of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / usb / chipidea / otg_fsm.c
blob00ab59d45da1bf6708b3d77e3cfcfe31ac4e2304
1 /*
2 * otg_fsm.c - ChipIdea USB IP core OTG FSM driver
4 * Copyright (C) 2014 Freescale Semiconductor, Inc.
6 * Author: Jun Li
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
14 * This file mainly handles OTG fsm, it includes OTG fsm operations
15 * for HNP and SRP.
17 * TODO List
18 * - ADP
19 * - OTG test device
22 #include <linux/usb/otg.h>
23 #include <linux/usb/gadget.h>
24 #include <linux/usb/hcd.h>
25 #include <linux/usb/chipidea.h>
26 #include <linux/regulator/consumer.h>
28 #include "ci.h"
29 #include "bits.h"
30 #include "otg.h"
31 #include "otg_fsm.h"
33 /* Add for otg: interact with user space app */
34 static ssize_t
35 get_a_bus_req(struct device *dev, struct device_attribute *attr, char *buf)
37 char *next;
38 unsigned size, t;
39 struct ci_hdrc *ci = dev_get_drvdata(dev);
41 next = buf;
42 size = PAGE_SIZE;
43 t = scnprintf(next, size, "%d\n", ci->fsm.a_bus_req);
44 size -= t;
45 next += t;
47 return PAGE_SIZE - size;
50 static ssize_t
51 set_a_bus_req(struct device *dev, struct device_attribute *attr,
52 const char *buf, size_t count)
54 struct ci_hdrc *ci = dev_get_drvdata(dev);
56 if (count > 2)
57 return -1;
59 mutex_lock(&ci->fsm.lock);
60 if (buf[0] == '0') {
61 ci->fsm.a_bus_req = 0;
62 } else if (buf[0] == '1') {
63 /* If a_bus_drop is TRUE, a_bus_req can't be set */
64 if (ci->fsm.a_bus_drop) {
65 mutex_unlock(&ci->fsm.lock);
66 return count;
68 ci->fsm.a_bus_req = 1;
71 ci_otg_queue_work(ci);
72 mutex_unlock(&ci->fsm.lock);
74 return count;
76 static DEVICE_ATTR(a_bus_req, S_IRUGO | S_IWUSR, get_a_bus_req, set_a_bus_req);
78 static ssize_t
79 get_a_bus_drop(struct device *dev, struct device_attribute *attr, char *buf)
81 char *next;
82 unsigned size, t;
83 struct ci_hdrc *ci = dev_get_drvdata(dev);
85 next = buf;
86 size = PAGE_SIZE;
87 t = scnprintf(next, size, "%d\n", ci->fsm.a_bus_drop);
88 size -= t;
89 next += t;
91 return PAGE_SIZE - size;
94 static ssize_t
95 set_a_bus_drop(struct device *dev, struct device_attribute *attr,
96 const char *buf, size_t count)
98 struct ci_hdrc *ci = dev_get_drvdata(dev);
100 if (count > 2)
101 return -1;
103 mutex_lock(&ci->fsm.lock);
104 if (buf[0] == '0') {
105 ci->fsm.a_bus_drop = 0;
106 } else if (buf[0] == '1') {
107 ci->fsm.a_bus_drop = 1;
108 ci->fsm.a_bus_req = 0;
111 ci_otg_queue_work(ci);
112 mutex_unlock(&ci->fsm.lock);
114 return count;
116 static DEVICE_ATTR(a_bus_drop, S_IRUGO | S_IWUSR, get_a_bus_drop,
117 set_a_bus_drop);
119 static ssize_t
120 get_b_bus_req(struct device *dev, struct device_attribute *attr, char *buf)
122 char *next;
123 unsigned size, t;
124 struct ci_hdrc *ci = dev_get_drvdata(dev);
126 next = buf;
127 size = PAGE_SIZE;
128 t = scnprintf(next, size, "%d\n", ci->fsm.b_bus_req);
129 size -= t;
130 next += t;
132 return PAGE_SIZE - size;
135 static ssize_t
136 set_b_bus_req(struct device *dev, struct device_attribute *attr,
137 const char *buf, size_t count)
139 struct ci_hdrc *ci = dev_get_drvdata(dev);
141 if (count > 2)
142 return -1;
144 mutex_lock(&ci->fsm.lock);
145 if (buf[0] == '0')
146 ci->fsm.b_bus_req = 0;
147 else if (buf[0] == '1')
148 ci->fsm.b_bus_req = 1;
150 ci_otg_queue_work(ci);
151 mutex_unlock(&ci->fsm.lock);
153 return count;
155 static DEVICE_ATTR(b_bus_req, S_IRUGO | S_IWUSR, get_b_bus_req, set_b_bus_req);
157 static ssize_t
158 set_a_clr_err(struct device *dev, struct device_attribute *attr,
159 const char *buf, size_t count)
161 struct ci_hdrc *ci = dev_get_drvdata(dev);
163 if (count > 2)
164 return -1;
166 mutex_lock(&ci->fsm.lock);
167 if (buf[0] == '1')
168 ci->fsm.a_clr_err = 1;
170 ci_otg_queue_work(ci);
171 mutex_unlock(&ci->fsm.lock);
173 return count;
175 static DEVICE_ATTR(a_clr_err, S_IWUSR, NULL, set_a_clr_err);
177 static struct attribute *inputs_attrs[] = {
178 &dev_attr_a_bus_req.attr,
179 &dev_attr_a_bus_drop.attr,
180 &dev_attr_b_bus_req.attr,
181 &dev_attr_a_clr_err.attr,
182 NULL,
185 static struct attribute_group inputs_attr_group = {
186 .name = "inputs",
187 .attrs = inputs_attrs,
191 * Keep this list in the same order as timers indexed
192 * by enum otg_fsm_timer in include/linux/usb/otg-fsm.h
194 static unsigned otg_timer_ms[] = {
195 TA_WAIT_VRISE,
196 TA_WAIT_VFALL,
197 TA_WAIT_BCON,
198 TA_AIDL_BDIS,
199 TB_ASE0_BRST,
200 TA_BIDL_ADIS,
201 TB_SE0_SRP,
202 TB_SRP_FAIL,
204 TB_DATA_PLS,
205 TB_SSEND_SRP,
209 * Add timer to active timer list
211 static void ci_otg_add_timer(struct ci_hdrc *ci, enum otg_fsm_timer t)
213 unsigned long flags, timer_sec, timer_nsec;
215 if (t >= NUM_OTG_FSM_TIMERS)
216 return;
218 spin_lock_irqsave(&ci->lock, flags);
219 timer_sec = otg_timer_ms[t] / MSEC_PER_SEC;
220 timer_nsec = (otg_timer_ms[t] % MSEC_PER_SEC) * NSEC_PER_MSEC;
221 ci->hr_timeouts[t] = ktime_add(ktime_get(),
222 ktime_set(timer_sec, timer_nsec));
223 ci->enabled_otg_timer_bits |= (1 << t);
224 if ((ci->next_otg_timer == NUM_OTG_FSM_TIMERS) ||
225 (ci->hr_timeouts[ci->next_otg_timer].tv64 >
226 ci->hr_timeouts[t].tv64)) {
227 ci->next_otg_timer = t;
228 hrtimer_start_range_ns(&ci->otg_fsm_hrtimer,
229 ci->hr_timeouts[t], NSEC_PER_MSEC,
230 HRTIMER_MODE_ABS);
232 spin_unlock_irqrestore(&ci->lock, flags);
236 * Remove timer from active timer list
238 static void ci_otg_del_timer(struct ci_hdrc *ci, enum otg_fsm_timer t)
240 unsigned long flags, enabled_timer_bits;
241 enum otg_fsm_timer cur_timer, next_timer = NUM_OTG_FSM_TIMERS;
243 if ((t >= NUM_OTG_FSM_TIMERS) ||
244 !(ci->enabled_otg_timer_bits & (1 << t)))
245 return;
247 spin_lock_irqsave(&ci->lock, flags);
248 ci->enabled_otg_timer_bits &= ~(1 << t);
249 if (ci->next_otg_timer == t) {
250 if (ci->enabled_otg_timer_bits == 0) {
251 /* No enabled timers after delete it */
252 hrtimer_cancel(&ci->otg_fsm_hrtimer);
253 ci->next_otg_timer = NUM_OTG_FSM_TIMERS;
254 } else {
255 /* Find the next timer */
256 enabled_timer_bits = ci->enabled_otg_timer_bits;
257 for_each_set_bit(cur_timer, &enabled_timer_bits,
258 NUM_OTG_FSM_TIMERS) {
259 if ((next_timer == NUM_OTG_FSM_TIMERS) ||
260 (ci->hr_timeouts[next_timer].tv64 <
261 ci->hr_timeouts[cur_timer].tv64))
262 next_timer = cur_timer;
266 if (next_timer != NUM_OTG_FSM_TIMERS) {
267 ci->next_otg_timer = next_timer;
268 hrtimer_start_range_ns(&ci->otg_fsm_hrtimer,
269 ci->hr_timeouts[next_timer], NSEC_PER_MSEC,
270 HRTIMER_MODE_ABS);
272 spin_unlock_irqrestore(&ci->lock, flags);
275 /* OTG FSM timer handlers */
276 static int a_wait_vrise_tmout(struct ci_hdrc *ci)
278 ci->fsm.a_wait_vrise_tmout = 1;
279 return 0;
282 static int a_wait_vfall_tmout(struct ci_hdrc *ci)
284 ci->fsm.a_wait_vfall_tmout = 1;
285 return 0;
288 static int a_wait_bcon_tmout(struct ci_hdrc *ci)
290 ci->fsm.a_wait_bcon_tmout = 1;
291 return 0;
294 static int a_aidl_bdis_tmout(struct ci_hdrc *ci)
296 ci->fsm.a_aidl_bdis_tmout = 1;
297 return 0;
300 static int b_ase0_brst_tmout(struct ci_hdrc *ci)
302 ci->fsm.b_ase0_brst_tmout = 1;
303 return 0;
306 static int a_bidl_adis_tmout(struct ci_hdrc *ci)
308 ci->fsm.a_bidl_adis_tmout = 1;
309 return 0;
312 static int b_se0_srp_tmout(struct ci_hdrc *ci)
314 ci->fsm.b_se0_srp = 1;
315 return 0;
318 static int b_srp_fail_tmout(struct ci_hdrc *ci)
320 ci->fsm.b_srp_done = 1;
321 return 1;
324 static int b_data_pls_tmout(struct ci_hdrc *ci)
326 ci->fsm.b_srp_done = 1;
327 ci->fsm.b_bus_req = 0;
328 if (ci->fsm.power_up)
329 ci->fsm.power_up = 0;
330 hw_write_otgsc(ci, OTGSC_HABA, 0);
331 pm_runtime_put(ci->dev);
332 return 0;
335 static int b_ssend_srp_tmout(struct ci_hdrc *ci)
337 ci->fsm.b_ssend_srp = 1;
338 /* only vbus fall below B_sess_vld in b_idle state */
339 if (ci->fsm.otg->state == OTG_STATE_B_IDLE)
340 return 0;
341 else
342 return 1;
346 * Keep this list in the same order as timers indexed
347 * by enum otg_fsm_timer in include/linux/usb/otg-fsm.h
349 static int (*otg_timer_handlers[])(struct ci_hdrc *) = {
350 a_wait_vrise_tmout, /* A_WAIT_VRISE */
351 a_wait_vfall_tmout, /* A_WAIT_VFALL */
352 a_wait_bcon_tmout, /* A_WAIT_BCON */
353 a_aidl_bdis_tmout, /* A_AIDL_BDIS */
354 b_ase0_brst_tmout, /* B_ASE0_BRST */
355 a_bidl_adis_tmout, /* A_BIDL_ADIS */
356 b_se0_srp_tmout, /* B_SE0_SRP */
357 b_srp_fail_tmout, /* B_SRP_FAIL */
358 NULL, /* A_WAIT_ENUM */
359 b_data_pls_tmout, /* B_DATA_PLS */
360 b_ssend_srp_tmout, /* B_SSEND_SRP */
364 * Enable the next nearest enabled timer if have
366 static enum hrtimer_restart ci_otg_hrtimer_func(struct hrtimer *t)
368 struct ci_hdrc *ci = container_of(t, struct ci_hdrc, otg_fsm_hrtimer);
369 ktime_t now, *timeout;
370 unsigned long enabled_timer_bits;
371 unsigned long flags;
372 enum otg_fsm_timer cur_timer, next_timer = NUM_OTG_FSM_TIMERS;
373 int ret = -EINVAL;
375 spin_lock_irqsave(&ci->lock, flags);
376 enabled_timer_bits = ci->enabled_otg_timer_bits;
377 ci->next_otg_timer = NUM_OTG_FSM_TIMERS;
379 now = ktime_get();
380 for_each_set_bit(cur_timer, &enabled_timer_bits, NUM_OTG_FSM_TIMERS) {
381 if (now.tv64 >= ci->hr_timeouts[cur_timer].tv64) {
382 ci->enabled_otg_timer_bits &= ~(1 << cur_timer);
383 if (otg_timer_handlers[cur_timer])
384 ret = otg_timer_handlers[cur_timer](ci);
385 } else {
386 if ((next_timer == NUM_OTG_FSM_TIMERS) ||
387 (ci->hr_timeouts[cur_timer].tv64 <
388 ci->hr_timeouts[next_timer].tv64))
389 next_timer = cur_timer;
392 /* Enable the next nearest timer */
393 if (next_timer < NUM_OTG_FSM_TIMERS) {
394 timeout = &ci->hr_timeouts[next_timer];
395 hrtimer_start_range_ns(&ci->otg_fsm_hrtimer, *timeout,
396 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
397 ci->next_otg_timer = next_timer;
399 spin_unlock_irqrestore(&ci->lock, flags);
401 if (!ret)
402 ci_otg_queue_work(ci);
404 return HRTIMER_NORESTART;
407 /* Initialize timers */
408 static int ci_otg_init_timers(struct ci_hdrc *ci)
410 hrtimer_init(&ci->otg_fsm_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
411 ci->otg_fsm_hrtimer.function = ci_otg_hrtimer_func;
413 return 0;
416 /* -------------------------------------------------------------*/
417 /* Operations that will be called from OTG Finite State Machine */
418 /* -------------------------------------------------------------*/
419 static void ci_otg_fsm_add_timer(struct otg_fsm *fsm, enum otg_fsm_timer t)
421 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
423 if (t < NUM_OTG_FSM_TIMERS)
424 ci_otg_add_timer(ci, t);
425 return;
428 static void ci_otg_fsm_del_timer(struct otg_fsm *fsm, enum otg_fsm_timer t)
430 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
432 if (t < NUM_OTG_FSM_TIMERS)
433 ci_otg_del_timer(ci, t);
434 return;
438 * A-device drive vbus: turn on vbus regulator and enable port power
439 * Data pulse irq should be disabled while vbus is on.
441 static void ci_otg_drv_vbus(struct otg_fsm *fsm, int on)
443 int ret;
444 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
446 if (on) {
447 /* Enable power power */
448 hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS | PORTSC_PP,
449 PORTSC_PP);
450 if (ci->platdata->reg_vbus) {
451 ret = regulator_enable(ci->platdata->reg_vbus);
452 if (ret) {
453 dev_err(ci->dev,
454 "Failed to enable vbus regulator, ret=%d\n",
455 ret);
456 return;
459 /* Disable data pulse irq */
460 hw_write_otgsc(ci, OTGSC_DPIE, 0);
462 fsm->a_srp_det = 0;
463 fsm->power_up = 0;
464 } else {
465 if (ci->platdata->reg_vbus)
466 regulator_disable(ci->platdata->reg_vbus);
468 fsm->a_bus_drop = 1;
469 fsm->a_bus_req = 0;
474 * Control data line by Run Stop bit.
476 static void ci_otg_loc_conn(struct otg_fsm *fsm, int on)
478 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
480 if (on)
481 hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
482 else
483 hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
487 * Generate SOF by host.
488 * This is controlled through suspend/resume the port.
489 * In host mode, controller will automatically send SOF.
490 * Suspend will block the data on the port.
492 static void ci_otg_loc_sof(struct otg_fsm *fsm, int on)
494 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
496 if (on)
497 hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS | PORTSC_FPR,
498 PORTSC_FPR);
499 else
500 hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS | PORTSC_SUSP,
501 PORTSC_SUSP);
505 * Start SRP pulsing by data-line pulsing,
506 * no v-bus pulsing followed
508 static void ci_otg_start_pulse(struct otg_fsm *fsm)
510 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
512 /* Hardware Assistant Data pulse */
513 hw_write_otgsc(ci, OTGSC_HADP, OTGSC_HADP);
515 pm_runtime_get(ci->dev);
516 ci_otg_add_timer(ci, B_DATA_PLS);
519 static int ci_otg_start_host(struct otg_fsm *fsm, int on)
521 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
523 if (on) {
524 ci_role_stop(ci);
525 ci_role_start(ci, CI_ROLE_HOST);
526 } else {
527 ci_role_stop(ci);
528 ci_role_start(ci, CI_ROLE_GADGET);
530 return 0;
533 static int ci_otg_start_gadget(struct otg_fsm *fsm, int on)
535 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
537 if (on)
538 usb_gadget_vbus_connect(&ci->gadget);
539 else
540 usb_gadget_vbus_disconnect(&ci->gadget);
542 return 0;
545 static struct otg_fsm_ops ci_otg_ops = {
546 .drv_vbus = ci_otg_drv_vbus,
547 .loc_conn = ci_otg_loc_conn,
548 .loc_sof = ci_otg_loc_sof,
549 .start_pulse = ci_otg_start_pulse,
550 .add_timer = ci_otg_fsm_add_timer,
551 .del_timer = ci_otg_fsm_del_timer,
552 .start_host = ci_otg_start_host,
553 .start_gadget = ci_otg_start_gadget,
556 int ci_otg_fsm_work(struct ci_hdrc *ci)
559 * Don't do fsm transition for B device
560 * when there is no gadget class driver
562 if (ci->fsm.id && !(ci->driver) &&
563 ci->fsm.otg->state < OTG_STATE_A_IDLE)
564 return 0;
566 pm_runtime_get_sync(ci->dev);
567 if (otg_statemachine(&ci->fsm)) {
568 if (ci->fsm.otg->state == OTG_STATE_A_IDLE) {
570 * Further state change for cases:
571 * a_idle to b_idle; or
572 * a_idle to a_wait_vrise due to ID change(1->0), so
573 * B-dev becomes A-dev can try to start new session
574 * consequently; or
575 * a_idle to a_wait_vrise when power up
577 if ((ci->fsm.id) || (ci->id_event) ||
578 (ci->fsm.power_up)) {
579 ci_otg_queue_work(ci);
580 } else {
581 /* Enable data pulse irq */
582 hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS |
583 PORTSC_PP, 0);
584 hw_write_otgsc(ci, OTGSC_DPIS, OTGSC_DPIS);
585 hw_write_otgsc(ci, OTGSC_DPIE, OTGSC_DPIE);
587 if (ci->id_event)
588 ci->id_event = false;
589 } else if (ci->fsm.otg->state == OTG_STATE_B_IDLE) {
590 if (ci->fsm.b_sess_vld) {
591 ci->fsm.power_up = 0;
593 * Further transite to b_periphearl state
594 * when register gadget driver with vbus on
596 ci_otg_queue_work(ci);
598 } else if (ci->fsm.otg->state == OTG_STATE_A_HOST) {
599 pm_runtime_mark_last_busy(ci->dev);
600 pm_runtime_put_autosuspend(ci->dev);
601 return 0;
604 pm_runtime_put_sync(ci->dev);
605 return 0;
609 * Update fsm variables in each state if catching expected interrupts,
610 * called by otg fsm isr.
612 static void ci_otg_fsm_event(struct ci_hdrc *ci)
614 u32 intr_sts, otg_bsess_vld, port_conn;
615 struct otg_fsm *fsm = &ci->fsm;
617 intr_sts = hw_read_intr_status(ci);
618 otg_bsess_vld = hw_read_otgsc(ci, OTGSC_BSV);
619 port_conn = hw_read(ci, OP_PORTSC, PORTSC_CCS);
621 switch (ci->fsm.otg->state) {
622 case OTG_STATE_A_WAIT_BCON:
623 if (port_conn) {
624 fsm->b_conn = 1;
625 fsm->a_bus_req = 1;
626 ci_otg_queue_work(ci);
628 break;
629 case OTG_STATE_B_IDLE:
630 if (otg_bsess_vld && (intr_sts & USBi_PCI) && port_conn) {
631 fsm->b_sess_vld = 1;
632 ci_otg_queue_work(ci);
634 break;
635 case OTG_STATE_B_PERIPHERAL:
636 if ((intr_sts & USBi_SLI) && port_conn && otg_bsess_vld) {
637 fsm->a_bus_suspend = 1;
638 ci_otg_queue_work(ci);
639 } else if (intr_sts & USBi_PCI) {
640 if (fsm->a_bus_suspend == 1)
641 fsm->a_bus_suspend = 0;
643 break;
644 case OTG_STATE_B_HOST:
645 if ((intr_sts & USBi_PCI) && !port_conn) {
646 fsm->a_conn = 0;
647 fsm->b_bus_req = 0;
648 ci_otg_queue_work(ci);
650 break;
651 case OTG_STATE_A_PERIPHERAL:
652 if (intr_sts & USBi_SLI) {
653 fsm->b_bus_suspend = 1;
655 * Init a timer to know how long this suspend
656 * will continue, if time out, indicates B no longer
657 * wants to be host role
659 ci_otg_add_timer(ci, A_BIDL_ADIS);
662 if (intr_sts & USBi_URI)
663 ci_otg_del_timer(ci, A_BIDL_ADIS);
665 if (intr_sts & USBi_PCI) {
666 if (fsm->b_bus_suspend == 1) {
667 ci_otg_del_timer(ci, A_BIDL_ADIS);
668 fsm->b_bus_suspend = 0;
671 break;
672 case OTG_STATE_A_SUSPEND:
673 if ((intr_sts & USBi_PCI) && !port_conn) {
674 fsm->b_conn = 0;
676 /* if gadget driver is binded */
677 if (ci->driver) {
678 /* A device to be peripheral mode */
679 ci->gadget.is_a_peripheral = 1;
681 ci_otg_queue_work(ci);
683 break;
684 case OTG_STATE_A_HOST:
685 if ((intr_sts & USBi_PCI) && !port_conn) {
686 fsm->b_conn = 0;
687 ci_otg_queue_work(ci);
689 break;
690 case OTG_STATE_B_WAIT_ACON:
691 if ((intr_sts & USBi_PCI) && port_conn) {
692 fsm->a_conn = 1;
693 ci_otg_queue_work(ci);
695 break;
696 default:
697 break;
702 * ci_otg_irq - otg fsm related irq handling
703 * and also update otg fsm variable by monitoring usb host and udc
704 * state change interrupts.
705 * @ci: ci_hdrc
707 irqreturn_t ci_otg_fsm_irq(struct ci_hdrc *ci)
709 irqreturn_t retval = IRQ_NONE;
710 u32 otgsc, otg_int_src = 0;
711 struct otg_fsm *fsm = &ci->fsm;
713 otgsc = hw_read_otgsc(ci, ~0);
714 otg_int_src = otgsc & OTGSC_INT_STATUS_BITS & (otgsc >> 8);
715 fsm->id = (otgsc & OTGSC_ID) ? 1 : 0;
717 if (otg_int_src) {
718 if (otg_int_src & OTGSC_DPIS) {
719 hw_write_otgsc(ci, OTGSC_DPIS, OTGSC_DPIS);
720 fsm->a_srp_det = 1;
721 fsm->a_bus_drop = 0;
722 } else if (otg_int_src & OTGSC_IDIS) {
723 hw_write_otgsc(ci, OTGSC_IDIS, OTGSC_IDIS);
724 if (fsm->id == 0) {
725 fsm->a_bus_drop = 0;
726 fsm->a_bus_req = 1;
727 ci->id_event = true;
729 } else if (otg_int_src & OTGSC_BSVIS) {
730 hw_write_otgsc(ci, OTGSC_BSVIS, OTGSC_BSVIS);
731 if (otgsc & OTGSC_BSV) {
732 fsm->b_sess_vld = 1;
733 ci_otg_del_timer(ci, B_SSEND_SRP);
734 ci_otg_del_timer(ci, B_SRP_FAIL);
735 fsm->b_ssend_srp = 0;
736 } else {
737 fsm->b_sess_vld = 0;
738 if (fsm->id)
739 ci_otg_add_timer(ci, B_SSEND_SRP);
741 } else if (otg_int_src & OTGSC_AVVIS) {
742 hw_write_otgsc(ci, OTGSC_AVVIS, OTGSC_AVVIS);
743 if (otgsc & OTGSC_AVV) {
744 fsm->a_vbus_vld = 1;
745 } else {
746 fsm->a_vbus_vld = 0;
747 fsm->b_conn = 0;
750 ci_otg_queue_work(ci);
751 return IRQ_HANDLED;
754 ci_otg_fsm_event(ci);
756 return retval;
759 void ci_hdrc_otg_fsm_start(struct ci_hdrc *ci)
761 ci_otg_queue_work(ci);
764 int ci_hdrc_otg_fsm_init(struct ci_hdrc *ci)
766 int retval = 0;
768 if (ci->phy)
769 ci->otg.phy = ci->phy;
770 else
771 ci->otg.usb_phy = ci->usb_phy;
773 ci->otg.gadget = &ci->gadget;
774 ci->fsm.otg = &ci->otg;
775 ci->fsm.power_up = 1;
776 ci->fsm.id = hw_read_otgsc(ci, OTGSC_ID) ? 1 : 0;
777 ci->fsm.otg->state = OTG_STATE_UNDEFINED;
778 ci->fsm.ops = &ci_otg_ops;
780 mutex_init(&ci->fsm.lock);
782 retval = ci_otg_init_timers(ci);
783 if (retval) {
784 dev_err(ci->dev, "Couldn't init OTG timers\n");
785 return retval;
787 ci->enabled_otg_timer_bits = 0;
788 ci->next_otg_timer = NUM_OTG_FSM_TIMERS;
790 retval = sysfs_create_group(&ci->dev->kobj, &inputs_attr_group);
791 if (retval < 0) {
792 dev_dbg(ci->dev,
793 "Can't register sysfs attr group: %d\n", retval);
794 return retval;
797 /* Enable A vbus valid irq */
798 hw_write_otgsc(ci, OTGSC_AVVIE, OTGSC_AVVIE);
800 if (ci->fsm.id) {
801 ci->fsm.b_ssend_srp =
802 hw_read_otgsc(ci, OTGSC_BSV) ? 0 : 1;
803 ci->fsm.b_sess_vld =
804 hw_read_otgsc(ci, OTGSC_BSV) ? 1 : 0;
805 /* Enable BSV irq */
806 hw_write_otgsc(ci, OTGSC_BSVIE, OTGSC_BSVIE);
809 return 0;
812 void ci_hdrc_otg_fsm_remove(struct ci_hdrc *ci)
814 sysfs_remove_group(&ci->dev->kobj, &inputs_attr_group);