1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 #include <linux/backing-dev.h>
42 #include <cluster/masklog.h>
50 #include "extent_map.h"
63 #include "refcounttree.h"
64 #include "ocfs2_trace.h"
66 #include "buffer_head_io.h"
68 static int ocfs2_init_file_private(struct inode
*inode
, struct file
*file
)
70 struct ocfs2_file_private
*fp
;
72 fp
= kzalloc(sizeof(struct ocfs2_file_private
), GFP_KERNEL
);
77 mutex_init(&fp
->fp_mutex
);
78 ocfs2_file_lock_res_init(&fp
->fp_flock
, fp
);
79 file
->private_data
= fp
;
84 static void ocfs2_free_file_private(struct inode
*inode
, struct file
*file
)
86 struct ocfs2_file_private
*fp
= file
->private_data
;
87 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
90 ocfs2_simple_drop_lockres(osb
, &fp
->fp_flock
);
91 ocfs2_lock_res_free(&fp
->fp_flock
);
93 file
->private_data
= NULL
;
97 static int ocfs2_file_open(struct inode
*inode
, struct file
*file
)
100 int mode
= file
->f_flags
;
101 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
103 trace_ocfs2_file_open(inode
, file
, file
->f_path
.dentry
,
104 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
105 file
->f_path
.dentry
->d_name
.len
,
106 file
->f_path
.dentry
->d_name
.name
, mode
);
108 if (file
->f_mode
& FMODE_WRITE
) {
109 status
= dquot_initialize(inode
);
114 spin_lock(&oi
->ip_lock
);
116 /* Check that the inode hasn't been wiped from disk by another
117 * node. If it hasn't then we're safe as long as we hold the
118 * spin lock until our increment of open count. */
119 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_DELETED
) {
120 spin_unlock(&oi
->ip_lock
);
127 oi
->ip_flags
|= OCFS2_INODE_OPEN_DIRECT
;
130 spin_unlock(&oi
->ip_lock
);
132 status
= ocfs2_init_file_private(inode
, file
);
135 * We want to set open count back if we're failing the
138 spin_lock(&oi
->ip_lock
);
140 spin_unlock(&oi
->ip_lock
);
147 static int ocfs2_file_release(struct inode
*inode
, struct file
*file
)
149 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
151 spin_lock(&oi
->ip_lock
);
152 if (!--oi
->ip_open_count
)
153 oi
->ip_flags
&= ~OCFS2_INODE_OPEN_DIRECT
;
155 trace_ocfs2_file_release(inode
, file
, file
->f_path
.dentry
,
157 file
->f_path
.dentry
->d_name
.len
,
158 file
->f_path
.dentry
->d_name
.name
,
160 spin_unlock(&oi
->ip_lock
);
162 ocfs2_free_file_private(inode
, file
);
167 static int ocfs2_dir_open(struct inode
*inode
, struct file
*file
)
169 return ocfs2_init_file_private(inode
, file
);
172 static int ocfs2_dir_release(struct inode
*inode
, struct file
*file
)
174 ocfs2_free_file_private(inode
, file
);
178 static int ocfs2_sync_file(struct file
*file
, loff_t start
, loff_t end
,
182 struct inode
*inode
= file
->f_mapping
->host
;
183 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
184 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
185 journal_t
*journal
= osb
->journal
->j_journal
;
188 bool needs_barrier
= false;
190 trace_ocfs2_sync_file(inode
, file
, file
->f_path
.dentry
,
191 OCFS2_I(inode
)->ip_blkno
,
192 file
->f_path
.dentry
->d_name
.len
,
193 file
->f_path
.dentry
->d_name
.name
,
194 (unsigned long long)datasync
);
196 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
199 err
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
203 commit_tid
= datasync
? oi
->i_datasync_tid
: oi
->i_sync_tid
;
204 if (journal
->j_flags
& JBD2_BARRIER
&&
205 !jbd2_trans_will_send_data_barrier(journal
, commit_tid
))
206 needs_barrier
= true;
207 err
= jbd2_complete_transaction(journal
, commit_tid
);
209 ret
= blkdev_issue_flush(inode
->i_sb
->s_bdev
, GFP_KERNEL
, NULL
);
217 return (err
< 0) ? -EIO
: 0;
220 int ocfs2_should_update_atime(struct inode
*inode
,
221 struct vfsmount
*vfsmnt
)
224 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
226 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
229 if ((inode
->i_flags
& S_NOATIME
) ||
230 ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
234 * We can be called with no vfsmnt structure - NFSD will
237 * Note that our action here is different than touch_atime() -
238 * if we can't tell whether this is a noatime mount, then we
239 * don't know whether to trust the value of s_atime_quantum.
244 if ((vfsmnt
->mnt_flags
& MNT_NOATIME
) ||
245 ((vfsmnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
248 if (vfsmnt
->mnt_flags
& MNT_RELATIME
) {
249 if ((timespec_compare(&inode
->i_atime
, &inode
->i_mtime
) <= 0) ||
250 (timespec_compare(&inode
->i_atime
, &inode
->i_ctime
) <= 0))
257 if ((now
.tv_sec
- inode
->i_atime
.tv_sec
<= osb
->s_atime_quantum
))
263 int ocfs2_update_inode_atime(struct inode
*inode
,
264 struct buffer_head
*bh
)
267 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
269 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*) bh
->b_data
;
271 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
272 if (IS_ERR(handle
)) {
273 ret
= PTR_ERR(handle
);
278 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
279 OCFS2_JOURNAL_ACCESS_WRITE
);
286 * Don't use ocfs2_mark_inode_dirty() here as we don't always
287 * have i_mutex to guard against concurrent changes to other
290 inode
->i_atime
= CURRENT_TIME
;
291 di
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
292 di
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
293 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
294 ocfs2_journal_dirty(handle
, bh
);
297 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
302 int ocfs2_set_inode_size(handle_t
*handle
,
304 struct buffer_head
*fe_bh
,
309 i_size_write(inode
, new_i_size
);
310 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
311 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
313 status
= ocfs2_mark_inode_dirty(handle
, inode
, fe_bh
);
323 int ocfs2_simple_size_update(struct inode
*inode
,
324 struct buffer_head
*di_bh
,
328 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
329 handle_t
*handle
= NULL
;
331 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
332 if (IS_ERR(handle
)) {
333 ret
= PTR_ERR(handle
);
338 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
,
343 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
344 ocfs2_commit_trans(osb
, handle
);
349 static int ocfs2_cow_file_pos(struct inode
*inode
,
350 struct buffer_head
*fe_bh
,
354 u32 phys
, cpos
= offset
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
355 unsigned int num_clusters
= 0;
356 unsigned int ext_flags
= 0;
359 * If the new offset is aligned to the range of the cluster, there is
360 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
363 if ((offset
& (OCFS2_SB(inode
->i_sb
)->s_clustersize
- 1)) == 0)
366 status
= ocfs2_get_clusters(inode
, cpos
, &phys
,
367 &num_clusters
, &ext_flags
);
373 if (!(ext_flags
& OCFS2_EXT_REFCOUNTED
))
376 return ocfs2_refcount_cow(inode
, fe_bh
, cpos
, 1, cpos
+1);
382 static int ocfs2_orphan_for_truncate(struct ocfs2_super
*osb
,
384 struct buffer_head
*fe_bh
,
389 struct ocfs2_dinode
*di
;
393 * We need to CoW the cluster contains the offset if it is reflinked
394 * since we will call ocfs2_zero_range_for_truncate later which will
395 * write "0" from offset to the end of the cluster.
397 status
= ocfs2_cow_file_pos(inode
, fe_bh
, new_i_size
);
403 /* TODO: This needs to actually orphan the inode in this
406 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
407 if (IS_ERR(handle
)) {
408 status
= PTR_ERR(handle
);
413 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), fe_bh
,
414 OCFS2_JOURNAL_ACCESS_WRITE
);
421 * Do this before setting i_size.
423 cluster_bytes
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, new_i_size
);
424 status
= ocfs2_zero_range_for_truncate(inode
, handle
, new_i_size
,
431 i_size_write(inode
, new_i_size
);
432 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
434 di
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
435 di
->i_size
= cpu_to_le64(new_i_size
);
436 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
437 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
438 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
440 ocfs2_journal_dirty(handle
, fe_bh
);
443 ocfs2_commit_trans(osb
, handle
);
448 int ocfs2_truncate_file(struct inode
*inode
,
449 struct buffer_head
*di_bh
,
453 struct ocfs2_dinode
*fe
= NULL
;
454 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
456 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
457 * already validated it */
458 fe
= (struct ocfs2_dinode
*) di_bh
->b_data
;
460 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
461 (unsigned long long)le64_to_cpu(fe
->i_size
),
462 (unsigned long long)new_i_size
);
464 mlog_bug_on_msg(le64_to_cpu(fe
->i_size
) != i_size_read(inode
),
465 "Inode %llu, inode i_size = %lld != di "
466 "i_size = %llu, i_flags = 0x%x\n",
467 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
469 (unsigned long long)le64_to_cpu(fe
->i_size
),
470 le32_to_cpu(fe
->i_flags
));
472 if (new_i_size
> le64_to_cpu(fe
->i_size
)) {
473 trace_ocfs2_truncate_file_error(
474 (unsigned long long)le64_to_cpu(fe
->i_size
),
475 (unsigned long long)new_i_size
);
481 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
483 ocfs2_resv_discard(&osb
->osb_la_resmap
,
484 &OCFS2_I(inode
)->ip_la_data_resv
);
487 * The inode lock forced other nodes to sync and drop their
488 * pages, which (correctly) happens even if we have a truncate
489 * without allocation change - ocfs2 cluster sizes can be much
490 * greater than page size, so we have to truncate them
493 unmap_mapping_range(inode
->i_mapping
, new_i_size
+ PAGE_SIZE
- 1, 0, 1);
494 truncate_inode_pages(inode
->i_mapping
, new_i_size
);
496 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
497 status
= ocfs2_truncate_inline(inode
, di_bh
, new_i_size
,
498 i_size_read(inode
), 1);
502 goto bail_unlock_sem
;
505 /* alright, we're going to need to do a full blown alloc size
506 * change. Orphan the inode so that recovery can complete the
507 * truncate if necessary. This does the task of marking
509 status
= ocfs2_orphan_for_truncate(osb
, inode
, di_bh
, new_i_size
);
512 goto bail_unlock_sem
;
515 status
= ocfs2_commit_truncate(osb
, inode
, di_bh
);
518 goto bail_unlock_sem
;
521 /* TODO: orphan dir cleanup here. */
523 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
526 if (!status
&& OCFS2_I(inode
)->ip_clusters
== 0)
527 status
= ocfs2_try_remove_refcount_tree(inode
, di_bh
);
533 * extend file allocation only here.
534 * we'll update all the disk stuff, and oip->alloc_size
536 * expect stuff to be locked, a transaction started and enough data /
537 * metadata reservations in the contexts.
539 * Will return -EAGAIN, and a reason if a restart is needed.
540 * If passed in, *reason will always be set, even in error.
542 int ocfs2_add_inode_data(struct ocfs2_super
*osb
,
547 struct buffer_head
*fe_bh
,
549 struct ocfs2_alloc_context
*data_ac
,
550 struct ocfs2_alloc_context
*meta_ac
,
551 enum ocfs2_alloc_restarted
*reason_ret
)
554 struct ocfs2_extent_tree et
;
556 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), fe_bh
);
557 ret
= ocfs2_add_clusters_in_btree(handle
, &et
, logical_offset
,
558 clusters_to_add
, mark_unwritten
,
559 data_ac
, meta_ac
, reason_ret
);
564 static int __ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
565 u32 clusters_to_add
, int mark_unwritten
)
568 int restart_func
= 0;
571 struct buffer_head
*bh
= NULL
;
572 struct ocfs2_dinode
*fe
= NULL
;
573 handle_t
*handle
= NULL
;
574 struct ocfs2_alloc_context
*data_ac
= NULL
;
575 struct ocfs2_alloc_context
*meta_ac
= NULL
;
576 enum ocfs2_alloc_restarted why
= RESTART_NONE
;
577 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
578 struct ocfs2_extent_tree et
;
582 * Unwritten extent only exists for file systems which
585 BUG_ON(mark_unwritten
&& !ocfs2_sparse_alloc(osb
));
587 status
= ocfs2_read_inode_block(inode
, &bh
);
592 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
595 BUG_ON(le32_to_cpu(fe
->i_clusters
) != OCFS2_I(inode
)->ip_clusters
);
597 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), bh
);
598 status
= ocfs2_lock_allocators(inode
, &et
, clusters_to_add
, 0,
605 credits
= ocfs2_calc_extend_credits(osb
->sb
, &fe
->id2
.i_list
);
606 handle
= ocfs2_start_trans(osb
, credits
);
607 if (IS_ERR(handle
)) {
608 status
= PTR_ERR(handle
);
614 restarted_transaction
:
615 trace_ocfs2_extend_allocation(
616 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
617 (unsigned long long)i_size_read(inode
),
618 le32_to_cpu(fe
->i_clusters
), clusters_to_add
,
621 status
= dquot_alloc_space_nodirty(inode
,
622 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
627 /* reserve a write to the file entry early on - that we if we
628 * run out of credits in the allocation path, we can still
630 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
631 OCFS2_JOURNAL_ACCESS_WRITE
);
637 prev_clusters
= OCFS2_I(inode
)->ip_clusters
;
639 status
= ocfs2_add_inode_data(osb
,
649 if ((status
< 0) && (status
!= -EAGAIN
)) {
650 if (status
!= -ENOSPC
)
654 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
655 ocfs2_journal_dirty(handle
, bh
);
657 spin_lock(&OCFS2_I(inode
)->ip_lock
);
658 clusters_to_add
-= (OCFS2_I(inode
)->ip_clusters
- prev_clusters
);
659 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
660 /* Release unused quota reservation */
661 dquot_free_space(inode
,
662 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
665 if (why
!= RESTART_NONE
&& clusters_to_add
) {
666 if (why
== RESTART_META
) {
670 BUG_ON(why
!= RESTART_TRANS
);
672 status
= ocfs2_allocate_extend_trans(handle
, 1);
674 /* handle still has to be committed at
680 goto restarted_transaction
;
684 trace_ocfs2_extend_allocation_end(OCFS2_I(inode
)->ip_blkno
,
685 le32_to_cpu(fe
->i_clusters
),
686 (unsigned long long)le64_to_cpu(fe
->i_size
),
687 OCFS2_I(inode
)->ip_clusters
,
688 (unsigned long long)i_size_read(inode
));
691 if (status
< 0 && did_quota
)
692 dquot_free_space(inode
,
693 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
695 ocfs2_commit_trans(osb
, handle
);
699 ocfs2_free_alloc_context(data_ac
);
703 ocfs2_free_alloc_context(meta_ac
);
706 if ((!status
) && restart_func
) {
716 int ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
717 u32 clusters_to_add
, int mark_unwritten
)
719 return __ocfs2_extend_allocation(inode
, logical_start
,
720 clusters_to_add
, mark_unwritten
);
724 * While a write will already be ordering the data, a truncate will not.
725 * Thus, we need to explicitly order the zeroed pages.
727 static handle_t
*ocfs2_zero_start_ordered_transaction(struct inode
*inode
,
728 struct buffer_head
*di_bh
)
730 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
731 handle_t
*handle
= NULL
;
734 if (!ocfs2_should_order_data(inode
))
737 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
738 if (IS_ERR(handle
)) {
744 ret
= ocfs2_jbd2_file_inode(handle
, inode
);
750 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
751 OCFS2_JOURNAL_ACCESS_WRITE
);
754 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
759 ocfs2_commit_trans(osb
, handle
);
760 handle
= ERR_PTR(ret
);
765 /* Some parts of this taken from generic_cont_expand, which turned out
766 * to be too fragile to do exactly what we need without us having to
767 * worry about recursive locking in ->write_begin() and ->write_end(). */
768 static int ocfs2_write_zero_page(struct inode
*inode
, u64 abs_from
,
769 u64 abs_to
, struct buffer_head
*di_bh
)
771 struct address_space
*mapping
= inode
->i_mapping
;
773 unsigned long index
= abs_from
>> PAGE_CACHE_SHIFT
;
776 unsigned zero_from
, zero_to
, block_start
, block_end
;
777 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
779 BUG_ON(abs_from
>= abs_to
);
780 BUG_ON(abs_to
> (((u64
)index
+ 1) << PAGE_CACHE_SHIFT
));
781 BUG_ON(abs_from
& (inode
->i_blkbits
- 1));
783 handle
= ocfs2_zero_start_ordered_transaction(inode
, di_bh
);
784 if (IS_ERR(handle
)) {
785 ret
= PTR_ERR(handle
);
789 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
793 goto out_commit_trans
;
796 /* Get the offsets within the page that we want to zero */
797 zero_from
= abs_from
& (PAGE_CACHE_SIZE
- 1);
798 zero_to
= abs_to
& (PAGE_CACHE_SIZE
- 1);
800 zero_to
= PAGE_CACHE_SIZE
;
802 trace_ocfs2_write_zero_page(
803 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
804 (unsigned long long)abs_from
,
805 (unsigned long long)abs_to
,
806 index
, zero_from
, zero_to
);
808 /* We know that zero_from is block aligned */
809 for (block_start
= zero_from
; block_start
< zero_to
;
810 block_start
= block_end
) {
811 block_end
= block_start
+ (1 << inode
->i_blkbits
);
814 * block_start is block-aligned. Bump it by one to force
815 * __block_write_begin and block_commit_write to zero the
818 ret
= __block_write_begin(page
, block_start
+ 1, 0,
826 /* must not update i_size! */
827 ret
= block_commit_write(page
, block_start
+ 1,
836 * fs-writeback will release the dirty pages without page lock
837 * whose offset are over inode size, the release happens at
838 * block_write_full_page().
840 i_size_write(inode
, abs_to
);
841 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
842 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
843 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
844 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
845 di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
846 di
->i_mtime_nsec
= di
->i_ctime_nsec
;
848 ocfs2_journal_dirty(handle
, di_bh
);
849 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
854 page_cache_release(page
);
857 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
863 * Find the next range to zero. We do this in terms of bytes because
864 * that's what ocfs2_zero_extend() wants, and it is dealing with the
865 * pagecache. We may return multiple extents.
867 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
868 * needs to be zeroed. range_start and range_end return the next zeroing
869 * range. A subsequent call should pass the previous range_end as its
870 * zero_start. If range_end is 0, there's nothing to do.
872 * Unwritten extents are skipped over. Refcounted extents are CoWd.
874 static int ocfs2_zero_extend_get_range(struct inode
*inode
,
875 struct buffer_head
*di_bh
,
876 u64 zero_start
, u64 zero_end
,
877 u64
*range_start
, u64
*range_end
)
879 int rc
= 0, needs_cow
= 0;
880 u32 p_cpos
, zero_clusters
= 0;
882 zero_start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
883 u32 last_cpos
= ocfs2_clusters_for_bytes(inode
->i_sb
, zero_end
);
884 unsigned int num_clusters
= 0;
885 unsigned int ext_flags
= 0;
887 while (zero_cpos
< last_cpos
) {
888 rc
= ocfs2_get_clusters(inode
, zero_cpos
, &p_cpos
,
889 &num_clusters
, &ext_flags
);
895 if (p_cpos
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
)) {
896 zero_clusters
= num_clusters
;
897 if (ext_flags
& OCFS2_EXT_REFCOUNTED
)
902 zero_cpos
+= num_clusters
;
904 if (!zero_clusters
) {
909 while ((zero_cpos
+ zero_clusters
) < last_cpos
) {
910 rc
= ocfs2_get_clusters(inode
, zero_cpos
+ zero_clusters
,
911 &p_cpos
, &num_clusters
,
918 if (!p_cpos
|| (ext_flags
& OCFS2_EXT_UNWRITTEN
))
920 if (ext_flags
& OCFS2_EXT_REFCOUNTED
)
922 zero_clusters
+= num_clusters
;
924 if ((zero_cpos
+ zero_clusters
) > last_cpos
)
925 zero_clusters
= last_cpos
- zero_cpos
;
928 rc
= ocfs2_refcount_cow(inode
, di_bh
, zero_cpos
,
929 zero_clusters
, UINT_MAX
);
936 *range_start
= ocfs2_clusters_to_bytes(inode
->i_sb
, zero_cpos
);
937 *range_end
= ocfs2_clusters_to_bytes(inode
->i_sb
,
938 zero_cpos
+ zero_clusters
);
945 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
946 * has made sure that the entire range needs zeroing.
948 static int ocfs2_zero_extend_range(struct inode
*inode
, u64 range_start
,
949 u64 range_end
, struct buffer_head
*di_bh
)
953 u64 zero_pos
= range_start
;
955 trace_ocfs2_zero_extend_range(
956 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
957 (unsigned long long)range_start
,
958 (unsigned long long)range_end
);
959 BUG_ON(range_start
>= range_end
);
961 while (zero_pos
< range_end
) {
962 next_pos
= (zero_pos
& PAGE_CACHE_MASK
) + PAGE_CACHE_SIZE
;
963 if (next_pos
> range_end
)
964 next_pos
= range_end
;
965 rc
= ocfs2_write_zero_page(inode
, zero_pos
, next_pos
, di_bh
);
973 * Very large extends have the potential to lock up
974 * the cpu for extended periods of time.
982 int ocfs2_zero_extend(struct inode
*inode
, struct buffer_head
*di_bh
,
986 u64 zero_start
, range_start
= 0, range_end
= 0;
987 struct super_block
*sb
= inode
->i_sb
;
989 zero_start
= ocfs2_align_bytes_to_blocks(sb
, i_size_read(inode
));
990 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
991 (unsigned long long)zero_start
,
992 (unsigned long long)i_size_read(inode
));
993 while (zero_start
< zero_to_size
) {
994 ret
= ocfs2_zero_extend_get_range(inode
, di_bh
, zero_start
,
1005 if (range_start
< zero_start
)
1006 range_start
= zero_start
;
1007 if (range_end
> zero_to_size
)
1008 range_end
= zero_to_size
;
1010 ret
= ocfs2_zero_extend_range(inode
, range_start
,
1016 zero_start
= range_end
;
1022 int ocfs2_extend_no_holes(struct inode
*inode
, struct buffer_head
*di_bh
,
1023 u64 new_i_size
, u64 zero_to
)
1026 u32 clusters_to_add
;
1027 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1030 * Only quota files call this without a bh, and they can't be
1033 BUG_ON(!di_bh
&& (oi
->ip_dyn_features
& OCFS2_HAS_REFCOUNT_FL
));
1034 BUG_ON(!di_bh
&& !(oi
->ip_flags
& OCFS2_INODE_SYSTEM_FILE
));
1036 clusters_to_add
= ocfs2_clusters_for_bytes(inode
->i_sb
, new_i_size
);
1037 if (clusters_to_add
< oi
->ip_clusters
)
1038 clusters_to_add
= 0;
1040 clusters_to_add
-= oi
->ip_clusters
;
1042 if (clusters_to_add
) {
1043 ret
= __ocfs2_extend_allocation(inode
, oi
->ip_clusters
,
1044 clusters_to_add
, 0);
1052 * Call this even if we don't add any clusters to the tree. We
1053 * still need to zero the area between the old i_size and the
1056 ret
= ocfs2_zero_extend(inode
, di_bh
, zero_to
);
1064 static int ocfs2_extend_file(struct inode
*inode
,
1065 struct buffer_head
*di_bh
,
1069 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1073 /* setattr sometimes calls us like this. */
1074 if (new_i_size
== 0)
1077 if (i_size_read(inode
) == new_i_size
)
1079 BUG_ON(new_i_size
< i_size_read(inode
));
1082 * The alloc sem blocks people in read/write from reading our
1083 * allocation until we're done changing it. We depend on
1084 * i_mutex to block other extend/truncate calls while we're
1085 * here. We even have to hold it for sparse files because there
1086 * might be some tail zeroing.
1088 down_write(&oi
->ip_alloc_sem
);
1090 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1092 * We can optimize small extends by keeping the inodes
1095 if (ocfs2_size_fits_inline_data(di_bh
, new_i_size
)) {
1096 up_write(&oi
->ip_alloc_sem
);
1097 goto out_update_size
;
1100 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1102 up_write(&oi
->ip_alloc_sem
);
1108 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
1109 ret
= ocfs2_zero_extend(inode
, di_bh
, new_i_size
);
1111 ret
= ocfs2_extend_no_holes(inode
, di_bh
, new_i_size
,
1114 up_write(&oi
->ip_alloc_sem
);
1122 ret
= ocfs2_simple_size_update(inode
, di_bh
, new_i_size
);
1130 int ocfs2_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1132 int status
= 0, size_change
;
1133 int inode_locked
= 0;
1134 struct inode
*inode
= d_inode(dentry
);
1135 struct super_block
*sb
= inode
->i_sb
;
1136 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
1137 struct buffer_head
*bh
= NULL
;
1138 handle_t
*handle
= NULL
;
1139 struct dquot
*transfer_to
[MAXQUOTAS
] = { };
1142 trace_ocfs2_setattr(inode
, dentry
,
1143 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1144 dentry
->d_name
.len
, dentry
->d_name
.name
,
1145 attr
->ia_valid
, attr
->ia_mode
,
1146 from_kuid(&init_user_ns
, attr
->ia_uid
),
1147 from_kgid(&init_user_ns
, attr
->ia_gid
));
1149 /* ensuring we don't even attempt to truncate a symlink */
1150 if (S_ISLNK(inode
->i_mode
))
1151 attr
->ia_valid
&= ~ATTR_SIZE
;
1153 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1154 | ATTR_GID | ATTR_UID | ATTR_MODE)
1155 if (!(attr
->ia_valid
& OCFS2_VALID_ATTRS
))
1158 status
= inode_change_ok(inode
, attr
);
1162 if (is_quota_modification(inode
, attr
)) {
1163 status
= dquot_initialize(inode
);
1167 size_change
= S_ISREG(inode
->i_mode
) && attr
->ia_valid
& ATTR_SIZE
;
1169 status
= ocfs2_rw_lock(inode
, 1);
1176 status
= ocfs2_inode_lock(inode
, &bh
, 1);
1178 if (status
!= -ENOENT
)
1180 goto bail_unlock_rw
;
1185 status
= inode_newsize_ok(inode
, attr
->ia_size
);
1189 inode_dio_wait(inode
);
1191 if (i_size_read(inode
) >= attr
->ia_size
) {
1192 if (ocfs2_should_order_data(inode
)) {
1193 status
= ocfs2_begin_ordered_truncate(inode
,
1198 status
= ocfs2_truncate_file(inode
, bh
, attr
->ia_size
);
1200 status
= ocfs2_extend_file(inode
, bh
, attr
->ia_size
);
1202 if (status
!= -ENOSPC
)
1209 if ((attr
->ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
1210 (attr
->ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
1212 * Gather pointers to quota structures so that allocation /
1213 * freeing of quota structures happens here and not inside
1214 * dquot_transfer() where we have problems with lock ordering
1216 if (attr
->ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)
1217 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1218 OCFS2_FEATURE_RO_COMPAT_USRQUOTA
)) {
1219 transfer_to
[USRQUOTA
] = dqget(sb
, make_kqid_uid(attr
->ia_uid
));
1220 if (IS_ERR(transfer_to
[USRQUOTA
])) {
1221 status
= PTR_ERR(transfer_to
[USRQUOTA
]);
1225 if (attr
->ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
)
1226 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1227 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA
)) {
1228 transfer_to
[GRPQUOTA
] = dqget(sb
, make_kqid_gid(attr
->ia_gid
));
1229 if (IS_ERR(transfer_to
[GRPQUOTA
])) {
1230 status
= PTR_ERR(transfer_to
[GRPQUOTA
]);
1234 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
+
1235 2 * ocfs2_quota_trans_credits(sb
));
1236 if (IS_ERR(handle
)) {
1237 status
= PTR_ERR(handle
);
1241 status
= __dquot_transfer(inode
, transfer_to
);
1245 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1246 if (IS_ERR(handle
)) {
1247 status
= PTR_ERR(handle
);
1253 setattr_copy(inode
, attr
);
1254 mark_inode_dirty(inode
);
1256 status
= ocfs2_mark_inode_dirty(handle
, inode
, bh
);
1261 ocfs2_commit_trans(osb
, handle
);
1264 ocfs2_inode_unlock(inode
, 1);
1269 ocfs2_rw_unlock(inode
, 1);
1273 /* Release quota pointers in case we acquired them */
1274 for (qtype
= 0; qtype
< OCFS2_MAXQUOTAS
; qtype
++)
1275 dqput(transfer_to
[qtype
]);
1277 if (!status
&& attr
->ia_valid
& ATTR_MODE
) {
1278 status
= posix_acl_chmod(inode
, inode
->i_mode
);
1283 ocfs2_inode_unlock(inode
, 1);
1288 int ocfs2_getattr(struct vfsmount
*mnt
,
1289 struct dentry
*dentry
,
1292 struct inode
*inode
= d_inode(dentry
);
1293 struct super_block
*sb
= d_inode(dentry
)->i_sb
;
1294 struct ocfs2_super
*osb
= sb
->s_fs_info
;
1297 err
= ocfs2_inode_revalidate(dentry
);
1304 generic_fillattr(inode
, stat
);
1306 /* We set the blksize from the cluster size for performance */
1307 stat
->blksize
= osb
->s_clustersize
;
1313 int ocfs2_permission(struct inode
*inode
, int mask
)
1317 if (mask
& MAY_NOT_BLOCK
)
1320 ret
= ocfs2_inode_lock(inode
, NULL
, 0);
1327 ret
= generic_permission(inode
, mask
);
1329 ocfs2_inode_unlock(inode
, 0);
1334 static int __ocfs2_write_remove_suid(struct inode
*inode
,
1335 struct buffer_head
*bh
)
1339 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1340 struct ocfs2_dinode
*di
;
1342 trace_ocfs2_write_remove_suid(
1343 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1346 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1347 if (IS_ERR(handle
)) {
1348 ret
= PTR_ERR(handle
);
1353 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
1354 OCFS2_JOURNAL_ACCESS_WRITE
);
1360 inode
->i_mode
&= ~S_ISUID
;
1361 if ((inode
->i_mode
& S_ISGID
) && (inode
->i_mode
& S_IXGRP
))
1362 inode
->i_mode
&= ~S_ISGID
;
1364 di
= (struct ocfs2_dinode
*) bh
->b_data
;
1365 di
->i_mode
= cpu_to_le16(inode
->i_mode
);
1366 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
1368 ocfs2_journal_dirty(handle
, bh
);
1371 ocfs2_commit_trans(osb
, handle
);
1377 * Will look for holes and unwritten extents in the range starting at
1378 * pos for count bytes (inclusive).
1380 static int ocfs2_check_range_for_holes(struct inode
*inode
, loff_t pos
,
1384 unsigned int extent_flags
;
1385 u32 cpos
, clusters
, extent_len
, phys_cpos
;
1386 struct super_block
*sb
= inode
->i_sb
;
1388 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
1389 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
1392 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
1399 if (phys_cpos
== 0 || (extent_flags
& OCFS2_EXT_UNWRITTEN
)) {
1404 if (extent_len
> clusters
)
1405 extent_len
= clusters
;
1407 clusters
-= extent_len
;
1414 static int ocfs2_write_remove_suid(struct inode
*inode
)
1417 struct buffer_head
*bh
= NULL
;
1419 ret
= ocfs2_read_inode_block(inode
, &bh
);
1425 ret
= __ocfs2_write_remove_suid(inode
, bh
);
1432 * Allocate enough extents to cover the region starting at byte offset
1433 * start for len bytes. Existing extents are skipped, any extents
1434 * added are marked as "unwritten".
1436 static int ocfs2_allocate_unwritten_extents(struct inode
*inode
,
1440 u32 cpos
, phys_cpos
, clusters
, alloc_size
;
1441 u64 end
= start
+ len
;
1442 struct buffer_head
*di_bh
= NULL
;
1444 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1445 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
1452 * Nothing to do if the requested reservation range
1453 * fits within the inode.
1455 if (ocfs2_size_fits_inline_data(di_bh
, end
))
1458 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1466 * We consider both start and len to be inclusive.
1468 cpos
= start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
1469 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, start
+ len
);
1473 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1481 * Hole or existing extent len can be arbitrary, so
1482 * cap it to our own allocation request.
1484 if (alloc_size
> clusters
)
1485 alloc_size
= clusters
;
1489 * We already have an allocation at this
1490 * region so we can safely skip it.
1495 ret
= __ocfs2_extend_allocation(inode
, cpos
, alloc_size
, 1);
1504 clusters
-= alloc_size
;
1515 * Truncate a byte range, avoiding pages within partial clusters. This
1516 * preserves those pages for the zeroing code to write to.
1518 static void ocfs2_truncate_cluster_pages(struct inode
*inode
, u64 byte_start
,
1521 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1523 struct address_space
*mapping
= inode
->i_mapping
;
1525 start
= (loff_t
)ocfs2_align_bytes_to_clusters(inode
->i_sb
, byte_start
);
1526 end
= byte_start
+ byte_len
;
1527 end
= end
& ~(osb
->s_clustersize
- 1);
1530 unmap_mapping_range(mapping
, start
, end
- start
, 0);
1531 truncate_inode_pages_range(mapping
, start
, end
- 1);
1535 static int ocfs2_zero_partial_clusters(struct inode
*inode
,
1539 u64 tmpend
, end
= start
+ len
;
1540 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1541 unsigned int csize
= osb
->s_clustersize
;
1545 * The "start" and "end" values are NOT necessarily part of
1546 * the range whose allocation is being deleted. Rather, this
1547 * is what the user passed in with the request. We must zero
1548 * partial clusters here. There's no need to worry about
1549 * physical allocation - the zeroing code knows to skip holes.
1551 trace_ocfs2_zero_partial_clusters(
1552 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1553 (unsigned long long)start
, (unsigned long long)end
);
1556 * If both edges are on a cluster boundary then there's no
1557 * zeroing required as the region is part of the allocation to
1560 if ((start
& (csize
- 1)) == 0 && (end
& (csize
- 1)) == 0)
1563 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1564 if (IS_ERR(handle
)) {
1565 ret
= PTR_ERR(handle
);
1571 * We want to get the byte offset of the end of the 1st cluster.
1573 tmpend
= (u64
)osb
->s_clustersize
+ (start
& ~(osb
->s_clustersize
- 1));
1577 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start
,
1578 (unsigned long long)tmpend
);
1580 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, tmpend
);
1586 * This may make start and end equal, but the zeroing
1587 * code will skip any work in that case so there's no
1588 * need to catch it up here.
1590 start
= end
& ~(osb
->s_clustersize
- 1);
1592 trace_ocfs2_zero_partial_clusters_range2(
1593 (unsigned long long)start
, (unsigned long long)end
);
1595 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, end
);
1599 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
1601 ocfs2_commit_trans(osb
, handle
);
1606 static int ocfs2_find_rec(struct ocfs2_extent_list
*el
, u32 pos
)
1609 struct ocfs2_extent_rec
*rec
= NULL
;
1611 for (i
= le16_to_cpu(el
->l_next_free_rec
) - 1; i
>= 0; i
--) {
1613 rec
= &el
->l_recs
[i
];
1615 if (le32_to_cpu(rec
->e_cpos
) < pos
)
1623 * Helper to calculate the punching pos and length in one run, we handle the
1624 * following three cases in order:
1626 * - remove the entire record
1627 * - remove a partial record
1628 * - no record needs to be removed (hole-punching completed)
1630 static void ocfs2_calc_trunc_pos(struct inode
*inode
,
1631 struct ocfs2_extent_list
*el
,
1632 struct ocfs2_extent_rec
*rec
,
1633 u32 trunc_start
, u32
*trunc_cpos
,
1634 u32
*trunc_len
, u32
*trunc_end
,
1635 u64
*blkno
, int *done
)
1640 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
1642 if (le32_to_cpu(rec
->e_cpos
) >= trunc_start
) {
1644 * remove an entire extent record.
1646 *trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
1648 * Skip holes if any.
1650 if (range
< *trunc_end
)
1652 *trunc_len
= *trunc_end
- le32_to_cpu(rec
->e_cpos
);
1653 *blkno
= le64_to_cpu(rec
->e_blkno
);
1654 *trunc_end
= le32_to_cpu(rec
->e_cpos
);
1655 } else if (range
> trunc_start
) {
1657 * remove a partial extent record, which means we're
1658 * removing the last extent record.
1660 *trunc_cpos
= trunc_start
;
1664 if (range
< *trunc_end
)
1666 *trunc_len
= *trunc_end
- trunc_start
;
1667 coff
= trunc_start
- le32_to_cpu(rec
->e_cpos
);
1668 *blkno
= le64_to_cpu(rec
->e_blkno
) +
1669 ocfs2_clusters_to_blocks(inode
->i_sb
, coff
);
1670 *trunc_end
= trunc_start
;
1673 * It may have two following possibilities:
1675 * - last record has been removed
1676 * - trunc_start was within a hole
1678 * both two cases mean the completion of hole punching.
1686 static int ocfs2_remove_inode_range(struct inode
*inode
,
1687 struct buffer_head
*di_bh
, u64 byte_start
,
1690 int ret
= 0, flags
= 0, done
= 0, i
;
1691 u32 trunc_start
, trunc_len
, trunc_end
, trunc_cpos
, phys_cpos
;
1693 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1694 struct ocfs2_cached_dealloc_ctxt dealloc
;
1695 struct address_space
*mapping
= inode
->i_mapping
;
1696 struct ocfs2_extent_tree et
;
1697 struct ocfs2_path
*path
= NULL
;
1698 struct ocfs2_extent_list
*el
= NULL
;
1699 struct ocfs2_extent_rec
*rec
= NULL
;
1700 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1701 u64 blkno
, refcount_loc
= le64_to_cpu(di
->i_refcount_loc
);
1703 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
1704 ocfs2_init_dealloc_ctxt(&dealloc
);
1706 trace_ocfs2_remove_inode_range(
1707 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1708 (unsigned long long)byte_start
,
1709 (unsigned long long)byte_len
);
1714 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1715 ret
= ocfs2_truncate_inline(inode
, di_bh
, byte_start
,
1716 byte_start
+ byte_len
, 0);
1722 * There's no need to get fancy with the page cache
1723 * truncate of an inline-data inode. We're talking
1724 * about less than a page here, which will be cached
1725 * in the dinode buffer anyway.
1727 unmap_mapping_range(mapping
, 0, 0, 0);
1728 truncate_inode_pages(mapping
, 0);
1733 * For reflinks, we may need to CoW 2 clusters which might be
1734 * partially zero'd later, if hole's start and end offset were
1735 * within one cluster(means is not exactly aligned to clustersize).
1738 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_HAS_REFCOUNT_FL
) {
1740 ret
= ocfs2_cow_file_pos(inode
, di_bh
, byte_start
);
1746 ret
= ocfs2_cow_file_pos(inode
, di_bh
, byte_start
+ byte_len
);
1753 trunc_start
= ocfs2_clusters_for_bytes(osb
->sb
, byte_start
);
1754 trunc_end
= (byte_start
+ byte_len
) >> osb
->s_clustersize_bits
;
1755 cluster_in_el
= trunc_end
;
1757 ret
= ocfs2_zero_partial_clusters(inode
, byte_start
, byte_len
);
1763 path
= ocfs2_new_path_from_et(&et
);
1770 while (trunc_end
> trunc_start
) {
1772 ret
= ocfs2_find_path(INODE_CACHE(inode
), path
,
1779 el
= path_leaf_el(path
);
1781 i
= ocfs2_find_rec(el
, trunc_end
);
1783 * Need to go to previous extent block.
1786 if (path
->p_tree_depth
== 0)
1789 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
,
1798 * We've reached the leftmost extent block,
1799 * it's safe to leave.
1801 if (cluster_in_el
== 0)
1805 * The 'pos' searched for previous extent block is
1806 * always one cluster less than actual trunc_end.
1808 trunc_end
= cluster_in_el
+ 1;
1810 ocfs2_reinit_path(path
, 1);
1815 rec
= &el
->l_recs
[i
];
1817 ocfs2_calc_trunc_pos(inode
, el
, rec
, trunc_start
, &trunc_cpos
,
1818 &trunc_len
, &trunc_end
, &blkno
, &done
);
1822 flags
= rec
->e_flags
;
1823 phys_cpos
= ocfs2_blocks_to_clusters(inode
->i_sb
, blkno
);
1825 ret
= ocfs2_remove_btree_range(inode
, &et
, trunc_cpos
,
1826 phys_cpos
, trunc_len
, flags
,
1827 &dealloc
, refcount_loc
, false);
1833 cluster_in_el
= trunc_end
;
1835 ocfs2_reinit_path(path
, 1);
1838 ocfs2_truncate_cluster_pages(inode
, byte_start
, byte_len
);
1841 ocfs2_free_path(path
);
1842 ocfs2_schedule_truncate_log_flush(osb
, 1);
1843 ocfs2_run_deallocs(osb
, &dealloc
);
1849 * Parts of this function taken from xfs_change_file_space()
1851 static int __ocfs2_change_file_space(struct file
*file
, struct inode
*inode
,
1852 loff_t f_pos
, unsigned int cmd
,
1853 struct ocfs2_space_resv
*sr
,
1859 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1860 struct buffer_head
*di_bh
= NULL
;
1862 unsigned long long max_off
= inode
->i_sb
->s_maxbytes
;
1864 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
1867 mutex_lock(&inode
->i_mutex
);
1870 * This prevents concurrent writes on other nodes
1872 ret
= ocfs2_rw_lock(inode
, 1);
1878 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1884 if (inode
->i_flags
& (S_IMMUTABLE
|S_APPEND
)) {
1886 goto out_inode_unlock
;
1889 switch (sr
->l_whence
) {
1890 case 0: /*SEEK_SET*/
1892 case 1: /*SEEK_CUR*/
1893 sr
->l_start
+= f_pos
;
1895 case 2: /*SEEK_END*/
1896 sr
->l_start
+= i_size_read(inode
);
1900 goto out_inode_unlock
;
1904 llen
= sr
->l_len
> 0 ? sr
->l_len
- 1 : sr
->l_len
;
1907 || sr
->l_start
> max_off
1908 || (sr
->l_start
+ llen
) < 0
1909 || (sr
->l_start
+ llen
) > max_off
) {
1911 goto out_inode_unlock
;
1913 size
= sr
->l_start
+ sr
->l_len
;
1915 if (cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
||
1916 cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) {
1917 if (sr
->l_len
<= 0) {
1919 goto out_inode_unlock
;
1923 if (file
&& should_remove_suid(file
->f_path
.dentry
)) {
1924 ret
= __ocfs2_write_remove_suid(inode
, di_bh
);
1927 goto out_inode_unlock
;
1931 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1933 case OCFS2_IOC_RESVSP
:
1934 case OCFS2_IOC_RESVSP64
:
1936 * This takes unsigned offsets, but the signed ones we
1937 * pass have been checked against overflow above.
1939 ret
= ocfs2_allocate_unwritten_extents(inode
, sr
->l_start
,
1942 case OCFS2_IOC_UNRESVSP
:
1943 case OCFS2_IOC_UNRESVSP64
:
1944 ret
= ocfs2_remove_inode_range(inode
, di_bh
, sr
->l_start
,
1950 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1953 goto out_inode_unlock
;
1957 * We update c/mtime for these changes
1959 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1960 if (IS_ERR(handle
)) {
1961 ret
= PTR_ERR(handle
);
1963 goto out_inode_unlock
;
1966 if (change_size
&& i_size_read(inode
) < size
)
1967 i_size_write(inode
, size
);
1969 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
1970 ret
= ocfs2_mark_inode_dirty(handle
, inode
, di_bh
);
1974 if (file
&& (file
->f_flags
& O_SYNC
))
1977 ocfs2_commit_trans(osb
, handle
);
1981 ocfs2_inode_unlock(inode
, 1);
1983 ocfs2_rw_unlock(inode
, 1);
1986 mutex_unlock(&inode
->i_mutex
);
1990 int ocfs2_change_file_space(struct file
*file
, unsigned int cmd
,
1991 struct ocfs2_space_resv
*sr
)
1993 struct inode
*inode
= file_inode(file
);
1994 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1997 if ((cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) &&
1998 !ocfs2_writes_unwritten_extents(osb
))
2000 else if ((cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) &&
2001 !ocfs2_sparse_alloc(osb
))
2004 if (!S_ISREG(inode
->i_mode
))
2007 if (!(file
->f_mode
& FMODE_WRITE
))
2010 ret
= mnt_want_write_file(file
);
2013 ret
= __ocfs2_change_file_space(file
, inode
, file
->f_pos
, cmd
, sr
, 0);
2014 mnt_drop_write_file(file
);
2018 static long ocfs2_fallocate(struct file
*file
, int mode
, loff_t offset
,
2021 struct inode
*inode
= file_inode(file
);
2022 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2023 struct ocfs2_space_resv sr
;
2024 int change_size
= 1;
2025 int cmd
= OCFS2_IOC_RESVSP64
;
2027 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2029 if (!ocfs2_writes_unwritten_extents(osb
))
2032 if (mode
& FALLOC_FL_KEEP_SIZE
)
2035 if (mode
& FALLOC_FL_PUNCH_HOLE
)
2036 cmd
= OCFS2_IOC_UNRESVSP64
;
2039 sr
.l_start
= (s64
)offset
;
2040 sr
.l_len
= (s64
)len
;
2042 return __ocfs2_change_file_space(NULL
, inode
, offset
, cmd
, &sr
,
2046 int ocfs2_check_range_for_refcount(struct inode
*inode
, loff_t pos
,
2050 unsigned int extent_flags
;
2051 u32 cpos
, clusters
, extent_len
, phys_cpos
;
2052 struct super_block
*sb
= inode
->i_sb
;
2054 if (!ocfs2_refcount_tree(OCFS2_SB(inode
->i_sb
)) ||
2055 !(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_HAS_REFCOUNT_FL
) ||
2056 OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2059 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
2060 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
2063 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
2070 if (phys_cpos
&& (extent_flags
& OCFS2_EXT_REFCOUNTED
)) {
2075 if (extent_len
> clusters
)
2076 extent_len
= clusters
;
2078 clusters
-= extent_len
;
2085 static int ocfs2_is_io_unaligned(struct inode
*inode
, size_t count
, loff_t pos
)
2087 int blockmask
= inode
->i_sb
->s_blocksize
- 1;
2088 loff_t final_size
= pos
+ count
;
2090 if ((pos
& blockmask
) || (final_size
& blockmask
))
2095 static int ocfs2_prepare_inode_for_refcount(struct inode
*inode
,
2097 loff_t pos
, size_t count
,
2101 struct buffer_head
*di_bh
= NULL
;
2102 u32 cpos
= pos
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
2104 ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ count
) - cpos
;
2106 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2114 ret
= ocfs2_refcount_cow(inode
, di_bh
, cpos
, clusters
, UINT_MAX
);
2122 static int ocfs2_prepare_inode_for_write(struct file
*file
,
2129 int ret
= 0, meta_level
= 0;
2130 struct dentry
*dentry
= file
->f_path
.dentry
;
2131 struct inode
*inode
= d_inode(dentry
);
2133 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2134 int full_coherency
= !(osb
->s_mount_opt
&
2135 OCFS2_MOUNT_COHERENCY_BUFFERED
);
2138 * We start with a read level meta lock and only jump to an ex
2139 * if we need to make modifications here.
2142 ret
= ocfs2_inode_lock(inode
, NULL
, meta_level
);
2149 /* Clear suid / sgid if necessary. We do this here
2150 * instead of later in the write path because
2151 * remove_suid() calls ->setattr without any hint that
2152 * we may have already done our cluster locking. Since
2153 * ocfs2_setattr() *must* take cluster locks to
2154 * proceed, this will lead us to recursively lock the
2155 * inode. There's also the dinode i_size state which
2156 * can be lost via setattr during extending writes (we
2157 * set inode->i_size at the end of a write. */
2158 if (should_remove_suid(dentry
)) {
2159 if (meta_level
== 0) {
2160 ocfs2_inode_unlock(inode
, meta_level
);
2165 ret
= ocfs2_write_remove_suid(inode
);
2174 ret
= ocfs2_check_range_for_refcount(inode
, pos
, count
);
2176 ocfs2_inode_unlock(inode
, meta_level
);
2179 ret
= ocfs2_prepare_inode_for_refcount(inode
,
2196 * Skip the O_DIRECT checks if we don't need
2199 if (!direct_io
|| !(*direct_io
))
2203 * There's no sane way to do direct writes to an inode
2206 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
2212 * Allowing concurrent direct writes means
2213 * i_size changes wouldn't be synchronized, so
2214 * one node could wind up truncating another
2217 if (end
> i_size_read(inode
) && !full_coherency
) {
2223 * Fallback to old way if the feature bit is not set.
2225 if (end
> i_size_read(inode
) &&
2226 !ocfs2_supports_append_dio(osb
)) {
2232 * We don't fill holes during direct io, so
2233 * check for them here. If any are found, the
2234 * caller will have to retake some cluster
2235 * locks and initiate the io as buffered.
2237 ret
= ocfs2_check_range_for_holes(inode
, pos
, count
);
2240 * Fallback to old way if the feature bit is not set.
2241 * Otherwise try dio first and then complete the rest
2242 * request through buffer io.
2244 if (!ocfs2_supports_append_dio(osb
))
2253 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode
)->ip_blkno
,
2254 pos
, appending
, count
,
2255 direct_io
, has_refcount
);
2257 if (meta_level
>= 0)
2258 ocfs2_inode_unlock(inode
, meta_level
);
2264 static ssize_t
ocfs2_file_write_iter(struct kiocb
*iocb
,
2265 struct iov_iter
*from
)
2267 int direct_io
, appending
, rw_level
;
2268 int can_do_direct
, has_refcount
= 0;
2269 ssize_t written
= 0;
2271 size_t count
= iov_iter_count(from
), orig_count
;
2272 struct file
*file
= iocb
->ki_filp
;
2273 struct inode
*inode
= file_inode(file
);
2274 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2275 int full_coherency
= !(osb
->s_mount_opt
&
2276 OCFS2_MOUNT_COHERENCY_BUFFERED
);
2277 int unaligned_dio
= 0;
2278 int dropped_dio
= 0;
2279 int append_write
= ((iocb
->ki_pos
+ count
) >=
2280 i_size_read(inode
) ? 1 : 0);
2282 trace_ocfs2_file_aio_write(inode
, file
, file
->f_path
.dentry
,
2283 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2284 file
->f_path
.dentry
->d_name
.len
,
2285 file
->f_path
.dentry
->d_name
.name
,
2286 (unsigned int)from
->nr_segs
); /* GRRRRR */
2291 appending
= iocb
->ki_flags
& IOCB_APPEND
? 1 : 0;
2292 direct_io
= iocb
->ki_flags
& IOCB_DIRECT
? 1 : 0;
2294 mutex_lock(&inode
->i_mutex
);
2298 * Concurrent O_DIRECT writes are allowed with
2299 * mount_option "coherency=buffered".
2300 * For append write, we must take rw EX.
2302 rw_level
= (!direct_io
|| full_coherency
|| append_write
);
2304 ret
= ocfs2_rw_lock(inode
, rw_level
);
2311 * O_DIRECT writes with "coherency=full" need to take EX cluster
2312 * inode_lock to guarantee coherency.
2314 if (direct_io
&& full_coherency
) {
2316 * We need to take and drop the inode lock to force
2317 * other nodes to drop their caches. Buffered I/O
2318 * already does this in write_begin().
2320 ret
= ocfs2_inode_lock(inode
, NULL
, 1);
2326 ocfs2_inode_unlock(inode
, 1);
2329 orig_count
= iov_iter_count(from
);
2330 ret
= generic_write_checks(iocb
, from
);
2338 can_do_direct
= direct_io
;
2339 ret
= ocfs2_prepare_inode_for_write(file
, iocb
->ki_pos
, count
, appending
,
2340 &can_do_direct
, &has_refcount
);
2346 if (direct_io
&& !is_sync_kiocb(iocb
))
2347 unaligned_dio
= ocfs2_is_io_unaligned(inode
, count
, iocb
->ki_pos
);
2350 * We can't complete the direct I/O as requested, fall back to
2353 if (direct_io
&& !can_do_direct
) {
2354 ocfs2_rw_unlock(inode
, rw_level
);
2359 iocb
->ki_flags
&= ~IOCB_DIRECT
;
2360 iov_iter_reexpand(from
, orig_count
);
2365 if (unaligned_dio
) {
2367 * Wait on previous unaligned aio to complete before
2370 mutex_lock(&OCFS2_I(inode
)->ip_unaligned_aio
);
2371 /* Mark the iocb as needing an unlock in ocfs2_dio_end_io */
2372 ocfs2_iocb_set_unaligned_aio(iocb
);
2375 /* communicate with ocfs2_dio_end_io */
2376 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2378 written
= __generic_file_write_iter(iocb
, from
);
2379 /* buffered aio wouldn't have proper lock coverage today */
2380 BUG_ON(written
== -EIOCBQUEUED
&& !(iocb
->ki_flags
& IOCB_DIRECT
));
2383 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2384 * function pointer which is called when o_direct io completes so that
2385 * it can unlock our rw lock.
2386 * Unfortunately there are error cases which call end_io and others
2387 * that don't. so we don't have to unlock the rw_lock if either an
2388 * async dio is going to do it in the future or an end_io after an
2389 * error has already done it.
2391 if ((written
== -EIOCBQUEUED
) || (!ocfs2_iocb_is_rw_locked(iocb
))) {
2396 if (unlikely(written
<= 0))
2399 if (((file
->f_flags
& O_DSYNC
) && !direct_io
) ||
2400 IS_SYNC(inode
) || dropped_dio
) {
2401 ret
= filemap_fdatawrite_range(file
->f_mapping
,
2402 iocb
->ki_pos
- written
,
2408 ret
= jbd2_journal_force_commit(osb
->journal
->j_journal
);
2414 ret
= filemap_fdatawait_range(file
->f_mapping
,
2415 iocb
->ki_pos
- written
,
2420 if (unaligned_dio
&& ocfs2_iocb_is_unaligned_aio(iocb
)) {
2421 ocfs2_iocb_clear_unaligned_aio(iocb
);
2422 mutex_unlock(&OCFS2_I(inode
)->ip_unaligned_aio
);
2427 ocfs2_rw_unlock(inode
, rw_level
);
2430 mutex_unlock(&inode
->i_mutex
);
2437 static ssize_t
ocfs2_file_splice_read(struct file
*in
,
2439 struct pipe_inode_info
*pipe
,
2443 int ret
= 0, lock_level
= 0;
2444 struct inode
*inode
= file_inode(in
);
2446 trace_ocfs2_file_splice_read(inode
, in
, in
->f_path
.dentry
,
2447 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2448 in
->f_path
.dentry
->d_name
.len
,
2449 in
->f_path
.dentry
->d_name
.name
, len
);
2452 * See the comment in ocfs2_file_read_iter()
2454 ret
= ocfs2_inode_lock_atime(inode
, in
->f_path
.mnt
, &lock_level
);
2459 ocfs2_inode_unlock(inode
, lock_level
);
2461 ret
= generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
2467 static ssize_t
ocfs2_file_read_iter(struct kiocb
*iocb
,
2468 struct iov_iter
*to
)
2470 int ret
= 0, rw_level
= -1, lock_level
= 0;
2471 struct file
*filp
= iocb
->ki_filp
;
2472 struct inode
*inode
= file_inode(filp
);
2474 trace_ocfs2_file_aio_read(inode
, filp
, filp
->f_path
.dentry
,
2475 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2476 filp
->f_path
.dentry
->d_name
.len
,
2477 filp
->f_path
.dentry
->d_name
.name
,
2478 to
->nr_segs
); /* GRRRRR */
2488 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2489 * need locks to protect pending reads from racing with truncate.
2491 if (iocb
->ki_flags
& IOCB_DIRECT
) {
2492 ret
= ocfs2_rw_lock(inode
, 0);
2498 /* communicate with ocfs2_dio_end_io */
2499 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2503 * We're fine letting folks race truncates and extending
2504 * writes with read across the cluster, just like they can
2505 * locally. Hence no rw_lock during read.
2507 * Take and drop the meta data lock to update inode fields
2508 * like i_size. This allows the checks down below
2509 * generic_file_aio_read() a chance of actually working.
2511 ret
= ocfs2_inode_lock_atime(inode
, filp
->f_path
.mnt
, &lock_level
);
2516 ocfs2_inode_unlock(inode
, lock_level
);
2518 ret
= generic_file_read_iter(iocb
, to
);
2519 trace_generic_file_aio_read_ret(ret
);
2521 /* buffered aio wouldn't have proper lock coverage today */
2522 BUG_ON(ret
== -EIOCBQUEUED
&& !(iocb
->ki_flags
& IOCB_DIRECT
));
2524 /* see ocfs2_file_write_iter */
2525 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2531 ocfs2_rw_unlock(inode
, rw_level
);
2536 /* Refer generic_file_llseek_unlocked() */
2537 static loff_t
ocfs2_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2539 struct inode
*inode
= file
->f_mapping
->host
;
2542 mutex_lock(&inode
->i_mutex
);
2548 /* SEEK_END requires the OCFS2 inode lock for the file
2549 * because it references the file's size.
2551 ret
= ocfs2_inode_lock(inode
, NULL
, 0);
2556 offset
+= i_size_read(inode
);
2557 ocfs2_inode_unlock(inode
, 0);
2561 offset
= file
->f_pos
;
2564 offset
+= file
->f_pos
;
2568 ret
= ocfs2_seek_data_hole_offset(file
, &offset
, whence
);
2577 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
2580 mutex_unlock(&inode
->i_mutex
);
2586 const struct inode_operations ocfs2_file_iops
= {
2587 .setattr
= ocfs2_setattr
,
2588 .getattr
= ocfs2_getattr
,
2589 .permission
= ocfs2_permission
,
2590 .setxattr
= generic_setxattr
,
2591 .getxattr
= generic_getxattr
,
2592 .listxattr
= ocfs2_listxattr
,
2593 .removexattr
= generic_removexattr
,
2594 .fiemap
= ocfs2_fiemap
,
2595 .get_acl
= ocfs2_iop_get_acl
,
2596 .set_acl
= ocfs2_iop_set_acl
,
2599 const struct inode_operations ocfs2_special_file_iops
= {
2600 .setattr
= ocfs2_setattr
,
2601 .getattr
= ocfs2_getattr
,
2602 .permission
= ocfs2_permission
,
2603 .get_acl
= ocfs2_iop_get_acl
,
2604 .set_acl
= ocfs2_iop_set_acl
,
2608 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2609 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2611 const struct file_operations ocfs2_fops
= {
2612 .llseek
= ocfs2_file_llseek
,
2614 .fsync
= ocfs2_sync_file
,
2615 .release
= ocfs2_file_release
,
2616 .open
= ocfs2_file_open
,
2617 .read_iter
= ocfs2_file_read_iter
,
2618 .write_iter
= ocfs2_file_write_iter
,
2619 .unlocked_ioctl
= ocfs2_ioctl
,
2620 #ifdef CONFIG_COMPAT
2621 .compat_ioctl
= ocfs2_compat_ioctl
,
2624 .flock
= ocfs2_flock
,
2625 .splice_read
= ocfs2_file_splice_read
,
2626 .splice_write
= iter_file_splice_write
,
2627 .fallocate
= ocfs2_fallocate
,
2630 const struct file_operations ocfs2_dops
= {
2631 .llseek
= generic_file_llseek
,
2632 .read
= generic_read_dir
,
2633 .iterate
= ocfs2_readdir
,
2634 .fsync
= ocfs2_sync_file
,
2635 .release
= ocfs2_dir_release
,
2636 .open
= ocfs2_dir_open
,
2637 .unlocked_ioctl
= ocfs2_ioctl
,
2638 #ifdef CONFIG_COMPAT
2639 .compat_ioctl
= ocfs2_compat_ioctl
,
2642 .flock
= ocfs2_flock
,
2646 * POSIX-lockless variants of our file_operations.
2648 * These will be used if the underlying cluster stack does not support
2649 * posix file locking, if the user passes the "localflocks" mount
2650 * option, or if we have a local-only fs.
2652 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2653 * so we still want it in the case of no stack support for
2654 * plocks. Internally, it will do the right thing when asked to ignore
2657 const struct file_operations ocfs2_fops_no_plocks
= {
2658 .llseek
= ocfs2_file_llseek
,
2660 .fsync
= ocfs2_sync_file
,
2661 .release
= ocfs2_file_release
,
2662 .open
= ocfs2_file_open
,
2663 .read_iter
= ocfs2_file_read_iter
,
2664 .write_iter
= ocfs2_file_write_iter
,
2665 .unlocked_ioctl
= ocfs2_ioctl
,
2666 #ifdef CONFIG_COMPAT
2667 .compat_ioctl
= ocfs2_compat_ioctl
,
2669 .flock
= ocfs2_flock
,
2670 .splice_read
= ocfs2_file_splice_read
,
2671 .splice_write
= iter_file_splice_write
,
2672 .fallocate
= ocfs2_fallocate
,
2675 const struct file_operations ocfs2_dops_no_plocks
= {
2676 .llseek
= generic_file_llseek
,
2677 .read
= generic_read_dir
,
2678 .iterate
= ocfs2_readdir
,
2679 .fsync
= ocfs2_sync_file
,
2680 .release
= ocfs2_dir_release
,
2681 .open
= ocfs2_dir_open
,
2682 .unlocked_ioctl
= ocfs2_ioctl
,
2683 #ifdef CONFIG_COMPAT
2684 .compat_ioctl
= ocfs2_compat_ioctl
,
2686 .flock
= ocfs2_flock
,