of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / drivers / usb / host / xhci.c
blob3f912705dcef93a5f27e6979f8aea9a6972b44eb
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
32 #include "xhci.h"
33 #include "xhci-trace.h"
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 * xhci_handshake - spin reading hc until handshake completes or fails
52 * @ptr: address of hc register to be read
53 * @mask: bits to look at in result of read
54 * @done: value of those bits when handshake succeeds
55 * @usec: timeout in microseconds
57 * Returns negative errno, or zero on success
59 * Success happens when the "mask" bits have the specified value (hardware
60 * handshake done). There are two failure modes: "usec" have passed (major
61 * hardware flakeout), or the register reads as all-ones (hardware removed).
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 u32 result;
67 do {
68 result = readl(ptr);
69 if (result == ~(u32)0) /* card removed */
70 return -ENODEV;
71 result &= mask;
72 if (result == done)
73 return 0;
74 udelay(1);
75 usec--;
76 } while (usec > 0);
77 return -ETIMEDOUT;
81 * Disable interrupts and begin the xHCI halting process.
83 void xhci_quiesce(struct xhci_hcd *xhci)
85 u32 halted;
86 u32 cmd;
87 u32 mask;
89 mask = ~(XHCI_IRQS);
90 halted = readl(&xhci->op_regs->status) & STS_HALT;
91 if (!halted)
92 mask &= ~CMD_RUN;
94 cmd = readl(&xhci->op_regs->command);
95 cmd &= mask;
96 writel(cmd, &xhci->op_regs->command);
100 * Force HC into halt state.
102 * Disable any IRQs and clear the run/stop bit.
103 * HC will complete any current and actively pipelined transactions, and
104 * should halt within 16 ms of the run/stop bit being cleared.
105 * Read HC Halted bit in the status register to see when the HC is finished.
107 int xhci_halt(struct xhci_hcd *xhci)
109 int ret;
110 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111 xhci_quiesce(xhci);
113 ret = xhci_handshake(&xhci->op_regs->status,
114 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115 if (!ret) {
116 xhci->xhc_state |= XHCI_STATE_HALTED;
117 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118 } else
119 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120 XHCI_MAX_HALT_USEC);
121 return ret;
125 * Set the run bit and wait for the host to be running.
127 static int xhci_start(struct xhci_hcd *xhci)
129 u32 temp;
130 int ret;
132 temp = readl(&xhci->op_regs->command);
133 temp |= (CMD_RUN);
134 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135 temp);
136 writel(temp, &xhci->op_regs->command);
139 * Wait for the HCHalted Status bit to be 0 to indicate the host is
140 * running.
142 ret = xhci_handshake(&xhci->op_regs->status,
143 STS_HALT, 0, XHCI_MAX_HALT_USEC);
144 if (ret == -ETIMEDOUT)
145 xhci_err(xhci, "Host took too long to start, "
146 "waited %u microseconds.\n",
147 XHCI_MAX_HALT_USEC);
148 if (!ret)
149 xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
151 return ret;
155 * Reset a halted HC.
157 * This resets pipelines, timers, counters, state machines, etc.
158 * Transactions will be terminated immediately, and operational registers
159 * will be set to their defaults.
161 int xhci_reset(struct xhci_hcd *xhci)
163 u32 command;
164 u32 state;
165 int ret, i;
167 state = readl(&xhci->op_regs->status);
168 if ((state & STS_HALT) == 0) {
169 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
170 return 0;
173 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
174 command = readl(&xhci->op_regs->command);
175 command |= CMD_RESET;
176 writel(command, &xhci->op_regs->command);
178 /* Existing Intel xHCI controllers require a delay of 1 mS,
179 * after setting the CMD_RESET bit, and before accessing any
180 * HC registers. This allows the HC to complete the
181 * reset operation and be ready for HC register access.
182 * Without this delay, the subsequent HC register access,
183 * may result in a system hang very rarely.
185 if (xhci->quirks & XHCI_INTEL_HOST)
186 udelay(1000);
188 ret = xhci_handshake(&xhci->op_regs->command,
189 CMD_RESET, 0, 10 * 1000 * 1000);
190 if (ret)
191 return ret;
193 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
194 "Wait for controller to be ready for doorbell rings");
196 * xHCI cannot write to any doorbells or operational registers other
197 * than status until the "Controller Not Ready" flag is cleared.
199 ret = xhci_handshake(&xhci->op_regs->status,
200 STS_CNR, 0, 10 * 1000 * 1000);
202 for (i = 0; i < 2; ++i) {
203 xhci->bus_state[i].port_c_suspend = 0;
204 xhci->bus_state[i].suspended_ports = 0;
205 xhci->bus_state[i].resuming_ports = 0;
208 return ret;
211 #ifdef CONFIG_PCI
212 static int xhci_free_msi(struct xhci_hcd *xhci)
214 int i;
216 if (!xhci->msix_entries)
217 return -EINVAL;
219 for (i = 0; i < xhci->msix_count; i++)
220 if (xhci->msix_entries[i].vector)
221 free_irq(xhci->msix_entries[i].vector,
222 xhci_to_hcd(xhci));
223 return 0;
227 * Set up MSI
229 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 int ret;
232 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234 ret = pci_enable_msi(pdev);
235 if (ret) {
236 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
237 "failed to allocate MSI entry");
238 return ret;
241 ret = request_irq(pdev->irq, xhci_msi_irq,
242 0, "xhci_hcd", xhci_to_hcd(xhci));
243 if (ret) {
244 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
245 "disable MSI interrupt");
246 pci_disable_msi(pdev);
249 return ret;
253 * Free IRQs
254 * free all IRQs request
256 static void xhci_free_irq(struct xhci_hcd *xhci)
258 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
259 int ret;
261 /* return if using legacy interrupt */
262 if (xhci_to_hcd(xhci)->irq > 0)
263 return;
265 ret = xhci_free_msi(xhci);
266 if (!ret)
267 return;
268 if (pdev->irq > 0)
269 free_irq(pdev->irq, xhci_to_hcd(xhci));
271 return;
275 * Set up MSI-X
277 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 int i, ret = 0;
280 struct usb_hcd *hcd = xhci_to_hcd(xhci);
281 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
284 * calculate number of msi-x vectors supported.
285 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
286 * with max number of interrupters based on the xhci HCSPARAMS1.
287 * - num_online_cpus: maximum msi-x vectors per CPUs core.
288 * Add additional 1 vector to ensure always available interrupt.
290 xhci->msix_count = min(num_online_cpus() + 1,
291 HCS_MAX_INTRS(xhci->hcs_params1));
293 xhci->msix_entries =
294 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
295 GFP_KERNEL);
296 if (!xhci->msix_entries) {
297 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
298 return -ENOMEM;
301 for (i = 0; i < xhci->msix_count; i++) {
302 xhci->msix_entries[i].entry = i;
303 xhci->msix_entries[i].vector = 0;
306 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
307 if (ret) {
308 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
309 "Failed to enable MSI-X");
310 goto free_entries;
313 for (i = 0; i < xhci->msix_count; i++) {
314 ret = request_irq(xhci->msix_entries[i].vector,
315 xhci_msi_irq,
316 0, "xhci_hcd", xhci_to_hcd(xhci));
317 if (ret)
318 goto disable_msix;
321 hcd->msix_enabled = 1;
322 return ret;
324 disable_msix:
325 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
326 xhci_free_irq(xhci);
327 pci_disable_msix(pdev);
328 free_entries:
329 kfree(xhci->msix_entries);
330 xhci->msix_entries = NULL;
331 return ret;
334 /* Free any IRQs and disable MSI-X */
335 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 struct usb_hcd *hcd = xhci_to_hcd(xhci);
338 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340 if (xhci->quirks & XHCI_PLAT)
341 return;
343 xhci_free_irq(xhci);
345 if (xhci->msix_entries) {
346 pci_disable_msix(pdev);
347 kfree(xhci->msix_entries);
348 xhci->msix_entries = NULL;
349 } else {
350 pci_disable_msi(pdev);
353 hcd->msix_enabled = 0;
354 return;
357 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 int i;
361 if (xhci->msix_entries) {
362 for (i = 0; i < xhci->msix_count; i++)
363 synchronize_irq(xhci->msix_entries[i].vector);
367 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
370 struct pci_dev *pdev;
371 int ret;
373 /* The xhci platform device has set up IRQs through usb_add_hcd. */
374 if (xhci->quirks & XHCI_PLAT)
375 return 0;
377 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379 * Some Fresco Logic host controllers advertise MSI, but fail to
380 * generate interrupts. Don't even try to enable MSI.
382 if (xhci->quirks & XHCI_BROKEN_MSI)
383 goto legacy_irq;
385 /* unregister the legacy interrupt */
386 if (hcd->irq)
387 free_irq(hcd->irq, hcd);
388 hcd->irq = 0;
390 ret = xhci_setup_msix(xhci);
391 if (ret)
392 /* fall back to msi*/
393 ret = xhci_setup_msi(xhci);
395 if (!ret)
396 /* hcd->irq is 0, we have MSI */
397 return 0;
399 if (!pdev->irq) {
400 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
401 return -EINVAL;
404 legacy_irq:
405 if (!strlen(hcd->irq_descr))
406 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
407 hcd->driver->description, hcd->self.busnum);
409 /* fall back to legacy interrupt*/
410 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
411 hcd->irq_descr, hcd);
412 if (ret) {
413 xhci_err(xhci, "request interrupt %d failed\n",
414 pdev->irq);
415 return ret;
417 hcd->irq = pdev->irq;
418 return 0;
421 #else
423 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 return 0;
428 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
432 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
436 #endif
438 static void compliance_mode_recovery(unsigned long arg)
440 struct xhci_hcd *xhci;
441 struct usb_hcd *hcd;
442 u32 temp;
443 int i;
445 xhci = (struct xhci_hcd *)arg;
447 for (i = 0; i < xhci->num_usb3_ports; i++) {
448 temp = readl(xhci->usb3_ports[i]);
449 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451 * Compliance Mode Detected. Letting USB Core
452 * handle the Warm Reset
454 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
455 "Compliance mode detected->port %d",
456 i + 1);
457 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
458 "Attempting compliance mode recovery");
459 hcd = xhci->shared_hcd;
461 if (hcd->state == HC_STATE_SUSPENDED)
462 usb_hcd_resume_root_hub(hcd);
464 usb_hcd_poll_rh_status(hcd);
468 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
469 mod_timer(&xhci->comp_mode_recovery_timer,
470 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
474 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
475 * that causes ports behind that hardware to enter compliance mode sometimes.
476 * The quirk creates a timer that polls every 2 seconds the link state of
477 * each host controller's port and recovers it by issuing a Warm reset
478 * if Compliance mode is detected, otherwise the port will become "dead" (no
479 * device connections or disconnections will be detected anymore). Becasue no
480 * status event is generated when entering compliance mode (per xhci spec),
481 * this quirk is needed on systems that have the failing hardware installed.
483 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 xhci->port_status_u0 = 0;
486 setup_timer(&xhci->comp_mode_recovery_timer,
487 compliance_mode_recovery, (unsigned long)xhci);
488 xhci->comp_mode_recovery_timer.expires = jiffies +
489 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491 set_timer_slack(&xhci->comp_mode_recovery_timer,
492 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
493 add_timer(&xhci->comp_mode_recovery_timer);
494 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495 "Compliance mode recovery timer initialized");
499 * This function identifies the systems that have installed the SN65LVPE502CP
500 * USB3.0 re-driver and that need the Compliance Mode Quirk.
501 * Systems:
502 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 const char *dmi_product_name, *dmi_sys_vendor;
508 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
509 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
510 if (!dmi_product_name || !dmi_sys_vendor)
511 return false;
513 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
514 return false;
516 if (strstr(dmi_product_name, "Z420") ||
517 strstr(dmi_product_name, "Z620") ||
518 strstr(dmi_product_name, "Z820") ||
519 strstr(dmi_product_name, "Z1 Workstation"))
520 return true;
522 return false;
525 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
532 * Initialize memory for HCD and xHC (one-time init).
534 * Program the PAGESIZE register, initialize the device context array, create
535 * device contexts (?), set up a command ring segment (or two?), create event
536 * ring (one for now).
538 int xhci_init(struct usb_hcd *hcd)
540 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
541 int retval = 0;
543 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
544 spin_lock_init(&xhci->lock);
545 if (xhci->hci_version == 0x95 && link_quirk) {
546 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
547 "QUIRK: Not clearing Link TRB chain bits.");
548 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
549 } else {
550 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
551 "xHCI doesn't need link TRB QUIRK");
553 retval = xhci_mem_init(xhci, GFP_KERNEL);
554 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556 /* Initializing Compliance Mode Recovery Data If Needed */
557 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
558 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
559 compliance_mode_recovery_timer_init(xhci);
562 return retval;
565 /*-------------------------------------------------------------------------*/
568 static int xhci_run_finished(struct xhci_hcd *xhci)
570 if (xhci_start(xhci)) {
571 xhci_halt(xhci);
572 return -ENODEV;
574 xhci->shared_hcd->state = HC_STATE_RUNNING;
575 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577 if (xhci->quirks & XHCI_NEC_HOST)
578 xhci_ring_cmd_db(xhci);
580 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
581 "Finished xhci_run for USB3 roothub");
582 return 0;
586 * Start the HC after it was halted.
588 * This function is called by the USB core when the HC driver is added.
589 * Its opposite is xhci_stop().
591 * xhci_init() must be called once before this function can be called.
592 * Reset the HC, enable device slot contexts, program DCBAAP, and
593 * set command ring pointer and event ring pointer.
595 * Setup MSI-X vectors and enable interrupts.
597 int xhci_run(struct usb_hcd *hcd)
599 u32 temp;
600 u64 temp_64;
601 int ret;
602 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604 /* Start the xHCI host controller running only after the USB 2.0 roothub
605 * is setup.
608 hcd->uses_new_polling = 1;
609 if (!usb_hcd_is_primary_hcd(hcd))
610 return xhci_run_finished(xhci);
612 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614 ret = xhci_try_enable_msi(hcd);
615 if (ret)
616 return ret;
618 xhci_dbg(xhci, "Command ring memory map follows:\n");
619 xhci_debug_ring(xhci, xhci->cmd_ring);
620 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
621 xhci_dbg_cmd_ptrs(xhci);
623 xhci_dbg(xhci, "ERST memory map follows:\n");
624 xhci_dbg_erst(xhci, &xhci->erst);
625 xhci_dbg(xhci, "Event ring:\n");
626 xhci_debug_ring(xhci, xhci->event_ring);
627 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
628 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
629 temp_64 &= ~ERST_PTR_MASK;
630 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
631 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 "// Set the interrupt modulation register");
635 temp = readl(&xhci->ir_set->irq_control);
636 temp &= ~ER_IRQ_INTERVAL_MASK;
637 temp |= (u32) 160;
638 writel(temp, &xhci->ir_set->irq_control);
640 /* Set the HCD state before we enable the irqs */
641 temp = readl(&xhci->op_regs->command);
642 temp |= (CMD_EIE);
643 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
644 "// Enable interrupts, cmd = 0x%x.", temp);
645 writel(temp, &xhci->op_regs->command);
647 temp = readl(&xhci->ir_set->irq_pending);
648 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
650 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
651 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
652 xhci_print_ir_set(xhci, 0);
654 if (xhci->quirks & XHCI_NEC_HOST) {
655 struct xhci_command *command;
656 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
657 if (!command)
658 return -ENOMEM;
659 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
660 TRB_TYPE(TRB_NEC_GET_FW));
662 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663 "Finished xhci_run for USB2 roothub");
664 return 0;
666 EXPORT_SYMBOL_GPL(xhci_run);
669 * Stop xHCI driver.
671 * This function is called by the USB core when the HC driver is removed.
672 * Its opposite is xhci_run().
674 * Disable device contexts, disable IRQs, and quiesce the HC.
675 * Reset the HC, finish any completed transactions, and cleanup memory.
677 void xhci_stop(struct usb_hcd *hcd)
679 u32 temp;
680 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
682 if (xhci->xhc_state & XHCI_STATE_HALTED)
683 return;
685 mutex_lock(&xhci->mutex);
686 spin_lock_irq(&xhci->lock);
687 xhci->xhc_state |= XHCI_STATE_HALTED;
688 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
690 /* Make sure the xHC is halted for a USB3 roothub
691 * (xhci_stop() could be called as part of failed init).
693 xhci_halt(xhci);
694 xhci_reset(xhci);
695 spin_unlock_irq(&xhci->lock);
697 xhci_cleanup_msix(xhci);
699 /* Deleting Compliance Mode Recovery Timer */
700 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
701 (!(xhci_all_ports_seen_u0(xhci)))) {
702 del_timer_sync(&xhci->comp_mode_recovery_timer);
703 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
704 "%s: compliance mode recovery timer deleted",
705 __func__);
708 if (xhci->quirks & XHCI_AMD_PLL_FIX)
709 usb_amd_dev_put();
711 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
712 "// Disabling event ring interrupts");
713 temp = readl(&xhci->op_regs->status);
714 writel(temp & ~STS_EINT, &xhci->op_regs->status);
715 temp = readl(&xhci->ir_set->irq_pending);
716 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
717 xhci_print_ir_set(xhci, 0);
719 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
720 xhci_mem_cleanup(xhci);
721 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
722 "xhci_stop completed - status = %x",
723 readl(&xhci->op_regs->status));
724 mutex_unlock(&xhci->mutex);
728 * Shutdown HC (not bus-specific)
730 * This is called when the machine is rebooting or halting. We assume that the
731 * machine will be powered off, and the HC's internal state will be reset.
732 * Don't bother to free memory.
734 * This will only ever be called with the main usb_hcd (the USB3 roothub).
736 void xhci_shutdown(struct usb_hcd *hcd)
738 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
740 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
741 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
743 spin_lock_irq(&xhci->lock);
744 xhci_halt(xhci);
745 /* Workaround for spurious wakeups at shutdown with HSW */
746 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
747 xhci_reset(xhci);
748 spin_unlock_irq(&xhci->lock);
750 xhci_cleanup_msix(xhci);
752 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
753 "xhci_shutdown completed - status = %x",
754 readl(&xhci->op_regs->status));
756 /* Yet another workaround for spurious wakeups at shutdown with HSW */
757 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
758 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
761 #ifdef CONFIG_PM
762 static void xhci_save_registers(struct xhci_hcd *xhci)
764 xhci->s3.command = readl(&xhci->op_regs->command);
765 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
766 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
767 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
768 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
769 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
770 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
771 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
772 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
775 static void xhci_restore_registers(struct xhci_hcd *xhci)
777 writel(xhci->s3.command, &xhci->op_regs->command);
778 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
779 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
780 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
781 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
782 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
783 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
784 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
785 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
788 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
790 u64 val_64;
792 /* step 2: initialize command ring buffer */
793 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
794 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
795 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
796 xhci->cmd_ring->dequeue) &
797 (u64) ~CMD_RING_RSVD_BITS) |
798 xhci->cmd_ring->cycle_state;
799 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
800 "// Setting command ring address to 0x%llx",
801 (long unsigned long) val_64);
802 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
806 * The whole command ring must be cleared to zero when we suspend the host.
808 * The host doesn't save the command ring pointer in the suspend well, so we
809 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
810 * aligned, because of the reserved bits in the command ring dequeue pointer
811 * register. Therefore, we can't just set the dequeue pointer back in the
812 * middle of the ring (TRBs are 16-byte aligned).
814 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
816 struct xhci_ring *ring;
817 struct xhci_segment *seg;
819 ring = xhci->cmd_ring;
820 seg = ring->deq_seg;
821 do {
822 memset(seg->trbs, 0,
823 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
824 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
825 cpu_to_le32(~TRB_CYCLE);
826 seg = seg->next;
827 } while (seg != ring->deq_seg);
829 /* Reset the software enqueue and dequeue pointers */
830 ring->deq_seg = ring->first_seg;
831 ring->dequeue = ring->first_seg->trbs;
832 ring->enq_seg = ring->deq_seg;
833 ring->enqueue = ring->dequeue;
835 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
837 * Ring is now zeroed, so the HW should look for change of ownership
838 * when the cycle bit is set to 1.
840 ring->cycle_state = 1;
843 * Reset the hardware dequeue pointer.
844 * Yes, this will need to be re-written after resume, but we're paranoid
845 * and want to make sure the hardware doesn't access bogus memory
846 * because, say, the BIOS or an SMI started the host without changing
847 * the command ring pointers.
849 xhci_set_cmd_ring_deq(xhci);
852 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
854 int port_index;
855 __le32 __iomem **port_array;
856 unsigned long flags;
857 u32 t1, t2;
859 spin_lock_irqsave(&xhci->lock, flags);
861 /* disble usb3 ports Wake bits*/
862 port_index = xhci->num_usb3_ports;
863 port_array = xhci->usb3_ports;
864 while (port_index--) {
865 t1 = readl(port_array[port_index]);
866 t1 = xhci_port_state_to_neutral(t1);
867 t2 = t1 & ~PORT_WAKE_BITS;
868 if (t1 != t2)
869 writel(t2, port_array[port_index]);
872 /* disble usb2 ports Wake bits*/
873 port_index = xhci->num_usb2_ports;
874 port_array = xhci->usb2_ports;
875 while (port_index--) {
876 t1 = readl(port_array[port_index]);
877 t1 = xhci_port_state_to_neutral(t1);
878 t2 = t1 & ~PORT_WAKE_BITS;
879 if (t1 != t2)
880 writel(t2, port_array[port_index]);
883 spin_unlock_irqrestore(&xhci->lock, flags);
887 * Stop HC (not bus-specific)
889 * This is called when the machine transition into S3/S4 mode.
892 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
894 int rc = 0;
895 unsigned int delay = XHCI_MAX_HALT_USEC;
896 struct usb_hcd *hcd = xhci_to_hcd(xhci);
897 u32 command;
899 if (!hcd->state)
900 return 0;
902 if (hcd->state != HC_STATE_SUSPENDED ||
903 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
904 return -EINVAL;
906 /* Clear root port wake on bits if wakeup not allowed. */
907 if (!do_wakeup)
908 xhci_disable_port_wake_on_bits(xhci);
910 /* Don't poll the roothubs on bus suspend. */
911 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
912 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
913 del_timer_sync(&hcd->rh_timer);
914 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
915 del_timer_sync(&xhci->shared_hcd->rh_timer);
917 spin_lock_irq(&xhci->lock);
918 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
919 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
920 /* step 1: stop endpoint */
921 /* skipped assuming that port suspend has done */
923 /* step 2: clear Run/Stop bit */
924 command = readl(&xhci->op_regs->command);
925 command &= ~CMD_RUN;
926 writel(command, &xhci->op_regs->command);
928 /* Some chips from Fresco Logic need an extraordinary delay */
929 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
931 if (xhci_handshake(&xhci->op_regs->status,
932 STS_HALT, STS_HALT, delay)) {
933 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
934 spin_unlock_irq(&xhci->lock);
935 return -ETIMEDOUT;
937 xhci_clear_command_ring(xhci);
939 /* step 3: save registers */
940 xhci_save_registers(xhci);
942 /* step 4: set CSS flag */
943 command = readl(&xhci->op_regs->command);
944 command |= CMD_CSS;
945 writel(command, &xhci->op_regs->command);
946 if (xhci_handshake(&xhci->op_regs->status,
947 STS_SAVE, 0, 10 * 1000)) {
948 xhci_warn(xhci, "WARN: xHC save state timeout\n");
949 spin_unlock_irq(&xhci->lock);
950 return -ETIMEDOUT;
952 spin_unlock_irq(&xhci->lock);
955 * Deleting Compliance Mode Recovery Timer because the xHCI Host
956 * is about to be suspended.
958 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
959 (!(xhci_all_ports_seen_u0(xhci)))) {
960 del_timer_sync(&xhci->comp_mode_recovery_timer);
961 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
962 "%s: compliance mode recovery timer deleted",
963 __func__);
966 /* step 5: remove core well power */
967 /* synchronize irq when using MSI-X */
968 xhci_msix_sync_irqs(xhci);
970 return rc;
972 EXPORT_SYMBOL_GPL(xhci_suspend);
975 * start xHC (not bus-specific)
977 * This is called when the machine transition from S3/S4 mode.
980 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
982 u32 command, temp = 0, status;
983 struct usb_hcd *hcd = xhci_to_hcd(xhci);
984 struct usb_hcd *secondary_hcd;
985 int retval = 0;
986 bool comp_timer_running = false;
988 if (!hcd->state)
989 return 0;
991 /* Wait a bit if either of the roothubs need to settle from the
992 * transition into bus suspend.
994 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
995 time_before(jiffies,
996 xhci->bus_state[1].next_statechange))
997 msleep(100);
999 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1000 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1002 spin_lock_irq(&xhci->lock);
1003 if (xhci->quirks & XHCI_RESET_ON_RESUME)
1004 hibernated = true;
1006 if (!hibernated) {
1007 /* step 1: restore register */
1008 xhci_restore_registers(xhci);
1009 /* step 2: initialize command ring buffer */
1010 xhci_set_cmd_ring_deq(xhci);
1011 /* step 3: restore state and start state*/
1012 /* step 3: set CRS flag */
1013 command = readl(&xhci->op_regs->command);
1014 command |= CMD_CRS;
1015 writel(command, &xhci->op_regs->command);
1016 if (xhci_handshake(&xhci->op_regs->status,
1017 STS_RESTORE, 0, 10 * 1000)) {
1018 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1019 spin_unlock_irq(&xhci->lock);
1020 return -ETIMEDOUT;
1022 temp = readl(&xhci->op_regs->status);
1025 /* If restore operation fails, re-initialize the HC during resume */
1026 if ((temp & STS_SRE) || hibernated) {
1028 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1029 !(xhci_all_ports_seen_u0(xhci))) {
1030 del_timer_sync(&xhci->comp_mode_recovery_timer);
1031 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1032 "Compliance Mode Recovery Timer deleted!");
1035 /* Let the USB core know _both_ roothubs lost power. */
1036 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1037 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1039 xhci_dbg(xhci, "Stop HCD\n");
1040 xhci_halt(xhci);
1041 xhci_reset(xhci);
1042 spin_unlock_irq(&xhci->lock);
1043 xhci_cleanup_msix(xhci);
1045 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1046 temp = readl(&xhci->op_regs->status);
1047 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1048 temp = readl(&xhci->ir_set->irq_pending);
1049 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1050 xhci_print_ir_set(xhci, 0);
1052 xhci_dbg(xhci, "cleaning up memory\n");
1053 xhci_mem_cleanup(xhci);
1054 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1055 readl(&xhci->op_regs->status));
1057 /* USB core calls the PCI reinit and start functions twice:
1058 * first with the primary HCD, and then with the secondary HCD.
1059 * If we don't do the same, the host will never be started.
1061 if (!usb_hcd_is_primary_hcd(hcd))
1062 secondary_hcd = hcd;
1063 else
1064 secondary_hcd = xhci->shared_hcd;
1066 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1067 retval = xhci_init(hcd->primary_hcd);
1068 if (retval)
1069 return retval;
1070 comp_timer_running = true;
1072 xhci_dbg(xhci, "Start the primary HCD\n");
1073 retval = xhci_run(hcd->primary_hcd);
1074 if (!retval) {
1075 xhci_dbg(xhci, "Start the secondary HCD\n");
1076 retval = xhci_run(secondary_hcd);
1078 hcd->state = HC_STATE_SUSPENDED;
1079 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1080 goto done;
1083 /* step 4: set Run/Stop bit */
1084 command = readl(&xhci->op_regs->command);
1085 command |= CMD_RUN;
1086 writel(command, &xhci->op_regs->command);
1087 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1088 0, 250 * 1000);
1090 /* step 5: walk topology and initialize portsc,
1091 * portpmsc and portli
1093 /* this is done in bus_resume */
1095 /* step 6: restart each of the previously
1096 * Running endpoints by ringing their doorbells
1099 spin_unlock_irq(&xhci->lock);
1101 done:
1102 if (retval == 0) {
1103 /* Resume root hubs only when have pending events. */
1104 status = readl(&xhci->op_regs->status);
1105 if (status & STS_EINT) {
1106 usb_hcd_resume_root_hub(hcd);
1107 usb_hcd_resume_root_hub(xhci->shared_hcd);
1112 * If system is subject to the Quirk, Compliance Mode Timer needs to
1113 * be re-initialized Always after a system resume. Ports are subject
1114 * to suffer the Compliance Mode issue again. It doesn't matter if
1115 * ports have entered previously to U0 before system's suspension.
1117 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1118 compliance_mode_recovery_timer_init(xhci);
1120 /* Re-enable port polling. */
1121 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1122 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1123 usb_hcd_poll_rh_status(hcd);
1124 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1125 usb_hcd_poll_rh_status(xhci->shared_hcd);
1127 return retval;
1129 EXPORT_SYMBOL_GPL(xhci_resume);
1130 #endif /* CONFIG_PM */
1132 /*-------------------------------------------------------------------------*/
1135 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1136 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1137 * value to right shift 1 for the bitmask.
1139 * Index = (epnum * 2) + direction - 1,
1140 * where direction = 0 for OUT, 1 for IN.
1141 * For control endpoints, the IN index is used (OUT index is unused), so
1142 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1144 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1146 unsigned int index;
1147 if (usb_endpoint_xfer_control(desc))
1148 index = (unsigned int) (usb_endpoint_num(desc)*2);
1149 else
1150 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1151 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1152 return index;
1155 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1156 * address from the XHCI endpoint index.
1158 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1160 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1161 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1162 return direction | number;
1165 /* Find the flag for this endpoint (for use in the control context). Use the
1166 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1167 * bit 1, etc.
1169 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1171 return 1 << (xhci_get_endpoint_index(desc) + 1);
1174 /* Find the flag for this endpoint (for use in the control context). Use the
1175 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1176 * bit 1, etc.
1178 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1180 return 1 << (ep_index + 1);
1183 /* Compute the last valid endpoint context index. Basically, this is the
1184 * endpoint index plus one. For slot contexts with more than valid endpoint,
1185 * we find the most significant bit set in the added contexts flags.
1186 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1187 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1189 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1191 return fls(added_ctxs) - 1;
1194 /* Returns 1 if the arguments are OK;
1195 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1197 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1198 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1199 const char *func) {
1200 struct xhci_hcd *xhci;
1201 struct xhci_virt_device *virt_dev;
1203 if (!hcd || (check_ep && !ep) || !udev) {
1204 pr_debug("xHCI %s called with invalid args\n", func);
1205 return -EINVAL;
1207 if (!udev->parent) {
1208 pr_debug("xHCI %s called for root hub\n", func);
1209 return 0;
1212 xhci = hcd_to_xhci(hcd);
1213 if (check_virt_dev) {
1214 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1215 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1216 func);
1217 return -EINVAL;
1220 virt_dev = xhci->devs[udev->slot_id];
1221 if (virt_dev->udev != udev) {
1222 xhci_dbg(xhci, "xHCI %s called with udev and "
1223 "virt_dev does not match\n", func);
1224 return -EINVAL;
1228 if (xhci->xhc_state & XHCI_STATE_HALTED)
1229 return -ENODEV;
1231 return 1;
1234 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1235 struct usb_device *udev, struct xhci_command *command,
1236 bool ctx_change, bool must_succeed);
1239 * Full speed devices may have a max packet size greater than 8 bytes, but the
1240 * USB core doesn't know that until it reads the first 8 bytes of the
1241 * descriptor. If the usb_device's max packet size changes after that point,
1242 * we need to issue an evaluate context command and wait on it.
1244 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1245 unsigned int ep_index, struct urb *urb)
1247 struct xhci_container_ctx *out_ctx;
1248 struct xhci_input_control_ctx *ctrl_ctx;
1249 struct xhci_ep_ctx *ep_ctx;
1250 struct xhci_command *command;
1251 int max_packet_size;
1252 int hw_max_packet_size;
1253 int ret = 0;
1255 out_ctx = xhci->devs[slot_id]->out_ctx;
1256 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1257 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1258 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1259 if (hw_max_packet_size != max_packet_size) {
1260 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1261 "Max Packet Size for ep 0 changed.");
1262 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1263 "Max packet size in usb_device = %d",
1264 max_packet_size);
1265 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1266 "Max packet size in xHCI HW = %d",
1267 hw_max_packet_size);
1268 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1269 "Issuing evaluate context command.");
1271 /* Set up the input context flags for the command */
1272 /* FIXME: This won't work if a non-default control endpoint
1273 * changes max packet sizes.
1276 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1277 if (!command)
1278 return -ENOMEM;
1280 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1281 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1282 if (!ctrl_ctx) {
1283 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1284 __func__);
1285 ret = -ENOMEM;
1286 goto command_cleanup;
1288 /* Set up the modified control endpoint 0 */
1289 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1290 xhci->devs[slot_id]->out_ctx, ep_index);
1292 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1293 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1294 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1296 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1297 ctrl_ctx->drop_flags = 0;
1299 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1300 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1301 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1302 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1304 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1305 true, false);
1307 /* Clean up the input context for later use by bandwidth
1308 * functions.
1310 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1311 command_cleanup:
1312 kfree(command->completion);
1313 kfree(command);
1315 return ret;
1319 * non-error returns are a promise to giveback() the urb later
1320 * we drop ownership so next owner (or urb unlink) can get it
1322 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1324 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1325 struct xhci_td *buffer;
1326 unsigned long flags;
1327 int ret = 0;
1328 unsigned int slot_id, ep_index;
1329 struct urb_priv *urb_priv;
1330 int size, i;
1332 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1333 true, true, __func__) <= 0)
1334 return -EINVAL;
1336 slot_id = urb->dev->slot_id;
1337 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1339 if (!HCD_HW_ACCESSIBLE(hcd)) {
1340 if (!in_interrupt())
1341 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1342 ret = -ESHUTDOWN;
1343 goto exit;
1346 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1347 size = urb->number_of_packets;
1348 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1349 urb->transfer_buffer_length > 0 &&
1350 urb->transfer_flags & URB_ZERO_PACKET &&
1351 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1352 size = 2;
1353 else
1354 size = 1;
1356 urb_priv = kzalloc(sizeof(struct urb_priv) +
1357 size * sizeof(struct xhci_td *), mem_flags);
1358 if (!urb_priv)
1359 return -ENOMEM;
1361 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1362 if (!buffer) {
1363 kfree(urb_priv);
1364 return -ENOMEM;
1367 for (i = 0; i < size; i++) {
1368 urb_priv->td[i] = buffer;
1369 buffer++;
1372 urb_priv->length = size;
1373 urb_priv->td_cnt = 0;
1374 urb->hcpriv = urb_priv;
1376 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1377 /* Check to see if the max packet size for the default control
1378 * endpoint changed during FS device enumeration
1380 if (urb->dev->speed == USB_SPEED_FULL) {
1381 ret = xhci_check_maxpacket(xhci, slot_id,
1382 ep_index, urb);
1383 if (ret < 0) {
1384 xhci_urb_free_priv(urb_priv);
1385 urb->hcpriv = NULL;
1386 return ret;
1390 /* We have a spinlock and interrupts disabled, so we must pass
1391 * atomic context to this function, which may allocate memory.
1393 spin_lock_irqsave(&xhci->lock, flags);
1394 if (xhci->xhc_state & XHCI_STATE_DYING)
1395 goto dying;
1396 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1397 slot_id, ep_index);
1398 if (ret)
1399 goto free_priv;
1400 spin_unlock_irqrestore(&xhci->lock, flags);
1401 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1402 spin_lock_irqsave(&xhci->lock, flags);
1403 if (xhci->xhc_state & XHCI_STATE_DYING)
1404 goto dying;
1405 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1406 EP_GETTING_STREAMS) {
1407 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1408 "is transitioning to using streams.\n");
1409 ret = -EINVAL;
1410 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1411 EP_GETTING_NO_STREAMS) {
1412 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1413 "is transitioning to "
1414 "not having streams.\n");
1415 ret = -EINVAL;
1416 } else {
1417 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1418 slot_id, ep_index);
1420 if (ret)
1421 goto free_priv;
1422 spin_unlock_irqrestore(&xhci->lock, flags);
1423 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1424 spin_lock_irqsave(&xhci->lock, flags);
1425 if (xhci->xhc_state & XHCI_STATE_DYING)
1426 goto dying;
1427 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1428 slot_id, ep_index);
1429 if (ret)
1430 goto free_priv;
1431 spin_unlock_irqrestore(&xhci->lock, flags);
1432 } else {
1433 spin_lock_irqsave(&xhci->lock, flags);
1434 if (xhci->xhc_state & XHCI_STATE_DYING)
1435 goto dying;
1436 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1437 slot_id, ep_index);
1438 if (ret)
1439 goto free_priv;
1440 spin_unlock_irqrestore(&xhci->lock, flags);
1442 exit:
1443 return ret;
1444 dying:
1445 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1446 "non-responsive xHCI host.\n",
1447 urb->ep->desc.bEndpointAddress, urb);
1448 ret = -ESHUTDOWN;
1449 free_priv:
1450 xhci_urb_free_priv(urb_priv);
1451 urb->hcpriv = NULL;
1452 spin_unlock_irqrestore(&xhci->lock, flags);
1453 return ret;
1456 /* Get the right ring for the given URB.
1457 * If the endpoint supports streams, boundary check the URB's stream ID.
1458 * If the endpoint doesn't support streams, return the singular endpoint ring.
1460 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1461 struct urb *urb)
1463 unsigned int slot_id;
1464 unsigned int ep_index;
1465 unsigned int stream_id;
1466 struct xhci_virt_ep *ep;
1468 slot_id = urb->dev->slot_id;
1469 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1470 stream_id = urb->stream_id;
1471 ep = &xhci->devs[slot_id]->eps[ep_index];
1472 /* Common case: no streams */
1473 if (!(ep->ep_state & EP_HAS_STREAMS))
1474 return ep->ring;
1476 if (stream_id == 0) {
1477 xhci_warn(xhci,
1478 "WARN: Slot ID %u, ep index %u has streams, "
1479 "but URB has no stream ID.\n",
1480 slot_id, ep_index);
1481 return NULL;
1484 if (stream_id < ep->stream_info->num_streams)
1485 return ep->stream_info->stream_rings[stream_id];
1487 xhci_warn(xhci,
1488 "WARN: Slot ID %u, ep index %u has "
1489 "stream IDs 1 to %u allocated, "
1490 "but stream ID %u is requested.\n",
1491 slot_id, ep_index,
1492 ep->stream_info->num_streams - 1,
1493 stream_id);
1494 return NULL;
1498 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1499 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1500 * should pick up where it left off in the TD, unless a Set Transfer Ring
1501 * Dequeue Pointer is issued.
1503 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1504 * the ring. Since the ring is a contiguous structure, they can't be physically
1505 * removed. Instead, there are two options:
1507 * 1) If the HC is in the middle of processing the URB to be canceled, we
1508 * simply move the ring's dequeue pointer past those TRBs using the Set
1509 * Transfer Ring Dequeue Pointer command. This will be the common case,
1510 * when drivers timeout on the last submitted URB and attempt to cancel.
1512 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1513 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1514 * HC will need to invalidate the any TRBs it has cached after the stop
1515 * endpoint command, as noted in the xHCI 0.95 errata.
1517 * 3) The TD may have completed by the time the Stop Endpoint Command
1518 * completes, so software needs to handle that case too.
1520 * This function should protect against the TD enqueueing code ringing the
1521 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1522 * It also needs to account for multiple cancellations on happening at the same
1523 * time for the same endpoint.
1525 * Note that this function can be called in any context, or so says
1526 * usb_hcd_unlink_urb()
1528 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1530 unsigned long flags;
1531 int ret, i;
1532 u32 temp;
1533 struct xhci_hcd *xhci;
1534 struct urb_priv *urb_priv;
1535 struct xhci_td *td;
1536 unsigned int ep_index;
1537 struct xhci_ring *ep_ring;
1538 struct xhci_virt_ep *ep;
1539 struct xhci_command *command;
1541 xhci = hcd_to_xhci(hcd);
1542 spin_lock_irqsave(&xhci->lock, flags);
1543 /* Make sure the URB hasn't completed or been unlinked already */
1544 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1545 if (ret || !urb->hcpriv)
1546 goto done;
1547 temp = readl(&xhci->op_regs->status);
1548 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1549 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1550 "HW died, freeing TD.");
1551 urb_priv = urb->hcpriv;
1552 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1553 td = urb_priv->td[i];
1554 if (!list_empty(&td->td_list))
1555 list_del_init(&td->td_list);
1556 if (!list_empty(&td->cancelled_td_list))
1557 list_del_init(&td->cancelled_td_list);
1560 usb_hcd_unlink_urb_from_ep(hcd, urb);
1561 spin_unlock_irqrestore(&xhci->lock, flags);
1562 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1563 xhci_urb_free_priv(urb_priv);
1564 return ret;
1566 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1567 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1568 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1569 "Ep 0x%x: URB %p to be canceled on "
1570 "non-responsive xHCI host.",
1571 urb->ep->desc.bEndpointAddress, urb);
1572 /* Let the stop endpoint command watchdog timer (which set this
1573 * state) finish cleaning up the endpoint TD lists. We must
1574 * have caught it in the middle of dropping a lock and giving
1575 * back an URB.
1577 goto done;
1580 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1581 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1582 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1583 if (!ep_ring) {
1584 ret = -EINVAL;
1585 goto done;
1588 urb_priv = urb->hcpriv;
1589 i = urb_priv->td_cnt;
1590 if (i < urb_priv->length)
1591 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1592 "Cancel URB %p, dev %s, ep 0x%x, "
1593 "starting at offset 0x%llx",
1594 urb, urb->dev->devpath,
1595 urb->ep->desc.bEndpointAddress,
1596 (unsigned long long) xhci_trb_virt_to_dma(
1597 urb_priv->td[i]->start_seg,
1598 urb_priv->td[i]->first_trb));
1600 for (; i < urb_priv->length; i++) {
1601 td = urb_priv->td[i];
1602 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1605 /* Queue a stop endpoint command, but only if this is
1606 * the first cancellation to be handled.
1608 if (!(ep->ep_state & EP_HALT_PENDING)) {
1609 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1610 if (!command) {
1611 ret = -ENOMEM;
1612 goto done;
1614 ep->ep_state |= EP_HALT_PENDING;
1615 ep->stop_cmds_pending++;
1616 ep->stop_cmd_timer.expires = jiffies +
1617 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1618 add_timer(&ep->stop_cmd_timer);
1619 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1620 ep_index, 0);
1621 xhci_ring_cmd_db(xhci);
1623 done:
1624 spin_unlock_irqrestore(&xhci->lock, flags);
1625 return ret;
1628 /* Drop an endpoint from a new bandwidth configuration for this device.
1629 * Only one call to this function is allowed per endpoint before
1630 * check_bandwidth() or reset_bandwidth() must be called.
1631 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1632 * add the endpoint to the schedule with possibly new parameters denoted by a
1633 * different endpoint descriptor in usb_host_endpoint.
1634 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1635 * not allowed.
1637 * The USB core will not allow URBs to be queued to an endpoint that is being
1638 * disabled, so there's no need for mutual exclusion to protect
1639 * the xhci->devs[slot_id] structure.
1641 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1642 struct usb_host_endpoint *ep)
1644 struct xhci_hcd *xhci;
1645 struct xhci_container_ctx *in_ctx, *out_ctx;
1646 struct xhci_input_control_ctx *ctrl_ctx;
1647 unsigned int ep_index;
1648 struct xhci_ep_ctx *ep_ctx;
1649 u32 drop_flag;
1650 u32 new_add_flags, new_drop_flags;
1651 int ret;
1653 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1654 if (ret <= 0)
1655 return ret;
1656 xhci = hcd_to_xhci(hcd);
1657 if (xhci->xhc_state & XHCI_STATE_DYING)
1658 return -ENODEV;
1660 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1661 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1662 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1663 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1664 __func__, drop_flag);
1665 return 0;
1668 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1669 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1670 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1671 if (!ctrl_ctx) {
1672 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1673 __func__);
1674 return 0;
1677 ep_index = xhci_get_endpoint_index(&ep->desc);
1678 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1679 /* If the HC already knows the endpoint is disabled,
1680 * or the HCD has noted it is disabled, ignore this request
1682 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1683 cpu_to_le32(EP_STATE_DISABLED)) ||
1684 le32_to_cpu(ctrl_ctx->drop_flags) &
1685 xhci_get_endpoint_flag(&ep->desc)) {
1686 /* Do not warn when called after a usb_device_reset */
1687 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1688 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1689 __func__, ep);
1690 return 0;
1693 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1694 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1696 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1697 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1699 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1701 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1702 (unsigned int) ep->desc.bEndpointAddress,
1703 udev->slot_id,
1704 (unsigned int) new_drop_flags,
1705 (unsigned int) new_add_flags);
1706 return 0;
1709 /* Add an endpoint to a new possible bandwidth configuration for this device.
1710 * Only one call to this function is allowed per endpoint before
1711 * check_bandwidth() or reset_bandwidth() must be called.
1712 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1713 * add the endpoint to the schedule with possibly new parameters denoted by a
1714 * different endpoint descriptor in usb_host_endpoint.
1715 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1716 * not allowed.
1718 * The USB core will not allow URBs to be queued to an endpoint until the
1719 * configuration or alt setting is installed in the device, so there's no need
1720 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1722 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1723 struct usb_host_endpoint *ep)
1725 struct xhci_hcd *xhci;
1726 struct xhci_container_ctx *in_ctx;
1727 unsigned int ep_index;
1728 struct xhci_input_control_ctx *ctrl_ctx;
1729 u32 added_ctxs;
1730 u32 new_add_flags, new_drop_flags;
1731 struct xhci_virt_device *virt_dev;
1732 int ret = 0;
1734 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1735 if (ret <= 0) {
1736 /* So we won't queue a reset ep command for a root hub */
1737 ep->hcpriv = NULL;
1738 return ret;
1740 xhci = hcd_to_xhci(hcd);
1741 if (xhci->xhc_state & XHCI_STATE_DYING)
1742 return -ENODEV;
1744 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1745 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1746 /* FIXME when we have to issue an evaluate endpoint command to
1747 * deal with ep0 max packet size changing once we get the
1748 * descriptors
1750 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1751 __func__, added_ctxs);
1752 return 0;
1755 virt_dev = xhci->devs[udev->slot_id];
1756 in_ctx = virt_dev->in_ctx;
1757 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1758 if (!ctrl_ctx) {
1759 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1760 __func__);
1761 return 0;
1764 ep_index = xhci_get_endpoint_index(&ep->desc);
1765 /* If this endpoint is already in use, and the upper layers are trying
1766 * to add it again without dropping it, reject the addition.
1768 if (virt_dev->eps[ep_index].ring &&
1769 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1770 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1771 "without dropping it.\n",
1772 (unsigned int) ep->desc.bEndpointAddress);
1773 return -EINVAL;
1776 /* If the HCD has already noted the endpoint is enabled,
1777 * ignore this request.
1779 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1780 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1781 __func__, ep);
1782 return 0;
1786 * Configuration and alternate setting changes must be done in
1787 * process context, not interrupt context (or so documenation
1788 * for usb_set_interface() and usb_set_configuration() claim).
1790 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1791 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1792 __func__, ep->desc.bEndpointAddress);
1793 return -ENOMEM;
1796 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1797 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1799 /* If xhci_endpoint_disable() was called for this endpoint, but the
1800 * xHC hasn't been notified yet through the check_bandwidth() call,
1801 * this re-adds a new state for the endpoint from the new endpoint
1802 * descriptors. We must drop and re-add this endpoint, so we leave the
1803 * drop flags alone.
1805 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1807 /* Store the usb_device pointer for later use */
1808 ep->hcpriv = udev;
1810 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1811 (unsigned int) ep->desc.bEndpointAddress,
1812 udev->slot_id,
1813 (unsigned int) new_drop_flags,
1814 (unsigned int) new_add_flags);
1815 return 0;
1818 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1820 struct xhci_input_control_ctx *ctrl_ctx;
1821 struct xhci_ep_ctx *ep_ctx;
1822 struct xhci_slot_ctx *slot_ctx;
1823 int i;
1825 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1826 if (!ctrl_ctx) {
1827 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1828 __func__);
1829 return;
1832 /* When a device's add flag and drop flag are zero, any subsequent
1833 * configure endpoint command will leave that endpoint's state
1834 * untouched. Make sure we don't leave any old state in the input
1835 * endpoint contexts.
1837 ctrl_ctx->drop_flags = 0;
1838 ctrl_ctx->add_flags = 0;
1839 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1840 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1841 /* Endpoint 0 is always valid */
1842 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1843 for (i = 1; i < 31; ++i) {
1844 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1845 ep_ctx->ep_info = 0;
1846 ep_ctx->ep_info2 = 0;
1847 ep_ctx->deq = 0;
1848 ep_ctx->tx_info = 0;
1852 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1853 struct usb_device *udev, u32 *cmd_status)
1855 int ret;
1857 switch (*cmd_status) {
1858 case COMP_CMD_ABORT:
1859 case COMP_CMD_STOP:
1860 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1861 ret = -ETIME;
1862 break;
1863 case COMP_ENOMEM:
1864 dev_warn(&udev->dev,
1865 "Not enough host controller resources for new device state.\n");
1866 ret = -ENOMEM;
1867 /* FIXME: can we allocate more resources for the HC? */
1868 break;
1869 case COMP_BW_ERR:
1870 case COMP_2ND_BW_ERR:
1871 dev_warn(&udev->dev,
1872 "Not enough bandwidth for new device state.\n");
1873 ret = -ENOSPC;
1874 /* FIXME: can we go back to the old state? */
1875 break;
1876 case COMP_TRB_ERR:
1877 /* the HCD set up something wrong */
1878 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1879 "add flag = 1, "
1880 "and endpoint is not disabled.\n");
1881 ret = -EINVAL;
1882 break;
1883 case COMP_DEV_ERR:
1884 dev_warn(&udev->dev,
1885 "ERROR: Incompatible device for endpoint configure command.\n");
1886 ret = -ENODEV;
1887 break;
1888 case COMP_SUCCESS:
1889 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1890 "Successful Endpoint Configure command");
1891 ret = 0;
1892 break;
1893 default:
1894 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1895 *cmd_status);
1896 ret = -EINVAL;
1897 break;
1899 return ret;
1902 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1903 struct usb_device *udev, u32 *cmd_status)
1905 int ret;
1906 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1908 switch (*cmd_status) {
1909 case COMP_CMD_ABORT:
1910 case COMP_CMD_STOP:
1911 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1912 ret = -ETIME;
1913 break;
1914 case COMP_EINVAL:
1915 dev_warn(&udev->dev,
1916 "WARN: xHCI driver setup invalid evaluate context command.\n");
1917 ret = -EINVAL;
1918 break;
1919 case COMP_EBADSLT:
1920 dev_warn(&udev->dev,
1921 "WARN: slot not enabled for evaluate context command.\n");
1922 ret = -EINVAL;
1923 break;
1924 case COMP_CTX_STATE:
1925 dev_warn(&udev->dev,
1926 "WARN: invalid context state for evaluate context command.\n");
1927 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1928 ret = -EINVAL;
1929 break;
1930 case COMP_DEV_ERR:
1931 dev_warn(&udev->dev,
1932 "ERROR: Incompatible device for evaluate context command.\n");
1933 ret = -ENODEV;
1934 break;
1935 case COMP_MEL_ERR:
1936 /* Max Exit Latency too large error */
1937 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1938 ret = -EINVAL;
1939 break;
1940 case COMP_SUCCESS:
1941 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1942 "Successful evaluate context command");
1943 ret = 0;
1944 break;
1945 default:
1946 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1947 *cmd_status);
1948 ret = -EINVAL;
1949 break;
1951 return ret;
1954 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1955 struct xhci_input_control_ctx *ctrl_ctx)
1957 u32 valid_add_flags;
1958 u32 valid_drop_flags;
1960 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1961 * (bit 1). The default control endpoint is added during the Address
1962 * Device command and is never removed until the slot is disabled.
1964 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1965 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1967 /* Use hweight32 to count the number of ones in the add flags, or
1968 * number of endpoints added. Don't count endpoints that are changed
1969 * (both added and dropped).
1971 return hweight32(valid_add_flags) -
1972 hweight32(valid_add_flags & valid_drop_flags);
1975 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1976 struct xhci_input_control_ctx *ctrl_ctx)
1978 u32 valid_add_flags;
1979 u32 valid_drop_flags;
1981 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1982 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1984 return hweight32(valid_drop_flags) -
1985 hweight32(valid_add_flags & valid_drop_flags);
1989 * We need to reserve the new number of endpoints before the configure endpoint
1990 * command completes. We can't subtract the dropped endpoints from the number
1991 * of active endpoints until the command completes because we can oversubscribe
1992 * the host in this case:
1994 * - the first configure endpoint command drops more endpoints than it adds
1995 * - a second configure endpoint command that adds more endpoints is queued
1996 * - the first configure endpoint command fails, so the config is unchanged
1997 * - the second command may succeed, even though there isn't enough resources
1999 * Must be called with xhci->lock held.
2001 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2002 struct xhci_input_control_ctx *ctrl_ctx)
2004 u32 added_eps;
2006 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2007 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2008 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2009 "Not enough ep ctxs: "
2010 "%u active, need to add %u, limit is %u.",
2011 xhci->num_active_eps, added_eps,
2012 xhci->limit_active_eps);
2013 return -ENOMEM;
2015 xhci->num_active_eps += added_eps;
2016 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2017 "Adding %u ep ctxs, %u now active.", added_eps,
2018 xhci->num_active_eps);
2019 return 0;
2023 * The configure endpoint was failed by the xHC for some other reason, so we
2024 * need to revert the resources that failed configuration would have used.
2026 * Must be called with xhci->lock held.
2028 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2029 struct xhci_input_control_ctx *ctrl_ctx)
2031 u32 num_failed_eps;
2033 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2034 xhci->num_active_eps -= num_failed_eps;
2035 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2036 "Removing %u failed ep ctxs, %u now active.",
2037 num_failed_eps,
2038 xhci->num_active_eps);
2042 * Now that the command has completed, clean up the active endpoint count by
2043 * subtracting out the endpoints that were dropped (but not changed).
2045 * Must be called with xhci->lock held.
2047 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2048 struct xhci_input_control_ctx *ctrl_ctx)
2050 u32 num_dropped_eps;
2052 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2053 xhci->num_active_eps -= num_dropped_eps;
2054 if (num_dropped_eps)
2055 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2056 "Removing %u dropped ep ctxs, %u now active.",
2057 num_dropped_eps,
2058 xhci->num_active_eps);
2061 static unsigned int xhci_get_block_size(struct usb_device *udev)
2063 switch (udev->speed) {
2064 case USB_SPEED_LOW:
2065 case USB_SPEED_FULL:
2066 return FS_BLOCK;
2067 case USB_SPEED_HIGH:
2068 return HS_BLOCK;
2069 case USB_SPEED_SUPER:
2070 return SS_BLOCK;
2071 case USB_SPEED_UNKNOWN:
2072 case USB_SPEED_WIRELESS:
2073 default:
2074 /* Should never happen */
2075 return 1;
2079 static unsigned int
2080 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2082 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2083 return LS_OVERHEAD;
2084 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2085 return FS_OVERHEAD;
2086 return HS_OVERHEAD;
2089 /* If we are changing a LS/FS device under a HS hub,
2090 * make sure (if we are activating a new TT) that the HS bus has enough
2091 * bandwidth for this new TT.
2093 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2094 struct xhci_virt_device *virt_dev,
2095 int old_active_eps)
2097 struct xhci_interval_bw_table *bw_table;
2098 struct xhci_tt_bw_info *tt_info;
2100 /* Find the bandwidth table for the root port this TT is attached to. */
2101 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2102 tt_info = virt_dev->tt_info;
2103 /* If this TT already had active endpoints, the bandwidth for this TT
2104 * has already been added. Removing all periodic endpoints (and thus
2105 * making the TT enactive) will only decrease the bandwidth used.
2107 if (old_active_eps)
2108 return 0;
2109 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2110 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2111 return -ENOMEM;
2112 return 0;
2114 /* Not sure why we would have no new active endpoints...
2116 * Maybe because of an Evaluate Context change for a hub update or a
2117 * control endpoint 0 max packet size change?
2118 * FIXME: skip the bandwidth calculation in that case.
2120 return 0;
2123 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2124 struct xhci_virt_device *virt_dev)
2126 unsigned int bw_reserved;
2128 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2129 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2130 return -ENOMEM;
2132 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2133 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2134 return -ENOMEM;
2136 return 0;
2140 * This algorithm is a very conservative estimate of the worst-case scheduling
2141 * scenario for any one interval. The hardware dynamically schedules the
2142 * packets, so we can't tell which microframe could be the limiting factor in
2143 * the bandwidth scheduling. This only takes into account periodic endpoints.
2145 * Obviously, we can't solve an NP complete problem to find the minimum worst
2146 * case scenario. Instead, we come up with an estimate that is no less than
2147 * the worst case bandwidth used for any one microframe, but may be an
2148 * over-estimate.
2150 * We walk the requirements for each endpoint by interval, starting with the
2151 * smallest interval, and place packets in the schedule where there is only one
2152 * possible way to schedule packets for that interval. In order to simplify
2153 * this algorithm, we record the largest max packet size for each interval, and
2154 * assume all packets will be that size.
2156 * For interval 0, we obviously must schedule all packets for each interval.
2157 * The bandwidth for interval 0 is just the amount of data to be transmitted
2158 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2159 * the number of packets).
2161 * For interval 1, we have two possible microframes to schedule those packets
2162 * in. For this algorithm, if we can schedule the same number of packets for
2163 * each possible scheduling opportunity (each microframe), we will do so. The
2164 * remaining number of packets will be saved to be transmitted in the gaps in
2165 * the next interval's scheduling sequence.
2167 * As we move those remaining packets to be scheduled with interval 2 packets,
2168 * we have to double the number of remaining packets to transmit. This is
2169 * because the intervals are actually powers of 2, and we would be transmitting
2170 * the previous interval's packets twice in this interval. We also have to be
2171 * sure that when we look at the largest max packet size for this interval, we
2172 * also look at the largest max packet size for the remaining packets and take
2173 * the greater of the two.
2175 * The algorithm continues to evenly distribute packets in each scheduling
2176 * opportunity, and push the remaining packets out, until we get to the last
2177 * interval. Then those packets and their associated overhead are just added
2178 * to the bandwidth used.
2180 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2181 struct xhci_virt_device *virt_dev,
2182 int old_active_eps)
2184 unsigned int bw_reserved;
2185 unsigned int max_bandwidth;
2186 unsigned int bw_used;
2187 unsigned int block_size;
2188 struct xhci_interval_bw_table *bw_table;
2189 unsigned int packet_size = 0;
2190 unsigned int overhead = 0;
2191 unsigned int packets_transmitted = 0;
2192 unsigned int packets_remaining = 0;
2193 unsigned int i;
2195 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2196 return xhci_check_ss_bw(xhci, virt_dev);
2198 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2199 max_bandwidth = HS_BW_LIMIT;
2200 /* Convert percent of bus BW reserved to blocks reserved */
2201 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2202 } else {
2203 max_bandwidth = FS_BW_LIMIT;
2204 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2207 bw_table = virt_dev->bw_table;
2208 /* We need to translate the max packet size and max ESIT payloads into
2209 * the units the hardware uses.
2211 block_size = xhci_get_block_size(virt_dev->udev);
2213 /* If we are manipulating a LS/FS device under a HS hub, double check
2214 * that the HS bus has enough bandwidth if we are activing a new TT.
2216 if (virt_dev->tt_info) {
2217 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2218 "Recalculating BW for rootport %u",
2219 virt_dev->real_port);
2220 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2221 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2222 "newly activated TT.\n");
2223 return -ENOMEM;
2225 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2226 "Recalculating BW for TT slot %u port %u",
2227 virt_dev->tt_info->slot_id,
2228 virt_dev->tt_info->ttport);
2229 } else {
2230 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2231 "Recalculating BW for rootport %u",
2232 virt_dev->real_port);
2235 /* Add in how much bandwidth will be used for interval zero, or the
2236 * rounded max ESIT payload + number of packets * largest overhead.
2238 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2239 bw_table->interval_bw[0].num_packets *
2240 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2242 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2243 unsigned int bw_added;
2244 unsigned int largest_mps;
2245 unsigned int interval_overhead;
2248 * How many packets could we transmit in this interval?
2249 * If packets didn't fit in the previous interval, we will need
2250 * to transmit that many packets twice within this interval.
2252 packets_remaining = 2 * packets_remaining +
2253 bw_table->interval_bw[i].num_packets;
2255 /* Find the largest max packet size of this or the previous
2256 * interval.
2258 if (list_empty(&bw_table->interval_bw[i].endpoints))
2259 largest_mps = 0;
2260 else {
2261 struct xhci_virt_ep *virt_ep;
2262 struct list_head *ep_entry;
2264 ep_entry = bw_table->interval_bw[i].endpoints.next;
2265 virt_ep = list_entry(ep_entry,
2266 struct xhci_virt_ep, bw_endpoint_list);
2267 /* Convert to blocks, rounding up */
2268 largest_mps = DIV_ROUND_UP(
2269 virt_ep->bw_info.max_packet_size,
2270 block_size);
2272 if (largest_mps > packet_size)
2273 packet_size = largest_mps;
2275 /* Use the larger overhead of this or the previous interval. */
2276 interval_overhead = xhci_get_largest_overhead(
2277 &bw_table->interval_bw[i]);
2278 if (interval_overhead > overhead)
2279 overhead = interval_overhead;
2281 /* How many packets can we evenly distribute across
2282 * (1 << (i + 1)) possible scheduling opportunities?
2284 packets_transmitted = packets_remaining >> (i + 1);
2286 /* Add in the bandwidth used for those scheduled packets */
2287 bw_added = packets_transmitted * (overhead + packet_size);
2289 /* How many packets do we have remaining to transmit? */
2290 packets_remaining = packets_remaining % (1 << (i + 1));
2292 /* What largest max packet size should those packets have? */
2293 /* If we've transmitted all packets, don't carry over the
2294 * largest packet size.
2296 if (packets_remaining == 0) {
2297 packet_size = 0;
2298 overhead = 0;
2299 } else if (packets_transmitted > 0) {
2300 /* Otherwise if we do have remaining packets, and we've
2301 * scheduled some packets in this interval, take the
2302 * largest max packet size from endpoints with this
2303 * interval.
2305 packet_size = largest_mps;
2306 overhead = interval_overhead;
2308 /* Otherwise carry over packet_size and overhead from the last
2309 * time we had a remainder.
2311 bw_used += bw_added;
2312 if (bw_used > max_bandwidth) {
2313 xhci_warn(xhci, "Not enough bandwidth. "
2314 "Proposed: %u, Max: %u\n",
2315 bw_used, max_bandwidth);
2316 return -ENOMEM;
2320 * Ok, we know we have some packets left over after even-handedly
2321 * scheduling interval 15. We don't know which microframes they will
2322 * fit into, so we over-schedule and say they will be scheduled every
2323 * microframe.
2325 if (packets_remaining > 0)
2326 bw_used += overhead + packet_size;
2328 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2329 unsigned int port_index = virt_dev->real_port - 1;
2331 /* OK, we're manipulating a HS device attached to a
2332 * root port bandwidth domain. Include the number of active TTs
2333 * in the bandwidth used.
2335 bw_used += TT_HS_OVERHEAD *
2336 xhci->rh_bw[port_index].num_active_tts;
2339 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2341 "Available: %u " "percent",
2342 bw_used, max_bandwidth, bw_reserved,
2343 (max_bandwidth - bw_used - bw_reserved) * 100 /
2344 max_bandwidth);
2346 bw_used += bw_reserved;
2347 if (bw_used > max_bandwidth) {
2348 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2349 bw_used, max_bandwidth);
2350 return -ENOMEM;
2353 bw_table->bw_used = bw_used;
2354 return 0;
2357 static bool xhci_is_async_ep(unsigned int ep_type)
2359 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2360 ep_type != ISOC_IN_EP &&
2361 ep_type != INT_IN_EP);
2364 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2366 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2369 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2371 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2373 if (ep_bw->ep_interval == 0)
2374 return SS_OVERHEAD_BURST +
2375 (ep_bw->mult * ep_bw->num_packets *
2376 (SS_OVERHEAD + mps));
2377 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2378 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2379 1 << ep_bw->ep_interval);
2383 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2384 struct xhci_bw_info *ep_bw,
2385 struct xhci_interval_bw_table *bw_table,
2386 struct usb_device *udev,
2387 struct xhci_virt_ep *virt_ep,
2388 struct xhci_tt_bw_info *tt_info)
2390 struct xhci_interval_bw *interval_bw;
2391 int normalized_interval;
2393 if (xhci_is_async_ep(ep_bw->type))
2394 return;
2396 if (udev->speed == USB_SPEED_SUPER) {
2397 if (xhci_is_sync_in_ep(ep_bw->type))
2398 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2399 xhci_get_ss_bw_consumed(ep_bw);
2400 else
2401 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2402 xhci_get_ss_bw_consumed(ep_bw);
2403 return;
2406 /* SuperSpeed endpoints never get added to intervals in the table, so
2407 * this check is only valid for HS/FS/LS devices.
2409 if (list_empty(&virt_ep->bw_endpoint_list))
2410 return;
2411 /* For LS/FS devices, we need to translate the interval expressed in
2412 * microframes to frames.
2414 if (udev->speed == USB_SPEED_HIGH)
2415 normalized_interval = ep_bw->ep_interval;
2416 else
2417 normalized_interval = ep_bw->ep_interval - 3;
2419 if (normalized_interval == 0)
2420 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2421 interval_bw = &bw_table->interval_bw[normalized_interval];
2422 interval_bw->num_packets -= ep_bw->num_packets;
2423 switch (udev->speed) {
2424 case USB_SPEED_LOW:
2425 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2426 break;
2427 case USB_SPEED_FULL:
2428 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2429 break;
2430 case USB_SPEED_HIGH:
2431 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2432 break;
2433 case USB_SPEED_SUPER:
2434 case USB_SPEED_UNKNOWN:
2435 case USB_SPEED_WIRELESS:
2436 /* Should never happen because only LS/FS/HS endpoints will get
2437 * added to the endpoint list.
2439 return;
2441 if (tt_info)
2442 tt_info->active_eps -= 1;
2443 list_del_init(&virt_ep->bw_endpoint_list);
2446 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2447 struct xhci_bw_info *ep_bw,
2448 struct xhci_interval_bw_table *bw_table,
2449 struct usb_device *udev,
2450 struct xhci_virt_ep *virt_ep,
2451 struct xhci_tt_bw_info *tt_info)
2453 struct xhci_interval_bw *interval_bw;
2454 struct xhci_virt_ep *smaller_ep;
2455 int normalized_interval;
2457 if (xhci_is_async_ep(ep_bw->type))
2458 return;
2460 if (udev->speed == USB_SPEED_SUPER) {
2461 if (xhci_is_sync_in_ep(ep_bw->type))
2462 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2463 xhci_get_ss_bw_consumed(ep_bw);
2464 else
2465 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2466 xhci_get_ss_bw_consumed(ep_bw);
2467 return;
2470 /* For LS/FS devices, we need to translate the interval expressed in
2471 * microframes to frames.
2473 if (udev->speed == USB_SPEED_HIGH)
2474 normalized_interval = ep_bw->ep_interval;
2475 else
2476 normalized_interval = ep_bw->ep_interval - 3;
2478 if (normalized_interval == 0)
2479 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2480 interval_bw = &bw_table->interval_bw[normalized_interval];
2481 interval_bw->num_packets += ep_bw->num_packets;
2482 switch (udev->speed) {
2483 case USB_SPEED_LOW:
2484 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2485 break;
2486 case USB_SPEED_FULL:
2487 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2488 break;
2489 case USB_SPEED_HIGH:
2490 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2491 break;
2492 case USB_SPEED_SUPER:
2493 case USB_SPEED_UNKNOWN:
2494 case USB_SPEED_WIRELESS:
2495 /* Should never happen because only LS/FS/HS endpoints will get
2496 * added to the endpoint list.
2498 return;
2501 if (tt_info)
2502 tt_info->active_eps += 1;
2503 /* Insert the endpoint into the list, largest max packet size first. */
2504 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2505 bw_endpoint_list) {
2506 if (ep_bw->max_packet_size >=
2507 smaller_ep->bw_info.max_packet_size) {
2508 /* Add the new ep before the smaller endpoint */
2509 list_add_tail(&virt_ep->bw_endpoint_list,
2510 &smaller_ep->bw_endpoint_list);
2511 return;
2514 /* Add the new endpoint at the end of the list. */
2515 list_add_tail(&virt_ep->bw_endpoint_list,
2516 &interval_bw->endpoints);
2519 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2520 struct xhci_virt_device *virt_dev,
2521 int old_active_eps)
2523 struct xhci_root_port_bw_info *rh_bw_info;
2524 if (!virt_dev->tt_info)
2525 return;
2527 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2528 if (old_active_eps == 0 &&
2529 virt_dev->tt_info->active_eps != 0) {
2530 rh_bw_info->num_active_tts += 1;
2531 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2532 } else if (old_active_eps != 0 &&
2533 virt_dev->tt_info->active_eps == 0) {
2534 rh_bw_info->num_active_tts -= 1;
2535 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2539 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2540 struct xhci_virt_device *virt_dev,
2541 struct xhci_container_ctx *in_ctx)
2543 struct xhci_bw_info ep_bw_info[31];
2544 int i;
2545 struct xhci_input_control_ctx *ctrl_ctx;
2546 int old_active_eps = 0;
2548 if (virt_dev->tt_info)
2549 old_active_eps = virt_dev->tt_info->active_eps;
2551 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2552 if (!ctrl_ctx) {
2553 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2554 __func__);
2555 return -ENOMEM;
2558 for (i = 0; i < 31; i++) {
2559 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2560 continue;
2562 /* Make a copy of the BW info in case we need to revert this */
2563 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2564 sizeof(ep_bw_info[i]));
2565 /* Drop the endpoint from the interval table if the endpoint is
2566 * being dropped or changed.
2568 if (EP_IS_DROPPED(ctrl_ctx, i))
2569 xhci_drop_ep_from_interval_table(xhci,
2570 &virt_dev->eps[i].bw_info,
2571 virt_dev->bw_table,
2572 virt_dev->udev,
2573 &virt_dev->eps[i],
2574 virt_dev->tt_info);
2576 /* Overwrite the information stored in the endpoints' bw_info */
2577 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2578 for (i = 0; i < 31; i++) {
2579 /* Add any changed or added endpoints to the interval table */
2580 if (EP_IS_ADDED(ctrl_ctx, i))
2581 xhci_add_ep_to_interval_table(xhci,
2582 &virt_dev->eps[i].bw_info,
2583 virt_dev->bw_table,
2584 virt_dev->udev,
2585 &virt_dev->eps[i],
2586 virt_dev->tt_info);
2589 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2590 /* Ok, this fits in the bandwidth we have.
2591 * Update the number of active TTs.
2593 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2594 return 0;
2597 /* We don't have enough bandwidth for this, revert the stored info. */
2598 for (i = 0; i < 31; i++) {
2599 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2600 continue;
2602 /* Drop the new copies of any added or changed endpoints from
2603 * the interval table.
2605 if (EP_IS_ADDED(ctrl_ctx, i)) {
2606 xhci_drop_ep_from_interval_table(xhci,
2607 &virt_dev->eps[i].bw_info,
2608 virt_dev->bw_table,
2609 virt_dev->udev,
2610 &virt_dev->eps[i],
2611 virt_dev->tt_info);
2613 /* Revert the endpoint back to its old information */
2614 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2615 sizeof(ep_bw_info[i]));
2616 /* Add any changed or dropped endpoints back into the table */
2617 if (EP_IS_DROPPED(ctrl_ctx, i))
2618 xhci_add_ep_to_interval_table(xhci,
2619 &virt_dev->eps[i].bw_info,
2620 virt_dev->bw_table,
2621 virt_dev->udev,
2622 &virt_dev->eps[i],
2623 virt_dev->tt_info);
2625 return -ENOMEM;
2629 /* Issue a configure endpoint command or evaluate context command
2630 * and wait for it to finish.
2632 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2633 struct usb_device *udev,
2634 struct xhci_command *command,
2635 bool ctx_change, bool must_succeed)
2637 int ret;
2638 unsigned long flags;
2639 struct xhci_input_control_ctx *ctrl_ctx;
2640 struct xhci_virt_device *virt_dev;
2642 if (!command)
2643 return -EINVAL;
2645 spin_lock_irqsave(&xhci->lock, flags);
2646 virt_dev = xhci->devs[udev->slot_id];
2648 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2649 if (!ctrl_ctx) {
2650 spin_unlock_irqrestore(&xhci->lock, flags);
2651 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2652 __func__);
2653 return -ENOMEM;
2656 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2657 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2658 spin_unlock_irqrestore(&xhci->lock, flags);
2659 xhci_warn(xhci, "Not enough host resources, "
2660 "active endpoint contexts = %u\n",
2661 xhci->num_active_eps);
2662 return -ENOMEM;
2664 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2665 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2666 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2667 xhci_free_host_resources(xhci, ctrl_ctx);
2668 spin_unlock_irqrestore(&xhci->lock, flags);
2669 xhci_warn(xhci, "Not enough bandwidth\n");
2670 return -ENOMEM;
2673 if (!ctx_change)
2674 ret = xhci_queue_configure_endpoint(xhci, command,
2675 command->in_ctx->dma,
2676 udev->slot_id, must_succeed);
2677 else
2678 ret = xhci_queue_evaluate_context(xhci, command,
2679 command->in_ctx->dma,
2680 udev->slot_id, must_succeed);
2681 if (ret < 0) {
2682 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2683 xhci_free_host_resources(xhci, ctrl_ctx);
2684 spin_unlock_irqrestore(&xhci->lock, flags);
2685 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2686 "FIXME allocate a new ring segment");
2687 return -ENOMEM;
2689 xhci_ring_cmd_db(xhci);
2690 spin_unlock_irqrestore(&xhci->lock, flags);
2692 /* Wait for the configure endpoint command to complete */
2693 wait_for_completion(command->completion);
2695 if (!ctx_change)
2696 ret = xhci_configure_endpoint_result(xhci, udev,
2697 &command->status);
2698 else
2699 ret = xhci_evaluate_context_result(xhci, udev,
2700 &command->status);
2702 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2703 spin_lock_irqsave(&xhci->lock, flags);
2704 /* If the command failed, remove the reserved resources.
2705 * Otherwise, clean up the estimate to include dropped eps.
2707 if (ret)
2708 xhci_free_host_resources(xhci, ctrl_ctx);
2709 else
2710 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2711 spin_unlock_irqrestore(&xhci->lock, flags);
2713 return ret;
2716 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2717 struct xhci_virt_device *vdev, int i)
2719 struct xhci_virt_ep *ep = &vdev->eps[i];
2721 if (ep->ep_state & EP_HAS_STREAMS) {
2722 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2723 xhci_get_endpoint_address(i));
2724 xhci_free_stream_info(xhci, ep->stream_info);
2725 ep->stream_info = NULL;
2726 ep->ep_state &= ~EP_HAS_STREAMS;
2730 /* Called after one or more calls to xhci_add_endpoint() or
2731 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2732 * to call xhci_reset_bandwidth().
2734 * Since we are in the middle of changing either configuration or
2735 * installing a new alt setting, the USB core won't allow URBs to be
2736 * enqueued for any endpoint on the old config or interface. Nothing
2737 * else should be touching the xhci->devs[slot_id] structure, so we
2738 * don't need to take the xhci->lock for manipulating that.
2740 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2742 int i;
2743 int ret = 0;
2744 struct xhci_hcd *xhci;
2745 struct xhci_virt_device *virt_dev;
2746 struct xhci_input_control_ctx *ctrl_ctx;
2747 struct xhci_slot_ctx *slot_ctx;
2748 struct xhci_command *command;
2750 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2751 if (ret <= 0)
2752 return ret;
2753 xhci = hcd_to_xhci(hcd);
2754 if (xhci->xhc_state & XHCI_STATE_DYING)
2755 return -ENODEV;
2757 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2758 virt_dev = xhci->devs[udev->slot_id];
2760 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2761 if (!command)
2762 return -ENOMEM;
2764 command->in_ctx = virt_dev->in_ctx;
2766 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2767 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2768 if (!ctrl_ctx) {
2769 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2770 __func__);
2771 ret = -ENOMEM;
2772 goto command_cleanup;
2774 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2775 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2776 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2778 /* Don't issue the command if there's no endpoints to update. */
2779 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2780 ctrl_ctx->drop_flags == 0) {
2781 ret = 0;
2782 goto command_cleanup;
2784 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2785 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2786 for (i = 31; i >= 1; i--) {
2787 __le32 le32 = cpu_to_le32(BIT(i));
2789 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2790 || (ctrl_ctx->add_flags & le32) || i == 1) {
2791 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2792 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2793 break;
2796 xhci_dbg(xhci, "New Input Control Context:\n");
2797 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2798 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2800 ret = xhci_configure_endpoint(xhci, udev, command,
2801 false, false);
2802 if (ret)
2803 /* Callee should call reset_bandwidth() */
2804 goto command_cleanup;
2806 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2807 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2808 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2810 /* Free any rings that were dropped, but not changed. */
2811 for (i = 1; i < 31; ++i) {
2812 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2813 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2814 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2815 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2818 xhci_zero_in_ctx(xhci, virt_dev);
2820 * Install any rings for completely new endpoints or changed endpoints,
2821 * and free or cache any old rings from changed endpoints.
2823 for (i = 1; i < 31; ++i) {
2824 if (!virt_dev->eps[i].new_ring)
2825 continue;
2826 /* Only cache or free the old ring if it exists.
2827 * It may not if this is the first add of an endpoint.
2829 if (virt_dev->eps[i].ring) {
2830 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2832 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2833 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2834 virt_dev->eps[i].new_ring = NULL;
2836 command_cleanup:
2837 kfree(command->completion);
2838 kfree(command);
2840 return ret;
2843 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2845 struct xhci_hcd *xhci;
2846 struct xhci_virt_device *virt_dev;
2847 int i, ret;
2849 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2850 if (ret <= 0)
2851 return;
2852 xhci = hcd_to_xhci(hcd);
2854 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2855 virt_dev = xhci->devs[udev->slot_id];
2856 /* Free any rings allocated for added endpoints */
2857 for (i = 0; i < 31; ++i) {
2858 if (virt_dev->eps[i].new_ring) {
2859 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2860 virt_dev->eps[i].new_ring = NULL;
2863 xhci_zero_in_ctx(xhci, virt_dev);
2866 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2867 struct xhci_container_ctx *in_ctx,
2868 struct xhci_container_ctx *out_ctx,
2869 struct xhci_input_control_ctx *ctrl_ctx,
2870 u32 add_flags, u32 drop_flags)
2872 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2873 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2874 xhci_slot_copy(xhci, in_ctx, out_ctx);
2875 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2877 xhci_dbg(xhci, "Input Context:\n");
2878 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2881 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2882 unsigned int slot_id, unsigned int ep_index,
2883 struct xhci_dequeue_state *deq_state)
2885 struct xhci_input_control_ctx *ctrl_ctx;
2886 struct xhci_container_ctx *in_ctx;
2887 struct xhci_ep_ctx *ep_ctx;
2888 u32 added_ctxs;
2889 dma_addr_t addr;
2891 in_ctx = xhci->devs[slot_id]->in_ctx;
2892 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2893 if (!ctrl_ctx) {
2894 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2895 __func__);
2896 return;
2899 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2900 xhci->devs[slot_id]->out_ctx, ep_index);
2901 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2902 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2903 deq_state->new_deq_ptr);
2904 if (addr == 0) {
2905 xhci_warn(xhci, "WARN Cannot submit config ep after "
2906 "reset ep command\n");
2907 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2908 deq_state->new_deq_seg,
2909 deq_state->new_deq_ptr);
2910 return;
2912 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2914 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2915 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2916 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2917 added_ctxs, added_ctxs);
2920 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2921 unsigned int ep_index, struct xhci_td *td)
2923 struct xhci_dequeue_state deq_state;
2924 struct xhci_virt_ep *ep;
2925 struct usb_device *udev = td->urb->dev;
2927 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2928 "Cleaning up stalled endpoint ring");
2929 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2930 /* We need to move the HW's dequeue pointer past this TD,
2931 * or it will attempt to resend it on the next doorbell ring.
2933 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2934 ep_index, ep->stopped_stream, td, &deq_state);
2936 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2937 return;
2939 /* HW with the reset endpoint quirk will use the saved dequeue state to
2940 * issue a configure endpoint command later.
2942 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2943 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2944 "Queueing new dequeue state");
2945 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2946 ep_index, ep->stopped_stream, &deq_state);
2947 } else {
2948 /* Better hope no one uses the input context between now and the
2949 * reset endpoint completion!
2950 * XXX: No idea how this hardware will react when stream rings
2951 * are enabled.
2953 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2954 "Setting up input context for "
2955 "configure endpoint command");
2956 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2957 ep_index, &deq_state);
2961 /* Called when clearing halted device. The core should have sent the control
2962 * message to clear the device halt condition. The host side of the halt should
2963 * already be cleared with a reset endpoint command issued when the STALL tx
2964 * event was received.
2966 * Context: in_interrupt
2969 void xhci_endpoint_reset(struct usb_hcd *hcd,
2970 struct usb_host_endpoint *ep)
2972 struct xhci_hcd *xhci;
2974 xhci = hcd_to_xhci(hcd);
2977 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2978 * The Reset Endpoint Command may only be issued to endpoints in the
2979 * Halted state. If software wishes reset the Data Toggle or Sequence
2980 * Number of an endpoint that isn't in the Halted state, then software
2981 * may issue a Configure Endpoint Command with the Drop and Add bits set
2982 * for the target endpoint. that is in the Stopped state.
2985 /* For now just print debug to follow the situation */
2986 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2987 ep->desc.bEndpointAddress);
2990 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2991 struct usb_device *udev, struct usb_host_endpoint *ep,
2992 unsigned int slot_id)
2994 int ret;
2995 unsigned int ep_index;
2996 unsigned int ep_state;
2998 if (!ep)
2999 return -EINVAL;
3000 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3001 if (ret <= 0)
3002 return -EINVAL;
3003 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3004 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3005 " descriptor for ep 0x%x does not support streams\n",
3006 ep->desc.bEndpointAddress);
3007 return -EINVAL;
3010 ep_index = xhci_get_endpoint_index(&ep->desc);
3011 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3012 if (ep_state & EP_HAS_STREAMS ||
3013 ep_state & EP_GETTING_STREAMS) {
3014 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3015 "already has streams set up.\n",
3016 ep->desc.bEndpointAddress);
3017 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3018 "dynamic stream context array reallocation.\n");
3019 return -EINVAL;
3021 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3022 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3023 "endpoint 0x%x; URBs are pending.\n",
3024 ep->desc.bEndpointAddress);
3025 return -EINVAL;
3027 return 0;
3030 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3031 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3033 unsigned int max_streams;
3035 /* The stream context array size must be a power of two */
3036 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3038 * Find out how many primary stream array entries the host controller
3039 * supports. Later we may use secondary stream arrays (similar to 2nd
3040 * level page entries), but that's an optional feature for xHCI host
3041 * controllers. xHCs must support at least 4 stream IDs.
3043 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3044 if (*num_stream_ctxs > max_streams) {
3045 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3046 max_streams);
3047 *num_stream_ctxs = max_streams;
3048 *num_streams = max_streams;
3052 /* Returns an error code if one of the endpoint already has streams.
3053 * This does not change any data structures, it only checks and gathers
3054 * information.
3056 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3057 struct usb_device *udev,
3058 struct usb_host_endpoint **eps, unsigned int num_eps,
3059 unsigned int *num_streams, u32 *changed_ep_bitmask)
3061 unsigned int max_streams;
3062 unsigned int endpoint_flag;
3063 int i;
3064 int ret;
3066 for (i = 0; i < num_eps; i++) {
3067 ret = xhci_check_streams_endpoint(xhci, udev,
3068 eps[i], udev->slot_id);
3069 if (ret < 0)
3070 return ret;
3072 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3073 if (max_streams < (*num_streams - 1)) {
3074 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3075 eps[i]->desc.bEndpointAddress,
3076 max_streams);
3077 *num_streams = max_streams+1;
3080 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3081 if (*changed_ep_bitmask & endpoint_flag)
3082 return -EINVAL;
3083 *changed_ep_bitmask |= endpoint_flag;
3085 return 0;
3088 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3089 struct usb_device *udev,
3090 struct usb_host_endpoint **eps, unsigned int num_eps)
3092 u32 changed_ep_bitmask = 0;
3093 unsigned int slot_id;
3094 unsigned int ep_index;
3095 unsigned int ep_state;
3096 int i;
3098 slot_id = udev->slot_id;
3099 if (!xhci->devs[slot_id])
3100 return 0;
3102 for (i = 0; i < num_eps; i++) {
3103 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3104 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3105 /* Are streams already being freed for the endpoint? */
3106 if (ep_state & EP_GETTING_NO_STREAMS) {
3107 xhci_warn(xhci, "WARN Can't disable streams for "
3108 "endpoint 0x%x, "
3109 "streams are being disabled already\n",
3110 eps[i]->desc.bEndpointAddress);
3111 return 0;
3113 /* Are there actually any streams to free? */
3114 if (!(ep_state & EP_HAS_STREAMS) &&
3115 !(ep_state & EP_GETTING_STREAMS)) {
3116 xhci_warn(xhci, "WARN Can't disable streams for "
3117 "endpoint 0x%x, "
3118 "streams are already disabled!\n",
3119 eps[i]->desc.bEndpointAddress);
3120 xhci_warn(xhci, "WARN xhci_free_streams() called "
3121 "with non-streams endpoint\n");
3122 return 0;
3124 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3126 return changed_ep_bitmask;
3130 * The USB device drivers use this function (through the HCD interface in USB
3131 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3132 * coordinate mass storage command queueing across multiple endpoints (basically
3133 * a stream ID == a task ID).
3135 * Setting up streams involves allocating the same size stream context array
3136 * for each endpoint and issuing a configure endpoint command for all endpoints.
3138 * Don't allow the call to succeed if one endpoint only supports one stream
3139 * (which means it doesn't support streams at all).
3141 * Drivers may get less stream IDs than they asked for, if the host controller
3142 * hardware or endpoints claim they can't support the number of requested
3143 * stream IDs.
3145 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3146 struct usb_host_endpoint **eps, unsigned int num_eps,
3147 unsigned int num_streams, gfp_t mem_flags)
3149 int i, ret;
3150 struct xhci_hcd *xhci;
3151 struct xhci_virt_device *vdev;
3152 struct xhci_command *config_cmd;
3153 struct xhci_input_control_ctx *ctrl_ctx;
3154 unsigned int ep_index;
3155 unsigned int num_stream_ctxs;
3156 unsigned long flags;
3157 u32 changed_ep_bitmask = 0;
3159 if (!eps)
3160 return -EINVAL;
3162 /* Add one to the number of streams requested to account for
3163 * stream 0 that is reserved for xHCI usage.
3165 num_streams += 1;
3166 xhci = hcd_to_xhci(hcd);
3167 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3168 num_streams);
3170 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3171 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3172 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3173 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3174 return -ENOSYS;
3177 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3178 if (!config_cmd) {
3179 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3180 return -ENOMEM;
3182 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3183 if (!ctrl_ctx) {
3184 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3185 __func__);
3186 xhci_free_command(xhci, config_cmd);
3187 return -ENOMEM;
3190 /* Check to make sure all endpoints are not already configured for
3191 * streams. While we're at it, find the maximum number of streams that
3192 * all the endpoints will support and check for duplicate endpoints.
3194 spin_lock_irqsave(&xhci->lock, flags);
3195 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3196 num_eps, &num_streams, &changed_ep_bitmask);
3197 if (ret < 0) {
3198 xhci_free_command(xhci, config_cmd);
3199 spin_unlock_irqrestore(&xhci->lock, flags);
3200 return ret;
3202 if (num_streams <= 1) {
3203 xhci_warn(xhci, "WARN: endpoints can't handle "
3204 "more than one stream.\n");
3205 xhci_free_command(xhci, config_cmd);
3206 spin_unlock_irqrestore(&xhci->lock, flags);
3207 return -EINVAL;
3209 vdev = xhci->devs[udev->slot_id];
3210 /* Mark each endpoint as being in transition, so
3211 * xhci_urb_enqueue() will reject all URBs.
3213 for (i = 0; i < num_eps; i++) {
3214 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3215 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3217 spin_unlock_irqrestore(&xhci->lock, flags);
3219 /* Setup internal data structures and allocate HW data structures for
3220 * streams (but don't install the HW structures in the input context
3221 * until we're sure all memory allocation succeeded).
3223 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3224 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3225 num_stream_ctxs, num_streams);
3227 for (i = 0; i < num_eps; i++) {
3228 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3229 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3230 num_stream_ctxs,
3231 num_streams, mem_flags);
3232 if (!vdev->eps[ep_index].stream_info)
3233 goto cleanup;
3234 /* Set maxPstreams in endpoint context and update deq ptr to
3235 * point to stream context array. FIXME
3239 /* Set up the input context for a configure endpoint command. */
3240 for (i = 0; i < num_eps; i++) {
3241 struct xhci_ep_ctx *ep_ctx;
3243 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3244 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3246 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3247 vdev->out_ctx, ep_index);
3248 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3249 vdev->eps[ep_index].stream_info);
3251 /* Tell the HW to drop its old copy of the endpoint context info
3252 * and add the updated copy from the input context.
3254 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3255 vdev->out_ctx, ctrl_ctx,
3256 changed_ep_bitmask, changed_ep_bitmask);
3258 /* Issue and wait for the configure endpoint command */
3259 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3260 false, false);
3262 /* xHC rejected the configure endpoint command for some reason, so we
3263 * leave the old ring intact and free our internal streams data
3264 * structure.
3266 if (ret < 0)
3267 goto cleanup;
3269 spin_lock_irqsave(&xhci->lock, flags);
3270 for (i = 0; i < num_eps; i++) {
3271 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3272 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3273 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3274 udev->slot_id, ep_index);
3275 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3277 xhci_free_command(xhci, config_cmd);
3278 spin_unlock_irqrestore(&xhci->lock, flags);
3280 /* Subtract 1 for stream 0, which drivers can't use */
3281 return num_streams - 1;
3283 cleanup:
3284 /* If it didn't work, free the streams! */
3285 for (i = 0; i < num_eps; i++) {
3286 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3287 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3288 vdev->eps[ep_index].stream_info = NULL;
3289 /* FIXME Unset maxPstreams in endpoint context and
3290 * update deq ptr to point to normal string ring.
3292 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3293 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3294 xhci_endpoint_zero(xhci, vdev, eps[i]);
3296 xhci_free_command(xhci, config_cmd);
3297 return -ENOMEM;
3300 /* Transition the endpoint from using streams to being a "normal" endpoint
3301 * without streams.
3303 * Modify the endpoint context state, submit a configure endpoint command,
3304 * and free all endpoint rings for streams if that completes successfully.
3306 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3307 struct usb_host_endpoint **eps, unsigned int num_eps,
3308 gfp_t mem_flags)
3310 int i, ret;
3311 struct xhci_hcd *xhci;
3312 struct xhci_virt_device *vdev;
3313 struct xhci_command *command;
3314 struct xhci_input_control_ctx *ctrl_ctx;
3315 unsigned int ep_index;
3316 unsigned long flags;
3317 u32 changed_ep_bitmask;
3319 xhci = hcd_to_xhci(hcd);
3320 vdev = xhci->devs[udev->slot_id];
3322 /* Set up a configure endpoint command to remove the streams rings */
3323 spin_lock_irqsave(&xhci->lock, flags);
3324 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3325 udev, eps, num_eps);
3326 if (changed_ep_bitmask == 0) {
3327 spin_unlock_irqrestore(&xhci->lock, flags);
3328 return -EINVAL;
3331 /* Use the xhci_command structure from the first endpoint. We may have
3332 * allocated too many, but the driver may call xhci_free_streams() for
3333 * each endpoint it grouped into one call to xhci_alloc_streams().
3335 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3336 command = vdev->eps[ep_index].stream_info->free_streams_command;
3337 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3338 if (!ctrl_ctx) {
3339 spin_unlock_irqrestore(&xhci->lock, flags);
3340 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3341 __func__);
3342 return -EINVAL;
3345 for (i = 0; i < num_eps; i++) {
3346 struct xhci_ep_ctx *ep_ctx;
3348 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3349 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3350 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3351 EP_GETTING_NO_STREAMS;
3353 xhci_endpoint_copy(xhci, command->in_ctx,
3354 vdev->out_ctx, ep_index);
3355 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3356 &vdev->eps[ep_index]);
3358 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3359 vdev->out_ctx, ctrl_ctx,
3360 changed_ep_bitmask, changed_ep_bitmask);
3361 spin_unlock_irqrestore(&xhci->lock, flags);
3363 /* Issue and wait for the configure endpoint command,
3364 * which must succeed.
3366 ret = xhci_configure_endpoint(xhci, udev, command,
3367 false, true);
3369 /* xHC rejected the configure endpoint command for some reason, so we
3370 * leave the streams rings intact.
3372 if (ret < 0)
3373 return ret;
3375 spin_lock_irqsave(&xhci->lock, flags);
3376 for (i = 0; i < num_eps; i++) {
3377 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3378 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3379 vdev->eps[ep_index].stream_info = NULL;
3380 /* FIXME Unset maxPstreams in endpoint context and
3381 * update deq ptr to point to normal string ring.
3383 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3384 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3386 spin_unlock_irqrestore(&xhci->lock, flags);
3388 return 0;
3392 * Deletes endpoint resources for endpoints that were active before a Reset
3393 * Device command, or a Disable Slot command. The Reset Device command leaves
3394 * the control endpoint intact, whereas the Disable Slot command deletes it.
3396 * Must be called with xhci->lock held.
3398 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3399 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3401 int i;
3402 unsigned int num_dropped_eps = 0;
3403 unsigned int drop_flags = 0;
3405 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3406 if (virt_dev->eps[i].ring) {
3407 drop_flags |= 1 << i;
3408 num_dropped_eps++;
3411 xhci->num_active_eps -= num_dropped_eps;
3412 if (num_dropped_eps)
3413 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3414 "Dropped %u ep ctxs, flags = 0x%x, "
3415 "%u now active.",
3416 num_dropped_eps, drop_flags,
3417 xhci->num_active_eps);
3421 * This submits a Reset Device Command, which will set the device state to 0,
3422 * set the device address to 0, and disable all the endpoints except the default
3423 * control endpoint. The USB core should come back and call
3424 * xhci_address_device(), and then re-set up the configuration. If this is
3425 * called because of a usb_reset_and_verify_device(), then the old alternate
3426 * settings will be re-installed through the normal bandwidth allocation
3427 * functions.
3429 * Wait for the Reset Device command to finish. Remove all structures
3430 * associated with the endpoints that were disabled. Clear the input device
3431 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3433 * If the virt_dev to be reset does not exist or does not match the udev,
3434 * it means the device is lost, possibly due to the xHC restore error and
3435 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3436 * re-allocate the device.
3438 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3440 int ret, i;
3441 unsigned long flags;
3442 struct xhci_hcd *xhci;
3443 unsigned int slot_id;
3444 struct xhci_virt_device *virt_dev;
3445 struct xhci_command *reset_device_cmd;
3446 int last_freed_endpoint;
3447 struct xhci_slot_ctx *slot_ctx;
3448 int old_active_eps = 0;
3450 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3451 if (ret <= 0)
3452 return ret;
3453 xhci = hcd_to_xhci(hcd);
3454 slot_id = udev->slot_id;
3455 virt_dev = xhci->devs[slot_id];
3456 if (!virt_dev) {
3457 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3458 "not exist. Re-allocate the device\n", slot_id);
3459 ret = xhci_alloc_dev(hcd, udev);
3460 if (ret == 1)
3461 return 0;
3462 else
3463 return -EINVAL;
3466 if (virt_dev->tt_info)
3467 old_active_eps = virt_dev->tt_info->active_eps;
3469 if (virt_dev->udev != udev) {
3470 /* If the virt_dev and the udev does not match, this virt_dev
3471 * may belong to another udev.
3472 * Re-allocate the device.
3474 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3475 "not match the udev. Re-allocate the device\n",
3476 slot_id);
3477 ret = xhci_alloc_dev(hcd, udev);
3478 if (ret == 1)
3479 return 0;
3480 else
3481 return -EINVAL;
3484 /* If device is not setup, there is no point in resetting it */
3485 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3486 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3487 SLOT_STATE_DISABLED)
3488 return 0;
3490 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3491 /* Allocate the command structure that holds the struct completion.
3492 * Assume we're in process context, since the normal device reset
3493 * process has to wait for the device anyway. Storage devices are
3494 * reset as part of error handling, so use GFP_NOIO instead of
3495 * GFP_KERNEL.
3497 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3498 if (!reset_device_cmd) {
3499 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3500 return -ENOMEM;
3503 /* Attempt to submit the Reset Device command to the command ring */
3504 spin_lock_irqsave(&xhci->lock, flags);
3506 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3507 if (ret) {
3508 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3509 spin_unlock_irqrestore(&xhci->lock, flags);
3510 goto command_cleanup;
3512 xhci_ring_cmd_db(xhci);
3513 spin_unlock_irqrestore(&xhci->lock, flags);
3515 /* Wait for the Reset Device command to finish */
3516 wait_for_completion(reset_device_cmd->completion);
3518 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3519 * unless we tried to reset a slot ID that wasn't enabled,
3520 * or the device wasn't in the addressed or configured state.
3522 ret = reset_device_cmd->status;
3523 switch (ret) {
3524 case COMP_CMD_ABORT:
3525 case COMP_CMD_STOP:
3526 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3527 ret = -ETIME;
3528 goto command_cleanup;
3529 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3530 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3531 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3532 slot_id,
3533 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3534 xhci_dbg(xhci, "Not freeing device rings.\n");
3535 /* Don't treat this as an error. May change my mind later. */
3536 ret = 0;
3537 goto command_cleanup;
3538 case COMP_SUCCESS:
3539 xhci_dbg(xhci, "Successful reset device command.\n");
3540 break;
3541 default:
3542 if (xhci_is_vendor_info_code(xhci, ret))
3543 break;
3544 xhci_warn(xhci, "Unknown completion code %u for "
3545 "reset device command.\n", ret);
3546 ret = -EINVAL;
3547 goto command_cleanup;
3550 /* Free up host controller endpoint resources */
3551 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3552 spin_lock_irqsave(&xhci->lock, flags);
3553 /* Don't delete the default control endpoint resources */
3554 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3555 spin_unlock_irqrestore(&xhci->lock, flags);
3558 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3559 last_freed_endpoint = 1;
3560 for (i = 1; i < 31; ++i) {
3561 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3563 if (ep->ep_state & EP_HAS_STREAMS) {
3564 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3565 xhci_get_endpoint_address(i));
3566 xhci_free_stream_info(xhci, ep->stream_info);
3567 ep->stream_info = NULL;
3568 ep->ep_state &= ~EP_HAS_STREAMS;
3571 if (ep->ring) {
3572 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3573 last_freed_endpoint = i;
3575 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3576 xhci_drop_ep_from_interval_table(xhci,
3577 &virt_dev->eps[i].bw_info,
3578 virt_dev->bw_table,
3579 udev,
3580 &virt_dev->eps[i],
3581 virt_dev->tt_info);
3582 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3584 /* If necessary, update the number of active TTs on this root port */
3585 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3587 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3588 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3589 ret = 0;
3591 command_cleanup:
3592 xhci_free_command(xhci, reset_device_cmd);
3593 return ret;
3597 * At this point, the struct usb_device is about to go away, the device has
3598 * disconnected, and all traffic has been stopped and the endpoints have been
3599 * disabled. Free any HC data structures associated with that device.
3601 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3603 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3604 struct xhci_virt_device *virt_dev;
3605 unsigned long flags;
3606 u32 state;
3607 int i, ret;
3608 struct xhci_command *command;
3610 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3611 if (!command)
3612 return;
3614 #ifndef CONFIG_USB_DEFAULT_PERSIST
3616 * We called pm_runtime_get_noresume when the device was attached.
3617 * Decrement the counter here to allow controller to runtime suspend
3618 * if no devices remain.
3620 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3621 pm_runtime_put_noidle(hcd->self.controller);
3622 #endif
3624 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3625 /* If the host is halted due to driver unload, we still need to free the
3626 * device.
3628 if (ret <= 0 && ret != -ENODEV) {
3629 kfree(command);
3630 return;
3633 virt_dev = xhci->devs[udev->slot_id];
3635 /* Stop any wayward timer functions (which may grab the lock) */
3636 for (i = 0; i < 31; ++i) {
3637 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3638 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3641 spin_lock_irqsave(&xhci->lock, flags);
3642 /* Don't disable the slot if the host controller is dead. */
3643 state = readl(&xhci->op_regs->status);
3644 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3645 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3646 xhci_free_virt_device(xhci, udev->slot_id);
3647 spin_unlock_irqrestore(&xhci->lock, flags);
3648 kfree(command);
3649 return;
3652 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3653 udev->slot_id)) {
3654 spin_unlock_irqrestore(&xhci->lock, flags);
3655 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3656 return;
3658 xhci_ring_cmd_db(xhci);
3659 spin_unlock_irqrestore(&xhci->lock, flags);
3662 * Event command completion handler will free any data structures
3663 * associated with the slot. XXX Can free sleep?
3668 * Checks if we have enough host controller resources for the default control
3669 * endpoint.
3671 * Must be called with xhci->lock held.
3673 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3675 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3676 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3677 "Not enough ep ctxs: "
3678 "%u active, need to add 1, limit is %u.",
3679 xhci->num_active_eps, xhci->limit_active_eps);
3680 return -ENOMEM;
3682 xhci->num_active_eps += 1;
3683 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3684 "Adding 1 ep ctx, %u now active.",
3685 xhci->num_active_eps);
3686 return 0;
3691 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3692 * timed out, or allocating memory failed. Returns 1 on success.
3694 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3696 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3697 unsigned long flags;
3698 int ret, slot_id;
3699 struct xhci_command *command;
3701 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3702 if (!command)
3703 return 0;
3705 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3706 mutex_lock(&xhci->mutex);
3707 spin_lock_irqsave(&xhci->lock, flags);
3708 command->completion = &xhci->addr_dev;
3709 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3710 if (ret) {
3711 spin_unlock_irqrestore(&xhci->lock, flags);
3712 mutex_unlock(&xhci->mutex);
3713 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3714 kfree(command);
3715 return 0;
3717 xhci_ring_cmd_db(xhci);
3718 spin_unlock_irqrestore(&xhci->lock, flags);
3720 wait_for_completion(command->completion);
3721 slot_id = xhci->slot_id;
3722 mutex_unlock(&xhci->mutex);
3724 if (!slot_id || command->status != COMP_SUCCESS) {
3725 xhci_err(xhci, "Error while assigning device slot ID\n");
3726 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3727 HCS_MAX_SLOTS(
3728 readl(&xhci->cap_regs->hcs_params1)));
3729 kfree(command);
3730 return 0;
3733 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3734 spin_lock_irqsave(&xhci->lock, flags);
3735 ret = xhci_reserve_host_control_ep_resources(xhci);
3736 if (ret) {
3737 spin_unlock_irqrestore(&xhci->lock, flags);
3738 xhci_warn(xhci, "Not enough host resources, "
3739 "active endpoint contexts = %u\n",
3740 xhci->num_active_eps);
3741 goto disable_slot;
3743 spin_unlock_irqrestore(&xhci->lock, flags);
3745 /* Use GFP_NOIO, since this function can be called from
3746 * xhci_discover_or_reset_device(), which may be called as part of
3747 * mass storage driver error handling.
3749 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3750 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3751 goto disable_slot;
3753 udev->slot_id = slot_id;
3755 #ifndef CONFIG_USB_DEFAULT_PERSIST
3757 * If resetting upon resume, we can't put the controller into runtime
3758 * suspend if there is a device attached.
3760 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3761 pm_runtime_get_noresume(hcd->self.controller);
3762 #endif
3765 kfree(command);
3766 /* Is this a LS or FS device under a HS hub? */
3767 /* Hub or peripherial? */
3768 return 1;
3770 disable_slot:
3771 /* Disable slot, if we can do it without mem alloc */
3772 spin_lock_irqsave(&xhci->lock, flags);
3773 command->completion = NULL;
3774 command->status = 0;
3775 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3776 udev->slot_id))
3777 xhci_ring_cmd_db(xhci);
3778 spin_unlock_irqrestore(&xhci->lock, flags);
3779 return 0;
3783 * Issue an Address Device command and optionally send a corresponding
3784 * SetAddress request to the device.
3786 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3787 enum xhci_setup_dev setup)
3789 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3790 unsigned long flags;
3791 struct xhci_virt_device *virt_dev;
3792 int ret = 0;
3793 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3794 struct xhci_slot_ctx *slot_ctx;
3795 struct xhci_input_control_ctx *ctrl_ctx;
3796 u64 temp_64;
3797 struct xhci_command *command = NULL;
3799 mutex_lock(&xhci->mutex);
3801 if (xhci->xhc_state) /* dying or halted */
3802 goto out;
3804 if (!udev->slot_id) {
3805 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3806 "Bad Slot ID %d", udev->slot_id);
3807 ret = -EINVAL;
3808 goto out;
3811 virt_dev = xhci->devs[udev->slot_id];
3813 if (WARN_ON(!virt_dev)) {
3815 * In plug/unplug torture test with an NEC controller,
3816 * a zero-dereference was observed once due to virt_dev = 0.
3817 * Print useful debug rather than crash if it is observed again!
3819 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3820 udev->slot_id);
3821 ret = -EINVAL;
3822 goto out;
3825 if (setup == SETUP_CONTEXT_ONLY) {
3826 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3827 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3828 SLOT_STATE_DEFAULT) {
3829 xhci_dbg(xhci, "Slot already in default state\n");
3830 goto out;
3834 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3835 if (!command) {
3836 ret = -ENOMEM;
3837 goto out;
3840 command->in_ctx = virt_dev->in_ctx;
3841 command->completion = &xhci->addr_dev;
3843 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3844 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3845 if (!ctrl_ctx) {
3846 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3847 __func__);
3848 ret = -EINVAL;
3849 goto out;
3852 * If this is the first Set Address since device plug-in or
3853 * virt_device realloaction after a resume with an xHCI power loss,
3854 * then set up the slot context.
3856 if (!slot_ctx->dev_info)
3857 xhci_setup_addressable_virt_dev(xhci, udev);
3858 /* Otherwise, update the control endpoint ring enqueue pointer. */
3859 else
3860 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3861 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3862 ctrl_ctx->drop_flags = 0;
3864 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3865 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3866 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3867 le32_to_cpu(slot_ctx->dev_info) >> 27);
3869 spin_lock_irqsave(&xhci->lock, flags);
3870 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3871 udev->slot_id, setup);
3872 if (ret) {
3873 spin_unlock_irqrestore(&xhci->lock, flags);
3874 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3875 "FIXME: allocate a command ring segment");
3876 goto out;
3878 xhci_ring_cmd_db(xhci);
3879 spin_unlock_irqrestore(&xhci->lock, flags);
3881 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3882 wait_for_completion(command->completion);
3884 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3885 * the SetAddress() "recovery interval" required by USB and aborting the
3886 * command on a timeout.
3888 switch (command->status) {
3889 case COMP_CMD_ABORT:
3890 case COMP_CMD_STOP:
3891 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3892 ret = -ETIME;
3893 break;
3894 case COMP_CTX_STATE:
3895 case COMP_EBADSLT:
3896 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3897 act, udev->slot_id);
3898 ret = -EINVAL;
3899 break;
3900 case COMP_TX_ERR:
3901 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3902 ret = -EPROTO;
3903 break;
3904 case COMP_DEV_ERR:
3905 dev_warn(&udev->dev,
3906 "ERROR: Incompatible device for setup %s command\n", act);
3907 ret = -ENODEV;
3908 break;
3909 case COMP_SUCCESS:
3910 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3911 "Successful setup %s command", act);
3912 break;
3913 default:
3914 xhci_err(xhci,
3915 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3916 act, command->status);
3917 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3918 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3919 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3920 ret = -EINVAL;
3921 break;
3923 if (ret)
3924 goto out;
3925 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3926 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3927 "Op regs DCBAA ptr = %#016llx", temp_64);
3928 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3929 "Slot ID %d dcbaa entry @%p = %#016llx",
3930 udev->slot_id,
3931 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3932 (unsigned long long)
3933 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3934 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3935 "Output Context DMA address = %#08llx",
3936 (unsigned long long)virt_dev->out_ctx->dma);
3937 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3938 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3939 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3940 le32_to_cpu(slot_ctx->dev_info) >> 27);
3941 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3942 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3944 * USB core uses address 1 for the roothubs, so we add one to the
3945 * address given back to us by the HC.
3947 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3948 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3949 le32_to_cpu(slot_ctx->dev_info) >> 27);
3950 /* Zero the input context control for later use */
3951 ctrl_ctx->add_flags = 0;
3952 ctrl_ctx->drop_flags = 0;
3954 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3955 "Internal device address = %d",
3956 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3957 out:
3958 mutex_unlock(&xhci->mutex);
3959 kfree(command);
3960 return ret;
3963 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3965 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3968 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3970 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3974 * Transfer the port index into real index in the HW port status
3975 * registers. Caculate offset between the port's PORTSC register
3976 * and port status base. Divide the number of per port register
3977 * to get the real index. The raw port number bases 1.
3979 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3981 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3982 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3983 __le32 __iomem *addr;
3984 int raw_port;
3986 if (hcd->speed < HCD_USB3)
3987 addr = xhci->usb2_ports[port1 - 1];
3988 else
3989 addr = xhci->usb3_ports[port1 - 1];
3991 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3992 return raw_port;
3996 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3997 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3999 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4000 struct usb_device *udev, u16 max_exit_latency)
4002 struct xhci_virt_device *virt_dev;
4003 struct xhci_command *command;
4004 struct xhci_input_control_ctx *ctrl_ctx;
4005 struct xhci_slot_ctx *slot_ctx;
4006 unsigned long flags;
4007 int ret;
4009 spin_lock_irqsave(&xhci->lock, flags);
4011 virt_dev = xhci->devs[udev->slot_id];
4014 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4015 * xHC was re-initialized. Exit latency will be set later after
4016 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4019 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4020 spin_unlock_irqrestore(&xhci->lock, flags);
4021 return 0;
4024 /* Attempt to issue an Evaluate Context command to change the MEL. */
4025 command = xhci->lpm_command;
4026 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4027 if (!ctrl_ctx) {
4028 spin_unlock_irqrestore(&xhci->lock, flags);
4029 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4030 __func__);
4031 return -ENOMEM;
4034 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4035 spin_unlock_irqrestore(&xhci->lock, flags);
4037 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4038 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4039 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4040 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4041 slot_ctx->dev_state = 0;
4043 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4044 "Set up evaluate context for LPM MEL change.");
4045 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4046 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4048 /* Issue and wait for the evaluate context command. */
4049 ret = xhci_configure_endpoint(xhci, udev, command,
4050 true, true);
4051 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4052 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4054 if (!ret) {
4055 spin_lock_irqsave(&xhci->lock, flags);
4056 virt_dev->current_mel = max_exit_latency;
4057 spin_unlock_irqrestore(&xhci->lock, flags);
4059 return ret;
4062 #ifdef CONFIG_PM
4064 /* BESL to HIRD Encoding array for USB2 LPM */
4065 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4066 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4068 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4069 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4070 struct usb_device *udev)
4072 int u2del, besl, besl_host;
4073 int besl_device = 0;
4074 u32 field;
4076 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4077 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4079 if (field & USB_BESL_SUPPORT) {
4080 for (besl_host = 0; besl_host < 16; besl_host++) {
4081 if (xhci_besl_encoding[besl_host] >= u2del)
4082 break;
4084 /* Use baseline BESL value as default */
4085 if (field & USB_BESL_BASELINE_VALID)
4086 besl_device = USB_GET_BESL_BASELINE(field);
4087 else if (field & USB_BESL_DEEP_VALID)
4088 besl_device = USB_GET_BESL_DEEP(field);
4089 } else {
4090 if (u2del <= 50)
4091 besl_host = 0;
4092 else
4093 besl_host = (u2del - 51) / 75 + 1;
4096 besl = besl_host + besl_device;
4097 if (besl > 15)
4098 besl = 15;
4100 return besl;
4103 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4104 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4106 u32 field;
4107 int l1;
4108 int besld = 0;
4109 int hirdm = 0;
4111 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4113 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4114 l1 = udev->l1_params.timeout / 256;
4116 /* device has preferred BESLD */
4117 if (field & USB_BESL_DEEP_VALID) {
4118 besld = USB_GET_BESL_DEEP(field);
4119 hirdm = 1;
4122 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4125 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4126 struct usb_device *udev, int enable)
4128 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4129 __le32 __iomem **port_array;
4130 __le32 __iomem *pm_addr, *hlpm_addr;
4131 u32 pm_val, hlpm_val, field;
4132 unsigned int port_num;
4133 unsigned long flags;
4134 int hird, exit_latency;
4135 int ret;
4137 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4138 !udev->lpm_capable)
4139 return -EPERM;
4141 if (!udev->parent || udev->parent->parent ||
4142 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4143 return -EPERM;
4145 if (udev->usb2_hw_lpm_capable != 1)
4146 return -EPERM;
4148 spin_lock_irqsave(&xhci->lock, flags);
4150 port_array = xhci->usb2_ports;
4151 port_num = udev->portnum - 1;
4152 pm_addr = port_array[port_num] + PORTPMSC;
4153 pm_val = readl(pm_addr);
4154 hlpm_addr = port_array[port_num] + PORTHLPMC;
4155 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4157 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4158 enable ? "enable" : "disable", port_num + 1);
4160 if (enable) {
4161 /* Host supports BESL timeout instead of HIRD */
4162 if (udev->usb2_hw_lpm_besl_capable) {
4163 /* if device doesn't have a preferred BESL value use a
4164 * default one which works with mixed HIRD and BESL
4165 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4167 if ((field & USB_BESL_SUPPORT) &&
4168 (field & USB_BESL_BASELINE_VALID))
4169 hird = USB_GET_BESL_BASELINE(field);
4170 else
4171 hird = udev->l1_params.besl;
4173 exit_latency = xhci_besl_encoding[hird];
4174 spin_unlock_irqrestore(&xhci->lock, flags);
4176 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4177 * input context for link powermanagement evaluate
4178 * context commands. It is protected by hcd->bandwidth
4179 * mutex and is shared by all devices. We need to set
4180 * the max ext latency in USB 2 BESL LPM as well, so
4181 * use the same mutex and xhci_change_max_exit_latency()
4183 mutex_lock(hcd->bandwidth_mutex);
4184 ret = xhci_change_max_exit_latency(xhci, udev,
4185 exit_latency);
4186 mutex_unlock(hcd->bandwidth_mutex);
4188 if (ret < 0)
4189 return ret;
4190 spin_lock_irqsave(&xhci->lock, flags);
4192 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4193 writel(hlpm_val, hlpm_addr);
4194 /* flush write */
4195 readl(hlpm_addr);
4196 } else {
4197 hird = xhci_calculate_hird_besl(xhci, udev);
4200 pm_val &= ~PORT_HIRD_MASK;
4201 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4202 writel(pm_val, pm_addr);
4203 pm_val = readl(pm_addr);
4204 pm_val |= PORT_HLE;
4205 writel(pm_val, pm_addr);
4206 /* flush write */
4207 readl(pm_addr);
4208 } else {
4209 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4210 writel(pm_val, pm_addr);
4211 /* flush write */
4212 readl(pm_addr);
4213 if (udev->usb2_hw_lpm_besl_capable) {
4214 spin_unlock_irqrestore(&xhci->lock, flags);
4215 mutex_lock(hcd->bandwidth_mutex);
4216 xhci_change_max_exit_latency(xhci, udev, 0);
4217 mutex_unlock(hcd->bandwidth_mutex);
4218 return 0;
4222 spin_unlock_irqrestore(&xhci->lock, flags);
4223 return 0;
4226 /* check if a usb2 port supports a given extened capability protocol
4227 * only USB2 ports extended protocol capability values are cached.
4228 * Return 1 if capability is supported
4230 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4231 unsigned capability)
4233 u32 port_offset, port_count;
4234 int i;
4236 for (i = 0; i < xhci->num_ext_caps; i++) {
4237 if (xhci->ext_caps[i] & capability) {
4238 /* port offsets starts at 1 */
4239 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4240 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4241 if (port >= port_offset &&
4242 port < port_offset + port_count)
4243 return 1;
4246 return 0;
4249 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4251 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4252 int portnum = udev->portnum - 1;
4254 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4255 !udev->lpm_capable)
4256 return 0;
4258 /* we only support lpm for non-hub device connected to root hub yet */
4259 if (!udev->parent || udev->parent->parent ||
4260 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4261 return 0;
4263 if (xhci->hw_lpm_support == 1 &&
4264 xhci_check_usb2_port_capability(
4265 xhci, portnum, XHCI_HLC)) {
4266 udev->usb2_hw_lpm_capable = 1;
4267 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4268 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4269 if (xhci_check_usb2_port_capability(xhci, portnum,
4270 XHCI_BLC))
4271 udev->usb2_hw_lpm_besl_capable = 1;
4274 return 0;
4277 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4279 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4280 static unsigned long long xhci_service_interval_to_ns(
4281 struct usb_endpoint_descriptor *desc)
4283 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4286 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4287 enum usb3_link_state state)
4289 unsigned long long sel;
4290 unsigned long long pel;
4291 unsigned int max_sel_pel;
4292 char *state_name;
4294 switch (state) {
4295 case USB3_LPM_U1:
4296 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4297 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4298 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4299 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4300 state_name = "U1";
4301 break;
4302 case USB3_LPM_U2:
4303 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4304 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4305 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4306 state_name = "U2";
4307 break;
4308 default:
4309 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4310 __func__);
4311 return USB3_LPM_DISABLED;
4314 if (sel <= max_sel_pel && pel <= max_sel_pel)
4315 return USB3_LPM_DEVICE_INITIATED;
4317 if (sel > max_sel_pel)
4318 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4319 "due to long SEL %llu ms\n",
4320 state_name, sel);
4321 else
4322 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4323 "due to long PEL %llu ms\n",
4324 state_name, pel);
4325 return USB3_LPM_DISABLED;
4328 /* The U1 timeout should be the maximum of the following values:
4329 * - For control endpoints, U1 system exit latency (SEL) * 3
4330 * - For bulk endpoints, U1 SEL * 5
4331 * - For interrupt endpoints:
4332 * - Notification EPs, U1 SEL * 3
4333 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4334 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4336 static unsigned long long xhci_calculate_intel_u1_timeout(
4337 struct usb_device *udev,
4338 struct usb_endpoint_descriptor *desc)
4340 unsigned long long timeout_ns;
4341 int ep_type;
4342 int intr_type;
4344 ep_type = usb_endpoint_type(desc);
4345 switch (ep_type) {
4346 case USB_ENDPOINT_XFER_CONTROL:
4347 timeout_ns = udev->u1_params.sel * 3;
4348 break;
4349 case USB_ENDPOINT_XFER_BULK:
4350 timeout_ns = udev->u1_params.sel * 5;
4351 break;
4352 case USB_ENDPOINT_XFER_INT:
4353 intr_type = usb_endpoint_interrupt_type(desc);
4354 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4355 timeout_ns = udev->u1_params.sel * 3;
4356 break;
4358 /* Otherwise the calculation is the same as isoc eps */
4359 case USB_ENDPOINT_XFER_ISOC:
4360 timeout_ns = xhci_service_interval_to_ns(desc);
4361 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4362 if (timeout_ns < udev->u1_params.sel * 2)
4363 timeout_ns = udev->u1_params.sel * 2;
4364 break;
4365 default:
4366 return 0;
4369 return timeout_ns;
4372 /* Returns the hub-encoded U1 timeout value. */
4373 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4374 struct usb_device *udev,
4375 struct usb_endpoint_descriptor *desc)
4377 unsigned long long timeout_ns;
4379 if (xhci->quirks & XHCI_INTEL_HOST)
4380 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4381 else
4382 timeout_ns = udev->u1_params.sel;
4384 /* The U1 timeout is encoded in 1us intervals.
4385 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4387 if (timeout_ns == USB3_LPM_DISABLED)
4388 timeout_ns = 1;
4389 else
4390 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4392 /* If the necessary timeout value is bigger than what we can set in the
4393 * USB 3.0 hub, we have to disable hub-initiated U1.
4395 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4396 return timeout_ns;
4397 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4398 "due to long timeout %llu ms\n", timeout_ns);
4399 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4402 /* The U2 timeout should be the maximum of:
4403 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4404 * - largest bInterval of any active periodic endpoint (to avoid going
4405 * into lower power link states between intervals).
4406 * - the U2 Exit Latency of the device
4408 static unsigned long long xhci_calculate_intel_u2_timeout(
4409 struct usb_device *udev,
4410 struct usb_endpoint_descriptor *desc)
4412 unsigned long long timeout_ns;
4413 unsigned long long u2_del_ns;
4415 timeout_ns = 10 * 1000 * 1000;
4417 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4418 (xhci_service_interval_to_ns(desc) > timeout_ns))
4419 timeout_ns = xhci_service_interval_to_ns(desc);
4421 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4422 if (u2_del_ns > timeout_ns)
4423 timeout_ns = u2_del_ns;
4425 return timeout_ns;
4428 /* Returns the hub-encoded U2 timeout value. */
4429 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4430 struct usb_device *udev,
4431 struct usb_endpoint_descriptor *desc)
4433 unsigned long long timeout_ns;
4435 if (xhci->quirks & XHCI_INTEL_HOST)
4436 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4437 else
4438 timeout_ns = udev->u2_params.sel;
4440 /* The U2 timeout is encoded in 256us intervals */
4441 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4442 /* If the necessary timeout value is bigger than what we can set in the
4443 * USB 3.0 hub, we have to disable hub-initiated U2.
4445 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4446 return timeout_ns;
4447 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4448 "due to long timeout %llu ms\n", timeout_ns);
4449 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4452 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4453 struct usb_device *udev,
4454 struct usb_endpoint_descriptor *desc,
4455 enum usb3_link_state state,
4456 u16 *timeout)
4458 if (state == USB3_LPM_U1)
4459 return xhci_calculate_u1_timeout(xhci, udev, desc);
4460 else if (state == USB3_LPM_U2)
4461 return xhci_calculate_u2_timeout(xhci, udev, desc);
4463 return USB3_LPM_DISABLED;
4466 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4467 struct usb_device *udev,
4468 struct usb_endpoint_descriptor *desc,
4469 enum usb3_link_state state,
4470 u16 *timeout)
4472 u16 alt_timeout;
4474 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4475 desc, state, timeout);
4477 /* If we found we can't enable hub-initiated LPM, or
4478 * the U1 or U2 exit latency was too high to allow
4479 * device-initiated LPM as well, just stop searching.
4481 if (alt_timeout == USB3_LPM_DISABLED ||
4482 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4483 *timeout = alt_timeout;
4484 return -E2BIG;
4486 if (alt_timeout > *timeout)
4487 *timeout = alt_timeout;
4488 return 0;
4491 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4492 struct usb_device *udev,
4493 struct usb_host_interface *alt,
4494 enum usb3_link_state state,
4495 u16 *timeout)
4497 int j;
4499 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4500 if (xhci_update_timeout_for_endpoint(xhci, udev,
4501 &alt->endpoint[j].desc, state, timeout))
4502 return -E2BIG;
4503 continue;
4505 return 0;
4508 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4509 enum usb3_link_state state)
4511 struct usb_device *parent;
4512 unsigned int num_hubs;
4514 if (state == USB3_LPM_U2)
4515 return 0;
4517 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4518 for (parent = udev->parent, num_hubs = 0; parent->parent;
4519 parent = parent->parent)
4520 num_hubs++;
4522 if (num_hubs < 2)
4523 return 0;
4525 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4526 " below second-tier hub.\n");
4527 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4528 "to decrease power consumption.\n");
4529 return -E2BIG;
4532 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4533 struct usb_device *udev,
4534 enum usb3_link_state state)
4536 if (xhci->quirks & XHCI_INTEL_HOST)
4537 return xhci_check_intel_tier_policy(udev, state);
4538 else
4539 return 0;
4542 /* Returns the U1 or U2 timeout that should be enabled.
4543 * If the tier check or timeout setting functions return with a non-zero exit
4544 * code, that means the timeout value has been finalized and we shouldn't look
4545 * at any more endpoints.
4547 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4548 struct usb_device *udev, enum usb3_link_state state)
4550 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4551 struct usb_host_config *config;
4552 char *state_name;
4553 int i;
4554 u16 timeout = USB3_LPM_DISABLED;
4556 if (state == USB3_LPM_U1)
4557 state_name = "U1";
4558 else if (state == USB3_LPM_U2)
4559 state_name = "U2";
4560 else {
4561 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4562 state);
4563 return timeout;
4566 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4567 return timeout;
4569 /* Gather some information about the currently installed configuration
4570 * and alternate interface settings.
4572 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4573 state, &timeout))
4574 return timeout;
4576 config = udev->actconfig;
4577 if (!config)
4578 return timeout;
4580 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4581 struct usb_driver *driver;
4582 struct usb_interface *intf = config->interface[i];
4584 if (!intf)
4585 continue;
4587 /* Check if any currently bound drivers want hub-initiated LPM
4588 * disabled.
4590 if (intf->dev.driver) {
4591 driver = to_usb_driver(intf->dev.driver);
4592 if (driver && driver->disable_hub_initiated_lpm) {
4593 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4594 "at request of driver %s\n",
4595 state_name, driver->name);
4596 return xhci_get_timeout_no_hub_lpm(udev, state);
4600 /* Not sure how this could happen... */
4601 if (!intf->cur_altsetting)
4602 continue;
4604 if (xhci_update_timeout_for_interface(xhci, udev,
4605 intf->cur_altsetting,
4606 state, &timeout))
4607 return timeout;
4609 return timeout;
4612 static int calculate_max_exit_latency(struct usb_device *udev,
4613 enum usb3_link_state state_changed,
4614 u16 hub_encoded_timeout)
4616 unsigned long long u1_mel_us = 0;
4617 unsigned long long u2_mel_us = 0;
4618 unsigned long long mel_us = 0;
4619 bool disabling_u1;
4620 bool disabling_u2;
4621 bool enabling_u1;
4622 bool enabling_u2;
4624 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4625 hub_encoded_timeout == USB3_LPM_DISABLED);
4626 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4627 hub_encoded_timeout == USB3_LPM_DISABLED);
4629 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4630 hub_encoded_timeout != USB3_LPM_DISABLED);
4631 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4632 hub_encoded_timeout != USB3_LPM_DISABLED);
4634 /* If U1 was already enabled and we're not disabling it,
4635 * or we're going to enable U1, account for the U1 max exit latency.
4637 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4638 enabling_u1)
4639 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4640 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4641 enabling_u2)
4642 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4644 if (u1_mel_us > u2_mel_us)
4645 mel_us = u1_mel_us;
4646 else
4647 mel_us = u2_mel_us;
4648 /* xHCI host controller max exit latency field is only 16 bits wide. */
4649 if (mel_us > MAX_EXIT) {
4650 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4651 "is too big.\n", mel_us);
4652 return -E2BIG;
4654 return mel_us;
4657 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4658 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4659 struct usb_device *udev, enum usb3_link_state state)
4661 struct xhci_hcd *xhci;
4662 u16 hub_encoded_timeout;
4663 int mel;
4664 int ret;
4666 xhci = hcd_to_xhci(hcd);
4667 /* The LPM timeout values are pretty host-controller specific, so don't
4668 * enable hub-initiated timeouts unless the vendor has provided
4669 * information about their timeout algorithm.
4671 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4672 !xhci->devs[udev->slot_id])
4673 return USB3_LPM_DISABLED;
4675 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4676 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4677 if (mel < 0) {
4678 /* Max Exit Latency is too big, disable LPM. */
4679 hub_encoded_timeout = USB3_LPM_DISABLED;
4680 mel = 0;
4683 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4684 if (ret)
4685 return ret;
4686 return hub_encoded_timeout;
4689 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4690 struct usb_device *udev, enum usb3_link_state state)
4692 struct xhci_hcd *xhci;
4693 u16 mel;
4695 xhci = hcd_to_xhci(hcd);
4696 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4697 !xhci->devs[udev->slot_id])
4698 return 0;
4700 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4701 return xhci_change_max_exit_latency(xhci, udev, mel);
4703 #else /* CONFIG_PM */
4705 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4706 struct usb_device *udev, int enable)
4708 return 0;
4711 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4713 return 0;
4716 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4717 struct usb_device *udev, enum usb3_link_state state)
4719 return USB3_LPM_DISABLED;
4722 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4723 struct usb_device *udev, enum usb3_link_state state)
4725 return 0;
4727 #endif /* CONFIG_PM */
4729 /*-------------------------------------------------------------------------*/
4731 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4732 * internal data structures for the device.
4734 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4735 struct usb_tt *tt, gfp_t mem_flags)
4737 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4738 struct xhci_virt_device *vdev;
4739 struct xhci_command *config_cmd;
4740 struct xhci_input_control_ctx *ctrl_ctx;
4741 struct xhci_slot_ctx *slot_ctx;
4742 unsigned long flags;
4743 unsigned think_time;
4744 int ret;
4746 /* Ignore root hubs */
4747 if (!hdev->parent)
4748 return 0;
4750 vdev = xhci->devs[hdev->slot_id];
4751 if (!vdev) {
4752 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4753 return -EINVAL;
4755 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4756 if (!config_cmd) {
4757 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4758 return -ENOMEM;
4760 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4761 if (!ctrl_ctx) {
4762 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4763 __func__);
4764 xhci_free_command(xhci, config_cmd);
4765 return -ENOMEM;
4768 spin_lock_irqsave(&xhci->lock, flags);
4769 if (hdev->speed == USB_SPEED_HIGH &&
4770 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4771 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4772 xhci_free_command(xhci, config_cmd);
4773 spin_unlock_irqrestore(&xhci->lock, flags);
4774 return -ENOMEM;
4777 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4778 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4779 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4780 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4782 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4783 * but it may be already set to 1 when setup an xHCI virtual
4784 * device, so clear it anyway.
4786 if (tt->multi)
4787 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4788 else if (hdev->speed == USB_SPEED_FULL)
4789 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4791 if (xhci->hci_version > 0x95) {
4792 xhci_dbg(xhci, "xHCI version %x needs hub "
4793 "TT think time and number of ports\n",
4794 (unsigned int) xhci->hci_version);
4795 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4796 /* Set TT think time - convert from ns to FS bit times.
4797 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4798 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4800 * xHCI 1.0: this field shall be 0 if the device is not a
4801 * High-spped hub.
4803 think_time = tt->think_time;
4804 if (think_time != 0)
4805 think_time = (think_time / 666) - 1;
4806 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4807 slot_ctx->tt_info |=
4808 cpu_to_le32(TT_THINK_TIME(think_time));
4809 } else {
4810 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4811 "TT think time or number of ports\n",
4812 (unsigned int) xhci->hci_version);
4814 slot_ctx->dev_state = 0;
4815 spin_unlock_irqrestore(&xhci->lock, flags);
4817 xhci_dbg(xhci, "Set up %s for hub device.\n",
4818 (xhci->hci_version > 0x95) ?
4819 "configure endpoint" : "evaluate context");
4820 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4821 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4823 /* Issue and wait for the configure endpoint or
4824 * evaluate context command.
4826 if (xhci->hci_version > 0x95)
4827 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4828 false, false);
4829 else
4830 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4831 true, false);
4833 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4834 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4836 xhci_free_command(xhci, config_cmd);
4837 return ret;
4840 int xhci_get_frame(struct usb_hcd *hcd)
4842 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4843 /* EHCI mods by the periodic size. Why? */
4844 return readl(&xhci->run_regs->microframe_index) >> 3;
4847 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4849 struct xhci_hcd *xhci;
4850 struct device *dev = hcd->self.controller;
4851 int retval;
4853 /* Accept arbitrarily long scatter-gather lists */
4854 hcd->self.sg_tablesize = ~0;
4856 /* support to build packet from discontinuous buffers */
4857 hcd->self.no_sg_constraint = 1;
4859 /* XHCI controllers don't stop the ep queue on short packets :| */
4860 hcd->self.no_stop_on_short = 1;
4862 xhci = hcd_to_xhci(hcd);
4864 if (usb_hcd_is_primary_hcd(hcd)) {
4865 xhci->main_hcd = hcd;
4866 /* Mark the first roothub as being USB 2.0.
4867 * The xHCI driver will register the USB 3.0 roothub.
4869 hcd->speed = HCD_USB2;
4870 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4872 * USB 2.0 roothub under xHCI has an integrated TT,
4873 * (rate matching hub) as opposed to having an OHCI/UHCI
4874 * companion controller.
4876 hcd->has_tt = 1;
4877 } else {
4878 if (xhci->sbrn == 0x31) {
4879 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4880 hcd->speed = HCD_USB31;
4882 /* xHCI private pointer was set in xhci_pci_probe for the second
4883 * registered roothub.
4885 return 0;
4888 mutex_init(&xhci->mutex);
4889 xhci->cap_regs = hcd->regs;
4890 xhci->op_regs = hcd->regs +
4891 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4892 xhci->run_regs = hcd->regs +
4893 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4894 /* Cache read-only capability registers */
4895 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4896 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4897 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4898 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4899 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4900 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4901 if (xhci->hci_version > 0x100)
4902 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4903 xhci_print_registers(xhci);
4905 xhci->quirks = quirks;
4907 get_quirks(dev, xhci);
4909 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4910 * success event after a short transfer. This quirk will ignore such
4911 * spurious event.
4913 if (xhci->hci_version > 0x96)
4914 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4916 /* Make sure the HC is halted. */
4917 retval = xhci_halt(xhci);
4918 if (retval)
4919 return retval;
4921 xhci_dbg(xhci, "Resetting HCD\n");
4922 /* Reset the internal HC memory state and registers. */
4923 retval = xhci_reset(xhci);
4924 if (retval)
4925 return retval;
4926 xhci_dbg(xhci, "Reset complete\n");
4928 /* Set dma_mask and coherent_dma_mask to 64-bits,
4929 * if xHC supports 64-bit addressing */
4930 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4931 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4932 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4933 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4934 } else {
4936 * This is to avoid error in cases where a 32-bit USB
4937 * controller is used on a 64-bit capable system.
4939 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4940 if (retval)
4941 return retval;
4942 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4943 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4946 xhci_dbg(xhci, "Calling HCD init\n");
4947 /* Initialize HCD and host controller data structures. */
4948 retval = xhci_init(hcd);
4949 if (retval)
4950 return retval;
4951 xhci_dbg(xhci, "Called HCD init\n");
4953 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4954 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4956 return 0;
4958 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4960 static const struct hc_driver xhci_hc_driver = {
4961 .description = "xhci-hcd",
4962 .product_desc = "xHCI Host Controller",
4963 .hcd_priv_size = sizeof(struct xhci_hcd *),
4966 * generic hardware linkage
4968 .irq = xhci_irq,
4969 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4972 * basic lifecycle operations
4974 .reset = NULL, /* set in xhci_init_driver() */
4975 .start = xhci_run,
4976 .stop = xhci_stop,
4977 .shutdown = xhci_shutdown,
4980 * managing i/o requests and associated device resources
4982 .urb_enqueue = xhci_urb_enqueue,
4983 .urb_dequeue = xhci_urb_dequeue,
4984 .alloc_dev = xhci_alloc_dev,
4985 .free_dev = xhci_free_dev,
4986 .alloc_streams = xhci_alloc_streams,
4987 .free_streams = xhci_free_streams,
4988 .add_endpoint = xhci_add_endpoint,
4989 .drop_endpoint = xhci_drop_endpoint,
4990 .endpoint_reset = xhci_endpoint_reset,
4991 .check_bandwidth = xhci_check_bandwidth,
4992 .reset_bandwidth = xhci_reset_bandwidth,
4993 .address_device = xhci_address_device,
4994 .enable_device = xhci_enable_device,
4995 .update_hub_device = xhci_update_hub_device,
4996 .reset_device = xhci_discover_or_reset_device,
4999 * scheduling support
5001 .get_frame_number = xhci_get_frame,
5004 * root hub support
5006 .hub_control = xhci_hub_control,
5007 .hub_status_data = xhci_hub_status_data,
5008 .bus_suspend = xhci_bus_suspend,
5009 .bus_resume = xhci_bus_resume,
5012 * call back when device connected and addressed
5014 .update_device = xhci_update_device,
5015 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5016 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5017 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5018 .find_raw_port_number = xhci_find_raw_port_number,
5021 void xhci_init_driver(struct hc_driver *drv,
5022 const struct xhci_driver_overrides *over)
5024 BUG_ON(!over);
5026 /* Copy the generic table to drv then apply the overrides */
5027 *drv = xhci_hc_driver;
5029 if (over) {
5030 drv->hcd_priv_size += over->extra_priv_size;
5031 if (over->reset)
5032 drv->reset = over->reset;
5033 if (over->start)
5034 drv->start = over->start;
5037 EXPORT_SYMBOL_GPL(xhci_init_driver);
5039 MODULE_DESCRIPTION(DRIVER_DESC);
5040 MODULE_AUTHOR(DRIVER_AUTHOR);
5041 MODULE_LICENSE("GPL");
5043 static int __init xhci_hcd_init(void)
5046 * Check the compiler generated sizes of structures that must be laid
5047 * out in specific ways for hardware access.
5049 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5050 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5051 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5052 /* xhci_device_control has eight fields, and also
5053 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5055 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5056 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5057 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5058 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5059 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5060 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5061 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5062 return 0;
5066 * If an init function is provided, an exit function must also be provided
5067 * to allow module unload.
5069 static void __exit xhci_hcd_fini(void) { }
5071 module_init(xhci_hcd_init);
5072 module_exit(xhci_hcd_fini);