2 * linux/drivers/video/sa1100fb.c
4 * Copyright (C) 1999 Eric A. Thomas
5 * Based on acornfb.c Copyright (C) Russell King.
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file COPYING in the main directory of this archive for
11 * StrongARM 1100 LCD Controller Frame Buffer Driver
13 * Please direct your questions and comments on this driver to the following
16 * linux-arm-kernel@lists.arm.linux.org.uk
18 * Clean patches should be sent to the ARM Linux Patch System. Please see the
19 * following web page for more information:
21 * http://www.arm.linux.org.uk/developer/patches/info.shtml
26 * - With the Neponset plugged into an Assabet, LCD powerdown
27 * doesn't work (LCD stays powered up). Therefore we shouldn't
29 * - We don't limit the CPU clock rate nor the mode selection
30 * according to the available SDRAM bandwidth.
33 * - Linear grayscale palettes and the kernel.
34 * Such code does not belong in the kernel. The kernel frame buffer
35 * drivers do not expect a linear colourmap, but a colourmap based on
36 * the VT100 standard mapping.
38 * If your _userspace_ requires a linear colourmap, then the setup of
39 * such a colourmap belongs _in userspace_, not in the kernel. Code
40 * to set the colourmap correctly from user space has been sent to
41 * David Neuer. It's around 8 lines of C code, plus another 4 to
42 * detect if we are using grayscale.
44 * - The following must never be specified in a panel definition:
45 * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
47 * - The following should be specified:
48 * either LCCR0_Color or LCCR0_Mono
49 * either LCCR0_Sngl or LCCR0_Dual
50 * either LCCR0_Act or LCCR0_Pas
51 * either LCCR3_OutEnH or LCCD3_OutEnL
52 * either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
57 * - Driver appears to be working for Brutus 320x200x8bpp mode. Other
58 * resolutions are working, but only the 8bpp mode is supported.
59 * Changes need to be made to the palette encode and decode routines
60 * to support 4 and 16 bpp modes.
61 * Driver is not designed to be a module. The FrameBuffer is statically
62 * allocated since dynamic allocation of a 300k buffer cannot be
66 * - FrameBuffer memory is now allocated at run-time when the
67 * driver is initialized.
69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70 * - Big cleanup for dynamic selection of machine type at run time.
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 * - Support for Bitsy aka Compaq iPAQ H3600 added.
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 * Jeff Sutherland <jsutherland@accelent.com>
77 * - Resolved an issue caused by a change made to the Assabet's PLD
78 * earlier this year which broke the framebuffer driver for newer
79 * Phase 4 Assabets. Some other parameters were changed to optimize
80 * for the Sharp display.
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 * - XP860 support added
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 * - Allows standard options to be passed on the kernel command line
87 * for most common passive displays.
90 * - s/save_flags_cli/local_irq_save/
91 * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 * - Updated LART stuff. Fixed some minor bugs.
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 * - Pangolin support added
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 * - Huw Webpanel support added
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 * Cliff Brake <cbrake@accelent.com>
107 * - Added PM callback
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 * - Fix 16bpp so that (a) we use the right colours rather than some
111 * totally random colour depending on what was in page 0, and (b)
112 * we don't de-reference a NULL pointer.
113 * - remove duplicated implementation of consistent_alloc()
114 * - convert dma address types to dma_addr_t
115 * - remove unused 'montype' stuff
116 * - remove redundant zero inits of init_var after the initial
118 * - remove allow_modeset (acornfb idea does not belong here)
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 * - massive cleanup - move machine dependent data into structures
122 * - I've left various #warnings in - if you see one, and know
123 * the hardware concerned, please get in contact with me.
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 * - Fix LCCR1 HSW value, fix all machine type specifications to
127 * keep values in line. (Please check your machine type specs)
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 * - Fiddle with the LCD controller from task context only; mainly
131 * so that we can run with interrupts on, and sleep.
132 * - Convert #warnings into #errors. No pain, no gain. ;)
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 * - Make the palette BPS value for 12bpp come out correctly.
136 * - Take notice of "greyscale" on any colour depth.
137 * - Make truecolor visuals use the RGB channel encoding information.
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 * - Fix colourmap problems.
142 * 2001/07/13: <abraham@2d3d.co.za>
143 * - Added support for the ICP LCD-Kit01 on LART. This LCD is
144 * manufactured by Prime View, model no V16C6448AB
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 * - Hand merge version from handhelds.org CVS tree. See patch
148 * notes for 595/1 for more information.
149 * - Drop 12bpp (it's 16bpp with different colour register mappings).
150 * - This hardware can not do direct colour. Therefore we don't
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 * - Halve YRES on dual scan LCDs.
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 * - Add b/w iPAQ pixclock value.
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 * - Add patch 681/1 and clean up stork definitions.
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/gpio.h>
177 #include <linux/platform_device.h>
178 #include <linux/dma-mapping.h>
179 #include <linux/mutex.h>
180 #include <linux/io.h>
181 #include <linux/clk.h>
183 #include <video/sa1100fb.h>
185 #include <mach/hardware.h>
186 #include <asm/mach-types.h>
187 #include <mach/shannon.h>
190 * Complain if VAR is out of range.
194 #include "sa1100fb.h"
196 static const struct sa1100fb_rgb rgb_4
= {
197 .red
= { .offset
= 0, .length
= 4, },
198 .green
= { .offset
= 0, .length
= 4, },
199 .blue
= { .offset
= 0, .length
= 4, },
200 .transp
= { .offset
= 0, .length
= 0, },
203 static const struct sa1100fb_rgb rgb_8
= {
204 .red
= { .offset
= 0, .length
= 8, },
205 .green
= { .offset
= 0, .length
= 8, },
206 .blue
= { .offset
= 0, .length
= 8, },
207 .transp
= { .offset
= 0, .length
= 0, },
210 static const struct sa1100fb_rgb def_rgb_16
= {
211 .red
= { .offset
= 11, .length
= 5, },
212 .green
= { .offset
= 5, .length
= 6, },
213 .blue
= { .offset
= 0, .length
= 5, },
214 .transp
= { .offset
= 0, .length
= 0, },
219 static int sa1100fb_activate_var(struct fb_var_screeninfo
*var
, struct sa1100fb_info
*);
220 static void set_ctrlr_state(struct sa1100fb_info
*fbi
, u_int state
);
222 static inline void sa1100fb_schedule_work(struct sa1100fb_info
*fbi
, u_int state
)
226 local_irq_save(flags
);
228 * We need to handle two requests being made at the same time.
229 * There are two important cases:
230 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
231 * We must perform the unblanking, which will do our REENABLE for us.
232 * 2. When we are blanking, but immediately unblank before we have
233 * blanked. We do the "REENABLE" thing here as well, just to be sure.
235 if (fbi
->task_state
== C_ENABLE
&& state
== C_REENABLE
)
237 if (fbi
->task_state
== C_DISABLE
&& state
== C_ENABLE
)
240 if (state
!= (u_int
)-1) {
241 fbi
->task_state
= state
;
242 schedule_work(&fbi
->task
);
244 local_irq_restore(flags
);
247 static inline u_int
chan_to_field(u_int chan
, struct fb_bitfield
*bf
)
250 chan
>>= 16 - bf
->length
;
251 return chan
<< bf
->offset
;
255 * Convert bits-per-pixel to a hardware palette PBS value.
257 static inline u_int
palette_pbs(struct fb_var_screeninfo
*var
)
260 switch (var
->bits_per_pixel
) {
261 case 4: ret
= 0 << 12; break;
262 case 8: ret
= 1 << 12; break;
263 case 16: ret
= 2 << 12; break;
269 sa1100fb_setpalettereg(u_int regno
, u_int red
, u_int green
, u_int blue
,
270 u_int trans
, struct fb_info
*info
)
272 struct sa1100fb_info
*fbi
=
273 container_of(info
, struct sa1100fb_info
, fb
);
276 if (regno
< fbi
->palette_size
) {
277 val
= ((red
>> 4) & 0xf00);
278 val
|= ((green
>> 8) & 0x0f0);
279 val
|= ((blue
>> 12) & 0x00f);
282 val
|= palette_pbs(&fbi
->fb
.var
);
284 fbi
->palette_cpu
[regno
] = val
;
291 sa1100fb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
292 u_int trans
, struct fb_info
*info
)
294 struct sa1100fb_info
*fbi
=
295 container_of(info
, struct sa1100fb_info
, fb
);
300 * If inverse mode was selected, invert all the colours
301 * rather than the register number. The register number
302 * is what you poke into the framebuffer to produce the
303 * colour you requested.
305 if (fbi
->inf
->cmap_inverse
) {
307 green
= 0xffff - green
;
308 blue
= 0xffff - blue
;
312 * If greyscale is true, then we convert the RGB value
313 * to greyscale no mater what visual we are using.
315 if (fbi
->fb
.var
.grayscale
)
316 red
= green
= blue
= (19595 * red
+ 38470 * green
+
319 switch (fbi
->fb
.fix
.visual
) {
320 case FB_VISUAL_TRUECOLOR
:
322 * 12 or 16-bit True Colour. We encode the RGB value
323 * according to the RGB bitfield information.
326 u32
*pal
= fbi
->fb
.pseudo_palette
;
328 val
= chan_to_field(red
, &fbi
->fb
.var
.red
);
329 val
|= chan_to_field(green
, &fbi
->fb
.var
.green
);
330 val
|= chan_to_field(blue
, &fbi
->fb
.var
.blue
);
337 case FB_VISUAL_STATIC_PSEUDOCOLOR
:
338 case FB_VISUAL_PSEUDOCOLOR
:
339 ret
= sa1100fb_setpalettereg(regno
, red
, green
, blue
, trans
, info
);
346 #ifdef CONFIG_CPU_FREQ
348 * sa1100fb_display_dma_period()
349 * Calculate the minimum period (in picoseconds) between two DMA
350 * requests for the LCD controller. If we hit this, it means we're
351 * doing nothing but LCD DMA.
353 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo
*var
)
356 * Period = pixclock * bits_per_byte * bytes_per_transfer
357 * / memory_bits_per_pixel;
359 return var
->pixclock
* 8 * 16 / var
->bits_per_pixel
;
364 * sa1100fb_check_var():
365 * Round up in the following order: bits_per_pixel, xres,
366 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
367 * bitfields, horizontal timing, vertical timing.
370 sa1100fb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
372 struct sa1100fb_info
*fbi
=
373 container_of(info
, struct sa1100fb_info
, fb
);
376 if (var
->xres
< MIN_XRES
)
377 var
->xres
= MIN_XRES
;
378 if (var
->yres
< MIN_YRES
)
379 var
->yres
= MIN_YRES
;
380 if (var
->xres
> fbi
->inf
->xres
)
381 var
->xres
= fbi
->inf
->xres
;
382 if (var
->yres
> fbi
->inf
->yres
)
383 var
->yres
= fbi
->inf
->yres
;
384 var
->xres_virtual
= max(var
->xres_virtual
, var
->xres
);
385 var
->yres_virtual
= max(var
->yres_virtual
, var
->yres
);
387 dev_dbg(fbi
->dev
, "var->bits_per_pixel=%d\n", var
->bits_per_pixel
);
388 switch (var
->bits_per_pixel
) {
403 * Copy the RGB parameters for this display
404 * from the machine specific parameters.
406 var
->red
= fbi
->rgb
[rgbidx
]->red
;
407 var
->green
= fbi
->rgb
[rgbidx
]->green
;
408 var
->blue
= fbi
->rgb
[rgbidx
]->blue
;
409 var
->transp
= fbi
->rgb
[rgbidx
]->transp
;
411 dev_dbg(fbi
->dev
, "RGBT length = %d:%d:%d:%d\n",
412 var
->red
.length
, var
->green
.length
, var
->blue
.length
,
415 dev_dbg(fbi
->dev
, "RGBT offset = %d:%d:%d:%d\n",
416 var
->red
.offset
, var
->green
.offset
, var
->blue
.offset
,
419 #ifdef CONFIG_CPU_FREQ
420 dev_dbg(fbi
->dev
, "dma period = %d ps, clock = %ld kHz\n",
421 sa1100fb_display_dma_period(var
),
422 clk_get_rate(fbi
->clk
) / 1000);
428 static void sa1100fb_set_visual(struct sa1100fb_info
*fbi
, u32 visual
)
430 if (fbi
->inf
->set_visual
)
431 fbi
->inf
->set_visual(visual
);
435 * sa1100fb_set_par():
436 * Set the user defined part of the display for the specified console
438 static int sa1100fb_set_par(struct fb_info
*info
)
440 struct sa1100fb_info
*fbi
=
441 container_of(info
, struct sa1100fb_info
, fb
);
442 struct fb_var_screeninfo
*var
= &info
->var
;
443 unsigned long palette_mem_size
;
445 dev_dbg(fbi
->dev
, "set_par\n");
447 if (var
->bits_per_pixel
== 16)
448 fbi
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
449 else if (!fbi
->inf
->cmap_static
)
450 fbi
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
453 * Some people have weird ideas about wanting static
454 * pseudocolor maps. I suspect their user space
455 * applications are broken.
457 fbi
->fb
.fix
.visual
= FB_VISUAL_STATIC_PSEUDOCOLOR
;
460 fbi
->fb
.fix
.line_length
= var
->xres_virtual
*
461 var
->bits_per_pixel
/ 8;
462 fbi
->palette_size
= var
->bits_per_pixel
== 8 ? 256 : 16;
464 palette_mem_size
= fbi
->palette_size
* sizeof(u16
);
466 dev_dbg(fbi
->dev
, "palette_mem_size = 0x%08lx\n", palette_mem_size
);
468 fbi
->palette_cpu
= (u16
*)(fbi
->map_cpu
+ PAGE_SIZE
- palette_mem_size
);
469 fbi
->palette_dma
= fbi
->map_dma
+ PAGE_SIZE
- palette_mem_size
;
472 * Set (any) board control register to handle new color depth
474 sa1100fb_set_visual(fbi
, fbi
->fb
.fix
.visual
);
475 sa1100fb_activate_var(var
, fbi
);
482 sa1100fb_set_cmap(struct fb_cmap
*cmap
, int kspc
, int con
,
483 struct fb_info
*info
)
485 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
488 * Make sure the user isn't doing something stupid.
490 if (!kspc
&& (fbi
->fb
.var
.bits_per_pixel
== 16 || fbi
->inf
->cmap_static
))
493 return gen_set_cmap(cmap
, kspc
, con
, info
);
498 * Formal definition of the VESA spec:
500 * This refers to the state of the display when it is in full operation
502 * This defines an optional operating state of minimal power reduction with
503 * the shortest recovery time
505 * This refers to a level of power management in which substantial power
506 * reduction is achieved by the display. The display can have a longer
507 * recovery time from this state than from the Stand-by state
509 * This indicates that the display is consuming the lowest level of power
510 * and is non-operational. Recovery from this state may optionally require
511 * the user to manually power on the monitor
513 * Now, the fbdev driver adds an additional state, (blank), where they
514 * turn off the video (maybe by colormap tricks), but don't mess with the
515 * video itself: think of it semantically between on and Stand-By.
517 * So here's what we should do in our fbdev blank routine:
519 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
520 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
521 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
522 * VESA_POWERDOWN (mode 3) Video off, front/back light off
524 * This will match the matrox implementation.
528 * Blank the display by setting all palette values to zero. Note, the
529 * 12 and 16 bpp modes don't really use the palette, so this will not
530 * blank the display in all modes.
532 static int sa1100fb_blank(int blank
, struct fb_info
*info
)
534 struct sa1100fb_info
*fbi
=
535 container_of(info
, struct sa1100fb_info
, fb
);
538 dev_dbg(fbi
->dev
, "sa1100fb_blank: blank=%d\n", blank
);
541 case FB_BLANK_POWERDOWN
:
542 case FB_BLANK_VSYNC_SUSPEND
:
543 case FB_BLANK_HSYNC_SUSPEND
:
544 case FB_BLANK_NORMAL
:
545 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
546 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
547 for (i
= 0; i
< fbi
->palette_size
; i
++)
548 sa1100fb_setpalettereg(i
, 0, 0, 0, 0, info
);
549 sa1100fb_schedule_work(fbi
, C_DISABLE
);
552 case FB_BLANK_UNBLANK
:
553 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
554 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
555 fb_set_cmap(&fbi
->fb
.cmap
, info
);
556 sa1100fb_schedule_work(fbi
, C_ENABLE
);
561 static int sa1100fb_mmap(struct fb_info
*info
,
562 struct vm_area_struct
*vma
)
564 struct sa1100fb_info
*fbi
=
565 container_of(info
, struct sa1100fb_info
, fb
);
566 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
568 if (off
< info
->fix
.smem_len
) {
569 vma
->vm_pgoff
+= 1; /* skip over the palette */
570 return dma_mmap_writecombine(fbi
->dev
, vma
, fbi
->map_cpu
,
571 fbi
->map_dma
, fbi
->map_size
);
574 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
576 return vm_iomap_memory(vma
, info
->fix
.mmio_start
, info
->fix
.mmio_len
);
579 static struct fb_ops sa1100fb_ops
= {
580 .owner
= THIS_MODULE
,
581 .fb_check_var
= sa1100fb_check_var
,
582 .fb_set_par
= sa1100fb_set_par
,
583 // .fb_set_cmap = sa1100fb_set_cmap,
584 .fb_setcolreg
= sa1100fb_setcolreg
,
585 .fb_fillrect
= cfb_fillrect
,
586 .fb_copyarea
= cfb_copyarea
,
587 .fb_imageblit
= cfb_imageblit
,
588 .fb_blank
= sa1100fb_blank
,
589 .fb_mmap
= sa1100fb_mmap
,
593 * Calculate the PCD value from the clock rate (in picoseconds).
594 * We take account of the PPCR clock setting.
596 static inline unsigned int get_pcd(struct sa1100fb_info
*fbi
,
597 unsigned int pixclock
)
599 unsigned int pcd
= clk_get_rate(fbi
->clk
) / 100 / 1000;
604 return pcd
+ 1; /* make up for integer math truncations */
608 * sa1100fb_activate_var():
609 * Configures LCD Controller based on entries in var parameter. Settings are
610 * only written to the controller if changes were made.
612 static int sa1100fb_activate_var(struct fb_var_screeninfo
*var
, struct sa1100fb_info
*fbi
)
614 struct sa1100fb_lcd_reg new_regs
;
615 u_int half_screen_size
, yres
, pcd
;
618 dev_dbg(fbi
->dev
, "Configuring SA1100 LCD\n");
620 dev_dbg(fbi
->dev
, "var: xres=%d hslen=%d lm=%d rm=%d\n",
621 var
->xres
, var
->hsync_len
,
622 var
->left_margin
, var
->right_margin
);
623 dev_dbg(fbi
->dev
, "var: yres=%d vslen=%d um=%d bm=%d\n",
624 var
->yres
, var
->vsync_len
,
625 var
->upper_margin
, var
->lower_margin
);
628 if (var
->xres
< 16 || var
->xres
> 1024)
629 dev_err(fbi
->dev
, "%s: invalid xres %d\n",
630 fbi
->fb
.fix
.id
, var
->xres
);
631 if (var
->hsync_len
< 1 || var
->hsync_len
> 64)
632 dev_err(fbi
->dev
, "%s: invalid hsync_len %d\n",
633 fbi
->fb
.fix
.id
, var
->hsync_len
);
634 if (var
->left_margin
< 1 || var
->left_margin
> 255)
635 dev_err(fbi
->dev
, "%s: invalid left_margin %d\n",
636 fbi
->fb
.fix
.id
, var
->left_margin
);
637 if (var
->right_margin
< 1 || var
->right_margin
> 255)
638 dev_err(fbi
->dev
, "%s: invalid right_margin %d\n",
639 fbi
->fb
.fix
.id
, var
->right_margin
);
640 if (var
->yres
< 1 || var
->yres
> 1024)
641 dev_err(fbi
->dev
, "%s: invalid yres %d\n",
642 fbi
->fb
.fix
.id
, var
->yres
);
643 if (var
->vsync_len
< 1 || var
->vsync_len
> 64)
644 dev_err(fbi
->dev
, "%s: invalid vsync_len %d\n",
645 fbi
->fb
.fix
.id
, var
->vsync_len
);
646 if (var
->upper_margin
< 0 || var
->upper_margin
> 255)
647 dev_err(fbi
->dev
, "%s: invalid upper_margin %d\n",
648 fbi
->fb
.fix
.id
, var
->upper_margin
);
649 if (var
->lower_margin
< 0 || var
->lower_margin
> 255)
650 dev_err(fbi
->dev
, "%s: invalid lower_margin %d\n",
651 fbi
->fb
.fix
.id
, var
->lower_margin
);
654 new_regs
.lccr0
= fbi
->inf
->lccr0
|
655 LCCR0_LEN
| LCCR0_LDM
| LCCR0_BAM
|
656 LCCR0_ERM
| LCCR0_LtlEnd
| LCCR0_DMADel(0);
659 LCCR1_DisWdth(var
->xres
) +
660 LCCR1_HorSnchWdth(var
->hsync_len
) +
661 LCCR1_BegLnDel(var
->left_margin
) +
662 LCCR1_EndLnDel(var
->right_margin
);
665 * If we have a dual scan LCD, then we need to halve
666 * the YRES parameter.
669 if (fbi
->inf
->lccr0
& LCCR0_Dual
)
673 LCCR2_DisHght(yres
) +
674 LCCR2_VrtSnchWdth(var
->vsync_len
) +
675 LCCR2_BegFrmDel(var
->upper_margin
) +
676 LCCR2_EndFrmDel(var
->lower_margin
);
678 pcd
= get_pcd(fbi
, var
->pixclock
);
679 new_regs
.lccr3
= LCCR3_PixClkDiv(pcd
) | fbi
->inf
->lccr3
|
680 (var
->sync
& FB_SYNC_HOR_HIGH_ACT
? LCCR3_HorSnchH
: LCCR3_HorSnchL
) |
681 (var
->sync
& FB_SYNC_VERT_HIGH_ACT
? LCCR3_VrtSnchH
: LCCR3_VrtSnchL
);
683 dev_dbg(fbi
->dev
, "nlccr0 = 0x%08lx\n", new_regs
.lccr0
);
684 dev_dbg(fbi
->dev
, "nlccr1 = 0x%08lx\n", new_regs
.lccr1
);
685 dev_dbg(fbi
->dev
, "nlccr2 = 0x%08lx\n", new_regs
.lccr2
);
686 dev_dbg(fbi
->dev
, "nlccr3 = 0x%08lx\n", new_regs
.lccr3
);
688 half_screen_size
= var
->bits_per_pixel
;
689 half_screen_size
= half_screen_size
* var
->xres
* var
->yres
/ 16;
691 /* Update shadow copy atomically */
692 local_irq_save(flags
);
693 fbi
->dbar1
= fbi
->palette_dma
;
694 fbi
->dbar2
= fbi
->screen_dma
+ half_screen_size
;
696 fbi
->reg_lccr0
= new_regs
.lccr0
;
697 fbi
->reg_lccr1
= new_regs
.lccr1
;
698 fbi
->reg_lccr2
= new_regs
.lccr2
;
699 fbi
->reg_lccr3
= new_regs
.lccr3
;
700 local_irq_restore(flags
);
703 * Only update the registers if the controller is enabled
704 * and something has changed.
706 if (readl_relaxed(fbi
->base
+ LCCR0
) != fbi
->reg_lccr0
||
707 readl_relaxed(fbi
->base
+ LCCR1
) != fbi
->reg_lccr1
||
708 readl_relaxed(fbi
->base
+ LCCR2
) != fbi
->reg_lccr2
||
709 readl_relaxed(fbi
->base
+ LCCR3
) != fbi
->reg_lccr3
||
710 readl_relaxed(fbi
->base
+ DBAR1
) != fbi
->dbar1
||
711 readl_relaxed(fbi
->base
+ DBAR2
) != fbi
->dbar2
)
712 sa1100fb_schedule_work(fbi
, C_REENABLE
);
718 * NOTE! The following functions are purely helpers for set_ctrlr_state.
719 * Do not call them directly; set_ctrlr_state does the correct serialisation
720 * to ensure that things happen in the right way 100% of time time.
723 static inline void __sa1100fb_backlight_power(struct sa1100fb_info
*fbi
, int on
)
725 dev_dbg(fbi
->dev
, "backlight o%s\n", on
? "n" : "ff");
727 if (fbi
->inf
->backlight_power
)
728 fbi
->inf
->backlight_power(on
);
731 static inline void __sa1100fb_lcd_power(struct sa1100fb_info
*fbi
, int on
)
733 dev_dbg(fbi
->dev
, "LCD power o%s\n", on
? "n" : "ff");
735 if (fbi
->inf
->lcd_power
)
736 fbi
->inf
->lcd_power(on
);
739 static void sa1100fb_setup_gpio(struct sa1100fb_info
*fbi
)
744 * Enable GPIO<9:2> for LCD use if:
745 * 1. Active display, or
746 * 2. Color Dual Passive display
748 * see table 11.8 on page 11-27 in the SA1100 manual
751 * SA1110 spec update nr. 25 says we can and should
752 * clear LDD15 to 12 for 4 or 8bpp modes with active
755 if ((fbi
->reg_lccr0
& LCCR0_CMS
) == LCCR0_Color
&&
756 (fbi
->reg_lccr0
& (LCCR0_Dual
|LCCR0_Act
)) != 0) {
757 mask
= GPIO_LDD11
| GPIO_LDD10
| GPIO_LDD9
| GPIO_LDD8
;
759 if (fbi
->fb
.var
.bits_per_pixel
> 8 ||
760 (fbi
->reg_lccr0
& (LCCR0_Dual
|LCCR0_Act
)) == LCCR0_Dual
)
761 mask
|= GPIO_LDD15
| GPIO_LDD14
| GPIO_LDD13
| GPIO_LDD12
;
769 * SA-1100 requires the GPIO direction register set
770 * appropriately for the alternate function. Hence
771 * we set it here via bitmask rather than excessive
772 * fiddling via the GPIO subsystem - and even then
773 * we'll still have to deal with GAFR.
775 local_irq_save(flags
);
778 local_irq_restore(flags
);
782 static void sa1100fb_enable_controller(struct sa1100fb_info
*fbi
)
784 dev_dbg(fbi
->dev
, "Enabling LCD controller\n");
787 * Make sure the mode bits are present in the first palette entry
789 fbi
->palette_cpu
[0] &= 0xcfff;
790 fbi
->palette_cpu
[0] |= palette_pbs(&fbi
->fb
.var
);
792 /* enable LCD controller clock */
793 clk_prepare_enable(fbi
->clk
);
795 /* Sequence from 11.7.10 */
796 writel_relaxed(fbi
->reg_lccr3
, fbi
->base
+ LCCR3
);
797 writel_relaxed(fbi
->reg_lccr2
, fbi
->base
+ LCCR2
);
798 writel_relaxed(fbi
->reg_lccr1
, fbi
->base
+ LCCR1
);
799 writel_relaxed(fbi
->reg_lccr0
& ~LCCR0_LEN
, fbi
->base
+ LCCR0
);
800 writel_relaxed(fbi
->dbar1
, fbi
->base
+ DBAR1
);
801 writel_relaxed(fbi
->dbar2
, fbi
->base
+ DBAR2
);
802 writel_relaxed(fbi
->reg_lccr0
| LCCR0_LEN
, fbi
->base
+ LCCR0
);
804 if (machine_is_shannon())
805 gpio_set_value(SHANNON_GPIO_DISP_EN
, 1);
807 dev_dbg(fbi
->dev
, "DBAR1: 0x%08x\n", readl_relaxed(fbi
->base
+ DBAR1
));
808 dev_dbg(fbi
->dev
, "DBAR2: 0x%08x\n", readl_relaxed(fbi
->base
+ DBAR2
));
809 dev_dbg(fbi
->dev
, "LCCR0: 0x%08x\n", readl_relaxed(fbi
->base
+ LCCR0
));
810 dev_dbg(fbi
->dev
, "LCCR1: 0x%08x\n", readl_relaxed(fbi
->base
+ LCCR1
));
811 dev_dbg(fbi
->dev
, "LCCR2: 0x%08x\n", readl_relaxed(fbi
->base
+ LCCR2
));
812 dev_dbg(fbi
->dev
, "LCCR3: 0x%08x\n", readl_relaxed(fbi
->base
+ LCCR3
));
815 static void sa1100fb_disable_controller(struct sa1100fb_info
*fbi
)
817 DECLARE_WAITQUEUE(wait
, current
);
820 dev_dbg(fbi
->dev
, "Disabling LCD controller\n");
822 if (machine_is_shannon())
823 gpio_set_value(SHANNON_GPIO_DISP_EN
, 0);
825 set_current_state(TASK_UNINTERRUPTIBLE
);
826 add_wait_queue(&fbi
->ctrlr_wait
, &wait
);
828 /* Clear LCD Status Register */
829 writel_relaxed(~0, fbi
->base
+ LCSR
);
831 lccr0
= readl_relaxed(fbi
->base
+ LCCR0
);
832 lccr0
&= ~LCCR0_LDM
; /* Enable LCD Disable Done Interrupt */
833 writel_relaxed(lccr0
, fbi
->base
+ LCCR0
);
834 lccr0
&= ~LCCR0_LEN
; /* Disable LCD Controller */
835 writel_relaxed(lccr0
, fbi
->base
+ LCCR0
);
837 schedule_timeout(20 * HZ
/ 1000);
838 remove_wait_queue(&fbi
->ctrlr_wait
, &wait
);
840 /* disable LCD controller clock */
841 clk_disable_unprepare(fbi
->clk
);
845 * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
847 static irqreturn_t
sa1100fb_handle_irq(int irq
, void *dev_id
)
849 struct sa1100fb_info
*fbi
= dev_id
;
850 unsigned int lcsr
= readl_relaxed(fbi
->base
+ LCSR
);
852 if (lcsr
& LCSR_LDD
) {
853 u32 lccr0
= readl_relaxed(fbi
->base
+ LCCR0
) | LCCR0_LDM
;
854 writel_relaxed(lccr0
, fbi
->base
+ LCCR0
);
855 wake_up(&fbi
->ctrlr_wait
);
858 writel_relaxed(lcsr
, fbi
->base
+ LCSR
);
863 * This function must be called from task context only, since it will
864 * sleep when disabling the LCD controller, or if we get two contending
865 * processes trying to alter state.
867 static void set_ctrlr_state(struct sa1100fb_info
*fbi
, u_int state
)
871 mutex_lock(&fbi
->ctrlr_lock
);
873 old_state
= fbi
->state
;
876 * Hack around fbcon initialisation.
878 if (old_state
== C_STARTUP
&& state
== C_REENABLE
)
882 case C_DISABLE_CLKCHANGE
:
884 * Disable controller for clock change. If the
885 * controller is already disabled, then do nothing.
887 if (old_state
!= C_DISABLE
&& old_state
!= C_DISABLE_PM
) {
889 sa1100fb_disable_controller(fbi
);
898 if (old_state
!= C_DISABLE
) {
901 __sa1100fb_backlight_power(fbi
, 0);
902 if (old_state
!= C_DISABLE_CLKCHANGE
)
903 sa1100fb_disable_controller(fbi
);
904 __sa1100fb_lcd_power(fbi
, 0);
908 case C_ENABLE_CLKCHANGE
:
910 * Enable the controller after clock change. Only
911 * do this if we were disabled for the clock change.
913 if (old_state
== C_DISABLE_CLKCHANGE
) {
914 fbi
->state
= C_ENABLE
;
915 sa1100fb_enable_controller(fbi
);
921 * Re-enable the controller only if it was already
922 * enabled. This is so we reprogram the control
925 if (old_state
== C_ENABLE
) {
926 sa1100fb_disable_controller(fbi
);
927 sa1100fb_setup_gpio(fbi
);
928 sa1100fb_enable_controller(fbi
);
934 * Re-enable the controller after PM. This is not
935 * perfect - think about the case where we were doing
936 * a clock change, and we suspended half-way through.
938 if (old_state
!= C_DISABLE_PM
)
944 * Power up the LCD screen, enable controller, and
945 * turn on the backlight.
947 if (old_state
!= C_ENABLE
) {
948 fbi
->state
= C_ENABLE
;
949 sa1100fb_setup_gpio(fbi
);
950 __sa1100fb_lcd_power(fbi
, 1);
951 sa1100fb_enable_controller(fbi
);
952 __sa1100fb_backlight_power(fbi
, 1);
956 mutex_unlock(&fbi
->ctrlr_lock
);
960 * Our LCD controller task (which is called when we blank or unblank)
963 static void sa1100fb_task(struct work_struct
*w
)
965 struct sa1100fb_info
*fbi
= container_of(w
, struct sa1100fb_info
, task
);
966 u_int state
= xchg(&fbi
->task_state
, -1);
968 set_ctrlr_state(fbi
, state
);
971 #ifdef CONFIG_CPU_FREQ
973 * Calculate the minimum DMA period over all displays that we own.
974 * This, together with the SDRAM bandwidth defines the slowest CPU
975 * frequency that can be selected.
977 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info
*fbi
)
980 unsigned int min_period
= (unsigned int)-1;
983 for (i
= 0; i
< MAX_NR_CONSOLES
; i
++) {
984 struct display
*disp
= &fb_display
[i
];
988 * Do we own this display?
990 if (disp
->fb_info
!= &fbi
->fb
)
994 * Ok, calculate its DMA period
996 period
= sa1100fb_display_dma_period(&disp
->var
);
997 if (period
< min_period
)
1004 * FIXME: we need to verify _all_ consoles.
1006 return sa1100fb_display_dma_period(&fbi
->fb
.var
);
1011 * CPU clock speed change handler. We need to adjust the LCD timing
1012 * parameters when the CPU clock is adjusted by the power management
1016 sa1100fb_freq_transition(struct notifier_block
*nb
, unsigned long val
,
1019 struct sa1100fb_info
*fbi
= TO_INF(nb
, freq_transition
);
1023 case CPUFREQ_PRECHANGE
:
1024 set_ctrlr_state(fbi
, C_DISABLE_CLKCHANGE
);
1027 case CPUFREQ_POSTCHANGE
:
1028 pcd
= get_pcd(fbi
, fbi
->fb
.var
.pixclock
);
1029 fbi
->reg_lccr3
= (fbi
->reg_lccr3
& ~0xff) | LCCR3_PixClkDiv(pcd
);
1030 set_ctrlr_state(fbi
, C_ENABLE_CLKCHANGE
);
1037 sa1100fb_freq_policy(struct notifier_block
*nb
, unsigned long val
,
1040 struct sa1100fb_info
*fbi
= TO_INF(nb
, freq_policy
);
1041 struct cpufreq_policy
*policy
= data
;
1044 case CPUFREQ_ADJUST
:
1045 dev_dbg(fbi
->dev
, "min dma period: %d ps, "
1046 "new clock %d kHz\n", sa1100fb_min_dma_period(fbi
),
1048 /* todo: fill in min/max values */
1050 case CPUFREQ_NOTIFY
:
1052 /* todo: panic if min/max values aren't fulfilled
1053 * [can't really happen unless there's a bug in the
1054 * CPU policy verififcation process *
1064 * Power management hooks. Note that we won't be called from IRQ context,
1065 * unlike the blank functions above, so we may sleep.
1067 static int sa1100fb_suspend(struct platform_device
*dev
, pm_message_t state
)
1069 struct sa1100fb_info
*fbi
= platform_get_drvdata(dev
);
1071 set_ctrlr_state(fbi
, C_DISABLE_PM
);
1075 static int sa1100fb_resume(struct platform_device
*dev
)
1077 struct sa1100fb_info
*fbi
= platform_get_drvdata(dev
);
1079 set_ctrlr_state(fbi
, C_ENABLE_PM
);
1083 #define sa1100fb_suspend NULL
1084 #define sa1100fb_resume NULL
1088 * sa1100fb_map_video_memory():
1089 * Allocates the DRAM memory for the frame buffer. This buffer is
1090 * remapped into a non-cached, non-buffered, memory region to
1091 * allow palette and pixel writes to occur without flushing the
1092 * cache. Once this area is remapped, all virtual memory
1093 * access to the video memory should occur at the new region.
1095 static int sa1100fb_map_video_memory(struct sa1100fb_info
*fbi
)
1098 * We reserve one page for the palette, plus the size
1099 * of the framebuffer.
1101 fbi
->map_size
= PAGE_ALIGN(fbi
->fb
.fix
.smem_len
+ PAGE_SIZE
);
1102 fbi
->map_cpu
= dma_alloc_writecombine(fbi
->dev
, fbi
->map_size
,
1103 &fbi
->map_dma
, GFP_KERNEL
);
1106 fbi
->fb
.screen_base
= fbi
->map_cpu
+ PAGE_SIZE
;
1107 fbi
->screen_dma
= fbi
->map_dma
+ PAGE_SIZE
;
1109 * FIXME: this is actually the wrong thing to place in
1110 * smem_start. But fbdev suffers from the problem that
1111 * it needs an API which doesn't exist (in this case,
1112 * dma_writecombine_mmap)
1114 fbi
->fb
.fix
.smem_start
= fbi
->screen_dma
;
1117 return fbi
->map_cpu
? 0 : -ENOMEM
;
1120 /* Fake monspecs to fill in fbinfo structure */
1121 static struct fb_monspecs monspecs
= {
1129 static struct sa1100fb_info
*sa1100fb_init_fbinfo(struct device
*dev
)
1131 struct sa1100fb_mach_info
*inf
= dev_get_platdata(dev
);
1132 struct sa1100fb_info
*fbi
;
1135 fbi
= kmalloc(sizeof(struct sa1100fb_info
) + sizeof(u32
) * 16,
1140 memset(fbi
, 0, sizeof(struct sa1100fb_info
));
1143 strcpy(fbi
->fb
.fix
.id
, SA1100_NAME
);
1145 fbi
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1146 fbi
->fb
.fix
.type_aux
= 0;
1147 fbi
->fb
.fix
.xpanstep
= 0;
1148 fbi
->fb
.fix
.ypanstep
= 0;
1149 fbi
->fb
.fix
.ywrapstep
= 0;
1150 fbi
->fb
.fix
.accel
= FB_ACCEL_NONE
;
1152 fbi
->fb
.var
.nonstd
= 0;
1153 fbi
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1154 fbi
->fb
.var
.height
= -1;
1155 fbi
->fb
.var
.width
= -1;
1156 fbi
->fb
.var
.accel_flags
= 0;
1157 fbi
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
1159 fbi
->fb
.fbops
= &sa1100fb_ops
;
1160 fbi
->fb
.flags
= FBINFO_DEFAULT
;
1161 fbi
->fb
.monspecs
= monspecs
;
1162 fbi
->fb
.pseudo_palette
= (fbi
+ 1);
1164 fbi
->rgb
[RGB_4
] = &rgb_4
;
1165 fbi
->rgb
[RGB_8
] = &rgb_8
;
1166 fbi
->rgb
[RGB_16
] = &def_rgb_16
;
1169 * People just don't seem to get this. We don't support
1170 * anything but correct entries now, so panic if someone
1171 * does something stupid.
1173 if (inf
->lccr3
& (LCCR3_VrtSnchL
|LCCR3_HorSnchL
|0xff) ||
1175 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1178 fbi
->fb
.var
.xres
= inf
->xres
;
1179 fbi
->fb
.var
.xres_virtual
= inf
->xres
;
1180 fbi
->fb
.var
.yres
= inf
->yres
;
1181 fbi
->fb
.var
.yres_virtual
= inf
->yres
;
1182 fbi
->fb
.var
.bits_per_pixel
= inf
->bpp
;
1183 fbi
->fb
.var
.pixclock
= inf
->pixclock
;
1184 fbi
->fb
.var
.hsync_len
= inf
->hsync_len
;
1185 fbi
->fb
.var
.left_margin
= inf
->left_margin
;
1186 fbi
->fb
.var
.right_margin
= inf
->right_margin
;
1187 fbi
->fb
.var
.vsync_len
= inf
->vsync_len
;
1188 fbi
->fb
.var
.upper_margin
= inf
->upper_margin
;
1189 fbi
->fb
.var
.lower_margin
= inf
->lower_margin
;
1190 fbi
->fb
.var
.sync
= inf
->sync
;
1191 fbi
->fb
.var
.grayscale
= inf
->cmap_greyscale
;
1192 fbi
->state
= C_STARTUP
;
1193 fbi
->task_state
= (u_char
)-1;
1194 fbi
->fb
.fix
.smem_len
= inf
->xres
* inf
->yres
*
1198 /* Copy the RGB bitfield overrides */
1199 for (i
= 0; i
< NR_RGB
; i
++)
1201 fbi
->rgb
[i
] = inf
->rgb
[i
];
1203 init_waitqueue_head(&fbi
->ctrlr_wait
);
1204 INIT_WORK(&fbi
->task
, sa1100fb_task
);
1205 mutex_init(&fbi
->ctrlr_lock
);
1210 static int sa1100fb_probe(struct platform_device
*pdev
)
1212 struct sa1100fb_info
*fbi
;
1213 struct resource
*res
;
1216 if (!dev_get_platdata(&pdev
->dev
)) {
1217 dev_err(&pdev
->dev
, "no platform LCD data\n");
1221 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1222 irq
= platform_get_irq(pdev
, 0);
1223 if (irq
< 0 || !res
)
1226 if (!request_mem_region(res
->start
, resource_size(res
), "LCD"))
1229 fbi
= sa1100fb_init_fbinfo(&pdev
->dev
);
1234 fbi
->clk
= clk_get(&pdev
->dev
, NULL
);
1235 if (IS_ERR(fbi
->clk
)) {
1236 ret
= PTR_ERR(fbi
->clk
);
1241 fbi
->base
= ioremap(res
->start
, resource_size(res
));
1245 /* Initialize video memory */
1246 ret
= sa1100fb_map_video_memory(fbi
);
1250 ret
= request_irq(irq
, sa1100fb_handle_irq
, 0, "LCD", fbi
);
1252 dev_err(&pdev
->dev
, "request_irq failed: %d\n", ret
);
1256 if (machine_is_shannon()) {
1257 ret
= gpio_request_one(SHANNON_GPIO_DISP_EN
,
1258 GPIOF_OUT_INIT_LOW
, "display enable");
1264 * This makes sure that our colour bitfield
1265 * descriptors are correctly initialised.
1267 sa1100fb_check_var(&fbi
->fb
.var
, &fbi
->fb
);
1269 platform_set_drvdata(pdev
, fbi
);
1271 ret
= register_framebuffer(&fbi
->fb
);
1275 #ifdef CONFIG_CPU_FREQ
1276 fbi
->freq_transition
.notifier_call
= sa1100fb_freq_transition
;
1277 fbi
->freq_policy
.notifier_call
= sa1100fb_freq_policy
;
1278 cpufreq_register_notifier(&fbi
->freq_transition
, CPUFREQ_TRANSITION_NOTIFIER
);
1279 cpufreq_register_notifier(&fbi
->freq_policy
, CPUFREQ_POLICY_NOTIFIER
);
1282 /* This driver cannot be unloaded at the moment */
1286 if (machine_is_shannon())
1287 gpio_free(SHANNON_GPIO_DISP_EN
);
1296 release_mem_region(res
->start
, resource_size(res
));
1300 static struct platform_driver sa1100fb_driver
= {
1301 .probe
= sa1100fb_probe
,
1302 .suspend
= sa1100fb_suspend
,
1303 .resume
= sa1100fb_resume
,
1305 .name
= "sa11x0-fb",
1309 int __init
sa1100fb_init(void)
1311 if (fb_get_options("sa1100fb", NULL
))
1314 return platform_driver_register(&sa1100fb_driver
);
1317 int __init
sa1100fb_setup(char *options
)
1322 if (!options
|| !*options
)
1325 while ((this_opt
= strsep(&options
, ",")) != NULL
) {
1327 if (!strncmp(this_opt
, "bpp:", 4))
1328 current_par
.max_bpp
=
1329 simple_strtoul(this_opt
+ 4, NULL
, 0);
1331 if (!strncmp(this_opt
, "lccr0:", 6))
1333 simple_strtoul(this_opt
+ 6, NULL
, 0);
1334 if (!strncmp(this_opt
, "lccr1:", 6)) {
1336 simple_strtoul(this_opt
+ 6, NULL
, 0);
1337 current_par
.max_xres
=
1338 (lcd_shadow
.lccr1
& 0x3ff) + 16;
1340 if (!strncmp(this_opt
, "lccr2:", 6)) {
1342 simple_strtoul(this_opt
+ 6, NULL
, 0);
1343 current_par
.max_yres
=
1345 lccr0
& LCCR0_SDS
) ? ((lcd_shadow
.
1348 2 : ((lcd_shadow
.lccr2
& 0x3ff) + 1);
1350 if (!strncmp(this_opt
, "lccr3:", 6))
1352 simple_strtoul(this_opt
+ 6, NULL
, 0);
1358 module_init(sa1100fb_init
);
1359 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1360 MODULE_LICENSE("GPL");