1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
35 #include <cluster/masklog.h>
40 #include "blockcheck.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
47 #include "localalloc.h"
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
59 DEFINE_SPINLOCK(trans_inc_lock
);
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
63 static int ocfs2_force_read_journal(struct inode
*inode
);
64 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
65 int node_num
, int slot_num
);
66 static int __ocfs2_recovery_thread(void *arg
);
67 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
70 int dirty
, int replayed
);
71 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
73 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
75 enum ocfs2_orphan_reco_type orphan_reco_type
);
76 static int ocfs2_commit_thread(void *arg
);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
79 struct ocfs2_dinode
*la_dinode
,
80 struct ocfs2_dinode
*tl_dinode
,
81 struct ocfs2_quota_recovery
*qrec
,
82 enum ocfs2_orphan_reco_type orphan_reco_type
);
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
86 return __ocfs2_wait_on_mount(osb
, 0);
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super
*osb
)
91 return __ocfs2_wait_on_mount(osb
, 1);
95 * This replay_map is to track online/offline slots, so we could recover
96 * offline slots during recovery and mount
99 enum ocfs2_replay_state
{
100 REPLAY_UNNEEDED
= 0, /* Replay is not needed, so ignore this map */
101 REPLAY_NEEDED
, /* Replay slots marked in rm_replay_slots */
102 REPLAY_DONE
/* Replay was already queued */
105 struct ocfs2_replay_map
{
106 unsigned int rm_slots
;
107 enum ocfs2_replay_state rm_state
;
108 unsigned char rm_replay_slots
[0];
111 static void ocfs2_replay_map_set_state(struct ocfs2_super
*osb
, int state
)
113 if (!osb
->replay_map
)
116 /* If we've already queued the replay, we don't have any more to do */
117 if (osb
->replay_map
->rm_state
== REPLAY_DONE
)
120 osb
->replay_map
->rm_state
= state
;
123 int ocfs2_compute_replay_slots(struct ocfs2_super
*osb
)
125 struct ocfs2_replay_map
*replay_map
;
128 /* If replay map is already set, we don't do it again */
132 replay_map
= kzalloc(sizeof(struct ocfs2_replay_map
) +
133 (osb
->max_slots
* sizeof(char)), GFP_KERNEL
);
140 spin_lock(&osb
->osb_lock
);
142 replay_map
->rm_slots
= osb
->max_slots
;
143 replay_map
->rm_state
= REPLAY_UNNEEDED
;
145 /* set rm_replay_slots for offline slot(s) */
146 for (i
= 0; i
< replay_map
->rm_slots
; i
++) {
147 if (ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
) == -ENOENT
)
148 replay_map
->rm_replay_slots
[i
] = 1;
151 osb
->replay_map
= replay_map
;
152 spin_unlock(&osb
->osb_lock
);
156 static void ocfs2_queue_replay_slots(struct ocfs2_super
*osb
,
157 enum ocfs2_orphan_reco_type orphan_reco_type
)
159 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
165 if (replay_map
->rm_state
!= REPLAY_NEEDED
)
168 for (i
= 0; i
< replay_map
->rm_slots
; i
++)
169 if (replay_map
->rm_replay_slots
[i
])
170 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
,
173 replay_map
->rm_state
= REPLAY_DONE
;
176 static void ocfs2_free_replay_slots(struct ocfs2_super
*osb
)
178 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
180 if (!osb
->replay_map
)
184 osb
->replay_map
= NULL
;
187 int ocfs2_recovery_init(struct ocfs2_super
*osb
)
189 struct ocfs2_recovery_map
*rm
;
191 mutex_init(&osb
->recovery_lock
);
192 osb
->disable_recovery
= 0;
193 osb
->recovery_thread_task
= NULL
;
194 init_waitqueue_head(&osb
->recovery_event
);
196 rm
= kzalloc(sizeof(struct ocfs2_recovery_map
) +
197 osb
->max_slots
* sizeof(unsigned int),
204 rm
->rm_entries
= (unsigned int *)((char *)rm
+
205 sizeof(struct ocfs2_recovery_map
));
206 osb
->recovery_map
= rm
;
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212 * memory barriers to make sure that we'll see the null task before
214 static int ocfs2_recovery_thread_running(struct ocfs2_super
*osb
)
217 return osb
->recovery_thread_task
!= NULL
;
220 void ocfs2_recovery_exit(struct ocfs2_super
*osb
)
222 struct ocfs2_recovery_map
*rm
;
224 /* disable any new recovery threads and wait for any currently
225 * running ones to exit. Do this before setting the vol_state. */
226 mutex_lock(&osb
->recovery_lock
);
227 osb
->disable_recovery
= 1;
228 mutex_unlock(&osb
->recovery_lock
);
229 wait_event(osb
->recovery_event
, !ocfs2_recovery_thread_running(osb
));
231 /* At this point, we know that no more recovery threads can be
232 * launched, so wait for any recovery completion work to
234 flush_workqueue(ocfs2_wq
);
237 * Now that recovery is shut down, and the osb is about to be
238 * freed, the osb_lock is not taken here.
240 rm
= osb
->recovery_map
;
241 /* XXX: Should we bug if there are dirty entries? */
246 static int __ocfs2_recovery_map_test(struct ocfs2_super
*osb
,
247 unsigned int node_num
)
250 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
252 assert_spin_locked(&osb
->osb_lock
);
254 for (i
= 0; i
< rm
->rm_used
; i
++) {
255 if (rm
->rm_entries
[i
] == node_num
)
262 /* Behaves like test-and-set. Returns the previous value */
263 static int ocfs2_recovery_map_set(struct ocfs2_super
*osb
,
264 unsigned int node_num
)
266 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
268 spin_lock(&osb
->osb_lock
);
269 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
270 spin_unlock(&osb
->osb_lock
);
274 /* XXX: Can this be exploited? Not from o2dlm... */
275 BUG_ON(rm
->rm_used
>= osb
->max_slots
);
277 rm
->rm_entries
[rm
->rm_used
] = node_num
;
279 spin_unlock(&osb
->osb_lock
);
284 static void ocfs2_recovery_map_clear(struct ocfs2_super
*osb
,
285 unsigned int node_num
)
288 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
290 spin_lock(&osb
->osb_lock
);
292 for (i
= 0; i
< rm
->rm_used
; i
++) {
293 if (rm
->rm_entries
[i
] == node_num
)
297 if (i
< rm
->rm_used
) {
298 /* XXX: be careful with the pointer math */
299 memmove(&(rm
->rm_entries
[i
]), &(rm
->rm_entries
[i
+ 1]),
300 (rm
->rm_used
- i
- 1) * sizeof(unsigned int));
304 spin_unlock(&osb
->osb_lock
);
307 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
310 unsigned int flushed
;
311 struct ocfs2_journal
*journal
= NULL
;
313 journal
= osb
->journal
;
315 /* Flush all pending commits and checkpoint the journal. */
316 down_write(&journal
->j_trans_barrier
);
318 flushed
= atomic_read(&journal
->j_num_trans
);
319 trace_ocfs2_commit_cache_begin(flushed
);
321 up_write(&journal
->j_trans_barrier
);
325 jbd2_journal_lock_updates(journal
->j_journal
);
326 status
= jbd2_journal_flush(journal
->j_journal
);
327 jbd2_journal_unlock_updates(journal
->j_journal
);
329 up_write(&journal
->j_trans_barrier
);
334 ocfs2_inc_trans_id(journal
);
336 flushed
= atomic_read(&journal
->j_num_trans
);
337 atomic_set(&journal
->j_num_trans
, 0);
338 up_write(&journal
->j_trans_barrier
);
340 trace_ocfs2_commit_cache_end(journal
->j_trans_id
, flushed
);
342 ocfs2_wake_downconvert_thread(osb
);
343 wake_up(&journal
->j_checkpointed
);
348 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
350 journal_t
*journal
= osb
->journal
->j_journal
;
353 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
355 if (ocfs2_is_hard_readonly(osb
))
356 return ERR_PTR(-EROFS
);
358 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
359 BUG_ON(max_buffs
<= 0);
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal
, max_buffs
);
365 sb_start_intwrite(osb
->sb
);
367 down_read(&osb
->journal
->j_trans_barrier
);
369 handle
= jbd2_journal_start(journal
, max_buffs
);
370 if (IS_ERR(handle
)) {
371 up_read(&osb
->journal
->j_trans_barrier
);
372 sb_end_intwrite(osb
->sb
);
374 mlog_errno(PTR_ERR(handle
));
376 if (is_journal_aborted(journal
)) {
377 ocfs2_abort(osb
->sb
, "Detected aborted journal\n");
378 handle
= ERR_PTR(-EROFS
);
381 if (!ocfs2_mount_local(osb
))
382 atomic_inc(&(osb
->journal
->j_num_trans
));
388 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
392 struct ocfs2_journal
*journal
= osb
->journal
;
396 nested
= handle
->h_ref
> 1;
397 ret
= jbd2_journal_stop(handle
);
402 up_read(&journal
->j_trans_barrier
);
403 sb_end_intwrite(osb
->sb
);
410 * 'nblocks' is what you want to add to the current transaction.
412 * This might call jbd2_journal_restart() which will commit dirty buffers
413 * and then restart the transaction. Before calling
414 * ocfs2_extend_trans(), any changed blocks should have been
415 * dirtied. After calling it, all blocks which need to be changed must
416 * go through another set of journal_access/journal_dirty calls.
418 * WARNING: This will not release any semaphores or disk locks taken
419 * during the transaction, so make sure they were taken *before*
420 * start_trans or we'll have ordering deadlocks.
422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423 * good because transaction ids haven't yet been recorded on the
424 * cluster locks associated with this handle.
426 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
428 int status
, old_nblocks
;
436 old_nblocks
= handle
->h_buffer_credits
;
438 trace_ocfs2_extend_trans(old_nblocks
, nblocks
);
440 #ifdef CONFIG_OCFS2_DEBUG_FS
443 status
= jbd2_journal_extend(handle
, nblocks
);
451 trace_ocfs2_extend_trans_restart(old_nblocks
+ nblocks
);
452 status
= jbd2_journal_restart(handle
,
453 old_nblocks
+ nblocks
);
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
471 int ocfs2_allocate_extend_trans(handle_t
*handle
, int thresh
)
473 int status
, old_nblks
;
477 old_nblks
= handle
->h_buffer_credits
;
478 trace_ocfs2_allocate_extend_trans(old_nblks
, thresh
);
480 if (old_nblks
< thresh
)
483 status
= jbd2_journal_extend(handle
, OCFS2_MAX_TRANS_DATA
);
490 status
= jbd2_journal_restart(handle
, OCFS2_MAX_TRANS_DATA
);
500 struct ocfs2_triggers
{
501 struct jbd2_buffer_trigger_type ot_triggers
;
505 static inline struct ocfs2_triggers
*to_ocfs2_trigger(struct jbd2_buffer_trigger_type
*triggers
)
507 return container_of(triggers
, struct ocfs2_triggers
, ot_triggers
);
510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
511 struct buffer_head
*bh
,
512 void *data
, size_t size
)
514 struct ocfs2_triggers
*ot
= to_ocfs2_trigger(triggers
);
517 * We aren't guaranteed to have the superblock here, so we
518 * must unconditionally compute the ecc data.
519 * __ocfs2_journal_access() will only set the triggers if
520 * metaecc is enabled.
522 ocfs2_block_check_compute(data
, size
, data
+ ot
->ot_offset
);
526 * Quota blocks have their own trigger because the struct ocfs2_block_check
527 * offset depends on the blocksize.
529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
530 struct buffer_head
*bh
,
531 void *data
, size_t size
)
533 struct ocfs2_disk_dqtrailer
*dqt
=
534 ocfs2_block_dqtrailer(size
, data
);
537 * We aren't guaranteed to have the superblock here, so we
538 * must unconditionally compute the ecc data.
539 * __ocfs2_journal_access() will only set the triggers if
540 * metaecc is enabled.
542 ocfs2_block_check_compute(data
, size
, &dqt
->dq_check
);
546 * Directory blocks also have their own trigger because the
547 * struct ocfs2_block_check offset depends on the blocksize.
549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
550 struct buffer_head
*bh
,
551 void *data
, size_t size
)
553 struct ocfs2_dir_block_trailer
*trailer
=
554 ocfs2_dir_trailer_from_size(size
, data
);
557 * We aren't guaranteed to have the superblock here, so we
558 * must unconditionally compute the ecc data.
559 * __ocfs2_journal_access() will only set the triggers if
560 * metaecc is enabled.
562 ocfs2_block_check_compute(data
, size
, &trailer
->db_check
);
565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type
*triggers
,
566 struct buffer_head
*bh
)
569 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
570 "bh->b_blocknr = %llu\n",
572 (unsigned long long)bh
->b_blocknr
);
574 ocfs2_error(bh
->b_bdev
->bd_super
,
575 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
578 static struct ocfs2_triggers di_triggers
= {
580 .t_frozen
= ocfs2_frozen_trigger
,
581 .t_abort
= ocfs2_abort_trigger
,
583 .ot_offset
= offsetof(struct ocfs2_dinode
, i_check
),
586 static struct ocfs2_triggers eb_triggers
= {
588 .t_frozen
= ocfs2_frozen_trigger
,
589 .t_abort
= ocfs2_abort_trigger
,
591 .ot_offset
= offsetof(struct ocfs2_extent_block
, h_check
),
594 static struct ocfs2_triggers rb_triggers
= {
596 .t_frozen
= ocfs2_frozen_trigger
,
597 .t_abort
= ocfs2_abort_trigger
,
599 .ot_offset
= offsetof(struct ocfs2_refcount_block
, rf_check
),
602 static struct ocfs2_triggers gd_triggers
= {
604 .t_frozen
= ocfs2_frozen_trigger
,
605 .t_abort
= ocfs2_abort_trigger
,
607 .ot_offset
= offsetof(struct ocfs2_group_desc
, bg_check
),
610 static struct ocfs2_triggers db_triggers
= {
612 .t_frozen
= ocfs2_db_frozen_trigger
,
613 .t_abort
= ocfs2_abort_trigger
,
617 static struct ocfs2_triggers xb_triggers
= {
619 .t_frozen
= ocfs2_frozen_trigger
,
620 .t_abort
= ocfs2_abort_trigger
,
622 .ot_offset
= offsetof(struct ocfs2_xattr_block
, xb_check
),
625 static struct ocfs2_triggers dq_triggers
= {
627 .t_frozen
= ocfs2_dq_frozen_trigger
,
628 .t_abort
= ocfs2_abort_trigger
,
632 static struct ocfs2_triggers dr_triggers
= {
634 .t_frozen
= ocfs2_frozen_trigger
,
635 .t_abort
= ocfs2_abort_trigger
,
637 .ot_offset
= offsetof(struct ocfs2_dx_root_block
, dr_check
),
640 static struct ocfs2_triggers dl_triggers
= {
642 .t_frozen
= ocfs2_frozen_trigger
,
643 .t_abort
= ocfs2_abort_trigger
,
645 .ot_offset
= offsetof(struct ocfs2_dx_leaf
, dl_check
),
648 static int __ocfs2_journal_access(handle_t
*handle
,
649 struct ocfs2_caching_info
*ci
,
650 struct buffer_head
*bh
,
651 struct ocfs2_triggers
*triggers
,
655 struct ocfs2_super
*osb
=
656 OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
658 BUG_ON(!ci
|| !ci
->ci_ops
);
662 trace_ocfs2_journal_access(
663 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
664 (unsigned long long)bh
->b_blocknr
, type
, bh
->b_size
);
666 /* we can safely remove this assertion after testing. */
667 if (!buffer_uptodate(bh
)) {
668 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
669 mlog(ML_ERROR
, "b_blocknr=%llu\n",
670 (unsigned long long)bh
->b_blocknr
);
674 * A previous attempt to write this buffer head failed.
675 * Nothing we can do but to retry the write and hope for
678 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
)) {
679 clear_buffer_write_io_error(bh
);
680 set_buffer_uptodate(bh
);
683 if (!buffer_uptodate(bh
)) {
690 /* Set the current transaction information on the ci so
691 * that the locking code knows whether it can drop it's locks
692 * on this ci or not. We're protected from the commit
693 * thread updating the current transaction id until
694 * ocfs2_commit_trans() because ocfs2_start_trans() took
695 * j_trans_barrier for us. */
696 ocfs2_set_ci_lock_trans(osb
->journal
, ci
);
698 ocfs2_metadata_cache_io_lock(ci
);
700 case OCFS2_JOURNAL_ACCESS_CREATE
:
701 case OCFS2_JOURNAL_ACCESS_WRITE
:
702 status
= jbd2_journal_get_write_access(handle
, bh
);
705 case OCFS2_JOURNAL_ACCESS_UNDO
:
706 status
= jbd2_journal_get_undo_access(handle
, bh
);
711 mlog(ML_ERROR
, "Unknown access type!\n");
713 if (!status
&& ocfs2_meta_ecc(osb
) && triggers
)
714 jbd2_journal_set_triggers(bh
, &triggers
->ot_triggers
);
715 ocfs2_metadata_cache_io_unlock(ci
);
718 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
724 int ocfs2_journal_access_di(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
725 struct buffer_head
*bh
, int type
)
727 return __ocfs2_journal_access(handle
, ci
, bh
, &di_triggers
, type
);
730 int ocfs2_journal_access_eb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
731 struct buffer_head
*bh
, int type
)
733 return __ocfs2_journal_access(handle
, ci
, bh
, &eb_triggers
, type
);
736 int ocfs2_journal_access_rb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
737 struct buffer_head
*bh
, int type
)
739 return __ocfs2_journal_access(handle
, ci
, bh
, &rb_triggers
,
743 int ocfs2_journal_access_gd(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
744 struct buffer_head
*bh
, int type
)
746 return __ocfs2_journal_access(handle
, ci
, bh
, &gd_triggers
, type
);
749 int ocfs2_journal_access_db(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
750 struct buffer_head
*bh
, int type
)
752 return __ocfs2_journal_access(handle
, ci
, bh
, &db_triggers
, type
);
755 int ocfs2_journal_access_xb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
756 struct buffer_head
*bh
, int type
)
758 return __ocfs2_journal_access(handle
, ci
, bh
, &xb_triggers
, type
);
761 int ocfs2_journal_access_dq(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
762 struct buffer_head
*bh
, int type
)
764 return __ocfs2_journal_access(handle
, ci
, bh
, &dq_triggers
, type
);
767 int ocfs2_journal_access_dr(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
768 struct buffer_head
*bh
, int type
)
770 return __ocfs2_journal_access(handle
, ci
, bh
, &dr_triggers
, type
);
773 int ocfs2_journal_access_dl(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
774 struct buffer_head
*bh
, int type
)
776 return __ocfs2_journal_access(handle
, ci
, bh
, &dl_triggers
, type
);
779 int ocfs2_journal_access(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
780 struct buffer_head
*bh
, int type
)
782 return __ocfs2_journal_access(handle
, ci
, bh
, NULL
, type
);
785 void ocfs2_journal_dirty(handle_t
*handle
, struct buffer_head
*bh
)
789 trace_ocfs2_journal_dirty((unsigned long long)bh
->b_blocknr
);
791 status
= jbd2_journal_dirty_metadata(handle
, bh
);
794 if (!is_handle_aborted(handle
)) {
795 journal_t
*journal
= handle
->h_transaction
->t_journal
;
796 struct super_block
*sb
= bh
->b_bdev
->bd_super
;
798 mlog(ML_ERROR
, "jbd2_journal_dirty_metadata failed. "
799 "Aborting transaction and journal.\n");
800 handle
->h_err
= status
;
801 jbd2_journal_abort_handle(handle
);
802 jbd2_journal_abort(journal
, status
);
803 ocfs2_abort(sb
, "Journal already aborted.\n");
808 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
810 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
812 journal_t
*journal
= osb
->journal
->j_journal
;
813 unsigned long commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
815 if (osb
->osb_commit_interval
)
816 commit_interval
= osb
->osb_commit_interval
;
818 write_lock(&journal
->j_state_lock
);
819 journal
->j_commit_interval
= commit_interval
;
820 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
821 journal
->j_flags
|= JBD2_BARRIER
;
823 journal
->j_flags
&= ~JBD2_BARRIER
;
824 write_unlock(&journal
->j_state_lock
);
827 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
830 struct inode
*inode
= NULL
; /* the journal inode */
831 journal_t
*j_journal
= NULL
;
832 struct ocfs2_dinode
*di
= NULL
;
833 struct buffer_head
*bh
= NULL
;
834 struct ocfs2_super
*osb
;
839 osb
= journal
->j_osb
;
841 /* already have the inode for our journal */
842 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
849 if (is_bad_inode(inode
)) {
850 mlog(ML_ERROR
, "access error (bad inode)\n");
857 SET_INODE_JOURNAL(inode
);
858 OCFS2_I(inode
)->ip_open_count
++;
860 /* Skip recovery waits here - journal inode metadata never
861 * changes in a live cluster so it can be considered an
862 * exception to the rule. */
863 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
865 if (status
!= -ERESTARTSYS
)
866 mlog(ML_ERROR
, "Could not get lock on journal!\n");
871 di
= (struct ocfs2_dinode
*)bh
->b_data
;
873 if (i_size_read(inode
) < OCFS2_MIN_JOURNAL_SIZE
) {
874 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
880 trace_ocfs2_journal_init(i_size_read(inode
),
881 (unsigned long long)inode
->i_blocks
,
882 OCFS2_I(inode
)->ip_clusters
);
884 /* call the kernels journal init function now */
885 j_journal
= jbd2_journal_init_inode(inode
);
886 if (j_journal
== NULL
) {
887 mlog(ML_ERROR
, "Linux journal layer error\n");
892 trace_ocfs2_journal_init_maxlen(j_journal
->j_maxlen
);
894 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
895 OCFS2_JOURNAL_DIRTY_FL
);
897 journal
->j_journal
= j_journal
;
898 journal
->j_inode
= inode
;
901 ocfs2_set_journal_params(osb
);
903 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
909 ocfs2_inode_unlock(inode
, 1);
912 OCFS2_I(inode
)->ip_open_count
--;
920 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode
*di
)
922 le32_add_cpu(&(di
->id1
.journal1
.ij_recovery_generation
), 1);
925 static u32
ocfs2_get_recovery_generation(struct ocfs2_dinode
*di
)
927 return le32_to_cpu(di
->id1
.journal1
.ij_recovery_generation
);
930 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
931 int dirty
, int replayed
)
935 struct ocfs2_journal
*journal
= osb
->journal
;
936 struct buffer_head
*bh
= journal
->j_bh
;
937 struct ocfs2_dinode
*fe
;
939 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
941 /* The journal bh on the osb always comes from ocfs2_journal_init()
942 * and was validated there inside ocfs2_inode_lock_full(). It's a
943 * code bug if we mess it up. */
944 BUG_ON(!OCFS2_IS_VALID_DINODE(fe
));
946 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
948 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
950 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
951 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
954 ocfs2_bump_recovery_generation(fe
);
956 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
957 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(journal
->j_inode
));
965 * If the journal has been kmalloc'd it needs to be freed after this
968 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
970 struct ocfs2_journal
*journal
= NULL
;
972 struct inode
*inode
= NULL
;
973 int num_running_trans
= 0;
977 journal
= osb
->journal
;
981 inode
= journal
->j_inode
;
983 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
986 /* need to inc inode use count - jbd2_journal_destroy will iput. */
990 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
991 trace_ocfs2_journal_shutdown(num_running_trans
);
993 /* Do a commit_cache here. It will flush our journal, *and*
994 * release any locks that are still held.
995 * set the SHUTDOWN flag and release the trans lock.
996 * the commit thread will take the trans lock for us below. */
997 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
999 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1000 * drop the trans_lock (which we want to hold until we
1001 * completely destroy the journal. */
1002 if (osb
->commit_task
) {
1003 /* Wait for the commit thread */
1004 trace_ocfs2_journal_shutdown_wait(osb
->commit_task
);
1005 kthread_stop(osb
->commit_task
);
1006 osb
->commit_task
= NULL
;
1009 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
1011 if (ocfs2_mount_local(osb
)) {
1012 jbd2_journal_lock_updates(journal
->j_journal
);
1013 status
= jbd2_journal_flush(journal
->j_journal
);
1014 jbd2_journal_unlock_updates(journal
->j_journal
);
1021 * Do not toggle if flush was unsuccessful otherwise
1022 * will leave dirty metadata in a "clean" journal
1024 status
= ocfs2_journal_toggle_dirty(osb
, 0, 0);
1029 /* Shutdown the kernel journal system */
1030 jbd2_journal_destroy(journal
->j_journal
);
1031 journal
->j_journal
= NULL
;
1033 OCFS2_I(inode
)->ip_open_count
--;
1035 /* unlock our journal */
1036 ocfs2_inode_unlock(inode
, 1);
1038 brelse(journal
->j_bh
);
1039 journal
->j_bh
= NULL
;
1041 journal
->j_state
= OCFS2_JOURNAL_FREE
;
1043 // up_write(&journal->j_trans_barrier);
1049 static void ocfs2_clear_journal_error(struct super_block
*sb
,
1055 olderr
= jbd2_journal_errno(journal
);
1057 mlog(ML_ERROR
, "File system error %d recorded in "
1058 "journal %u.\n", olderr
, slot
);
1059 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
1062 jbd2_journal_ack_err(journal
);
1063 jbd2_journal_clear_err(journal
);
1067 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
, int replayed
)
1070 struct ocfs2_super
*osb
;
1074 osb
= journal
->j_osb
;
1076 status
= jbd2_journal_load(journal
->j_journal
);
1078 mlog(ML_ERROR
, "Failed to load journal!\n");
1082 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
1084 status
= ocfs2_journal_toggle_dirty(osb
, 1, replayed
);
1090 /* Launch the commit thread */
1092 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
1093 "ocfs2cmt-%s", osb
->uuid_str
);
1094 if (IS_ERR(osb
->commit_task
)) {
1095 status
= PTR_ERR(osb
->commit_task
);
1096 osb
->commit_task
= NULL
;
1097 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
1098 "error=%d", status
);
1102 osb
->commit_task
= NULL
;
1109 /* 'full' flag tells us whether we clear out all blocks or if we just
1110 * mark the journal clean */
1111 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
1117 status
= jbd2_journal_wipe(journal
->j_journal
, full
);
1123 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0, 0);
1131 static int ocfs2_recovery_completed(struct ocfs2_super
*osb
)
1134 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1136 spin_lock(&osb
->osb_lock
);
1137 empty
= (rm
->rm_used
== 0);
1138 spin_unlock(&osb
->osb_lock
);
1143 void ocfs2_wait_for_recovery(struct ocfs2_super
*osb
)
1145 wait_event(osb
->recovery_event
, ocfs2_recovery_completed(osb
));
1149 * JBD Might read a cached version of another nodes journal file. We
1150 * don't want this as this file changes often and we get no
1151 * notification on those changes. The only way to be sure that we've
1152 * got the most up to date version of those blocks then is to force
1153 * read them off disk. Just searching through the buffer cache won't
1154 * work as there may be pages backing this file which are still marked
1155 * up to date. We know things can't change on this file underneath us
1156 * as we have the lock by now :)
1158 static int ocfs2_force_read_journal(struct inode
*inode
)
1162 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
1163 #define CONCURRENT_JOURNAL_FILL 32ULL
1164 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
1166 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
1168 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
1170 while (v_blkno
< num_blocks
) {
1171 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
1172 &p_blkno
, &p_blocks
, NULL
);
1178 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
1179 p_blocks
= CONCURRENT_JOURNAL_FILL
;
1181 /* We are reading journal data which should not
1182 * be put in the uptodate cache */
1183 status
= ocfs2_read_blocks_sync(OCFS2_SB(inode
->i_sb
),
1184 p_blkno
, p_blocks
, bhs
);
1190 for(i
= 0; i
< p_blocks
; i
++) {
1195 v_blkno
+= p_blocks
;
1199 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
1204 struct ocfs2_la_recovery_item
{
1205 struct list_head lri_list
;
1207 struct ocfs2_dinode
*lri_la_dinode
;
1208 struct ocfs2_dinode
*lri_tl_dinode
;
1209 struct ocfs2_quota_recovery
*lri_qrec
;
1210 enum ocfs2_orphan_reco_type lri_orphan_reco_type
;
1213 /* Does the second half of the recovery process. By this point, the
1214 * node is marked clean and can actually be considered recovered,
1215 * hence it's no longer in the recovery map, but there's still some
1216 * cleanup we can do which shouldn't happen within the recovery thread
1217 * as locking in that context becomes very difficult if we are to take
1218 * recovering nodes into account.
1220 * NOTE: This function can and will sleep on recovery of other nodes
1221 * during cluster locking, just like any other ocfs2 process.
1223 void ocfs2_complete_recovery(struct work_struct
*work
)
1226 struct ocfs2_journal
*journal
=
1227 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
1228 struct ocfs2_super
*osb
= journal
->j_osb
;
1229 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
1230 struct ocfs2_la_recovery_item
*item
, *n
;
1231 struct ocfs2_quota_recovery
*qrec
;
1232 enum ocfs2_orphan_reco_type orphan_reco_type
;
1233 LIST_HEAD(tmp_la_list
);
1235 trace_ocfs2_complete_recovery(
1236 (unsigned long long)OCFS2_I(journal
->j_inode
)->ip_blkno
);
1238 spin_lock(&journal
->j_lock
);
1239 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
1240 spin_unlock(&journal
->j_lock
);
1242 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
1243 list_del_init(&item
->lri_list
);
1245 ocfs2_wait_on_quotas(osb
);
1247 la_dinode
= item
->lri_la_dinode
;
1248 tl_dinode
= item
->lri_tl_dinode
;
1249 qrec
= item
->lri_qrec
;
1250 orphan_reco_type
= item
->lri_orphan_reco_type
;
1252 trace_ocfs2_complete_recovery_slot(item
->lri_slot
,
1253 la_dinode
? le64_to_cpu(la_dinode
->i_blkno
) : 0,
1254 tl_dinode
? le64_to_cpu(tl_dinode
->i_blkno
) : 0,
1258 ret
= ocfs2_complete_local_alloc_recovery(osb
,
1267 ret
= ocfs2_complete_truncate_log_recovery(osb
,
1275 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
,
1281 ret
= ocfs2_finish_quota_recovery(osb
, qrec
,
1285 /* Recovery info is already freed now */
1291 trace_ocfs2_complete_recovery_end(ret
);
1294 /* NOTE: This function always eats your references to la_dinode and
1295 * tl_dinode, either manually on error, or by passing them to
1296 * ocfs2_complete_recovery */
1297 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
1299 struct ocfs2_dinode
*la_dinode
,
1300 struct ocfs2_dinode
*tl_dinode
,
1301 struct ocfs2_quota_recovery
*qrec
,
1302 enum ocfs2_orphan_reco_type orphan_reco_type
)
1304 struct ocfs2_la_recovery_item
*item
;
1306 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
1308 /* Though we wish to avoid it, we are in fact safe in
1309 * skipping local alloc cleanup as fsck.ocfs2 is more
1310 * than capable of reclaiming unused space. */
1315 ocfs2_free_quota_recovery(qrec
);
1317 mlog_errno(-ENOMEM
);
1321 INIT_LIST_HEAD(&item
->lri_list
);
1322 item
->lri_la_dinode
= la_dinode
;
1323 item
->lri_slot
= slot_num
;
1324 item
->lri_tl_dinode
= tl_dinode
;
1325 item
->lri_qrec
= qrec
;
1326 item
->lri_orphan_reco_type
= orphan_reco_type
;
1328 spin_lock(&journal
->j_lock
);
1329 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
1330 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
1331 spin_unlock(&journal
->j_lock
);
1334 /* Called by the mount code to queue recovery the last part of
1335 * recovery for it's own and offline slot(s). */
1336 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
1338 struct ocfs2_journal
*journal
= osb
->journal
;
1340 if (ocfs2_is_hard_readonly(osb
))
1343 /* No need to queue up our truncate_log as regular cleanup will catch
1345 ocfs2_queue_recovery_completion(journal
, osb
->slot_num
,
1346 osb
->local_alloc_copy
, NULL
, NULL
,
1347 ORPHAN_NEED_TRUNCATE
);
1348 ocfs2_schedule_truncate_log_flush(osb
, 0);
1350 osb
->local_alloc_copy
= NULL
;
1353 /* queue to recover orphan slots for all offline slots */
1354 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1355 ocfs2_queue_replay_slots(osb
, ORPHAN_NEED_TRUNCATE
);
1356 ocfs2_free_replay_slots(osb
);
1359 void ocfs2_complete_quota_recovery(struct ocfs2_super
*osb
)
1361 if (osb
->quota_rec
) {
1362 ocfs2_queue_recovery_completion(osb
->journal
,
1367 ORPHAN_NEED_TRUNCATE
);
1368 osb
->quota_rec
= NULL
;
1372 static int __ocfs2_recovery_thread(void *arg
)
1374 int status
, node_num
, slot_num
;
1375 struct ocfs2_super
*osb
= arg
;
1376 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1377 int *rm_quota
= NULL
;
1378 int rm_quota_used
= 0, i
;
1379 struct ocfs2_quota_recovery
*qrec
;
1381 status
= ocfs2_wait_on_mount(osb
);
1386 rm_quota
= kzalloc(osb
->max_slots
* sizeof(int), GFP_NOFS
);
1392 status
= ocfs2_super_lock(osb
, 1);
1398 status
= ocfs2_compute_replay_slots(osb
);
1402 /* queue recovery for our own slot */
1403 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
1404 NULL
, NULL
, ORPHAN_NO_NEED_TRUNCATE
);
1406 spin_lock(&osb
->osb_lock
);
1407 while (rm
->rm_used
) {
1408 /* It's always safe to remove entry zero, as we won't
1409 * clear it until ocfs2_recover_node() has succeeded. */
1410 node_num
= rm
->rm_entries
[0];
1411 spin_unlock(&osb
->osb_lock
);
1412 slot_num
= ocfs2_node_num_to_slot(osb
, node_num
);
1413 trace_ocfs2_recovery_thread_node(node_num
, slot_num
);
1414 if (slot_num
== -ENOENT
) {
1419 /* It is a bit subtle with quota recovery. We cannot do it
1420 * immediately because we have to obtain cluster locks from
1421 * quota files and we also don't want to just skip it because
1422 * then quota usage would be out of sync until some node takes
1423 * the slot. So we remember which nodes need quota recovery
1424 * and when everything else is done, we recover quotas. */
1425 for (i
= 0; i
< rm_quota_used
&& rm_quota
[i
] != slot_num
; i
++);
1426 if (i
== rm_quota_used
)
1427 rm_quota
[rm_quota_used
++] = slot_num
;
1429 status
= ocfs2_recover_node(osb
, node_num
, slot_num
);
1432 ocfs2_recovery_map_clear(osb
, node_num
);
1435 "Error %d recovering node %d on device (%u,%u)!\n",
1437 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1438 mlog(ML_ERROR
, "Volume requires unmount.\n");
1441 spin_lock(&osb
->osb_lock
);
1443 spin_unlock(&osb
->osb_lock
);
1444 trace_ocfs2_recovery_thread_end(status
);
1446 /* Refresh all journal recovery generations from disk */
1447 status
= ocfs2_check_journals_nolocks(osb
);
1448 status
= (status
== -EROFS
) ? 0 : status
;
1452 /* Now it is right time to recover quotas... We have to do this under
1453 * superblock lock so that no one can start using the slot (and crash)
1454 * before we recover it */
1455 for (i
= 0; i
< rm_quota_used
; i
++) {
1456 qrec
= ocfs2_begin_quota_recovery(osb
, rm_quota
[i
]);
1458 status
= PTR_ERR(qrec
);
1462 ocfs2_queue_recovery_completion(osb
->journal
, rm_quota
[i
],
1464 ORPHAN_NEED_TRUNCATE
);
1467 ocfs2_super_unlock(osb
, 1);
1469 /* queue recovery for offline slots */
1470 ocfs2_queue_replay_slots(osb
, ORPHAN_NEED_TRUNCATE
);
1473 mutex_lock(&osb
->recovery_lock
);
1474 if (!status
&& !ocfs2_recovery_completed(osb
)) {
1475 mutex_unlock(&osb
->recovery_lock
);
1479 ocfs2_free_replay_slots(osb
);
1480 osb
->recovery_thread_task
= NULL
;
1481 mb(); /* sync with ocfs2_recovery_thread_running */
1482 wake_up(&osb
->recovery_event
);
1484 mutex_unlock(&osb
->recovery_lock
);
1488 /* no one is callint kthread_stop() for us so the kthread() api
1489 * requires that we call do_exit(). And it isn't exported, but
1490 * complete_and_exit() seems to be a minimal wrapper around it. */
1491 complete_and_exit(NULL
, status
);
1494 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
1496 mutex_lock(&osb
->recovery_lock
);
1498 trace_ocfs2_recovery_thread(node_num
, osb
->node_num
,
1499 osb
->disable_recovery
, osb
->recovery_thread_task
,
1500 osb
->disable_recovery
?
1501 -1 : ocfs2_recovery_map_set(osb
, node_num
));
1503 if (osb
->disable_recovery
)
1506 if (osb
->recovery_thread_task
)
1509 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
1510 "ocfs2rec-%s", osb
->uuid_str
);
1511 if (IS_ERR(osb
->recovery_thread_task
)) {
1512 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
1513 osb
->recovery_thread_task
= NULL
;
1517 mutex_unlock(&osb
->recovery_lock
);
1518 wake_up(&osb
->recovery_event
);
1521 static int ocfs2_read_journal_inode(struct ocfs2_super
*osb
,
1523 struct buffer_head
**bh
,
1524 struct inode
**ret_inode
)
1526 int status
= -EACCES
;
1527 struct inode
*inode
= NULL
;
1529 BUG_ON(slot_num
>= osb
->max_slots
);
1531 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1533 if (!inode
|| is_bad_inode(inode
)) {
1537 SET_INODE_JOURNAL(inode
);
1539 status
= ocfs2_read_inode_block_full(inode
, bh
, OCFS2_BH_IGNORE_CACHE
);
1549 if (status
|| !ret_inode
)
1557 /* Does the actual journal replay and marks the journal inode as
1558 * clean. Will only replay if the journal inode is marked dirty. */
1559 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1566 struct inode
*inode
= NULL
;
1567 struct ocfs2_dinode
*fe
;
1568 journal_t
*journal
= NULL
;
1569 struct buffer_head
*bh
= NULL
;
1572 status
= ocfs2_read_journal_inode(osb
, slot_num
, &bh
, &inode
);
1578 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
1579 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1584 * As the fs recovery is asynchronous, there is a small chance that
1585 * another node mounted (and recovered) the slot before the recovery
1586 * thread could get the lock. To handle that, we dirty read the journal
1587 * inode for that slot to get the recovery generation. If it is
1588 * different than what we expected, the slot has been recovered.
1589 * If not, it needs recovery.
1591 if (osb
->slot_recovery_generations
[slot_num
] != slot_reco_gen
) {
1592 trace_ocfs2_replay_journal_recovered(slot_num
,
1593 osb
->slot_recovery_generations
[slot_num
], slot_reco_gen
);
1594 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1599 /* Continue with recovery as the journal has not yet been recovered */
1601 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
1603 trace_ocfs2_replay_journal_lock_err(status
);
1604 if (status
!= -ERESTARTSYS
)
1605 mlog(ML_ERROR
, "Could not lock journal!\n");
1610 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1612 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1613 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1615 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1616 trace_ocfs2_replay_journal_skip(node_num
);
1617 /* Refresh recovery generation for the slot */
1618 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1622 /* we need to run complete recovery for offline orphan slots */
1623 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1625 printk(KERN_NOTICE
"ocfs2: Begin replay journal (node %d, slot %d) on "\
1626 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1627 MINOR(osb
->sb
->s_dev
));
1629 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1631 status
= ocfs2_force_read_journal(inode
);
1637 journal
= jbd2_journal_init_inode(inode
);
1638 if (journal
== NULL
) {
1639 mlog(ML_ERROR
, "Linux journal layer error\n");
1644 status
= jbd2_journal_load(journal
);
1649 jbd2_journal_destroy(journal
);
1653 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1655 /* wipe the journal */
1656 jbd2_journal_lock_updates(journal
);
1657 status
= jbd2_journal_flush(journal
);
1658 jbd2_journal_unlock_updates(journal
);
1662 /* This will mark the node clean */
1663 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1664 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1665 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1667 /* Increment recovery generation to indicate successful recovery */
1668 ocfs2_bump_recovery_generation(fe
);
1669 osb
->slot_recovery_generations
[slot_num
] =
1670 ocfs2_get_recovery_generation(fe
);
1672 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
1673 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(inode
));
1680 jbd2_journal_destroy(journal
);
1682 printk(KERN_NOTICE
"ocfs2: End replay journal (node %d, slot %d) on "\
1683 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1684 MINOR(osb
->sb
->s_dev
));
1686 /* drop the lock on this nodes journal */
1688 ocfs2_inode_unlock(inode
, 1);
1699 * Do the most important parts of node recovery:
1700 * - Replay it's journal
1701 * - Stamp a clean local allocator file
1702 * - Stamp a clean truncate log
1703 * - Mark the node clean
1705 * If this function completes without error, a node in OCFS2 can be
1706 * said to have been safely recovered. As a result, failure during the
1707 * second part of a nodes recovery process (local alloc recovery) is
1708 * far less concerning.
1710 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1711 int node_num
, int slot_num
)
1714 struct ocfs2_dinode
*la_copy
= NULL
;
1715 struct ocfs2_dinode
*tl_copy
= NULL
;
1717 trace_ocfs2_recover_node(node_num
, slot_num
, osb
->node_num
);
1719 /* Should not ever be called to recover ourselves -- in that
1720 * case we should've called ocfs2_journal_load instead. */
1721 BUG_ON(osb
->node_num
== node_num
);
1723 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1725 if (status
== -EBUSY
) {
1726 trace_ocfs2_recover_node_skip(slot_num
, node_num
);
1734 /* Stamp a clean local alloc file AFTER recovering the journal... */
1735 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1741 /* An error from begin_truncate_log_recovery is not
1742 * serious enough to warrant halting the rest of
1744 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1748 /* Likewise, this would be a strange but ultimately not so
1749 * harmful place to get an error... */
1750 status
= ocfs2_clear_slot(osb
, slot_num
);
1754 /* This will kfree the memory pointed to by la_copy and tl_copy */
1755 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1756 tl_copy
, NULL
, ORPHAN_NEED_TRUNCATE
);
1764 /* Test node liveness by trylocking his journal. If we get the lock,
1765 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1766 * still alive (we couldn't get the lock) and < 0 on error. */
1767 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1771 struct inode
*inode
= NULL
;
1773 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1775 if (inode
== NULL
) {
1776 mlog(ML_ERROR
, "access error\n");
1780 if (is_bad_inode(inode
)) {
1781 mlog(ML_ERROR
, "access error (bad inode)\n");
1787 SET_INODE_JOURNAL(inode
);
1789 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1790 status
= ocfs2_inode_lock_full(inode
, NULL
, 1, flags
);
1792 if (status
!= -EAGAIN
)
1797 ocfs2_inode_unlock(inode
, 1);
1805 /* Call this underneath ocfs2_super_lock. It also assumes that the
1806 * slot info struct has been updated from disk. */
1807 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1809 unsigned int node_num
;
1812 struct buffer_head
*bh
= NULL
;
1813 struct ocfs2_dinode
*di
;
1815 /* This is called with the super block cluster lock, so we
1816 * know that the slot map can't change underneath us. */
1818 for (i
= 0; i
< osb
->max_slots
; i
++) {
1819 /* Read journal inode to get the recovery generation */
1820 status
= ocfs2_read_journal_inode(osb
, i
, &bh
, NULL
);
1825 di
= (struct ocfs2_dinode
*)bh
->b_data
;
1826 gen
= ocfs2_get_recovery_generation(di
);
1830 spin_lock(&osb
->osb_lock
);
1831 osb
->slot_recovery_generations
[i
] = gen
;
1833 trace_ocfs2_mark_dead_nodes(i
,
1834 osb
->slot_recovery_generations
[i
]);
1836 if (i
== osb
->slot_num
) {
1837 spin_unlock(&osb
->osb_lock
);
1841 status
= ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
);
1842 if (status
== -ENOENT
) {
1843 spin_unlock(&osb
->osb_lock
);
1847 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
1848 spin_unlock(&osb
->osb_lock
);
1851 spin_unlock(&osb
->osb_lock
);
1853 /* Ok, we have a slot occupied by another node which
1854 * is not in the recovery map. We trylock his journal
1855 * file here to test if he's alive. */
1856 status
= ocfs2_trylock_journal(osb
, i
);
1858 /* Since we're called from mount, we know that
1859 * the recovery thread can't race us on
1860 * setting / checking the recovery bits. */
1861 ocfs2_recovery_thread(osb
, node_num
);
1862 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1874 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1875 * randomness to the timeout to minimize multple nodes firing the timer at the
1878 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1882 get_random_bytes(&time
, sizeof(time
));
1883 time
= ORPHAN_SCAN_SCHEDULE_TIMEOUT
+ (time
% 5000);
1884 return msecs_to_jiffies(time
);
1888 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1889 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1890 * is done to catch any orphans that are left over in orphan directories.
1892 * It scans all slots, even ones that are in use. It does so to handle the
1893 * case described below:
1895 * Node 1 has an inode it was using. The dentry went away due to memory
1896 * pressure. Node 1 closes the inode, but it's on the free list. The node
1897 * has the open lock.
1898 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1899 * but node 1 has no dentry and doesn't get the message. It trylocks the
1900 * open lock, sees that another node has a PR, and does nothing.
1901 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1902 * open lock, sees the PR still, and does nothing.
1903 * Basically, we have to trigger an orphan iput on node 1. The only way
1904 * for this to happen is if node 1 runs node 2's orphan dir.
1906 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1907 * seconds. It gets an EX lock on os_lockres and checks sequence number
1908 * stored in LVB. If the sequence number has changed, it means some other
1909 * node has done the scan. This node skips the scan and tracks the
1910 * sequence number. If the sequence number didn't change, it means a scan
1911 * hasn't happened. The node queues a scan and increments the
1912 * sequence number in the LVB.
1914 static void ocfs2_queue_orphan_scan(struct ocfs2_super
*osb
)
1916 struct ocfs2_orphan_scan
*os
;
1920 os
= &osb
->osb_orphan_scan
;
1922 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1925 trace_ocfs2_queue_orphan_scan_begin(os
->os_count
, os
->os_seqno
,
1926 atomic_read(&os
->os_state
));
1928 status
= ocfs2_orphan_scan_lock(osb
, &seqno
);
1930 if (status
!= -EAGAIN
)
1935 /* Do no queue the tasks if the volume is being umounted */
1936 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1939 if (os
->os_seqno
!= seqno
) {
1940 os
->os_seqno
= seqno
;
1944 for (i
= 0; i
< osb
->max_slots
; i
++)
1945 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
, NULL
,
1946 NULL
, ORPHAN_NO_NEED_TRUNCATE
);
1948 * We queued a recovery on orphan slots, increment the sequence
1949 * number and update LVB so other node will skip the scan for a while
1953 os
->os_scantime
= CURRENT_TIME
;
1955 ocfs2_orphan_scan_unlock(osb
, seqno
);
1957 trace_ocfs2_queue_orphan_scan_end(os
->os_count
, os
->os_seqno
,
1958 atomic_read(&os
->os_state
));
1962 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1963 static void ocfs2_orphan_scan_work(struct work_struct
*work
)
1965 struct ocfs2_orphan_scan
*os
;
1966 struct ocfs2_super
*osb
;
1968 os
= container_of(work
, struct ocfs2_orphan_scan
,
1969 os_orphan_scan_work
.work
);
1972 mutex_lock(&os
->os_lock
);
1973 ocfs2_queue_orphan_scan(osb
);
1974 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
)
1975 queue_delayed_work(ocfs2_wq
, &os
->os_orphan_scan_work
,
1976 ocfs2_orphan_scan_timeout());
1977 mutex_unlock(&os
->os_lock
);
1980 void ocfs2_orphan_scan_stop(struct ocfs2_super
*osb
)
1982 struct ocfs2_orphan_scan
*os
;
1984 os
= &osb
->osb_orphan_scan
;
1985 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
) {
1986 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1987 mutex_lock(&os
->os_lock
);
1988 cancel_delayed_work(&os
->os_orphan_scan_work
);
1989 mutex_unlock(&os
->os_lock
);
1993 void ocfs2_orphan_scan_init(struct ocfs2_super
*osb
)
1995 struct ocfs2_orphan_scan
*os
;
1997 os
= &osb
->osb_orphan_scan
;
2001 mutex_init(&os
->os_lock
);
2002 INIT_DELAYED_WORK(&os
->os_orphan_scan_work
, ocfs2_orphan_scan_work
);
2005 void ocfs2_orphan_scan_start(struct ocfs2_super
*osb
)
2007 struct ocfs2_orphan_scan
*os
;
2009 os
= &osb
->osb_orphan_scan
;
2010 os
->os_scantime
= CURRENT_TIME
;
2011 if (ocfs2_is_hard_readonly(osb
) || ocfs2_mount_local(osb
))
2012 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
2014 atomic_set(&os
->os_state
, ORPHAN_SCAN_ACTIVE
);
2015 queue_delayed_work(ocfs2_wq
, &os
->os_orphan_scan_work
,
2016 ocfs2_orphan_scan_timeout());
2020 struct ocfs2_orphan_filldir_priv
{
2021 struct dir_context ctx
;
2023 struct ocfs2_super
*osb
;
2024 enum ocfs2_orphan_reco_type orphan_reco_type
;
2027 static int ocfs2_orphan_filldir(struct dir_context
*ctx
, const char *name
,
2028 int name_len
, loff_t pos
, u64 ino
,
2031 struct ocfs2_orphan_filldir_priv
*p
=
2032 container_of(ctx
, struct ocfs2_orphan_filldir_priv
, ctx
);
2035 if (name_len
== 1 && !strncmp(".", name
, 1))
2037 if (name_len
== 2 && !strncmp("..", name
, 2))
2040 /* do not include dio entry in case of orphan scan */
2041 if ((p
->orphan_reco_type
== ORPHAN_NO_NEED_TRUNCATE
) &&
2042 (!strncmp(name
, OCFS2_DIO_ORPHAN_PREFIX
,
2043 OCFS2_DIO_ORPHAN_PREFIX_LEN
)))
2046 /* Skip bad inodes so that recovery can continue */
2047 iter
= ocfs2_iget(p
->osb
, ino
,
2048 OCFS2_FI_FLAG_ORPHAN_RECOVERY
, 0);
2052 if (!strncmp(name
, OCFS2_DIO_ORPHAN_PREFIX
,
2053 OCFS2_DIO_ORPHAN_PREFIX_LEN
))
2054 OCFS2_I(iter
)->ip_flags
|= OCFS2_INODE_DIO_ORPHAN_ENTRY
;
2056 /* Skip inodes which are already added to recover list, since dio may
2057 * happen concurrently with unlink/rename */
2058 if (OCFS2_I(iter
)->ip_next_orphan
) {
2063 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter
)->ip_blkno
);
2064 /* No locking is required for the next_orphan queue as there
2065 * is only ever a single process doing orphan recovery. */
2066 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
2072 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
2074 struct inode
**head
,
2075 enum ocfs2_orphan_reco_type orphan_reco_type
)
2078 struct inode
*orphan_dir_inode
= NULL
;
2079 struct ocfs2_orphan_filldir_priv priv
= {
2080 .ctx
.actor
= ocfs2_orphan_filldir
,
2083 .orphan_reco_type
= orphan_reco_type
2086 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
2087 ORPHAN_DIR_SYSTEM_INODE
,
2089 if (!orphan_dir_inode
) {
2095 mutex_lock(&orphan_dir_inode
->i_mutex
);
2096 status
= ocfs2_inode_lock(orphan_dir_inode
, NULL
, 0);
2102 status
= ocfs2_dir_foreach(orphan_dir_inode
, &priv
.ctx
);
2111 ocfs2_inode_unlock(orphan_dir_inode
, 0);
2113 mutex_unlock(&orphan_dir_inode
->i_mutex
);
2114 iput(orphan_dir_inode
);
2118 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
2123 spin_lock(&osb
->osb_lock
);
2124 ret
= !osb
->osb_orphan_wipes
[slot
];
2125 spin_unlock(&osb
->osb_lock
);
2129 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
2132 spin_lock(&osb
->osb_lock
);
2133 /* Mark ourselves such that new processes in delete_inode()
2134 * know to quit early. */
2135 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2136 while (osb
->osb_orphan_wipes
[slot
]) {
2137 /* If any processes are already in the middle of an
2138 * orphan wipe on this dir, then we need to wait for
2140 spin_unlock(&osb
->osb_lock
);
2141 wait_event_interruptible(osb
->osb_wipe_event
,
2142 ocfs2_orphan_recovery_can_continue(osb
, slot
));
2143 spin_lock(&osb
->osb_lock
);
2145 spin_unlock(&osb
->osb_lock
);
2148 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
2151 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2155 * Orphan recovery. Each mounted node has it's own orphan dir which we
2156 * must run during recovery. Our strategy here is to build a list of
2157 * the inodes in the orphan dir and iget/iput them. The VFS does
2158 * (most) of the rest of the work.
2160 * Orphan recovery can happen at any time, not just mount so we have a
2161 * couple of extra considerations.
2163 * - We grab as many inodes as we can under the orphan dir lock -
2164 * doing iget() outside the orphan dir risks getting a reference on
2166 * - We must be sure not to deadlock with other processes on the
2167 * system wanting to run delete_inode(). This can happen when they go
2168 * to lock the orphan dir and the orphan recovery process attempts to
2169 * iget() inside the orphan dir lock. This can be avoided by
2170 * advertising our state to ocfs2_delete_inode().
2172 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
2174 enum ocfs2_orphan_reco_type orphan_reco_type
)
2177 struct inode
*inode
= NULL
;
2179 struct ocfs2_inode_info
*oi
;
2180 struct buffer_head
*di_bh
= NULL
;
2181 struct ocfs2_dinode
*di
= NULL
;
2183 trace_ocfs2_recover_orphans(slot
);
2185 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
2186 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
, orphan_reco_type
);
2187 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
2189 /* Error here should be noted, but we want to continue with as
2190 * many queued inodes as we've got. */
2195 oi
= OCFS2_I(inode
);
2196 trace_ocfs2_recover_orphans_iput(
2197 (unsigned long long)oi
->ip_blkno
);
2199 iter
= oi
->ip_next_orphan
;
2200 oi
->ip_next_orphan
= NULL
;
2202 if (oi
->ip_flags
& OCFS2_INODE_DIO_ORPHAN_ENTRY
) {
2203 mutex_lock(&inode
->i_mutex
);
2204 ret
= ocfs2_rw_lock(inode
, 1);
2210 * We need to take and drop the inode lock to
2211 * force read inode from disk.
2213 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2219 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2221 if (di
->i_flags
& cpu_to_le32(OCFS2_DIO_ORPHANED_FL
)) {
2222 ret
= ocfs2_truncate_file(inode
, di_bh
,
2223 i_size_read(inode
));
2230 ret
= ocfs2_del_inode_from_orphan(osb
, inode
,
2236 ocfs2_inode_unlock(inode
, 1);
2240 ocfs2_rw_unlock(inode
, 1);
2242 mutex_unlock(&inode
->i_mutex
);
2244 /* clear dio flag in ocfs2_inode_info */
2245 oi
->ip_flags
&= ~OCFS2_INODE_DIO_ORPHAN_ENTRY
;
2247 spin_lock(&oi
->ip_lock
);
2248 /* Set the proper information to get us going into
2249 * ocfs2_delete_inode. */
2250 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
2251 spin_unlock(&oi
->ip_lock
);
2261 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
)
2263 /* This check is good because ocfs2 will wait on our recovery
2264 * thread before changing it to something other than MOUNTED
2266 wait_event(osb
->osb_mount_event
,
2267 (!quota
&& atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
) ||
2268 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED_QUOTAS
||
2269 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
2271 /* If there's an error on mount, then we may never get to the
2272 * MOUNTED flag, but this is set right before
2273 * dismount_volume() so we can trust it. */
2274 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
2275 trace_ocfs2_wait_on_mount(VOLUME_DISABLED
);
2276 mlog(0, "mount error, exiting!\n");
2283 static int ocfs2_commit_thread(void *arg
)
2286 struct ocfs2_super
*osb
= arg
;
2287 struct ocfs2_journal
*journal
= osb
->journal
;
2289 /* we can trust j_num_trans here because _should_stop() is only set in
2290 * shutdown and nobody other than ourselves should be able to start
2291 * transactions. committing on shutdown might take a few iterations
2292 * as final transactions put deleted inodes on the list */
2293 while (!(kthread_should_stop() &&
2294 atomic_read(&journal
->j_num_trans
) == 0)) {
2296 wait_event_interruptible(osb
->checkpoint_event
,
2297 atomic_read(&journal
->j_num_trans
)
2298 || kthread_should_stop());
2300 status
= ocfs2_commit_cache(osb
);
2302 static unsigned long abort_warn_time
;
2304 /* Warn about this once per minute */
2305 if (printk_timed_ratelimit(&abort_warn_time
, 60*HZ
))
2306 mlog(ML_ERROR
, "status = %d, journal is "
2307 "already aborted.\n", status
);
2309 * After ocfs2_commit_cache() fails, j_num_trans has a
2310 * non-zero value. Sleep here to avoid a busy-wait
2313 msleep_interruptible(1000);
2316 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
2318 "commit_thread: %u transactions pending on "
2320 atomic_read(&journal
->j_num_trans
));
2327 /* Reads all the journal inodes without taking any cluster locks. Used
2328 * for hard readonly access to determine whether any journal requires
2329 * recovery. Also used to refresh the recovery generation numbers after
2330 * a journal has been recovered by another node.
2332 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
2336 struct buffer_head
*di_bh
= NULL
;
2337 struct ocfs2_dinode
*di
;
2338 int journal_dirty
= 0;
2340 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
2341 ret
= ocfs2_read_journal_inode(osb
, slot
, &di_bh
, NULL
);
2347 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
2349 osb
->slot_recovery_generations
[slot
] =
2350 ocfs2_get_recovery_generation(di
);
2352 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
2353 OCFS2_JOURNAL_DIRTY_FL
)