of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / soc / ti / knav_qmss_queue.c
blob8c03a80b482ddac7c1e22ac4178772f7d29819ff
1 /*
2 * Keystone Queue Manager subsystem driver
4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5 * Authors: Sandeep Nair <sandeep_n@ti.com>
6 * Cyril Chemparathy <cyril@ti.com>
7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * version 2 as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/clk.h>
23 #include <linux/io.h>
24 #include <linux/interrupt.h>
25 #include <linux/bitops.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/platform_device.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_device.h>
33 #include <linux/of_address.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/firmware.h>
36 #include <linux/debugfs.h>
37 #include <linux/seq_file.h>
38 #include <linux/string.h>
39 #include <linux/soc/ti/knav_qmss.h>
41 #include "knav_qmss.h"
43 static struct knav_device *kdev;
44 static DEFINE_MUTEX(knav_dev_lock);
46 /* Queue manager register indices in DTS */
47 #define KNAV_QUEUE_PEEK_REG_INDEX 0
48 #define KNAV_QUEUE_STATUS_REG_INDEX 1
49 #define KNAV_QUEUE_CONFIG_REG_INDEX 2
50 #define KNAV_QUEUE_REGION_REG_INDEX 3
51 #define KNAV_QUEUE_PUSH_REG_INDEX 4
52 #define KNAV_QUEUE_POP_REG_INDEX 5
54 /* PDSP register indices in DTS */
55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
60 #define knav_queue_idx_to_inst(kdev, idx) \
61 (kdev->instances + (idx << kdev->inst_shift))
63 #define for_each_handle_rcu(qh, inst) \
64 list_for_each_entry_rcu(qh, &inst->handles, list)
66 #define for_each_instance(idx, inst, kdev) \
67 for (idx = 0, inst = kdev->instances; \
68 idx < (kdev)->num_queues_in_use; \
69 idx++, inst = knav_queue_idx_to_inst(kdev, idx))
71 /* All firmware file names end up here. List the firmware file names below.
72 * Newest followed by older ones. Search is done from start of the array
73 * until a firmware file is found.
75 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
77 /**
78 * knav_queue_notify: qmss queue notfier call
80 * @inst: qmss queue instance like accumulator
82 void knav_queue_notify(struct knav_queue_inst *inst)
84 struct knav_queue *qh;
86 if (!inst)
87 return;
89 rcu_read_lock();
90 for_each_handle_rcu(qh, inst) {
91 if (atomic_read(&qh->notifier_enabled) <= 0)
92 continue;
93 if (WARN_ON(!qh->notifier_fn))
94 continue;
95 atomic_inc(&qh->stats.notifies);
96 qh->notifier_fn(qh->notifier_fn_arg);
98 rcu_read_unlock();
100 EXPORT_SYMBOL_GPL(knav_queue_notify);
102 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
104 struct knav_queue_inst *inst = _instdata;
106 knav_queue_notify(inst);
107 return IRQ_HANDLED;
110 static int knav_queue_setup_irq(struct knav_range_info *range,
111 struct knav_queue_inst *inst)
113 unsigned queue = inst->id - range->queue_base;
114 unsigned long cpu_map;
115 int ret = 0, irq;
117 if (range->flags & RANGE_HAS_IRQ) {
118 irq = range->irqs[queue].irq;
119 cpu_map = range->irqs[queue].cpu_map;
120 ret = request_irq(irq, knav_queue_int_handler, 0,
121 inst->irq_name, inst);
122 if (ret)
123 return ret;
124 disable_irq(irq);
125 if (cpu_map) {
126 ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
127 if (ret) {
128 dev_warn(range->kdev->dev,
129 "Failed to set IRQ affinity\n");
130 return ret;
134 return ret;
137 static void knav_queue_free_irq(struct knav_queue_inst *inst)
139 struct knav_range_info *range = inst->range;
140 unsigned queue = inst->id - inst->range->queue_base;
141 int irq;
143 if (range->flags & RANGE_HAS_IRQ) {
144 irq = range->irqs[queue].irq;
145 irq_set_affinity_hint(irq, NULL);
146 free_irq(irq, inst);
150 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
152 return !list_empty(&inst->handles);
155 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
157 return inst->range->flags & RANGE_RESERVED;
160 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
162 struct knav_queue *tmp;
164 rcu_read_lock();
165 for_each_handle_rcu(tmp, inst) {
166 if (tmp->flags & KNAV_QUEUE_SHARED) {
167 rcu_read_unlock();
168 return true;
171 rcu_read_unlock();
172 return false;
175 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
176 unsigned type)
178 if ((type == KNAV_QUEUE_QPEND) &&
179 (inst->range->flags & RANGE_HAS_IRQ)) {
180 return true;
181 } else if ((type == KNAV_QUEUE_ACC) &&
182 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
183 return true;
184 } else if ((type == KNAV_QUEUE_GP) &&
185 !(inst->range->flags &
186 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
187 return true;
189 return false;
192 static inline struct knav_queue_inst *
193 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
195 struct knav_queue_inst *inst;
196 int idx;
198 for_each_instance(idx, inst, kdev) {
199 if (inst->id == id)
200 return inst;
202 return NULL;
205 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
207 if (kdev->base_id <= id &&
208 kdev->base_id + kdev->num_queues > id) {
209 id -= kdev->base_id;
210 return knav_queue_match_id_to_inst(kdev, id);
212 return NULL;
215 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
216 const char *name, unsigned flags)
218 struct knav_queue *qh;
219 unsigned id;
220 int ret = 0;
222 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
223 if (!qh)
224 return ERR_PTR(-ENOMEM);
226 qh->flags = flags;
227 qh->inst = inst;
228 id = inst->id - inst->qmgr->start_queue;
229 qh->reg_push = &inst->qmgr->reg_push[id];
230 qh->reg_pop = &inst->qmgr->reg_pop[id];
231 qh->reg_peek = &inst->qmgr->reg_peek[id];
233 /* first opener? */
234 if (!knav_queue_is_busy(inst)) {
235 struct knav_range_info *range = inst->range;
237 inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
238 if (range->ops && range->ops->open_queue)
239 ret = range->ops->open_queue(range, inst, flags);
241 if (ret) {
242 devm_kfree(inst->kdev->dev, qh);
243 return ERR_PTR(ret);
246 list_add_tail_rcu(&qh->list, &inst->handles);
247 return qh;
250 static struct knav_queue *
251 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
253 struct knav_queue_inst *inst;
254 struct knav_queue *qh;
256 mutex_lock(&knav_dev_lock);
258 qh = ERR_PTR(-ENODEV);
259 inst = knav_queue_find_by_id(id);
260 if (!inst)
261 goto unlock_ret;
263 qh = ERR_PTR(-EEXIST);
264 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
265 goto unlock_ret;
267 qh = ERR_PTR(-EBUSY);
268 if ((flags & KNAV_QUEUE_SHARED) &&
269 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
270 goto unlock_ret;
272 qh = __knav_queue_open(inst, name, flags);
274 unlock_ret:
275 mutex_unlock(&knav_dev_lock);
277 return qh;
280 static struct knav_queue *knav_queue_open_by_type(const char *name,
281 unsigned type, unsigned flags)
283 struct knav_queue_inst *inst;
284 struct knav_queue *qh = ERR_PTR(-EINVAL);
285 int idx;
287 mutex_lock(&knav_dev_lock);
289 for_each_instance(idx, inst, kdev) {
290 if (knav_queue_is_reserved(inst))
291 continue;
292 if (!knav_queue_match_type(inst, type))
293 continue;
294 if (knav_queue_is_busy(inst))
295 continue;
296 qh = __knav_queue_open(inst, name, flags);
297 goto unlock_ret;
300 unlock_ret:
301 mutex_unlock(&knav_dev_lock);
302 return qh;
305 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
307 struct knav_range_info *range = inst->range;
309 if (range->ops && range->ops->set_notify)
310 range->ops->set_notify(range, inst, enabled);
313 static int knav_queue_enable_notifier(struct knav_queue *qh)
315 struct knav_queue_inst *inst = qh->inst;
316 bool first;
318 if (WARN_ON(!qh->notifier_fn))
319 return -EINVAL;
321 /* Adjust the per handle notifier count */
322 first = (atomic_inc_return(&qh->notifier_enabled) == 1);
323 if (!first)
324 return 0; /* nothing to do */
326 /* Now adjust the per instance notifier count */
327 first = (atomic_inc_return(&inst->num_notifiers) == 1);
328 if (first)
329 knav_queue_set_notify(inst, true);
331 return 0;
334 static int knav_queue_disable_notifier(struct knav_queue *qh)
336 struct knav_queue_inst *inst = qh->inst;
337 bool last;
339 last = (atomic_dec_return(&qh->notifier_enabled) == 0);
340 if (!last)
341 return 0; /* nothing to do */
343 last = (atomic_dec_return(&inst->num_notifiers) == 0);
344 if (last)
345 knav_queue_set_notify(inst, false);
347 return 0;
350 static int knav_queue_set_notifier(struct knav_queue *qh,
351 struct knav_queue_notify_config *cfg)
353 knav_queue_notify_fn old_fn = qh->notifier_fn;
355 if (!cfg)
356 return -EINVAL;
358 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
359 return -ENOTSUPP;
361 if (!cfg->fn && old_fn)
362 knav_queue_disable_notifier(qh);
364 qh->notifier_fn = cfg->fn;
365 qh->notifier_fn_arg = cfg->fn_arg;
367 if (cfg->fn && !old_fn)
368 knav_queue_enable_notifier(qh);
370 return 0;
373 static int knav_gp_set_notify(struct knav_range_info *range,
374 struct knav_queue_inst *inst,
375 bool enabled)
377 unsigned queue;
379 if (range->flags & RANGE_HAS_IRQ) {
380 queue = inst->id - range->queue_base;
381 if (enabled)
382 enable_irq(range->irqs[queue].irq);
383 else
384 disable_irq_nosync(range->irqs[queue].irq);
386 return 0;
389 static int knav_gp_open_queue(struct knav_range_info *range,
390 struct knav_queue_inst *inst, unsigned flags)
392 return knav_queue_setup_irq(range, inst);
395 static int knav_gp_close_queue(struct knav_range_info *range,
396 struct knav_queue_inst *inst)
398 knav_queue_free_irq(inst);
399 return 0;
402 struct knav_range_ops knav_gp_range_ops = {
403 .set_notify = knav_gp_set_notify,
404 .open_queue = knav_gp_open_queue,
405 .close_queue = knav_gp_close_queue,
409 static int knav_queue_get_count(void *qhandle)
411 struct knav_queue *qh = qhandle;
412 struct knav_queue_inst *inst = qh->inst;
414 return readl_relaxed(&qh->reg_peek[0].entry_count) +
415 atomic_read(&inst->desc_count);
418 static void knav_queue_debug_show_instance(struct seq_file *s,
419 struct knav_queue_inst *inst)
421 struct knav_device *kdev = inst->kdev;
422 struct knav_queue *qh;
424 if (!knav_queue_is_busy(inst))
425 return;
427 seq_printf(s, "\tqueue id %d (%s)\n",
428 kdev->base_id + inst->id, inst->name);
429 for_each_handle_rcu(qh, inst) {
430 seq_printf(s, "\t\thandle %p: ", qh);
431 seq_printf(s, "pushes %8d, ",
432 atomic_read(&qh->stats.pushes));
433 seq_printf(s, "pops %8d, ",
434 atomic_read(&qh->stats.pops));
435 seq_printf(s, "count %8d, ",
436 knav_queue_get_count(qh));
437 seq_printf(s, "notifies %8d, ",
438 atomic_read(&qh->stats.notifies));
439 seq_printf(s, "push errors %8d, ",
440 atomic_read(&qh->stats.push_errors));
441 seq_printf(s, "pop errors %8d\n",
442 atomic_read(&qh->stats.pop_errors));
446 static int knav_queue_debug_show(struct seq_file *s, void *v)
448 struct knav_queue_inst *inst;
449 int idx;
451 mutex_lock(&knav_dev_lock);
452 seq_printf(s, "%s: %u-%u\n",
453 dev_name(kdev->dev), kdev->base_id,
454 kdev->base_id + kdev->num_queues - 1);
455 for_each_instance(idx, inst, kdev)
456 knav_queue_debug_show_instance(s, inst);
457 mutex_unlock(&knav_dev_lock);
459 return 0;
462 static int knav_queue_debug_open(struct inode *inode, struct file *file)
464 return single_open(file, knav_queue_debug_show, NULL);
467 static const struct file_operations knav_queue_debug_ops = {
468 .open = knav_queue_debug_open,
469 .read = seq_read,
470 .llseek = seq_lseek,
471 .release = single_release,
474 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
475 u32 flags)
477 unsigned long end;
478 u32 val = 0;
480 end = jiffies + msecs_to_jiffies(timeout);
481 while (time_after(end, jiffies)) {
482 val = readl_relaxed(addr);
483 if (flags)
484 val &= flags;
485 if (!val)
486 break;
487 cpu_relax();
489 return val ? -ETIMEDOUT : 0;
493 static int knav_queue_flush(struct knav_queue *qh)
495 struct knav_queue_inst *inst = qh->inst;
496 unsigned id = inst->id - inst->qmgr->start_queue;
498 atomic_set(&inst->desc_count, 0);
499 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
500 return 0;
504 * knav_queue_open() - open a hardware queue
505 * @name - name to give the queue handle
506 * @id - desired queue number if any or specifes the type
507 * of queue
508 * @flags - the following flags are applicable to queues:
509 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
510 * exclusive by default.
511 * Subsequent attempts to open a shared queue should
512 * also have this flag.
514 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
515 * to check the returned value for error codes.
517 void *knav_queue_open(const char *name, unsigned id,
518 unsigned flags)
520 struct knav_queue *qh = ERR_PTR(-EINVAL);
522 switch (id) {
523 case KNAV_QUEUE_QPEND:
524 case KNAV_QUEUE_ACC:
525 case KNAV_QUEUE_GP:
526 qh = knav_queue_open_by_type(name, id, flags);
527 break;
529 default:
530 qh = knav_queue_open_by_id(name, id, flags);
531 break;
533 return qh;
535 EXPORT_SYMBOL_GPL(knav_queue_open);
538 * knav_queue_close() - close a hardware queue handle
539 * @qh - handle to close
541 void knav_queue_close(void *qhandle)
543 struct knav_queue *qh = qhandle;
544 struct knav_queue_inst *inst = qh->inst;
546 while (atomic_read(&qh->notifier_enabled) > 0)
547 knav_queue_disable_notifier(qh);
549 mutex_lock(&knav_dev_lock);
550 list_del_rcu(&qh->list);
551 mutex_unlock(&knav_dev_lock);
552 synchronize_rcu();
553 if (!knav_queue_is_busy(inst)) {
554 struct knav_range_info *range = inst->range;
556 if (range->ops && range->ops->close_queue)
557 range->ops->close_queue(range, inst);
559 devm_kfree(inst->kdev->dev, qh);
561 EXPORT_SYMBOL_GPL(knav_queue_close);
564 * knav_queue_device_control() - Perform control operations on a queue
565 * @qh - queue handle
566 * @cmd - control commands
567 * @arg - command argument
569 * Returns 0 on success, errno otherwise.
571 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
572 unsigned long arg)
574 struct knav_queue *qh = qhandle;
575 struct knav_queue_notify_config *cfg;
576 int ret;
578 switch ((int)cmd) {
579 case KNAV_QUEUE_GET_ID:
580 ret = qh->inst->kdev->base_id + qh->inst->id;
581 break;
583 case KNAV_QUEUE_FLUSH:
584 ret = knav_queue_flush(qh);
585 break;
587 case KNAV_QUEUE_SET_NOTIFIER:
588 cfg = (void *)arg;
589 ret = knav_queue_set_notifier(qh, cfg);
590 break;
592 case KNAV_QUEUE_ENABLE_NOTIFY:
593 ret = knav_queue_enable_notifier(qh);
594 break;
596 case KNAV_QUEUE_DISABLE_NOTIFY:
597 ret = knav_queue_disable_notifier(qh);
598 break;
600 case KNAV_QUEUE_GET_COUNT:
601 ret = knav_queue_get_count(qh);
602 break;
604 default:
605 ret = -ENOTSUPP;
606 break;
608 return ret;
610 EXPORT_SYMBOL_GPL(knav_queue_device_control);
615 * knav_queue_push() - push data (or descriptor) to the tail of a queue
616 * @qh - hardware queue handle
617 * @data - data to push
618 * @size - size of data to push
619 * @flags - can be used to pass additional information
621 * Returns 0 on success, errno otherwise.
623 int knav_queue_push(void *qhandle, dma_addr_t dma,
624 unsigned size, unsigned flags)
626 struct knav_queue *qh = qhandle;
627 u32 val;
629 val = (u32)dma | ((size / 16) - 1);
630 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
632 atomic_inc(&qh->stats.pushes);
633 return 0;
635 EXPORT_SYMBOL_GPL(knav_queue_push);
638 * knav_queue_pop() - pop data (or descriptor) from the head of a queue
639 * @qh - hardware queue handle
640 * @size - (optional) size of the data pop'ed.
642 * Returns a DMA address on success, 0 on failure.
644 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
646 struct knav_queue *qh = qhandle;
647 struct knav_queue_inst *inst = qh->inst;
648 dma_addr_t dma;
649 u32 val, idx;
651 /* are we accumulated? */
652 if (inst->descs) {
653 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
654 atomic_inc(&inst->desc_count);
655 return 0;
657 idx = atomic_inc_return(&inst->desc_head);
658 idx &= ACC_DESCS_MASK;
659 val = inst->descs[idx];
660 } else {
661 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
662 if (unlikely(!val))
663 return 0;
666 dma = val & DESC_PTR_MASK;
667 if (size)
668 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
670 atomic_inc(&qh->stats.pops);
671 return dma;
673 EXPORT_SYMBOL_GPL(knav_queue_pop);
675 /* carve out descriptors and push into queue */
676 static void kdesc_fill_pool(struct knav_pool *pool)
678 struct knav_region *region;
679 int i;
681 region = pool->region;
682 pool->desc_size = region->desc_size;
683 for (i = 0; i < pool->num_desc; i++) {
684 int index = pool->region_offset + i;
685 dma_addr_t dma_addr;
686 unsigned dma_size;
687 dma_addr = region->dma_start + (region->desc_size * index);
688 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
689 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
690 DMA_TO_DEVICE);
691 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
695 /* pop out descriptors and close the queue */
696 static void kdesc_empty_pool(struct knav_pool *pool)
698 dma_addr_t dma;
699 unsigned size;
700 void *desc;
701 int i;
703 if (!pool->queue)
704 return;
706 for (i = 0;; i++) {
707 dma = knav_queue_pop(pool->queue, &size);
708 if (!dma)
709 break;
710 desc = knav_pool_desc_dma_to_virt(pool, dma);
711 if (!desc) {
712 dev_dbg(pool->kdev->dev,
713 "couldn't unmap desc, continuing\n");
714 continue;
717 WARN_ON(i != pool->num_desc);
718 knav_queue_close(pool->queue);
722 /* Get the DMA address of a descriptor */
723 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
725 struct knav_pool *pool = ph;
726 return pool->region->dma_start + (virt - pool->region->virt_start);
728 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
730 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
732 struct knav_pool *pool = ph;
733 return pool->region->virt_start + (dma - pool->region->dma_start);
735 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
738 * knav_pool_create() - Create a pool of descriptors
739 * @name - name to give the pool handle
740 * @num_desc - numbers of descriptors in the pool
741 * @region_id - QMSS region id from which the descriptors are to be
742 * allocated.
744 * Returns a pool handle on success.
745 * Use IS_ERR_OR_NULL() to identify error values on return.
747 void *knav_pool_create(const char *name,
748 int num_desc, int region_id)
750 struct knav_region *reg_itr, *region = NULL;
751 struct knav_pool *pool, *pi;
752 struct list_head *node;
753 unsigned last_offset;
754 bool slot_found;
755 int ret;
757 if (!kdev->dev)
758 return ERR_PTR(-ENODEV);
760 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
761 if (!pool) {
762 dev_err(kdev->dev, "out of memory allocating pool\n");
763 return ERR_PTR(-ENOMEM);
766 for_each_region(kdev, reg_itr) {
767 if (reg_itr->id != region_id)
768 continue;
769 region = reg_itr;
770 break;
773 if (!region) {
774 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
775 ret = -EINVAL;
776 goto err;
779 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
780 if (IS_ERR_OR_NULL(pool->queue)) {
781 dev_err(kdev->dev,
782 "failed to open queue for pool(%s), error %ld\n",
783 name, PTR_ERR(pool->queue));
784 ret = PTR_ERR(pool->queue);
785 goto err;
788 pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
789 pool->kdev = kdev;
790 pool->dev = kdev->dev;
792 mutex_lock(&knav_dev_lock);
794 if (num_desc > (region->num_desc - region->used_desc)) {
795 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
796 region_id, name);
797 ret = -ENOMEM;
798 goto err_unlock;
801 /* Region maintains a sorted (by region offset) list of pools
802 * use the first free slot which is large enough to accomodate
803 * the request
805 last_offset = 0;
806 slot_found = false;
807 node = &region->pools;
808 list_for_each_entry(pi, &region->pools, region_inst) {
809 if ((pi->region_offset - last_offset) >= num_desc) {
810 slot_found = true;
811 break;
813 last_offset = pi->region_offset + pi->num_desc;
815 node = &pi->region_inst;
817 if (slot_found) {
818 pool->region = region;
819 pool->num_desc = num_desc;
820 pool->region_offset = last_offset;
821 region->used_desc += num_desc;
822 list_add_tail(&pool->list, &kdev->pools);
823 list_add_tail(&pool->region_inst, node);
824 } else {
825 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
826 name, region_id);
827 ret = -ENOMEM;
828 goto err_unlock;
831 mutex_unlock(&knav_dev_lock);
832 kdesc_fill_pool(pool);
833 return pool;
835 err_unlock:
836 mutex_unlock(&knav_dev_lock);
837 err:
838 kfree(pool->name);
839 devm_kfree(kdev->dev, pool);
840 return ERR_PTR(ret);
842 EXPORT_SYMBOL_GPL(knav_pool_create);
845 * knav_pool_destroy() - Free a pool of descriptors
846 * @pool - pool handle
848 void knav_pool_destroy(void *ph)
850 struct knav_pool *pool = ph;
852 if (!pool)
853 return;
855 if (!pool->region)
856 return;
858 kdesc_empty_pool(pool);
859 mutex_lock(&knav_dev_lock);
861 pool->region->used_desc -= pool->num_desc;
862 list_del(&pool->region_inst);
863 list_del(&pool->list);
865 mutex_unlock(&knav_dev_lock);
866 kfree(pool->name);
867 devm_kfree(kdev->dev, pool);
869 EXPORT_SYMBOL_GPL(knav_pool_destroy);
873 * knav_pool_desc_get() - Get a descriptor from the pool
874 * @pool - pool handle
876 * Returns descriptor from the pool.
878 void *knav_pool_desc_get(void *ph)
880 struct knav_pool *pool = ph;
881 dma_addr_t dma;
882 unsigned size;
883 void *data;
885 dma = knav_queue_pop(pool->queue, &size);
886 if (unlikely(!dma))
887 return ERR_PTR(-ENOMEM);
888 data = knav_pool_desc_dma_to_virt(pool, dma);
889 return data;
891 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
894 * knav_pool_desc_put() - return a descriptor to the pool
895 * @pool - pool handle
897 void knav_pool_desc_put(void *ph, void *desc)
899 struct knav_pool *pool = ph;
900 dma_addr_t dma;
901 dma = knav_pool_desc_virt_to_dma(pool, desc);
902 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
904 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
907 * knav_pool_desc_map() - Map descriptor for DMA transfer
908 * @pool - pool handle
909 * @desc - address of descriptor to map
910 * @size - size of descriptor to map
911 * @dma - DMA address return pointer
912 * @dma_sz - adjusted return pointer
914 * Returns 0 on success, errno otherwise.
916 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
917 dma_addr_t *dma, unsigned *dma_sz)
919 struct knav_pool *pool = ph;
920 *dma = knav_pool_desc_virt_to_dma(pool, desc);
921 size = min(size, pool->region->desc_size);
922 size = ALIGN(size, SMP_CACHE_BYTES);
923 *dma_sz = size;
924 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
926 /* Ensure the descriptor reaches to the memory */
927 __iowmb();
929 return 0;
931 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
934 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
935 * @pool - pool handle
936 * @dma - DMA address of descriptor to unmap
937 * @dma_sz - size of descriptor to unmap
939 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
940 * error values on return.
942 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
944 struct knav_pool *pool = ph;
945 unsigned desc_sz;
946 void *desc;
948 desc_sz = min(dma_sz, pool->region->desc_size);
949 desc = knav_pool_desc_dma_to_virt(pool, dma);
950 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
951 prefetch(desc);
952 return desc;
954 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
957 * knav_pool_count() - Get the number of descriptors in pool.
958 * @pool - pool handle
959 * Returns number of elements in the pool.
961 int knav_pool_count(void *ph)
963 struct knav_pool *pool = ph;
964 return knav_queue_get_count(pool->queue);
966 EXPORT_SYMBOL_GPL(knav_pool_count);
968 static void knav_queue_setup_region(struct knav_device *kdev,
969 struct knav_region *region)
971 unsigned hw_num_desc, hw_desc_size, size;
972 struct knav_reg_region __iomem *regs;
973 struct knav_qmgr_info *qmgr;
974 struct knav_pool *pool;
975 int id = region->id;
976 struct page *page;
978 /* unused region? */
979 if (!region->num_desc) {
980 dev_warn(kdev->dev, "unused region %s\n", region->name);
981 return;
984 /* get hardware descriptor value */
985 hw_num_desc = ilog2(region->num_desc - 1) + 1;
987 /* did we force fit ourselves into nothingness? */
988 if (region->num_desc < 32) {
989 region->num_desc = 0;
990 dev_warn(kdev->dev, "too few descriptors in region %s\n",
991 region->name);
992 return;
995 size = region->num_desc * region->desc_size;
996 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
997 GFP_DMA32);
998 if (!region->virt_start) {
999 region->num_desc = 0;
1000 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1001 region->name);
1002 return;
1004 region->virt_end = region->virt_start + size;
1005 page = virt_to_page(region->virt_start);
1007 region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1008 DMA_BIDIRECTIONAL);
1009 if (dma_mapping_error(kdev->dev, region->dma_start)) {
1010 dev_err(kdev->dev, "dma map failed for region %s\n",
1011 region->name);
1012 goto fail;
1014 region->dma_end = region->dma_start + size;
1016 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1017 if (!pool) {
1018 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1019 goto fail;
1021 pool->num_desc = 0;
1022 pool->region_offset = region->num_desc;
1023 list_add(&pool->region_inst, &region->pools);
1025 dev_dbg(kdev->dev,
1026 "region %s (%d): size:%d, link:%d@%d, phys:%08x-%08x, virt:%p-%p\n",
1027 region->name, id, region->desc_size, region->num_desc,
1028 region->link_index, region->dma_start, region->dma_end,
1029 region->virt_start, region->virt_end);
1031 hw_desc_size = (region->desc_size / 16) - 1;
1032 hw_num_desc -= 5;
1034 for_each_qmgr(kdev, qmgr) {
1035 regs = qmgr->reg_region + id;
1036 writel_relaxed(region->dma_start, &regs->base);
1037 writel_relaxed(region->link_index, &regs->start_index);
1038 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1039 &regs->size_count);
1041 return;
1043 fail:
1044 if (region->dma_start)
1045 dma_unmap_page(kdev->dev, region->dma_start, size,
1046 DMA_BIDIRECTIONAL);
1047 if (region->virt_start)
1048 free_pages_exact(region->virt_start, size);
1049 region->num_desc = 0;
1050 return;
1053 static const char *knav_queue_find_name(struct device_node *node)
1055 const char *name;
1057 if (of_property_read_string(node, "label", &name) < 0)
1058 name = node->name;
1059 if (!name)
1060 name = "unknown";
1061 return name;
1064 static int knav_queue_setup_regions(struct knav_device *kdev,
1065 struct device_node *regions)
1067 struct device *dev = kdev->dev;
1068 struct knav_region *region;
1069 struct device_node *child;
1070 u32 temp[2];
1071 int ret;
1073 for_each_child_of_node(regions, child) {
1074 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1075 if (!region) {
1076 dev_err(dev, "out of memory allocating region\n");
1077 return -ENOMEM;
1080 region->name = knav_queue_find_name(child);
1081 of_property_read_u32(child, "id", &region->id);
1082 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1083 if (!ret) {
1084 region->num_desc = temp[0];
1085 region->desc_size = temp[1];
1086 } else {
1087 dev_err(dev, "invalid region info %s\n", region->name);
1088 devm_kfree(dev, region);
1089 continue;
1092 if (!of_get_property(child, "link-index", NULL)) {
1093 dev_err(dev, "No link info for %s\n", region->name);
1094 devm_kfree(dev, region);
1095 continue;
1097 ret = of_property_read_u32(child, "link-index",
1098 &region->link_index);
1099 if (ret) {
1100 dev_err(dev, "link index not found for %s\n",
1101 region->name);
1102 devm_kfree(dev, region);
1103 continue;
1106 INIT_LIST_HEAD(&region->pools);
1107 list_add_tail(&region->list, &kdev->regions);
1109 if (list_empty(&kdev->regions)) {
1110 dev_err(dev, "no valid region information found\n");
1111 return -ENODEV;
1114 /* Next, we run through the regions and set things up */
1115 for_each_region(kdev, region)
1116 knav_queue_setup_region(kdev, region);
1118 return 0;
1121 static int knav_get_link_ram(struct knav_device *kdev,
1122 const char *name,
1123 struct knav_link_ram_block *block)
1125 struct platform_device *pdev = to_platform_device(kdev->dev);
1126 struct device_node *node = pdev->dev.of_node;
1127 u32 temp[2];
1130 * Note: link ram resources are specified in "entry" sized units. In
1131 * reality, although entries are ~40bits in hardware, we treat them as
1132 * 64-bit entities here.
1134 * For example, to specify the internal link ram for Keystone-I class
1135 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1137 * This gets a bit weird when other link rams are used. For example,
1138 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1139 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1140 * which accounts for 64-bits per entry, for 16K entries.
1142 if (!of_property_read_u32_array(node, name , temp, 2)) {
1143 if (temp[0]) {
1145 * queue_base specified => using internal or onchip
1146 * link ram WARNING - we do not "reserve" this block
1148 block->phys = (dma_addr_t)temp[0];
1149 block->virt = NULL;
1150 block->size = temp[1];
1151 } else {
1152 block->size = temp[1];
1153 /* queue_base not specific => allocate requested size */
1154 block->virt = dmam_alloc_coherent(kdev->dev,
1155 8 * block->size, &block->phys,
1156 GFP_KERNEL);
1157 if (!block->virt) {
1158 dev_err(kdev->dev, "failed to alloc linkram\n");
1159 return -ENOMEM;
1162 } else {
1163 return -ENODEV;
1165 return 0;
1168 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1170 struct knav_link_ram_block *block;
1171 struct knav_qmgr_info *qmgr;
1173 for_each_qmgr(kdev, qmgr) {
1174 block = &kdev->link_rams[0];
1175 dev_dbg(kdev->dev, "linkram0: phys:%x, virt:%p, size:%x\n",
1176 block->phys, block->virt, block->size);
1177 writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base0);
1178 writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1180 block++;
1181 if (!block->size)
1182 continue;
1184 dev_dbg(kdev->dev, "linkram1: phys:%x, virt:%p, size:%x\n",
1185 block->phys, block->virt, block->size);
1186 writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base1);
1189 return 0;
1192 static int knav_setup_queue_range(struct knav_device *kdev,
1193 struct device_node *node)
1195 struct device *dev = kdev->dev;
1196 struct knav_range_info *range;
1197 struct knav_qmgr_info *qmgr;
1198 u32 temp[2], start, end, id, index;
1199 int ret, i;
1201 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1202 if (!range) {
1203 dev_err(dev, "out of memory allocating range\n");
1204 return -ENOMEM;
1207 range->kdev = kdev;
1208 range->name = knav_queue_find_name(node);
1209 ret = of_property_read_u32_array(node, "qrange", temp, 2);
1210 if (!ret) {
1211 range->queue_base = temp[0] - kdev->base_id;
1212 range->num_queues = temp[1];
1213 } else {
1214 dev_err(dev, "invalid queue range %s\n", range->name);
1215 devm_kfree(dev, range);
1216 return -EINVAL;
1219 for (i = 0; i < RANGE_MAX_IRQS; i++) {
1220 struct of_phandle_args oirq;
1222 if (of_irq_parse_one(node, i, &oirq))
1223 break;
1225 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1226 if (range->irqs[i].irq == IRQ_NONE)
1227 break;
1229 range->num_irqs++;
1231 if (oirq.args_count == 3)
1232 range->irqs[i].cpu_map =
1233 (oirq.args[2] & 0x0000ff00) >> 8;
1236 range->num_irqs = min(range->num_irqs, range->num_queues);
1237 if (range->num_irqs)
1238 range->flags |= RANGE_HAS_IRQ;
1240 if (of_get_property(node, "qalloc-by-id", NULL))
1241 range->flags |= RANGE_RESERVED;
1243 if (of_get_property(node, "accumulator", NULL)) {
1244 ret = knav_init_acc_range(kdev, node, range);
1245 if (ret < 0) {
1246 devm_kfree(dev, range);
1247 return ret;
1249 } else {
1250 range->ops = &knav_gp_range_ops;
1253 /* set threshold to 1, and flush out the queues */
1254 for_each_qmgr(kdev, qmgr) {
1255 start = max(qmgr->start_queue, range->queue_base);
1256 end = min(qmgr->start_queue + qmgr->num_queues,
1257 range->queue_base + range->num_queues);
1258 for (id = start; id < end; id++) {
1259 index = id - qmgr->start_queue;
1260 writel_relaxed(THRESH_GTE | 1,
1261 &qmgr->reg_peek[index].ptr_size_thresh);
1262 writel_relaxed(0,
1263 &qmgr->reg_push[index].ptr_size_thresh);
1267 list_add_tail(&range->list, &kdev->queue_ranges);
1268 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1269 range->name, range->queue_base,
1270 range->queue_base + range->num_queues - 1,
1271 range->num_irqs,
1272 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1273 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1274 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1275 kdev->num_queues_in_use += range->num_queues;
1276 return 0;
1279 static int knav_setup_queue_pools(struct knav_device *kdev,
1280 struct device_node *queue_pools)
1282 struct device_node *type, *range;
1283 int ret;
1285 for_each_child_of_node(queue_pools, type) {
1286 for_each_child_of_node(type, range) {
1287 ret = knav_setup_queue_range(kdev, range);
1288 /* return value ignored, we init the rest... */
1292 /* ... and barf if they all failed! */
1293 if (list_empty(&kdev->queue_ranges)) {
1294 dev_err(kdev->dev, "no valid queue range found\n");
1295 return -ENODEV;
1297 return 0;
1300 static void knav_free_queue_range(struct knav_device *kdev,
1301 struct knav_range_info *range)
1303 if (range->ops && range->ops->free_range)
1304 range->ops->free_range(range);
1305 list_del(&range->list);
1306 devm_kfree(kdev->dev, range);
1309 static void knav_free_queue_ranges(struct knav_device *kdev)
1311 struct knav_range_info *range;
1313 for (;;) {
1314 range = first_queue_range(kdev);
1315 if (!range)
1316 break;
1317 knav_free_queue_range(kdev, range);
1321 static void knav_queue_free_regions(struct knav_device *kdev)
1323 struct knav_region *region;
1324 struct knav_pool *pool, *tmp;
1325 unsigned size;
1327 for (;;) {
1328 region = first_region(kdev);
1329 if (!region)
1330 break;
1331 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1332 knav_pool_destroy(pool);
1334 size = region->virt_end - region->virt_start;
1335 if (size)
1336 free_pages_exact(region->virt_start, size);
1337 list_del(&region->list);
1338 devm_kfree(kdev->dev, region);
1342 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1343 struct device_node *node, int index)
1345 struct resource res;
1346 void __iomem *regs;
1347 int ret;
1349 ret = of_address_to_resource(node, index, &res);
1350 if (ret) {
1351 dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1352 node->name, index);
1353 return ERR_PTR(ret);
1356 regs = devm_ioremap_resource(kdev->dev, &res);
1357 if (IS_ERR(regs))
1358 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1359 index, node->name);
1360 return regs;
1363 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1364 struct device_node *qmgrs)
1366 struct device *dev = kdev->dev;
1367 struct knav_qmgr_info *qmgr;
1368 struct device_node *child;
1369 u32 temp[2];
1370 int ret;
1372 for_each_child_of_node(qmgrs, child) {
1373 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1374 if (!qmgr) {
1375 dev_err(dev, "out of memory allocating qmgr\n");
1376 return -ENOMEM;
1379 ret = of_property_read_u32_array(child, "managed-queues",
1380 temp, 2);
1381 if (!ret) {
1382 qmgr->start_queue = temp[0];
1383 qmgr->num_queues = temp[1];
1384 } else {
1385 dev_err(dev, "invalid qmgr queue range\n");
1386 devm_kfree(dev, qmgr);
1387 continue;
1390 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1391 qmgr->start_queue, qmgr->num_queues);
1393 qmgr->reg_peek =
1394 knav_queue_map_reg(kdev, child,
1395 KNAV_QUEUE_PEEK_REG_INDEX);
1396 qmgr->reg_status =
1397 knav_queue_map_reg(kdev, child,
1398 KNAV_QUEUE_STATUS_REG_INDEX);
1399 qmgr->reg_config =
1400 knav_queue_map_reg(kdev, child,
1401 KNAV_QUEUE_CONFIG_REG_INDEX);
1402 qmgr->reg_region =
1403 knav_queue_map_reg(kdev, child,
1404 KNAV_QUEUE_REGION_REG_INDEX);
1405 qmgr->reg_push =
1406 knav_queue_map_reg(kdev, child,
1407 KNAV_QUEUE_PUSH_REG_INDEX);
1408 qmgr->reg_pop =
1409 knav_queue_map_reg(kdev, child,
1410 KNAV_QUEUE_POP_REG_INDEX);
1412 if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1413 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1414 IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1415 dev_err(dev, "failed to map qmgr regs\n");
1416 if (!IS_ERR(qmgr->reg_peek))
1417 devm_iounmap(dev, qmgr->reg_peek);
1418 if (!IS_ERR(qmgr->reg_status))
1419 devm_iounmap(dev, qmgr->reg_status);
1420 if (!IS_ERR(qmgr->reg_config))
1421 devm_iounmap(dev, qmgr->reg_config);
1422 if (!IS_ERR(qmgr->reg_region))
1423 devm_iounmap(dev, qmgr->reg_region);
1424 if (!IS_ERR(qmgr->reg_push))
1425 devm_iounmap(dev, qmgr->reg_push);
1426 if (!IS_ERR(qmgr->reg_pop))
1427 devm_iounmap(dev, qmgr->reg_pop);
1428 devm_kfree(dev, qmgr);
1429 continue;
1432 list_add_tail(&qmgr->list, &kdev->qmgrs);
1433 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1434 qmgr->start_queue, qmgr->num_queues,
1435 qmgr->reg_peek, qmgr->reg_status,
1436 qmgr->reg_config, qmgr->reg_region,
1437 qmgr->reg_push, qmgr->reg_pop);
1439 return 0;
1442 static int knav_queue_init_pdsps(struct knav_device *kdev,
1443 struct device_node *pdsps)
1445 struct device *dev = kdev->dev;
1446 struct knav_pdsp_info *pdsp;
1447 struct device_node *child;
1449 for_each_child_of_node(pdsps, child) {
1450 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1451 if (!pdsp) {
1452 dev_err(dev, "out of memory allocating pdsp\n");
1453 return -ENOMEM;
1455 pdsp->name = knav_queue_find_name(child);
1456 pdsp->iram =
1457 knav_queue_map_reg(kdev, child,
1458 KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1459 pdsp->regs =
1460 knav_queue_map_reg(kdev, child,
1461 KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1462 pdsp->intd =
1463 knav_queue_map_reg(kdev, child,
1464 KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1465 pdsp->command =
1466 knav_queue_map_reg(kdev, child,
1467 KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1469 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1470 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1471 dev_err(dev, "failed to map pdsp %s regs\n",
1472 pdsp->name);
1473 if (!IS_ERR(pdsp->command))
1474 devm_iounmap(dev, pdsp->command);
1475 if (!IS_ERR(pdsp->iram))
1476 devm_iounmap(dev, pdsp->iram);
1477 if (!IS_ERR(pdsp->regs))
1478 devm_iounmap(dev, pdsp->regs);
1479 if (!IS_ERR(pdsp->intd))
1480 devm_iounmap(dev, pdsp->intd);
1481 devm_kfree(dev, pdsp);
1482 continue;
1484 of_property_read_u32(child, "id", &pdsp->id);
1485 list_add_tail(&pdsp->list, &kdev->pdsps);
1486 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1487 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1488 pdsp->intd);
1490 return 0;
1493 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1494 struct knav_pdsp_info *pdsp)
1496 u32 val, timeout = 1000;
1497 int ret;
1499 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1500 writel_relaxed(val, &pdsp->regs->control);
1501 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1502 PDSP_CTRL_RUNNING);
1503 if (ret < 0) {
1504 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1505 return ret;
1507 pdsp->loaded = false;
1508 pdsp->started = false;
1509 return 0;
1512 static int knav_queue_load_pdsp(struct knav_device *kdev,
1513 struct knav_pdsp_info *pdsp)
1515 int i, ret, fwlen;
1516 const struct firmware *fw;
1517 bool found = false;
1518 u32 *fwdata;
1520 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1521 if (knav_acc_firmwares[i]) {
1522 ret = request_firmware_direct(&fw,
1523 knav_acc_firmwares[i],
1524 kdev->dev);
1525 if (!ret) {
1526 found = true;
1527 break;
1532 if (!found) {
1533 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1534 return -ENODEV;
1537 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1538 knav_acc_firmwares[i]);
1540 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1541 /* download the firmware */
1542 fwdata = (u32 *)fw->data;
1543 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1544 for (i = 0; i < fwlen; i++)
1545 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1547 release_firmware(fw);
1548 return 0;
1551 static int knav_queue_start_pdsp(struct knav_device *kdev,
1552 struct knav_pdsp_info *pdsp)
1554 u32 val, timeout = 1000;
1555 int ret;
1557 /* write a command for sync */
1558 writel_relaxed(0xffffffff, pdsp->command);
1559 while (readl_relaxed(pdsp->command) != 0xffffffff)
1560 cpu_relax();
1562 /* soft reset the PDSP */
1563 val = readl_relaxed(&pdsp->regs->control);
1564 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1565 writel_relaxed(val, &pdsp->regs->control);
1567 /* enable pdsp */
1568 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1569 writel_relaxed(val, &pdsp->regs->control);
1571 /* wait for command register to clear */
1572 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1573 if (ret < 0) {
1574 dev_err(kdev->dev,
1575 "timed out on pdsp %s command register wait\n",
1576 pdsp->name);
1577 return ret;
1579 return 0;
1582 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1584 struct knav_pdsp_info *pdsp;
1586 /* disable all pdsps */
1587 for_each_pdsp(kdev, pdsp)
1588 knav_queue_stop_pdsp(kdev, pdsp);
1591 static int knav_queue_start_pdsps(struct knav_device *kdev)
1593 struct knav_pdsp_info *pdsp;
1594 int ret;
1596 knav_queue_stop_pdsps(kdev);
1597 /* now load them all. We return success even if pdsp
1598 * is not loaded as acc channels are optional on having
1599 * firmware availability in the system. We set the loaded
1600 * and stated flag and when initialize the acc range, check
1601 * it and init the range only if pdsp is started.
1603 for_each_pdsp(kdev, pdsp) {
1604 ret = knav_queue_load_pdsp(kdev, pdsp);
1605 if (!ret)
1606 pdsp->loaded = true;
1609 for_each_pdsp(kdev, pdsp) {
1610 if (pdsp->loaded) {
1611 ret = knav_queue_start_pdsp(kdev, pdsp);
1612 if (!ret)
1613 pdsp->started = true;
1616 return 0;
1619 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1621 struct knav_qmgr_info *qmgr;
1623 for_each_qmgr(kdev, qmgr) {
1624 if ((id >= qmgr->start_queue) &&
1625 (id < qmgr->start_queue + qmgr->num_queues))
1626 return qmgr;
1628 return NULL;
1631 static int knav_queue_init_queue(struct knav_device *kdev,
1632 struct knav_range_info *range,
1633 struct knav_queue_inst *inst,
1634 unsigned id)
1636 char irq_name[KNAV_NAME_SIZE];
1637 inst->qmgr = knav_find_qmgr(id);
1638 if (!inst->qmgr)
1639 return -1;
1641 INIT_LIST_HEAD(&inst->handles);
1642 inst->kdev = kdev;
1643 inst->range = range;
1644 inst->irq_num = -1;
1645 inst->id = id;
1646 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1647 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1649 if (range->ops && range->ops->init_queue)
1650 return range->ops->init_queue(range, inst);
1651 else
1652 return 0;
1655 static int knav_queue_init_queues(struct knav_device *kdev)
1657 struct knav_range_info *range;
1658 int size, id, base_idx;
1659 int idx = 0, ret = 0;
1661 /* how much do we need for instance data? */
1662 size = sizeof(struct knav_queue_inst);
1664 /* round this up to a power of 2, keep the index to instance
1665 * arithmetic fast.
1666 * */
1667 kdev->inst_shift = order_base_2(size);
1668 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1669 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1670 if (!kdev->instances)
1671 return -ENOMEM;
1673 for_each_queue_range(kdev, range) {
1674 if (range->ops && range->ops->init_range)
1675 range->ops->init_range(range);
1676 base_idx = idx;
1677 for (id = range->queue_base;
1678 id < range->queue_base + range->num_queues; id++, idx++) {
1679 ret = knav_queue_init_queue(kdev, range,
1680 knav_queue_idx_to_inst(kdev, idx), id);
1681 if (ret < 0)
1682 return ret;
1684 range->queue_base_inst =
1685 knav_queue_idx_to_inst(kdev, base_idx);
1687 return 0;
1690 static int knav_queue_probe(struct platform_device *pdev)
1692 struct device_node *node = pdev->dev.of_node;
1693 struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1694 struct device *dev = &pdev->dev;
1695 u32 temp[2];
1696 int ret;
1698 if (!node) {
1699 dev_err(dev, "device tree info unavailable\n");
1700 return -ENODEV;
1703 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1704 if (!kdev) {
1705 dev_err(dev, "memory allocation failed\n");
1706 return -ENOMEM;
1709 platform_set_drvdata(pdev, kdev);
1710 kdev->dev = dev;
1711 INIT_LIST_HEAD(&kdev->queue_ranges);
1712 INIT_LIST_HEAD(&kdev->qmgrs);
1713 INIT_LIST_HEAD(&kdev->pools);
1714 INIT_LIST_HEAD(&kdev->regions);
1715 INIT_LIST_HEAD(&kdev->pdsps);
1717 pm_runtime_enable(&pdev->dev);
1718 ret = pm_runtime_get_sync(&pdev->dev);
1719 if (ret < 0) {
1720 dev_err(dev, "Failed to enable QMSS\n");
1721 return ret;
1724 if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1725 dev_err(dev, "queue-range not specified\n");
1726 ret = -ENODEV;
1727 goto err;
1729 kdev->base_id = temp[0];
1730 kdev->num_queues = temp[1];
1732 /* Initialize queue managers using device tree configuration */
1733 qmgrs = of_get_child_by_name(node, "qmgrs");
1734 if (!qmgrs) {
1735 dev_err(dev, "queue manager info not specified\n");
1736 ret = -ENODEV;
1737 goto err;
1739 ret = knav_queue_init_qmgrs(kdev, qmgrs);
1740 of_node_put(qmgrs);
1741 if (ret)
1742 goto err;
1744 /* get pdsp configuration values from device tree */
1745 pdsps = of_get_child_by_name(node, "pdsps");
1746 if (pdsps) {
1747 ret = knav_queue_init_pdsps(kdev, pdsps);
1748 if (ret)
1749 goto err;
1751 ret = knav_queue_start_pdsps(kdev);
1752 if (ret)
1753 goto err;
1755 of_node_put(pdsps);
1757 /* get usable queue range values from device tree */
1758 queue_pools = of_get_child_by_name(node, "queue-pools");
1759 if (!queue_pools) {
1760 dev_err(dev, "queue-pools not specified\n");
1761 ret = -ENODEV;
1762 goto err;
1764 ret = knav_setup_queue_pools(kdev, queue_pools);
1765 of_node_put(queue_pools);
1766 if (ret)
1767 goto err;
1769 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1770 if (ret) {
1771 dev_err(kdev->dev, "could not setup linking ram\n");
1772 goto err;
1775 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1776 if (ret) {
1778 * nothing really, we have one linking ram already, so we just
1779 * live within our means
1783 ret = knav_queue_setup_link_ram(kdev);
1784 if (ret)
1785 goto err;
1787 regions = of_get_child_by_name(node, "descriptor-regions");
1788 if (!regions) {
1789 dev_err(dev, "descriptor-regions not specified\n");
1790 goto err;
1792 ret = knav_queue_setup_regions(kdev, regions);
1793 of_node_put(regions);
1794 if (ret)
1795 goto err;
1797 ret = knav_queue_init_queues(kdev);
1798 if (ret < 0) {
1799 dev_err(dev, "hwqueue initialization failed\n");
1800 goto err;
1803 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1804 &knav_queue_debug_ops);
1805 return 0;
1807 err:
1808 knav_queue_stop_pdsps(kdev);
1809 knav_queue_free_regions(kdev);
1810 knav_free_queue_ranges(kdev);
1811 pm_runtime_put_sync(&pdev->dev);
1812 pm_runtime_disable(&pdev->dev);
1813 return ret;
1816 static int knav_queue_remove(struct platform_device *pdev)
1818 /* TODO: Free resources */
1819 pm_runtime_put_sync(&pdev->dev);
1820 pm_runtime_disable(&pdev->dev);
1821 return 0;
1824 /* Match table for of_platform binding */
1825 static struct of_device_id keystone_qmss_of_match[] = {
1826 { .compatible = "ti,keystone-navigator-qmss", },
1829 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1831 static struct platform_driver keystone_qmss_driver = {
1832 .probe = knav_queue_probe,
1833 .remove = knav_queue_remove,
1834 .driver = {
1835 .name = "keystone-navigator-qmss",
1836 .of_match_table = keystone_qmss_of_match,
1839 module_platform_driver(keystone_qmss_driver);
1841 MODULE_LICENSE("GPL v2");
1842 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1843 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1844 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");