc) != 0)
1945 goto try_ioapic;
1947 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1948 ioc->msix_vector_count);
1950 printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1951 ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1952 ioc->cpu_count, max_msix_vectors);
1954 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1955 max_msix_vectors = 8;
1957 if (max_msix_vectors > 0) {
1958 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1959 ioc->reply_queue_count);
1960 ioc->msix_vector_count = ioc->reply_queue_count;
1961 } else if (max_msix_vectors == 0)
1962 goto try_ioapic;
1964 entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1965 GFP_KERNEL);
1966 if (!entries) {
1967 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1968 "kcalloc failed @ at %s:%d/%s() !!!\n",
1969 ioc->name, __FILE__, __LINE__, __func__));
1970 goto try_ioapic;
1973 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1974 a->entry = i;
1976 r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
1977 if (r) {
1978 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1979 "pci_enable_msix_exact failed (r=%d) !!!\n",
1980 ioc->name, r));
1981 kfree(entries);
1982 goto try_ioapic;
1985 ioc->msix_enable = 1;
1986 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1987 r = _base_request_irq(ioc, i, a->vector);
1988 if (r) {
1989 _base_free_irq(ioc);
1990 _base_disable_msix(ioc);
1991 kfree(entries);
1992 goto try_ioapic;
1996 kfree(entries);
1997 return 0;
1999 /* failback to io_apic interrupt routing */
2000 try_ioapic:
2002 ioc->reply_queue_count = 1;
2003 r = _base_request_irq(ioc, 0, ioc->pdev->irq);
2005 return r;
2009 * mpt3sas_base_unmap_resources - free controller resources
2010 * @ioc: per adapter object
2012 void
2013 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2015 struct pci_dev *pdev = ioc->pdev;
2017 dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2018 ioc->name, __func__));
2020 _base_free_irq(ioc);
2021 _base_disable_msix(ioc);
2023 if (ioc->msix96_vector)
2024 kfree(ioc->replyPostRegisterIndex);
2026 if (ioc->chip_phys) {
2027 iounmap(ioc->chip);
2028 ioc->chip_phys = 0;
2031 if (pci_is_enabled(pdev)) {
2032 pci_release_selected_regions(ioc->pdev, ioc->bars);
2033 pci_disable_pcie_error_reporting(pdev);
2034 pci_disable_device(pdev);
2039 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2040 * @ioc: per adapter object
2042 * Returns 0 for success, non-zero for failure.
2045 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2047 struct pci_dev *pdev = ioc->pdev;
2048 u32 memap_sz;
2049 u32 pio_sz;
2050 int i, r = 0;
2051 u64 pio_chip = 0;
2052 u64 chip_phys = 0;
2053 struct adapter_reply_queue *reply_q;
2055 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2056 ioc->name, __func__));
2058 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2059 if (pci_enable_device_mem(pdev)) {
2060 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2061 ioc->name);
2062 ioc->bars = 0;
2063 return -ENODEV;
2067 if (pci_request_selected_regions(pdev, ioc->bars,
2068 ioc->driver_name)) {
2069 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2070 ioc->name);
2071 ioc->bars = 0;
2072 r = -ENODEV;
2073 goto out_fail;
2076 /* AER (Advanced Error Reporting) hooks */
2077 pci_enable_pcie_error_reporting(pdev);
2079 pci_set_master(pdev);
2082 if (_base_config_dma_addressing(ioc, pdev) != 0) {
2083 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2084 ioc->name, pci_name(pdev));
2085 r = -ENODEV;
2086 goto out_fail;
2089 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2090 (!memap_sz || !pio_sz); i++) {
2091 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2092 if (pio_sz)
2093 continue;
2094 pio_chip = (u64)pci_resource_start(pdev, i);
2095 pio_sz = pci_resource_len(pdev, i);
2096 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2097 if (memap_sz)
2098 continue;
2099 ioc->chip_phys = pci_resource_start(pdev, i);
2100 chip_phys = (u64)ioc->chip_phys;
2101 memap_sz = pci_resource_len(pdev, i);
2102 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2106 if (ioc->chip == NULL) {
2107 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2108 " or resource not found\n", ioc->name);
2109 r = -EINVAL;
2110 goto out_fail;
2113 _base_mask_interrupts(ioc);
2115 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
2116 if (r)
2117 goto out_fail;
2119 if (!ioc->rdpq_array_enable_assigned) {
2120 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2121 ioc->rdpq_array_enable_assigned = 1;
2124 r = _base_enable_msix(ioc);
2125 if (r)
2126 goto out_fail;
2128 /* Use the Combined reply queue feature only for SAS3 C0 & higher
2129 * revision HBAs and also only when reply queue count is greater than 8
2131 if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
2132 /* Determine the Supplemental Reply Post Host Index Registers
2133 * Addresse. Supplemental Reply Post Host Index Registers
2134 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2135 * each register is at offset bytes of
2136 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2138 ioc->replyPostRegisterIndex = kcalloc(
2139 MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
2140 sizeof(resource_size_t *), GFP_KERNEL);
2141 if (!ioc->replyPostRegisterIndex) {
2142 dfailprintk(ioc, printk(MPT3SAS_FMT
2143 "allocation for reply Post Register Index failed!!!\n",
2144 ioc->name));
2145 r = -ENOMEM;
2146 goto out_fail;
2149 for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
2150 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2151 ((u8 *)&ioc->chip->Doorbell +
2152 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2153 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2155 } else
2156 ioc->msix96_vector = 0;
2158 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2159 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2160 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2161 "IO-APIC enabled"), reply_q->vector);
2163 pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2164 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2165 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2166 ioc->name, (unsigned long long)pio_chip, pio_sz);
2168 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2169 pci_save_state(pdev);
2170 return 0;
2172 out_fail:
2173 mpt3sas_base_unmap_resources(ioc);
2174 return r;
2178 * mpt3sas_base_get_msg_frame - obtain request mf pointer
2179 * @ioc: per adapter object
2180 * @smid: system request message index(smid zero is invalid)
2182 * Returns virt pointer to message frame.
2184 void *
2185 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2187 return (void *)(ioc->request + (smid * ioc->request_sz));
2191 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2192 * @ioc: per adapter object
2193 * @smid: system request message index
2195 * Returns virt pointer to sense buffer.
2197 void *
2198 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2200 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2204 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2205 * @ioc: per adapter object
2206 * @smid: system request message index
2208 * Returns phys pointer to the low 32bit address of the sense buffer.
2210 __le32
2211 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2213 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2214 SCSI_SENSE_BUFFERSIZE));
2218 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2219 * @ioc: per adapter object
2220 * @phys_addr: lower 32 physical addr of the reply
2222 * Converts 32bit lower physical addr into a virt address.
2224 void *
2225 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2227 if (!phys_addr)
2228 return NULL;
2229 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2233 * mpt3sas_base_get_smid - obtain a free smid from internal queue
2234 * @ioc: per adapter object
2235 * @cb_idx: callback index
2237 * Returns smid (zero is invalid)
2240 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2242 unsigned long flags;
2243 struct request_tracker *request;
2244 u16 smid;
2246 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2247 if (list_empty(&ioc->internal_free_list)) {
2248 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2249 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2250 ioc->name, __func__);
2251 return 0;
2254 request = list_entry(ioc->internal_free_list.next,
2255 struct request_tracker, tracker_list);
2256 request->cb_idx = cb_idx;
2257 smid = request->smid;
2258 list_del(&request->tracker_list);
2259 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2260 return smid;
2264 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2265 * @ioc: per adapter object
2266 * @cb_idx: callback index
2267 * @scmd: pointer to scsi command object
2269 * Returns smid (zero is invalid)
2272 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2273 struct scsi_cmnd *scmd)
2275 unsigned long flags;
2276 struct scsiio_tracker *request;
2277 u16 smid;
2279 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2280 if (list_empty(&ioc->free_list)) {
2281 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2282 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2283 ioc->name, __func__);
2284 return 0;
2287 request = list_entry(ioc->free_list.next,
2288 struct scsiio_tracker, tracker_list);
2289 request->scmd = scmd;
2290 request->cb_idx = cb_idx;
2291 smid = request->smid;
2292 list_del(&request->tracker_list);
2293 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2294 return smid;
2298 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2299 * @ioc: per adapter object
2300 * @cb_idx: callback index
2302 * Returns smid (zero is invalid)
2305 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2307 unsigned long flags;
2308 struct request_tracker *request;
2309 u16 smid;
2311 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2312 if (list_empty(&ioc->hpr_free_list)) {
2313 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2314 return 0;
2317 request = list_entry(ioc->hpr_free_list.next,
2318 struct request_tracker, tracker_list);
2319 request->cb_idx = cb_idx;
2320 smid = request->smid;
2321 list_del(&request->tracker_list);
2322 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2323 return smid;
2327 * mpt3sas_base_free_smid - put smid back on free_list
2328 * @ioc: per adapter object
2329 * @smid: system request message index
2331 * Return nothing.
2333 void
2334 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2336 unsigned long flags;
2337 int i;
2338 struct chain_tracker *chain_req, *next;
2340 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2341 if (smid < ioc->hi_priority_smid) {
2342 /* scsiio queue */
2343 i = smid - 1;
2344 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2345 list_for_each_entry_safe(chain_req, next,
2346 &ioc->scsi_lookup[i].chain_list, tracker_list) {
2347 list_del_init(&chain_req->tracker_list);
2348 list_add(&chain_req->tracker_list,
2349 &ioc->free_chain_list);
2352 ioc->scsi_lookup[i].cb_idx = 0xFF;
2353 ioc->scsi_lookup[i].scmd = NULL;
2354 ioc->scsi_lookup[i].direct_io = 0;
2355 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2356 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2359 * See _wait_for_commands_to_complete() call with regards
2360 * to this code.
2362 if (ioc->shost_recovery && ioc->pending_io_count) {
2363 if (ioc->pending_io_count == 1)
2364 wake_up(&ioc->reset_wq);
2365 ioc->pending_io_count--;
2367 return;
2368 } else if (smid < ioc->internal_smid) {
2369 /* hi-priority */
2370 i = smid - ioc->hi_priority_smid;
2371 ioc->hpr_lookup[i].cb_idx = 0xFF;
2372 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2373 } else if (smid <= ioc->hba_queue_depth) {
2374 /* internal queue */
2375 i = smid - ioc->internal_smid;
2376 ioc->internal_lookup[i].cb_idx = 0xFF;
2377 list_add(&ioc->internal_lookup[i].tracker_list,
2378 &ioc->internal_free_list);
2380 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2384 * _base_writeq - 64 bit write to MMIO
2385 * @ioc: per adapter object
2386 * @b: data payload
2387 * @addr: address in MMIO space
2388 * @writeq_lock: spin lock
2390 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2391 * care of 32 bit environment where its not quarenteed to send the entire word
2392 * in one transfer.
2394 #if defined(writeq) && defined(CONFIG_64BIT)
2395 static inline void
2396 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2398 writeq(cpu_to_le64(b), addr);
2400 #else
2401 static inline void
2402 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2404 unsigned long flags;
2405 __u64 data_out = cpu_to_le64(b);
2407 spin_lock_irqsave(writeq_lock, flags);
2408 writel((u32)(data_out), addr);
2409 writel((u32)(data_out >> 32), (addr + 4));
2410 spin_unlock_irqrestore(writeq_lock, flags);
2412 #endif
2414 static inline u8
2415 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2417 return ioc->cpu_msix_table[raw_smp_processor_id()];
2421 * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2422 * @ioc: per adapter object
2423 * @smid: system request message index
2424 * @handle: device handle
2426 * Return nothing.
2428 void
2429 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2431 Mpi2RequestDescriptorUnion_t descriptor;
2432 u64 *request = (u64 *)&descriptor;
2435 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2436 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2437 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2438 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2439 descriptor.SCSIIO.LMID = 0;
2440 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2441 &ioc->scsi_lookup_lock);
2445 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2446 * @ioc: per adapter object
2447 * @smid: system request message index
2448 * @handle: device handle
2450 * Return nothing.
2452 void
2453 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2454 u16 handle)
2456 Mpi2RequestDescriptorUnion_t descriptor;
2457 u64 *request = (u64 *)&descriptor;
2459 descriptor.SCSIIO.RequestFlags =
2460 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2461 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2462 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2463 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2464 descriptor.SCSIIO.LMID = 0;
2465 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2466 &ioc->scsi_lookup_lock);
2470 * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2471 * @ioc: per adapter object
2472 * @smid: system request message index
2474 * Return nothing.
2476 void
2477 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2479 Mpi2RequestDescriptorUnion_t descriptor;
2480 u64 *request = (u64 *)&descriptor;
2482 descriptor.HighPriority.RequestFlags =
2483 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2484 descriptor.HighPriority.MSIxIndex = 0;
2485 descriptor.HighPriority.SMID = cpu_to_le16(smid);
2486 descriptor.HighPriority.LMID = 0;
2487 descriptor.HighPriority.Reserved1 = 0;
2488 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2489 &ioc->scsi_lookup_lock);
2493 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2494 * @ioc: per adapter object
2495 * @smid: system request message index
2497 * Return nothing.
2499 void
2500 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2502 Mpi2RequestDescriptorUnion_t descriptor;
2503 u64 *request = (u64 *)&descriptor;
2505 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2506 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
2507 descriptor.Default.SMID = cpu_to_le16(smid);
2508 descriptor.Default.LMID = 0;
2509 descriptor.Default.DescriptorTypeDependent = 0;
2510 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2511 &ioc->scsi_lookup_lock);
2515 * _base_display_OEMs_branding - Display branding string
2516 * @ioc: per adapter object
2518 * Return nothing.
2520 static void
2521 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2523 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2524 return;
2526 switch (ioc->pdev->subsystem_vendor) {
2527 case PCI_VENDOR_ID_INTEL:
2528 switch (ioc->pdev->device) {
2529 case MPI2_MFGPAGE_DEVID_SAS2008:
2530 switch (ioc->pdev->subsystem_device) {
2531 case MPT2SAS_INTEL_RMS2LL080_SSDID:
2532 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2533 MPT2SAS_INTEL_RMS2LL080_BRANDING);
2534 break;
2535 case MPT2SAS_INTEL_RMS2LL040_SSDID:
2536 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2537 MPT2SAS_INTEL_RMS2LL040_BRANDING);
2538 break;
2539 case MPT2SAS_INTEL_SSD910_SSDID:
2540 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2541 MPT2SAS_INTEL_SSD910_BRANDING);
2542 break;
2543 default:
2544 pr_info(MPT3SAS_FMT
2545 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2546 ioc->name, ioc->pdev->subsystem_device);
2547 break;
2549 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2550 switch (ioc->pdev->subsystem_device) {
2551 case MPT2SAS_INTEL_RS25GB008_SSDID:
2552 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2553 MPT2SAS_INTEL_RS25GB008_BRANDING);
2554 break;
2555 case MPT2SAS_INTEL_RMS25JB080_SSDID:
2556 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2557 MPT2SAS_INTEL_RMS25JB080_BRANDING);
2558 break;
2559 case MPT2SAS_INTEL_RMS25JB040_SSDID:
2560 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2561 MPT2SAS_INTEL_RMS25JB040_BRANDING);
2562 break;
2563 case MPT2SAS_INTEL_RMS25KB080_SSDID:
2564 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2565 MPT2SAS_INTEL_RMS25KB080_BRANDING);
2566 break;
2567 case MPT2SAS_INTEL_RMS25KB040_SSDID:
2568 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2569 MPT2SAS_INTEL_RMS25KB040_BRANDING);
2570 break;
2571 case MPT2SAS_INTEL_RMS25LB040_SSDID:
2572 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2573 MPT2SAS_INTEL_RMS25LB040_BRANDING);
2574 break;
2575 case MPT2SAS_INTEL_RMS25LB080_SSDID:
2576 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2577 MPT2SAS_INTEL_RMS25LB080_BRANDING);
2578 break;
2579 default:
2580 pr_info(MPT3SAS_FMT
2581 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2582 ioc->name, ioc->pdev->subsystem_device);
2583 break;
2585 case MPI25_MFGPAGE_DEVID_SAS3008:
2586 switch (ioc->pdev->subsystem_device) {
2587 case MPT3SAS_INTEL_RMS3JC080_SSDID:
2588 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2589 MPT3SAS_INTEL_RMS3JC080_BRANDING);
2590 break;
2592 case MPT3SAS_INTEL_RS3GC008_SSDID:
2593 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2594 MPT3SAS_INTEL_RS3GC008_BRANDING);
2595 break;
2596 case MPT3SAS_INTEL_RS3FC044_SSDID:
2597 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2598 MPT3SAS_INTEL_RS3FC044_BRANDING);
2599 break;
2600 case MPT3SAS_INTEL_RS3UC080_SSDID:
2601 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2602 MPT3SAS_INTEL_RS3UC080_BRANDING);
2603 break;
2604 default:
2605 pr_info(MPT3SAS_FMT
2606 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2607 ioc->name, ioc->pdev->subsystem_device);
2608 break;
2610 break;
2611 default:
2612 pr_info(MPT3SAS_FMT
2613 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2614 ioc->name, ioc->pdev->subsystem_device);
2615 break;
2617 break;
2618 case PCI_VENDOR_ID_DELL:
2619 switch (ioc->pdev->device) {
2620 case MPI2_MFGPAGE_DEVID_SAS2008:
2621 switch (ioc->pdev->subsystem_device) {
2622 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2623 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2624 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2625 break;
2626 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2627 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2628 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2629 break;
2630 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2631 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2632 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2633 break;
2634 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2635 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2636 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2637 break;
2638 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2639 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2640 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2641 break;
2642 case MPT2SAS_DELL_PERC_H200_SSDID:
2643 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2644 MPT2SAS_DELL_PERC_H200_BRANDING);
2645 break;
2646 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2647 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2648 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2649 break;
2650 default:
2651 pr_info(MPT3SAS_FMT
2652 "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2653 ioc->name, ioc->pdev->subsystem_device);
2654 break;
2656 break;
2657 case MPI25_MFGPAGE_DEVID_SAS3008:
2658 switch (ioc->pdev->subsystem_device) {
2659 case MPT3SAS_DELL_12G_HBA_SSDID:
2660 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2661 MPT3SAS_DELL_12G_HBA_BRANDING);
2662 break;
2663 default:
2664 pr_info(MPT3SAS_FMT
2665 "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2666 ioc->name, ioc->pdev->subsystem_device);
2667 break;
2669 break;
2670 default:
2671 pr_info(MPT3SAS_FMT
2672 "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2673 ioc->pdev->subsystem_device);
2674 break;
2676 break;
2677 case PCI_VENDOR_ID_CISCO:
2678 switch (ioc->pdev->device) {
2679 case MPI25_MFGPAGE_DEVID_SAS3008:
2680 switch (ioc->pdev->subsystem_device) {
2681 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2682 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2683 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2684 break;
2685 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2686 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2687 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2688 break;
2689 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2690 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2691 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2692 break;
2693 default:
2694 pr_info(MPT3SAS_FMT
2695 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2696 ioc->name, ioc->pdev->subsystem_device);
2697 break;
2699 break;
2700 case MPI25_MFGPAGE_DEVID_SAS3108_1:
2701 switch (ioc->pdev->subsystem_device) {
2702 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2703 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2704 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2705 break;
2706 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2707 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2708 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2710 break;
2711 default:
2712 pr_info(MPT3SAS_FMT
2713 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2714 ioc->name, ioc->pdev->subsystem_device);
2715 break;
2717 break;
2718 default:
2719 pr_info(MPT3SAS_FMT
2720 "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2721 ioc->name, ioc->pdev->subsystem_device);
2722 break;
2724 break;
2725 case MPT2SAS_HP_3PAR_SSVID:
2726 switch (ioc->pdev->device) {
2727 case MPI2_MFGPAGE_DEVID_SAS2004:
2728 switch (ioc->pdev->subsystem_device) {
2729 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2730 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2731 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2732 break;
2733 default:
2734 pr_info(MPT3SAS_FMT
2735 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2736 ioc->name, ioc->pdev->subsystem_device);
2737 break;
2739 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2740 switch (ioc->pdev->subsystem_device) {
2741 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2742 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2743 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2744 break;
2745 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2746 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2747 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2748 break;
2749 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2750 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2751 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2752 break;
2753 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2754 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2755 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2756 break;
2757 default:
2758 pr_info(MPT3SAS_FMT
2759 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2760 ioc->name, ioc->pdev->subsystem_device);
2761 break;
2763 default:
2764 pr_info(MPT3SAS_FMT
2765 "HP SAS HBA: Subsystem ID: 0x%X\n",
2766 ioc->name, ioc->pdev->subsystem_device);
2767 break;
2769 default:
2770 break;
2775 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2776 * @ioc: per adapter object
2778 * Return nothing.
2780 static void
2781 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2783 int i = 0;
2784 char desc[16];
2785 u32 iounit_pg1_flags;
2786 u32 bios_version;
2788 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2789 strncpy(desc, ioc->manu_pg0.ChipName, 16);
2790 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2791 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2792 ioc->name, desc,
2793 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2794 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2795 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2796 ioc->facts.FWVersion.Word & 0x000000FF,
2797 ioc->pdev->revision,
2798 (bios_version & 0xFF000000) >> 24,
2799 (bios_version & 0x00FF0000) >> 16,
2800 (bios_version & 0x0000FF00) >> 8,
2801 bios_version & 0x000000FF);
2803 _base_display_OEMs_branding(ioc);
2805 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2807 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2808 pr_info("Initiator");
2809 i++;
2812 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2813 pr_info("%sTarget", i ? "," : "");
2814 i++;
2817 i = 0;
2818 pr_info("), ");
2819 pr_info("Capabilities=(");
2821 if (!ioc->hide_ir_msg) {
2822 if (ioc->facts.IOCCapabilities &
2823 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2824 pr_info("Raid");
2825 i++;
2829 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2830 pr_info("%sTLR", i ? "," : "");
2831 i++;
2834 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2835 pr_info("%sMulticast", i ? "," : "");
2836 i++;
2839 if (ioc->facts.IOCCapabilities &
2840 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2841 pr_info("%sBIDI Target", i ? "," : "");
2842 i++;
2845 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2846 pr_info("%sEEDP", i ? "," : "");
2847 i++;
2850 if (ioc->facts.IOCCapabilities &
2851 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2852 pr_info("%sSnapshot Buffer", i ? "," : "");
2853 i++;
2856 if (ioc->facts.IOCCapabilities &
2857 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2858 pr_info("%sDiag Trace Buffer", i ? "," : "");
2859 i++;
2862 if (ioc->facts.IOCCapabilities &
2863 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2864 pr_info("%sDiag Extended Buffer", i ? "," : "");
2865 i++;
2868 if (ioc->facts.IOCCapabilities &
2869 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2870 pr_info("%sTask Set Full", i ? "," : "");
2871 i++;
2874 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2875 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2876 pr_info("%sNCQ", i ? "," : "");
2877 i++;
2880 pr_info(")\n");
2884 * mpt3sas_base_update_missing_delay - change the missing delay timers
2885 * @ioc: per adapter object
2886 * @device_missing_delay: amount of time till device is reported missing
2887 * @io_missing_delay: interval IO is returned when there is a missing device
2889 * Return nothing.
2891 * Passed on the command line, this function will modify the device missing
2892 * delay, as well as the io missing delay. This should be called at driver
2893 * load time.
2895 void
2896 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2897 u16 device_missing_delay, u8 io_missing_delay)
2899 u16 dmd, dmd_new, dmd_orignal;
2900 u8 io_missing_delay_original;
2901 u16 sz;
2902 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2903 Mpi2ConfigReply_t mpi_reply;
2904 u8 num_phys = 0;
2905 u16 ioc_status;
2907 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2908 if (!num_phys)
2909 return;
2911 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2912 sizeof(Mpi2SasIOUnit1PhyData_t));
2913 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2914 if (!sas_iounit_pg1) {
2915 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2916 ioc->name, __FILE__, __LINE__, __func__);
2917 goto out;
2919 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2920 sas_iounit_pg1, sz))) {
2921 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2922 ioc->name, __FILE__, __LINE__, __func__);
2923 goto out;
2925 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2926 MPI2_IOCSTATUS_MASK;
2927 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2928 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2929 ioc->name, __FILE__, __LINE__, __func__);
2930 goto out;
2933 /* device missing delay */
2934 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2935 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2936 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2937 else
2938 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2939 dmd_orignal = dmd;
2940 if (device_missing_delay > 0x7F) {
2941 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2942 device_missing_delay;
2943 dmd = dmd / 16;
2944 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2945 } else
2946 dmd = device_missing_delay;
2947 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2949 /* io missing delay */
2950 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2951 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2953 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2954 sz)) {
2955 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2956 dmd_new = (dmd &
2957 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2958 else
2959 dmd_new =
2960 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2961 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2962 ioc->name, dmd_orignal, dmd_new);
2963 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2964 ioc->name, io_missing_delay_original,
2965 io_missing_delay);
2966 ioc->device_missing_delay = dmd_new;
2967 ioc->io_missing_delay = io_missing_delay;
2970 out:
2971 kfree(sas_iounit_pg1);
2974 * _base_static_config_pages - static start of day config pages
2975 * @ioc: per adapter object
2977 * Return nothing.
2979 static void
2980 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2982 Mpi2ConfigReply_t mpi_reply;
2983 u32 iounit_pg1_flags;
2985 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2986 if (ioc->ir_firmware)
2987 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2988 &ioc->manu_pg10);
2991 * Ensure correct T10 PI operation if vendor left EEDPTagMode
2992 * flag unset in NVDATA.
2994 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
2995 if (ioc->manu_pg11.EEDPTagMode == 0) {
2996 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
2997 ioc->name);
2998 ioc->manu_pg11.EEDPTagMode &= ~0x3;
2999 ioc->manu_pg11.EEDPTagMode |= 0x1;
3000 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3001 &ioc->manu_pg11);
3004 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3005 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3006 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3007 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3008 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3009 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3010 _base_display_ioc_capabilities(ioc);
3013 * Enable task_set_full handling in iounit_pg1 when the
3014 * facts capabilities indicate that its supported.
3016 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3017 if ((ioc->facts.IOCCapabilities &
3018 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3019 iounit_pg1_flags &=
3020 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3021 else
3022 iounit_pg1_flags |=
3023 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3024 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3025 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3027 if (ioc->iounit_pg8.NumSensors)
3028 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3032 * _base_release_memory_pools - release memory
3033 * @ioc: per adapter object
3035 * Free memory allocated from _base_allocate_memory_pools.
3037 * Return nothing.
3039 static void
3040 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3042 int i = 0;
3043 struct reply_post_struct *rps;
3045 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3046 __func__));
3048 if (ioc->request) {
3049 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3050 ioc->request, ioc->request_dma);
3051 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3052 "request_pool(0x%p): free\n",
3053 ioc->name, ioc->request));
3054 ioc->request = NULL;
3057 if (ioc->sense) {
3058 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3059 if (ioc->sense_dma_pool)
3060 pci_pool_destroy(ioc->sense_dma_pool);
3061 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3062 "sense_pool(0x%p): free\n",
3063 ioc->name, ioc->sense));
3064 ioc->sense = NULL;
3067 if (ioc->reply) {
3068 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3069 if (ioc->reply_dma_pool)
3070 pci_pool_destroy(ioc->reply_dma_pool);
3071 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3072 "reply_pool(0x%p): free\n",
3073 ioc->name, ioc->reply));
3074 ioc->reply = NULL;
3077 if (ioc->reply_free) {
3078 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3079 ioc->reply_free_dma);
3080 if (ioc->reply_free_dma_pool)
3081 pci_pool_destroy(ioc->reply_free_dma_pool);
3082 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3083 "reply_free_pool(0x%p): free\n",
3084 ioc->name, ioc->reply_free));
3085 ioc->reply_free = NULL;
3088 if (ioc->reply_post) {
3089 do {
3090 rps = &ioc->reply_post[i];
3091 if (rps->reply_post_free) {
3092 pci_pool_free(
3093 ioc->reply_post_free_dma_pool,
3094 rps->reply_post_free,
3095 rps->reply_post_free_dma);
3096 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3097 "reply_post_free_pool(0x%p): free\n",
3098 ioc->name, rps->reply_post_free));
3099 rps->reply_post_free = NULL;
3101 } while (ioc->rdpq_array_enable &&
3102 (++i < ioc->reply_queue_count));
3104 if (ioc->reply_post_free_dma_pool)
3105 pci_pool_destroy(ioc->reply_post_free_dma_pool);
3106 kfree(ioc->reply_post);
3109 if (ioc->config_page) {
3110 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3111 "config_page(0x%p): free\n", ioc->name,
3112 ioc->config_page));
3113 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3114 ioc->config_page, ioc->config_page_dma);
3117 if (ioc->scsi_lookup) {
3118 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3119 ioc->scsi_lookup = NULL;
3121 kfree(ioc->hpr_lookup);
3122 kfree(ioc->internal_lookup);
3123 if (ioc->chain_lookup) {
3124 for (i = 0; i < ioc->chain_depth; i++) {
3125 if (ioc->chain_lookup[i].chain_buffer)
3126 pci_pool_free(ioc->chain_dma_pool,
3127 ioc->chain_lookup[i].chain_buffer,
3128 ioc->chain_lookup[i].chain_buffer_dma);
3130 if (ioc->chain_dma_pool)
3131 pci_pool_destroy(ioc->chain_dma_pool);
3132 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3133 ioc->chain_lookup = NULL;
3138 * _base_allocate_memory_pools - allocate start of day memory pools
3139 * @ioc: per adapter object
3140 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3142 * Returns 0 success, anything else error
3144 static int
3145 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3147 struct mpt3sas_facts *facts;
3148 u16 max_sge_elements;
3149 u16 chains_needed_per_io;
3150 u32 sz, total_sz, reply_post_free_sz;
3151 u32 retry_sz;
3152 u16 max_request_credit;
3153 unsigned short sg_tablesize;
3154 u16 sge_size;
3155 int i;
3157 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3158 __func__));
3161 retry_sz = 0;
3162 facts = &ioc->facts;
3164 /* command line tunables for max sgl entries */
3165 if (max_sgl_entries != -1)
3166 sg_tablesize = max_sgl_entries;
3167 else {
3168 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3169 sg_tablesize = MPT2SAS_SG_DEPTH;
3170 else
3171 sg_tablesize = MPT3SAS_SG_DEPTH;
3174 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3175 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3176 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3177 sg_tablesize = min_t(unsigned short, sg_tablesize,
3178 SCSI_MAX_SG_CHAIN_SEGMENTS);
3179 pr_warn(MPT3SAS_FMT
3180 "sg_tablesize(%u) is bigger than kernel"
3181 " defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
3182 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3184 ioc->shost->sg_tablesize = sg_tablesize;
3186 ioc->hi_priority_depth = facts->HighPriorityCredit;
3187 ioc->internal_depth = ioc->hi_priority_depth + (5);
3188 /* command line tunables for max controller queue depth */
3189 if (max_queue_depth != -1 && max_queue_depth != 0) {
3190 max_request_credit = min_t(u16, max_queue_depth +
3191 ioc->hi_priority_depth + ioc->internal_depth,
3192 facts->RequestCredit);
3193 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3194 max_request_credit = MAX_HBA_QUEUE_DEPTH;
3195 } else
3196 max_request_credit = min_t(u16, facts->RequestCredit,
3197 MAX_HBA_QUEUE_DEPTH);
3199 ioc->hba_queue_depth = max_request_credit;
3201 /* request frame size */
3202 ioc->request_sz = facts->IOCRequestFrameSize * 4;
3204 /* reply frame size */
3205 ioc->reply_sz = facts->ReplyFrameSize * 4;
3207 /* calculate the max scatter element size */
3208 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3210 retry_allocation:
3211 total_sz = 0;
3212 /* calculate number of sg elements left over in the 1st frame */
3213 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3214 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3215 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3217 /* now do the same for a chain buffer */
3218 max_sge_elements = ioc->request_sz - sge_size;
3219 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3222 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3224 chains_needed_per_io = ((ioc->shost->sg_tablesize -
3225 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3226 + 1;
3227 if (chains_needed_per_io > facts->MaxChainDepth) {
3228 chains_needed_per_io = facts->MaxChainDepth;
3229 ioc->shost->sg_tablesize = min_t(u16,
3230 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3231 * chains_needed_per_io), ioc->shost->sg_tablesize);
3233 ioc->chains_needed_per_io = chains_needed_per_io;
3235 /* reply free queue sizing - taking into account for 64 FW events */
3236 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3238 /* calculate reply descriptor post queue depth */
3239 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3240 ioc->reply_free_queue_depth + 1 ;
3241 /* align the reply post queue on the next 16 count boundary */
3242 if (ioc->reply_post_queue_depth % 16)
3243 ioc->reply_post_queue_depth += 16 -
3244 (ioc->reply_post_queue_depth % 16);
3247 if (ioc->reply_post_queue_depth >
3248 facts->MaxReplyDescriptorPostQueueDepth) {
3249 ioc->reply_post_queue_depth =
3250 facts->MaxReplyDescriptorPostQueueDepth -
3251 (facts->MaxReplyDescriptorPostQueueDepth % 16);
3252 ioc->hba_queue_depth =
3253 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3254 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3257 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3258 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3259 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3260 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3261 ioc->chains_needed_per_io));
3263 /* reply post queue, 16 byte align */
3264 reply_post_free_sz = ioc->reply_post_queue_depth *
3265 sizeof(Mpi2DefaultReplyDescriptor_t);
3267 sz = reply_post_free_sz;
3268 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3269 sz *= ioc->reply_queue_count;
3271 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3272 (ioc->reply_queue_count):1,
3273 sizeof(struct reply_post_struct), GFP_KERNEL);
3275 if (!ioc->reply_post) {
3276 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3277 ioc->name);
3278 goto out;
3280 ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3281 ioc->pdev, sz, 16, 0);
3282 if (!ioc->reply_post_free_dma_pool) {
3283 pr_err(MPT3SAS_FMT
3284 "reply_post_free pool: pci_pool_create failed\n",
3285 ioc->name);
3286 goto out;
3288 i = 0;
3289 do {
3290 ioc->reply_post[i].reply_post_free =
3291 pci_pool_alloc(ioc->reply_post_free_dma_pool,
3292 GFP_KERNEL,
3293 &ioc->reply_post[i].reply_post_free_dma);
3294 if (!ioc->reply_post[i].reply_post_free) {
3295 pr_err(MPT3SAS_FMT
3296 "reply_post_free pool: pci_pool_alloc failed\n",
3297 ioc->name);
3298 goto out;
3300 memset(ioc->reply_post[i].reply_post_free, 0, sz);
3301 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3302 "reply post free pool (0x%p): depth(%d),"
3303 "element_size(%d), pool_size(%d kB)\n", ioc->name,
3304 ioc->reply_post[i].reply_post_free,
3305 ioc->reply_post_queue_depth, 8, sz/1024));
3306 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3307 "reply_post_free_dma = (0x%llx)\n", ioc->name,
3308 (unsigned long long)
3309 ioc->reply_post[i].reply_post_free_dma));
3310 total_sz += sz;
3311 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3313 if (ioc->dma_mask == 64) {
3314 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3315 pr_warn(MPT3SAS_FMT
3316 "no suitable consistent DMA mask for %s\n",
3317 ioc->name, pci_name(ioc->pdev));
3318 goto out;
3322 ioc->scsiio_depth = ioc->hba_queue_depth -
3323 ioc->hi_priority_depth - ioc->internal_depth;
3325 /* set the scsi host can_queue depth
3326 * with some internal commands that could be outstanding
3328 ioc->shost->can_queue = ioc->scsiio_depth;
3329 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3330 "scsi host: can_queue depth (%d)\n",
3331 ioc->name, ioc->shost->can_queue));
3334 /* contiguous pool for request and chains, 16 byte align, one extra "
3335 * "frame for smid=0
3337 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3338 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3340 /* hi-priority queue */
3341 sz += (ioc->hi_priority_depth * ioc->request_sz);
3343 /* internal queue */
3344 sz += (ioc->internal_depth * ioc->request_sz);
3346 ioc->request_dma_sz = sz;
3347 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3348 if (!ioc->request) {
3349 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3350 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3351 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3352 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3353 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3354 goto out;
3355 retry_sz += 64;
3356 ioc->hba_queue_depth = max_request_credit - retry_sz;
3357 goto retry_allocation;
3360 if (retry_sz)
3361 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3362 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3363 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3364 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3366 /* hi-priority queue */
3367 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3368 ioc->request_sz);
3369 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3370 ioc->request_sz);
3372 /* internal queue */
3373 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3374 ioc->request_sz);
3375 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3376 ioc->request_sz);
3378 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3379 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3380 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3381 (ioc->hba_queue_depth * ioc->request_sz)/1024));
3383 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3384 ioc->name, (unsigned long long) ioc->request_dma));
3385 total_sz += sz;
3387 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3388 ioc->scsi_lookup_pages = get_order(sz);
3389 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3390 GFP_KERNEL, ioc->scsi_lookup_pages);
3391 if (!ioc->scsi_lookup) {
3392 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3393 ioc->name, (int)sz);
3394 goto out;
3397 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3398 ioc->name, ioc->request, ioc->scsiio_depth));
3400 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3401 sz = ioc->chain_depth * sizeof(struct chain_tracker);
3402 ioc->chain_pages = get_order(sz);
3403 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3404 GFP_KERNEL, ioc->chain_pages);
3405 if (!ioc->chain_lookup) {
3406 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3407 ioc->name);
3408 goto out;
3410 ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3411 ioc->request_sz, 16, 0);
3412 if (!ioc->chain_dma_pool) {
3413 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3414 ioc->name);
3415 goto out;
3417 for (i = 0; i < ioc->chain_depth; i++) {
3418 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3419 ioc->chain_dma_pool , GFP_KERNEL,
3420 &ioc->chain_lookup[i].chain_buffer_dma);
3421 if (!ioc->chain_lookup[i].chain_buffer) {
3422 ioc->chain_depth = i;
3423 goto chain_done;
3425 total_sz += ioc->request_sz;
3427 chain_done:
3428 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3429 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3430 ioc->name, ioc->chain_depth, ioc->request_sz,
3431 ((ioc->chain_depth * ioc->request_sz))/1024));
3433 /* initialize hi-priority queue smid's */
3434 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3435 sizeof(struct request_tracker), GFP_KERNEL);
3436 if (!ioc->hpr_lookup) {
3437 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3438 ioc->name);
3439 goto out;
3441 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3442 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3443 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3444 ioc->name, ioc->hi_priority,
3445 ioc->hi_priority_depth, ioc->hi_priority_smid));
3447 /* initialize internal queue smid's */
3448 ioc->internal_lookup = kcalloc(ioc->internal_depth,
3449 sizeof(struct request_tracker), GFP_KERNEL);
3450 if (!ioc->internal_lookup) {
3451 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3452 ioc->name);
3453 goto out;
3455 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3456 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3457 "internal(0x%p): depth(%d), start smid(%d)\n",
3458 ioc->name, ioc->internal,
3459 ioc->internal_depth, ioc->internal_smid));
3461 /* sense buffers, 4 byte align */
3462 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3463 ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3465 if (!ioc->sense_dma_pool) {
3466 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3467 ioc->name);
3468 goto out;
3470 ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3471 &ioc->sense_dma);
3472 if (!ioc->sense) {
3473 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3474 ioc->name);
3475 goto out;
3477 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3478 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3479 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3480 SCSI_SENSE_BUFFERSIZE, sz/1024));
3481 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3482 ioc->name, (unsigned long long)ioc->sense_dma));
3483 total_sz += sz;
3485 /* reply pool, 4 byte align */
3486 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3487 ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3489 if (!ioc->reply_dma_pool) {
3490 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3491 ioc->name);
3492 goto out;
3494 ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3495 &ioc->reply_dma);
3496 if (!ioc->reply) {
3497 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3498 ioc->name);
3499 goto out;
3501 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3502 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3503 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3504 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3505 ioc->name, ioc->reply,
3506 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3507 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3508 ioc->name, (unsigned long long)ioc->reply_dma));
3509 total_sz += sz;
3511 /* reply free queue, 16 byte align */
3512 sz = ioc->reply_free_queue_depth * 4;
3513 ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3514 ioc->pdev, sz, 16, 0);
3515 if (!ioc->reply_free_dma_pool) {
3516 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3517 ioc->name);
3518 goto out;
3520 ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3521 &ioc->reply_free_dma);
3522 if (!ioc->reply_free) {
3523 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3524 ioc->name);
3525 goto out;
3527 memset(ioc->reply_free, 0, sz);
3528 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3529 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3530 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3531 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3532 "reply_free_dma (0x%llx)\n",
3533 ioc->name, (unsigned long long)ioc->reply_free_dma));
3534 total_sz += sz;
3536 ioc->config_page_sz = 512;
3537 ioc->config_page = pci_alloc_consistent(ioc->pdev,
3538 ioc->config_page_sz, &ioc->config_page_dma);
3539 if (!ioc->config_page) {
3540 pr_err(MPT3SAS_FMT
3541 "config page: pci_pool_alloc failed\n",
3542 ioc->name);
3543 goto out;
3545 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3546 "config page(0x%p): size(%d)\n",
3547 ioc->name, ioc->config_page, ioc->config_page_sz));
3548 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3549 ioc->name, (unsigned long long)ioc->config_page_dma));
3550 total_sz += ioc->config_page_sz;
3552 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3553 ioc->name, total_sz/1024);
3554 pr_info(MPT3SAS_FMT
3555 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3556 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3557 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3558 ioc->name, ioc->shost->sg_tablesize);
3559 return 0;
3561 out:
3562 return -ENOMEM;
3566 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3567 * @ioc: Pointer to MPT_ADAPTER structure
3568 * @cooked: Request raw or cooked IOC state
3570 * Returns all IOC Doorbell register bits if cooked==0, else just the
3571 * Doorbell bits in MPI_IOC_STATE_MASK.
3574 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3576 u32 s, sc;
3578 s = readl(&ioc->chip->Doorbell);
3579 sc = s & MPI2_IOC_STATE_MASK;
3580 return cooked ? sc : s;
3584 * _base_wait_on_iocstate - waiting on a particular ioc state
3585 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3586 * @timeout: timeout in second
3587 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3589 * Returns 0 for success, non-zero for failure.
3591 static int
3592 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3593 int sleep_flag)
3595 u32 count, cntdn;
3596 u32 current_state;
3598 count = 0;
3599 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3600 do {
3601 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3602 if (current_state == ioc_state)
3603 return 0;
3604 if (count && current_state == MPI2_IOC_STATE_FAULT)
3605 break;
3606 if (sleep_flag == CAN_SLEEP)
3607 usleep_range(1000, 1500);
3608 else
3609 udelay(500);
3610 count++;
3611 } while (--cntdn);
3613 return current_state;
3617 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3618 * a write to the doorbell)
3619 * @ioc: per adapter object
3620 * @timeout: timeout in second
3621 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3623 * Returns 0 for success, non-zero for failure.
3625 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3627 static int
3628 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
3630 static int
3631 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3632 int sleep_flag)
3634 u32 cntdn, count;
3635 u32 int_status;
3637 count = 0;
3638 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3639 do {
3640 int_status = readl(&ioc->chip->HostInterruptStatus);
3641 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3642 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3643 "%s: successful count(%d), timeout(%d)\n",
3644 ioc->name, __func__, count, timeout));
3645 return 0;
3647 if (sleep_flag == CAN_SLEEP)
3648 usleep_range(1000, 1500);
3649 else
3650 udelay(500);
3651 count++;
3652 } while (--cntdn);
3654 pr_err(MPT3SAS_FMT
3655 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3656 ioc->name, __func__, count, int_status);
3657 return -EFAULT;
3661 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3662 * @ioc: per adapter object
3663 * @timeout: timeout in second
3664 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3666 * Returns 0 for success, non-zero for failure.
3668 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3669 * doorbell.
3671 static int
3672 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3673 int sleep_flag)
3675 u32 cntdn, count;
3676 u32 int_status;
3677 u32 doorbell;
3679 count = 0;
3680 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3681 do {
3682 int_status = readl(&ioc->chip->HostInterruptStatus);
3683 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3684 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3685 "%s: successful count(%d), timeout(%d)\n",
3686 ioc->name, __func__, count, timeout));
3687 return 0;
3688 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3689 doorbell = readl(&ioc->chip->Doorbell);
3690 if ((doorbell & MPI2_IOC_STATE_MASK) ==
3691 MPI2_IOC_STATE_FAULT) {
3692 mpt3sas_base_fault_info(ioc , doorbell);
3693 return -EFAULT;
3695 } else if (int_status == 0xFFFFFFFF)
3696 goto out;
3698 if (sleep_flag == CAN_SLEEP)
3699 usleep_range(1000, 1500);
3700 else
3701 udelay(500);
3702 count++;
3703 } while (--cntdn);
3705 out:
3706 pr_err(MPT3SAS_FMT
3707 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3708 ioc->name, __func__, count, int_status);
3709 return -EFAULT;
3713 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3714 * @ioc: per adapter object
3715 * @timeout: timeout in second
3716 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3718 * Returns 0 for success, non-zero for failure.
3721 static int
3722 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3723 int sleep_flag)
3725 u32 cntdn, count;
3726 u32 doorbell_reg;
3728 count = 0;
3729 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3730 do {
3731 doorbell_reg = readl(&ioc->chip->Doorbell);
3732 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3733 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3734 "%s: successful count(%d), timeout(%d)\n",
3735 ioc->name, __func__, count, timeout));
3736 return 0;
3738 if (sleep_flag == CAN_SLEEP)
3739 usleep_range(1000, 1500);
3740 else
3741 udelay(500);
3742 count++;
3743 } while (--cntdn);
3745 pr_err(MPT3SAS_FMT
3746 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3747 ioc->name, __func__, count, doorbell_reg);
3748 return -EFAULT;
3752 * _base_send_ioc_reset - send doorbell reset
3753 * @ioc: per adapter object
3754 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3755 * @timeout: timeout in second
3756 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3758 * Returns 0 for success, non-zero for failure.
3760 static int
3761 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3762 int sleep_flag)
3764 u32 ioc_state;
3765 int r = 0;
3767 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3768 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3769 ioc->name, __func__);
3770 return -EFAULT;
3773 if (!(ioc->facts.IOCCapabilities &
3774 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3775 return -EFAULT;
3777 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3779 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3780 &ioc->chip->Doorbell);
3781 if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3782 r = -EFAULT;
3783 goto out;
3785 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3786 timeout, sleep_flag);
3787 if (ioc_state) {
3788 pr_err(MPT3SAS_FMT
3789 "%s: failed going to ready state (ioc_state=0x%x)\n",
3790 ioc->name, __func__, ioc_state);
3791 r = -EFAULT;
3792 goto out;
3794 out:
3795 pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3796 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3797 return r;
3801 * _base_handshake_req_reply_wait - send request thru doorbell interface
3802 * @ioc: per adapter object
3803 * @request_bytes: request length
3804 * @request: pointer having request payload
3805 * @reply_bytes: reply length
3806 * @reply: pointer to reply payload
3807 * @timeout: timeout in second
3808 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3810 * Returns 0 for success, non-zero for failure.
3812 static int
3813 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3814 u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3816 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3817 int i;
3818 u8 failed;
3819 u16 dummy;
3820 __le32 *mfp;
3822 /* make sure doorbell is not in use */
3823 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3824 pr_err(MPT3SAS_FMT
3825 "doorbell is in use (line=%d)\n",
3826 ioc->name, __LINE__);
3827 return -EFAULT;
3830 /* clear pending doorbell interrupts from previous state changes */
3831 if (readl(&ioc->chip->HostInterruptStatus) &
3832 MPI2_HIS_IOC2SYS_DB_STATUS)
3833 writel(0, &ioc->chip->HostInterruptStatus);
3835 /* send message to ioc */
3836 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3837 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3838 &ioc->chip->Doorbell);
3840 if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3841 pr_err(MPT3SAS_FMT
3842 "doorbell handshake int failed (line=%d)\n",
3843 ioc->name, __LINE__);
3844 return -EFAULT;
3846 writel(0, &ioc->chip->HostInterruptStatus);
3848 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3849 pr_err(MPT3SAS_FMT
3850 "doorbell handshake ack failed (line=%d)\n",
3851 ioc->name, __LINE__);
3852 return -EFAULT;
3855 /* send message 32-bits at a time */
3856 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3857 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3858 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3859 failed = 1;
3862 if (failed) {
3863 pr_err(MPT3SAS_FMT
3864 "doorbell handshake sending request failed (line=%d)\n",
3865 ioc->name, __LINE__);
3866 return -EFAULT;
3869 /* now wait for the reply */
3870 if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3871 pr_err(MPT3SAS_FMT
3872 "doorbell handshake int failed (line=%d)\n",
3873 ioc->name, __LINE__);
3874 return -EFAULT;
3877 /* read the first two 16-bits, it gives the total length of the reply */
3878 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3879 & MPI2_DOORBELL_DATA_MASK);
3880 writel(0, &ioc->chip->HostInterruptStatus);
3881 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3882 pr_err(MPT3SAS_FMT
3883 "doorbell handshake int failed (line=%d)\n",
3884 ioc->name, __LINE__);
3885 return -EFAULT;
3887 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3888 & MPI2_DOORBELL_DATA_MASK);
3889 writel(0, &ioc->chip->HostInterruptStatus);
3891 for (i = 2; i < default_reply->MsgLength * 2; i++) {
3892 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3893 pr_err(MPT3SAS_FMT
3894 "doorbell handshake int failed (line=%d)\n",
3895 ioc->name, __LINE__);
3896 return -EFAULT;
3898 if (i >= reply_bytes/2) /* overflow case */
3899 dummy = readl(&ioc->chip->Doorbell);
3900 else
3901 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3902 & MPI2_DOORBELL_DATA_MASK);
3903 writel(0, &ioc->chip->HostInterruptStatus);
3906 _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3907 if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3908 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3909 "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3911 writel(0, &ioc->chip->HostInterruptStatus);
3913 if (ioc->logging_level & MPT_DEBUG_INIT) {
3914 mfp = (__le32 *)reply;
3915 pr_info("\toffset:data\n");
3916 for (i = 0; i < reply_bytes/4; i++)
3917 pr_info("\t[0x%02x]:%08x\n", i*4,
3918 le32_to_cpu(mfp[i]));
3920 return 0;
3924 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3925 * @ioc: per adapter object
3926 * @mpi_reply: the reply payload from FW
3927 * @mpi_request: the request payload sent to FW
3929 * The SAS IO Unit Control Request message allows the host to perform low-level
3930 * operations, such as resets on the PHYs of the IO Unit, also allows the host
3931 * to obtain the IOC assigned device handles for a device if it has other
3932 * identifying information about the device, in addition allows the host to
3933 * remove IOC resources associated with the device.
3935 * Returns 0 for success, non-zero for failure.
3938 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3939 Mpi2SasIoUnitControlReply_t *mpi_reply,
3940 Mpi2SasIoUnitControlRequest_t *mpi_request)
3942 u16 smid;
3943 u32 ioc_state;
3944 unsigned long timeleft;
3945 bool issue_reset = false;
3946 int rc;
3947 void *request;
3948 u16 wait_state_count;
3950 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3951 __func__));
3953 mutex_lock(&ioc->base_cmds.mutex);
3955 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3956 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3957 ioc->name, __func__);
3958 rc = -EAGAIN;
3959 goto out;
3962 wait_state_count = 0;
3963 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3964 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3965 if (wait_state_count++ == 10) {
3966 pr_err(MPT3SAS_FMT
3967 "%s: failed due to ioc not operational\n",
3968 ioc->name, __func__);
3969 rc = -EFAULT;
3970 goto out;
3972 ssleep(1);
3973 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3974 pr_info(MPT3SAS_FMT
3975 "%s: waiting for operational state(count=%d)\n",
3976 ioc->name, __func__, wait_state_count);
3979 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3980 if (!smid) {
3981 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3982 ioc->name, __func__);
3983 rc = -EAGAIN;
3984 goto out;
3987 rc = 0;
3988 ioc->base_cmds.status = MPT3_CMD_PENDING;
3989 request = mpt3sas_base_get_msg_frame(ioc, smid);
3990 ioc->base_cmds.smid = smid;
3991 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3992 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3993 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3994 ioc->ioc_link_reset_in_progress = 1;
3995 init_completion(&ioc->base_cmds.done);
3996 mpt3sas_base_put_smid_default(ioc, smid);
3997 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3998 msecs_to_jiffies(10000));
3999 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4000 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4001 ioc->ioc_link_reset_in_progress)
4002 ioc->ioc_link_reset_in_progress = 0;
4003 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4004 pr_err(MPT3SAS_FMT "%s: timeout\n",
4005 ioc->name, __func__);
4006 _debug_dump_mf(mpi_request,
4007 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4008 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4009 issue_reset = true;
4010 goto issue_host_reset;
4012 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4013 memcpy(mpi_reply, ioc->base_cmds.reply,
4014 sizeof(Mpi2SasIoUnitControlReply_t));
4015 else
4016 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4017 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4018 goto out;
4020 issue_host_reset:
4021 if (issue_reset)
4022 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4023 FORCE_BIG_HAMMER);
4024 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4025 rc = -EFAULT;
4026 out:
4027 mutex_unlock(&ioc->base_cmds.mutex);
4028 return rc;
4032 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4033 * @ioc: per adapter object
4034 * @mpi_reply: the reply payload from FW
4035 * @mpi_request: the request payload sent to FW
4037 * The SCSI Enclosure Processor request message causes the IOC to
4038 * communicate with SES devices to control LED status signals.
4040 * Returns 0 for success, non-zero for failure.
4043 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4044 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4046 u16 smid;
4047 u32 ioc_state;
4048 unsigned long timeleft;
4049 bool issue_reset = false;
4050 int rc;
4051 void *request;
4052 u16 wait_state_count;
4054 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4055 __func__));
4057 mutex_lock(&ioc->base_cmds.mutex);
4059 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4060 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4061 ioc->name, __func__);
4062 rc = -EAGAIN;
4063 goto out;
4066 wait_state_count = 0;
4067 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4068 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4069 if (wait_state_count++ == 10) {
4070 pr_err(MPT3SAS_FMT
4071 "%s: failed due to ioc not operational\n",
4072 ioc->name, __func__);
4073 rc = -EFAULT;
4074 goto out;
4076 ssleep(1);
4077 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4078 pr_info(MPT3SAS_FMT
4079 "%s: waiting for operational state(count=%d)\n",
4080 ioc->name,
4081 __func__, wait_state_count);
4084 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4085 if (!smid) {
4086 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4087 ioc->name, __func__);
4088 rc = -EAGAIN;
4089 goto out;
4092 rc = 0;
4093 ioc->base_cmds.status = MPT3_CMD_PENDING;
4094 request = mpt3sas_base_get_msg_frame(ioc, smid);
4095 ioc->base_cmds.smid = smid;
4096 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4097 init_completion(&ioc->base_cmds.done);
4098 mpt3sas_base_put_smid_default(ioc, smid);
4099 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4100 msecs_to_jiffies(10000));
4101 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4102 pr_err(MPT3SAS_FMT "%s: timeout\n",
4103 ioc->name, __func__);
4104 _debug_dump_mf(mpi_request,
4105 sizeof(Mpi2SepRequest_t)/4);
4106 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4107 issue_reset = false;
4108 goto issue_host_reset;
4110 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4111 memcpy(mpi_reply, ioc->base_cmds.reply,
4112 sizeof(Mpi2SepReply_t));
4113 else
4114 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4115 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4116 goto out;
4118 issue_host_reset:
4119 if (issue_reset)
4120 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4121 FORCE_BIG_HAMMER);
4122 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4123 rc = -EFAULT;
4124 out:
4125 mutex_unlock(&ioc->base_cmds.mutex);
4126 return rc;
4130 * _base_get_port_facts - obtain port facts reply and save in ioc
4131 * @ioc: per adapter object
4132 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4134 * Returns 0 for success, non-zero for failure.
4136 static int
4137 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
4139 Mpi2PortFactsRequest_t mpi_request;
4140 Mpi2PortFactsReply_t mpi_reply;
4141 struct mpt3sas_port_facts *pfacts;
4142 int mpi_reply_sz, mpi_request_sz, r;
4144 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4145 __func__));
4147 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4148 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4149 memset(&mpi_request, 0, mpi_request_sz);
4150 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4151 mpi_request.PortNumber = port;
4152 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4153 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4155 if (r != 0) {
4156 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4157 ioc->name, __func__, r);
4158 return r;
4161 pfacts = &ioc->pfacts[port];
4162 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4163 pfacts->PortNumber = mpi_reply.PortNumber;
4164 pfacts->VP_ID = mpi_reply.VP_ID;
4165 pfacts->VF_ID = mpi_reply.VF_ID;
4166 pfacts->MaxPostedCmdBuffers =
4167 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4169 return 0;
4173 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4174 * @ioc: per adapter object
4175 * @timeout:
4176 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4178 * Returns 0 for success, non-zero for failure.
4180 static int
4181 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout,
4182 int sleep_flag)
4184 u32 ioc_state;
4185 int rc;
4187 dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4188 __func__));
4190 if (ioc->pci_error_recovery) {
4191 dfailprintk(ioc, printk(MPT3SAS_FMT
4192 "%s: host in pci error recovery\n", ioc->name, __func__));
4193 return -EFAULT;
4196 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4197 dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4198 ioc->name, __func__, ioc_state));
4200 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4201 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4202 return 0;
4204 if (ioc_state & MPI2_DOORBELL_USED) {
4205 dhsprintk(ioc, printk(MPT3SAS_FMT
4206 "unexpected doorbell active!\n", ioc->name));
4207 goto issue_diag_reset;
4210 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4211 mpt3sas_base_fault_info(ioc, ioc_state &
4212 MPI2_DOORBELL_DATA_MASK);
4213 goto issue_diag_reset;
4216 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
4217 timeout, sleep_flag);
4218 if (ioc_state) {
4219 dfailprintk(ioc, printk(MPT3SAS_FMT
4220 "%s: failed going to ready state (ioc_state=0x%x)\n",
4221 ioc->name, __func__, ioc_state));
4222 return -EFAULT;
4225 issue_diag_reset:
4226 rc = _base_diag_reset(ioc, sleep_flag);
4227 return rc;
4231 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4232 * @ioc: per adapter object
4233 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4235 * Returns 0 for success, non-zero for failure.
4237 static int
4238 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4240 Mpi2IOCFactsRequest_t mpi_request;
4241 Mpi2IOCFactsReply_t mpi_reply;
4242 struct mpt3sas_facts *facts;
4243 int mpi_reply_sz, mpi_request_sz, r;
4245 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4246 __func__));
4248 r = _base_wait_for_iocstate(ioc, 10, sleep_flag);
4249 if (r) {
4250 dfailprintk(ioc, printk(MPT3SAS_FMT
4251 "%s: failed getting to correct state\n",
4252 ioc->name, __func__));
4253 return r;
4255 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4256 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4257 memset(&mpi_request, 0, mpi_request_sz);
4258 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4259 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4260 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4262 if (r != 0) {
4263 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4264 ioc->name, __func__, r);
4265 return r;
4268 facts = &ioc->facts;
4269 memset(facts, 0, sizeof(struct mpt3sas_facts));
4270 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4271 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4272 facts->VP_ID = mpi_reply.VP_ID;
4273 facts->VF_ID = mpi_reply.VF_ID;
4274 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4275 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4276 facts->WhoInit = mpi_reply.WhoInit;
4277 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4278 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4279 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4280 facts->MaxReplyDescriptorPostQueueDepth =
4281 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4282 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4283 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4284 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4285 ioc->ir_firmware = 1;
4286 if ((facts->IOCCapabilities &
4287 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4288 ioc->rdpq_array_capable = 1;
4289 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4290 facts->IOCRequestFrameSize =
4291 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4292 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4293 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4294 ioc->shost->max_id = -1;
4295 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4296 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4297 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4298 facts->HighPriorityCredit =
4299 le16_to_cpu(mpi_reply.HighPriorityCredit);
4300 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4301 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4303 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4304 "hba queue depth(%d), max chains per io(%d)\n",
4305 ioc->name, facts->RequestCredit,
4306 facts->MaxChainDepth));
4307 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4308 "request frame size(%d), reply frame size(%d)\n", ioc->name,
4309 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4310 return 0;
4314 * _base_send_ioc_init - send ioc_init to firmware
4315 * @ioc: per adapter object
4316 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4318 * Returns 0 for success, non-zero for failure.
4320 static int
4321 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4323 Mpi2IOCInitRequest_t mpi_request;
4324 Mpi2IOCInitReply_t mpi_reply;
4325 int i, r = 0;
4326 struct timeval current_time;
4327 u16 ioc_status;
4328 u32 reply_post_free_array_sz = 0;
4329 Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4330 dma_addr_t reply_post_free_array_dma;
4332 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4333 __func__));
4335 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4336 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4337 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4338 mpi_request.VF_ID = 0; /* TODO */
4339 mpi_request.VP_ID = 0;
4340 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4341 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4343 if (_base_is_controller_msix_enabled(ioc))
4344 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4345 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4346 mpi_request.ReplyDescriptorPostQueueDepth =
4347 cpu_to_le16(ioc->reply_post_queue_depth);
4348 mpi_request.ReplyFreeQueueDepth =
4349 cpu_to_le16(ioc->reply_free_queue_depth);
4351 mpi_request.SenseBufferAddressHigh =
4352 cpu_to_le32((u64)ioc->sense_dma >> 32);
4353 mpi_request.SystemReplyAddressHigh =
4354 cpu_to_le32((u64)ioc->reply_dma >> 32);
4355 mpi_request.SystemRequestFrameBaseAddress =
4356 cpu_to_le64((u64)ioc->request_dma);
4357 mpi_request.ReplyFreeQueueAddress =
4358 cpu_to_le64((u64)ioc->reply_free_dma);
4360 if (ioc->rdpq_array_enable) {
4361 reply_post_free_array_sz = ioc->reply_queue_count *
4362 sizeof(Mpi2IOCInitRDPQArrayEntry);
4363 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4364 reply_post_free_array_sz, &reply_post_free_array_dma);
4365 if (!reply_post_free_array) {
4366 pr_err(MPT3SAS_FMT
4367 "reply_post_free_array: pci_alloc_consistent failed\n",
4368 ioc->name);
4369 r = -ENOMEM;
4370 goto out;
4372 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4373 for (i = 0; i < ioc->reply_queue_count; i++)
4374 reply_post_free_array[i].RDPQBaseAddress =
4375 cpu_to_le64(
4376 (u64)ioc->reply_post[i].reply_post_free_dma);
4377 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4378 mpi_request.ReplyDescriptorPostQueueAddress =
4379 cpu_to_le64((u64)reply_post_free_array_dma);
4380 } else {
4381 mpi_request.ReplyDescriptorPostQueueAddress =
4382 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4385 /* This time stamp specifies number of milliseconds
4386 * since epoch ~ midnight January 1, 1970.
4388 do_gettimeofday(&current_time);
4389 mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
4390 (current_time.tv_usec / 1000));
4392 if (ioc->logging_level & MPT_DEBUG_INIT) {
4393 __le32 *mfp;
4394 int i;
4396 mfp = (__le32 *)&mpi_request;
4397 pr_info("\toffset:data\n");
4398 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4399 pr_info("\t[0x%02x]:%08x\n", i*4,
4400 le32_to_cpu(mfp[i]));
4403 r = _base_handshake_req_reply_wait(ioc,
4404 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4405 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
4406 sleep_flag);
4408 if (r != 0) {
4409 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4410 ioc->name, __func__, r);
4411 goto out;
4414 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4415 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4416 mpi_reply.IOCLogInfo) {
4417 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4418 r = -EIO;
4421 out:
4422 if (reply_post_free_array)
4423 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4424 reply_post_free_array,
4425 reply_post_free_array_dma);
4426 return r;
4430 * mpt3sas_port_enable_done - command completion routine for port enable
4431 * @ioc: per adapter object
4432 * @smid: system request message index
4433 * @msix_index: MSIX table index supplied by the OS
4434 * @reply: reply message frame(lower 32bit addr)
4436 * Return 1 meaning mf should be freed from _base_interrupt
4437 * 0 means the mf is freed from this function.
4440 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4441 u32 reply)
4443 MPI2DefaultReply_t *mpi_reply;
4444 u16 ioc_status;
4446 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4447 return 1;
4449 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4450 if (!mpi_reply)
4451 return 1;
4453 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4454 return 1;
4456 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4457 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4458 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4459 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4460 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4461 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4462 ioc->port_enable_failed = 1;
4464 if (ioc->is_driver_loading) {
4465 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4466 mpt3sas_port_enable_complete(ioc);
4467 return 1;
4468 } else {
4469 ioc->start_scan_failed = ioc_status;
4470 ioc->start_scan = 0;
4471 return 1;
4474 complete(&ioc->port_enable_cmds.done);
4475 return 1;
4479 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4480 * @ioc: per adapter object
4481 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4483 * Returns 0 for success, non-zero for failure.
4485 static int
4486 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4488 Mpi2PortEnableRequest_t *mpi_request;
4489 Mpi2PortEnableReply_t *mpi_reply;
4490 unsigned long timeleft;
4491 int r = 0;
4492 u16 smid;
4493 u16 ioc_status;
4495 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4497 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4498 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4499 ioc->name, __func__);
4500 return -EAGAIN;
4503 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4504 if (!smid) {
4505 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4506 ioc->name, __func__);
4507 return -EAGAIN;
4510 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4511 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4512 ioc->port_enable_cmds.smid = smid;
4513 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4514 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4516 init_completion(&ioc->port_enable_cmds.done);
4517 mpt3sas_base_put_smid_default(ioc, smid);
4518 timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
4519 300*HZ);
4520 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4521 pr_err(MPT3SAS_FMT "%s: timeout\n",
4522 ioc->name, __func__);
4523 _debug_dump_mf(mpi_request,
4524 sizeof(Mpi2PortEnableRequest_t)/4);
4525 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4526 r = -EFAULT;
4527 else
4528 r = -ETIME;
4529 goto out;
4532 mpi_reply = ioc->port_enable_cmds.reply;
4533 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4534 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4535 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4536 ioc->name, __func__, ioc_status);
4537 r = -EFAULT;
4538 goto out;
4541 out:
4542 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4543 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4544 "SUCCESS" : "FAILED"));
4545 return r;
4549 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4550 * @ioc: per adapter object
4552 * Returns 0 for success, non-zero for failure.
4555 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4557 Mpi2PortEnableRequest_t *mpi_request;
4558 u16 smid;
4560 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4562 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4563 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4564 ioc->name, __func__);
4565 return -EAGAIN;
4568 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4569 if (!smid) {
4570 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4571 ioc->name, __func__);
4572 return -EAGAIN;
4575 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4576 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4577 ioc->port_enable_cmds.smid = smid;
4578 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4579 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4581 mpt3sas_base_put_smid_default(ioc, smid);
4582 return 0;
4586 * _base_determine_wait_on_discovery - desposition
4587 * @ioc: per adapter object
4589 * Decide whether to wait on discovery to complete. Used to either
4590 * locate boot device, or report volumes ahead of physical devices.
4592 * Returns 1 for wait, 0 for don't wait
4594 static int
4595 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4597 /* We wait for discovery to complete if IR firmware is loaded.
4598 * The sas topology events arrive before PD events, so we need time to
4599 * turn on the bit in ioc->pd_handles to indicate PD
4600 * Also, it maybe required to report Volumes ahead of physical
4601 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4603 if (ioc->ir_firmware)
4604 return 1;
4606 /* if no Bios, then we don't need to wait */
4607 if (!ioc->bios_pg3.BiosVersion)
4608 return 0;
4610 /* Bios is present, then we drop down here.
4612 * If there any entries in the Bios Page 2, then we wait
4613 * for discovery to complete.
4616 /* Current Boot Device */
4617 if ((ioc->bios_pg2.CurrentBootDeviceForm &
4618 MPI2_BIOSPAGE2_FORM_MASK) ==
4619 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4620 /* Request Boot Device */
4621 (ioc->bios_pg2.ReqBootDeviceForm &
4622 MPI2_BIOSPAGE2_FORM_MASK) ==
4623 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4624 /* Alternate Request Boot Device */
4625 (ioc->bios_pg2.ReqAltBootDeviceForm &
4626 MPI2_BIOSPAGE2_FORM_MASK) ==
4627 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4628 return 0;
4630 return 1;
4634 * _base_unmask_events - turn on notification for this event
4635 * @ioc: per adapter object
4636 * @event: firmware event
4638 * The mask is stored in ioc->event_masks.
4640 static void
4641 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4643 u32 desired_event;
4645 if (event >= 128)
4646 return;
4648 desired_event = (1 << (event % 32));
4650 if (event < 32)
4651 ioc->event_masks[0] &= ~desired_event;
4652 else if (event < 64)
4653 ioc->event_masks[1] &= ~desired_event;
4654 else if (event < 96)
4655 ioc->event_masks[2] &= ~desired_event;
4656 else if (event < 128)
4657 ioc->event_masks[3] &= ~desired_event;
4661 * _base_event_notification - send event notification
4662 * @ioc: per adapter object
4663 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4665 * Returns 0 for success, non-zero for failure.
4667 static int
4668 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4670 Mpi2EventNotificationRequest_t *mpi_request;
4671 unsigned long timeleft;
4672 u16 smid;
4673 int r = 0;
4674 int i;
4676 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4677 __func__));
4679 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4680 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4681 ioc->name, __func__);
4682 return -EAGAIN;
4685 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4686 if (!smid) {
4687 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4688 ioc->name, __func__);
4689 return -EAGAIN;
4691 ioc->base_cmds.status = MPT3_CMD_PENDING;
4692 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4693 ioc->base_cmds.smid = smid;
4694 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4695 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4696 mpi_request->VF_ID = 0; /* TODO */
4697 mpi_request->VP_ID = 0;
4698 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4699 mpi_request->EventMasks[i] =
4700 cpu_to_le32(ioc->event_masks[i]);
4701 init_completion(&ioc->base_cmds.done);
4702 mpt3sas_base_put_smid_default(ioc, smid);
4703 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4704 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4705 pr_err(MPT3SAS_FMT "%s: timeout\n",
4706 ioc->name, __func__);
4707 _debug_dump_mf(mpi_request,
4708 sizeof(Mpi2EventNotificationRequest_t)/4);
4709 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4710 r = -EFAULT;
4711 else
4712 r = -ETIME;
4713 } else
4714 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4715 ioc->name, __func__));
4716 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4717 return r;
4721 * mpt3sas_base_validate_event_type - validating event types
4722 * @ioc: per adapter object
4723 * @event: firmware event
4725 * This will turn on firmware event notification when application
4726 * ask for that event. We don't mask events that are already enabled.
4728 void
4729 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4731 int i, j;
4732 u32 event_mask, desired_event;
4733 u8 send_update_to_fw;
4735 for (i = 0, send_update_to_fw = 0; i <
4736 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4737 event_mask = ~event_type[i];
4738 desired_event = 1;
4739 for (j = 0; j < 32; j++) {
4740 if (!(event_mask & desired_event) &&
4741 (ioc->event_masks[i] & desired_event)) {
4742 ioc->event_masks[i] &= ~desired_event;
4743 send_update_to_fw = 1;
4745 desired_event = (desired_event << 1);
4749 if (!send_update_to_fw)
4750 return;
4752 mutex_lock(&ioc->base_cmds.mutex);
4753 _base_event_notification(ioc, CAN_SLEEP);
4754 mutex_unlock(&ioc->base_cmds.mutex);
4758 * _base_diag_reset - the "big hammer" start of day reset
4759 * @ioc: per adapter object
4760 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4762 * Returns 0 for success, non-zero for failure.
4764 static int
4765 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4767 u32 host_diagnostic;
4768 u32 ioc_state;
4769 u32 count;
4770 u32 hcb_size;
4772 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4774 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4775 ioc->name));
4777 count = 0;
4778 do {
4779 /* Write magic sequence to WriteSequence register
4780 * Loop until in diagnostic mode
4782 drsprintk(ioc, pr_info(MPT3SAS_FMT
4783 "write magic sequence\n", ioc->name));
4784 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4785 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4786 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4787 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4788 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4789 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4790 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4792 /* wait 100 msec */
4793 if (sleep_flag == CAN_SLEEP)
4794 msleep(100);
4795 else
4796 mdelay(100);
4798 if (count++ > 20)
4799 goto out;
4801 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4802 drsprintk(ioc, pr_info(MPT3SAS_FMT
4803 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4804 ioc->name, count, host_diagnostic));
4806 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4808 hcb_size = readl(&ioc->chip->HCBSize);
4810 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4811 ioc->name));
4812 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4813 &ioc->chip->HostDiagnostic);
4815 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4816 if (sleep_flag == CAN_SLEEP)
4817 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4818 else
4819 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4821 /* Approximately 300 second max wait */
4822 for (count = 0; count < (300000000 /
4823 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4825 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4827 if (host_diagnostic == 0xFFFFFFFF)
4828 goto out;
4829 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4830 break;
4832 /* Wait to pass the second read delay window */
4833 if (sleep_flag == CAN_SLEEP)
4834 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4835 / 1000);
4836 else
4837 mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4838 / 1000);
4841 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4843 drsprintk(ioc, pr_info(MPT3SAS_FMT
4844 "restart the adapter assuming the HCB Address points to good F/W\n",
4845 ioc->name));
4846 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4847 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4848 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4850 drsprintk(ioc, pr_info(MPT3SAS_FMT
4851 "re-enable the HCDW\n", ioc->name));
4852 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4853 &ioc->chip->HCBSize);
4856 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4857 ioc->name));
4858 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4859 &ioc->chip->HostDiagnostic);
4861 drsprintk(ioc, pr_info(MPT3SAS_FMT
4862 "disable writes to the diagnostic register\n", ioc->name));
4863 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4865 drsprintk(ioc, pr_info(MPT3SAS_FMT
4866 "Wait for FW to go to the READY state\n", ioc->name));
4867 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4868 sleep_flag);
4869 if (ioc_state) {
4870 pr_err(MPT3SAS_FMT
4871 "%s: failed going to ready state (ioc_state=0x%x)\n",
4872 ioc->name, __func__, ioc_state);
4873 goto out;
4876 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4877 return 0;
4879 out:
4880 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4881 return -EFAULT;
4885 * _base_make_ioc_ready - put controller in READY state
4886 * @ioc: per adapter object
4887 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4888 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4890 * Returns 0 for success, non-zero for failure.
4892 static int
4893 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4894 enum reset_type type)
4896 u32 ioc_state;
4897 int rc;
4898 int count;
4900 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4901 __func__));
4903 if (ioc->pci_error_recovery)
4904 return 0;
4906 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4907 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4908 ioc->name, __func__, ioc_state));
4910 /* if in RESET state, it should move to READY state shortly */
4911 count = 0;
4912 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4913 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4914 MPI2_IOC_STATE_READY) {
4915 if (count++ == 10) {
4916 pr_err(MPT3SAS_FMT
4917 "%s: failed going to ready state (ioc_state=0x%x)\n",
4918 ioc->name, __func__, ioc_state);
4919 return -EFAULT;
4921 if (sleep_flag == CAN_SLEEP)
4922 ssleep(1);
4923 else
4924 mdelay(1000);
4925 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4929 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4930 return 0;
4932 if (ioc_state & MPI2_DOORBELL_USED) {
4933 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4934 "unexpected doorbell active!\n",
4935 ioc->name));
4936 goto issue_diag_reset;
4939 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4940 mpt3sas_base_fault_info(ioc, ioc_state &
4941 MPI2_DOORBELL_DATA_MASK);
4942 goto issue_diag_reset;
4945 if (type == FORCE_BIG_HAMMER)
4946 goto issue_diag_reset;
4948 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4949 if (!(_base_send_ioc_reset(ioc,
4950 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4951 return 0;
4954 issue_diag_reset:
4955 rc = _base_diag_reset(ioc, CAN_SLEEP);
4956 return rc;
4960 * _base_make_ioc_operational - put controller in OPERATIONAL state
4961 * @ioc: per adapter object
4962 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4964 * Returns 0 for success, non-zero for failure.
4966 static int
4967 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4969 int r, i;
4970 unsigned long flags;
4971 u32 reply_address;
4972 u16 smid;
4973 struct _tr_list *delayed_tr, *delayed_tr_next;
4974 u8 hide_flag;
4975 struct adapter_reply_queue *reply_q;
4976 long reply_post_free;
4977 u32 reply_post_free_sz, index = 0;
4979 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4980 __func__));
4982 /* clean the delayed target reset list */
4983 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4984 &ioc->delayed_tr_list, list) {
4985 list_del(&delayed_tr->list);
4986 kfree(delayed_tr);
4990 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4991 &ioc->delayed_tr_volume_list, list) {
4992 list_del(&delayed_tr->list);
4993 kfree(delayed_tr);
4996 /* initialize the scsi lookup free list */
4997 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4998 INIT_LIST_HEAD(&ioc->free_list);
4999 smid = 1;
5000 for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5001 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5002 ioc->scsi_lookup[i].cb_idx = 0xFF;
5003 ioc->scsi_lookup[i].smid = smid;
5004 ioc->scsi_lookup[i].scmd = NULL;
5005 ioc->scsi_lookup[i].direct_io = 0;
5006 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5007 &ioc->free_list);
5010 /* hi-priority queue */
5011 INIT_LIST_HEAD(&ioc->hpr_free_list);
5012 smid = ioc->hi_priority_smid;
5013 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5014 ioc->hpr_lookup[i].cb_idx = 0xFF;
5015 ioc->hpr_lookup[i].smid = smid;
5016 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5017 &ioc->hpr_free_list);
5020 /* internal queue */
5021 INIT_LIST_HEAD(&ioc->internal_free_list);
5022 smid = ioc->internal_smid;
5023 for (i = 0; i < ioc->internal_depth; i++, smid++) {
5024 ioc->internal_lookup[i].cb_idx = 0xFF;
5025 ioc->internal_lookup[i].smid = smid;
5026 list_add_tail(&ioc->internal_lookup[i].tracker_list,
5027 &ioc->internal_free_list);
5030 /* chain pool */
5031 INIT_LIST_HEAD(&ioc->free_chain_list);
5032 for (i = 0; i < ioc->chain_depth; i++)
5033 list_add_tail(&ioc->chain_lookup[i].tracker_list,
5034 &ioc->free_chain_list);
5036 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5038 /* initialize Reply Free Queue */
5039 for (i = 0, reply_address = (u32)ioc->reply_dma ;
5040 i < ioc->reply_free_queue_depth ; i++, reply_address +=
5041 ioc->reply_sz)
5042 ioc->reply_free[i] = cpu_to_le32(reply_address);
5044 /* initialize reply queues */
5045 if (ioc->is_driver_loading)
5046 _base_assign_reply_queues(ioc);
5048 /* initialize Reply Post Free Queue */
5049 reply_post_free_sz = ioc->reply_post_queue_depth *
5050 sizeof(Mpi2DefaultReplyDescriptor_t);
5051 reply_post_free = (long)ioc->reply_post[index].reply_post_free;
5052 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5053 reply_q->reply_post_host_index = 0;
5054 reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
5055 reply_post_free;
5056 for (i = 0; i < ioc->reply_post_queue_depth; i++)
5057 reply_q->reply_post_free[i].Words =
5058 cpu_to_le64(ULLONG_MAX);
5059 if (!_base_is_controller_msix_enabled(ioc))
5060 goto skip_init_reply_post_free_queue;
5062 * If RDPQ is enabled, switch to the next allocation.
5063 * Otherwise advance within the contiguous region.
5065 if (ioc->rdpq_array_enable)
5066 reply_post_free = (long)
5067 ioc->reply_post[++index].reply_post_free;
5068 else
5069 reply_post_free += reply_post_free_sz;
5071 skip_init_reply_post_free_queue:
5073 r = _base_send_ioc_init(ioc, sleep_flag);
5074 if (r)
5075 return r;
5077 /* initialize reply free host index */
5078 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5079 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5081 /* initialize reply post host index */
5082 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5083 if (ioc->msix96_vector)
5084 writel((reply_q->msix_index & 7)<<
5085 MPI2_RPHI_MSIX_INDEX_SHIFT,
5086 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5087 else
5088 writel(reply_q->msix_index <<
5089 MPI2_RPHI_MSIX_INDEX_SHIFT,
5090 &ioc->chip->ReplyPostHostIndex);
5092 if (!_base_is_controller_msix_enabled(ioc))
5093 goto skip_init_reply_post_host_index;
5096 skip_init_reply_post_host_index:
5098 _base_unmask_interrupts(ioc);
5099 r = _base_event_notification(ioc, sleep_flag);
5100 if (r)
5101 return r;
5103 if (sleep_flag == CAN_SLEEP)
5104 _base_static_config_pages(ioc);
5107 if (ioc->is_driver_loading) {
5109 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5110 == 0x80) {
5111 hide_flag = (u8) (
5112 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5113 MFG_PAGE10_HIDE_SSDS_MASK);
5114 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5115 ioc->mfg_pg10_hide_flag = hide_flag;
5118 ioc->wait_for_discovery_to_complete =
5119 _base_determine_wait_on_discovery(ioc);
5121 return r; /* scan_start and scan_finished support */
5124 r = _base_send_port_enable(ioc, sleep_flag);
5125 if (r)
5126 return r;
5128 return r;
5132 * mpt3sas_base_free_resources - free resources controller resources
5133 * @ioc: per adapter object
5135 * Return nothing.
5137 void
5138 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5140 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5141 __func__));
5143 /* synchronizing freeing resource with pci_access_mutex lock */
5144 mutex_lock(&ioc->pci_access_mutex);
5145 if (ioc->chip_phys && ioc->chip) {
5146 _base_mask_interrupts(ioc);
5147 ioc->shost_recovery = 1;
5148 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5149 ioc->shost_recovery = 0;
5152 mpt3sas_base_unmap_resources(ioc);
5153 mutex_unlock(&ioc->pci_access_mutex);
5154 return;
5158 * mpt3sas_base_attach - attach controller instance
5159 * @ioc: per adapter object
5161 * Returns 0 for success, non-zero for failure.
5164 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5166 int r, i;
5167 int cpu_id, last_cpu_id = 0;
5169 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5170 __func__));
5172 /* setup cpu_msix_table */
5173 ioc->cpu_count = num_online_cpus();
5174 for_each_online_cpu(cpu_id)
5175 last_cpu_id = cpu_id;
5176 ioc->cpu_msix_table_sz = last_cpu_id + 1;
5177 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5178 ioc->reply_queue_count = 1;
5179 if (!ioc->cpu_msix_table) {
5180 dfailprintk(ioc, pr_info(MPT3SAS_FMT
5181 "allocation for cpu_msix_table failed!!!\n",
5182 ioc->name));
5183 r = -ENOMEM;
5184 goto out_free_resources;
5187 if (ioc->is_warpdrive) {
5188 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5189 sizeof(resource_size_t *), GFP_KERNEL);
5190 if (!ioc->reply_post_host_index) {
5191 dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5192 "for cpu_msix_table failed!!!\n", ioc->name));
5193 r = -ENOMEM;
5194 goto out_free_resources;
5198 ioc->rdpq_array_enable_assigned = 0;
5199 ioc->dma_mask = 0;
5200 r = mpt3sas_base_map_resources(ioc);
5201 if (r)
5202 goto out_free_resources;
5204 if (ioc->is_warpdrive) {
5205 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
5206 &ioc->chip->ReplyPostHostIndex;
5208 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
5209 ioc->reply_post_host_index[i] =
5210 (resource_size_t __iomem *)
5211 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
5212 * 4)));
5215 pci_set_drvdata(ioc->pdev, ioc->shost);
5216 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5217 if (r)
5218 goto out_free_resources;
5220 switch (ioc->hba_mpi_version_belonged) {
5221 case MPI2_VERSION:
5222 ioc->build_sg_scmd = &_base_build_sg_scmd;
5223 ioc->build_sg = &_base_build_sg;
5224 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5225 break;
5226 case MPI25_VERSION:
5228 * In SAS3.0,
5229 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5230 * Target Status - all require the IEEE formated scatter gather
5231 * elements.
5233 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5234 ioc->build_sg = &_base_build_sg_ieee;
5235 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5236 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5237 break;
5241 * These function pointers for other requests that don't
5242 * the require IEEE scatter gather elements.
5244 * For example Configuration Pages and SAS IOUNIT Control don't.
5246 ioc->build_sg_mpi = &_base_build_sg;
5247 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5249 r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5250 if (r)
5251 goto out_free_resources;
5253 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5254 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5255 if (!ioc->pfacts) {
5256 r = -ENOMEM;
5257 goto out_free_resources;
5260 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5261 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
5262 if (r)
5263 goto out_free_resources;
5266 r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
5267 if (r)
5268 goto out_free_resources;
5270 init_waitqueue_head(&ioc->reset_wq);
5272 /* allocate memory pd handle bitmask list */
5273 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5274 if (ioc->facts.MaxDevHandle % 8)
5275 ioc->pd_handles_sz++;
5276 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5277 GFP_KERNEL);
5278 if (!ioc->pd_handles) {
5279 r = -ENOMEM;
5280 goto out_free_resources;
5282 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5283 GFP_KERNEL);
5284 if (!ioc->blocking_handles) {
5285 r = -ENOMEM;
5286 goto out_free_resources;
5289 ioc->fwfault_debug = mpt3sas_fwfault_debug;
5291 /* base internal command bits */
5292 mutex_init(&ioc->base_cmds.mutex);
5293 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5294 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5296 /* port_enable command bits */
5297 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5298 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5300 /* transport internal command bits */
5301 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5302 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5303 mutex_init(&ioc->transport_cmds.mutex);
5305 /* scsih internal command bits */
5306 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5307 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5308 mutex_init(&ioc->scsih_cmds.mutex);
5310 /* task management internal command bits */
5311 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5312 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5313 mutex_init(&ioc->tm_cmds.mutex);
5315 /* config page internal command bits */
5316 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5317 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5318 mutex_init(&ioc->config_cmds.mutex);
5320 /* ctl module internal command bits */
5321 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5322 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5323 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5324 mutex_init(&ioc->ctl_cmds.mutex);
5326 if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5327 !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5328 !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5329 !ioc->ctl_cmds.sense) {
5330 r = -ENOMEM;
5331 goto out_free_resources;
5334 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5335 ioc->event_masks[i] = -1;
5337 /* here we enable the events we care about */
5338 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5339 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5340 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5341 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5342 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5343 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5344 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5345 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5346 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5347 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5348 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5350 r = _base_make_ioc_operational(ioc, CAN_SLEEP);
5351 if (r)
5352 goto out_free_resources;
5354 ioc->non_operational_loop = 0;
5355 return 0;
5357 out_free_resources:
5359 ioc->remove_host = 1;
5361 mpt3sas_base_free_resources(ioc);
5362 _base_release_memory_pools(ioc);
5363 pci_set_drvdata(ioc->pdev, NULL);
5364 kfree(ioc->cpu_msix_table);
5365 if (ioc->is_warpdrive)
5366 kfree(ioc->reply_post_host_index);
5367 kfree(ioc->pd_handles);
5368 kfree(ioc->blocking_handles);
5369 kfree(ioc->tm_cmds.reply);
5370 kfree(ioc->transport_cmds.reply);
5371 kfree(ioc->scsih_cmds.reply);
5372 kfree(ioc->config_cmds.reply);
5373 kfree(ioc->base_cmds.reply);
5374 kfree(ioc->port_enable_cmds.reply);
5375 kfree(ioc->ctl_cmds.reply);
5376 kfree(ioc->ctl_cmds.sense);
5377 kfree(ioc->pfacts);
5378 ioc->ctl_cmds.reply = NULL;
5379 ioc->base_cmds.reply = NULL;
5380 ioc->tm_cmds.reply = NULL;
5381 ioc->scsih_cmds.reply = NULL;
5382 ioc->transport_cmds.reply = NULL;
5383 ioc->config_cmds.reply = NULL;
5384 ioc->pfacts = NULL;
5385 return r;
5390 * mpt3sas_base_detach - remove controller instance
5391 * @ioc: per adapter object
5393 * Return nothing.
5395 void
5396 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5398 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5399 __func__));
5401 mpt3sas_base_stop_watchdog(ioc);
5402 mpt3sas_base_free_resources(ioc);
5403 _base_release_memory_pools(ioc);
5404 pci_set_drvdata(ioc->pdev, NULL);
5405 kfree(ioc->cpu_msix_table);
5406 if (ioc->is_warpdrive)
5407 kfree(ioc->reply_post_host_index);
5408 kfree(ioc->pd_handles);
5409 kfree(ioc->blocking_handles);
5410 kfree(ioc->pfacts);
5411 kfree(ioc->ctl_cmds.reply);
5412 kfree(ioc->ctl_cmds.sense);
5413 kfree(ioc->base_cmds.reply);
5414 kfree(ioc->port_enable_cmds.reply);
5415 kfree(ioc->tm_cmds.reply);
5416 kfree(ioc->transport_cmds.reply);
5417 kfree(ioc->scsih_cmds.reply);
5418 kfree(ioc->config_cmds.reply);
5422 * _base_reset_handler - reset callback handler (for base)
5423 * @ioc: per adapter object
5424 * @reset_phase: phase
5426 * The handler for doing any required cleanup or initialization.
5428 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5429 * MPT3_IOC_DONE_RESET
5431 * Return nothing.
5433 static void
5434 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5436 mpt3sas_scsih_reset_handler(ioc, reset_phase);
5437 mpt3sas_ctl_reset_handler(ioc, reset_phase);
5438 switch (reset_phase) {
5439 case MPT3_IOC_PRE_RESET:
5440 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5441 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5442 break;
5443 case MPT3_IOC_AFTER_RESET:
5444 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5445 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5446 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5447 ioc->transport_cmds.status |= MPT3_CMD_RESET;
5448 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5449 complete(&ioc->transport_cmds.done);
5451 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5452 ioc->base_cmds.status |= MPT3_CMD_RESET;
5453 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5454 complete(&ioc->base_cmds.done);
5456 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5457 ioc->port_enable_failed = 1;
5458 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5459 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5460 if (ioc->is_driver_loading) {
5461 ioc->start_scan_failed =
5462 MPI2_IOCSTATUS_INTERNAL_ERROR;
5463 ioc->start_scan = 0;
5464 ioc->port_enable_cmds.status =
5465 MPT3_CMD_NOT_USED;
5466 } else
5467 complete(&ioc->port_enable_cmds.done);
5469 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5470 ioc->config_cmds.status |= MPT3_CMD_RESET;
5471 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5472 ioc->config_cmds.smid = USHRT_MAX;
5473 complete(&ioc->config_cmds.done);
5475 break;
5476 case MPT3_IOC_DONE_RESET:
5477 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5478 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5479 break;
5484 * _wait_for_commands_to_complete - reset controller
5485 * @ioc: Pointer to MPT_ADAPTER structure
5486 * @sleep_flag: CAN_SLEEP or NO_SLEEP
5488 * This function waiting(3s) for all pending commands to complete
5489 * prior to putting controller in reset.
5491 static void
5492 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5494 u32 ioc_state;
5495 unsigned long flags;
5496 u16 i;
5498 ioc->pending_io_count = 0;
5499 if (sleep_flag != CAN_SLEEP)
5500 return;
5502 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5503 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5504 return;
5506 /* pending command count */
5507 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5508 for (i = 0; i < ioc->scsiio_depth; i++)
5509 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5510 ioc->pending_io_count++;
5511 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5513 if (!ioc->pending_io_count)
5514 return;
5516 /* wait for pending commands to complete */
5517 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5521 * mpt3sas_base_hard_reset_handler - reset controller
5522 * @ioc: Pointer to MPT_ADAPTER structure
5523 * @sleep_flag: CAN_SLEEP or NO_SLEEP
5524 * @type: FORCE_BIG_HAMMER or SOFT_RESET
5526 * Returns 0 for success, non-zero for failure.
5529 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
5530 enum reset_type type)
5532 int r;
5533 unsigned long flags;
5534 u32 ioc_state;
5535 u8 is_fault = 0, is_trigger = 0;
5537 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5538 __func__));
5540 if (ioc->pci_error_recovery) {
5541 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5542 ioc->name, __func__);
5543 r = 0;
5544 goto out_unlocked;
5547 if (mpt3sas_fwfault_debug)
5548 mpt3sas_halt_firmware(ioc);
5550 /* TODO - What we really should be doing is pulling
5551 * out all the code associated with NO_SLEEP; its never used.
5552 * That is legacy code from mpt fusion driver, ported over.
5553 * I will leave this BUG_ON here for now till its been resolved.
5555 BUG_ON(sleep_flag == NO_SLEEP);
5557 /* wait for an active reset in progress to complete */
5558 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5559 do {
5560 ssleep(1);
5561 } while (ioc->shost_recovery == 1);
5562 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5563 __func__));
5564 return ioc->ioc_reset_in_progress_status;
5567 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5568 ioc->shost_recovery = 1;
5569 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5571 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5572 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5573 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5574 MPT3_DIAG_BUFFER_IS_RELEASED))) {
5575 is_trigger = 1;
5576 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5577 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5578 is_fault = 1;
5580 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5581 _wait_for_commands_to_complete(ioc, sleep_flag);
5582 _base_mask_interrupts(ioc);
5583 r = _base_make_ioc_ready(ioc, sleep_flag, type);
5584 if (r)
5585 goto out;
5586 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5588 /* If this hard reset is called while port enable is active, then
5589 * there is no reason to call make_ioc_operational
5591 if (ioc->is_driver_loading && ioc->port_enable_failed) {
5592 ioc->remove_host = 1;
5593 r = -EFAULT;
5594 goto out;
5596 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5597 if (r)
5598 goto out;
5600 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5601 panic("%s: Issue occurred with flashing controller firmware."
5602 "Please reboot the system and ensure that the correct"
5603 " firmware version is running\n", ioc->name);
5605 r = _base_make_ioc_operational(ioc, sleep_flag);
5606 if (!r)
5607 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5609 out:
5610 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5611 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5613 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5614 ioc->ioc_reset_in_progress_status = r;
5615 ioc->shost_recovery = 0;
5616 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5617 ioc->ioc_reset_count++;
5618 mutex_unlock(&ioc->reset_in_progress_mutex);
5620 out_unlocked:
5621 if ((r == 0) && is_trigger) {
5622 if (is_fault)
5623 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5624 else
5625 mpt3sas_trigger_master(ioc,
5626 MASTER_TRIGGER_ADAPTER_RESET);
5628 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5629 __func__));
5630 return r;