1 /* Faraday FOTG210 EHCI-like driver
3 * Copyright (c) 2013 Faraday Technology Corporation
5 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
6 * Feng-Hsin Chiang <john453@faraday-tech.com>
7 * Po-Yu Chuang <ratbert.chuang@gmail.com>
9 * Most of code borrowed from the Linux-3.7 EHCI driver
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software Foundation,
23 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/module.h>
26 #include <linux/device.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/delay.h>
30 #include <linux/ioport.h>
31 #include <linux/sched.h>
32 #include <linux/vmalloc.h>
33 #include <linux/errno.h>
34 #include <linux/init.h>
35 #include <linux/hrtimer.h>
36 #include <linux/list.h>
37 #include <linux/interrupt.h>
38 #include <linux/usb.h>
39 #include <linux/usb/hcd.h>
40 #include <linux/moduleparam.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/debugfs.h>
43 #include <linux/slab.h>
44 #include <linux/uaccess.h>
45 #include <linux/platform_device.h>
48 #include <asm/byteorder.h>
50 #include <asm/unaligned.h>
52 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
53 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
54 static const char hcd_name
[] = "fotg210_hcd";
56 #undef FOTG210_URB_TRACE
59 /* magic numbers that can affect system performance */
60 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
61 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
62 #define FOTG210_TUNE_RL_TT 0
63 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
64 #define FOTG210_TUNE_MULT_TT 1
66 /* Some drivers think it's safe to schedule isochronous transfers more than 256
67 * ms into the future (partly as a result of an old bug in the scheduling
68 * code). In an attempt to avoid trouble, we will use a minimum scheduling
69 * length of 512 frames instead of 256.
71 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
73 /* Initial IRQ latency: faster than hw default */
74 static int log2_irq_thresh
; /* 0 to 6 */
75 module_param(log2_irq_thresh
, int, S_IRUGO
);
76 MODULE_PARM_DESC(log2_irq_thresh
, "log2 IRQ latency, 1-64 microframes");
78 /* initial park setting: slower than hw default */
80 module_param(park
, uint
, S_IRUGO
);
81 MODULE_PARM_DESC(park
, "park setting; 1-3 back-to-back async packets");
83 /* for link power management(LPM) feature */
84 static unsigned int hird
;
85 module_param(hird
, int, S_IRUGO
);
86 MODULE_PARM_DESC(hird
, "host initiated resume duration, +1 for each 75us");
88 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
92 #define fotg210_dbg(fotg210, fmt, args...) \
93 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
94 #define fotg210_err(fotg210, fmt, args...) \
95 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
96 #define fotg210_info(fotg210, fmt, args...) \
97 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
98 #define fotg210_warn(fotg210, fmt, args...) \
99 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
101 /* check the values in the HCSPARAMS register (host controller _Structural_
102 * parameters) see EHCI spec, Table 2-4 for each value
104 static void dbg_hcs_params(struct fotg210_hcd
*fotg210
, char *label
)
106 u32 params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcs_params
);
108 fotg210_dbg(fotg210
, "%s hcs_params 0x%x ports=%d\n", label
, params
,
109 HCS_N_PORTS(params
));
112 /* check the values in the HCCPARAMS register (host controller _Capability_
113 * parameters) see EHCI Spec, Table 2-5 for each value
115 static void dbg_hcc_params(struct fotg210_hcd
*fotg210
, char *label
)
117 u32 params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
119 fotg210_dbg(fotg210
, "%s hcc_params %04x uframes %s%s\n", label
,
121 HCC_PGM_FRAMELISTLEN(params
) ? "256/512/1024" : "1024",
122 HCC_CANPARK(params
) ? " park" : "");
125 static void __maybe_unused
126 dbg_qtd(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_qtd
*qtd
)
128 fotg210_dbg(fotg210
, "%s td %p n%08x %08x t%08x p0=%08x\n", label
, qtd
,
129 hc32_to_cpup(fotg210
, &qtd
->hw_next
),
130 hc32_to_cpup(fotg210
, &qtd
->hw_alt_next
),
131 hc32_to_cpup(fotg210
, &qtd
->hw_token
),
132 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[0]));
134 fotg210_dbg(fotg210
, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
135 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[1]),
136 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[2]),
137 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[3]),
138 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[4]));
141 static void __maybe_unused
142 dbg_qh(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
144 struct fotg210_qh_hw
*hw
= qh
->hw
;
146 fotg210_dbg(fotg210
, "%s qh %p n%08x info %x %x qtd %x\n", label
, qh
,
147 hw
->hw_next
, hw
->hw_info1
, hw
->hw_info2
,
150 dbg_qtd("overlay", fotg210
, (struct fotg210_qtd
*) &hw
->hw_qtd_next
);
153 static void __maybe_unused
154 dbg_itd(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_itd
*itd
)
156 fotg210_dbg(fotg210
, "%s[%d] itd %p, next %08x, urb %p\n", label
,
157 itd
->frame
, itd
, hc32_to_cpu(fotg210
, itd
->hw_next
),
161 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
162 hc32_to_cpu(fotg210
, itd
->hw_transaction
[0]),
163 hc32_to_cpu(fotg210
, itd
->hw_transaction
[1]),
164 hc32_to_cpu(fotg210
, itd
->hw_transaction
[2]),
165 hc32_to_cpu(fotg210
, itd
->hw_transaction
[3]),
166 hc32_to_cpu(fotg210
, itd
->hw_transaction
[4]),
167 hc32_to_cpu(fotg210
, itd
->hw_transaction
[5]),
168 hc32_to_cpu(fotg210
, itd
->hw_transaction
[6]),
169 hc32_to_cpu(fotg210
, itd
->hw_transaction
[7]));
172 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
173 hc32_to_cpu(fotg210
, itd
->hw_bufp
[0]),
174 hc32_to_cpu(fotg210
, itd
->hw_bufp
[1]),
175 hc32_to_cpu(fotg210
, itd
->hw_bufp
[2]),
176 hc32_to_cpu(fotg210
, itd
->hw_bufp
[3]),
177 hc32_to_cpu(fotg210
, itd
->hw_bufp
[4]),
178 hc32_to_cpu(fotg210
, itd
->hw_bufp
[5]),
179 hc32_to_cpu(fotg210
, itd
->hw_bufp
[6]));
181 fotg210_dbg(fotg210
, " index: %d %d %d %d %d %d %d %d\n",
182 itd
->index
[0], itd
->index
[1], itd
->index
[2],
183 itd
->index
[3], itd
->index
[4], itd
->index
[5],
184 itd
->index
[6], itd
->index
[7]);
187 static int __maybe_unused
188 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
190 return scnprintf(buf
, len
, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
191 label
, label
[0] ? " " : "", status
,
192 (status
& STS_ASS
) ? " Async" : "",
193 (status
& STS_PSS
) ? " Periodic" : "",
194 (status
& STS_RECL
) ? " Recl" : "",
195 (status
& STS_HALT
) ? " Halt" : "",
196 (status
& STS_IAA
) ? " IAA" : "",
197 (status
& STS_FATAL
) ? " FATAL" : "",
198 (status
& STS_FLR
) ? " FLR" : "",
199 (status
& STS_PCD
) ? " PCD" : "",
200 (status
& STS_ERR
) ? " ERR" : "",
201 (status
& STS_INT
) ? " INT" : "");
204 static int __maybe_unused
205 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
207 return scnprintf(buf
, len
, "%s%sintrenable %02x%s%s%s%s%s%s",
208 label
, label
[0] ? " " : "", enable
,
209 (enable
& STS_IAA
) ? " IAA" : "",
210 (enable
& STS_FATAL
) ? " FATAL" : "",
211 (enable
& STS_FLR
) ? " FLR" : "",
212 (enable
& STS_PCD
) ? " PCD" : "",
213 (enable
& STS_ERR
) ? " ERR" : "",
214 (enable
& STS_INT
) ? " INT" : "");
217 static const char *const fls_strings
[] = { "1024", "512", "256", "??" };
219 static int dbg_command_buf(char *buf
, unsigned len
, const char *label
,
222 return scnprintf(buf
, len
,
223 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
224 label
, label
[0] ? " " : "", command
,
225 (command
& CMD_PARK
) ? " park" : "(park)",
226 CMD_PARK_CNT(command
),
227 (command
>> 16) & 0x3f,
228 (command
& CMD_IAAD
) ? " IAAD" : "",
229 (command
& CMD_ASE
) ? " Async" : "",
230 (command
& CMD_PSE
) ? " Periodic" : "",
231 fls_strings
[(command
>> 2) & 0x3],
232 (command
& CMD_RESET
) ? " Reset" : "",
233 (command
& CMD_RUN
) ? "RUN" : "HALT");
236 static char *dbg_port_buf(char *buf
, unsigned len
, const char *label
, int port
,
241 /* signaling state */
242 switch (status
& (3 << 10)) {
248 break; /* low speed */
257 scnprintf(buf
, len
, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
258 label
, label
[0] ? " " : "", port
, status
,
259 status
>> 25, /*device address */
261 (status
& PORT_RESET
) ? " RESET" : "",
262 (status
& PORT_SUSPEND
) ? " SUSPEND" : "",
263 (status
& PORT_RESUME
) ? " RESUME" : "",
264 (status
& PORT_PEC
) ? " PEC" : "",
265 (status
& PORT_PE
) ? " PE" : "",
266 (status
& PORT_CSC
) ? " CSC" : "",
267 (status
& PORT_CONNECT
) ? " CONNECT" : "");
272 /* functions have the "wrong" filename when they're output... */
273 #define dbg_status(fotg210, label, status) { \
275 dbg_status_buf(_buf, sizeof(_buf), label, status); \
276 fotg210_dbg(fotg210, "%s\n", _buf); \
279 #define dbg_cmd(fotg210, label, command) { \
281 dbg_command_buf(_buf, sizeof(_buf), label, command); \
282 fotg210_dbg(fotg210, "%s\n", _buf); \
285 #define dbg_port(fotg210, label, port, status) { \
287 fotg210_dbg(fotg210, "%s\n", \
288 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
291 /* troubleshooting help: expose state in debugfs */
292 static int debug_async_open(struct inode
*, struct file
*);
293 static int debug_periodic_open(struct inode
*, struct file
*);
294 static int debug_registers_open(struct inode
*, struct file
*);
295 static int debug_async_open(struct inode
*, struct file
*);
297 static ssize_t
debug_output(struct file
*, char __user
*, size_t, loff_t
*);
298 static int debug_close(struct inode
*, struct file
*);
300 static const struct file_operations debug_async_fops
= {
301 .owner
= THIS_MODULE
,
302 .open
= debug_async_open
,
303 .read
= debug_output
,
304 .release
= debug_close
,
305 .llseek
= default_llseek
,
307 static const struct file_operations debug_periodic_fops
= {
308 .owner
= THIS_MODULE
,
309 .open
= debug_periodic_open
,
310 .read
= debug_output
,
311 .release
= debug_close
,
312 .llseek
= default_llseek
,
314 static const struct file_operations debug_registers_fops
= {
315 .owner
= THIS_MODULE
,
316 .open
= debug_registers_open
,
317 .read
= debug_output
,
318 .release
= debug_close
,
319 .llseek
= default_llseek
,
322 static struct dentry
*fotg210_debug_root
;
324 struct debug_buffer
{
325 ssize_t (*fill_func
)(struct debug_buffer
*); /* fill method */
327 struct mutex mutex
; /* protect filling of buffer */
328 size_t count
; /* number of characters filled into buffer */
333 static inline char speed_char(u32 scratch
)
335 switch (scratch
& (3 << 12)) {
350 static inline char token_mark(struct fotg210_hcd
*fotg210
, __hc32 token
)
352 __u32 v
= hc32_to_cpu(fotg210
, token
);
354 if (v
& QTD_STS_ACTIVE
)
356 if (v
& QTD_STS_HALT
)
358 if (!IS_SHORT_READ(v
))
360 /* tries to advance through hw_alt_next */
364 static void qh_lines(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
,
365 char **nextp
, unsigned *sizep
)
369 struct fotg210_qtd
*td
;
371 unsigned size
= *sizep
;
374 __le32 list_end
= FOTG210_LIST_END(fotg210
);
375 struct fotg210_qh_hw
*hw
= qh
->hw
;
377 if (hw
->hw_qtd_next
== list_end
) /* NEC does this */
380 mark
= token_mark(fotg210
, hw
->hw_token
);
381 if (mark
== '/') { /* qh_alt_next controls qh advance? */
382 if ((hw
->hw_alt_next
& QTD_MASK(fotg210
)) ==
383 fotg210
->async
->hw
->hw_alt_next
)
384 mark
= '#'; /* blocked */
385 else if (hw
->hw_alt_next
== list_end
)
386 mark
= '.'; /* use hw_qtd_next */
387 /* else alt_next points to some other qtd */
389 scratch
= hc32_to_cpup(fotg210
, &hw
->hw_info1
);
390 hw_curr
= (mark
== '*') ? hc32_to_cpup(fotg210
, &hw
->hw_current
) : 0;
391 temp
= scnprintf(next
, size
,
392 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
393 qh
, scratch
& 0x007f,
395 (scratch
>> 8) & 0x000f,
396 scratch
, hc32_to_cpup(fotg210
, &hw
->hw_info2
),
397 hc32_to_cpup(fotg210
, &hw
->hw_token
), mark
,
398 (cpu_to_hc32(fotg210
, QTD_TOGGLE
) & hw
->hw_token
)
400 (hc32_to_cpup(fotg210
, &hw
->hw_alt_next
) >> 1) & 0x0f);
404 /* hc may be modifying the list as we read it ... */
405 list_for_each_entry(td
, &qh
->qtd_list
, qtd_list
) {
406 scratch
= hc32_to_cpup(fotg210
, &td
->hw_token
);
408 if (hw_curr
== td
->qtd_dma
)
410 else if (hw
->hw_qtd_next
== cpu_to_hc32(fotg210
, td
->qtd_dma
))
412 else if (QTD_LENGTH(scratch
)) {
413 if (td
->hw_alt_next
== fotg210
->async
->hw
->hw_alt_next
)
415 else if (td
->hw_alt_next
!= list_end
)
418 temp
= snprintf(next
, size
,
419 "\n\t%p%c%s len=%d %08x urb %p",
420 td
, mark
, ({ char *tmp
;
421 switch ((scratch
>>8)&0x03) {
435 (scratch
>> 16) & 0x7fff,
446 temp
= snprintf(next
, size
, "\n");
458 static ssize_t
fill_async_buffer(struct debug_buffer
*buf
)
461 struct fotg210_hcd
*fotg210
;
465 struct fotg210_qh
*qh
;
467 hcd
= bus_to_hcd(buf
->bus
);
468 fotg210
= hcd_to_fotg210(hcd
);
469 next
= buf
->output_buf
;
470 size
= buf
->alloc_size
;
474 /* dumps a snapshot of the async schedule.
475 * usually empty except for long-term bulk reads, or head.
476 * one QH per line, and TDs we know about
478 spin_lock_irqsave(&fotg210
->lock
, flags
);
479 for (qh
= fotg210
->async
->qh_next
.qh
; size
> 0 && qh
;
481 qh_lines(fotg210
, qh
, &next
, &size
);
482 if (fotg210
->async_unlink
&& size
> 0) {
483 temp
= scnprintf(next
, size
, "\nunlink =\n");
487 for (qh
= fotg210
->async_unlink
; size
> 0 && qh
;
488 qh
= qh
->unlink_next
)
489 qh_lines(fotg210
, qh
, &next
, &size
);
491 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
493 return strlen(buf
->output_buf
);
496 /* count tds, get ep direction */
497 static unsigned output_buf_tds_dir(char *buf
, struct fotg210_hcd
*fotg210
,
498 struct fotg210_qh_hw
*hw
, struct fotg210_qh
*qh
, unsigned size
)
500 u32 scratch
= hc32_to_cpup(fotg210
, &hw
->hw_info1
);
501 struct fotg210_qtd
*qtd
;
505 /* count tds, get ep direction */
506 list_for_each_entry(qtd
, &qh
->qtd_list
, qtd_list
) {
508 switch ((hc32_to_cpu(fotg210
, qtd
->hw_token
) >> 8) & 0x03) {
518 return scnprintf(buf
, size
, "(%c%d ep%d%s [%d/%d] q%d p%d)",
519 speed_char(scratch
), scratch
& 0x007f,
520 (scratch
>> 8) & 0x000f, type
, qh
->usecs
,
521 qh
->c_usecs
, temp
, (scratch
>> 16) & 0x7ff);
524 #define DBG_SCHED_LIMIT 64
525 static ssize_t
fill_periodic_buffer(struct debug_buffer
*buf
)
528 struct fotg210_hcd
*fotg210
;
530 union fotg210_shadow p
, *seen
;
531 unsigned temp
, size
, seen_count
;
536 seen
= kmalloc_array(DBG_SCHED_LIMIT
, sizeof(*seen
), GFP_ATOMIC
);
542 hcd
= bus_to_hcd(buf
->bus
);
543 fotg210
= hcd_to_fotg210(hcd
);
544 next
= buf
->output_buf
;
545 size
= buf
->alloc_size
;
547 temp
= scnprintf(next
, size
, "size = %d\n", fotg210
->periodic_size
);
551 /* dump a snapshot of the periodic schedule.
552 * iso changes, interrupt usually doesn't.
554 spin_lock_irqsave(&fotg210
->lock
, flags
);
555 for (i
= 0; i
< fotg210
->periodic_size
; i
++) {
556 p
= fotg210
->pshadow
[i
];
560 tag
= Q_NEXT_TYPE(fotg210
, fotg210
->periodic
[i
]);
562 temp
= scnprintf(next
, size
, "%4d: ", i
);
567 struct fotg210_qh_hw
*hw
;
569 switch (hc32_to_cpu(fotg210
, tag
)) {
572 temp
= scnprintf(next
, size
, " qh%d-%04x/%p",
574 hc32_to_cpup(fotg210
,
577 & (QH_CMASK
| QH_SMASK
),
581 /* don't repeat what follows this qh */
582 for (temp
= 0; temp
< seen_count
; temp
++) {
583 if (seen
[temp
].ptr
!= p
.ptr
)
585 if (p
.qh
->qh_next
.ptr
) {
586 temp
= scnprintf(next
, size
,
593 /* show more info the first time around */
594 if (temp
== seen_count
) {
595 temp
= output_buf_tds_dir(next
,
599 if (seen_count
< DBG_SCHED_LIMIT
)
600 seen
[seen_count
++].qh
= p
.qh
;
603 tag
= Q_NEXT_TYPE(fotg210
, hw
->hw_next
);
607 temp
= scnprintf(next
, size
,
609 p
.fstn
->hw_prev
, p
.fstn
);
610 tag
= Q_NEXT_TYPE(fotg210
, p
.fstn
->hw_next
);
611 p
= p
.fstn
->fstn_next
;
614 temp
= scnprintf(next
, size
,
616 tag
= Q_NEXT_TYPE(fotg210
, p
.itd
->hw_next
);
624 temp
= scnprintf(next
, size
, "\n");
628 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
631 return buf
->alloc_size
- size
;
633 #undef DBG_SCHED_LIMIT
635 static const char *rh_state_string(struct fotg210_hcd
*fotg210
)
637 switch (fotg210
->rh_state
) {
638 case FOTG210_RH_HALTED
:
640 case FOTG210_RH_SUSPENDED
:
642 case FOTG210_RH_RUNNING
:
644 case FOTG210_RH_STOPPING
:
650 static ssize_t
fill_registers_buffer(struct debug_buffer
*buf
)
653 struct fotg210_hcd
*fotg210
;
655 unsigned temp
, size
, i
;
656 char *next
, scratch
[80];
657 static const char fmt
[] = "%*s\n";
658 static const char label
[] = "";
660 hcd
= bus_to_hcd(buf
->bus
);
661 fotg210
= hcd_to_fotg210(hcd
);
662 next
= buf
->output_buf
;
663 size
= buf
->alloc_size
;
665 spin_lock_irqsave(&fotg210
->lock
, flags
);
667 if (!HCD_HW_ACCESSIBLE(hcd
)) {
668 size
= scnprintf(next
, size
,
669 "bus %s, device %s\n"
671 "SUSPENDED(no register access)\n",
672 hcd
->self
.controller
->bus
->name
,
673 dev_name(hcd
->self
.controller
),
678 /* Capability Registers */
679 i
= HC_VERSION(fotg210
, fotg210_readl(fotg210
,
680 &fotg210
->caps
->hc_capbase
));
681 temp
= scnprintf(next
, size
,
682 "bus %s, device %s\n"
684 "EHCI %x.%02x, rh state %s\n",
685 hcd
->self
.controller
->bus
->name
,
686 dev_name(hcd
->self
.controller
),
688 i
>> 8, i
& 0x0ff, rh_state_string(fotg210
));
692 /* FIXME interpret both types of params */
693 i
= fotg210_readl(fotg210
, &fotg210
->caps
->hcs_params
);
694 temp
= scnprintf(next
, size
, "structural params 0x%08x\n", i
);
698 i
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
699 temp
= scnprintf(next
, size
, "capability params 0x%08x\n", i
);
703 /* Operational Registers */
704 temp
= dbg_status_buf(scratch
, sizeof(scratch
), label
,
705 fotg210_readl(fotg210
, &fotg210
->regs
->status
));
706 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
710 temp
= dbg_command_buf(scratch
, sizeof(scratch
), label
,
711 fotg210_readl(fotg210
, &fotg210
->regs
->command
));
712 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
716 temp
= dbg_intr_buf(scratch
, sizeof(scratch
), label
,
717 fotg210_readl(fotg210
, &fotg210
->regs
->intr_enable
));
718 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
722 temp
= scnprintf(next
, size
, "uframe %04x\n",
723 fotg210_read_frame_index(fotg210
));
727 if (fotg210
->async_unlink
) {
728 temp
= scnprintf(next
, size
, "async unlink qh %p\n",
729 fotg210
->async_unlink
);
735 temp
= scnprintf(next
, size
,
736 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
737 fotg210
->stats
.normal
, fotg210
->stats
.error
,
738 fotg210
->stats
.iaa
, fotg210
->stats
.lost_iaa
);
742 temp
= scnprintf(next
, size
, "complete %ld unlink %ld\n",
743 fotg210
->stats
.complete
, fotg210
->stats
.unlink
);
749 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
751 return buf
->alloc_size
- size
;
754 static struct debug_buffer
755 *alloc_buffer(struct usb_bus
*bus
, ssize_t (*fill_func
)(struct debug_buffer
*))
757 struct debug_buffer
*buf
;
759 buf
= kzalloc(sizeof(struct debug_buffer
), GFP_KERNEL
);
763 buf
->fill_func
= fill_func
;
764 mutex_init(&buf
->mutex
);
765 buf
->alloc_size
= PAGE_SIZE
;
771 static int fill_buffer(struct debug_buffer
*buf
)
775 if (!buf
->output_buf
)
776 buf
->output_buf
= vmalloc(buf
->alloc_size
);
778 if (!buf
->output_buf
) {
783 ret
= buf
->fill_func(buf
);
794 static ssize_t
debug_output(struct file
*file
, char __user
*user_buf
,
795 size_t len
, loff_t
*offset
)
797 struct debug_buffer
*buf
= file
->private_data
;
800 mutex_lock(&buf
->mutex
);
801 if (buf
->count
== 0) {
802 ret
= fill_buffer(buf
);
804 mutex_unlock(&buf
->mutex
);
808 mutex_unlock(&buf
->mutex
);
810 ret
= simple_read_from_buffer(user_buf
, len
, offset
,
811 buf
->output_buf
, buf
->count
);
818 static int debug_close(struct inode
*inode
, struct file
*file
)
820 struct debug_buffer
*buf
= file
->private_data
;
823 vfree(buf
->output_buf
);
829 static int debug_async_open(struct inode
*inode
, struct file
*file
)
831 file
->private_data
= alloc_buffer(inode
->i_private
, fill_async_buffer
);
833 return file
->private_data
? 0 : -ENOMEM
;
836 static int debug_periodic_open(struct inode
*inode
, struct file
*file
)
838 struct debug_buffer
*buf
;
840 buf
= alloc_buffer(inode
->i_private
, fill_periodic_buffer
);
844 buf
->alloc_size
= (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE
;
845 file
->private_data
= buf
;
849 static int debug_registers_open(struct inode
*inode
, struct file
*file
)
851 file
->private_data
= alloc_buffer(inode
->i_private
,
852 fill_registers_buffer
);
854 return file
->private_data
? 0 : -ENOMEM
;
857 static inline void create_debug_files(struct fotg210_hcd
*fotg210
)
859 struct usb_bus
*bus
= &fotg210_to_hcd(fotg210
)->self
;
861 fotg210
->debug_dir
= debugfs_create_dir(bus
->bus_name
,
863 if (!fotg210
->debug_dir
)
866 if (!debugfs_create_file("async", S_IRUGO
, fotg210
->debug_dir
, bus
,
870 if (!debugfs_create_file("periodic", S_IRUGO
, fotg210
->debug_dir
, bus
,
871 &debug_periodic_fops
))
874 if (!debugfs_create_file("registers", S_IRUGO
, fotg210
->debug_dir
, bus
,
875 &debug_registers_fops
))
881 debugfs_remove_recursive(fotg210
->debug_dir
);
884 static inline void remove_debug_files(struct fotg210_hcd
*fotg210
)
886 debugfs_remove_recursive(fotg210
->debug_dir
);
889 /* handshake - spin reading hc until handshake completes or fails
890 * @ptr: address of hc register to be read
891 * @mask: bits to look at in result of read
892 * @done: value of those bits when handshake succeeds
893 * @usec: timeout in microseconds
895 * Returns negative errno, or zero on success
897 * Success happens when the "mask" bits have the specified value (hardware
898 * handshake done). There are two failure modes: "usec" have passed (major
899 * hardware flakeout), or the register reads as all-ones (hardware removed).
901 * That last failure should_only happen in cases like physical cardbus eject
902 * before driver shutdown. But it also seems to be caused by bugs in cardbus
903 * bridge shutdown: shutting down the bridge before the devices using it.
905 static int handshake(struct fotg210_hcd
*fotg210
, void __iomem
*ptr
,
906 u32 mask
, u32 done
, int usec
)
911 result
= fotg210_readl(fotg210
, ptr
);
912 if (result
== ~(u32
)0) /* card removed */
923 /* Force HC to halt state from unknown (EHCI spec section 2.3).
924 * Must be called with interrupts enabled and the lock not held.
926 static int fotg210_halt(struct fotg210_hcd
*fotg210
)
930 spin_lock_irq(&fotg210
->lock
);
932 /* disable any irqs left enabled by previous code */
933 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
936 * This routine gets called during probe before fotg210->command
937 * has been initialized, so we can't rely on its value.
939 fotg210
->command
&= ~CMD_RUN
;
940 temp
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
941 temp
&= ~(CMD_RUN
| CMD_IAAD
);
942 fotg210_writel(fotg210
, temp
, &fotg210
->regs
->command
);
944 spin_unlock_irq(&fotg210
->lock
);
945 synchronize_irq(fotg210_to_hcd(fotg210
)->irq
);
947 return handshake(fotg210
, &fotg210
->regs
->status
,
948 STS_HALT
, STS_HALT
, 16 * 125);
951 /* Reset a non-running (STS_HALT == 1) controller.
952 * Must be called with interrupts enabled and the lock not held.
954 static int fotg210_reset(struct fotg210_hcd
*fotg210
)
957 u32 command
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
959 /* If the EHCI debug controller is active, special care must be
960 * taken before and after a host controller reset
962 if (fotg210
->debug
&& !dbgp_reset_prep(fotg210_to_hcd(fotg210
)))
963 fotg210
->debug
= NULL
;
965 command
|= CMD_RESET
;
966 dbg_cmd(fotg210
, "reset", command
);
967 fotg210_writel(fotg210
, command
, &fotg210
->regs
->command
);
968 fotg210
->rh_state
= FOTG210_RH_HALTED
;
969 fotg210
->next_statechange
= jiffies
;
970 retval
= handshake(fotg210
, &fotg210
->regs
->command
,
971 CMD_RESET
, 0, 250 * 1000);
977 dbgp_external_startup(fotg210_to_hcd(fotg210
));
979 fotg210
->port_c_suspend
= fotg210
->suspended_ports
=
980 fotg210
->resuming_ports
= 0;
984 /* Idle the controller (turn off the schedules).
985 * Must be called with interrupts enabled and the lock not held.
987 static void fotg210_quiesce(struct fotg210_hcd
*fotg210
)
991 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
994 /* wait for any schedule enables/disables to take effect */
995 temp
= (fotg210
->command
<< 10) & (STS_ASS
| STS_PSS
);
996 handshake(fotg210
, &fotg210
->regs
->status
, STS_ASS
| STS_PSS
, temp
,
999 /* then disable anything that's still active */
1000 spin_lock_irq(&fotg210
->lock
);
1001 fotg210
->command
&= ~(CMD_ASE
| CMD_PSE
);
1002 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1003 spin_unlock_irq(&fotg210
->lock
);
1005 /* hardware can take 16 microframes to turn off ... */
1006 handshake(fotg210
, &fotg210
->regs
->status
, STS_ASS
| STS_PSS
, 0,
1010 static void end_unlink_async(struct fotg210_hcd
*fotg210
);
1011 static void unlink_empty_async(struct fotg210_hcd
*fotg210
);
1012 static void fotg210_work(struct fotg210_hcd
*fotg210
);
1013 static void start_unlink_intr(struct fotg210_hcd
*fotg210
,
1014 struct fotg210_qh
*qh
);
1015 static void end_unlink_intr(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
1017 /* Set a bit in the USBCMD register */
1018 static void fotg210_set_command_bit(struct fotg210_hcd
*fotg210
, u32 bit
)
1020 fotg210
->command
|= bit
;
1021 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1023 /* unblock posted write */
1024 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1027 /* Clear a bit in the USBCMD register */
1028 static void fotg210_clear_command_bit(struct fotg210_hcd
*fotg210
, u32 bit
)
1030 fotg210
->command
&= ~bit
;
1031 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1033 /* unblock posted write */
1034 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1037 /* EHCI timer support... Now using hrtimers.
1039 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1040 * the timer routine runs, it checks each possible event; events that are
1041 * currently enabled and whose expiration time has passed get handled.
1042 * The set of enabled events is stored as a collection of bitflags in
1043 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1044 * increasing delay values (ranging between 1 ms and 100 ms).
1046 * Rather than implementing a sorted list or tree of all pending events,
1047 * we keep track only of the lowest-numbered pending event, in
1048 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1049 * expiration time is set to the timeout value for this event.
1051 * As a result, events might not get handled right away; the actual delay
1052 * could be anywhere up to twice the requested delay. This doesn't
1053 * matter, because none of the events are especially time-critical. The
1054 * ones that matter most all have a delay of 1 ms, so they will be
1055 * handled after 2 ms at most, which is okay. In addition to this, we
1056 * allow for an expiration range of 1 ms.
1059 /* Delay lengths for the hrtimer event types.
1060 * Keep this list sorted by delay length, in the same order as
1061 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1063 static unsigned event_delays_ns
[] = {
1064 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_ASS */
1065 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_PSS */
1066 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_DEAD */
1067 1125 * NSEC_PER_USEC
, /* FOTG210_HRTIMER_UNLINK_INTR */
1068 2 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_FREE_ITDS */
1069 6 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1070 10 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1071 10 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1072 15 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1073 100 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_IO_WATCHDOG */
1076 /* Enable a pending hrtimer event */
1077 static void fotg210_enable_event(struct fotg210_hcd
*fotg210
, unsigned event
,
1080 ktime_t
*timeout
= &fotg210
->hr_timeouts
[event
];
1083 *timeout
= ktime_add(ktime_get(),
1084 ktime_set(0, event_delays_ns
[event
]));
1085 fotg210
->enabled_hrtimer_events
|= (1 << event
);
1087 /* Track only the lowest-numbered pending event */
1088 if (event
< fotg210
->next_hrtimer_event
) {
1089 fotg210
->next_hrtimer_event
= event
;
1090 hrtimer_start_range_ns(&fotg210
->hrtimer
, *timeout
,
1091 NSEC_PER_MSEC
, HRTIMER_MODE_ABS
);
1096 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1097 static void fotg210_poll_ASS(struct fotg210_hcd
*fotg210
)
1099 unsigned actual
, want
;
1101 /* Don't enable anything if the controller isn't running (e.g., died) */
1102 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1105 want
= (fotg210
->command
& CMD_ASE
) ? STS_ASS
: 0;
1106 actual
= fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_ASS
;
1108 if (want
!= actual
) {
1110 /* Poll again later, but give up after about 20 ms */
1111 if (fotg210
->ASS_poll_count
++ < 20) {
1112 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_POLL_ASS
,
1116 fotg210_dbg(fotg210
, "Waited too long for the async schedule status (%x/%x), giving up\n",
1119 fotg210
->ASS_poll_count
= 0;
1121 /* The status is up-to-date; restart or stop the schedule as needed */
1122 if (want
== 0) { /* Stopped */
1123 if (fotg210
->async_count
> 0)
1124 fotg210_set_command_bit(fotg210
, CMD_ASE
);
1126 } else { /* Running */
1127 if (fotg210
->async_count
== 0) {
1129 /* Turn off the schedule after a while */
1130 fotg210_enable_event(fotg210
,
1131 FOTG210_HRTIMER_DISABLE_ASYNC
,
1137 /* Turn off the async schedule after a brief delay */
1138 static void fotg210_disable_ASE(struct fotg210_hcd
*fotg210
)
1140 fotg210_clear_command_bit(fotg210
, CMD_ASE
);
1144 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1145 static void fotg210_poll_PSS(struct fotg210_hcd
*fotg210
)
1147 unsigned actual
, want
;
1149 /* Don't do anything if the controller isn't running (e.g., died) */
1150 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1153 want
= (fotg210
->command
& CMD_PSE
) ? STS_PSS
: 0;
1154 actual
= fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_PSS
;
1156 if (want
!= actual
) {
1158 /* Poll again later, but give up after about 20 ms */
1159 if (fotg210
->PSS_poll_count
++ < 20) {
1160 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_POLL_PSS
,
1164 fotg210_dbg(fotg210
, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1167 fotg210
->PSS_poll_count
= 0;
1169 /* The status is up-to-date; restart or stop the schedule as needed */
1170 if (want
== 0) { /* Stopped */
1171 if (fotg210
->periodic_count
> 0)
1172 fotg210_set_command_bit(fotg210
, CMD_PSE
);
1174 } else { /* Running */
1175 if (fotg210
->periodic_count
== 0) {
1177 /* Turn off the schedule after a while */
1178 fotg210_enable_event(fotg210
,
1179 FOTG210_HRTIMER_DISABLE_PERIODIC
,
1185 /* Turn off the periodic schedule after a brief delay */
1186 static void fotg210_disable_PSE(struct fotg210_hcd
*fotg210
)
1188 fotg210_clear_command_bit(fotg210
, CMD_PSE
);
1192 /* Poll the STS_HALT status bit; see when a dead controller stops */
1193 static void fotg210_handle_controller_death(struct fotg210_hcd
*fotg210
)
1195 if (!(fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_HALT
)) {
1197 /* Give up after a few milliseconds */
1198 if (fotg210
->died_poll_count
++ < 5) {
1199 /* Try again later */
1200 fotg210_enable_event(fotg210
,
1201 FOTG210_HRTIMER_POLL_DEAD
, true);
1204 fotg210_warn(fotg210
, "Waited too long for the controller to stop, giving up\n");
1207 /* Clean up the mess */
1208 fotg210
->rh_state
= FOTG210_RH_HALTED
;
1209 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
1210 fotg210_work(fotg210
);
1211 end_unlink_async(fotg210
);
1213 /* Not in process context, so don't try to reset the controller */
1217 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1218 static void fotg210_handle_intr_unlinks(struct fotg210_hcd
*fotg210
)
1220 bool stopped
= (fotg210
->rh_state
< FOTG210_RH_RUNNING
);
1223 * Process all the QHs on the intr_unlink list that were added
1224 * before the current unlink cycle began. The list is in
1225 * temporal order, so stop when we reach the first entry in the
1226 * current cycle. But if the root hub isn't running then
1227 * process all the QHs on the list.
1229 fotg210
->intr_unlinking
= true;
1230 while (fotg210
->intr_unlink
) {
1231 struct fotg210_qh
*qh
= fotg210
->intr_unlink
;
1233 if (!stopped
&& qh
->unlink_cycle
== fotg210
->intr_unlink_cycle
)
1235 fotg210
->intr_unlink
= qh
->unlink_next
;
1236 qh
->unlink_next
= NULL
;
1237 end_unlink_intr(fotg210
, qh
);
1240 /* Handle remaining entries later */
1241 if (fotg210
->intr_unlink
) {
1242 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_UNLINK_INTR
,
1244 ++fotg210
->intr_unlink_cycle
;
1246 fotg210
->intr_unlinking
= false;
1250 /* Start another free-iTDs/siTDs cycle */
1251 static void start_free_itds(struct fotg210_hcd
*fotg210
)
1253 if (!(fotg210
->enabled_hrtimer_events
&
1254 BIT(FOTG210_HRTIMER_FREE_ITDS
))) {
1255 fotg210
->last_itd_to_free
= list_entry(
1256 fotg210
->cached_itd_list
.prev
,
1257 struct fotg210_itd
, itd_list
);
1258 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_FREE_ITDS
, true);
1262 /* Wait for controller to stop using old iTDs and siTDs */
1263 static void end_free_itds(struct fotg210_hcd
*fotg210
)
1265 struct fotg210_itd
*itd
, *n
;
1267 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
1268 fotg210
->last_itd_to_free
= NULL
;
1270 list_for_each_entry_safe(itd
, n
, &fotg210
->cached_itd_list
, itd_list
) {
1271 list_del(&itd
->itd_list
);
1272 dma_pool_free(fotg210
->itd_pool
, itd
, itd
->itd_dma
);
1273 if (itd
== fotg210
->last_itd_to_free
)
1277 if (!list_empty(&fotg210
->cached_itd_list
))
1278 start_free_itds(fotg210
);
1282 /* Handle lost (or very late) IAA interrupts */
1283 static void fotg210_iaa_watchdog(struct fotg210_hcd
*fotg210
)
1285 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1289 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1290 * So we need this watchdog, but must protect it against both
1291 * (a) SMP races against real IAA firing and retriggering, and
1292 * (b) clean HC shutdown, when IAA watchdog was pending.
1294 if (fotg210
->async_iaa
) {
1297 /* If we get here, IAA is *REALLY* late. It's barely
1298 * conceivable that the system is so busy that CMD_IAAD
1299 * is still legitimately set, so let's be sure it's
1300 * clear before we read STS_IAA. (The HC should clear
1301 * CMD_IAAD when it sets STS_IAA.)
1303 cmd
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1306 * If IAA is set here it either legitimately triggered
1307 * after the watchdog timer expired (_way_ late, so we'll
1308 * still count it as lost) ... or a silicon erratum:
1309 * - VIA seems to set IAA without triggering the IRQ;
1310 * - IAAD potentially cleared without setting IAA.
1312 status
= fotg210_readl(fotg210
, &fotg210
->regs
->status
);
1313 if ((status
& STS_IAA
) || !(cmd
& CMD_IAAD
)) {
1314 COUNT(fotg210
->stats
.lost_iaa
);
1315 fotg210_writel(fotg210
, STS_IAA
,
1316 &fotg210
->regs
->status
);
1319 fotg210_dbg(fotg210
, "IAA watchdog: status %x cmd %x\n",
1321 end_unlink_async(fotg210
);
1326 /* Enable the I/O watchdog, if appropriate */
1327 static void turn_on_io_watchdog(struct fotg210_hcd
*fotg210
)
1329 /* Not needed if the controller isn't running or it's already enabled */
1330 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
||
1331 (fotg210
->enabled_hrtimer_events
&
1332 BIT(FOTG210_HRTIMER_IO_WATCHDOG
)))
1336 * Isochronous transfers always need the watchdog.
1337 * For other sorts we use it only if the flag is set.
1339 if (fotg210
->isoc_count
> 0 || (fotg210
->need_io_watchdog
&&
1340 fotg210
->async_count
+ fotg210
->intr_count
> 0))
1341 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_IO_WATCHDOG
,
1346 /* Handler functions for the hrtimer event types.
1347 * Keep this array in the same order as the event types indexed by
1348 * enum fotg210_hrtimer_event in fotg210.h.
1350 static void (*event_handlers
[])(struct fotg210_hcd
*) = {
1351 fotg210_poll_ASS
, /* FOTG210_HRTIMER_POLL_ASS */
1352 fotg210_poll_PSS
, /* FOTG210_HRTIMER_POLL_PSS */
1353 fotg210_handle_controller_death
, /* FOTG210_HRTIMER_POLL_DEAD */
1354 fotg210_handle_intr_unlinks
, /* FOTG210_HRTIMER_UNLINK_INTR */
1355 end_free_itds
, /* FOTG210_HRTIMER_FREE_ITDS */
1356 unlink_empty_async
, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1357 fotg210_iaa_watchdog
, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1358 fotg210_disable_PSE
, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1359 fotg210_disable_ASE
, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1360 fotg210_work
, /* FOTG210_HRTIMER_IO_WATCHDOG */
1363 static enum hrtimer_restart
fotg210_hrtimer_func(struct hrtimer
*t
)
1365 struct fotg210_hcd
*fotg210
=
1366 container_of(t
, struct fotg210_hcd
, hrtimer
);
1368 unsigned long events
;
1369 unsigned long flags
;
1372 spin_lock_irqsave(&fotg210
->lock
, flags
);
1374 events
= fotg210
->enabled_hrtimer_events
;
1375 fotg210
->enabled_hrtimer_events
= 0;
1376 fotg210
->next_hrtimer_event
= FOTG210_HRTIMER_NO_EVENT
;
1379 * Check each pending event. If its time has expired, handle
1380 * the event; otherwise re-enable it.
1383 for_each_set_bit(e
, &events
, FOTG210_HRTIMER_NUM_EVENTS
) {
1384 if (now
.tv64
>= fotg210
->hr_timeouts
[e
].tv64
)
1385 event_handlers
[e
](fotg210
);
1387 fotg210_enable_event(fotg210
, e
, false);
1390 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1391 return HRTIMER_NORESTART
;
1394 #define fotg210_bus_suspend NULL
1395 #define fotg210_bus_resume NULL
1397 static int check_reset_complete(struct fotg210_hcd
*fotg210
, int index
,
1398 u32 __iomem
*status_reg
, int port_status
)
1400 if (!(port_status
& PORT_CONNECT
))
1403 /* if reset finished and it's still not enabled -- handoff */
1404 if (!(port_status
& PORT_PE
))
1405 /* with integrated TT, there's nobody to hand it to! */
1406 fotg210_dbg(fotg210
, "Failed to enable port %d on root hub TT\n",
1409 fotg210_dbg(fotg210
, "port %d reset complete, port enabled\n",
1416 /* build "status change" packet (one or two bytes) from HC registers */
1418 static int fotg210_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
1420 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
1424 unsigned long flags
;
1426 /* init status to no-changes */
1429 /* Inform the core about resumes-in-progress by returning
1430 * a non-zero value even if there are no status changes.
1432 status
= fotg210
->resuming_ports
;
1434 mask
= PORT_CSC
| PORT_PEC
;
1435 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1437 /* no hub change reports (bit 0) for now (power, ...) */
1439 /* port N changes (bit N)? */
1440 spin_lock_irqsave(&fotg210
->lock
, flags
);
1442 temp
= fotg210_readl(fotg210
, &fotg210
->regs
->port_status
);
1445 * Return status information even for ports with OWNER set.
1446 * Otherwise hub_wq wouldn't see the disconnect event when a
1447 * high-speed device is switched over to the companion
1448 * controller by the user.
1451 if ((temp
& mask
) != 0 || test_bit(0, &fotg210
->port_c_suspend
) ||
1452 (fotg210
->reset_done
[0] &&
1453 time_after_eq(jiffies
, fotg210
->reset_done
[0]))) {
1457 /* FIXME autosuspend idle root hubs */
1458 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1459 return status
? retval
: 0;
1462 static void fotg210_hub_descriptor(struct fotg210_hcd
*fotg210
,
1463 struct usb_hub_descriptor
*desc
)
1465 int ports
= HCS_N_PORTS(fotg210
->hcs_params
);
1468 desc
->bDescriptorType
= USB_DT_HUB
;
1469 desc
->bPwrOn2PwrGood
= 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1470 desc
->bHubContrCurrent
= 0;
1472 desc
->bNbrPorts
= ports
;
1473 temp
= 1 + (ports
/ 8);
1474 desc
->bDescLength
= 7 + 2 * temp
;
1476 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1477 memset(&desc
->u
.hs
.DeviceRemovable
[0], 0, temp
);
1478 memset(&desc
->u
.hs
.DeviceRemovable
[temp
], 0xff, temp
);
1480 temp
= HUB_CHAR_INDV_PORT_OCPM
; /* per-port overcurrent reporting */
1481 temp
|= HUB_CHAR_NO_LPSM
; /* no power switching */
1482 desc
->wHubCharacteristics
= cpu_to_le16(temp
);
1485 static int fotg210_hub_control(struct usb_hcd
*hcd
, u16 typeReq
, u16 wValue
,
1486 u16 wIndex
, char *buf
, u16 wLength
)
1488 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
1489 int ports
= HCS_N_PORTS(fotg210
->hcs_params
);
1490 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
1491 u32 temp
, temp1
, status
;
1492 unsigned long flags
;
1497 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1498 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1499 * (track current state ourselves) ... blink for diagnostics,
1500 * power, "this is the one", etc. EHCI spec supports this.
1503 spin_lock_irqsave(&fotg210
->lock
, flags
);
1505 case ClearHubFeature
:
1507 case C_HUB_LOCAL_POWER
:
1508 case C_HUB_OVER_CURRENT
:
1509 /* no hub-wide feature/status flags */
1515 case ClearPortFeature
:
1516 if (!wIndex
|| wIndex
> ports
)
1519 temp
= fotg210_readl(fotg210
, status_reg
);
1520 temp
&= ~PORT_RWC_BITS
;
1523 * Even if OWNER is set, so the port is owned by the
1524 * companion controller, hub_wq needs to be able to clear
1525 * the port-change status bits (especially
1526 * USB_PORT_STAT_C_CONNECTION).
1530 case USB_PORT_FEAT_ENABLE
:
1531 fotg210_writel(fotg210
, temp
& ~PORT_PE
, status_reg
);
1533 case USB_PORT_FEAT_C_ENABLE
:
1534 fotg210_writel(fotg210
, temp
| PORT_PEC
, status_reg
);
1536 case USB_PORT_FEAT_SUSPEND
:
1537 if (temp
& PORT_RESET
)
1539 if (!(temp
& PORT_SUSPEND
))
1541 if ((temp
& PORT_PE
) == 0)
1544 /* resume signaling for 20 msec */
1545 fotg210_writel(fotg210
, temp
| PORT_RESUME
, status_reg
);
1546 fotg210
->reset_done
[wIndex
] = jiffies
1547 + msecs_to_jiffies(USB_RESUME_TIMEOUT
);
1549 case USB_PORT_FEAT_C_SUSPEND
:
1550 clear_bit(wIndex
, &fotg210
->port_c_suspend
);
1552 case USB_PORT_FEAT_C_CONNECTION
:
1553 fotg210_writel(fotg210
, temp
| PORT_CSC
, status_reg
);
1555 case USB_PORT_FEAT_C_OVER_CURRENT
:
1556 fotg210_writel(fotg210
, temp
| OTGISR_OVC
,
1557 &fotg210
->regs
->otgisr
);
1559 case USB_PORT_FEAT_C_RESET
:
1560 /* GetPortStatus clears reset */
1565 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1567 case GetHubDescriptor
:
1568 fotg210_hub_descriptor(fotg210
, (struct usb_hub_descriptor
*)
1572 /* no hub-wide feature/status flags */
1574 /*cpu_to_le32s ((u32 *) buf); */
1577 if (!wIndex
|| wIndex
> ports
)
1581 temp
= fotg210_readl(fotg210
, status_reg
);
1583 /* wPortChange bits */
1584 if (temp
& PORT_CSC
)
1585 status
|= USB_PORT_STAT_C_CONNECTION
<< 16;
1586 if (temp
& PORT_PEC
)
1587 status
|= USB_PORT_STAT_C_ENABLE
<< 16;
1589 temp1
= fotg210_readl(fotg210
, &fotg210
->regs
->otgisr
);
1590 if (temp1
& OTGISR_OVC
)
1591 status
|= USB_PORT_STAT_C_OVERCURRENT
<< 16;
1593 /* whoever resumes must GetPortStatus to complete it!! */
1594 if (temp
& PORT_RESUME
) {
1596 /* Remote Wakeup received? */
1597 if (!fotg210
->reset_done
[wIndex
]) {
1598 /* resume signaling for 20 msec */
1599 fotg210
->reset_done
[wIndex
] = jiffies
1600 + msecs_to_jiffies(20);
1601 /* check the port again */
1602 mod_timer(&fotg210_to_hcd(fotg210
)->rh_timer
,
1603 fotg210
->reset_done
[wIndex
]);
1606 /* resume completed? */
1607 else if (time_after_eq(jiffies
,
1608 fotg210
->reset_done
[wIndex
])) {
1609 clear_bit(wIndex
, &fotg210
->suspended_ports
);
1610 set_bit(wIndex
, &fotg210
->port_c_suspend
);
1611 fotg210
->reset_done
[wIndex
] = 0;
1613 /* stop resume signaling */
1614 temp
= fotg210_readl(fotg210
, status_reg
);
1615 fotg210_writel(fotg210
, temp
&
1616 ~(PORT_RWC_BITS
| PORT_RESUME
),
1618 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1619 retval
= handshake(fotg210
, status_reg
,
1620 PORT_RESUME
, 0, 2000);/* 2ms */
1622 fotg210_err(fotg210
,
1623 "port %d resume error %d\n",
1624 wIndex
+ 1, retval
);
1627 temp
&= ~(PORT_SUSPEND
|PORT_RESUME
|(3<<10));
1631 /* whoever resets must GetPortStatus to complete it!! */
1632 if ((temp
& PORT_RESET
) && time_after_eq(jiffies
,
1633 fotg210
->reset_done
[wIndex
])) {
1634 status
|= USB_PORT_STAT_C_RESET
<< 16;
1635 fotg210
->reset_done
[wIndex
] = 0;
1636 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1638 /* force reset to complete */
1639 fotg210_writel(fotg210
,
1640 temp
& ~(PORT_RWC_BITS
| PORT_RESET
),
1642 /* REVISIT: some hardware needs 550+ usec to clear
1643 * this bit; seems too long to spin routinely...
1645 retval
= handshake(fotg210
, status_reg
,
1646 PORT_RESET
, 0, 1000);
1648 fotg210_err(fotg210
, "port %d reset error %d\n",
1649 wIndex
+ 1, retval
);
1653 /* see what we found out */
1654 temp
= check_reset_complete(fotg210
, wIndex
, status_reg
,
1655 fotg210_readl(fotg210
, status_reg
));
1658 if (!(temp
& (PORT_RESUME
|PORT_RESET
))) {
1659 fotg210
->reset_done
[wIndex
] = 0;
1660 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1663 /* transfer dedicated ports to the companion hc */
1664 if ((temp
& PORT_CONNECT
) &&
1665 test_bit(wIndex
, &fotg210
->companion_ports
)) {
1666 temp
&= ~PORT_RWC_BITS
;
1667 fotg210_writel(fotg210
, temp
, status_reg
);
1668 fotg210_dbg(fotg210
, "port %d --> companion\n",
1670 temp
= fotg210_readl(fotg210
, status_reg
);
1674 * Even if OWNER is set, there's no harm letting hub_wq
1675 * see the wPortStatus values (they should all be 0 except
1676 * for PORT_POWER anyway).
1679 if (temp
& PORT_CONNECT
) {
1680 status
|= USB_PORT_STAT_CONNECTION
;
1681 status
|= fotg210_port_speed(fotg210
, temp
);
1684 status
|= USB_PORT_STAT_ENABLE
;
1686 /* maybe the port was unsuspended without our knowledge */
1687 if (temp
& (PORT_SUSPEND
|PORT_RESUME
)) {
1688 status
|= USB_PORT_STAT_SUSPEND
;
1689 } else if (test_bit(wIndex
, &fotg210
->suspended_ports
)) {
1690 clear_bit(wIndex
, &fotg210
->suspended_ports
);
1691 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1692 fotg210
->reset_done
[wIndex
] = 0;
1694 set_bit(wIndex
, &fotg210
->port_c_suspend
);
1697 temp1
= fotg210_readl(fotg210
, &fotg210
->regs
->otgisr
);
1698 if (temp1
& OTGISR_OVC
)
1699 status
|= USB_PORT_STAT_OVERCURRENT
;
1700 if (temp
& PORT_RESET
)
1701 status
|= USB_PORT_STAT_RESET
;
1702 if (test_bit(wIndex
, &fotg210
->port_c_suspend
))
1703 status
|= USB_PORT_STAT_C_SUSPEND
<< 16;
1705 if (status
& ~0xffff) /* only if wPortChange is interesting */
1706 dbg_port(fotg210
, "GetStatus", wIndex
+ 1, temp
);
1707 put_unaligned_le32(status
, buf
);
1711 case C_HUB_LOCAL_POWER
:
1712 case C_HUB_OVER_CURRENT
:
1713 /* no hub-wide feature/status flags */
1719 case SetPortFeature
:
1720 selector
= wIndex
>> 8;
1723 if (!wIndex
|| wIndex
> ports
)
1726 temp
= fotg210_readl(fotg210
, status_reg
);
1727 temp
&= ~PORT_RWC_BITS
;
1729 case USB_PORT_FEAT_SUSPEND
:
1730 if ((temp
& PORT_PE
) == 0
1731 || (temp
& PORT_RESET
) != 0)
1734 /* After above check the port must be connected.
1735 * Set appropriate bit thus could put phy into low power
1736 * mode if we have hostpc feature
1738 fotg210_writel(fotg210
, temp
| PORT_SUSPEND
,
1740 set_bit(wIndex
, &fotg210
->suspended_ports
);
1742 case USB_PORT_FEAT_RESET
:
1743 if (temp
& PORT_RESUME
)
1745 /* line status bits may report this as low speed,
1746 * which can be fine if this root hub has a
1747 * transaction translator built in.
1749 fotg210_dbg(fotg210
, "port %d reset\n", wIndex
+ 1);
1754 * caller must wait, then call GetPortStatus
1755 * usb 2.0 spec says 50 ms resets on root
1757 fotg210
->reset_done
[wIndex
] = jiffies
1758 + msecs_to_jiffies(50);
1759 fotg210_writel(fotg210
, temp
, status_reg
);
1762 /* For downstream facing ports (these): one hub port is put
1763 * into test mode according to USB2 11.24.2.13, then the hub
1764 * must be reset (which for root hub now means rmmod+modprobe,
1765 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1766 * about the EHCI-specific stuff.
1768 case USB_PORT_FEAT_TEST
:
1769 if (!selector
|| selector
> 5)
1771 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1772 fotg210_quiesce(fotg210
);
1773 spin_lock_irqsave(&fotg210
->lock
, flags
);
1775 /* Put all enabled ports into suspend */
1776 temp
= fotg210_readl(fotg210
, status_reg
) &
1779 fotg210_writel(fotg210
, temp
| PORT_SUSPEND
,
1782 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1783 fotg210_halt(fotg210
);
1784 spin_lock_irqsave(&fotg210
->lock
, flags
);
1786 temp
= fotg210_readl(fotg210
, status_reg
);
1787 temp
|= selector
<< 16;
1788 fotg210_writel(fotg210
, temp
, status_reg
);
1794 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1799 /* "stall" on error */
1802 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1806 static void __maybe_unused
fotg210_relinquish_port(struct usb_hcd
*hcd
,
1812 static int __maybe_unused
fotg210_port_handed_over(struct usb_hcd
*hcd
,
1818 /* There's basically three types of memory:
1819 * - data used only by the HCD ... kmalloc is fine
1820 * - async and periodic schedules, shared by HC and HCD ... these
1821 * need to use dma_pool or dma_alloc_coherent
1822 * - driver buffers, read/written by HC ... single shot DMA mapped
1824 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1825 * No memory seen by this driver is pageable.
1828 /* Allocate the key transfer structures from the previously allocated pool */
1829 static inline void fotg210_qtd_init(struct fotg210_hcd
*fotg210
,
1830 struct fotg210_qtd
*qtd
, dma_addr_t dma
)
1832 memset(qtd
, 0, sizeof(*qtd
));
1834 qtd
->hw_token
= cpu_to_hc32(fotg210
, QTD_STS_HALT
);
1835 qtd
->hw_next
= FOTG210_LIST_END(fotg210
);
1836 qtd
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
1837 INIT_LIST_HEAD(&qtd
->qtd_list
);
1840 static struct fotg210_qtd
*fotg210_qtd_alloc(struct fotg210_hcd
*fotg210
,
1843 struct fotg210_qtd
*qtd
;
1846 qtd
= dma_pool_alloc(fotg210
->qtd_pool
, flags
, &dma
);
1848 fotg210_qtd_init(fotg210
, qtd
, dma
);
1853 static inline void fotg210_qtd_free(struct fotg210_hcd
*fotg210
,
1854 struct fotg210_qtd
*qtd
)
1856 dma_pool_free(fotg210
->qtd_pool
, qtd
, qtd
->qtd_dma
);
1860 static void qh_destroy(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
1862 /* clean qtds first, and know this is not linked */
1863 if (!list_empty(&qh
->qtd_list
) || qh
->qh_next
.ptr
) {
1864 fotg210_dbg(fotg210
, "unused qh not empty!\n");
1868 fotg210_qtd_free(fotg210
, qh
->dummy
);
1869 dma_pool_free(fotg210
->qh_pool
, qh
->hw
, qh
->qh_dma
);
1873 static struct fotg210_qh
*fotg210_qh_alloc(struct fotg210_hcd
*fotg210
,
1876 struct fotg210_qh
*qh
;
1879 qh
= kzalloc(sizeof(*qh
), GFP_ATOMIC
);
1882 qh
->hw
= (struct fotg210_qh_hw
*)
1883 dma_pool_alloc(fotg210
->qh_pool
, flags
, &dma
);
1886 memset(qh
->hw
, 0, sizeof(*qh
->hw
));
1888 INIT_LIST_HEAD(&qh
->qtd_list
);
1890 /* dummy td enables safe urb queuing */
1891 qh
->dummy
= fotg210_qtd_alloc(fotg210
, flags
);
1892 if (qh
->dummy
== NULL
) {
1893 fotg210_dbg(fotg210
, "no dummy td\n");
1899 dma_pool_free(fotg210
->qh_pool
, qh
->hw
, qh
->qh_dma
);
1905 /* The queue heads and transfer descriptors are managed from pools tied
1906 * to each of the "per device" structures.
1907 * This is the initialisation and cleanup code.
1910 static void fotg210_mem_cleanup(struct fotg210_hcd
*fotg210
)
1913 qh_destroy(fotg210
, fotg210
->async
);
1914 fotg210
->async
= NULL
;
1917 qh_destroy(fotg210
, fotg210
->dummy
);
1918 fotg210
->dummy
= NULL
;
1920 /* DMA consistent memory and pools */
1921 dma_pool_destroy(fotg210
->qtd_pool
);
1922 fotg210
->qtd_pool
= NULL
;
1924 dma_pool_destroy(fotg210
->qh_pool
);
1925 fotg210
->qh_pool
= NULL
;
1927 dma_pool_destroy(fotg210
->itd_pool
);
1928 fotg210
->itd_pool
= NULL
;
1930 if (fotg210
->periodic
)
1931 dma_free_coherent(fotg210_to_hcd(fotg210
)->self
.controller
,
1932 fotg210
->periodic_size
* sizeof(u32
),
1933 fotg210
->periodic
, fotg210
->periodic_dma
);
1934 fotg210
->periodic
= NULL
;
1936 /* shadow periodic table */
1937 kfree(fotg210
->pshadow
);
1938 fotg210
->pshadow
= NULL
;
1941 /* remember to add cleanup code (above) if you add anything here */
1942 static int fotg210_mem_init(struct fotg210_hcd
*fotg210
, gfp_t flags
)
1946 /* QTDs for control/bulk/intr transfers */
1947 fotg210
->qtd_pool
= dma_pool_create("fotg210_qtd",
1948 fotg210_to_hcd(fotg210
)->self
.controller
,
1949 sizeof(struct fotg210_qtd
),
1950 32 /* byte alignment (for hw parts) */,
1951 4096 /* can't cross 4K */);
1952 if (!fotg210
->qtd_pool
)
1955 /* QHs for control/bulk/intr transfers */
1956 fotg210
->qh_pool
= dma_pool_create("fotg210_qh",
1957 fotg210_to_hcd(fotg210
)->self
.controller
,
1958 sizeof(struct fotg210_qh_hw
),
1959 32 /* byte alignment (for hw parts) */,
1960 4096 /* can't cross 4K */);
1961 if (!fotg210
->qh_pool
)
1964 fotg210
->async
= fotg210_qh_alloc(fotg210
, flags
);
1965 if (!fotg210
->async
)
1968 /* ITD for high speed ISO transfers */
1969 fotg210
->itd_pool
= dma_pool_create("fotg210_itd",
1970 fotg210_to_hcd(fotg210
)->self
.controller
,
1971 sizeof(struct fotg210_itd
),
1972 64 /* byte alignment (for hw parts) */,
1973 4096 /* can't cross 4K */);
1974 if (!fotg210
->itd_pool
)
1977 /* Hardware periodic table */
1978 fotg210
->periodic
= (__le32
*)
1979 dma_alloc_coherent(fotg210_to_hcd(fotg210
)->self
.controller
,
1980 fotg210
->periodic_size
* sizeof(__le32
),
1981 &fotg210
->periodic_dma
, 0);
1982 if (fotg210
->periodic
== NULL
)
1985 for (i
= 0; i
< fotg210
->periodic_size
; i
++)
1986 fotg210
->periodic
[i
] = FOTG210_LIST_END(fotg210
);
1988 /* software shadow of hardware table */
1989 fotg210
->pshadow
= kcalloc(fotg210
->periodic_size
, sizeof(void *),
1991 if (fotg210
->pshadow
!= NULL
)
1995 fotg210_dbg(fotg210
, "couldn't init memory\n");
1996 fotg210_mem_cleanup(fotg210
);
1999 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
2001 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
2002 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2003 * buffers needed for the larger number). We use one QH per endpoint, queue
2004 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
2006 * ISO traffic uses "ISO TD" (itd) records, and (along with
2007 * interrupts) needs careful scheduling. Performance improvements can be
2008 * an ongoing challenge. That's in "ehci-sched.c".
2010 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2011 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2012 * (b) special fields in qh entries or (c) split iso entries. TTs will
2013 * buffer low/full speed data so the host collects it at high speed.
2016 /* fill a qtd, returning how much of the buffer we were able to queue up */
2017 static int qtd_fill(struct fotg210_hcd
*fotg210
, struct fotg210_qtd
*qtd
,
2018 dma_addr_t buf
, size_t len
, int token
, int maxpacket
)
2023 /* one buffer entry per 4K ... first might be short or unaligned */
2024 qtd
->hw_buf
[0] = cpu_to_hc32(fotg210
, (u32
)addr
);
2025 qtd
->hw_buf_hi
[0] = cpu_to_hc32(fotg210
, (u32
)(addr
>> 32));
2026 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
2027 if (likely(len
< count
)) /* ... iff needed */
2033 /* per-qtd limit: from 16K to 20K (best alignment) */
2034 for (i
= 1; count
< len
&& i
< 5; i
++) {
2036 qtd
->hw_buf
[i
] = cpu_to_hc32(fotg210
, (u32
)addr
);
2037 qtd
->hw_buf_hi
[i
] = cpu_to_hc32(fotg210
,
2040 if ((count
+ 0x1000) < len
)
2046 /* short packets may only terminate transfers */
2048 count
-= (count
% maxpacket
);
2050 qtd
->hw_token
= cpu_to_hc32(fotg210
, (count
<< 16) | token
);
2051 qtd
->length
= count
;
2056 static inline void qh_update(struct fotg210_hcd
*fotg210
,
2057 struct fotg210_qh
*qh
, struct fotg210_qtd
*qtd
)
2059 struct fotg210_qh_hw
*hw
= qh
->hw
;
2061 /* writes to an active overlay are unsafe */
2062 BUG_ON(qh
->qh_state
!= QH_STATE_IDLE
);
2064 hw
->hw_qtd_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2065 hw
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
2067 /* Except for control endpoints, we make hardware maintain data
2068 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2069 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2072 if (!(hw
->hw_info1
& cpu_to_hc32(fotg210
, QH_TOGGLE_CTL
))) {
2073 unsigned is_out
, epnum
;
2075 is_out
= qh
->is_out
;
2076 epnum
= (hc32_to_cpup(fotg210
, &hw
->hw_info1
) >> 8) & 0x0f;
2077 if (unlikely(!usb_gettoggle(qh
->dev
, epnum
, is_out
))) {
2078 hw
->hw_token
&= ~cpu_to_hc32(fotg210
, QTD_TOGGLE
);
2079 usb_settoggle(qh
->dev
, epnum
, is_out
, 1);
2083 hw
->hw_token
&= cpu_to_hc32(fotg210
, QTD_TOGGLE
| QTD_STS_PING
);
2086 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2087 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2088 * recovery (including urb dequeue) would need software changes to a QH...
2090 static void qh_refresh(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
2092 struct fotg210_qtd
*qtd
;
2094 if (list_empty(&qh
->qtd_list
))
2097 qtd
= list_entry(qh
->qtd_list
.next
,
2098 struct fotg210_qtd
, qtd_list
);
2100 * first qtd may already be partially processed.
2101 * If we come here during unlink, the QH overlay region
2102 * might have reference to the just unlinked qtd. The
2103 * qtd is updated in qh_completions(). Update the QH
2106 if (cpu_to_hc32(fotg210
, qtd
->qtd_dma
) == qh
->hw
->hw_current
) {
2107 qh
->hw
->hw_qtd_next
= qtd
->hw_next
;
2113 qh_update(fotg210
, qh
, qtd
);
2116 static void qh_link_async(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
2118 static void fotg210_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
2119 struct usb_host_endpoint
*ep
)
2121 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
2122 struct fotg210_qh
*qh
= ep
->hcpriv
;
2123 unsigned long flags
;
2125 spin_lock_irqsave(&fotg210
->lock
, flags
);
2126 qh
->clearing_tt
= 0;
2127 if (qh
->qh_state
== QH_STATE_IDLE
&& !list_empty(&qh
->qtd_list
)
2128 && fotg210
->rh_state
== FOTG210_RH_RUNNING
)
2129 qh_link_async(fotg210
, qh
);
2130 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
2133 static void fotg210_clear_tt_buffer(struct fotg210_hcd
*fotg210
,
2134 struct fotg210_qh
*qh
, struct urb
*urb
, u32 token
)
2137 /* If an async split transaction gets an error or is unlinked,
2138 * the TT buffer may be left in an indeterminate state. We
2139 * have to clear the TT buffer.
2141 * Note: this routine is never called for Isochronous transfers.
2143 if (urb
->dev
->tt
&& !usb_pipeint(urb
->pipe
) && !qh
->clearing_tt
) {
2144 struct usb_device
*tt
= urb
->dev
->tt
->hub
;
2147 "clear tt buffer port %d, a%d ep%d t%08x\n",
2148 urb
->dev
->ttport
, urb
->dev
->devnum
,
2149 usb_pipeendpoint(urb
->pipe
), token
);
2151 if (urb
->dev
->tt
->hub
!=
2152 fotg210_to_hcd(fotg210
)->self
.root_hub
) {
2153 if (usb_hub_clear_tt_buffer(urb
) == 0)
2154 qh
->clearing_tt
= 1;
2159 static int qtd_copy_status(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2160 size_t length
, u32 token
)
2162 int status
= -EINPROGRESS
;
2164 /* count IN/OUT bytes, not SETUP (even short packets) */
2165 if (likely(QTD_PID(token
) != 2))
2166 urb
->actual_length
+= length
- QTD_LENGTH(token
);
2168 /* don't modify error codes */
2169 if (unlikely(urb
->unlinked
))
2172 /* force cleanup after short read; not always an error */
2173 if (unlikely(IS_SHORT_READ(token
)))
2174 status
= -EREMOTEIO
;
2176 /* serious "can't proceed" faults reported by the hardware */
2177 if (token
& QTD_STS_HALT
) {
2178 if (token
& QTD_STS_BABBLE
) {
2179 /* FIXME "must" disable babbling device's port too */
2180 status
= -EOVERFLOW
;
2181 /* CERR nonzero + halt --> stall */
2182 } else if (QTD_CERR(token
)) {
2185 /* In theory, more than one of the following bits can be set
2186 * since they are sticky and the transaction is retried.
2187 * Which to test first is rather arbitrary.
2189 } else if (token
& QTD_STS_MMF
) {
2190 /* fs/ls interrupt xfer missed the complete-split */
2192 } else if (token
& QTD_STS_DBE
) {
2193 status
= (QTD_PID(token
) == 1) /* IN ? */
2194 ? -ENOSR
/* hc couldn't read data */
2195 : -ECOMM
; /* hc couldn't write data */
2196 } else if (token
& QTD_STS_XACT
) {
2197 /* timeout, bad CRC, wrong PID, etc */
2198 fotg210_dbg(fotg210
, "devpath %s ep%d%s 3strikes\n",
2200 usb_pipeendpoint(urb
->pipe
),
2201 usb_pipein(urb
->pipe
) ? "in" : "out");
2203 } else { /* unknown */
2207 fotg210_dbg(fotg210
,
2208 "dev%d ep%d%s qtd token %08x --> status %d\n",
2209 usb_pipedevice(urb
->pipe
),
2210 usb_pipeendpoint(urb
->pipe
),
2211 usb_pipein(urb
->pipe
) ? "in" : "out",
2218 static void fotg210_urb_done(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2220 __releases(fotg210
->lock
)
2221 __acquires(fotg210
->lock
)
2223 if (likely(urb
->hcpriv
!= NULL
)) {
2224 struct fotg210_qh
*qh
= (struct fotg210_qh
*) urb
->hcpriv
;
2226 /* S-mask in a QH means it's an interrupt urb */
2227 if ((qh
->hw
->hw_info2
& cpu_to_hc32(fotg210
, QH_SMASK
)) != 0) {
2229 /* ... update hc-wide periodic stats (for usbfs) */
2230 fotg210_to_hcd(fotg210
)->self
.bandwidth_int_reqs
--;
2234 if (unlikely(urb
->unlinked
)) {
2235 COUNT(fotg210
->stats
.unlink
);
2237 /* report non-error and short read status as zero */
2238 if (status
== -EINPROGRESS
|| status
== -EREMOTEIO
)
2240 COUNT(fotg210
->stats
.complete
);
2243 #ifdef FOTG210_URB_TRACE
2244 fotg210_dbg(fotg210
,
2245 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2246 __func__
, urb
->dev
->devpath
, urb
,
2247 usb_pipeendpoint(urb
->pipe
),
2248 usb_pipein(urb
->pipe
) ? "in" : "out",
2250 urb
->actual_length
, urb
->transfer_buffer_length
);
2253 /* complete() can reenter this HCD */
2254 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
2255 spin_unlock(&fotg210
->lock
);
2256 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210
), urb
, status
);
2257 spin_lock(&fotg210
->lock
);
2260 static int qh_schedule(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
2262 /* Process and free completed qtds for a qh, returning URBs to drivers.
2263 * Chases up to qh->hw_current. Returns number of completions called,
2264 * indicating how much "real" work we did.
2266 static unsigned qh_completions(struct fotg210_hcd
*fotg210
,
2267 struct fotg210_qh
*qh
)
2269 struct fotg210_qtd
*last
, *end
= qh
->dummy
;
2270 struct list_head
*entry
, *tmp
;
2275 struct fotg210_qh_hw
*hw
= qh
->hw
;
2277 if (unlikely(list_empty(&qh
->qtd_list
)))
2280 /* completions (or tasks on other cpus) must never clobber HALT
2281 * till we've gone through and cleaned everything up, even when
2282 * they add urbs to this qh's queue or mark them for unlinking.
2284 * NOTE: unlinking expects to be done in queue order.
2286 * It's a bug for qh->qh_state to be anything other than
2287 * QH_STATE_IDLE, unless our caller is scan_async() or
2290 state
= qh
->qh_state
;
2291 qh
->qh_state
= QH_STATE_COMPLETING
;
2292 stopped
= (state
== QH_STATE_IDLE
);
2296 last_status
= -EINPROGRESS
;
2297 qh
->needs_rescan
= 0;
2299 /* remove de-activated QTDs from front of queue.
2300 * after faults (including short reads), cleanup this urb
2301 * then let the queue advance.
2302 * if queue is stopped, handles unlinks.
2304 list_for_each_safe(entry
, tmp
, &qh
->qtd_list
) {
2305 struct fotg210_qtd
*qtd
;
2309 qtd
= list_entry(entry
, struct fotg210_qtd
, qtd_list
);
2312 /* clean up any state from previous QTD ...*/
2314 if (likely(last
->urb
!= urb
)) {
2315 fotg210_urb_done(fotg210
, last
->urb
,
2318 last_status
= -EINPROGRESS
;
2320 fotg210_qtd_free(fotg210
, last
);
2324 /* ignore urbs submitted during completions we reported */
2328 /* hardware copies qtd out of qh overlay */
2330 token
= hc32_to_cpu(fotg210
, qtd
->hw_token
);
2332 /* always clean up qtds the hc de-activated */
2334 if ((token
& QTD_STS_ACTIVE
) == 0) {
2336 /* Report Data Buffer Error: non-fatal but useful */
2337 if (token
& QTD_STS_DBE
)
2338 fotg210_dbg(fotg210
,
2339 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2340 urb
, usb_endpoint_num(&urb
->ep
->desc
),
2341 usb_endpoint_dir_in(&urb
->ep
->desc
)
2343 urb
->transfer_buffer_length
, qtd
, qh
);
2345 /* on STALL, error, and short reads this urb must
2346 * complete and all its qtds must be recycled.
2348 if ((token
& QTD_STS_HALT
) != 0) {
2350 /* retry transaction errors until we
2351 * reach the software xacterr limit
2353 if ((token
& QTD_STS_XACT
) &&
2354 QTD_CERR(token
) == 0 &&
2355 ++qh
->xacterrs
< QH_XACTERR_MAX
&&
2357 fotg210_dbg(fotg210
,
2358 "detected XactErr len %zu/%zu retry %d\n",
2359 qtd
->length
- QTD_LENGTH(token
),
2363 /* reset the token in the qtd and the
2364 * qh overlay (which still contains
2365 * the qtd) so that we pick up from
2368 token
&= ~QTD_STS_HALT
;
2369 token
|= QTD_STS_ACTIVE
|
2370 (FOTG210_TUNE_CERR
<< 10);
2371 qtd
->hw_token
= cpu_to_hc32(fotg210
,
2374 hw
->hw_token
= cpu_to_hc32(fotg210
,
2380 /* magic dummy for some short reads; qh won't advance.
2381 * that silicon quirk can kick in with this dummy too.
2383 * other short reads won't stop the queue, including
2384 * control transfers (status stage handles that) or
2385 * most other single-qtd reads ... the queue stops if
2386 * URB_SHORT_NOT_OK was set so the driver submitting
2387 * the urbs could clean it up.
2389 } else if (IS_SHORT_READ(token
) &&
2390 !(qtd
->hw_alt_next
&
2391 FOTG210_LIST_END(fotg210
))) {
2395 /* stop scanning when we reach qtds the hc is using */
2396 } else if (likely(!stopped
2397 && fotg210
->rh_state
>= FOTG210_RH_RUNNING
)) {
2400 /* scan the whole queue for unlinks whenever it stops */
2404 /* cancel everything if we halt, suspend, etc */
2405 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
2406 last_status
= -ESHUTDOWN
;
2408 /* this qtd is active; skip it unless a previous qtd
2409 * for its urb faulted, or its urb was canceled.
2411 else if (last_status
== -EINPROGRESS
&& !urb
->unlinked
)
2414 /* qh unlinked; token in overlay may be most current */
2415 if (state
== QH_STATE_IDLE
&&
2416 cpu_to_hc32(fotg210
, qtd
->qtd_dma
)
2417 == hw
->hw_current
) {
2418 token
= hc32_to_cpu(fotg210
, hw
->hw_token
);
2420 /* An unlink may leave an incomplete
2421 * async transaction in the TT buffer.
2422 * We have to clear it.
2424 fotg210_clear_tt_buffer(fotg210
, qh
, urb
,
2429 /* unless we already know the urb's status, collect qtd status
2430 * and update count of bytes transferred. in common short read
2431 * cases with only one data qtd (including control transfers),
2432 * queue processing won't halt. but with two or more qtds (for
2433 * example, with a 32 KB transfer), when the first qtd gets a
2434 * short read the second must be removed by hand.
2436 if (last_status
== -EINPROGRESS
) {
2437 last_status
= qtd_copy_status(fotg210
, urb
,
2438 qtd
->length
, token
);
2439 if (last_status
== -EREMOTEIO
&&
2441 FOTG210_LIST_END(fotg210
)))
2442 last_status
= -EINPROGRESS
;
2444 /* As part of low/full-speed endpoint-halt processing
2445 * we must clear the TT buffer (11.17.5).
2447 if (unlikely(last_status
!= -EINPROGRESS
&&
2448 last_status
!= -EREMOTEIO
)) {
2449 /* The TT's in some hubs malfunction when they
2450 * receive this request following a STALL (they
2451 * stop sending isochronous packets). Since a
2452 * STALL can't leave the TT buffer in a busy
2453 * state (if you believe Figures 11-48 - 11-51
2454 * in the USB 2.0 spec), we won't clear the TT
2455 * buffer in this case. Strictly speaking this
2456 * is a violation of the spec.
2458 if (last_status
!= -EPIPE
)
2459 fotg210_clear_tt_buffer(fotg210
, qh
,
2464 /* if we're removing something not at the queue head,
2465 * patch the hardware queue pointer.
2467 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
2468 last
= list_entry(qtd
->qtd_list
.prev
,
2469 struct fotg210_qtd
, qtd_list
);
2470 last
->hw_next
= qtd
->hw_next
;
2473 /* remove qtd; it's recycled after possible urb completion */
2474 list_del(&qtd
->qtd_list
);
2477 /* reinit the xacterr counter for the next qtd */
2481 /* last urb's completion might still need calling */
2482 if (likely(last
!= NULL
)) {
2483 fotg210_urb_done(fotg210
, last
->urb
, last_status
);
2485 fotg210_qtd_free(fotg210
, last
);
2488 /* Do we need to rescan for URBs dequeued during a giveback? */
2489 if (unlikely(qh
->needs_rescan
)) {
2490 /* If the QH is already unlinked, do the rescan now. */
2491 if (state
== QH_STATE_IDLE
)
2494 /* Otherwise we have to wait until the QH is fully unlinked.
2495 * Our caller will start an unlink if qh->needs_rescan is
2496 * set. But if an unlink has already started, nothing needs
2499 if (state
!= QH_STATE_LINKED
)
2500 qh
->needs_rescan
= 0;
2503 /* restore original state; caller must unlink or relink */
2504 qh
->qh_state
= state
;
2506 /* be sure the hardware's done with the qh before refreshing
2507 * it after fault cleanup, or recovering from silicon wrongly
2508 * overlaying the dummy qtd (which reduces DMA chatter).
2510 if (stopped
!= 0 || hw
->hw_qtd_next
== FOTG210_LIST_END(fotg210
)) {
2513 qh_refresh(fotg210
, qh
);
2515 case QH_STATE_LINKED
:
2516 /* We won't refresh a QH that's linked (after the HC
2517 * stopped the queue). That avoids a race:
2518 * - HC reads first part of QH;
2519 * - CPU updates that first part and the token;
2520 * - HC reads rest of that QH, including token
2521 * Result: HC gets an inconsistent image, and then
2522 * DMAs to/from the wrong memory (corrupting it).
2524 * That should be rare for interrupt transfers,
2525 * except maybe high bandwidth ...
2528 /* Tell the caller to start an unlink */
2529 qh
->needs_rescan
= 1;
2531 /* otherwise, unlink already started */
2538 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2539 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2540 /* ... and packet size, for any kind of endpoint descriptor */
2541 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2543 /* reverse of qh_urb_transaction: free a list of TDs.
2544 * used for cleanup after errors, before HC sees an URB's TDs.
2546 static void qtd_list_free(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2547 struct list_head
*qtd_list
)
2549 struct list_head
*entry
, *temp
;
2551 list_for_each_safe(entry
, temp
, qtd_list
) {
2552 struct fotg210_qtd
*qtd
;
2554 qtd
= list_entry(entry
, struct fotg210_qtd
, qtd_list
);
2555 list_del(&qtd
->qtd_list
);
2556 fotg210_qtd_free(fotg210
, qtd
);
2560 /* create a list of filled qtds for this URB; won't link into qh.
2562 static struct list_head
*qh_urb_transaction(struct fotg210_hcd
*fotg210
,
2563 struct urb
*urb
, struct list_head
*head
, gfp_t flags
)
2565 struct fotg210_qtd
*qtd
, *qtd_prev
;
2567 int len
, this_sg_len
, maxpacket
;
2571 struct scatterlist
*sg
;
2574 * URBs map to sequences of QTDs: one logical transaction
2576 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2579 list_add_tail(&qtd
->qtd_list
, head
);
2582 token
= QTD_STS_ACTIVE
;
2583 token
|= (FOTG210_TUNE_CERR
<< 10);
2584 /* for split transactions, SplitXState initialized to zero */
2586 len
= urb
->transfer_buffer_length
;
2587 is_input
= usb_pipein(urb
->pipe
);
2588 if (usb_pipecontrol(urb
->pipe
)) {
2590 qtd_fill(fotg210
, qtd
, urb
->setup_dma
,
2591 sizeof(struct usb_ctrlrequest
),
2592 token
| (2 /* "setup" */ << 8), 8);
2594 /* ... and always at least one more pid */
2595 token
^= QTD_TOGGLE
;
2597 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2601 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2602 list_add_tail(&qtd
->qtd_list
, head
);
2604 /* for zero length DATA stages, STATUS is always IN */
2606 token
|= (1 /* "in" */ << 8);
2610 * data transfer stage: buffer setup
2612 i
= urb
->num_mapped_sgs
;
2613 if (len
> 0 && i
> 0) {
2615 buf
= sg_dma_address(sg
);
2617 /* urb->transfer_buffer_length may be smaller than the
2618 * size of the scatterlist (or vice versa)
2620 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
2623 buf
= urb
->transfer_dma
;
2628 token
|= (1 /* "in" */ << 8);
2629 /* else it's already initted to "out" pid (0 << 8) */
2631 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
));
2634 * buffer gets wrapped in one or more qtds;
2635 * last one may be "short" (including zero len)
2636 * and may serve as a control status ack
2641 this_qtd_len
= qtd_fill(fotg210
, qtd
, buf
, this_sg_len
, token
,
2643 this_sg_len
-= this_qtd_len
;
2644 len
-= this_qtd_len
;
2645 buf
+= this_qtd_len
;
2648 * short reads advance to a "magic" dummy instead of the next
2649 * qtd ... that forces the queue to stop, for manual cleanup.
2650 * (this will usually be overridden later.)
2653 qtd
->hw_alt_next
= fotg210
->async
->hw
->hw_alt_next
;
2655 /* qh makes control packets use qtd toggle; maybe switch it */
2656 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
2657 token
^= QTD_TOGGLE
;
2659 if (likely(this_sg_len
<= 0)) {
2660 if (--i
<= 0 || len
<= 0)
2663 buf
= sg_dma_address(sg
);
2664 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
2668 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2672 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2673 list_add_tail(&qtd
->qtd_list
, head
);
2677 * unless the caller requires manual cleanup after short reads,
2678 * have the alt_next mechanism keep the queue running after the
2679 * last data qtd (the only one, for control and most other cases).
2681 if (likely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0 ||
2682 usb_pipecontrol(urb
->pipe
)))
2683 qtd
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
2686 * control requests may need a terminating data "status" ack;
2687 * other OUT ones may need a terminating short packet
2690 if (likely(urb
->transfer_buffer_length
!= 0)) {
2693 if (usb_pipecontrol(urb
->pipe
)) {
2695 token
^= 0x0100; /* "in" <--> "out" */
2696 token
|= QTD_TOGGLE
; /* force DATA1 */
2697 } else if (usb_pipeout(urb
->pipe
)
2698 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
2699 && !(urb
->transfer_buffer_length
% maxpacket
)) {
2704 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2708 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2709 list_add_tail(&qtd
->qtd_list
, head
);
2711 /* never any data in such packets */
2712 qtd_fill(fotg210
, qtd
, 0, 0, token
, 0);
2716 /* by default, enable interrupt on urb completion */
2717 if (likely(!(urb
->transfer_flags
& URB_NO_INTERRUPT
)))
2718 qtd
->hw_token
|= cpu_to_hc32(fotg210
, QTD_IOC
);
2722 qtd_list_free(fotg210
, urb
, head
);
2726 /* Would be best to create all qh's from config descriptors,
2727 * when each interface/altsetting is established. Unlink
2728 * any previous qh and cancel its urbs first; endpoints are
2729 * implicitly reset then (data toggle too).
2730 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2734 /* Each QH holds a qtd list; a QH is used for everything except iso.
2736 * For interrupt urbs, the scheduler must set the microframe scheduling
2737 * mask(s) each time the QH gets scheduled. For highspeed, that's
2738 * just one microframe in the s-mask. For split interrupt transactions
2739 * there are additional complications: c-mask, maybe FSTNs.
2741 static struct fotg210_qh
*qh_make(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2744 struct fotg210_qh
*qh
= fotg210_qh_alloc(fotg210
, flags
);
2745 u32 info1
= 0, info2
= 0;
2748 struct usb_tt
*tt
= urb
->dev
->tt
;
2749 struct fotg210_qh_hw
*hw
;
2755 * init endpoint/device data for this QH
2757 info1
|= usb_pipeendpoint(urb
->pipe
) << 8;
2758 info1
|= usb_pipedevice(urb
->pipe
) << 0;
2760 is_input
= usb_pipein(urb
->pipe
);
2761 type
= usb_pipetype(urb
->pipe
);
2762 maxp
= usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
);
2764 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2765 * acts like up to 3KB, but is built from smaller packets.
2767 if (max_packet(maxp
) > 1024) {
2768 fotg210_dbg(fotg210
, "bogus qh maxpacket %d\n",
2773 /* Compute interrupt scheduling parameters just once, and save.
2774 * - allowing for high bandwidth, how many nsec/uframe are used?
2775 * - split transactions need a second CSPLIT uframe; same question
2776 * - splits also need a schedule gap (for full/low speed I/O)
2777 * - qh has a polling interval
2779 * For control/bulk requests, the HC or TT handles these.
2781 if (type
== PIPE_INTERRUPT
) {
2782 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
2784 hb_mult(maxp
) * max_packet(maxp
)));
2785 qh
->start
= NO_FRAME
;
2787 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
2791 qh
->period
= urb
->interval
>> 3;
2792 if (qh
->period
== 0 && urb
->interval
!= 1) {
2793 /* NOTE interval 2 or 4 uframes could work.
2794 * But interval 1 scheduling is simpler, and
2795 * includes high bandwidth.
2798 } else if (qh
->period
> fotg210
->periodic_size
) {
2799 qh
->period
= fotg210
->periodic_size
;
2800 urb
->interval
= qh
->period
<< 3;
2805 /* gap is f(FS/LS transfer times) */
2806 qh
->gap_uf
= 1 + usb_calc_bus_time(urb
->dev
->speed
,
2807 is_input
, 0, maxp
) / (125 * 1000);
2809 /* FIXME this just approximates SPLIT/CSPLIT times */
2810 if (is_input
) { /* SPLIT, gap, CSPLIT+DATA */
2811 qh
->c_usecs
= qh
->usecs
+ HS_USECS(0);
2812 qh
->usecs
= HS_USECS(1);
2813 } else { /* SPLIT+DATA, gap, CSPLIT */
2814 qh
->usecs
+= HS_USECS(1);
2815 qh
->c_usecs
= HS_USECS(0);
2818 think_time
= tt
? tt
->think_time
: 0;
2819 qh
->tt_usecs
= NS_TO_US(think_time
+
2820 usb_calc_bus_time(urb
->dev
->speed
,
2821 is_input
, 0, max_packet(maxp
)));
2822 qh
->period
= urb
->interval
;
2823 if (qh
->period
> fotg210
->periodic_size
) {
2824 qh
->period
= fotg210
->periodic_size
;
2825 urb
->interval
= qh
->period
;
2830 /* support for tt scheduling, and access to toggles */
2834 switch (urb
->dev
->speed
) {
2836 info1
|= QH_LOW_SPEED
;
2839 case USB_SPEED_FULL
:
2840 /* EPS 0 means "full" */
2841 if (type
!= PIPE_INTERRUPT
)
2842 info1
|= (FOTG210_TUNE_RL_TT
<< 28);
2843 if (type
== PIPE_CONTROL
) {
2844 info1
|= QH_CONTROL_EP
; /* for TT */
2845 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
2847 info1
|= maxp
<< 16;
2849 info2
|= (FOTG210_TUNE_MULT_TT
<< 30);
2851 /* Some Freescale processors have an erratum in which the
2852 * port number in the queue head was 0..N-1 instead of 1..N.
2854 if (fotg210_has_fsl_portno_bug(fotg210
))
2855 info2
|= (urb
->dev
->ttport
-1) << 23;
2857 info2
|= urb
->dev
->ttport
<< 23;
2859 /* set the address of the TT; for TDI's integrated
2860 * root hub tt, leave it zeroed.
2862 if (tt
&& tt
->hub
!= fotg210_to_hcd(fotg210
)->self
.root_hub
)
2863 info2
|= tt
->hub
->devnum
<< 16;
2865 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2869 case USB_SPEED_HIGH
: /* no TT involved */
2870 info1
|= QH_HIGH_SPEED
;
2871 if (type
== PIPE_CONTROL
) {
2872 info1
|= (FOTG210_TUNE_RL_HS
<< 28);
2873 info1
|= 64 << 16; /* usb2 fixed maxpacket */
2874 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
2875 info2
|= (FOTG210_TUNE_MULT_HS
<< 30);
2876 } else if (type
== PIPE_BULK
) {
2877 info1
|= (FOTG210_TUNE_RL_HS
<< 28);
2878 /* The USB spec says that high speed bulk endpoints
2879 * always use 512 byte maxpacket. But some device
2880 * vendors decided to ignore that, and MSFT is happy
2881 * to help them do so. So now people expect to use
2882 * such nonconformant devices with Linux too; sigh.
2884 info1
|= max_packet(maxp
) << 16;
2885 info2
|= (FOTG210_TUNE_MULT_HS
<< 30);
2886 } else { /* PIPE_INTERRUPT */
2887 info1
|= max_packet(maxp
) << 16;
2888 info2
|= hb_mult(maxp
) << 30;
2892 fotg210_dbg(fotg210
, "bogus dev %p speed %d\n", urb
->dev
,
2895 qh_destroy(fotg210
, qh
);
2899 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2901 /* init as live, toggle clear, advance to dummy */
2902 qh
->qh_state
= QH_STATE_IDLE
;
2904 hw
->hw_info1
= cpu_to_hc32(fotg210
, info1
);
2905 hw
->hw_info2
= cpu_to_hc32(fotg210
, info2
);
2906 qh
->is_out
= !is_input
;
2907 usb_settoggle(urb
->dev
, usb_pipeendpoint(urb
->pipe
), !is_input
, 1);
2908 qh_refresh(fotg210
, qh
);
2912 static void enable_async(struct fotg210_hcd
*fotg210
)
2914 if (fotg210
->async_count
++)
2917 /* Stop waiting to turn off the async schedule */
2918 fotg210
->enabled_hrtimer_events
&= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC
);
2920 /* Don't start the schedule until ASS is 0 */
2921 fotg210_poll_ASS(fotg210
);
2922 turn_on_io_watchdog(fotg210
);
2925 static void disable_async(struct fotg210_hcd
*fotg210
)
2927 if (--fotg210
->async_count
)
2930 /* The async schedule and async_unlink list are supposed to be empty */
2931 WARN_ON(fotg210
->async
->qh_next
.qh
|| fotg210
->async_unlink
);
2933 /* Don't turn off the schedule until ASS is 1 */
2934 fotg210_poll_ASS(fotg210
);
2937 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2939 static void qh_link_async(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
2941 __hc32 dma
= QH_NEXT(fotg210
, qh
->qh_dma
);
2942 struct fotg210_qh
*head
;
2944 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2945 if (unlikely(qh
->clearing_tt
))
2948 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
2950 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2951 qh_refresh(fotg210
, qh
);
2953 /* splice right after start */
2954 head
= fotg210
->async
;
2955 qh
->qh_next
= head
->qh_next
;
2956 qh
->hw
->hw_next
= head
->hw
->hw_next
;
2959 head
->qh_next
.qh
= qh
;
2960 head
->hw
->hw_next
= dma
;
2963 qh
->qh_state
= QH_STATE_LINKED
;
2964 /* qtd completions reported later by interrupt */
2966 enable_async(fotg210
);
2969 /* For control/bulk/interrupt, return QH with these TDs appended.
2970 * Allocates and initializes the QH if necessary.
2971 * Returns null if it can't allocate a QH it needs to.
2972 * If the QH has TDs (urbs) already, that's great.
2974 static struct fotg210_qh
*qh_append_tds(struct fotg210_hcd
*fotg210
,
2975 struct urb
*urb
, struct list_head
*qtd_list
,
2976 int epnum
, void **ptr
)
2978 struct fotg210_qh
*qh
= NULL
;
2979 __hc32 qh_addr_mask
= cpu_to_hc32(fotg210
, 0x7f);
2981 qh
= (struct fotg210_qh
*) *ptr
;
2982 if (unlikely(qh
== NULL
)) {
2983 /* can't sleep here, we have fotg210->lock... */
2984 qh
= qh_make(fotg210
, urb
, GFP_ATOMIC
);
2987 if (likely(qh
!= NULL
)) {
2988 struct fotg210_qtd
*qtd
;
2990 if (unlikely(list_empty(qtd_list
)))
2993 qtd
= list_entry(qtd_list
->next
, struct fotg210_qtd
,
2996 /* control qh may need patching ... */
2997 if (unlikely(epnum
== 0)) {
2998 /* usb_reset_device() briefly reverts to address 0 */
2999 if (usb_pipedevice(urb
->pipe
) == 0)
3000 qh
->hw
->hw_info1
&= ~qh_addr_mask
;
3003 /* just one way to queue requests: swap with the dummy qtd.
3004 * only hc or qh_refresh() ever modify the overlay.
3006 if (likely(qtd
!= NULL
)) {
3007 struct fotg210_qtd
*dummy
;
3011 /* to avoid racing the HC, use the dummy td instead of
3012 * the first td of our list (becomes new dummy). both
3013 * tds stay deactivated until we're done, when the
3014 * HC is allowed to fetch the old dummy (4.10.2).
3016 token
= qtd
->hw_token
;
3017 qtd
->hw_token
= HALT_BIT(fotg210
);
3021 dma
= dummy
->qtd_dma
;
3023 dummy
->qtd_dma
= dma
;
3025 list_del(&qtd
->qtd_list
);
3026 list_add(&dummy
->qtd_list
, qtd_list
);
3027 list_splice_tail(qtd_list
, &qh
->qtd_list
);
3029 fotg210_qtd_init(fotg210
, qtd
, qtd
->qtd_dma
);
3032 /* hc must see the new dummy at list end */
3034 qtd
= list_entry(qh
->qtd_list
.prev
,
3035 struct fotg210_qtd
, qtd_list
);
3036 qtd
->hw_next
= QTD_NEXT(fotg210
, dma
);
3038 /* let the hc process these next qtds */
3040 dummy
->hw_token
= token
;
3048 static int submit_async(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
3049 struct list_head
*qtd_list
, gfp_t mem_flags
)
3052 unsigned long flags
;
3053 struct fotg210_qh
*qh
= NULL
;
3056 epnum
= urb
->ep
->desc
.bEndpointAddress
;
3058 #ifdef FOTG210_URB_TRACE
3060 struct fotg210_qtd
*qtd
;
3062 qtd
= list_entry(qtd_list
->next
, struct fotg210_qtd
, qtd_list
);
3063 fotg210_dbg(fotg210
,
3064 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3065 __func__
, urb
->dev
->devpath
, urb
,
3066 epnum
& 0x0f, (epnum
& USB_DIR_IN
)
3068 urb
->transfer_buffer_length
,
3069 qtd
, urb
->ep
->hcpriv
);
3073 spin_lock_irqsave(&fotg210
->lock
, flags
);
3074 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
3078 rc
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
3082 qh
= qh_append_tds(fotg210
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
3083 if (unlikely(qh
== NULL
)) {
3084 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
3089 /* Control/bulk operations through TTs don't need scheduling,
3090 * the HC and TT handle it when the TT has a buffer ready.
3092 if (likely(qh
->qh_state
== QH_STATE_IDLE
))
3093 qh_link_async(fotg210
, qh
);
3095 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
3096 if (unlikely(qh
== NULL
))
3097 qtd_list_free(fotg210
, urb
, qtd_list
);
3101 static void single_unlink_async(struct fotg210_hcd
*fotg210
,
3102 struct fotg210_qh
*qh
)
3104 struct fotg210_qh
*prev
;
3106 /* Add to the end of the list of QHs waiting for the next IAAD */
3107 qh
->qh_state
= QH_STATE_UNLINK
;
3108 if (fotg210
->async_unlink
)
3109 fotg210
->async_unlink_last
->unlink_next
= qh
;
3111 fotg210
->async_unlink
= qh
;
3112 fotg210
->async_unlink_last
= qh
;
3114 /* Unlink it from the schedule */
3115 prev
= fotg210
->async
;
3116 while (prev
->qh_next
.qh
!= qh
)
3117 prev
= prev
->qh_next
.qh
;
3119 prev
->hw
->hw_next
= qh
->hw
->hw_next
;
3120 prev
->qh_next
= qh
->qh_next
;
3121 if (fotg210
->qh_scan_next
== qh
)
3122 fotg210
->qh_scan_next
= qh
->qh_next
.qh
;
3125 static void start_iaa_cycle(struct fotg210_hcd
*fotg210
, bool nested
)
3128 * Do nothing if an IAA cycle is already running or
3129 * if one will be started shortly.
3131 if (fotg210
->async_iaa
|| fotg210
->async_unlinking
)
3134 /* Do all the waiting QHs at once */
3135 fotg210
->async_iaa
= fotg210
->async_unlink
;
3136 fotg210
->async_unlink
= NULL
;
3138 /* If the controller isn't running, we don't have to wait for it */
3139 if (unlikely(fotg210
->rh_state
< FOTG210_RH_RUNNING
)) {
3140 if (!nested
) /* Avoid recursion */
3141 end_unlink_async(fotg210
);
3143 /* Otherwise start a new IAA cycle */
3144 } else if (likely(fotg210
->rh_state
== FOTG210_RH_RUNNING
)) {
3145 /* Make sure the unlinks are all visible to the hardware */
3148 fotg210_writel(fotg210
, fotg210
->command
| CMD_IAAD
,
3149 &fotg210
->regs
->command
);
3150 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
3151 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_IAA_WATCHDOG
,
3156 /* the async qh for the qtds being unlinked are now gone from the HC */
3158 static void end_unlink_async(struct fotg210_hcd
*fotg210
)
3160 struct fotg210_qh
*qh
;
3162 /* Process the idle QHs */
3164 fotg210
->async_unlinking
= true;
3165 while (fotg210
->async_iaa
) {
3166 qh
= fotg210
->async_iaa
;
3167 fotg210
->async_iaa
= qh
->unlink_next
;
3168 qh
->unlink_next
= NULL
;
3170 qh
->qh_state
= QH_STATE_IDLE
;
3171 qh
->qh_next
.qh
= NULL
;
3173 qh_completions(fotg210
, qh
);
3174 if (!list_empty(&qh
->qtd_list
) &&
3175 fotg210
->rh_state
== FOTG210_RH_RUNNING
)
3176 qh_link_async(fotg210
, qh
);
3177 disable_async(fotg210
);
3179 fotg210
->async_unlinking
= false;
3181 /* Start a new IAA cycle if any QHs are waiting for it */
3182 if (fotg210
->async_unlink
) {
3183 start_iaa_cycle(fotg210
, true);
3184 if (unlikely(fotg210
->rh_state
< FOTG210_RH_RUNNING
))
3189 static void unlink_empty_async(struct fotg210_hcd
*fotg210
)
3191 struct fotg210_qh
*qh
, *next
;
3192 bool stopped
= (fotg210
->rh_state
< FOTG210_RH_RUNNING
);
3193 bool check_unlinks_later
= false;
3195 /* Unlink all the async QHs that have been empty for a timer cycle */
3196 next
= fotg210
->async
->qh_next
.qh
;
3199 next
= qh
->qh_next
.qh
;
3201 if (list_empty(&qh
->qtd_list
) &&
3202 qh
->qh_state
== QH_STATE_LINKED
) {
3203 if (!stopped
&& qh
->unlink_cycle
==
3204 fotg210
->async_unlink_cycle
)
3205 check_unlinks_later
= true;
3207 single_unlink_async(fotg210
, qh
);
3211 /* Start a new IAA cycle if any QHs are waiting for it */
3212 if (fotg210
->async_unlink
)
3213 start_iaa_cycle(fotg210
, false);
3215 /* QHs that haven't been empty for long enough will be handled later */
3216 if (check_unlinks_later
) {
3217 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_ASYNC_UNLINKS
,
3219 ++fotg210
->async_unlink_cycle
;
3223 /* makes sure the async qh will become idle */
3224 /* caller must own fotg210->lock */
3226 static void start_unlink_async(struct fotg210_hcd
*fotg210
,
3227 struct fotg210_qh
*qh
)
3230 * If the QH isn't linked then there's nothing we can do
3231 * unless we were called during a giveback, in which case
3232 * qh_completions() has to deal with it.
3234 if (qh
->qh_state
!= QH_STATE_LINKED
) {
3235 if (qh
->qh_state
== QH_STATE_COMPLETING
)
3236 qh
->needs_rescan
= 1;
3240 single_unlink_async(fotg210
, qh
);
3241 start_iaa_cycle(fotg210
, false);
3244 static void scan_async(struct fotg210_hcd
*fotg210
)
3246 struct fotg210_qh
*qh
;
3247 bool check_unlinks_later
= false;
3249 fotg210
->qh_scan_next
= fotg210
->async
->qh_next
.qh
;
3250 while (fotg210
->qh_scan_next
) {
3251 qh
= fotg210
->qh_scan_next
;
3252 fotg210
->qh_scan_next
= qh
->qh_next
.qh
;
3254 /* clean any finished work for this qh */
3255 if (!list_empty(&qh
->qtd_list
)) {
3259 * Unlinks could happen here; completion reporting
3260 * drops the lock. That's why fotg210->qh_scan_next
3261 * always holds the next qh to scan; if the next qh
3262 * gets unlinked then fotg210->qh_scan_next is adjusted
3263 * in single_unlink_async().
3265 temp
= qh_completions(fotg210
, qh
);
3266 if (qh
->needs_rescan
) {
3267 start_unlink_async(fotg210
, qh
);
3268 } else if (list_empty(&qh
->qtd_list
)
3269 && qh
->qh_state
== QH_STATE_LINKED
) {
3270 qh
->unlink_cycle
= fotg210
->async_unlink_cycle
;
3271 check_unlinks_later
= true;
3272 } else if (temp
!= 0)
3278 * Unlink empty entries, reducing DMA usage as well
3279 * as HCD schedule-scanning costs. Delay for any qh
3280 * we just scanned, there's a not-unusual case that it
3281 * doesn't stay idle for long.
3283 if (check_unlinks_later
&& fotg210
->rh_state
== FOTG210_RH_RUNNING
&&
3284 !(fotg210
->enabled_hrtimer_events
&
3285 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS
))) {
3286 fotg210_enable_event(fotg210
,
3287 FOTG210_HRTIMER_ASYNC_UNLINKS
, true);
3288 ++fotg210
->async_unlink_cycle
;
3291 /* EHCI scheduled transaction support: interrupt, iso, split iso
3292 * These are called "periodic" transactions in the EHCI spec.
3294 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3295 * with the "asynchronous" transaction support (control/bulk transfers).
3296 * The only real difference is in how interrupt transfers are scheduled.
3298 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3299 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3300 * pre-calculated schedule data to make appending to the queue be quick.
3302 static int fotg210_get_frame(struct usb_hcd
*hcd
);
3304 /* periodic_next_shadow - return "next" pointer on shadow list
3305 * @periodic: host pointer to qh/itd
3306 * @tag: hardware tag for type of this record
3308 static union fotg210_shadow
*periodic_next_shadow(struct fotg210_hcd
*fotg210
,
3309 union fotg210_shadow
*periodic
, __hc32 tag
)
3311 switch (hc32_to_cpu(fotg210
, tag
)) {
3313 return &periodic
->qh
->qh_next
;
3315 return &periodic
->fstn
->fstn_next
;
3317 return &periodic
->itd
->itd_next
;
3321 static __hc32
*shadow_next_periodic(struct fotg210_hcd
*fotg210
,
3322 union fotg210_shadow
*periodic
, __hc32 tag
)
3324 switch (hc32_to_cpu(fotg210
, tag
)) {
3325 /* our fotg210_shadow.qh is actually software part */
3327 return &periodic
->qh
->hw
->hw_next
;
3328 /* others are hw parts */
3330 return periodic
->hw_next
;
3334 /* caller must hold fotg210->lock */
3335 static void periodic_unlink(struct fotg210_hcd
*fotg210
, unsigned frame
,
3338 union fotg210_shadow
*prev_p
= &fotg210
->pshadow
[frame
];
3339 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
3340 union fotg210_shadow here
= *prev_p
;
3342 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3343 while (here
.ptr
&& here
.ptr
!= ptr
) {
3344 prev_p
= periodic_next_shadow(fotg210
, prev_p
,
3345 Q_NEXT_TYPE(fotg210
, *hw_p
));
3346 hw_p
= shadow_next_periodic(fotg210
, &here
,
3347 Q_NEXT_TYPE(fotg210
, *hw_p
));
3350 /* an interrupt entry (at list end) could have been shared */
3354 /* update shadow and hardware lists ... the old "next" pointers
3355 * from ptr may still be in use, the caller updates them.
3357 *prev_p
= *periodic_next_shadow(fotg210
, &here
,
3358 Q_NEXT_TYPE(fotg210
, *hw_p
));
3360 *hw_p
= *shadow_next_periodic(fotg210
, &here
,
3361 Q_NEXT_TYPE(fotg210
, *hw_p
));
3364 /* how many of the uframe's 125 usecs are allocated? */
3365 static unsigned short periodic_usecs(struct fotg210_hcd
*fotg210
,
3366 unsigned frame
, unsigned uframe
)
3368 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
3369 union fotg210_shadow
*q
= &fotg210
->pshadow
[frame
];
3371 struct fotg210_qh_hw
*hw
;
3374 switch (hc32_to_cpu(fotg210
, Q_NEXT_TYPE(fotg210
, *hw_p
))) {
3377 /* is it in the S-mask? */
3378 if (hw
->hw_info2
& cpu_to_hc32(fotg210
, 1 << uframe
))
3379 usecs
+= q
->qh
->usecs
;
3380 /* ... or C-mask? */
3381 if (hw
->hw_info2
& cpu_to_hc32(fotg210
,
3383 usecs
+= q
->qh
->c_usecs
;
3384 hw_p
= &hw
->hw_next
;
3385 q
= &q
->qh
->qh_next
;
3387 /* case Q_TYPE_FSTN: */
3389 /* for "save place" FSTNs, count the relevant INTR
3390 * bandwidth from the previous frame
3392 if (q
->fstn
->hw_prev
!= FOTG210_LIST_END(fotg210
))
3393 fotg210_dbg(fotg210
, "ignoring FSTN cost ...\n");
3395 hw_p
= &q
->fstn
->hw_next
;
3396 q
= &q
->fstn
->fstn_next
;
3399 if (q
->itd
->hw_transaction
[uframe
])
3400 usecs
+= q
->itd
->stream
->usecs
;
3401 hw_p
= &q
->itd
->hw_next
;
3402 q
= &q
->itd
->itd_next
;
3406 if (usecs
> fotg210
->uframe_periodic_max
)
3407 fotg210_err(fotg210
, "uframe %d sched overrun: %d usecs\n",
3408 frame
* 8 + uframe
, usecs
);
3412 static int same_tt(struct usb_device
*dev1
, struct usb_device
*dev2
)
3414 if (!dev1
->tt
|| !dev2
->tt
)
3416 if (dev1
->tt
!= dev2
->tt
)
3418 if (dev1
->tt
->multi
)
3419 return dev1
->ttport
== dev2
->ttport
;
3424 /* return true iff the device's transaction translator is available
3425 * for a periodic transfer starting at the specified frame, using
3426 * all the uframes in the mask.
3428 static int tt_no_collision(struct fotg210_hcd
*fotg210
, unsigned period
,
3429 struct usb_device
*dev
, unsigned frame
, u32 uf_mask
)
3431 if (period
== 0) /* error */
3434 /* note bandwidth wastage: split never follows csplit
3435 * (different dev or endpoint) until the next uframe.
3436 * calling convention doesn't make that distinction.
3438 for (; frame
< fotg210
->periodic_size
; frame
+= period
) {
3439 union fotg210_shadow here
;
3441 struct fotg210_qh_hw
*hw
;
3443 here
= fotg210
->pshadow
[frame
];
3444 type
= Q_NEXT_TYPE(fotg210
, fotg210
->periodic
[frame
]);
3446 switch (hc32_to_cpu(fotg210
, type
)) {
3448 type
= Q_NEXT_TYPE(fotg210
, here
.itd
->hw_next
);
3449 here
= here
.itd
->itd_next
;
3453 if (same_tt(dev
, here
.qh
->dev
)) {
3456 mask
= hc32_to_cpu(fotg210
,
3458 /* "knows" no gap is needed */
3463 type
= Q_NEXT_TYPE(fotg210
, hw
->hw_next
);
3464 here
= here
.qh
->qh_next
;
3466 /* case Q_TYPE_FSTN: */
3468 fotg210_dbg(fotg210
,
3469 "periodic frame %d bogus type %d\n",
3473 /* collision or error */
3482 static void enable_periodic(struct fotg210_hcd
*fotg210
)
3484 if (fotg210
->periodic_count
++)
3487 /* Stop waiting to turn off the periodic schedule */
3488 fotg210
->enabled_hrtimer_events
&=
3489 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC
);
3491 /* Don't start the schedule until PSS is 0 */
3492 fotg210_poll_PSS(fotg210
);
3493 turn_on_io_watchdog(fotg210
);
3496 static void disable_periodic(struct fotg210_hcd
*fotg210
)
3498 if (--fotg210
->periodic_count
)
3501 /* Don't turn off the schedule until PSS is 1 */
3502 fotg210_poll_PSS(fotg210
);
3505 /* periodic schedule slots have iso tds (normal or split) first, then a
3506 * sparse tree for active interrupt transfers.
3508 * this just links in a qh; caller guarantees uframe masks are set right.
3509 * no FSTN support (yet; fotg210 0.96+)
3511 static void qh_link_periodic(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3514 unsigned period
= qh
->period
;
3516 dev_dbg(&qh
->dev
->dev
,
3517 "link qh%d-%04x/%p start %d [%d/%d us]\n", period
,
3518 hc32_to_cpup(fotg210
, &qh
->hw
->hw_info2
) &
3519 (QH_CMASK
| QH_SMASK
), qh
, qh
->start
, qh
->usecs
,
3522 /* high bandwidth, or otherwise every microframe */
3526 for (i
= qh
->start
; i
< fotg210
->periodic_size
; i
+= period
) {
3527 union fotg210_shadow
*prev
= &fotg210
->pshadow
[i
];
3528 __hc32
*hw_p
= &fotg210
->periodic
[i
];
3529 union fotg210_shadow here
= *prev
;
3532 /* skip the iso nodes at list head */
3534 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
3535 if (type
== cpu_to_hc32(fotg210
, Q_TYPE_QH
))
3537 prev
= periodic_next_shadow(fotg210
, prev
, type
);
3538 hw_p
= shadow_next_periodic(fotg210
, &here
, type
);
3542 /* sorting each branch by period (slow-->fast)
3543 * enables sharing interior tree nodes
3545 while (here
.ptr
&& qh
!= here
.qh
) {
3546 if (qh
->period
> here
.qh
->period
)
3548 prev
= &here
.qh
->qh_next
;
3549 hw_p
= &here
.qh
->hw
->hw_next
;
3552 /* link in this qh, unless some earlier pass did that */
3553 if (qh
!= here
.qh
) {
3556 qh
->hw
->hw_next
= *hw_p
;
3559 *hw_p
= QH_NEXT(fotg210
, qh
->qh_dma
);
3562 qh
->qh_state
= QH_STATE_LINKED
;
3565 /* update per-qh bandwidth for usbfs */
3566 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
+= qh
->period
3567 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
3570 list_add(&qh
->intr_node
, &fotg210
->intr_qh_list
);
3572 /* maybe enable periodic schedule processing */
3573 ++fotg210
->intr_count
;
3574 enable_periodic(fotg210
);
3577 static void qh_unlink_periodic(struct fotg210_hcd
*fotg210
,
3578 struct fotg210_qh
*qh
)
3584 * If qh is for a low/full-speed device, simply unlinking it
3585 * could interfere with an ongoing split transaction. To unlink
3586 * it safely would require setting the QH_INACTIVATE bit and
3587 * waiting at least one frame, as described in EHCI 4.12.2.5.
3589 * We won't bother with any of this. Instead, we assume that the
3590 * only reason for unlinking an interrupt QH while the current URB
3591 * is still active is to dequeue all the URBs (flush the whole
3594 * If rebalancing the periodic schedule is ever implemented, this
3595 * approach will no longer be valid.
3598 /* high bandwidth, or otherwise part of every microframe */
3599 period
= qh
->period
;
3603 for (i
= qh
->start
; i
< fotg210
->periodic_size
; i
+= period
)
3604 periodic_unlink(fotg210
, i
, qh
);
3606 /* update per-qh bandwidth for usbfs */
3607 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
-= qh
->period
3608 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
3611 dev_dbg(&qh
->dev
->dev
,
3612 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3613 qh
->period
, hc32_to_cpup(fotg210
, &qh
->hw
->hw_info2
) &
3614 (QH_CMASK
| QH_SMASK
), qh
, qh
->start
, qh
->usecs
,
3617 /* qh->qh_next still "live" to HC */
3618 qh
->qh_state
= QH_STATE_UNLINK
;
3619 qh
->qh_next
.ptr
= NULL
;
3621 if (fotg210
->qh_scan_next
== qh
)
3622 fotg210
->qh_scan_next
= list_entry(qh
->intr_node
.next
,
3623 struct fotg210_qh
, intr_node
);
3624 list_del(&qh
->intr_node
);
3627 static void start_unlink_intr(struct fotg210_hcd
*fotg210
,
3628 struct fotg210_qh
*qh
)
3630 /* If the QH isn't linked then there's nothing we can do
3631 * unless we were called during a giveback, in which case
3632 * qh_completions() has to deal with it.
3634 if (qh
->qh_state
!= QH_STATE_LINKED
) {
3635 if (qh
->qh_state
== QH_STATE_COMPLETING
)
3636 qh
->needs_rescan
= 1;
3640 qh_unlink_periodic(fotg210
, qh
);
3642 /* Make sure the unlinks are visible before starting the timer */
3646 * The EHCI spec doesn't say how long it takes the controller to
3647 * stop accessing an unlinked interrupt QH. The timer delay is
3648 * 9 uframes; presumably that will be long enough.
3650 qh
->unlink_cycle
= fotg210
->intr_unlink_cycle
;
3652 /* New entries go at the end of the intr_unlink list */
3653 if (fotg210
->intr_unlink
)
3654 fotg210
->intr_unlink_last
->unlink_next
= qh
;
3656 fotg210
->intr_unlink
= qh
;
3657 fotg210
->intr_unlink_last
= qh
;
3659 if (fotg210
->intr_unlinking
)
3660 ; /* Avoid recursive calls */
3661 else if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
3662 fotg210_handle_intr_unlinks(fotg210
);
3663 else if (fotg210
->intr_unlink
== qh
) {
3664 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_UNLINK_INTR
,
3666 ++fotg210
->intr_unlink_cycle
;
3670 static void end_unlink_intr(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3672 struct fotg210_qh_hw
*hw
= qh
->hw
;
3675 qh
->qh_state
= QH_STATE_IDLE
;
3676 hw
->hw_next
= FOTG210_LIST_END(fotg210
);
3678 qh_completions(fotg210
, qh
);
3680 /* reschedule QH iff another request is queued */
3681 if (!list_empty(&qh
->qtd_list
) &&
3682 fotg210
->rh_state
== FOTG210_RH_RUNNING
) {
3683 rc
= qh_schedule(fotg210
, qh
);
3685 /* An error here likely indicates handshake failure
3686 * or no space left in the schedule. Neither fault
3687 * should happen often ...
3689 * FIXME kill the now-dysfunctional queued urbs
3692 fotg210_err(fotg210
, "can't reschedule qh %p, err %d\n",
3696 /* maybe turn off periodic schedule */
3697 --fotg210
->intr_count
;
3698 disable_periodic(fotg210
);
3701 static int check_period(struct fotg210_hcd
*fotg210
, unsigned frame
,
3702 unsigned uframe
, unsigned period
, unsigned usecs
)
3706 /* complete split running into next frame?
3707 * given FSTN support, we could sometimes check...
3712 /* convert "usecs we need" to "max already claimed" */
3713 usecs
= fotg210
->uframe_periodic_max
- usecs
;
3715 /* we "know" 2 and 4 uframe intervals were rejected; so
3716 * for period 0, check _every_ microframe in the schedule.
3718 if (unlikely(period
== 0)) {
3720 for (uframe
= 0; uframe
< 7; uframe
++) {
3721 claimed
= periodic_usecs(fotg210
, frame
,
3723 if (claimed
> usecs
)
3726 } while ((frame
+= 1) < fotg210
->periodic_size
);
3728 /* just check the specified uframe, at that period */
3731 claimed
= periodic_usecs(fotg210
, frame
, uframe
);
3732 if (claimed
> usecs
)
3734 } while ((frame
+= period
) < fotg210
->periodic_size
);
3741 static int check_intr_schedule(struct fotg210_hcd
*fotg210
, unsigned frame
,
3742 unsigned uframe
, const struct fotg210_qh
*qh
, __hc32
*c_maskp
)
3744 int retval
= -ENOSPC
;
3747 if (qh
->c_usecs
&& uframe
>= 6) /* FSTN territory? */
3750 if (!check_period(fotg210
, frame
, uframe
, qh
->period
, qh
->usecs
))
3758 /* Make sure this tt's buffer is also available for CSPLITs.
3759 * We pessimize a bit; probably the typical full speed case
3760 * doesn't need the second CSPLIT.
3762 * NOTE: both SPLIT and CSPLIT could be checked in just
3765 mask
= 0x03 << (uframe
+ qh
->gap_uf
);
3766 *c_maskp
= cpu_to_hc32(fotg210
, mask
<< 8);
3768 mask
|= 1 << uframe
;
3769 if (tt_no_collision(fotg210
, qh
->period
, qh
->dev
, frame
, mask
)) {
3770 if (!check_period(fotg210
, frame
, uframe
+ qh
->gap_uf
+ 1,
3771 qh
->period
, qh
->c_usecs
))
3773 if (!check_period(fotg210
, frame
, uframe
+ qh
->gap_uf
,
3774 qh
->period
, qh
->c_usecs
))
3782 /* "first fit" scheduling policy used the first time through,
3783 * or when the previous schedule slot can't be re-used.
3785 static int qh_schedule(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3790 unsigned frame
; /* 0..(qh->period - 1), or NO_FRAME */
3791 struct fotg210_qh_hw
*hw
= qh
->hw
;
3793 qh_refresh(fotg210
, qh
);
3794 hw
->hw_next
= FOTG210_LIST_END(fotg210
);
3797 /* reuse the previous schedule slots, if we can */
3798 if (frame
< qh
->period
) {
3799 uframe
= ffs(hc32_to_cpup(fotg210
, &hw
->hw_info2
) & QH_SMASK
);
3800 status
= check_intr_schedule(fotg210
, frame
, --uframe
,
3808 /* else scan the schedule to find a group of slots such that all
3809 * uframes have enough periodic bandwidth available.
3812 /* "normal" case, uframing flexible except with splits */
3816 for (i
= qh
->period
; status
&& i
> 0; --i
) {
3817 frame
= ++fotg210
->random_frame
% qh
->period
;
3818 for (uframe
= 0; uframe
< 8; uframe
++) {
3819 status
= check_intr_schedule(fotg210
,
3827 /* qh->period == 0 means every uframe */
3830 status
= check_intr_schedule(fotg210
, 0, 0, qh
,
3837 /* reset S-frame and (maybe) C-frame masks */
3838 hw
->hw_info2
&= cpu_to_hc32(fotg210
, ~(QH_CMASK
| QH_SMASK
));
3839 hw
->hw_info2
|= qh
->period
3840 ? cpu_to_hc32(fotg210
, 1 << uframe
)
3841 : cpu_to_hc32(fotg210
, QH_SMASK
);
3842 hw
->hw_info2
|= c_mask
;
3844 fotg210_dbg(fotg210
, "reused qh %p schedule\n", qh
);
3846 /* stuff into the periodic schedule */
3847 qh_link_periodic(fotg210
, qh
);
3852 static int intr_submit(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
3853 struct list_head
*qtd_list
, gfp_t mem_flags
)
3856 unsigned long flags
;
3857 struct fotg210_qh
*qh
;
3859 struct list_head empty
;
3861 /* get endpoint and transfer/schedule data */
3862 epnum
= urb
->ep
->desc
.bEndpointAddress
;
3864 spin_lock_irqsave(&fotg210
->lock
, flags
);
3866 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
3867 status
= -ESHUTDOWN
;
3868 goto done_not_linked
;
3870 status
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
3871 if (unlikely(status
))
3872 goto done_not_linked
;
3874 /* get qh and force any scheduling errors */
3875 INIT_LIST_HEAD(&empty
);
3876 qh
= qh_append_tds(fotg210
, urb
, &empty
, epnum
, &urb
->ep
->hcpriv
);
3881 if (qh
->qh_state
== QH_STATE_IDLE
) {
3882 status
= qh_schedule(fotg210
, qh
);
3887 /* then queue the urb's tds to the qh */
3888 qh
= qh_append_tds(fotg210
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
3891 /* ... update usbfs periodic stats */
3892 fotg210_to_hcd(fotg210
)->self
.bandwidth_int_reqs
++;
3895 if (unlikely(status
))
3896 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
3898 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
3900 qtd_list_free(fotg210
, urb
, qtd_list
);
3905 static void scan_intr(struct fotg210_hcd
*fotg210
)
3907 struct fotg210_qh
*qh
;
3909 list_for_each_entry_safe(qh
, fotg210
->qh_scan_next
,
3910 &fotg210
->intr_qh_list
, intr_node
) {
3912 /* clean any finished work for this qh */
3913 if (!list_empty(&qh
->qtd_list
)) {
3917 * Unlinks could happen here; completion reporting
3918 * drops the lock. That's why fotg210->qh_scan_next
3919 * always holds the next qh to scan; if the next qh
3920 * gets unlinked then fotg210->qh_scan_next is adjusted
3921 * in qh_unlink_periodic().
3923 temp
= qh_completions(fotg210
, qh
);
3924 if (unlikely(qh
->needs_rescan
||
3925 (list_empty(&qh
->qtd_list
) &&
3926 qh
->qh_state
== QH_STATE_LINKED
)))
3927 start_unlink_intr(fotg210
, qh
);
3934 /* fotg210_iso_stream ops work with both ITD and SITD */
3936 static struct fotg210_iso_stream
*iso_stream_alloc(gfp_t mem_flags
)
3938 struct fotg210_iso_stream
*stream
;
3940 stream
= kzalloc(sizeof(*stream
), mem_flags
);
3941 if (likely(stream
!= NULL
)) {
3942 INIT_LIST_HEAD(&stream
->td_list
);
3943 INIT_LIST_HEAD(&stream
->free_list
);
3944 stream
->next_uframe
= -1;
3949 static void iso_stream_init(struct fotg210_hcd
*fotg210
,
3950 struct fotg210_iso_stream
*stream
, struct usb_device
*dev
,
3951 int pipe
, unsigned interval
)
3954 unsigned epnum
, maxp
;
3960 * this might be a "high bandwidth" highspeed endpoint,
3961 * as encoded in the ep descriptor's wMaxPacket field
3963 epnum
= usb_pipeendpoint(pipe
);
3964 is_input
= usb_pipein(pipe
) ? USB_DIR_IN
: 0;
3965 maxp
= usb_maxpacket(dev
, pipe
, !is_input
);
3971 maxp
= max_packet(maxp
);
3972 multi
= hb_mult(maxp
);
3976 stream
->buf0
= cpu_to_hc32(fotg210
, (epnum
<< 8) | dev
->devnum
);
3977 stream
->buf1
= cpu_to_hc32(fotg210
, buf1
);
3978 stream
->buf2
= cpu_to_hc32(fotg210
, multi
);
3980 /* usbfs wants to report the average usecs per frame tied up
3981 * when transfers on this endpoint are scheduled ...
3983 if (dev
->speed
== USB_SPEED_FULL
) {
3985 stream
->usecs
= NS_TO_US(usb_calc_bus_time(dev
->speed
,
3986 is_input
, 1, maxp
));
3989 stream
->highspeed
= 1;
3990 stream
->usecs
= HS_USECS_ISO(maxp
);
3992 bandwidth
= stream
->usecs
* 8;
3993 bandwidth
/= interval
;
3995 stream
->bandwidth
= bandwidth
;
3997 stream
->bEndpointAddress
= is_input
| epnum
;
3998 stream
->interval
= interval
;
3999 stream
->maxp
= maxp
;
4002 static struct fotg210_iso_stream
*iso_stream_find(struct fotg210_hcd
*fotg210
,
4006 struct fotg210_iso_stream
*stream
;
4007 struct usb_host_endpoint
*ep
;
4008 unsigned long flags
;
4010 epnum
= usb_pipeendpoint(urb
->pipe
);
4011 if (usb_pipein(urb
->pipe
))
4012 ep
= urb
->dev
->ep_in
[epnum
];
4014 ep
= urb
->dev
->ep_out
[epnum
];
4016 spin_lock_irqsave(&fotg210
->lock
, flags
);
4017 stream
= ep
->hcpriv
;
4019 if (unlikely(stream
== NULL
)) {
4020 stream
= iso_stream_alloc(GFP_ATOMIC
);
4021 if (likely(stream
!= NULL
)) {
4022 ep
->hcpriv
= stream
;
4024 iso_stream_init(fotg210
, stream
, urb
->dev
, urb
->pipe
,
4028 /* if dev->ep[epnum] is a QH, hw is set */
4029 } else if (unlikely(stream
->hw
!= NULL
)) {
4030 fotg210_dbg(fotg210
, "dev %s ep%d%s, not iso??\n",
4031 urb
->dev
->devpath
, epnum
,
4032 usb_pipein(urb
->pipe
) ? "in" : "out");
4036 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4040 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4042 static struct fotg210_iso_sched
*iso_sched_alloc(unsigned packets
,
4045 struct fotg210_iso_sched
*iso_sched
;
4046 int size
= sizeof(*iso_sched
);
4048 size
+= packets
* sizeof(struct fotg210_iso_packet
);
4049 iso_sched
= kzalloc(size
, mem_flags
);
4050 if (likely(iso_sched
!= NULL
))
4051 INIT_LIST_HEAD(&iso_sched
->td_list
);
4056 static inline void itd_sched_init(struct fotg210_hcd
*fotg210
,
4057 struct fotg210_iso_sched
*iso_sched
,
4058 struct fotg210_iso_stream
*stream
, struct urb
*urb
)
4061 dma_addr_t dma
= urb
->transfer_dma
;
4063 /* how many uframes are needed for these transfers */
4064 iso_sched
->span
= urb
->number_of_packets
* stream
->interval
;
4066 /* figure out per-uframe itd fields that we'll need later
4067 * when we fit new itds into the schedule.
4069 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
4070 struct fotg210_iso_packet
*uframe
= &iso_sched
->packet
[i
];
4075 length
= urb
->iso_frame_desc
[i
].length
;
4076 buf
= dma
+ urb
->iso_frame_desc
[i
].offset
;
4078 trans
= FOTG210_ISOC_ACTIVE
;
4079 trans
|= buf
& 0x0fff;
4080 if (unlikely(((i
+ 1) == urb
->number_of_packets
))
4081 && !(urb
->transfer_flags
& URB_NO_INTERRUPT
))
4082 trans
|= FOTG210_ITD_IOC
;
4083 trans
|= length
<< 16;
4084 uframe
->transaction
= cpu_to_hc32(fotg210
, trans
);
4086 /* might need to cross a buffer page within a uframe */
4087 uframe
->bufp
= (buf
& ~(u64
)0x0fff);
4089 if (unlikely((uframe
->bufp
!= (buf
& ~(u64
)0x0fff))))
4094 static void iso_sched_free(struct fotg210_iso_stream
*stream
,
4095 struct fotg210_iso_sched
*iso_sched
)
4099 /* caller must hold fotg210->lock!*/
4100 list_splice(&iso_sched
->td_list
, &stream
->free_list
);
4104 static int itd_urb_transaction(struct fotg210_iso_stream
*stream
,
4105 struct fotg210_hcd
*fotg210
, struct urb
*urb
, gfp_t mem_flags
)
4107 struct fotg210_itd
*itd
;
4111 struct fotg210_iso_sched
*sched
;
4112 unsigned long flags
;
4114 sched
= iso_sched_alloc(urb
->number_of_packets
, mem_flags
);
4115 if (unlikely(sched
== NULL
))
4118 itd_sched_init(fotg210
, sched
, stream
, urb
);
4120 if (urb
->interval
< 8)
4121 num_itds
= 1 + (sched
->span
+ 7) / 8;
4123 num_itds
= urb
->number_of_packets
;
4125 /* allocate/init ITDs */
4126 spin_lock_irqsave(&fotg210
->lock
, flags
);
4127 for (i
= 0; i
< num_itds
; i
++) {
4130 * Use iTDs from the free list, but not iTDs that may
4131 * still be in use by the hardware.
4133 if (likely(!list_empty(&stream
->free_list
))) {
4134 itd
= list_first_entry(&stream
->free_list
,
4135 struct fotg210_itd
, itd_list
);
4136 if (itd
->frame
== fotg210
->now_frame
)
4138 list_del(&itd
->itd_list
);
4139 itd_dma
= itd
->itd_dma
;
4142 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4143 itd
= dma_pool_alloc(fotg210
->itd_pool
, mem_flags
,
4145 spin_lock_irqsave(&fotg210
->lock
, flags
);
4147 iso_sched_free(stream
, sched
);
4148 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4153 memset(itd
, 0, sizeof(*itd
));
4154 itd
->itd_dma
= itd_dma
;
4155 list_add(&itd
->itd_list
, &sched
->td_list
);
4157 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4159 /* temporarily store schedule info in hcpriv */
4160 urb
->hcpriv
= sched
;
4161 urb
->error_count
= 0;
4165 static inline int itd_slot_ok(struct fotg210_hcd
*fotg210
, u32 mod
, u32 uframe
,
4166 u8 usecs
, u32 period
)
4170 /* can't commit more than uframe_periodic_max usec */
4171 if (periodic_usecs(fotg210
, uframe
>> 3, uframe
& 0x7)
4172 > (fotg210
->uframe_periodic_max
- usecs
))
4175 /* we know urb->interval is 2^N uframes */
4177 } while (uframe
< mod
);
4181 /* This scheduler plans almost as far into the future as it has actual
4182 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4183 * "as small as possible" to be cache-friendlier.) That limits the size
4184 * transfers you can stream reliably; avoid more than 64 msec per urb.
4185 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4186 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4187 * and other factors); or more than about 230 msec total (for portability,
4188 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4191 #define SCHEDULE_SLOP 80 /* microframes */
4193 static int iso_stream_schedule(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4194 struct fotg210_iso_stream
*stream
)
4196 u32 now
, next
, start
, period
, span
;
4198 unsigned mod
= fotg210
->periodic_size
<< 3;
4199 struct fotg210_iso_sched
*sched
= urb
->hcpriv
;
4201 period
= urb
->interval
;
4204 if (span
> mod
- SCHEDULE_SLOP
) {
4205 fotg210_dbg(fotg210
, "iso request %p too long\n", urb
);
4210 now
= fotg210_read_frame_index(fotg210
) & (mod
- 1);
4212 /* Typical case: reuse current schedule, stream is still active.
4213 * Hopefully there are no gaps from the host falling behind
4214 * (irq delays etc), but if there are we'll take the next
4215 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4217 if (likely(!list_empty(&stream
->td_list
))) {
4220 /* For high speed devices, allow scheduling within the
4221 * isochronous scheduling threshold. For full speed devices
4222 * and Intel PCI-based controllers, don't (work around for
4225 if (!stream
->highspeed
&& fotg210
->fs_i_thresh
)
4226 next
= now
+ fotg210
->i_thresh
;
4230 /* Fell behind (by up to twice the slop amount)?
4231 * We decide based on the time of the last currently-scheduled
4232 * slot, not the time of the next available slot.
4234 excess
= (stream
->next_uframe
- period
- next
) & (mod
- 1);
4235 if (excess
>= mod
- 2 * SCHEDULE_SLOP
)
4236 start
= next
+ excess
- mod
+ period
*
4237 DIV_ROUND_UP(mod
- excess
, period
);
4239 start
= next
+ excess
+ period
;
4240 if (start
- now
>= mod
) {
4241 fotg210_dbg(fotg210
, "request %p would overflow (%d+%d >= %d)\n",
4242 urb
, start
- now
- period
, period
,
4249 /* need to schedule; when's the next (u)frame we could start?
4250 * this is bigger than fotg210->i_thresh allows; scheduling itself
4251 * isn't free, the slop should handle reasonably slow cpus. it
4252 * can also help high bandwidth if the dma and irq loads don't
4253 * jump until after the queue is primed.
4258 start
= SCHEDULE_SLOP
+ (now
& ~0x07);
4260 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4262 /* find a uframe slot with enough bandwidth.
4263 * Early uframes are more precious because full-speed
4264 * iso IN transfers can't use late uframes,
4265 * and therefore they should be allocated last.
4271 /* check schedule: enough space? */
4272 if (itd_slot_ok(fotg210
, mod
, start
,
4273 stream
->usecs
, period
))
4275 } while (start
> next
&& !done
);
4277 /* no room in the schedule */
4279 fotg210_dbg(fotg210
, "iso resched full %p (now %d max %d)\n",
4280 urb
, now
, now
+ mod
);
4286 /* Tried to schedule too far into the future? */
4287 if (unlikely(start
- now
+ span
- period
>=
4288 mod
- 2 * SCHEDULE_SLOP
)) {
4289 fotg210_dbg(fotg210
, "request %p would overflow (%d+%d >= %d)\n",
4290 urb
, start
- now
, span
- period
,
4291 mod
- 2 * SCHEDULE_SLOP
);
4296 stream
->next_uframe
= start
& (mod
- 1);
4298 /* report high speed start in uframes; full speed, in frames */
4299 urb
->start_frame
= stream
->next_uframe
;
4300 if (!stream
->highspeed
)
4301 urb
->start_frame
>>= 3;
4303 /* Make sure scan_isoc() sees these */
4304 if (fotg210
->isoc_count
== 0)
4305 fotg210
->next_frame
= now
>> 3;
4309 iso_sched_free(stream
, sched
);
4314 static inline void itd_init(struct fotg210_hcd
*fotg210
,
4315 struct fotg210_iso_stream
*stream
, struct fotg210_itd
*itd
)
4319 /* it's been recently zeroed */
4320 itd
->hw_next
= FOTG210_LIST_END(fotg210
);
4321 itd
->hw_bufp
[0] = stream
->buf0
;
4322 itd
->hw_bufp
[1] = stream
->buf1
;
4323 itd
->hw_bufp
[2] = stream
->buf2
;
4325 for (i
= 0; i
< 8; i
++)
4328 /* All other fields are filled when scheduling */
4331 static inline void itd_patch(struct fotg210_hcd
*fotg210
,
4332 struct fotg210_itd
*itd
, struct fotg210_iso_sched
*iso_sched
,
4333 unsigned index
, u16 uframe
)
4335 struct fotg210_iso_packet
*uf
= &iso_sched
->packet
[index
];
4336 unsigned pg
= itd
->pg
;
4339 itd
->index
[uframe
] = index
;
4341 itd
->hw_transaction
[uframe
] = uf
->transaction
;
4342 itd
->hw_transaction
[uframe
] |= cpu_to_hc32(fotg210
, pg
<< 12);
4343 itd
->hw_bufp
[pg
] |= cpu_to_hc32(fotg210
, uf
->bufp
& ~(u32
)0);
4344 itd
->hw_bufp_hi
[pg
] |= cpu_to_hc32(fotg210
, (u32
)(uf
->bufp
>> 32));
4346 /* iso_frame_desc[].offset must be strictly increasing */
4347 if (unlikely(uf
->cross
)) {
4348 u64 bufp
= uf
->bufp
+ 4096;
4351 itd
->hw_bufp
[pg
] |= cpu_to_hc32(fotg210
, bufp
& ~(u32
)0);
4352 itd
->hw_bufp_hi
[pg
] |= cpu_to_hc32(fotg210
, (u32
)(bufp
>> 32));
4356 static inline void itd_link(struct fotg210_hcd
*fotg210
, unsigned frame
,
4357 struct fotg210_itd
*itd
)
4359 union fotg210_shadow
*prev
= &fotg210
->pshadow
[frame
];
4360 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
4361 union fotg210_shadow here
= *prev
;
4364 /* skip any iso nodes which might belong to previous microframes */
4366 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
4367 if (type
== cpu_to_hc32(fotg210
, Q_TYPE_QH
))
4369 prev
= periodic_next_shadow(fotg210
, prev
, type
);
4370 hw_p
= shadow_next_periodic(fotg210
, &here
, type
);
4374 itd
->itd_next
= here
;
4375 itd
->hw_next
= *hw_p
;
4379 *hw_p
= cpu_to_hc32(fotg210
, itd
->itd_dma
| Q_TYPE_ITD
);
4382 /* fit urb's itds into the selected schedule slot; activate as needed */
4383 static void itd_link_urb(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4384 unsigned mod
, struct fotg210_iso_stream
*stream
)
4387 unsigned next_uframe
, uframe
, frame
;
4388 struct fotg210_iso_sched
*iso_sched
= urb
->hcpriv
;
4389 struct fotg210_itd
*itd
;
4391 next_uframe
= stream
->next_uframe
& (mod
- 1);
4393 if (unlikely(list_empty(&stream
->td_list
))) {
4394 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
4395 += stream
->bandwidth
;
4396 fotg210_dbg(fotg210
,
4397 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4398 urb
->dev
->devpath
, stream
->bEndpointAddress
& 0x0f,
4399 (stream
->bEndpointAddress
& USB_DIR_IN
) ? "in" : "out",
4401 next_uframe
>> 3, next_uframe
& 0x7);
4404 /* fill iTDs uframe by uframe */
4405 for (packet
= 0, itd
= NULL
; packet
< urb
->number_of_packets
;) {
4407 /* ASSERT: we have all necessary itds */
4409 /* ASSERT: no itds for this endpoint in this uframe */
4411 itd
= list_entry(iso_sched
->td_list
.next
,
4412 struct fotg210_itd
, itd_list
);
4413 list_move_tail(&itd
->itd_list
, &stream
->td_list
);
4414 itd
->stream
= stream
;
4416 itd_init(fotg210
, stream
, itd
);
4419 uframe
= next_uframe
& 0x07;
4420 frame
= next_uframe
>> 3;
4422 itd_patch(fotg210
, itd
, iso_sched
, packet
, uframe
);
4424 next_uframe
+= stream
->interval
;
4425 next_uframe
&= mod
- 1;
4428 /* link completed itds into the schedule */
4429 if (((next_uframe
>> 3) != frame
)
4430 || packet
== urb
->number_of_packets
) {
4431 itd_link(fotg210
, frame
& (fotg210
->periodic_size
- 1),
4436 stream
->next_uframe
= next_uframe
;
4438 /* don't need that schedule data any more */
4439 iso_sched_free(stream
, iso_sched
);
4442 ++fotg210
->isoc_count
;
4443 enable_periodic(fotg210
);
4446 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4447 FOTG210_ISOC_XACTERR)
4449 /* Process and recycle a completed ITD. Return true iff its urb completed,
4450 * and hence its completion callback probably added things to the hardware
4453 * Note that we carefully avoid recycling this descriptor until after any
4454 * completion callback runs, so that it won't be reused quickly. That is,
4455 * assuming (a) no more than two urbs per frame on this endpoint, and also
4456 * (b) only this endpoint's completions submit URBs. It seems some silicon
4457 * corrupts things if you reuse completed descriptors very quickly...
4459 static bool itd_complete(struct fotg210_hcd
*fotg210
, struct fotg210_itd
*itd
)
4461 struct urb
*urb
= itd
->urb
;
4462 struct usb_iso_packet_descriptor
*desc
;
4466 struct fotg210_iso_stream
*stream
= itd
->stream
;
4467 struct usb_device
*dev
;
4468 bool retval
= false;
4470 /* for each uframe with a packet */
4471 for (uframe
= 0; uframe
< 8; uframe
++) {
4472 if (likely(itd
->index
[uframe
] == -1))
4474 urb_index
= itd
->index
[uframe
];
4475 desc
= &urb
->iso_frame_desc
[urb_index
];
4477 t
= hc32_to_cpup(fotg210
, &itd
->hw_transaction
[uframe
]);
4478 itd
->hw_transaction
[uframe
] = 0;
4480 /* report transfer status */
4481 if (unlikely(t
& ISO_ERRS
)) {
4483 if (t
& FOTG210_ISOC_BUF_ERR
)
4484 desc
->status
= usb_pipein(urb
->pipe
)
4485 ? -ENOSR
/* hc couldn't read */
4486 : -ECOMM
; /* hc couldn't write */
4487 else if (t
& FOTG210_ISOC_BABBLE
)
4488 desc
->status
= -EOVERFLOW
;
4489 else /* (t & FOTG210_ISOC_XACTERR) */
4490 desc
->status
= -EPROTO
;
4492 /* HC need not update length with this error */
4493 if (!(t
& FOTG210_ISOC_BABBLE
)) {
4494 desc
->actual_length
=
4495 fotg210_itdlen(urb
, desc
, t
);
4496 urb
->actual_length
+= desc
->actual_length
;
4498 } else if (likely((t
& FOTG210_ISOC_ACTIVE
) == 0)) {
4500 desc
->actual_length
= fotg210_itdlen(urb
, desc
, t
);
4501 urb
->actual_length
+= desc
->actual_length
;
4503 /* URB was too late */
4504 desc
->status
= -EXDEV
;
4508 /* handle completion now? */
4509 if (likely((urb_index
+ 1) != urb
->number_of_packets
))
4512 /* ASSERT: it's really the last itd for this urb
4513 * list_for_each_entry (itd, &stream->td_list, itd_list)
4514 * BUG_ON (itd->urb == urb);
4517 /* give urb back to the driver; completion often (re)submits */
4519 fotg210_urb_done(fotg210
, urb
, 0);
4523 --fotg210
->isoc_count
;
4524 disable_periodic(fotg210
);
4526 if (unlikely(list_is_singular(&stream
->td_list
))) {
4527 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
4528 -= stream
->bandwidth
;
4529 fotg210_dbg(fotg210
,
4530 "deschedule devp %s ep%d%s-iso\n",
4531 dev
->devpath
, stream
->bEndpointAddress
& 0x0f,
4532 (stream
->bEndpointAddress
& USB_DIR_IN
) ? "in" : "out");
4538 /* Add to the end of the free list for later reuse */
4539 list_move_tail(&itd
->itd_list
, &stream
->free_list
);
4541 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4542 if (list_empty(&stream
->td_list
)) {
4543 list_splice_tail_init(&stream
->free_list
,
4544 &fotg210
->cached_itd_list
);
4545 start_free_itds(fotg210
);
4551 static int itd_submit(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4554 int status
= -EINVAL
;
4555 unsigned long flags
;
4556 struct fotg210_iso_stream
*stream
;
4558 /* Get iso_stream head */
4559 stream
= iso_stream_find(fotg210
, urb
);
4560 if (unlikely(stream
== NULL
)) {
4561 fotg210_dbg(fotg210
, "can't get iso stream\n");
4564 if (unlikely(urb
->interval
!= stream
->interval
&&
4565 fotg210_port_speed(fotg210
, 0) ==
4566 USB_PORT_STAT_HIGH_SPEED
)) {
4567 fotg210_dbg(fotg210
, "can't change iso interval %d --> %d\n",
4568 stream
->interval
, urb
->interval
);
4572 #ifdef FOTG210_URB_TRACE
4573 fotg210_dbg(fotg210
,
4574 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4575 __func__
, urb
->dev
->devpath
, urb
,
4576 usb_pipeendpoint(urb
->pipe
),
4577 usb_pipein(urb
->pipe
) ? "in" : "out",
4578 urb
->transfer_buffer_length
,
4579 urb
->number_of_packets
, urb
->interval
,
4583 /* allocate ITDs w/o locking anything */
4584 status
= itd_urb_transaction(stream
, fotg210
, urb
, mem_flags
);
4585 if (unlikely(status
< 0)) {
4586 fotg210_dbg(fotg210
, "can't init itds\n");
4590 /* schedule ... need to lock */
4591 spin_lock_irqsave(&fotg210
->lock
, flags
);
4592 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
4593 status
= -ESHUTDOWN
;
4594 goto done_not_linked
;
4596 status
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
4597 if (unlikely(status
))
4598 goto done_not_linked
;
4599 status
= iso_stream_schedule(fotg210
, urb
, stream
);
4600 if (likely(status
== 0))
4601 itd_link_urb(fotg210
, urb
, fotg210
->periodic_size
<< 3, stream
);
4603 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
4605 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4610 static inline int scan_frame_queue(struct fotg210_hcd
*fotg210
, unsigned frame
,
4611 unsigned now_frame
, bool live
)
4615 union fotg210_shadow q
, *q_p
;
4618 /* scan each element in frame's queue for completions */
4619 q_p
= &fotg210
->pshadow
[frame
];
4620 hw_p
= &fotg210
->periodic
[frame
];
4622 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
4626 switch (hc32_to_cpu(fotg210
, type
)) {
4628 /* If this ITD is still active, leave it for
4629 * later processing ... check the next entry.
4630 * No need to check for activity unless the
4633 if (frame
== now_frame
&& live
) {
4635 for (uf
= 0; uf
< 8; uf
++) {
4636 if (q
.itd
->hw_transaction
[uf
] &
4637 ITD_ACTIVE(fotg210
))
4641 q_p
= &q
.itd
->itd_next
;
4642 hw_p
= &q
.itd
->hw_next
;
4643 type
= Q_NEXT_TYPE(fotg210
,
4650 /* Take finished ITDs out of the schedule
4651 * and process them: recycle, maybe report
4652 * URB completion. HC won't cache the
4653 * pointer for much longer, if at all.
4655 *q_p
= q
.itd
->itd_next
;
4656 *hw_p
= q
.itd
->hw_next
;
4657 type
= Q_NEXT_TYPE(fotg210
, q
.itd
->hw_next
);
4659 modified
= itd_complete(fotg210
, q
.itd
);
4663 fotg210_dbg(fotg210
, "corrupt type %d frame %d shadow %p\n",
4664 type
, frame
, q
.ptr
);
4668 /* End of the iTDs and siTDs */
4673 /* assume completion callbacks modify the queue */
4674 if (unlikely(modified
&& fotg210
->isoc_count
> 0))
4680 static void scan_isoc(struct fotg210_hcd
*fotg210
)
4682 unsigned uf
, now_frame
, frame
, ret
;
4683 unsigned fmask
= fotg210
->periodic_size
- 1;
4687 * When running, scan from last scan point up to "now"
4688 * else clean up by scanning everything that's left.
4689 * Touches as few pages as possible: cache-friendly.
4691 if (fotg210
->rh_state
>= FOTG210_RH_RUNNING
) {
4692 uf
= fotg210_read_frame_index(fotg210
);
4693 now_frame
= (uf
>> 3) & fmask
;
4696 now_frame
= (fotg210
->next_frame
- 1) & fmask
;
4699 fotg210
->now_frame
= now_frame
;
4701 frame
= fotg210
->next_frame
;
4705 ret
= scan_frame_queue(fotg210
, frame
,
4708 /* Stop when we have reached the current frame */
4709 if (frame
== now_frame
)
4711 frame
= (frame
+ 1) & fmask
;
4713 fotg210
->next_frame
= now_frame
;
4716 /* Display / Set uframe_periodic_max
4718 static ssize_t
show_uframe_periodic_max(struct device
*dev
,
4719 struct device_attribute
*attr
, char *buf
)
4721 struct fotg210_hcd
*fotg210
;
4724 fotg210
= hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev
)));
4725 n
= scnprintf(buf
, PAGE_SIZE
, "%d\n", fotg210
->uframe_periodic_max
);
4730 static ssize_t
store_uframe_periodic_max(struct device
*dev
,
4731 struct device_attribute
*attr
, const char *buf
, size_t count
)
4733 struct fotg210_hcd
*fotg210
;
4734 unsigned uframe_periodic_max
;
4735 unsigned frame
, uframe
;
4736 unsigned short allocated_max
;
4737 unsigned long flags
;
4740 fotg210
= hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev
)));
4741 if (kstrtouint(buf
, 0, &uframe_periodic_max
) < 0)
4744 if (uframe_periodic_max
< 100 || uframe_periodic_max
>= 125) {
4745 fotg210_info(fotg210
, "rejecting invalid request for uframe_periodic_max=%u\n",
4746 uframe_periodic_max
);
4753 * lock, so that our checking does not race with possible periodic
4754 * bandwidth allocation through submitting new urbs.
4756 spin_lock_irqsave(&fotg210
->lock
, flags
);
4759 * for request to decrease max periodic bandwidth, we have to check
4760 * every microframe in the schedule to see whether the decrease is
4763 if (uframe_periodic_max
< fotg210
->uframe_periodic_max
) {
4766 for (frame
= 0; frame
< fotg210
->periodic_size
; ++frame
)
4767 for (uframe
= 0; uframe
< 7; ++uframe
)
4768 allocated_max
= max(allocated_max
,
4769 periodic_usecs(fotg210
, frame
,
4772 if (allocated_max
> uframe_periodic_max
) {
4773 fotg210_info(fotg210
,
4774 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4775 allocated_max
, uframe_periodic_max
);
4780 /* increasing is always ok */
4782 fotg210_info(fotg210
,
4783 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4784 100 * uframe_periodic_max
/125, uframe_periodic_max
);
4786 if (uframe_periodic_max
!= 100)
4787 fotg210_warn(fotg210
, "max periodic bandwidth set is non-standard\n");
4789 fotg210
->uframe_periodic_max
= uframe_periodic_max
;
4793 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4797 static DEVICE_ATTR(uframe_periodic_max
, 0644, show_uframe_periodic_max
,
4798 store_uframe_periodic_max
);
4800 static inline int create_sysfs_files(struct fotg210_hcd
*fotg210
)
4802 struct device
*controller
= fotg210_to_hcd(fotg210
)->self
.controller
;
4808 i
= device_create_file(controller
, &dev_attr_uframe_periodic_max
);
4813 static inline void remove_sysfs_files(struct fotg210_hcd
*fotg210
)
4815 struct device
*controller
= fotg210_to_hcd(fotg210
)->self
.controller
;
4817 device_remove_file(controller
, &dev_attr_uframe_periodic_max
);
4819 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4820 * The firmware seems to think that powering off is a wakeup event!
4821 * This routine turns off remote wakeup and everything else, on all ports.
4823 static void fotg210_turn_off_all_ports(struct fotg210_hcd
*fotg210
)
4825 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
4827 fotg210_writel(fotg210
, PORT_RWC_BITS
, status_reg
);
4830 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4831 * Must be called with interrupts enabled and the lock not held.
4833 static void fotg210_silence_controller(struct fotg210_hcd
*fotg210
)
4835 fotg210_halt(fotg210
);
4837 spin_lock_irq(&fotg210
->lock
);
4838 fotg210
->rh_state
= FOTG210_RH_HALTED
;
4839 fotg210_turn_off_all_ports(fotg210
);
4840 spin_unlock_irq(&fotg210
->lock
);
4843 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4844 * This forcibly disables dma and IRQs, helping kexec and other cases
4845 * where the next system software may expect clean state.
4847 static void fotg210_shutdown(struct usb_hcd
*hcd
)
4849 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4851 spin_lock_irq(&fotg210
->lock
);
4852 fotg210
->shutdown
= true;
4853 fotg210
->rh_state
= FOTG210_RH_STOPPING
;
4854 fotg210
->enabled_hrtimer_events
= 0;
4855 spin_unlock_irq(&fotg210
->lock
);
4857 fotg210_silence_controller(fotg210
);
4859 hrtimer_cancel(&fotg210
->hrtimer
);
4862 /* fotg210_work is called from some interrupts, timers, and so on.
4863 * it calls driver completion functions, after dropping fotg210->lock.
4865 static void fotg210_work(struct fotg210_hcd
*fotg210
)
4867 /* another CPU may drop fotg210->lock during a schedule scan while
4868 * it reports urb completions. this flag guards against bogus
4869 * attempts at re-entrant schedule scanning.
4871 if (fotg210
->scanning
) {
4872 fotg210
->need_rescan
= true;
4875 fotg210
->scanning
= true;
4878 fotg210
->need_rescan
= false;
4879 if (fotg210
->async_count
)
4880 scan_async(fotg210
);
4881 if (fotg210
->intr_count
> 0)
4883 if (fotg210
->isoc_count
> 0)
4885 if (fotg210
->need_rescan
)
4887 fotg210
->scanning
= false;
4889 /* the IO watchdog guards against hardware or driver bugs that
4890 * misplace IRQs, and should let us run completely without IRQs.
4891 * such lossage has been observed on both VT6202 and VT8235.
4893 turn_on_io_watchdog(fotg210
);
4896 /* Called when the fotg210_hcd module is removed.
4898 static void fotg210_stop(struct usb_hcd
*hcd
)
4900 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4902 fotg210_dbg(fotg210
, "stop\n");
4904 /* no more interrupts ... */
4906 spin_lock_irq(&fotg210
->lock
);
4907 fotg210
->enabled_hrtimer_events
= 0;
4908 spin_unlock_irq(&fotg210
->lock
);
4910 fotg210_quiesce(fotg210
);
4911 fotg210_silence_controller(fotg210
);
4912 fotg210_reset(fotg210
);
4914 hrtimer_cancel(&fotg210
->hrtimer
);
4915 remove_sysfs_files(fotg210
);
4916 remove_debug_files(fotg210
);
4918 /* root hub is shut down separately (first, when possible) */
4919 spin_lock_irq(&fotg210
->lock
);
4920 end_free_itds(fotg210
);
4921 spin_unlock_irq(&fotg210
->lock
);
4922 fotg210_mem_cleanup(fotg210
);
4924 #ifdef FOTG210_STATS
4925 fotg210_dbg(fotg210
, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4926 fotg210
->stats
.normal
, fotg210
->stats
.error
,
4927 fotg210
->stats
.iaa
, fotg210
->stats
.lost_iaa
);
4928 fotg210_dbg(fotg210
, "complete %ld unlink %ld\n",
4929 fotg210
->stats
.complete
, fotg210
->stats
.unlink
);
4932 dbg_status(fotg210
, "fotg210_stop completed",
4933 fotg210_readl(fotg210
, &fotg210
->regs
->status
));
4936 /* one-time init, only for memory state */
4937 static int hcd_fotg210_init(struct usb_hcd
*hcd
)
4939 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4943 struct fotg210_qh_hw
*hw
;
4945 spin_lock_init(&fotg210
->lock
);
4948 * keep io watchdog by default, those good HCDs could turn off it later
4950 fotg210
->need_io_watchdog
= 1;
4952 hrtimer_init(&fotg210
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
4953 fotg210
->hrtimer
.function
= fotg210_hrtimer_func
;
4954 fotg210
->next_hrtimer_event
= FOTG210_HRTIMER_NO_EVENT
;
4956 hcc_params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
4959 * by default set standard 80% (== 100 usec/uframe) max periodic
4960 * bandwidth as required by USB 2.0
4962 fotg210
->uframe_periodic_max
= 100;
4965 * hw default: 1K periodic list heads, one per frame.
4966 * periodic_size can shrink by USBCMD update if hcc_params allows.
4968 fotg210
->periodic_size
= DEFAULT_I_TDPS
;
4969 INIT_LIST_HEAD(&fotg210
->intr_qh_list
);
4970 INIT_LIST_HEAD(&fotg210
->cached_itd_list
);
4972 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
4973 /* periodic schedule size can be smaller than default */
4974 switch (FOTG210_TUNE_FLS
) {
4976 fotg210
->periodic_size
= 1024;
4979 fotg210
->periodic_size
= 512;
4982 fotg210
->periodic_size
= 256;
4988 retval
= fotg210_mem_init(fotg210
, GFP_KERNEL
);
4992 /* controllers may cache some of the periodic schedule ... */
4993 fotg210
->i_thresh
= 2;
4996 * dedicate a qh for the async ring head, since we couldn't unlink
4997 * a 'real' qh without stopping the async schedule [4.8]. use it
4998 * as the 'reclamation list head' too.
4999 * its dummy is used in hw_alt_next of many tds, to prevent the qh
5000 * from automatically advancing to the next td after short reads.
5002 fotg210
->async
->qh_next
.qh
= NULL
;
5003 hw
= fotg210
->async
->hw
;
5004 hw
->hw_next
= QH_NEXT(fotg210
, fotg210
->async
->qh_dma
);
5005 hw
->hw_info1
= cpu_to_hc32(fotg210
, QH_HEAD
);
5006 hw
->hw_token
= cpu_to_hc32(fotg210
, QTD_STS_HALT
);
5007 hw
->hw_qtd_next
= FOTG210_LIST_END(fotg210
);
5008 fotg210
->async
->qh_state
= QH_STATE_LINKED
;
5009 hw
->hw_alt_next
= QTD_NEXT(fotg210
, fotg210
->async
->dummy
->qtd_dma
);
5011 /* clear interrupt enables, set irq latency */
5012 if (log2_irq_thresh
< 0 || log2_irq_thresh
> 6)
5013 log2_irq_thresh
= 0;
5014 temp
= 1 << (16 + log2_irq_thresh
);
5015 if (HCC_CANPARK(hcc_params
)) {
5016 /* HW default park == 3, on hardware that supports it (like
5017 * NVidia and ALI silicon), maximizes throughput on the async
5018 * schedule by avoiding QH fetches between transfers.
5020 * With fast usb storage devices and NForce2, "park" seems to
5021 * make problems: throughput reduction (!), data errors...
5024 park
= min_t(unsigned, park
, 3);
5028 fotg210_dbg(fotg210
, "park %d\n", park
);
5030 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
5031 /* periodic schedule size can be smaller than default */
5033 temp
|= (FOTG210_TUNE_FLS
<< 2);
5035 fotg210
->command
= temp
;
5037 /* Accept arbitrarily long scatter-gather lists */
5038 if (!(hcd
->driver
->flags
& HCD_LOCAL_MEM
))
5039 hcd
->self
.sg_tablesize
= ~0;
5043 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5044 static int fotg210_run(struct usb_hcd
*hcd
)
5046 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5050 hcd
->uses_new_polling
= 1;
5052 /* EHCI spec section 4.1 */
5054 fotg210_writel(fotg210
, fotg210
->periodic_dma
,
5055 &fotg210
->regs
->frame_list
);
5056 fotg210_writel(fotg210
, (u32
)fotg210
->async
->qh_dma
,
5057 &fotg210
->regs
->async_next
);
5060 * hcc_params controls whether fotg210->regs->segment must (!!!)
5061 * be used; it constrains QH/ITD/SITD and QTD locations.
5062 * pci_pool consistent memory always uses segment zero.
5063 * streaming mappings for I/O buffers, like pci_map_single(),
5064 * can return segments above 4GB, if the device allows.
5066 * NOTE: the dma mask is visible through dev->dma_mask, so
5067 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5068 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5069 * host side drivers though.
5071 hcc_params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
5074 * Philips, Intel, and maybe others need CMD_RUN before the
5075 * root hub will detect new devices (why?); NEC doesn't
5077 fotg210
->command
&= ~(CMD_IAAD
|CMD_PSE
|CMD_ASE
|CMD_RESET
);
5078 fotg210
->command
|= CMD_RUN
;
5079 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
5080 dbg_cmd(fotg210
, "init", fotg210
->command
);
5083 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5084 * are explicitly handed to companion controller(s), so no TT is
5085 * involved with the root hub. (Except where one is integrated,
5086 * and there's no companion controller unless maybe for USB OTG.)
5088 * Turning on the CF flag will transfer ownership of all ports
5089 * from the companions to the EHCI controller. If any of the
5090 * companions are in the middle of a port reset at the time, it
5091 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5092 * guarantees that no resets are in progress. After we set CF,
5093 * a short delay lets the hardware catch up; new resets shouldn't
5094 * be started before the port switching actions could complete.
5096 down_write(&ehci_cf_port_reset_rwsem
);
5097 fotg210
->rh_state
= FOTG210_RH_RUNNING
;
5098 /* unblock posted writes */
5099 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
5100 usleep_range(5000, 10000);
5101 up_write(&ehci_cf_port_reset_rwsem
);
5102 fotg210
->last_periodic_enable
= ktime_get_real();
5104 temp
= HC_VERSION(fotg210
,
5105 fotg210_readl(fotg210
, &fotg210
->caps
->hc_capbase
));
5106 fotg210_info(fotg210
,
5107 "USB %x.%x started, EHCI %x.%02x\n",
5108 ((fotg210
->sbrn
& 0xf0) >> 4), (fotg210
->sbrn
& 0x0f),
5109 temp
>> 8, temp
& 0xff);
5111 fotg210_writel(fotg210
, INTR_MASK
,
5112 &fotg210
->regs
->intr_enable
); /* Turn On Interrupts */
5114 /* GRR this is run-once init(), being done every time the HC starts.
5115 * So long as they're part of class devices, we can't do it init()
5116 * since the class device isn't created that early.
5118 create_debug_files(fotg210
);
5119 create_sysfs_files(fotg210
);
5124 static int fotg210_setup(struct usb_hcd
*hcd
)
5126 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5129 fotg210
->regs
= (void __iomem
*)fotg210
->caps
+
5131 fotg210_readl(fotg210
, &fotg210
->caps
->hc_capbase
));
5132 dbg_hcs_params(fotg210
, "reset");
5133 dbg_hcc_params(fotg210
, "reset");
5135 /* cache this readonly data; minimize chip reads */
5136 fotg210
->hcs_params
= fotg210_readl(fotg210
,
5137 &fotg210
->caps
->hcs_params
);
5139 fotg210
->sbrn
= HCD_USB2
;
5141 /* data structure init */
5142 retval
= hcd_fotg210_init(hcd
);
5146 retval
= fotg210_halt(fotg210
);
5150 fotg210_reset(fotg210
);
5155 static irqreturn_t
fotg210_irq(struct usb_hcd
*hcd
)
5157 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5158 u32 status
, masked_status
, pcd_status
= 0, cmd
;
5161 spin_lock(&fotg210
->lock
);
5163 status
= fotg210_readl(fotg210
, &fotg210
->regs
->status
);
5165 /* e.g. cardbus physical eject */
5166 if (status
== ~(u32
) 0) {
5167 fotg210_dbg(fotg210
, "device removed\n");
5172 * We don't use STS_FLR, but some controllers don't like it to
5173 * remain on, so mask it out along with the other status bits.
5175 masked_status
= status
& (INTR_MASK
| STS_FLR
);
5178 if (!masked_status
||
5179 unlikely(fotg210
->rh_state
== FOTG210_RH_HALTED
)) {
5180 spin_unlock(&fotg210
->lock
);
5184 /* clear (just) interrupts */
5185 fotg210_writel(fotg210
, masked_status
, &fotg210
->regs
->status
);
5186 cmd
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
5189 /* unrequested/ignored: Frame List Rollover */
5190 dbg_status(fotg210
, "irq", status
);
5192 /* INT, ERR, and IAA interrupt rates can be throttled */
5194 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5195 if (likely((status
& (STS_INT
|STS_ERR
)) != 0)) {
5196 if (likely((status
& STS_ERR
) == 0))
5197 COUNT(fotg210
->stats
.normal
);
5199 COUNT(fotg210
->stats
.error
);
5203 /* complete the unlinking of some qh [4.15.2.3] */
5204 if (status
& STS_IAA
) {
5206 /* Turn off the IAA watchdog */
5207 fotg210
->enabled_hrtimer_events
&=
5208 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG
);
5211 * Mild optimization: Allow another IAAD to reset the
5212 * hrtimer, if one occurs before the next expiration.
5213 * In theory we could always cancel the hrtimer, but
5214 * tests show that about half the time it will be reset
5215 * for some other event anyway.
5217 if (fotg210
->next_hrtimer_event
== FOTG210_HRTIMER_IAA_WATCHDOG
)
5218 ++fotg210
->next_hrtimer_event
;
5220 /* guard against (alleged) silicon errata */
5222 fotg210_dbg(fotg210
, "IAA with IAAD still set?\n");
5223 if (fotg210
->async_iaa
) {
5224 COUNT(fotg210
->stats
.iaa
);
5225 end_unlink_async(fotg210
);
5227 fotg210_dbg(fotg210
, "IAA with nothing unlinked?\n");
5230 /* remote wakeup [4.3.1] */
5231 if (status
& STS_PCD
) {
5233 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
5235 /* kick root hub later */
5236 pcd_status
= status
;
5238 /* resume root hub? */
5239 if (fotg210
->rh_state
== FOTG210_RH_SUSPENDED
)
5240 usb_hcd_resume_root_hub(hcd
);
5242 pstatus
= fotg210_readl(fotg210
, status_reg
);
5244 if (test_bit(0, &fotg210
->suspended_ports
) &&
5245 ((pstatus
& PORT_RESUME
) ||
5246 !(pstatus
& PORT_SUSPEND
)) &&
5247 (pstatus
& PORT_PE
) &&
5248 fotg210
->reset_done
[0] == 0) {
5250 /* start 20 msec resume signaling from this port,
5251 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5252 * stop that signaling. Use 5 ms extra for safety,
5253 * like usb_port_resume() does.
5255 fotg210
->reset_done
[0] = jiffies
+ msecs_to_jiffies(25);
5256 set_bit(0, &fotg210
->resuming_ports
);
5257 fotg210_dbg(fotg210
, "port 1 remote wakeup\n");
5258 mod_timer(&hcd
->rh_timer
, fotg210
->reset_done
[0]);
5262 /* PCI errors [4.15.2.4] */
5263 if (unlikely((status
& STS_FATAL
) != 0)) {
5264 fotg210_err(fotg210
, "fatal error\n");
5265 dbg_cmd(fotg210
, "fatal", cmd
);
5266 dbg_status(fotg210
, "fatal", status
);
5270 /* Don't let the controller do anything more */
5271 fotg210
->shutdown
= true;
5272 fotg210
->rh_state
= FOTG210_RH_STOPPING
;
5273 fotg210
->command
&= ~(CMD_RUN
| CMD_ASE
| CMD_PSE
);
5274 fotg210_writel(fotg210
, fotg210
->command
,
5275 &fotg210
->regs
->command
);
5276 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
5277 fotg210_handle_controller_death(fotg210
);
5279 /* Handle completions when the controller stops */
5284 fotg210_work(fotg210
);
5285 spin_unlock(&fotg210
->lock
);
5287 usb_hcd_poll_rh_status(hcd
);
5291 /* non-error returns are a promise to giveback() the urb later
5292 * we drop ownership so next owner (or urb unlink) can get it
5294 * urb + dev is in hcd.self.controller.urb_list
5295 * we're queueing TDs onto software and hardware lists
5297 * hcd-specific init for hcpriv hasn't been done yet
5299 * NOTE: control, bulk, and interrupt share the same code to append TDs
5300 * to a (possibly active) QH, and the same QH scanning code.
5302 static int fotg210_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
5305 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5306 struct list_head qtd_list
;
5308 INIT_LIST_HEAD(&qtd_list
);
5310 switch (usb_pipetype(urb
->pipe
)) {
5312 /* qh_completions() code doesn't handle all the fault cases
5313 * in multi-TD control transfers. Even 1KB is rare anyway.
5315 if (urb
->transfer_buffer_length
> (16 * 1024))
5318 /* case PIPE_BULK: */
5320 if (!qh_urb_transaction(fotg210
, urb
, &qtd_list
, mem_flags
))
5322 return submit_async(fotg210
, urb
, &qtd_list
, mem_flags
);
5324 case PIPE_INTERRUPT
:
5325 if (!qh_urb_transaction(fotg210
, urb
, &qtd_list
, mem_flags
))
5327 return intr_submit(fotg210
, urb
, &qtd_list
, mem_flags
);
5329 case PIPE_ISOCHRONOUS
:
5330 return itd_submit(fotg210
, urb
, mem_flags
);
5334 /* remove from hardware lists
5335 * completions normally happen asynchronously
5338 static int fotg210_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
5340 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5341 struct fotg210_qh
*qh
;
5342 unsigned long flags
;
5345 spin_lock_irqsave(&fotg210
->lock
, flags
);
5346 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
5350 switch (usb_pipetype(urb
->pipe
)) {
5351 /* case PIPE_CONTROL: */
5352 /* case PIPE_BULK:*/
5354 qh
= (struct fotg210_qh
*) urb
->hcpriv
;
5357 switch (qh
->qh_state
) {
5358 case QH_STATE_LINKED
:
5359 case QH_STATE_COMPLETING
:
5360 start_unlink_async(fotg210
, qh
);
5362 case QH_STATE_UNLINK
:
5363 case QH_STATE_UNLINK_WAIT
:
5364 /* already started */
5367 /* QH might be waiting for a Clear-TT-Buffer */
5368 qh_completions(fotg210
, qh
);
5373 case PIPE_INTERRUPT
:
5374 qh
= (struct fotg210_qh
*) urb
->hcpriv
;
5377 switch (qh
->qh_state
) {
5378 case QH_STATE_LINKED
:
5379 case QH_STATE_COMPLETING
:
5380 start_unlink_intr(fotg210
, qh
);
5383 qh_completions(fotg210
, qh
);
5386 fotg210_dbg(fotg210
, "bogus qh %p state %d\n",
5392 case PIPE_ISOCHRONOUS
:
5395 /* wait till next completion, do it then. */
5396 /* completion irqs can wait up to 1024 msec, */
5400 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5404 /* bulk qh holds the data toggle */
5406 static void fotg210_endpoint_disable(struct usb_hcd
*hcd
,
5407 struct usb_host_endpoint
*ep
)
5409 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5410 unsigned long flags
;
5411 struct fotg210_qh
*qh
, *tmp
;
5413 /* ASSERT: any requests/urbs are being unlinked */
5414 /* ASSERT: nobody can be submitting urbs for this any more */
5417 spin_lock_irqsave(&fotg210
->lock
, flags
);
5422 /* endpoints can be iso streams. for now, we don't
5423 * accelerate iso completions ... so spin a while.
5425 if (qh
->hw
== NULL
) {
5426 struct fotg210_iso_stream
*stream
= ep
->hcpriv
;
5428 if (!list_empty(&stream
->td_list
))
5431 /* BUG_ON(!list_empty(&stream->free_list)); */
5436 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
5437 qh
->qh_state
= QH_STATE_IDLE
;
5438 switch (qh
->qh_state
) {
5439 case QH_STATE_LINKED
:
5440 case QH_STATE_COMPLETING
:
5441 for (tmp
= fotg210
->async
->qh_next
.qh
;
5443 tmp
= tmp
->qh_next
.qh
)
5445 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5446 * may already be unlinked.
5449 start_unlink_async(fotg210
, qh
);
5451 case QH_STATE_UNLINK
: /* wait for hw to finish? */
5452 case QH_STATE_UNLINK_WAIT
:
5454 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5455 schedule_timeout_uninterruptible(1);
5457 case QH_STATE_IDLE
: /* fully unlinked */
5458 if (qh
->clearing_tt
)
5460 if (list_empty(&qh
->qtd_list
)) {
5461 qh_destroy(fotg210
, qh
);
5464 /* else FALL THROUGH */
5466 /* caller was supposed to have unlinked any requests;
5467 * that's not our job. just leak this memory.
5469 fotg210_err(fotg210
, "qh %p (#%02x) state %d%s\n",
5470 qh
, ep
->desc
.bEndpointAddress
, qh
->qh_state
,
5471 list_empty(&qh
->qtd_list
) ? "" : "(has tds)");
5476 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5479 static void fotg210_endpoint_reset(struct usb_hcd
*hcd
,
5480 struct usb_host_endpoint
*ep
)
5482 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5483 struct fotg210_qh
*qh
;
5484 int eptype
= usb_endpoint_type(&ep
->desc
);
5485 int epnum
= usb_endpoint_num(&ep
->desc
);
5486 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
5487 unsigned long flags
;
5489 if (eptype
!= USB_ENDPOINT_XFER_BULK
&& eptype
!= USB_ENDPOINT_XFER_INT
)
5492 spin_lock_irqsave(&fotg210
->lock
, flags
);
5495 /* For Bulk and Interrupt endpoints we maintain the toggle state
5496 * in the hardware; the toggle bits in udev aren't used at all.
5497 * When an endpoint is reset by usb_clear_halt() we must reset
5498 * the toggle bit in the QH.
5501 usb_settoggle(qh
->dev
, epnum
, is_out
, 0);
5502 if (!list_empty(&qh
->qtd_list
)) {
5503 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5504 } else if (qh
->qh_state
== QH_STATE_LINKED
||
5505 qh
->qh_state
== QH_STATE_COMPLETING
) {
5507 /* The toggle value in the QH can't be updated
5508 * while the QH is active. Unlink it now;
5509 * re-linking will call qh_refresh().
5511 if (eptype
== USB_ENDPOINT_XFER_BULK
)
5512 start_unlink_async(fotg210
, qh
);
5514 start_unlink_intr(fotg210
, qh
);
5517 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5520 static int fotg210_get_frame(struct usb_hcd
*hcd
)
5522 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5524 return (fotg210_read_frame_index(fotg210
) >> 3) %
5525 fotg210
->periodic_size
;
5528 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5529 * because its registers (and irq) are shared between host/gadget/otg
5530 * functions and in order to facilitate role switching we cannot
5531 * give the fotg210 driver exclusive access to those.
5533 MODULE_DESCRIPTION(DRIVER_DESC
);
5534 MODULE_AUTHOR(DRIVER_AUTHOR
);
5535 MODULE_LICENSE("GPL");
5537 static const struct hc_driver fotg210_fotg210_hc_driver
= {
5538 .description
= hcd_name
,
5539 .product_desc
= "Faraday USB2.0 Host Controller",
5540 .hcd_priv_size
= sizeof(struct fotg210_hcd
),
5543 * generic hardware linkage
5546 .flags
= HCD_MEMORY
| HCD_USB2
,
5549 * basic lifecycle operations
5551 .reset
= hcd_fotg210_init
,
5552 .start
= fotg210_run
,
5553 .stop
= fotg210_stop
,
5554 .shutdown
= fotg210_shutdown
,
5557 * managing i/o requests and associated device resources
5559 .urb_enqueue
= fotg210_urb_enqueue
,
5560 .urb_dequeue
= fotg210_urb_dequeue
,
5561 .endpoint_disable
= fotg210_endpoint_disable
,
5562 .endpoint_reset
= fotg210_endpoint_reset
,
5565 * scheduling support
5567 .get_frame_number
= fotg210_get_frame
,
5572 .hub_status_data
= fotg210_hub_status_data
,
5573 .hub_control
= fotg210_hub_control
,
5574 .bus_suspend
= fotg210_bus_suspend
,
5575 .bus_resume
= fotg210_bus_resume
,
5577 .relinquish_port
= fotg210_relinquish_port
,
5578 .port_handed_over
= fotg210_port_handed_over
,
5580 .clear_tt_buffer_complete
= fotg210_clear_tt_buffer_complete
,
5583 static void fotg210_init(struct fotg210_hcd
*fotg210
)
5587 iowrite32(GMIR_MDEV_INT
| GMIR_MOTG_INT
| GMIR_INT_POLARITY
,
5588 &fotg210
->regs
->gmir
);
5590 value
= ioread32(&fotg210
->regs
->otgcsr
);
5591 value
&= ~OTGCSR_A_BUS_DROP
;
5592 value
|= OTGCSR_A_BUS_REQ
;
5593 iowrite32(value
, &fotg210
->regs
->otgcsr
);
5597 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5599 * Allocates basic resources for this USB host controller, and
5600 * then invokes the start() method for the HCD associated with it
5601 * through the hotplug entry's driver_data.
5603 static int fotg210_hcd_probe(struct platform_device
*pdev
)
5605 struct device
*dev
= &pdev
->dev
;
5606 struct usb_hcd
*hcd
;
5607 struct resource
*res
;
5609 int retval
= -ENODEV
;
5610 struct fotg210_hcd
*fotg210
;
5615 pdev
->dev
.power
.power_state
= PMSG_ON
;
5617 res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
5619 dev_err(dev
, "Found HC with no IRQ. Check %s setup!\n",
5626 hcd
= usb_create_hcd(&fotg210_fotg210_hc_driver
, dev
,
5629 dev_err(dev
, "failed to create hcd with err %d\n", retval
);
5631 goto fail_create_hcd
;
5636 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
5637 hcd
->regs
= devm_ioremap_resource(&pdev
->dev
, res
);
5638 if (IS_ERR(hcd
->regs
)) {
5639 retval
= PTR_ERR(hcd
->regs
);
5643 hcd
->rsrc_start
= res
->start
;
5644 hcd
->rsrc_len
= resource_size(res
);
5646 fotg210
= hcd_to_fotg210(hcd
);
5648 fotg210
->caps
= hcd
->regs
;
5650 retval
= fotg210_setup(hcd
);
5654 fotg210_init(fotg210
);
5656 retval
= usb_add_hcd(hcd
, irq
, IRQF_SHARED
);
5658 dev_err(dev
, "failed to add hcd with err %d\n", retval
);
5661 device_wakeup_enable(hcd
->self
.controller
);
5668 dev_err(dev
, "init %s fail, %d\n", dev_name(dev
), retval
);
5673 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5674 * @dev: USB Host Controller being removed
5677 static int fotg210_hcd_remove(struct platform_device
*pdev
)
5679 struct device
*dev
= &pdev
->dev
;
5680 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
5685 usb_remove_hcd(hcd
);
5691 static struct platform_driver fotg210_hcd_driver
= {
5693 .name
= "fotg210-hcd",
5695 .probe
= fotg210_hcd_probe
,
5696 .remove
= fotg210_hcd_remove
,
5699 static int __init
fotg210_hcd_init(void)
5706 pr_info("%s: " DRIVER_DESC
"\n", hcd_name
);
5707 set_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5708 if (test_bit(USB_UHCI_LOADED
, &usb_hcds_loaded
) ||
5709 test_bit(USB_OHCI_LOADED
, &usb_hcds_loaded
))
5710 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5712 pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
5713 hcd_name
, sizeof(struct fotg210_qh
),
5714 sizeof(struct fotg210_qtd
),
5715 sizeof(struct fotg210_itd
));
5717 fotg210_debug_root
= debugfs_create_dir("fotg210", usb_debug_root
);
5718 if (!fotg210_debug_root
) {
5723 retval
= platform_driver_register(&fotg210_hcd_driver
);
5729 debugfs_remove(fotg210_debug_root
);
5730 fotg210_debug_root
= NULL
;
5732 clear_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5735 module_init(fotg210_hcd_init
);
5737 static void __exit
fotg210_hcd_cleanup(void)
5739 platform_driver_unregister(&fotg210_hcd_driver
);
5740 debugfs_remove(fotg210_debug_root
);
5741 clear_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5743 module_exit(fotg210_hcd_cleanup
);