of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / fs / ocfs2 / journal.c
blob13534f4fe5b51d0c009ad684be46518de65a85d8
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * journal.c
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
35 #include <cluster/masklog.h>
37 #include "ocfs2.h"
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
59 DEFINE_SPINLOCK(trans_inc_lock);
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 int slot,
75 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 int slot_num,
79 struct ocfs2_dinode *la_dinode,
80 struct ocfs2_dinode *tl_dinode,
81 struct ocfs2_quota_recovery *qrec,
82 enum ocfs2_orphan_reco_type orphan_reco_type);
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
86 return __ocfs2_wait_on_mount(osb, 0);
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
91 return __ocfs2_wait_on_mount(osb, 1);
95 * This replay_map is to track online/offline slots, so we could recover
96 * offline slots during recovery and mount
99 enum ocfs2_replay_state {
100 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
101 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
102 REPLAY_DONE /* Replay was already queued */
105 struct ocfs2_replay_map {
106 unsigned int rm_slots;
107 enum ocfs2_replay_state rm_state;
108 unsigned char rm_replay_slots[0];
111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
113 if (!osb->replay_map)
114 return;
116 /* If we've already queued the replay, we don't have any more to do */
117 if (osb->replay_map->rm_state == REPLAY_DONE)
118 return;
120 osb->replay_map->rm_state = state;
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
125 struct ocfs2_replay_map *replay_map;
126 int i, node_num;
128 /* If replay map is already set, we don't do it again */
129 if (osb->replay_map)
130 return 0;
132 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 (osb->max_slots * sizeof(char)), GFP_KERNEL);
135 if (!replay_map) {
136 mlog_errno(-ENOMEM);
137 return -ENOMEM;
140 spin_lock(&osb->osb_lock);
142 replay_map->rm_slots = osb->max_slots;
143 replay_map->rm_state = REPLAY_UNNEEDED;
145 /* set rm_replay_slots for offline slot(s) */
146 for (i = 0; i < replay_map->rm_slots; i++) {
147 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 replay_map->rm_replay_slots[i] = 1;
151 osb->replay_map = replay_map;
152 spin_unlock(&osb->osb_lock);
153 return 0;
156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 enum ocfs2_orphan_reco_type orphan_reco_type)
159 struct ocfs2_replay_map *replay_map = osb->replay_map;
160 int i;
162 if (!replay_map)
163 return;
165 if (replay_map->rm_state != REPLAY_NEEDED)
166 return;
168 for (i = 0; i < replay_map->rm_slots; i++)
169 if (replay_map->rm_replay_slots[i])
170 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 NULL, NULL,
172 orphan_reco_type);
173 replay_map->rm_state = REPLAY_DONE;
176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
178 struct ocfs2_replay_map *replay_map = osb->replay_map;
180 if (!osb->replay_map)
181 return;
183 kfree(replay_map);
184 osb->replay_map = NULL;
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
189 struct ocfs2_recovery_map *rm;
191 mutex_init(&osb->recovery_lock);
192 osb->disable_recovery = 0;
193 osb->recovery_thread_task = NULL;
194 init_waitqueue_head(&osb->recovery_event);
196 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 osb->max_slots * sizeof(unsigned int),
198 GFP_KERNEL);
199 if (!rm) {
200 mlog_errno(-ENOMEM);
201 return -ENOMEM;
204 rm->rm_entries = (unsigned int *)((char *)rm +
205 sizeof(struct ocfs2_recovery_map));
206 osb->recovery_map = rm;
208 return 0;
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212 * memory barriers to make sure that we'll see the null task before
213 * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
216 mb();
217 return osb->recovery_thread_task != NULL;
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
222 struct ocfs2_recovery_map *rm;
224 /* disable any new recovery threads and wait for any currently
225 * running ones to exit. Do this before setting the vol_state. */
226 mutex_lock(&osb->recovery_lock);
227 osb->disable_recovery = 1;
228 mutex_unlock(&osb->recovery_lock);
229 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
231 /* At this point, we know that no more recovery threads can be
232 * launched, so wait for any recovery completion work to
233 * complete. */
234 flush_workqueue(ocfs2_wq);
237 * Now that recovery is shut down, and the osb is about to be
238 * freed, the osb_lock is not taken here.
240 rm = osb->recovery_map;
241 /* XXX: Should we bug if there are dirty entries? */
243 kfree(rm);
246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247 unsigned int node_num)
249 int i;
250 struct ocfs2_recovery_map *rm = osb->recovery_map;
252 assert_spin_locked(&osb->osb_lock);
254 for (i = 0; i < rm->rm_used; i++) {
255 if (rm->rm_entries[i] == node_num)
256 return 1;
259 return 0;
262 /* Behaves like test-and-set. Returns the previous value */
263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264 unsigned int node_num)
266 struct ocfs2_recovery_map *rm = osb->recovery_map;
268 spin_lock(&osb->osb_lock);
269 if (__ocfs2_recovery_map_test(osb, node_num)) {
270 spin_unlock(&osb->osb_lock);
271 return 1;
274 /* XXX: Can this be exploited? Not from o2dlm... */
275 BUG_ON(rm->rm_used >= osb->max_slots);
277 rm->rm_entries[rm->rm_used] = node_num;
278 rm->rm_used++;
279 spin_unlock(&osb->osb_lock);
281 return 0;
284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285 unsigned int node_num)
287 int i;
288 struct ocfs2_recovery_map *rm = osb->recovery_map;
290 spin_lock(&osb->osb_lock);
292 for (i = 0; i < rm->rm_used; i++) {
293 if (rm->rm_entries[i] == node_num)
294 break;
297 if (i < rm->rm_used) {
298 /* XXX: be careful with the pointer math */
299 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300 (rm->rm_used - i - 1) * sizeof(unsigned int));
301 rm->rm_used--;
304 spin_unlock(&osb->osb_lock);
307 static int ocfs2_commit_cache(struct ocfs2_super *osb)
309 int status = 0;
310 unsigned int flushed;
311 struct ocfs2_journal *journal = NULL;
313 journal = osb->journal;
315 /* Flush all pending commits and checkpoint the journal. */
316 down_write(&journal->j_trans_barrier);
318 flushed = atomic_read(&journal->j_num_trans);
319 trace_ocfs2_commit_cache_begin(flushed);
320 if (flushed == 0) {
321 up_write(&journal->j_trans_barrier);
322 goto finally;
325 jbd2_journal_lock_updates(journal->j_journal);
326 status = jbd2_journal_flush(journal->j_journal);
327 jbd2_journal_unlock_updates(journal->j_journal);
328 if (status < 0) {
329 up_write(&journal->j_trans_barrier);
330 mlog_errno(status);
331 goto finally;
334 ocfs2_inc_trans_id(journal);
336 flushed = atomic_read(&journal->j_num_trans);
337 atomic_set(&journal->j_num_trans, 0);
338 up_write(&journal->j_trans_barrier);
340 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
342 ocfs2_wake_downconvert_thread(osb);
343 wake_up(&journal->j_checkpointed);
344 finally:
345 return status;
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
350 journal_t *journal = osb->journal->j_journal;
351 handle_t *handle;
353 BUG_ON(!osb || !osb->journal->j_journal);
355 if (ocfs2_is_hard_readonly(osb))
356 return ERR_PTR(-EROFS);
358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 BUG_ON(max_buffs <= 0);
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal, max_buffs);
365 sb_start_intwrite(osb->sb);
367 down_read(&osb->journal->j_trans_barrier);
369 handle = jbd2_journal_start(journal, max_buffs);
370 if (IS_ERR(handle)) {
371 up_read(&osb->journal->j_trans_barrier);
372 sb_end_intwrite(osb->sb);
374 mlog_errno(PTR_ERR(handle));
376 if (is_journal_aborted(journal)) {
377 ocfs2_abort(osb->sb, "Detected aborted journal\n");
378 handle = ERR_PTR(-EROFS);
380 } else {
381 if (!ocfs2_mount_local(osb))
382 atomic_inc(&(osb->journal->j_num_trans));
385 return handle;
388 int ocfs2_commit_trans(struct ocfs2_super *osb,
389 handle_t *handle)
391 int ret, nested;
392 struct ocfs2_journal *journal = osb->journal;
394 BUG_ON(!handle);
396 nested = handle->h_ref > 1;
397 ret = jbd2_journal_stop(handle);
398 if (ret < 0)
399 mlog_errno(ret);
401 if (!nested) {
402 up_read(&journal->j_trans_barrier);
403 sb_end_intwrite(osb->sb);
406 return ret;
410 * 'nblocks' is what you want to add to the current transaction.
412 * This might call jbd2_journal_restart() which will commit dirty buffers
413 * and then restart the transaction. Before calling
414 * ocfs2_extend_trans(), any changed blocks should have been
415 * dirtied. After calling it, all blocks which need to be changed must
416 * go through another set of journal_access/journal_dirty calls.
418 * WARNING: This will not release any semaphores or disk locks taken
419 * during the transaction, so make sure they were taken *before*
420 * start_trans or we'll have ordering deadlocks.
422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423 * good because transaction ids haven't yet been recorded on the
424 * cluster locks associated with this handle.
426 int ocfs2_extend_trans(handle_t *handle, int nblocks)
428 int status, old_nblocks;
430 BUG_ON(!handle);
431 BUG_ON(nblocks < 0);
433 if (!nblocks)
434 return 0;
436 old_nblocks = handle->h_buffer_credits;
438 trace_ocfs2_extend_trans(old_nblocks, nblocks);
440 #ifdef CONFIG_OCFS2_DEBUG_FS
441 status = 1;
442 #else
443 status = jbd2_journal_extend(handle, nblocks);
444 if (status < 0) {
445 mlog_errno(status);
446 goto bail;
448 #endif
450 if (status > 0) {
451 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452 status = jbd2_journal_restart(handle,
453 old_nblocks + nblocks);
454 if (status < 0) {
455 mlog_errno(status);
456 goto bail;
460 status = 0;
461 bail:
462 return status;
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
473 int status, old_nblks;
475 BUG_ON(!handle);
477 old_nblks = handle->h_buffer_credits;
478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
480 if (old_nblks < thresh)
481 return 0;
483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484 if (status < 0) {
485 mlog_errno(status);
486 goto bail;
489 if (status > 0) {
490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 if (status < 0)
492 mlog_errno(status);
495 bail:
496 return status;
500 struct ocfs2_triggers {
501 struct jbd2_buffer_trigger_type ot_triggers;
502 int ot_offset;
505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
507 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511 struct buffer_head *bh,
512 void *data, size_t size)
514 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
517 * We aren't guaranteed to have the superblock here, so we
518 * must unconditionally compute the ecc data.
519 * __ocfs2_journal_access() will only set the triggers if
520 * metaecc is enabled.
522 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
526 * Quota blocks have their own trigger because the struct ocfs2_block_check
527 * offset depends on the blocksize.
529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530 struct buffer_head *bh,
531 void *data, size_t size)
533 struct ocfs2_disk_dqtrailer *dqt =
534 ocfs2_block_dqtrailer(size, data);
537 * We aren't guaranteed to have the superblock here, so we
538 * must unconditionally compute the ecc data.
539 * __ocfs2_journal_access() will only set the triggers if
540 * metaecc is enabled.
542 ocfs2_block_check_compute(data, size, &dqt->dq_check);
546 * Directory blocks also have their own trigger because the
547 * struct ocfs2_block_check offset depends on the blocksize.
549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550 struct buffer_head *bh,
551 void *data, size_t size)
553 struct ocfs2_dir_block_trailer *trailer =
554 ocfs2_dir_trailer_from_size(size, data);
557 * We aren't guaranteed to have the superblock here, so we
558 * must unconditionally compute the ecc data.
559 * __ocfs2_journal_access() will only set the triggers if
560 * metaecc is enabled.
562 ocfs2_block_check_compute(data, size, &trailer->db_check);
565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566 struct buffer_head *bh)
568 mlog(ML_ERROR,
569 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
570 "bh->b_blocknr = %llu\n",
571 (unsigned long)bh,
572 (unsigned long long)bh->b_blocknr);
574 ocfs2_error(bh->b_bdev->bd_super,
575 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
578 static struct ocfs2_triggers di_triggers = {
579 .ot_triggers = {
580 .t_frozen = ocfs2_frozen_trigger,
581 .t_abort = ocfs2_abort_trigger,
583 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
586 static struct ocfs2_triggers eb_triggers = {
587 .ot_triggers = {
588 .t_frozen = ocfs2_frozen_trigger,
589 .t_abort = ocfs2_abort_trigger,
591 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
594 static struct ocfs2_triggers rb_triggers = {
595 .ot_triggers = {
596 .t_frozen = ocfs2_frozen_trigger,
597 .t_abort = ocfs2_abort_trigger,
599 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
602 static struct ocfs2_triggers gd_triggers = {
603 .ot_triggers = {
604 .t_frozen = ocfs2_frozen_trigger,
605 .t_abort = ocfs2_abort_trigger,
607 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
610 static struct ocfs2_triggers db_triggers = {
611 .ot_triggers = {
612 .t_frozen = ocfs2_db_frozen_trigger,
613 .t_abort = ocfs2_abort_trigger,
617 static struct ocfs2_triggers xb_triggers = {
618 .ot_triggers = {
619 .t_frozen = ocfs2_frozen_trigger,
620 .t_abort = ocfs2_abort_trigger,
622 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
625 static struct ocfs2_triggers dq_triggers = {
626 .ot_triggers = {
627 .t_frozen = ocfs2_dq_frozen_trigger,
628 .t_abort = ocfs2_abort_trigger,
632 static struct ocfs2_triggers dr_triggers = {
633 .ot_triggers = {
634 .t_frozen = ocfs2_frozen_trigger,
635 .t_abort = ocfs2_abort_trigger,
637 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
640 static struct ocfs2_triggers dl_triggers = {
641 .ot_triggers = {
642 .t_frozen = ocfs2_frozen_trigger,
643 .t_abort = ocfs2_abort_trigger,
645 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
648 static int __ocfs2_journal_access(handle_t *handle,
649 struct ocfs2_caching_info *ci,
650 struct buffer_head *bh,
651 struct ocfs2_triggers *triggers,
652 int type)
654 int status;
655 struct ocfs2_super *osb =
656 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
658 BUG_ON(!ci || !ci->ci_ops);
659 BUG_ON(!handle);
660 BUG_ON(!bh);
662 trace_ocfs2_journal_access(
663 (unsigned long long)ocfs2_metadata_cache_owner(ci),
664 (unsigned long long)bh->b_blocknr, type, bh->b_size);
666 /* we can safely remove this assertion after testing. */
667 if (!buffer_uptodate(bh)) {
668 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
669 mlog(ML_ERROR, "b_blocknr=%llu\n",
670 (unsigned long long)bh->b_blocknr);
672 lock_buffer(bh);
674 * A previous attempt to write this buffer head failed.
675 * Nothing we can do but to retry the write and hope for
676 * the best.
678 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
679 clear_buffer_write_io_error(bh);
680 set_buffer_uptodate(bh);
683 if (!buffer_uptodate(bh)) {
684 unlock_buffer(bh);
685 return -EIO;
687 unlock_buffer(bh);
690 /* Set the current transaction information on the ci so
691 * that the locking code knows whether it can drop it's locks
692 * on this ci or not. We're protected from the commit
693 * thread updating the current transaction id until
694 * ocfs2_commit_trans() because ocfs2_start_trans() took
695 * j_trans_barrier for us. */
696 ocfs2_set_ci_lock_trans(osb->journal, ci);
698 ocfs2_metadata_cache_io_lock(ci);
699 switch (type) {
700 case OCFS2_JOURNAL_ACCESS_CREATE:
701 case OCFS2_JOURNAL_ACCESS_WRITE:
702 status = jbd2_journal_get_write_access(handle, bh);
703 break;
705 case OCFS2_JOURNAL_ACCESS_UNDO:
706 status = jbd2_journal_get_undo_access(handle, bh);
707 break;
709 default:
710 status = -EINVAL;
711 mlog(ML_ERROR, "Unknown access type!\n");
713 if (!status && ocfs2_meta_ecc(osb) && triggers)
714 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
715 ocfs2_metadata_cache_io_unlock(ci);
717 if (status < 0)
718 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
719 status, type);
721 return status;
724 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
725 struct buffer_head *bh, int type)
727 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
730 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
731 struct buffer_head *bh, int type)
733 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
736 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
737 struct buffer_head *bh, int type)
739 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
740 type);
743 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
744 struct buffer_head *bh, int type)
746 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
749 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
750 struct buffer_head *bh, int type)
752 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
755 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
756 struct buffer_head *bh, int type)
758 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
761 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
762 struct buffer_head *bh, int type)
764 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
767 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
768 struct buffer_head *bh, int type)
770 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
773 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
774 struct buffer_head *bh, int type)
776 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
779 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
780 struct buffer_head *bh, int type)
782 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
785 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
787 int status;
789 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
791 status = jbd2_journal_dirty_metadata(handle, bh);
792 if (status) {
793 mlog_errno(status);
794 if (!is_handle_aborted(handle)) {
795 journal_t *journal = handle->h_transaction->t_journal;
796 struct super_block *sb = bh->b_bdev->bd_super;
798 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
799 "Aborting transaction and journal.\n");
800 handle->h_err = status;
801 jbd2_journal_abort_handle(handle);
802 jbd2_journal_abort(journal, status);
803 ocfs2_abort(sb, "Journal already aborted.\n");
808 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
810 void ocfs2_set_journal_params(struct ocfs2_super *osb)
812 journal_t *journal = osb->journal->j_journal;
813 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
815 if (osb->osb_commit_interval)
816 commit_interval = osb->osb_commit_interval;
818 write_lock(&journal->j_state_lock);
819 journal->j_commit_interval = commit_interval;
820 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
821 journal->j_flags |= JBD2_BARRIER;
822 else
823 journal->j_flags &= ~JBD2_BARRIER;
824 write_unlock(&journal->j_state_lock);
827 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
829 int status = -1;
830 struct inode *inode = NULL; /* the journal inode */
831 journal_t *j_journal = NULL;
832 struct ocfs2_dinode *di = NULL;
833 struct buffer_head *bh = NULL;
834 struct ocfs2_super *osb;
835 int inode_lock = 0;
837 BUG_ON(!journal);
839 osb = journal->j_osb;
841 /* already have the inode for our journal */
842 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
843 osb->slot_num);
844 if (inode == NULL) {
845 status = -EACCES;
846 mlog_errno(status);
847 goto done;
849 if (is_bad_inode(inode)) {
850 mlog(ML_ERROR, "access error (bad inode)\n");
851 iput(inode);
852 inode = NULL;
853 status = -EACCES;
854 goto done;
857 SET_INODE_JOURNAL(inode);
858 OCFS2_I(inode)->ip_open_count++;
860 /* Skip recovery waits here - journal inode metadata never
861 * changes in a live cluster so it can be considered an
862 * exception to the rule. */
863 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
864 if (status < 0) {
865 if (status != -ERESTARTSYS)
866 mlog(ML_ERROR, "Could not get lock on journal!\n");
867 goto done;
870 inode_lock = 1;
871 di = (struct ocfs2_dinode *)bh->b_data;
873 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
874 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
875 i_size_read(inode));
876 status = -EINVAL;
877 goto done;
880 trace_ocfs2_journal_init(i_size_read(inode),
881 (unsigned long long)inode->i_blocks,
882 OCFS2_I(inode)->ip_clusters);
884 /* call the kernels journal init function now */
885 j_journal = jbd2_journal_init_inode(inode);
886 if (j_journal == NULL) {
887 mlog(ML_ERROR, "Linux journal layer error\n");
888 status = -EINVAL;
889 goto done;
892 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
894 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
895 OCFS2_JOURNAL_DIRTY_FL);
897 journal->j_journal = j_journal;
898 journal->j_inode = inode;
899 journal->j_bh = bh;
901 ocfs2_set_journal_params(osb);
903 journal->j_state = OCFS2_JOURNAL_LOADED;
905 status = 0;
906 done:
907 if (status < 0) {
908 if (inode_lock)
909 ocfs2_inode_unlock(inode, 1);
910 brelse(bh);
911 if (inode) {
912 OCFS2_I(inode)->ip_open_count--;
913 iput(inode);
917 return status;
920 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
922 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
925 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
927 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
930 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
931 int dirty, int replayed)
933 int status;
934 unsigned int flags;
935 struct ocfs2_journal *journal = osb->journal;
936 struct buffer_head *bh = journal->j_bh;
937 struct ocfs2_dinode *fe;
939 fe = (struct ocfs2_dinode *)bh->b_data;
941 /* The journal bh on the osb always comes from ocfs2_journal_init()
942 * and was validated there inside ocfs2_inode_lock_full(). It's a
943 * code bug if we mess it up. */
944 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
946 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
947 if (dirty)
948 flags |= OCFS2_JOURNAL_DIRTY_FL;
949 else
950 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
951 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
953 if (replayed)
954 ocfs2_bump_recovery_generation(fe);
956 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
957 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
958 if (status < 0)
959 mlog_errno(status);
961 return status;
965 * If the journal has been kmalloc'd it needs to be freed after this
966 * call.
968 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
970 struct ocfs2_journal *journal = NULL;
971 int status = 0;
972 struct inode *inode = NULL;
973 int num_running_trans = 0;
975 BUG_ON(!osb);
977 journal = osb->journal;
978 if (!journal)
979 goto done;
981 inode = journal->j_inode;
983 if (journal->j_state != OCFS2_JOURNAL_LOADED)
984 goto done;
986 /* need to inc inode use count - jbd2_journal_destroy will iput. */
987 if (!igrab(inode))
988 BUG();
990 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
991 trace_ocfs2_journal_shutdown(num_running_trans);
993 /* Do a commit_cache here. It will flush our journal, *and*
994 * release any locks that are still held.
995 * set the SHUTDOWN flag and release the trans lock.
996 * the commit thread will take the trans lock for us below. */
997 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
999 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1000 * drop the trans_lock (which we want to hold until we
1001 * completely destroy the journal. */
1002 if (osb->commit_task) {
1003 /* Wait for the commit thread */
1004 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1005 kthread_stop(osb->commit_task);
1006 osb->commit_task = NULL;
1009 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1011 if (ocfs2_mount_local(osb)) {
1012 jbd2_journal_lock_updates(journal->j_journal);
1013 status = jbd2_journal_flush(journal->j_journal);
1014 jbd2_journal_unlock_updates(journal->j_journal);
1015 if (status < 0)
1016 mlog_errno(status);
1019 if (status == 0) {
1021 * Do not toggle if flush was unsuccessful otherwise
1022 * will leave dirty metadata in a "clean" journal
1024 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1025 if (status < 0)
1026 mlog_errno(status);
1029 /* Shutdown the kernel journal system */
1030 jbd2_journal_destroy(journal->j_journal);
1031 journal->j_journal = NULL;
1033 OCFS2_I(inode)->ip_open_count--;
1035 /* unlock our journal */
1036 ocfs2_inode_unlock(inode, 1);
1038 brelse(journal->j_bh);
1039 journal->j_bh = NULL;
1041 journal->j_state = OCFS2_JOURNAL_FREE;
1043 // up_write(&journal->j_trans_barrier);
1044 done:
1045 if (inode)
1046 iput(inode);
1049 static void ocfs2_clear_journal_error(struct super_block *sb,
1050 journal_t *journal,
1051 int slot)
1053 int olderr;
1055 olderr = jbd2_journal_errno(journal);
1056 if (olderr) {
1057 mlog(ML_ERROR, "File system error %d recorded in "
1058 "journal %u.\n", olderr, slot);
1059 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1060 sb->s_id);
1062 jbd2_journal_ack_err(journal);
1063 jbd2_journal_clear_err(journal);
1067 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1069 int status = 0;
1070 struct ocfs2_super *osb;
1072 BUG_ON(!journal);
1074 osb = journal->j_osb;
1076 status = jbd2_journal_load(journal->j_journal);
1077 if (status < 0) {
1078 mlog(ML_ERROR, "Failed to load journal!\n");
1079 goto done;
1082 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1084 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1085 if (status < 0) {
1086 mlog_errno(status);
1087 goto done;
1090 /* Launch the commit thread */
1091 if (!local) {
1092 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1093 "ocfs2cmt-%s", osb->uuid_str);
1094 if (IS_ERR(osb->commit_task)) {
1095 status = PTR_ERR(osb->commit_task);
1096 osb->commit_task = NULL;
1097 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1098 "error=%d", status);
1099 goto done;
1101 } else
1102 osb->commit_task = NULL;
1104 done:
1105 return status;
1109 /* 'full' flag tells us whether we clear out all blocks or if we just
1110 * mark the journal clean */
1111 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1113 int status;
1115 BUG_ON(!journal);
1117 status = jbd2_journal_wipe(journal->j_journal, full);
1118 if (status < 0) {
1119 mlog_errno(status);
1120 goto bail;
1123 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1124 if (status < 0)
1125 mlog_errno(status);
1127 bail:
1128 return status;
1131 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1133 int empty;
1134 struct ocfs2_recovery_map *rm = osb->recovery_map;
1136 spin_lock(&osb->osb_lock);
1137 empty = (rm->rm_used == 0);
1138 spin_unlock(&osb->osb_lock);
1140 return empty;
1143 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1145 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1149 * JBD Might read a cached version of another nodes journal file. We
1150 * don't want this as this file changes often and we get no
1151 * notification on those changes. The only way to be sure that we've
1152 * got the most up to date version of those blocks then is to force
1153 * read them off disk. Just searching through the buffer cache won't
1154 * work as there may be pages backing this file which are still marked
1155 * up to date. We know things can't change on this file underneath us
1156 * as we have the lock by now :)
1158 static int ocfs2_force_read_journal(struct inode *inode)
1160 int status = 0;
1161 int i;
1162 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1163 #define CONCURRENT_JOURNAL_FILL 32ULL
1164 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1166 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1168 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1169 v_blkno = 0;
1170 while (v_blkno < num_blocks) {
1171 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1172 &p_blkno, &p_blocks, NULL);
1173 if (status < 0) {
1174 mlog_errno(status);
1175 goto bail;
1178 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1179 p_blocks = CONCURRENT_JOURNAL_FILL;
1181 /* We are reading journal data which should not
1182 * be put in the uptodate cache */
1183 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1184 p_blkno, p_blocks, bhs);
1185 if (status < 0) {
1186 mlog_errno(status);
1187 goto bail;
1190 for(i = 0; i < p_blocks; i++) {
1191 brelse(bhs[i]);
1192 bhs[i] = NULL;
1195 v_blkno += p_blocks;
1198 bail:
1199 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1200 brelse(bhs[i]);
1201 return status;
1204 struct ocfs2_la_recovery_item {
1205 struct list_head lri_list;
1206 int lri_slot;
1207 struct ocfs2_dinode *lri_la_dinode;
1208 struct ocfs2_dinode *lri_tl_dinode;
1209 struct ocfs2_quota_recovery *lri_qrec;
1210 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1213 /* Does the second half of the recovery process. By this point, the
1214 * node is marked clean and can actually be considered recovered,
1215 * hence it's no longer in the recovery map, but there's still some
1216 * cleanup we can do which shouldn't happen within the recovery thread
1217 * as locking in that context becomes very difficult if we are to take
1218 * recovering nodes into account.
1220 * NOTE: This function can and will sleep on recovery of other nodes
1221 * during cluster locking, just like any other ocfs2 process.
1223 void ocfs2_complete_recovery(struct work_struct *work)
1225 int ret = 0;
1226 struct ocfs2_journal *journal =
1227 container_of(work, struct ocfs2_journal, j_recovery_work);
1228 struct ocfs2_super *osb = journal->j_osb;
1229 struct ocfs2_dinode *la_dinode, *tl_dinode;
1230 struct ocfs2_la_recovery_item *item, *n;
1231 struct ocfs2_quota_recovery *qrec;
1232 enum ocfs2_orphan_reco_type orphan_reco_type;
1233 LIST_HEAD(tmp_la_list);
1235 trace_ocfs2_complete_recovery(
1236 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1238 spin_lock(&journal->j_lock);
1239 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1240 spin_unlock(&journal->j_lock);
1242 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1243 list_del_init(&item->lri_list);
1245 ocfs2_wait_on_quotas(osb);
1247 la_dinode = item->lri_la_dinode;
1248 tl_dinode = item->lri_tl_dinode;
1249 qrec = item->lri_qrec;
1250 orphan_reco_type = item->lri_orphan_reco_type;
1252 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1253 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1254 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1255 qrec);
1257 if (la_dinode) {
1258 ret = ocfs2_complete_local_alloc_recovery(osb,
1259 la_dinode);
1260 if (ret < 0)
1261 mlog_errno(ret);
1263 kfree(la_dinode);
1266 if (tl_dinode) {
1267 ret = ocfs2_complete_truncate_log_recovery(osb,
1268 tl_dinode);
1269 if (ret < 0)
1270 mlog_errno(ret);
1272 kfree(tl_dinode);
1275 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1276 orphan_reco_type);
1277 if (ret < 0)
1278 mlog_errno(ret);
1280 if (qrec) {
1281 ret = ocfs2_finish_quota_recovery(osb, qrec,
1282 item->lri_slot);
1283 if (ret < 0)
1284 mlog_errno(ret);
1285 /* Recovery info is already freed now */
1288 kfree(item);
1291 trace_ocfs2_complete_recovery_end(ret);
1294 /* NOTE: This function always eats your references to la_dinode and
1295 * tl_dinode, either manually on error, or by passing them to
1296 * ocfs2_complete_recovery */
1297 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1298 int slot_num,
1299 struct ocfs2_dinode *la_dinode,
1300 struct ocfs2_dinode *tl_dinode,
1301 struct ocfs2_quota_recovery *qrec,
1302 enum ocfs2_orphan_reco_type orphan_reco_type)
1304 struct ocfs2_la_recovery_item *item;
1306 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1307 if (!item) {
1308 /* Though we wish to avoid it, we are in fact safe in
1309 * skipping local alloc cleanup as fsck.ocfs2 is more
1310 * than capable of reclaiming unused space. */
1311 kfree(la_dinode);
1312 kfree(tl_dinode);
1314 if (qrec)
1315 ocfs2_free_quota_recovery(qrec);
1317 mlog_errno(-ENOMEM);
1318 return;
1321 INIT_LIST_HEAD(&item->lri_list);
1322 item->lri_la_dinode = la_dinode;
1323 item->lri_slot = slot_num;
1324 item->lri_tl_dinode = tl_dinode;
1325 item->lri_qrec = qrec;
1326 item->lri_orphan_reco_type = orphan_reco_type;
1328 spin_lock(&journal->j_lock);
1329 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1330 queue_work(ocfs2_wq, &journal->j_recovery_work);
1331 spin_unlock(&journal->j_lock);
1334 /* Called by the mount code to queue recovery the last part of
1335 * recovery for it's own and offline slot(s). */
1336 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1338 struct ocfs2_journal *journal = osb->journal;
1340 if (ocfs2_is_hard_readonly(osb))
1341 return;
1343 /* No need to queue up our truncate_log as regular cleanup will catch
1344 * that */
1345 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1346 osb->local_alloc_copy, NULL, NULL,
1347 ORPHAN_NEED_TRUNCATE);
1348 ocfs2_schedule_truncate_log_flush(osb, 0);
1350 osb->local_alloc_copy = NULL;
1351 osb->dirty = 0;
1353 /* queue to recover orphan slots for all offline slots */
1354 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1355 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1356 ocfs2_free_replay_slots(osb);
1359 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1361 if (osb->quota_rec) {
1362 ocfs2_queue_recovery_completion(osb->journal,
1363 osb->slot_num,
1364 NULL,
1365 NULL,
1366 osb->quota_rec,
1367 ORPHAN_NEED_TRUNCATE);
1368 osb->quota_rec = NULL;
1372 static int __ocfs2_recovery_thread(void *arg)
1374 int status, node_num, slot_num;
1375 struct ocfs2_super *osb = arg;
1376 struct ocfs2_recovery_map *rm = osb->recovery_map;
1377 int *rm_quota = NULL;
1378 int rm_quota_used = 0, i;
1379 struct ocfs2_quota_recovery *qrec;
1381 status = ocfs2_wait_on_mount(osb);
1382 if (status < 0) {
1383 goto bail;
1386 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1387 if (!rm_quota) {
1388 status = -ENOMEM;
1389 goto bail;
1391 restart:
1392 status = ocfs2_super_lock(osb, 1);
1393 if (status < 0) {
1394 mlog_errno(status);
1395 goto bail;
1398 status = ocfs2_compute_replay_slots(osb);
1399 if (status < 0)
1400 mlog_errno(status);
1402 /* queue recovery for our own slot */
1403 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1404 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1406 spin_lock(&osb->osb_lock);
1407 while (rm->rm_used) {
1408 /* It's always safe to remove entry zero, as we won't
1409 * clear it until ocfs2_recover_node() has succeeded. */
1410 node_num = rm->rm_entries[0];
1411 spin_unlock(&osb->osb_lock);
1412 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1413 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1414 if (slot_num == -ENOENT) {
1415 status = 0;
1416 goto skip_recovery;
1419 /* It is a bit subtle with quota recovery. We cannot do it
1420 * immediately because we have to obtain cluster locks from
1421 * quota files and we also don't want to just skip it because
1422 * then quota usage would be out of sync until some node takes
1423 * the slot. So we remember which nodes need quota recovery
1424 * and when everything else is done, we recover quotas. */
1425 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1426 if (i == rm_quota_used)
1427 rm_quota[rm_quota_used++] = slot_num;
1429 status = ocfs2_recover_node(osb, node_num, slot_num);
1430 skip_recovery:
1431 if (!status) {
1432 ocfs2_recovery_map_clear(osb, node_num);
1433 } else {
1434 mlog(ML_ERROR,
1435 "Error %d recovering node %d on device (%u,%u)!\n",
1436 status, node_num,
1437 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1438 mlog(ML_ERROR, "Volume requires unmount.\n");
1441 spin_lock(&osb->osb_lock);
1443 spin_unlock(&osb->osb_lock);
1444 trace_ocfs2_recovery_thread_end(status);
1446 /* Refresh all journal recovery generations from disk */
1447 status = ocfs2_check_journals_nolocks(osb);
1448 status = (status == -EROFS) ? 0 : status;
1449 if (status < 0)
1450 mlog_errno(status);
1452 /* Now it is right time to recover quotas... We have to do this under
1453 * superblock lock so that no one can start using the slot (and crash)
1454 * before we recover it */
1455 for (i = 0; i < rm_quota_used; i++) {
1456 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1457 if (IS_ERR(qrec)) {
1458 status = PTR_ERR(qrec);
1459 mlog_errno(status);
1460 continue;
1462 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1463 NULL, NULL, qrec,
1464 ORPHAN_NEED_TRUNCATE);
1467 ocfs2_super_unlock(osb, 1);
1469 /* queue recovery for offline slots */
1470 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1472 bail:
1473 mutex_lock(&osb->recovery_lock);
1474 if (!status && !ocfs2_recovery_completed(osb)) {
1475 mutex_unlock(&osb->recovery_lock);
1476 goto restart;
1479 ocfs2_free_replay_slots(osb);
1480 osb->recovery_thread_task = NULL;
1481 mb(); /* sync with ocfs2_recovery_thread_running */
1482 wake_up(&osb->recovery_event);
1484 mutex_unlock(&osb->recovery_lock);
1486 kfree(rm_quota);
1488 /* no one is callint kthread_stop() for us so the kthread() api
1489 * requires that we call do_exit(). And it isn't exported, but
1490 * complete_and_exit() seems to be a minimal wrapper around it. */
1491 complete_and_exit(NULL, status);
1494 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1496 mutex_lock(&osb->recovery_lock);
1498 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1499 osb->disable_recovery, osb->recovery_thread_task,
1500 osb->disable_recovery ?
1501 -1 : ocfs2_recovery_map_set(osb, node_num));
1503 if (osb->disable_recovery)
1504 goto out;
1506 if (osb->recovery_thread_task)
1507 goto out;
1509 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1510 "ocfs2rec-%s", osb->uuid_str);
1511 if (IS_ERR(osb->recovery_thread_task)) {
1512 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1513 osb->recovery_thread_task = NULL;
1516 out:
1517 mutex_unlock(&osb->recovery_lock);
1518 wake_up(&osb->recovery_event);
1521 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1522 int slot_num,
1523 struct buffer_head **bh,
1524 struct inode **ret_inode)
1526 int status = -EACCES;
1527 struct inode *inode = NULL;
1529 BUG_ON(slot_num >= osb->max_slots);
1531 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1532 slot_num);
1533 if (!inode || is_bad_inode(inode)) {
1534 mlog_errno(status);
1535 goto bail;
1537 SET_INODE_JOURNAL(inode);
1539 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1540 if (status < 0) {
1541 mlog_errno(status);
1542 goto bail;
1545 status = 0;
1547 bail:
1548 if (inode) {
1549 if (status || !ret_inode)
1550 iput(inode);
1551 else
1552 *ret_inode = inode;
1554 return status;
1557 /* Does the actual journal replay and marks the journal inode as
1558 * clean. Will only replay if the journal inode is marked dirty. */
1559 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1560 int node_num,
1561 int slot_num)
1563 int status;
1564 int got_lock = 0;
1565 unsigned int flags;
1566 struct inode *inode = NULL;
1567 struct ocfs2_dinode *fe;
1568 journal_t *journal = NULL;
1569 struct buffer_head *bh = NULL;
1570 u32 slot_reco_gen;
1572 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1573 if (status) {
1574 mlog_errno(status);
1575 goto done;
1578 fe = (struct ocfs2_dinode *)bh->b_data;
1579 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1580 brelse(bh);
1581 bh = NULL;
1584 * As the fs recovery is asynchronous, there is a small chance that
1585 * another node mounted (and recovered) the slot before the recovery
1586 * thread could get the lock. To handle that, we dirty read the journal
1587 * inode for that slot to get the recovery generation. If it is
1588 * different than what we expected, the slot has been recovered.
1589 * If not, it needs recovery.
1591 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1592 trace_ocfs2_replay_journal_recovered(slot_num,
1593 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1594 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1595 status = -EBUSY;
1596 goto done;
1599 /* Continue with recovery as the journal has not yet been recovered */
1601 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1602 if (status < 0) {
1603 trace_ocfs2_replay_journal_lock_err(status);
1604 if (status != -ERESTARTSYS)
1605 mlog(ML_ERROR, "Could not lock journal!\n");
1606 goto done;
1608 got_lock = 1;
1610 fe = (struct ocfs2_dinode *) bh->b_data;
1612 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1613 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1615 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1616 trace_ocfs2_replay_journal_skip(node_num);
1617 /* Refresh recovery generation for the slot */
1618 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1619 goto done;
1622 /* we need to run complete recovery for offline orphan slots */
1623 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1625 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1626 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1627 MINOR(osb->sb->s_dev));
1629 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1631 status = ocfs2_force_read_journal(inode);
1632 if (status < 0) {
1633 mlog_errno(status);
1634 goto done;
1637 journal = jbd2_journal_init_inode(inode);
1638 if (journal == NULL) {
1639 mlog(ML_ERROR, "Linux journal layer error\n");
1640 status = -EIO;
1641 goto done;
1644 status = jbd2_journal_load(journal);
1645 if (status < 0) {
1646 mlog_errno(status);
1647 if (!igrab(inode))
1648 BUG();
1649 jbd2_journal_destroy(journal);
1650 goto done;
1653 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1655 /* wipe the journal */
1656 jbd2_journal_lock_updates(journal);
1657 status = jbd2_journal_flush(journal);
1658 jbd2_journal_unlock_updates(journal);
1659 if (status < 0)
1660 mlog_errno(status);
1662 /* This will mark the node clean */
1663 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1664 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1665 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1667 /* Increment recovery generation to indicate successful recovery */
1668 ocfs2_bump_recovery_generation(fe);
1669 osb->slot_recovery_generations[slot_num] =
1670 ocfs2_get_recovery_generation(fe);
1672 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1673 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1674 if (status < 0)
1675 mlog_errno(status);
1677 if (!igrab(inode))
1678 BUG();
1680 jbd2_journal_destroy(journal);
1682 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1683 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1684 MINOR(osb->sb->s_dev));
1685 done:
1686 /* drop the lock on this nodes journal */
1687 if (got_lock)
1688 ocfs2_inode_unlock(inode, 1);
1690 if (inode)
1691 iput(inode);
1693 brelse(bh);
1695 return status;
1699 * Do the most important parts of node recovery:
1700 * - Replay it's journal
1701 * - Stamp a clean local allocator file
1702 * - Stamp a clean truncate log
1703 * - Mark the node clean
1705 * If this function completes without error, a node in OCFS2 can be
1706 * said to have been safely recovered. As a result, failure during the
1707 * second part of a nodes recovery process (local alloc recovery) is
1708 * far less concerning.
1710 static int ocfs2_recover_node(struct ocfs2_super *osb,
1711 int node_num, int slot_num)
1713 int status = 0;
1714 struct ocfs2_dinode *la_copy = NULL;
1715 struct ocfs2_dinode *tl_copy = NULL;
1717 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1719 /* Should not ever be called to recover ourselves -- in that
1720 * case we should've called ocfs2_journal_load instead. */
1721 BUG_ON(osb->node_num == node_num);
1723 status = ocfs2_replay_journal(osb, node_num, slot_num);
1724 if (status < 0) {
1725 if (status == -EBUSY) {
1726 trace_ocfs2_recover_node_skip(slot_num, node_num);
1727 status = 0;
1728 goto done;
1730 mlog_errno(status);
1731 goto done;
1734 /* Stamp a clean local alloc file AFTER recovering the journal... */
1735 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1736 if (status < 0) {
1737 mlog_errno(status);
1738 goto done;
1741 /* An error from begin_truncate_log_recovery is not
1742 * serious enough to warrant halting the rest of
1743 * recovery. */
1744 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1745 if (status < 0)
1746 mlog_errno(status);
1748 /* Likewise, this would be a strange but ultimately not so
1749 * harmful place to get an error... */
1750 status = ocfs2_clear_slot(osb, slot_num);
1751 if (status < 0)
1752 mlog_errno(status);
1754 /* This will kfree the memory pointed to by la_copy and tl_copy */
1755 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1756 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1758 status = 0;
1759 done:
1761 return status;
1764 /* Test node liveness by trylocking his journal. If we get the lock,
1765 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1766 * still alive (we couldn't get the lock) and < 0 on error. */
1767 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1768 int slot_num)
1770 int status, flags;
1771 struct inode *inode = NULL;
1773 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1774 slot_num);
1775 if (inode == NULL) {
1776 mlog(ML_ERROR, "access error\n");
1777 status = -EACCES;
1778 goto bail;
1780 if (is_bad_inode(inode)) {
1781 mlog(ML_ERROR, "access error (bad inode)\n");
1782 iput(inode);
1783 inode = NULL;
1784 status = -EACCES;
1785 goto bail;
1787 SET_INODE_JOURNAL(inode);
1789 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1790 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1791 if (status < 0) {
1792 if (status != -EAGAIN)
1793 mlog_errno(status);
1794 goto bail;
1797 ocfs2_inode_unlock(inode, 1);
1798 bail:
1799 if (inode)
1800 iput(inode);
1802 return status;
1805 /* Call this underneath ocfs2_super_lock. It also assumes that the
1806 * slot info struct has been updated from disk. */
1807 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1809 unsigned int node_num;
1810 int status, i;
1811 u32 gen;
1812 struct buffer_head *bh = NULL;
1813 struct ocfs2_dinode *di;
1815 /* This is called with the super block cluster lock, so we
1816 * know that the slot map can't change underneath us. */
1818 for (i = 0; i < osb->max_slots; i++) {
1819 /* Read journal inode to get the recovery generation */
1820 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1821 if (status) {
1822 mlog_errno(status);
1823 goto bail;
1825 di = (struct ocfs2_dinode *)bh->b_data;
1826 gen = ocfs2_get_recovery_generation(di);
1827 brelse(bh);
1828 bh = NULL;
1830 spin_lock(&osb->osb_lock);
1831 osb->slot_recovery_generations[i] = gen;
1833 trace_ocfs2_mark_dead_nodes(i,
1834 osb->slot_recovery_generations[i]);
1836 if (i == osb->slot_num) {
1837 spin_unlock(&osb->osb_lock);
1838 continue;
1841 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1842 if (status == -ENOENT) {
1843 spin_unlock(&osb->osb_lock);
1844 continue;
1847 if (__ocfs2_recovery_map_test(osb, node_num)) {
1848 spin_unlock(&osb->osb_lock);
1849 continue;
1851 spin_unlock(&osb->osb_lock);
1853 /* Ok, we have a slot occupied by another node which
1854 * is not in the recovery map. We trylock his journal
1855 * file here to test if he's alive. */
1856 status = ocfs2_trylock_journal(osb, i);
1857 if (!status) {
1858 /* Since we're called from mount, we know that
1859 * the recovery thread can't race us on
1860 * setting / checking the recovery bits. */
1861 ocfs2_recovery_thread(osb, node_num);
1862 } else if ((status < 0) && (status != -EAGAIN)) {
1863 mlog_errno(status);
1864 goto bail;
1868 status = 0;
1869 bail:
1870 return status;
1874 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1875 * randomness to the timeout to minimize multple nodes firing the timer at the
1876 * same time.
1878 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1880 unsigned long time;
1882 get_random_bytes(&time, sizeof(time));
1883 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1884 return msecs_to_jiffies(time);
1888 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1889 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1890 * is done to catch any orphans that are left over in orphan directories.
1892 * It scans all slots, even ones that are in use. It does so to handle the
1893 * case described below:
1895 * Node 1 has an inode it was using. The dentry went away due to memory
1896 * pressure. Node 1 closes the inode, but it's on the free list. The node
1897 * has the open lock.
1898 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1899 * but node 1 has no dentry and doesn't get the message. It trylocks the
1900 * open lock, sees that another node has a PR, and does nothing.
1901 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1902 * open lock, sees the PR still, and does nothing.
1903 * Basically, we have to trigger an orphan iput on node 1. The only way
1904 * for this to happen is if node 1 runs node 2's orphan dir.
1906 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1907 * seconds. It gets an EX lock on os_lockres and checks sequence number
1908 * stored in LVB. If the sequence number has changed, it means some other
1909 * node has done the scan. This node skips the scan and tracks the
1910 * sequence number. If the sequence number didn't change, it means a scan
1911 * hasn't happened. The node queues a scan and increments the
1912 * sequence number in the LVB.
1914 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1916 struct ocfs2_orphan_scan *os;
1917 int status, i;
1918 u32 seqno = 0;
1920 os = &osb->osb_orphan_scan;
1922 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1923 goto out;
1925 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1926 atomic_read(&os->os_state));
1928 status = ocfs2_orphan_scan_lock(osb, &seqno);
1929 if (status < 0) {
1930 if (status != -EAGAIN)
1931 mlog_errno(status);
1932 goto out;
1935 /* Do no queue the tasks if the volume is being umounted */
1936 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1937 goto unlock;
1939 if (os->os_seqno != seqno) {
1940 os->os_seqno = seqno;
1941 goto unlock;
1944 for (i = 0; i < osb->max_slots; i++)
1945 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1946 NULL, ORPHAN_NO_NEED_TRUNCATE);
1948 * We queued a recovery on orphan slots, increment the sequence
1949 * number and update LVB so other node will skip the scan for a while
1951 seqno++;
1952 os->os_count++;
1953 os->os_scantime = CURRENT_TIME;
1954 unlock:
1955 ocfs2_orphan_scan_unlock(osb, seqno);
1956 out:
1957 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1958 atomic_read(&os->os_state));
1959 return;
1962 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1963 static void ocfs2_orphan_scan_work(struct work_struct *work)
1965 struct ocfs2_orphan_scan *os;
1966 struct ocfs2_super *osb;
1968 os = container_of(work, struct ocfs2_orphan_scan,
1969 os_orphan_scan_work.work);
1970 osb = os->os_osb;
1972 mutex_lock(&os->os_lock);
1973 ocfs2_queue_orphan_scan(osb);
1974 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1975 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1976 ocfs2_orphan_scan_timeout());
1977 mutex_unlock(&os->os_lock);
1980 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1982 struct ocfs2_orphan_scan *os;
1984 os = &osb->osb_orphan_scan;
1985 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1986 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1987 mutex_lock(&os->os_lock);
1988 cancel_delayed_work(&os->os_orphan_scan_work);
1989 mutex_unlock(&os->os_lock);
1993 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1995 struct ocfs2_orphan_scan *os;
1997 os = &osb->osb_orphan_scan;
1998 os->os_osb = osb;
1999 os->os_count = 0;
2000 os->os_seqno = 0;
2001 mutex_init(&os->os_lock);
2002 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2005 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2007 struct ocfs2_orphan_scan *os;
2009 os = &osb->osb_orphan_scan;
2010 os->os_scantime = CURRENT_TIME;
2011 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2012 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2013 else {
2014 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2015 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
2016 ocfs2_orphan_scan_timeout());
2020 struct ocfs2_orphan_filldir_priv {
2021 struct dir_context ctx;
2022 struct inode *head;
2023 struct ocfs2_super *osb;
2024 enum ocfs2_orphan_reco_type orphan_reco_type;
2027 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2028 int name_len, loff_t pos, u64 ino,
2029 unsigned type)
2031 struct ocfs2_orphan_filldir_priv *p =
2032 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2033 struct inode *iter;
2035 if (name_len == 1 && !strncmp(".", name, 1))
2036 return 0;
2037 if (name_len == 2 && !strncmp("..", name, 2))
2038 return 0;
2040 /* do not include dio entry in case of orphan scan */
2041 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2042 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2043 OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2044 return 0;
2046 /* Skip bad inodes so that recovery can continue */
2047 iter = ocfs2_iget(p->osb, ino,
2048 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2049 if (IS_ERR(iter))
2050 return 0;
2052 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2053 OCFS2_DIO_ORPHAN_PREFIX_LEN))
2054 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2056 /* Skip inodes which are already added to recover list, since dio may
2057 * happen concurrently with unlink/rename */
2058 if (OCFS2_I(iter)->ip_next_orphan) {
2059 iput(iter);
2060 return 0;
2063 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2064 /* No locking is required for the next_orphan queue as there
2065 * is only ever a single process doing orphan recovery. */
2066 OCFS2_I(iter)->ip_next_orphan = p->head;
2067 p->head = iter;
2069 return 0;
2072 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2073 int slot,
2074 struct inode **head,
2075 enum ocfs2_orphan_reco_type orphan_reco_type)
2077 int status;
2078 struct inode *orphan_dir_inode = NULL;
2079 struct ocfs2_orphan_filldir_priv priv = {
2080 .ctx.actor = ocfs2_orphan_filldir,
2081 .osb = osb,
2082 .head = *head,
2083 .orphan_reco_type = orphan_reco_type
2086 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2087 ORPHAN_DIR_SYSTEM_INODE,
2088 slot);
2089 if (!orphan_dir_inode) {
2090 status = -ENOENT;
2091 mlog_errno(status);
2092 return status;
2095 mutex_lock(&orphan_dir_inode->i_mutex);
2096 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2097 if (status < 0) {
2098 mlog_errno(status);
2099 goto out;
2102 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2103 if (status) {
2104 mlog_errno(status);
2105 goto out_cluster;
2108 *head = priv.head;
2110 out_cluster:
2111 ocfs2_inode_unlock(orphan_dir_inode, 0);
2112 out:
2113 mutex_unlock(&orphan_dir_inode->i_mutex);
2114 iput(orphan_dir_inode);
2115 return status;
2118 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2119 int slot)
2121 int ret;
2123 spin_lock(&osb->osb_lock);
2124 ret = !osb->osb_orphan_wipes[slot];
2125 spin_unlock(&osb->osb_lock);
2126 return ret;
2129 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2130 int slot)
2132 spin_lock(&osb->osb_lock);
2133 /* Mark ourselves such that new processes in delete_inode()
2134 * know to quit early. */
2135 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2136 while (osb->osb_orphan_wipes[slot]) {
2137 /* If any processes are already in the middle of an
2138 * orphan wipe on this dir, then we need to wait for
2139 * them. */
2140 spin_unlock(&osb->osb_lock);
2141 wait_event_interruptible(osb->osb_wipe_event,
2142 ocfs2_orphan_recovery_can_continue(osb, slot));
2143 spin_lock(&osb->osb_lock);
2145 spin_unlock(&osb->osb_lock);
2148 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2149 int slot)
2151 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2155 * Orphan recovery. Each mounted node has it's own orphan dir which we
2156 * must run during recovery. Our strategy here is to build a list of
2157 * the inodes in the orphan dir and iget/iput them. The VFS does
2158 * (most) of the rest of the work.
2160 * Orphan recovery can happen at any time, not just mount so we have a
2161 * couple of extra considerations.
2163 * - We grab as many inodes as we can under the orphan dir lock -
2164 * doing iget() outside the orphan dir risks getting a reference on
2165 * an invalid inode.
2166 * - We must be sure not to deadlock with other processes on the
2167 * system wanting to run delete_inode(). This can happen when they go
2168 * to lock the orphan dir and the orphan recovery process attempts to
2169 * iget() inside the orphan dir lock. This can be avoided by
2170 * advertising our state to ocfs2_delete_inode().
2172 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2173 int slot,
2174 enum ocfs2_orphan_reco_type orphan_reco_type)
2176 int ret = 0;
2177 struct inode *inode = NULL;
2178 struct inode *iter;
2179 struct ocfs2_inode_info *oi;
2180 struct buffer_head *di_bh = NULL;
2181 struct ocfs2_dinode *di = NULL;
2183 trace_ocfs2_recover_orphans(slot);
2185 ocfs2_mark_recovering_orphan_dir(osb, slot);
2186 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2187 ocfs2_clear_recovering_orphan_dir(osb, slot);
2189 /* Error here should be noted, but we want to continue with as
2190 * many queued inodes as we've got. */
2191 if (ret)
2192 mlog_errno(ret);
2194 while (inode) {
2195 oi = OCFS2_I(inode);
2196 trace_ocfs2_recover_orphans_iput(
2197 (unsigned long long)oi->ip_blkno);
2199 iter = oi->ip_next_orphan;
2200 oi->ip_next_orphan = NULL;
2202 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2203 mutex_lock(&inode->i_mutex);
2204 ret = ocfs2_rw_lock(inode, 1);
2205 if (ret < 0) {
2206 mlog_errno(ret);
2207 goto unlock_mutex;
2210 * We need to take and drop the inode lock to
2211 * force read inode from disk.
2213 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2214 if (ret) {
2215 mlog_errno(ret);
2216 goto unlock_rw;
2219 di = (struct ocfs2_dinode *)di_bh->b_data;
2221 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2222 ret = ocfs2_truncate_file(inode, di_bh,
2223 i_size_read(inode));
2224 if (ret < 0) {
2225 if (ret != -ENOSPC)
2226 mlog_errno(ret);
2227 goto unlock_inode;
2230 ret = ocfs2_del_inode_from_orphan(osb, inode,
2231 di_bh, 0, 0);
2232 if (ret)
2233 mlog_errno(ret);
2235 unlock_inode:
2236 ocfs2_inode_unlock(inode, 1);
2237 brelse(di_bh);
2238 di_bh = NULL;
2239 unlock_rw:
2240 ocfs2_rw_unlock(inode, 1);
2241 unlock_mutex:
2242 mutex_unlock(&inode->i_mutex);
2244 /* clear dio flag in ocfs2_inode_info */
2245 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2246 } else {
2247 spin_lock(&oi->ip_lock);
2248 /* Set the proper information to get us going into
2249 * ocfs2_delete_inode. */
2250 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2251 spin_unlock(&oi->ip_lock);
2254 iput(inode);
2255 inode = iter;
2258 return ret;
2261 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2263 /* This check is good because ocfs2 will wait on our recovery
2264 * thread before changing it to something other than MOUNTED
2265 * or DISABLED. */
2266 wait_event(osb->osb_mount_event,
2267 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2268 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2269 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2271 /* If there's an error on mount, then we may never get to the
2272 * MOUNTED flag, but this is set right before
2273 * dismount_volume() so we can trust it. */
2274 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2275 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2276 mlog(0, "mount error, exiting!\n");
2277 return -EBUSY;
2280 return 0;
2283 static int ocfs2_commit_thread(void *arg)
2285 int status;
2286 struct ocfs2_super *osb = arg;
2287 struct ocfs2_journal *journal = osb->journal;
2289 /* we can trust j_num_trans here because _should_stop() is only set in
2290 * shutdown and nobody other than ourselves should be able to start
2291 * transactions. committing on shutdown might take a few iterations
2292 * as final transactions put deleted inodes on the list */
2293 while (!(kthread_should_stop() &&
2294 atomic_read(&journal->j_num_trans) == 0)) {
2296 wait_event_interruptible(osb->checkpoint_event,
2297 atomic_read(&journal->j_num_trans)
2298 || kthread_should_stop());
2300 status = ocfs2_commit_cache(osb);
2301 if (status < 0) {
2302 static unsigned long abort_warn_time;
2304 /* Warn about this once per minute */
2305 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2306 mlog(ML_ERROR, "status = %d, journal is "
2307 "already aborted.\n", status);
2309 * After ocfs2_commit_cache() fails, j_num_trans has a
2310 * non-zero value. Sleep here to avoid a busy-wait
2311 * loop.
2313 msleep_interruptible(1000);
2316 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2317 mlog(ML_KTHREAD,
2318 "commit_thread: %u transactions pending on "
2319 "shutdown\n",
2320 atomic_read(&journal->j_num_trans));
2324 return 0;
2327 /* Reads all the journal inodes without taking any cluster locks. Used
2328 * for hard readonly access to determine whether any journal requires
2329 * recovery. Also used to refresh the recovery generation numbers after
2330 * a journal has been recovered by another node.
2332 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2334 int ret = 0;
2335 unsigned int slot;
2336 struct buffer_head *di_bh = NULL;
2337 struct ocfs2_dinode *di;
2338 int journal_dirty = 0;
2340 for(slot = 0; slot < osb->max_slots; slot++) {
2341 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2342 if (ret) {
2343 mlog_errno(ret);
2344 goto out;
2347 di = (struct ocfs2_dinode *) di_bh->b_data;
2349 osb->slot_recovery_generations[slot] =
2350 ocfs2_get_recovery_generation(di);
2352 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2353 OCFS2_JOURNAL_DIRTY_FL)
2354 journal_dirty = 1;
2356 brelse(di_bh);
2357 di_bh = NULL;
2360 out:
2361 if (journal_dirty)
2362 ret = -EROFS;
2363 return ret;