of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / fs / reiserfs / inode.c
blobae9e5b308cf9f5775300e7ee109e4e2f72720b12
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <linux/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 #include <linux/uio.h>
23 int reiserfs_commit_write(struct file *f, struct page *page,
24 unsigned from, unsigned to);
26 void reiserfs_evict_inode(struct inode *inode)
29 * We need blocks for transaction + (user+group) quota
30 * update (possibly delete)
32 int jbegin_count =
33 JOURNAL_PER_BALANCE_CNT * 2 +
34 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
35 struct reiserfs_transaction_handle th;
36 int err;
38 if (!inode->i_nlink && !is_bad_inode(inode))
39 dquot_initialize(inode);
41 truncate_inode_pages_final(&inode->i_data);
42 if (inode->i_nlink)
43 goto no_delete;
46 * The = 0 happens when we abort creating a new inode
47 * for some reason like lack of space..
48 * also handles bad_inode case
50 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
52 reiserfs_delete_xattrs(inode);
54 reiserfs_write_lock(inode->i_sb);
56 if (journal_begin(&th, inode->i_sb, jbegin_count))
57 goto out;
58 reiserfs_update_inode_transaction(inode);
60 reiserfs_discard_prealloc(&th, inode);
62 err = reiserfs_delete_object(&th, inode);
65 * Do quota update inside a transaction for journaled quotas.
66 * We must do that after delete_object so that quota updates
67 * go into the same transaction as stat data deletion
69 if (!err) {
70 int depth = reiserfs_write_unlock_nested(inode->i_sb);
71 dquot_free_inode(inode);
72 reiserfs_write_lock_nested(inode->i_sb, depth);
75 if (journal_end(&th))
76 goto out;
79 * check return value from reiserfs_delete_object after
80 * ending the transaction
82 if (err)
83 goto out;
86 * all items of file are deleted, so we can remove
87 * "save" link
88 * we can't do anything about an error here
90 remove_save_link(inode, 0 /* not truncate */);
91 out:
92 reiserfs_write_unlock(inode->i_sb);
93 } else {
94 /* no object items are in the tree */
98 /* note this must go after the journal_end to prevent deadlock */
99 clear_inode(inode);
101 dquot_drop(inode);
102 inode->i_blocks = 0;
103 return;
105 no_delete:
106 clear_inode(inode);
107 dquot_drop(inode);
110 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
111 __u32 objectid, loff_t offset, int type, int length)
113 key->version = version;
115 key->on_disk_key.k_dir_id = dirid;
116 key->on_disk_key.k_objectid = objectid;
117 set_cpu_key_k_offset(key, offset);
118 set_cpu_key_k_type(key, type);
119 key->key_length = length;
123 * take base of inode_key (it comes from inode always) (dirid, objectid)
124 * and version from an inode, set offset and type of key
126 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
127 int type, int length)
129 _make_cpu_key(key, get_inode_item_key_version(inode),
130 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
131 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
132 length);
135 /* when key is 0, do not set version and short key */
136 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
137 int version,
138 loff_t offset, int type, int length,
139 int entry_count /*or ih_free_space */ )
141 if (key) {
142 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
143 ih->ih_key.k_objectid =
144 cpu_to_le32(key->on_disk_key.k_objectid);
146 put_ih_version(ih, version);
147 set_le_ih_k_offset(ih, offset);
148 set_le_ih_k_type(ih, type);
149 put_ih_item_len(ih, length);
150 /* set_ih_free_space (ih, 0); */
152 * for directory items it is entry count, for directs and stat
153 * datas - 0xffff, for indirects - 0
155 put_ih_entry_count(ih, entry_count);
159 * FIXME: we might cache recently accessed indirect item
160 * Ugh. Not too eager for that....
161 * I cut the code until such time as I see a convincing argument (benchmark).
162 * I don't want a bloated inode struct..., and I don't like code complexity....
166 * cutting the code is fine, since it really isn't in use yet and is easy
167 * to add back in. But, Vladimir has a really good idea here. Think
168 * about what happens for reading a file. For each page,
169 * The VFS layer calls reiserfs_readpage, who searches the tree to find
170 * an indirect item. This indirect item has X number of pointers, where
171 * X is a big number if we've done the block allocation right. But,
172 * we only use one or two of these pointers during each call to readpage,
173 * needlessly researching again later on.
175 * The size of the cache could be dynamic based on the size of the file.
177 * I'd also like to see us cache the location the stat data item, since
178 * we are needlessly researching for that frequently.
180 * --chris
184 * If this page has a file tail in it, and
185 * it was read in by get_block_create_0, the page data is valid,
186 * but tail is still sitting in a direct item, and we can't write to
187 * it. So, look through this page, and check all the mapped buffers
188 * to make sure they have valid block numbers. Any that don't need
189 * to be unmapped, so that __block_write_begin will correctly call
190 * reiserfs_get_block to convert the tail into an unformatted node
192 static inline void fix_tail_page_for_writing(struct page *page)
194 struct buffer_head *head, *next, *bh;
196 if (page && page_has_buffers(page)) {
197 head = page_buffers(page);
198 bh = head;
199 do {
200 next = bh->b_this_page;
201 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
202 reiserfs_unmap_buffer(bh);
204 bh = next;
205 } while (bh != head);
210 * reiserfs_get_block does not need to allocate a block only if it has been
211 * done already or non-hole position has been found in the indirect item
213 static inline int allocation_needed(int retval, b_blocknr_t allocated,
214 struct item_head *ih,
215 __le32 * item, int pos_in_item)
217 if (allocated)
218 return 0;
219 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
220 get_block_num(item, pos_in_item))
221 return 0;
222 return 1;
225 static inline int indirect_item_found(int retval, struct item_head *ih)
227 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
230 static inline void set_block_dev_mapped(struct buffer_head *bh,
231 b_blocknr_t block, struct inode *inode)
233 map_bh(bh, inode->i_sb, block);
237 * files which were created in the earlier version can not be longer,
238 * than 2 gb
240 static int file_capable(struct inode *inode, sector_t block)
242 /* it is new file. */
243 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
244 /* old file, but 'block' is inside of 2gb */
245 block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
246 return 1;
248 return 0;
251 static int restart_transaction(struct reiserfs_transaction_handle *th,
252 struct inode *inode, struct treepath *path)
254 struct super_block *s = th->t_super;
255 int err;
257 BUG_ON(!th->t_trans_id);
258 BUG_ON(!th->t_refcount);
260 pathrelse(path);
262 /* we cannot restart while nested */
263 if (th->t_refcount > 1) {
264 return 0;
266 reiserfs_update_sd(th, inode);
267 err = journal_end(th);
268 if (!err) {
269 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
270 if (!err)
271 reiserfs_update_inode_transaction(inode);
273 return err;
277 * it is called by get_block when create == 0. Returns block number
278 * for 'block'-th logical block of file. When it hits direct item it
279 * returns 0 (being called from bmap) or read direct item into piece
280 * of page (bh_result)
281 * Please improve the english/clarity in the comment above, as it is
282 * hard to understand.
284 static int _get_block_create_0(struct inode *inode, sector_t block,
285 struct buffer_head *bh_result, int args)
287 INITIALIZE_PATH(path);
288 struct cpu_key key;
289 struct buffer_head *bh;
290 struct item_head *ih, tmp_ih;
291 b_blocknr_t blocknr;
292 char *p = NULL;
293 int chars;
294 int ret;
295 int result;
296 int done = 0;
297 unsigned long offset;
299 /* prepare the key to look for the 'block'-th block of file */
300 make_cpu_key(&key, inode,
301 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
304 result = search_for_position_by_key(inode->i_sb, &key, &path);
305 if (result != POSITION_FOUND) {
306 pathrelse(&path);
307 if (p)
308 kunmap(bh_result->b_page);
309 if (result == IO_ERROR)
310 return -EIO;
312 * We do not return -ENOENT if there is a hole but page is
313 * uptodate, because it means that there is some MMAPED data
314 * associated with it that is yet to be written to disk.
316 if ((args & GET_BLOCK_NO_HOLE)
317 && !PageUptodate(bh_result->b_page)) {
318 return -ENOENT;
320 return 0;
323 bh = get_last_bh(&path);
324 ih = tp_item_head(&path);
325 if (is_indirect_le_ih(ih)) {
326 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
329 * FIXME: here we could cache indirect item or part of it in
330 * the inode to avoid search_by_key in case of subsequent
331 * access to file
333 blocknr = get_block_num(ind_item, path.pos_in_item);
334 ret = 0;
335 if (blocknr) {
336 map_bh(bh_result, inode->i_sb, blocknr);
337 if (path.pos_in_item ==
338 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
339 set_buffer_boundary(bh_result);
341 } else
343 * We do not return -ENOENT if there is a hole but
344 * page is uptodate, because it means that there is
345 * some MMAPED data associated with it that is
346 * yet to be written to disk.
348 if ((args & GET_BLOCK_NO_HOLE)
349 && !PageUptodate(bh_result->b_page)) {
350 ret = -ENOENT;
353 pathrelse(&path);
354 if (p)
355 kunmap(bh_result->b_page);
356 return ret;
358 /* requested data are in direct item(s) */
359 if (!(args & GET_BLOCK_READ_DIRECT)) {
361 * we are called by bmap. FIXME: we can not map block of file
362 * when it is stored in direct item(s)
364 pathrelse(&path);
365 if (p)
366 kunmap(bh_result->b_page);
367 return -ENOENT;
371 * if we've got a direct item, and the buffer or page was uptodate,
372 * we don't want to pull data off disk again. skip to the
373 * end, where we map the buffer and return
375 if (buffer_uptodate(bh_result)) {
376 goto finished;
377 } else
379 * grab_tail_page can trigger calls to reiserfs_get_block on
380 * up to date pages without any buffers. If the page is up
381 * to date, we don't want read old data off disk. Set the up
382 * to date bit on the buffer instead and jump to the end
384 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
385 set_buffer_uptodate(bh_result);
386 goto finished;
388 /* read file tail into part of page */
389 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
390 copy_item_head(&tmp_ih, ih);
393 * we only want to kmap if we are reading the tail into the page.
394 * this is not the common case, so we don't kmap until we are
395 * sure we need to. But, this means the item might move if
396 * kmap schedules
398 if (!p)
399 p = (char *)kmap(bh_result->b_page);
401 p += offset;
402 memset(p, 0, inode->i_sb->s_blocksize);
403 do {
404 if (!is_direct_le_ih(ih)) {
405 BUG();
408 * make sure we don't read more bytes than actually exist in
409 * the file. This can happen in odd cases where i_size isn't
410 * correct, and when direct item padding results in a few
411 * extra bytes at the end of the direct item
413 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
414 break;
415 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
416 chars =
417 inode->i_size - (le_ih_k_offset(ih) - 1) -
418 path.pos_in_item;
419 done = 1;
420 } else {
421 chars = ih_item_len(ih) - path.pos_in_item;
423 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
425 if (done)
426 break;
428 p += chars;
431 * we done, if read direct item is not the last item of
432 * node FIXME: we could try to check right delimiting key
433 * to see whether direct item continues in the right
434 * neighbor or rely on i_size
436 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
437 break;
439 /* update key to look for the next piece */
440 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
441 result = search_for_position_by_key(inode->i_sb, &key, &path);
442 if (result != POSITION_FOUND)
443 /* i/o error most likely */
444 break;
445 bh = get_last_bh(&path);
446 ih = tp_item_head(&path);
447 } while (1);
449 flush_dcache_page(bh_result->b_page);
450 kunmap(bh_result->b_page);
452 finished:
453 pathrelse(&path);
455 if (result == IO_ERROR)
456 return -EIO;
459 * this buffer has valid data, but isn't valid for io. mapping it to
460 * block #0 tells the rest of reiserfs it just has a tail in it
462 map_bh(bh_result, inode->i_sb, 0);
463 set_buffer_uptodate(bh_result);
464 return 0;
468 * this is called to create file map. So, _get_block_create_0 will not
469 * read direct item
471 static int reiserfs_bmap(struct inode *inode, sector_t block,
472 struct buffer_head *bh_result, int create)
474 if (!file_capable(inode, block))
475 return -EFBIG;
477 reiserfs_write_lock(inode->i_sb);
478 /* do not read the direct item */
479 _get_block_create_0(inode, block, bh_result, 0);
480 reiserfs_write_unlock(inode->i_sb);
481 return 0;
485 * special version of get_block that is only used by grab_tail_page right
486 * now. It is sent to __block_write_begin, and when you try to get a
487 * block past the end of the file (or a block from a hole) it returns
488 * -ENOENT instead of a valid buffer. __block_write_begin expects to
489 * be able to do i/o on the buffers returned, unless an error value
490 * is also returned.
492 * So, this allows __block_write_begin to be used for reading a single block
493 * in a page. Where it does not produce a valid page for holes, or past the
494 * end of the file. This turns out to be exactly what we need for reading
495 * tails for conversion.
497 * The point of the wrapper is forcing a certain value for create, even
498 * though the VFS layer is calling this function with create==1. If you
499 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
500 * don't use this function.
502 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
503 struct buffer_head *bh_result,
504 int create)
506 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
510 * This is special helper for reiserfs_get_block in case we are executing
511 * direct_IO request.
513 static int reiserfs_get_blocks_direct_io(struct inode *inode,
514 sector_t iblock,
515 struct buffer_head *bh_result,
516 int create)
518 int ret;
520 bh_result->b_page = NULL;
523 * We set the b_size before reiserfs_get_block call since it is
524 * referenced in convert_tail_for_hole() that may be called from
525 * reiserfs_get_block()
527 bh_result->b_size = (1 << inode->i_blkbits);
529 ret = reiserfs_get_block(inode, iblock, bh_result,
530 create | GET_BLOCK_NO_DANGLE);
531 if (ret)
532 goto out;
534 /* don't allow direct io onto tail pages */
535 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
537 * make sure future calls to the direct io funcs for this
538 * offset in the file fail by unmapping the buffer
540 clear_buffer_mapped(bh_result);
541 ret = -EINVAL;
545 * Possible unpacked tail. Flush the data before pages have
546 * disappeared
548 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
549 int err;
551 reiserfs_write_lock(inode->i_sb);
553 err = reiserfs_commit_for_inode(inode);
554 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
556 reiserfs_write_unlock(inode->i_sb);
558 if (err < 0)
559 ret = err;
561 out:
562 return ret;
566 * helper function for when reiserfs_get_block is called for a hole
567 * but the file tail is still in a direct item
568 * bh_result is the buffer head for the hole
569 * tail_offset is the offset of the start of the tail in the file
571 * This calls prepare_write, which will start a new transaction
572 * you should not be in a transaction, or have any paths held when you
573 * call this.
575 static int convert_tail_for_hole(struct inode *inode,
576 struct buffer_head *bh_result,
577 loff_t tail_offset)
579 unsigned long index;
580 unsigned long tail_end;
581 unsigned long tail_start;
582 struct page *tail_page;
583 struct page *hole_page = bh_result->b_page;
584 int retval = 0;
586 if ((tail_offset & (bh_result->b_size - 1)) != 1)
587 return -EIO;
589 /* always try to read until the end of the block */
590 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
591 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
593 index = tail_offset >> PAGE_CACHE_SHIFT;
595 * hole_page can be zero in case of direct_io, we are sure
596 * that we cannot get here if we write with O_DIRECT into tail page
598 if (!hole_page || index != hole_page->index) {
599 tail_page = grab_cache_page(inode->i_mapping, index);
600 retval = -ENOMEM;
601 if (!tail_page) {
602 goto out;
604 } else {
605 tail_page = hole_page;
609 * we don't have to make sure the conversion did not happen while
610 * we were locking the page because anyone that could convert
611 * must first take i_mutex.
613 * We must fix the tail page for writing because it might have buffers
614 * that are mapped, but have a block number of 0. This indicates tail
615 * data that has been read directly into the page, and
616 * __block_write_begin won't trigger a get_block in this case.
618 fix_tail_page_for_writing(tail_page);
619 retval = __reiserfs_write_begin(tail_page, tail_start,
620 tail_end - tail_start);
621 if (retval)
622 goto unlock;
624 /* tail conversion might change the data in the page */
625 flush_dcache_page(tail_page);
627 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
629 unlock:
630 if (tail_page != hole_page) {
631 unlock_page(tail_page);
632 page_cache_release(tail_page);
634 out:
635 return retval;
638 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
639 sector_t block,
640 struct inode *inode,
641 b_blocknr_t * allocated_block_nr,
642 struct treepath *path, int flags)
644 BUG_ON(!th->t_trans_id);
646 #ifdef REISERFS_PREALLOCATE
647 if (!(flags & GET_BLOCK_NO_IMUX)) {
648 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
649 path, block);
651 #endif
652 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
653 block);
656 int reiserfs_get_block(struct inode *inode, sector_t block,
657 struct buffer_head *bh_result, int create)
659 int repeat, retval = 0;
660 /* b_blocknr_t is (unsigned) 32 bit int*/
661 b_blocknr_t allocated_block_nr = 0;
662 INITIALIZE_PATH(path);
663 int pos_in_item;
664 struct cpu_key key;
665 struct buffer_head *bh, *unbh = NULL;
666 struct item_head *ih, tmp_ih;
667 __le32 *item;
668 int done;
669 int fs_gen;
670 struct reiserfs_transaction_handle *th = NULL;
672 * space reserved in transaction batch:
673 * . 3 balancings in direct->indirect conversion
674 * . 1 block involved into reiserfs_update_sd()
675 * XXX in practically impossible worst case direct2indirect()
676 * can incur (much) more than 3 balancings.
677 * quota update for user, group
679 int jbegin_count =
680 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
681 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
682 int version;
683 int dangle = 1;
684 loff_t new_offset =
685 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
687 reiserfs_write_lock(inode->i_sb);
688 version = get_inode_item_key_version(inode);
690 if (!file_capable(inode, block)) {
691 reiserfs_write_unlock(inode->i_sb);
692 return -EFBIG;
696 * if !create, we aren't changing the FS, so we don't need to
697 * log anything, so we don't need to start a transaction
699 if (!(create & GET_BLOCK_CREATE)) {
700 int ret;
701 /* find number of block-th logical block of the file */
702 ret = _get_block_create_0(inode, block, bh_result,
703 create | GET_BLOCK_READ_DIRECT);
704 reiserfs_write_unlock(inode->i_sb);
705 return ret;
709 * if we're already in a transaction, make sure to close
710 * any new transactions we start in this func
712 if ((create & GET_BLOCK_NO_DANGLE) ||
713 reiserfs_transaction_running(inode->i_sb))
714 dangle = 0;
717 * If file is of such a size, that it might have a tail and
718 * tails are enabled we should mark it as possibly needing
719 * tail packing on close
721 if ((have_large_tails(inode->i_sb)
722 && inode->i_size < i_block_size(inode) * 4)
723 || (have_small_tails(inode->i_sb)
724 && inode->i_size < i_block_size(inode)))
725 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
727 /* set the key of the first byte in the 'block'-th block of file */
728 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
729 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
730 start_trans:
731 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
732 if (!th) {
733 retval = -ENOMEM;
734 goto failure;
736 reiserfs_update_inode_transaction(inode);
738 research:
740 retval = search_for_position_by_key(inode->i_sb, &key, &path);
741 if (retval == IO_ERROR) {
742 retval = -EIO;
743 goto failure;
746 bh = get_last_bh(&path);
747 ih = tp_item_head(&path);
748 item = tp_item_body(&path);
749 pos_in_item = path.pos_in_item;
751 fs_gen = get_generation(inode->i_sb);
752 copy_item_head(&tmp_ih, ih);
754 if (allocation_needed
755 (retval, allocated_block_nr, ih, item, pos_in_item)) {
756 /* we have to allocate block for the unformatted node */
757 if (!th) {
758 pathrelse(&path);
759 goto start_trans;
762 repeat =
763 _allocate_block(th, block, inode, &allocated_block_nr,
764 &path, create);
767 * restart the transaction to give the journal a chance to free
768 * some blocks. releases the path, so we have to go back to
769 * research if we succeed on the second try
771 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
772 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
773 retval = restart_transaction(th, inode, &path);
774 if (retval)
775 goto failure;
776 repeat =
777 _allocate_block(th, block, inode,
778 &allocated_block_nr, NULL, create);
780 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
781 goto research;
783 if (repeat == QUOTA_EXCEEDED)
784 retval = -EDQUOT;
785 else
786 retval = -ENOSPC;
787 goto failure;
790 if (fs_changed(fs_gen, inode->i_sb)
791 && item_moved(&tmp_ih, &path)) {
792 goto research;
796 if (indirect_item_found(retval, ih)) {
797 b_blocknr_t unfm_ptr;
799 * 'block'-th block is in the file already (there is
800 * corresponding cell in some indirect item). But it may be
801 * zero unformatted node pointer (hole)
803 unfm_ptr = get_block_num(item, pos_in_item);
804 if (unfm_ptr == 0) {
805 /* use allocated block to plug the hole */
806 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
807 if (fs_changed(fs_gen, inode->i_sb)
808 && item_moved(&tmp_ih, &path)) {
809 reiserfs_restore_prepared_buffer(inode->i_sb,
810 bh);
811 goto research;
813 set_buffer_new(bh_result);
814 if (buffer_dirty(bh_result)
815 && reiserfs_data_ordered(inode->i_sb))
816 reiserfs_add_ordered_list(inode, bh_result);
817 put_block_num(item, pos_in_item, allocated_block_nr);
818 unfm_ptr = allocated_block_nr;
819 journal_mark_dirty(th, bh);
820 reiserfs_update_sd(th, inode);
822 set_block_dev_mapped(bh_result, unfm_ptr, inode);
823 pathrelse(&path);
824 retval = 0;
825 if (!dangle && th)
826 retval = reiserfs_end_persistent_transaction(th);
828 reiserfs_write_unlock(inode->i_sb);
831 * the item was found, so new blocks were not added to the file
832 * there is no need to make sure the inode is updated with this
833 * transaction
835 return retval;
838 if (!th) {
839 pathrelse(&path);
840 goto start_trans;
844 * desired position is not found or is in the direct item. We have
845 * to append file with holes up to 'block'-th block converting
846 * direct items to indirect one if necessary
848 done = 0;
849 do {
850 if (is_statdata_le_ih(ih)) {
851 __le32 unp = 0;
852 struct cpu_key tmp_key;
854 /* indirect item has to be inserted */
855 make_le_item_head(&tmp_ih, &key, version, 1,
856 TYPE_INDIRECT, UNFM_P_SIZE,
857 0 /* free_space */ );
860 * we are going to add 'block'-th block to the file.
861 * Use allocated block for that
863 if (cpu_key_k_offset(&key) == 1) {
864 unp = cpu_to_le32(allocated_block_nr);
865 set_block_dev_mapped(bh_result,
866 allocated_block_nr, inode);
867 set_buffer_new(bh_result);
868 done = 1;
870 tmp_key = key; /* ;) */
871 set_cpu_key_k_offset(&tmp_key, 1);
872 PATH_LAST_POSITION(&path)++;
874 retval =
875 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
876 inode, (char *)&unp);
877 if (retval) {
878 reiserfs_free_block(th, inode,
879 allocated_block_nr, 1);
881 * retval == -ENOSPC, -EDQUOT or -EIO
882 * or -EEXIST
884 goto failure;
886 } else if (is_direct_le_ih(ih)) {
887 /* direct item has to be converted */
888 loff_t tail_offset;
890 tail_offset =
891 ((le_ih_k_offset(ih) -
892 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
895 * direct item we just found fits into block we have
896 * to map. Convert it into unformatted node: use
897 * bh_result for the conversion
899 if (tail_offset == cpu_key_k_offset(&key)) {
900 set_block_dev_mapped(bh_result,
901 allocated_block_nr, inode);
902 unbh = bh_result;
903 done = 1;
904 } else {
906 * we have to pad file tail stored in direct
907 * item(s) up to block size and convert it
908 * to unformatted node. FIXME: this should
909 * also get into page cache
912 pathrelse(&path);
914 * ugly, but we can only end the transaction if
915 * we aren't nested
917 BUG_ON(!th->t_refcount);
918 if (th->t_refcount == 1) {
919 retval =
920 reiserfs_end_persistent_transaction
921 (th);
922 th = NULL;
923 if (retval)
924 goto failure;
927 retval =
928 convert_tail_for_hole(inode, bh_result,
929 tail_offset);
930 if (retval) {
931 if (retval != -ENOSPC)
932 reiserfs_error(inode->i_sb,
933 "clm-6004",
934 "convert tail failed "
935 "inode %lu, error %d",
936 inode->i_ino,
937 retval);
938 if (allocated_block_nr) {
940 * the bitmap, the super,
941 * and the stat data == 3
943 if (!th)
944 th = reiserfs_persistent_transaction(inode->i_sb, 3);
945 if (th)
946 reiserfs_free_block(th,
947 inode,
948 allocated_block_nr,
951 goto failure;
953 goto research;
955 retval =
956 direct2indirect(th, inode, &path, unbh,
957 tail_offset);
958 if (retval) {
959 reiserfs_unmap_buffer(unbh);
960 reiserfs_free_block(th, inode,
961 allocated_block_nr, 1);
962 goto failure;
965 * it is important the set_buffer_uptodate is done
966 * after the direct2indirect. The buffer might
967 * contain valid data newer than the data on disk
968 * (read by readpage, changed, and then sent here by
969 * writepage). direct2indirect needs to know if unbh
970 * was already up to date, so it can decide if the
971 * data in unbh needs to be replaced with data from
972 * the disk
974 set_buffer_uptodate(unbh);
977 * unbh->b_page == NULL in case of DIRECT_IO request,
978 * this means buffer will disappear shortly, so it
979 * should not be added to
981 if (unbh->b_page) {
983 * we've converted the tail, so we must
984 * flush unbh before the transaction commits
986 reiserfs_add_tail_list(inode, unbh);
989 * mark it dirty now to prevent commit_write
990 * from adding this buffer to the inode's
991 * dirty buffer list
994 * AKPM: changed __mark_buffer_dirty to
995 * mark_buffer_dirty(). It's still atomic,
996 * but it sets the page dirty too, which makes
997 * it eligible for writeback at any time by the
998 * VM (which was also the case with
999 * __mark_buffer_dirty())
1001 mark_buffer_dirty(unbh);
1003 } else {
1005 * append indirect item with holes if needed, when
1006 * appending pointer to 'block'-th block use block,
1007 * which is already allocated
1009 struct cpu_key tmp_key;
1011 * We use this in case we need to allocate
1012 * only one block which is a fastpath
1014 unp_t unf_single = 0;
1015 unp_t *un;
1016 __u64 max_to_insert =
1017 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1018 UNFM_P_SIZE;
1019 __u64 blocks_needed;
1021 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1022 "vs-804: invalid position for append");
1024 * indirect item has to be appended,
1025 * set up key of that position
1026 * (key type is unimportant)
1028 make_cpu_key(&tmp_key, inode,
1029 le_key_k_offset(version,
1030 &ih->ih_key) +
1031 op_bytes_number(ih,
1032 inode->i_sb->s_blocksize),
1033 TYPE_INDIRECT, 3);
1035 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1036 "green-805: invalid offset");
1037 blocks_needed =
1039 ((cpu_key_k_offset(&key) -
1040 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1041 s_blocksize_bits);
1043 if (blocks_needed == 1) {
1044 un = &unf_single;
1045 } else {
1046 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
1047 if (!un) {
1048 un = &unf_single;
1049 blocks_needed = 1;
1050 max_to_insert = 0;
1053 if (blocks_needed <= max_to_insert) {
1055 * we are going to add target block to
1056 * the file. Use allocated block for that
1058 un[blocks_needed - 1] =
1059 cpu_to_le32(allocated_block_nr);
1060 set_block_dev_mapped(bh_result,
1061 allocated_block_nr, inode);
1062 set_buffer_new(bh_result);
1063 done = 1;
1064 } else {
1065 /* paste hole to the indirect item */
1067 * If kmalloc failed, max_to_insert becomes
1068 * zero and it means we only have space for
1069 * one block
1071 blocks_needed =
1072 max_to_insert ? max_to_insert : 1;
1074 retval =
1075 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1076 (char *)un,
1077 UNFM_P_SIZE *
1078 blocks_needed);
1080 if (blocks_needed != 1)
1081 kfree(un);
1083 if (retval) {
1084 reiserfs_free_block(th, inode,
1085 allocated_block_nr, 1);
1086 goto failure;
1088 if (!done) {
1090 * We need to mark new file size in case
1091 * this function will be interrupted/aborted
1092 * later on. And we may do this only for
1093 * holes.
1095 inode->i_size +=
1096 inode->i_sb->s_blocksize * blocks_needed;
1100 if (done == 1)
1101 break;
1104 * this loop could log more blocks than we had originally
1105 * asked for. So, we have to allow the transaction to end
1106 * if it is too big or too full. Update the inode so things
1107 * are consistent if we crash before the function returns
1108 * release the path so that anybody waiting on the path before
1109 * ending their transaction will be able to continue.
1111 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1112 retval = restart_transaction(th, inode, &path);
1113 if (retval)
1114 goto failure;
1117 * inserting indirect pointers for a hole can take a
1118 * long time. reschedule if needed and also release the write
1119 * lock for others.
1121 reiserfs_cond_resched(inode->i_sb);
1123 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1124 if (retval == IO_ERROR) {
1125 retval = -EIO;
1126 goto failure;
1128 if (retval == POSITION_FOUND) {
1129 reiserfs_warning(inode->i_sb, "vs-825",
1130 "%K should not be found", &key);
1131 retval = -EEXIST;
1132 if (allocated_block_nr)
1133 reiserfs_free_block(th, inode,
1134 allocated_block_nr, 1);
1135 pathrelse(&path);
1136 goto failure;
1138 bh = get_last_bh(&path);
1139 ih = tp_item_head(&path);
1140 item = tp_item_body(&path);
1141 pos_in_item = path.pos_in_item;
1142 } while (1);
1144 retval = 0;
1146 failure:
1147 if (th && (!dangle || (retval && !th->t_trans_id))) {
1148 int err;
1149 if (th->t_trans_id)
1150 reiserfs_update_sd(th, inode);
1151 err = reiserfs_end_persistent_transaction(th);
1152 if (err)
1153 retval = err;
1156 reiserfs_write_unlock(inode->i_sb);
1157 reiserfs_check_path(&path);
1158 return retval;
1161 static int
1162 reiserfs_readpages(struct file *file, struct address_space *mapping,
1163 struct list_head *pages, unsigned nr_pages)
1165 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1169 * Compute real number of used bytes by file
1170 * Following three functions can go away when we'll have enough space in
1171 * stat item
1173 static int real_space_diff(struct inode *inode, int sd_size)
1175 int bytes;
1176 loff_t blocksize = inode->i_sb->s_blocksize;
1178 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1179 return sd_size;
1182 * End of file is also in full block with indirect reference, so round
1183 * up to the next block.
1185 * there is just no way to know if the tail is actually packed
1186 * on the file, so we have to assume it isn't. When we pack the
1187 * tail, we add 4 bytes to pretend there really is an unformatted
1188 * node pointer
1190 bytes =
1191 ((inode->i_size +
1192 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1193 sd_size;
1194 return bytes;
1197 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1198 int sd_size)
1200 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1201 return inode->i_size +
1202 (loff_t) (real_space_diff(inode, sd_size));
1204 return ((loff_t) real_space_diff(inode, sd_size)) +
1205 (((loff_t) blocks) << 9);
1208 /* Compute number of blocks used by file in ReiserFS counting */
1209 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1211 loff_t bytes = inode_get_bytes(inode);
1212 loff_t real_space = real_space_diff(inode, sd_size);
1214 /* keeps fsck and non-quota versions of reiserfs happy */
1215 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1216 bytes += (loff_t) 511;
1220 * files from before the quota patch might i_blocks such that
1221 * bytes < real_space. Deal with that here to prevent it from
1222 * going negative.
1224 if (bytes < real_space)
1225 return 0;
1226 return (bytes - real_space) >> 9;
1230 * BAD: new directories have stat data of new type and all other items
1231 * of old type. Version stored in the inode says about body items, so
1232 * in update_stat_data we can not rely on inode, but have to check
1233 * item version directly
1236 /* called by read_locked_inode */
1237 static void init_inode(struct inode *inode, struct treepath *path)
1239 struct buffer_head *bh;
1240 struct item_head *ih;
1241 __u32 rdev;
1243 bh = PATH_PLAST_BUFFER(path);
1244 ih = tp_item_head(path);
1246 copy_key(INODE_PKEY(inode), &ih->ih_key);
1248 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1249 REISERFS_I(inode)->i_flags = 0;
1250 REISERFS_I(inode)->i_prealloc_block = 0;
1251 REISERFS_I(inode)->i_prealloc_count = 0;
1252 REISERFS_I(inode)->i_trans_id = 0;
1253 REISERFS_I(inode)->i_jl = NULL;
1254 reiserfs_init_xattr_rwsem(inode);
1256 if (stat_data_v1(ih)) {
1257 struct stat_data_v1 *sd =
1258 (struct stat_data_v1 *)ih_item_body(bh, ih);
1259 unsigned long blocks;
1261 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1262 set_inode_sd_version(inode, STAT_DATA_V1);
1263 inode->i_mode = sd_v1_mode(sd);
1264 set_nlink(inode, sd_v1_nlink(sd));
1265 i_uid_write(inode, sd_v1_uid(sd));
1266 i_gid_write(inode, sd_v1_gid(sd));
1267 inode->i_size = sd_v1_size(sd);
1268 inode->i_atime.tv_sec = sd_v1_atime(sd);
1269 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1270 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1271 inode->i_atime.tv_nsec = 0;
1272 inode->i_ctime.tv_nsec = 0;
1273 inode->i_mtime.tv_nsec = 0;
1275 inode->i_blocks = sd_v1_blocks(sd);
1276 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1277 blocks = (inode->i_size + 511) >> 9;
1278 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1281 * there was a bug in <=3.5.23 when i_blocks could take
1282 * negative values. Starting from 3.5.17 this value could
1283 * even be stored in stat data. For such files we set
1284 * i_blocks based on file size. Just 2 notes: this can be
1285 * wrong for sparse files. On-disk value will be only
1286 * updated if file's inode will ever change
1288 if (inode->i_blocks > blocks) {
1289 inode->i_blocks = blocks;
1292 rdev = sd_v1_rdev(sd);
1293 REISERFS_I(inode)->i_first_direct_byte =
1294 sd_v1_first_direct_byte(sd);
1297 * an early bug in the quota code can give us an odd
1298 * number for the block count. This is incorrect, fix it here.
1300 if (inode->i_blocks & 1) {
1301 inode->i_blocks++;
1303 inode_set_bytes(inode,
1304 to_real_used_space(inode, inode->i_blocks,
1305 SD_V1_SIZE));
1307 * nopack is initially zero for v1 objects. For v2 objects,
1308 * nopack is initialised from sd_attrs
1310 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1311 } else {
1313 * new stat data found, but object may have old items
1314 * (directories and symlinks)
1316 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1318 inode->i_mode = sd_v2_mode(sd);
1319 set_nlink(inode, sd_v2_nlink(sd));
1320 i_uid_write(inode, sd_v2_uid(sd));
1321 inode->i_size = sd_v2_size(sd);
1322 i_gid_write(inode, sd_v2_gid(sd));
1323 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1324 inode->i_atime.tv_sec = sd_v2_atime(sd);
1325 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1326 inode->i_ctime.tv_nsec = 0;
1327 inode->i_mtime.tv_nsec = 0;
1328 inode->i_atime.tv_nsec = 0;
1329 inode->i_blocks = sd_v2_blocks(sd);
1330 rdev = sd_v2_rdev(sd);
1331 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1332 inode->i_generation =
1333 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1334 else
1335 inode->i_generation = sd_v2_generation(sd);
1337 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1338 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1339 else
1340 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1341 REISERFS_I(inode)->i_first_direct_byte = 0;
1342 set_inode_sd_version(inode, STAT_DATA_V2);
1343 inode_set_bytes(inode,
1344 to_real_used_space(inode, inode->i_blocks,
1345 SD_V2_SIZE));
1347 * read persistent inode attributes from sd and initialise
1348 * generic inode flags from them
1350 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1351 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1354 pathrelse(path);
1355 if (S_ISREG(inode->i_mode)) {
1356 inode->i_op = &reiserfs_file_inode_operations;
1357 inode->i_fop = &reiserfs_file_operations;
1358 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1359 } else if (S_ISDIR(inode->i_mode)) {
1360 inode->i_op = &reiserfs_dir_inode_operations;
1361 inode->i_fop = &reiserfs_dir_operations;
1362 } else if (S_ISLNK(inode->i_mode)) {
1363 inode->i_op = &reiserfs_symlink_inode_operations;
1364 inode_nohighmem(inode);
1365 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1366 } else {
1367 inode->i_blocks = 0;
1368 inode->i_op = &reiserfs_special_inode_operations;
1369 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1373 /* update new stat data with inode fields */
1374 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1376 struct stat_data *sd_v2 = (struct stat_data *)sd;
1377 __u16 flags;
1379 set_sd_v2_mode(sd_v2, inode->i_mode);
1380 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1381 set_sd_v2_uid(sd_v2, i_uid_read(inode));
1382 set_sd_v2_size(sd_v2, size);
1383 set_sd_v2_gid(sd_v2, i_gid_read(inode));
1384 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1385 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1386 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1387 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1388 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1389 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1390 else
1391 set_sd_v2_generation(sd_v2, inode->i_generation);
1392 flags = REISERFS_I(inode)->i_attrs;
1393 i_attrs_to_sd_attrs(inode, &flags);
1394 set_sd_v2_attrs(sd_v2, flags);
1397 /* used to copy inode's fields to old stat data */
1398 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1400 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1402 set_sd_v1_mode(sd_v1, inode->i_mode);
1403 set_sd_v1_uid(sd_v1, i_uid_read(inode));
1404 set_sd_v1_gid(sd_v1, i_gid_read(inode));
1405 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1406 set_sd_v1_size(sd_v1, size);
1407 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1408 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1409 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1411 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1412 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1413 else
1414 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1416 /* Sigh. i_first_direct_byte is back */
1417 set_sd_v1_first_direct_byte(sd_v1,
1418 REISERFS_I(inode)->i_first_direct_byte);
1422 * NOTE, you must prepare the buffer head before sending it here,
1423 * and then log it after the call
1425 static void update_stat_data(struct treepath *path, struct inode *inode,
1426 loff_t size)
1428 struct buffer_head *bh;
1429 struct item_head *ih;
1431 bh = PATH_PLAST_BUFFER(path);
1432 ih = tp_item_head(path);
1434 if (!is_statdata_le_ih(ih))
1435 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1436 INODE_PKEY(inode), ih);
1438 /* path points to old stat data */
1439 if (stat_data_v1(ih)) {
1440 inode2sd_v1(ih_item_body(bh, ih), inode, size);
1441 } else {
1442 inode2sd(ih_item_body(bh, ih), inode, size);
1445 return;
1448 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1449 struct inode *inode, loff_t size)
1451 struct cpu_key key;
1452 INITIALIZE_PATH(path);
1453 struct buffer_head *bh;
1454 int fs_gen;
1455 struct item_head *ih, tmp_ih;
1456 int retval;
1458 BUG_ON(!th->t_trans_id);
1460 /* key type is unimportant */
1461 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1463 for (;;) {
1464 int pos;
1465 /* look for the object's stat data */
1466 retval = search_item(inode->i_sb, &key, &path);
1467 if (retval == IO_ERROR) {
1468 reiserfs_error(inode->i_sb, "vs-13050",
1469 "i/o failure occurred trying to "
1470 "update %K stat data", &key);
1471 return;
1473 if (retval == ITEM_NOT_FOUND) {
1474 pos = PATH_LAST_POSITION(&path);
1475 pathrelse(&path);
1476 if (inode->i_nlink == 0) {
1477 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1478 return;
1480 reiserfs_warning(inode->i_sb, "vs-13060",
1481 "stat data of object %k (nlink == %d) "
1482 "not found (pos %d)",
1483 INODE_PKEY(inode), inode->i_nlink,
1484 pos);
1485 reiserfs_check_path(&path);
1486 return;
1490 * sigh, prepare_for_journal might schedule. When it
1491 * schedules the FS might change. We have to detect that,
1492 * and loop back to the search if the stat data item has moved
1494 bh = get_last_bh(&path);
1495 ih = tp_item_head(&path);
1496 copy_item_head(&tmp_ih, ih);
1497 fs_gen = get_generation(inode->i_sb);
1498 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1500 /* Stat_data item has been moved after scheduling. */
1501 if (fs_changed(fs_gen, inode->i_sb)
1502 && item_moved(&tmp_ih, &path)) {
1503 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1504 continue;
1506 break;
1508 update_stat_data(&path, inode, size);
1509 journal_mark_dirty(th, bh);
1510 pathrelse(&path);
1511 return;
1515 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1516 * does a make_bad_inode when things go wrong. But, we need to make sure
1517 * and clear the key in the private portion of the inode, otherwise a
1518 * corresponding iput might try to delete whatever object the inode last
1519 * represented.
1521 static void reiserfs_make_bad_inode(struct inode *inode)
1523 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1524 make_bad_inode(inode);
1528 * initially this function was derived from minix or ext2's analog and
1529 * evolved as the prototype did
1531 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1533 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1534 inode->i_ino = args->objectid;
1535 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1536 return 0;
1540 * looks for stat data in the tree, and fills up the fields of in-core
1541 * inode stat data fields
1543 void reiserfs_read_locked_inode(struct inode *inode,
1544 struct reiserfs_iget_args *args)
1546 INITIALIZE_PATH(path_to_sd);
1547 struct cpu_key key;
1548 unsigned long dirino;
1549 int retval;
1551 dirino = args->dirid;
1554 * set version 1, version 2 could be used too, because stat data
1555 * key is the same in both versions
1557 key.version = KEY_FORMAT_3_5;
1558 key.on_disk_key.k_dir_id = dirino;
1559 key.on_disk_key.k_objectid = inode->i_ino;
1560 key.on_disk_key.k_offset = 0;
1561 key.on_disk_key.k_type = 0;
1563 /* look for the object's stat data */
1564 retval = search_item(inode->i_sb, &key, &path_to_sd);
1565 if (retval == IO_ERROR) {
1566 reiserfs_error(inode->i_sb, "vs-13070",
1567 "i/o failure occurred trying to find "
1568 "stat data of %K", &key);
1569 reiserfs_make_bad_inode(inode);
1570 return;
1573 /* a stale NFS handle can trigger this without it being an error */
1574 if (retval != ITEM_FOUND) {
1575 pathrelse(&path_to_sd);
1576 reiserfs_make_bad_inode(inode);
1577 clear_nlink(inode);
1578 return;
1581 init_inode(inode, &path_to_sd);
1584 * It is possible that knfsd is trying to access inode of a file
1585 * that is being removed from the disk by some other thread. As we
1586 * update sd on unlink all that is required is to check for nlink
1587 * here. This bug was first found by Sizif when debugging
1588 * SquidNG/Butterfly, forgotten, and found again after Philippe
1589 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1591 * More logical fix would require changes in fs/inode.c:iput() to
1592 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1593 * in iget() to return NULL if I_FREEING inode is found in
1594 * hash-table.
1598 * Currently there is one place where it's ok to meet inode with
1599 * nlink==0: processing of open-unlinked and half-truncated files
1600 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1602 if ((inode->i_nlink == 0) &&
1603 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1604 reiserfs_warning(inode->i_sb, "vs-13075",
1605 "dead inode read from disk %K. "
1606 "This is likely to be race with knfsd. Ignore",
1607 &key);
1608 reiserfs_make_bad_inode(inode);
1611 /* init inode should be relsing */
1612 reiserfs_check_path(&path_to_sd);
1615 * Stat data v1 doesn't support ACLs.
1617 if (get_inode_sd_version(inode) == STAT_DATA_V1)
1618 cache_no_acl(inode);
1622 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1624 * @inode: inode from hash table to check
1625 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1627 * This function is called by iget5_locked() to distinguish reiserfs inodes
1628 * having the same inode numbers. Such inodes can only exist due to some
1629 * error condition. One of them should be bad. Inodes with identical
1630 * inode numbers (objectids) are distinguished by parent directory ids.
1633 int reiserfs_find_actor(struct inode *inode, void *opaque)
1635 struct reiserfs_iget_args *args;
1637 args = opaque;
1638 /* args is already in CPU order */
1639 return (inode->i_ino == args->objectid) &&
1640 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1643 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1645 struct inode *inode;
1646 struct reiserfs_iget_args args;
1647 int depth;
1649 args.objectid = key->on_disk_key.k_objectid;
1650 args.dirid = key->on_disk_key.k_dir_id;
1651 depth = reiserfs_write_unlock_nested(s);
1652 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1653 reiserfs_find_actor, reiserfs_init_locked_inode,
1654 (void *)(&args));
1655 reiserfs_write_lock_nested(s, depth);
1656 if (!inode)
1657 return ERR_PTR(-ENOMEM);
1659 if (inode->i_state & I_NEW) {
1660 reiserfs_read_locked_inode(inode, &args);
1661 unlock_new_inode(inode);
1664 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1665 /* either due to i/o error or a stale NFS handle */
1666 iput(inode);
1667 inode = NULL;
1669 return inode;
1672 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1673 u32 objectid, u32 dir_id, u32 generation)
1676 struct cpu_key key;
1677 struct inode *inode;
1679 key.on_disk_key.k_objectid = objectid;
1680 key.on_disk_key.k_dir_id = dir_id;
1681 reiserfs_write_lock(sb);
1682 inode = reiserfs_iget(sb, &key);
1683 if (inode && !IS_ERR(inode) && generation != 0 &&
1684 generation != inode->i_generation) {
1685 iput(inode);
1686 inode = NULL;
1688 reiserfs_write_unlock(sb);
1690 return d_obtain_alias(inode);
1693 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1694 int fh_len, int fh_type)
1697 * fhtype happens to reflect the number of u32s encoded.
1698 * due to a bug in earlier code, fhtype might indicate there
1699 * are more u32s then actually fitted.
1700 * so if fhtype seems to be more than len, reduce fhtype.
1701 * Valid types are:
1702 * 2 - objectid + dir_id - legacy support
1703 * 3 - objectid + dir_id + generation
1704 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1705 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1706 * 6 - as above plus generation of directory
1707 * 6 does not fit in NFSv2 handles
1709 if (fh_type > fh_len) {
1710 if (fh_type != 6 || fh_len != 5)
1711 reiserfs_warning(sb, "reiserfs-13077",
1712 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1713 fh_type, fh_len);
1714 fh_type = fh_len;
1716 if (fh_len < 2)
1717 return NULL;
1719 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1720 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1723 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1724 int fh_len, int fh_type)
1726 if (fh_type > fh_len)
1727 fh_type = fh_len;
1728 if (fh_type < 4)
1729 return NULL;
1731 return reiserfs_get_dentry(sb,
1732 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1733 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1734 (fh_type == 6) ? fid->raw[5] : 0);
1737 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1738 struct inode *parent)
1740 int maxlen = *lenp;
1742 if (parent && (maxlen < 5)) {
1743 *lenp = 5;
1744 return FILEID_INVALID;
1745 } else if (maxlen < 3) {
1746 *lenp = 3;
1747 return FILEID_INVALID;
1750 data[0] = inode->i_ino;
1751 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1752 data[2] = inode->i_generation;
1753 *lenp = 3;
1754 if (parent) {
1755 data[3] = parent->i_ino;
1756 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1757 *lenp = 5;
1758 if (maxlen >= 6) {
1759 data[5] = parent->i_generation;
1760 *lenp = 6;
1763 return *lenp;
1767 * looks for stat data, then copies fields to it, marks the buffer
1768 * containing stat data as dirty
1771 * reiserfs inodes are never really dirty, since the dirty inode call
1772 * always logs them. This call allows the VFS inode marking routines
1773 * to properly mark inodes for datasync and such, but only actually
1774 * does something when called for a synchronous update.
1776 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1778 struct reiserfs_transaction_handle th;
1779 int jbegin_count = 1;
1781 if (inode->i_sb->s_flags & MS_RDONLY)
1782 return -EROFS;
1784 * memory pressure can sometimes initiate write_inode calls with
1785 * sync == 1,
1786 * these cases are just when the system needs ram, not when the
1787 * inode needs to reach disk for safety, and they can safely be
1788 * ignored because the altered inode has already been logged.
1790 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1791 reiserfs_write_lock(inode->i_sb);
1792 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1793 reiserfs_update_sd(&th, inode);
1794 journal_end_sync(&th);
1796 reiserfs_write_unlock(inode->i_sb);
1798 return 0;
1802 * stat data of new object is inserted already, this inserts the item
1803 * containing "." and ".." entries
1805 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1806 struct inode *inode,
1807 struct item_head *ih, struct treepath *path,
1808 struct inode *dir)
1810 struct super_block *sb = th->t_super;
1811 char empty_dir[EMPTY_DIR_SIZE];
1812 char *body = empty_dir;
1813 struct cpu_key key;
1814 int retval;
1816 BUG_ON(!th->t_trans_id);
1818 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1819 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1820 TYPE_DIRENTRY, 3 /*key length */ );
1823 * compose item head for new item. Directories consist of items of
1824 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1825 * is done by reiserfs_new_inode
1827 if (old_format_only(sb)) {
1828 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1829 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1831 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1832 ih->ih_key.k_objectid,
1833 INODE_PKEY(dir)->k_dir_id,
1834 INODE_PKEY(dir)->k_objectid);
1835 } else {
1836 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1837 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1839 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1840 ih->ih_key.k_objectid,
1841 INODE_PKEY(dir)->k_dir_id,
1842 INODE_PKEY(dir)->k_objectid);
1845 /* look for place in the tree for new item */
1846 retval = search_item(sb, &key, path);
1847 if (retval == IO_ERROR) {
1848 reiserfs_error(sb, "vs-13080",
1849 "i/o failure occurred creating new directory");
1850 return -EIO;
1852 if (retval == ITEM_FOUND) {
1853 pathrelse(path);
1854 reiserfs_warning(sb, "vs-13070",
1855 "object with this key exists (%k)",
1856 &(ih->ih_key));
1857 return -EEXIST;
1860 /* insert item, that is empty directory item */
1861 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1865 * stat data of object has been inserted, this inserts the item
1866 * containing the body of symlink
1868 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1869 struct inode *inode,
1870 struct item_head *ih,
1871 struct treepath *path, const char *symname,
1872 int item_len)
1874 struct super_block *sb = th->t_super;
1875 struct cpu_key key;
1876 int retval;
1878 BUG_ON(!th->t_trans_id);
1880 _make_cpu_key(&key, KEY_FORMAT_3_5,
1881 le32_to_cpu(ih->ih_key.k_dir_id),
1882 le32_to_cpu(ih->ih_key.k_objectid),
1883 1, TYPE_DIRECT, 3 /*key length */ );
1885 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1886 0 /*free_space */ );
1888 /* look for place in the tree for new item */
1889 retval = search_item(sb, &key, path);
1890 if (retval == IO_ERROR) {
1891 reiserfs_error(sb, "vs-13080",
1892 "i/o failure occurred creating new symlink");
1893 return -EIO;
1895 if (retval == ITEM_FOUND) {
1896 pathrelse(path);
1897 reiserfs_warning(sb, "vs-13080",
1898 "object with this key exists (%k)",
1899 &(ih->ih_key));
1900 return -EEXIST;
1903 /* insert item, that is body of symlink */
1904 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1908 * inserts the stat data into the tree, and then calls
1909 * reiserfs_new_directory (to insert ".", ".." item if new object is
1910 * directory) or reiserfs_new_symlink (to insert symlink body if new
1911 * object is symlink) or nothing (if new object is regular file)
1913 * NOTE! uid and gid must already be set in the inode. If we return
1914 * non-zero due to an error, we have to drop the quota previously allocated
1915 * for the fresh inode. This can only be done outside a transaction, so
1916 * if we return non-zero, we also end the transaction.
1918 * @th: active transaction handle
1919 * @dir: parent directory for new inode
1920 * @mode: mode of new inode
1921 * @symname: symlink contents if inode is symlink
1922 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1923 * symlinks
1924 * @inode: inode to be filled
1925 * @security: optional security context to associate with this inode
1927 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1928 struct inode *dir, umode_t mode, const char *symname,
1929 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1930 strlen (symname) for symlinks) */
1931 loff_t i_size, struct dentry *dentry,
1932 struct inode *inode,
1933 struct reiserfs_security_handle *security)
1935 struct super_block *sb = dir->i_sb;
1936 struct reiserfs_iget_args args;
1937 INITIALIZE_PATH(path_to_key);
1938 struct cpu_key key;
1939 struct item_head ih;
1940 struct stat_data sd;
1941 int retval;
1942 int err;
1943 int depth;
1945 BUG_ON(!th->t_trans_id);
1947 depth = reiserfs_write_unlock_nested(sb);
1948 err = dquot_alloc_inode(inode);
1949 reiserfs_write_lock_nested(sb, depth);
1950 if (err)
1951 goto out_end_trans;
1952 if (!dir->i_nlink) {
1953 err = -EPERM;
1954 goto out_bad_inode;
1957 /* item head of new item */
1958 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1959 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1960 if (!ih.ih_key.k_objectid) {
1961 err = -ENOMEM;
1962 goto out_bad_inode;
1964 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1965 if (old_format_only(sb))
1966 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1967 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1968 else
1969 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1970 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1971 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1972 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1974 depth = reiserfs_write_unlock_nested(inode->i_sb);
1975 err = insert_inode_locked4(inode, args.objectid,
1976 reiserfs_find_actor, &args);
1977 reiserfs_write_lock_nested(inode->i_sb, depth);
1978 if (err) {
1979 err = -EINVAL;
1980 goto out_bad_inode;
1983 if (old_format_only(sb))
1985 * not a perfect generation count, as object ids can be reused,
1986 * but this is as good as reiserfs can do right now.
1987 * note that the private part of inode isn't filled in yet,
1988 * we have to use the directory.
1990 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1991 else
1992 #if defined( USE_INODE_GENERATION_COUNTER )
1993 inode->i_generation =
1994 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1995 #else
1996 inode->i_generation = ++event;
1997 #endif
1999 /* fill stat data */
2000 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
2002 /* uid and gid must already be set by the caller for quota init */
2004 /* symlink cannot be immutable or append only, right? */
2005 if (S_ISLNK(inode->i_mode))
2006 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
2008 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
2009 inode->i_size = i_size;
2010 inode->i_blocks = 0;
2011 inode->i_bytes = 0;
2012 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
2013 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
2015 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
2016 REISERFS_I(inode)->i_flags = 0;
2017 REISERFS_I(inode)->i_prealloc_block = 0;
2018 REISERFS_I(inode)->i_prealloc_count = 0;
2019 REISERFS_I(inode)->i_trans_id = 0;
2020 REISERFS_I(inode)->i_jl = NULL;
2021 REISERFS_I(inode)->i_attrs =
2022 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2023 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2024 reiserfs_init_xattr_rwsem(inode);
2026 /* key to search for correct place for new stat data */
2027 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2028 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2029 TYPE_STAT_DATA, 3 /*key length */ );
2031 /* find proper place for inserting of stat data */
2032 retval = search_item(sb, &key, &path_to_key);
2033 if (retval == IO_ERROR) {
2034 err = -EIO;
2035 goto out_bad_inode;
2037 if (retval == ITEM_FOUND) {
2038 pathrelse(&path_to_key);
2039 err = -EEXIST;
2040 goto out_bad_inode;
2042 if (old_format_only(sb)) {
2043 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
2044 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2045 pathrelse(&path_to_key);
2046 err = -EINVAL;
2047 goto out_bad_inode;
2049 inode2sd_v1(&sd, inode, inode->i_size);
2050 } else {
2051 inode2sd(&sd, inode, inode->i_size);
2054 * store in in-core inode the key of stat data and version all
2055 * object items will have (directory items will have old offset
2056 * format, other new objects will consist of new items)
2058 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2059 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2060 else
2061 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2062 if (old_format_only(sb))
2063 set_inode_sd_version(inode, STAT_DATA_V1);
2064 else
2065 set_inode_sd_version(inode, STAT_DATA_V2);
2067 /* insert the stat data into the tree */
2068 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2069 if (REISERFS_I(dir)->new_packing_locality)
2070 th->displace_new_blocks = 1;
2071 #endif
2072 retval =
2073 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2074 (char *)(&sd));
2075 if (retval) {
2076 err = retval;
2077 reiserfs_check_path(&path_to_key);
2078 goto out_bad_inode;
2080 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2081 if (!th->displace_new_blocks)
2082 REISERFS_I(dir)->new_packing_locality = 0;
2083 #endif
2084 if (S_ISDIR(mode)) {
2085 /* insert item with "." and ".." */
2086 retval =
2087 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2090 if (S_ISLNK(mode)) {
2091 /* insert body of symlink */
2092 if (!old_format_only(sb))
2093 i_size = ROUND_UP(i_size);
2094 retval =
2095 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2096 i_size);
2098 if (retval) {
2099 err = retval;
2100 reiserfs_check_path(&path_to_key);
2101 journal_end(th);
2102 goto out_inserted_sd;
2105 if (reiserfs_posixacl(inode->i_sb)) {
2106 reiserfs_write_unlock(inode->i_sb);
2107 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2108 reiserfs_write_lock(inode->i_sb);
2109 if (retval) {
2110 err = retval;
2111 reiserfs_check_path(&path_to_key);
2112 journal_end(th);
2113 goto out_inserted_sd;
2115 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
2116 reiserfs_warning(inode->i_sb, "jdm-13090",
2117 "ACLs aren't enabled in the fs, "
2118 "but vfs thinks they are!");
2119 } else if (IS_PRIVATE(dir))
2120 inode->i_flags |= S_PRIVATE;
2122 if (security->name) {
2123 reiserfs_write_unlock(inode->i_sb);
2124 retval = reiserfs_security_write(th, inode, security);
2125 reiserfs_write_lock(inode->i_sb);
2126 if (retval) {
2127 err = retval;
2128 reiserfs_check_path(&path_to_key);
2129 retval = journal_end(th);
2130 if (retval)
2131 err = retval;
2132 goto out_inserted_sd;
2136 reiserfs_update_sd(th, inode);
2137 reiserfs_check_path(&path_to_key);
2139 return 0;
2141 out_bad_inode:
2142 /* Invalidate the object, nothing was inserted yet */
2143 INODE_PKEY(inode)->k_objectid = 0;
2145 /* Quota change must be inside a transaction for journaling */
2146 depth = reiserfs_write_unlock_nested(inode->i_sb);
2147 dquot_free_inode(inode);
2148 reiserfs_write_lock_nested(inode->i_sb, depth);
2150 out_end_trans:
2151 journal_end(th);
2153 * Drop can be outside and it needs more credits so it's better
2154 * to have it outside
2156 depth = reiserfs_write_unlock_nested(inode->i_sb);
2157 dquot_drop(inode);
2158 reiserfs_write_lock_nested(inode->i_sb, depth);
2159 inode->i_flags |= S_NOQUOTA;
2160 make_bad_inode(inode);
2162 out_inserted_sd:
2163 clear_nlink(inode);
2164 th->t_trans_id = 0; /* so the caller can't use this handle later */
2165 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2166 iput(inode);
2167 return err;
2171 * finds the tail page in the page cache,
2172 * reads the last block in.
2174 * On success, page_result is set to a locked, pinned page, and bh_result
2175 * is set to an up to date buffer for the last block in the file. returns 0.
2177 * tail conversion is not done, so bh_result might not be valid for writing
2178 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2179 * trying to write the block.
2181 * on failure, nonzero is returned, page_result and bh_result are untouched.
2183 static int grab_tail_page(struct inode *inode,
2184 struct page **page_result,
2185 struct buffer_head **bh_result)
2189 * we want the page with the last byte in the file,
2190 * not the page that will hold the next byte for appending
2192 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2193 unsigned long pos = 0;
2194 unsigned long start = 0;
2195 unsigned long blocksize = inode->i_sb->s_blocksize;
2196 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2197 struct buffer_head *bh;
2198 struct buffer_head *head;
2199 struct page *page;
2200 int error;
2203 * we know that we are only called with inode->i_size > 0.
2204 * we also know that a file tail can never be as big as a block
2205 * If i_size % blocksize == 0, our file is currently block aligned
2206 * and it won't need converting or zeroing after a truncate.
2208 if ((offset & (blocksize - 1)) == 0) {
2209 return -ENOENT;
2211 page = grab_cache_page(inode->i_mapping, index);
2212 error = -ENOMEM;
2213 if (!page) {
2214 goto out;
2216 /* start within the page of the last block in the file */
2217 start = (offset / blocksize) * blocksize;
2219 error = __block_write_begin(page, start, offset - start,
2220 reiserfs_get_block_create_0);
2221 if (error)
2222 goto unlock;
2224 head = page_buffers(page);
2225 bh = head;
2226 do {
2227 if (pos >= start) {
2228 break;
2230 bh = bh->b_this_page;
2231 pos += blocksize;
2232 } while (bh != head);
2234 if (!buffer_uptodate(bh)) {
2236 * note, this should never happen, prepare_write should be
2237 * taking care of this for us. If the buffer isn't up to
2238 * date, I've screwed up the code to find the buffer, or the
2239 * code to call prepare_write
2241 reiserfs_error(inode->i_sb, "clm-6000",
2242 "error reading block %lu", bh->b_blocknr);
2243 error = -EIO;
2244 goto unlock;
2246 *bh_result = bh;
2247 *page_result = page;
2249 out:
2250 return error;
2252 unlock:
2253 unlock_page(page);
2254 page_cache_release(page);
2255 return error;
2259 * vfs version of truncate file. Must NOT be called with
2260 * a transaction already started.
2262 * some code taken from block_truncate_page
2264 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2266 struct reiserfs_transaction_handle th;
2267 /* we want the offset for the first byte after the end of the file */
2268 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2269 unsigned blocksize = inode->i_sb->s_blocksize;
2270 unsigned length;
2271 struct page *page = NULL;
2272 int error;
2273 struct buffer_head *bh = NULL;
2274 int err2;
2276 reiserfs_write_lock(inode->i_sb);
2278 if (inode->i_size > 0) {
2279 error = grab_tail_page(inode, &page, &bh);
2280 if (error) {
2282 * -ENOENT means we truncated past the end of the
2283 * file, and get_block_create_0 could not find a
2284 * block to read in, which is ok.
2286 if (error != -ENOENT)
2287 reiserfs_error(inode->i_sb, "clm-6001",
2288 "grab_tail_page failed %d",
2289 error);
2290 page = NULL;
2291 bh = NULL;
2296 * so, if page != NULL, we have a buffer head for the offset at
2297 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2298 * then we have an unformatted node. Otherwise, we have a direct item,
2299 * and no zeroing is required on disk. We zero after the truncate,
2300 * because the truncate might pack the item anyway
2301 * (it will unmap bh if it packs).
2303 * it is enough to reserve space in transaction for 2 balancings:
2304 * one for "save" link adding and another for the first
2305 * cut_from_item. 1 is for update_sd
2307 error = journal_begin(&th, inode->i_sb,
2308 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2309 if (error)
2310 goto out;
2311 reiserfs_update_inode_transaction(inode);
2312 if (update_timestamps)
2314 * we are doing real truncate: if the system crashes
2315 * before the last transaction of truncating gets committed
2316 * - on reboot the file either appears truncated properly
2317 * or not truncated at all
2319 add_save_link(&th, inode, 1);
2320 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2321 error = journal_end(&th);
2322 if (error)
2323 goto out;
2325 /* check reiserfs_do_truncate after ending the transaction */
2326 if (err2) {
2327 error = err2;
2328 goto out;
2331 if (update_timestamps) {
2332 error = remove_save_link(inode, 1 /* truncate */);
2333 if (error)
2334 goto out;
2337 if (page) {
2338 length = offset & (blocksize - 1);
2339 /* if we are not on a block boundary */
2340 if (length) {
2341 length = blocksize - length;
2342 zero_user(page, offset, length);
2343 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2344 mark_buffer_dirty(bh);
2347 unlock_page(page);
2348 page_cache_release(page);
2351 reiserfs_write_unlock(inode->i_sb);
2353 return 0;
2354 out:
2355 if (page) {
2356 unlock_page(page);
2357 page_cache_release(page);
2360 reiserfs_write_unlock(inode->i_sb);
2362 return error;
2365 static int map_block_for_writepage(struct inode *inode,
2366 struct buffer_head *bh_result,
2367 unsigned long block)
2369 struct reiserfs_transaction_handle th;
2370 int fs_gen;
2371 struct item_head tmp_ih;
2372 struct item_head *ih;
2373 struct buffer_head *bh;
2374 __le32 *item;
2375 struct cpu_key key;
2376 INITIALIZE_PATH(path);
2377 int pos_in_item;
2378 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2379 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2380 int retval;
2381 int use_get_block = 0;
2382 int bytes_copied = 0;
2383 int copy_size;
2384 int trans_running = 0;
2387 * catch places below that try to log something without
2388 * starting a trans
2390 th.t_trans_id = 0;
2392 if (!buffer_uptodate(bh_result)) {
2393 return -EIO;
2396 kmap(bh_result->b_page);
2397 start_over:
2398 reiserfs_write_lock(inode->i_sb);
2399 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2401 research:
2402 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2403 if (retval != POSITION_FOUND) {
2404 use_get_block = 1;
2405 goto out;
2408 bh = get_last_bh(&path);
2409 ih = tp_item_head(&path);
2410 item = tp_item_body(&path);
2411 pos_in_item = path.pos_in_item;
2413 /* we've found an unformatted node */
2414 if (indirect_item_found(retval, ih)) {
2415 if (bytes_copied > 0) {
2416 reiserfs_warning(inode->i_sb, "clm-6002",
2417 "bytes_copied %d", bytes_copied);
2419 if (!get_block_num(item, pos_in_item)) {
2420 /* crap, we are writing to a hole */
2421 use_get_block = 1;
2422 goto out;
2424 set_block_dev_mapped(bh_result,
2425 get_block_num(item, pos_in_item), inode);
2426 } else if (is_direct_le_ih(ih)) {
2427 char *p;
2428 p = page_address(bh_result->b_page);
2429 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2430 copy_size = ih_item_len(ih) - pos_in_item;
2432 fs_gen = get_generation(inode->i_sb);
2433 copy_item_head(&tmp_ih, ih);
2435 if (!trans_running) {
2436 /* vs-3050 is gone, no need to drop the path */
2437 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2438 if (retval)
2439 goto out;
2440 reiserfs_update_inode_transaction(inode);
2441 trans_running = 1;
2442 if (fs_changed(fs_gen, inode->i_sb)
2443 && item_moved(&tmp_ih, &path)) {
2444 reiserfs_restore_prepared_buffer(inode->i_sb,
2445 bh);
2446 goto research;
2450 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2452 if (fs_changed(fs_gen, inode->i_sb)
2453 && item_moved(&tmp_ih, &path)) {
2454 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2455 goto research;
2458 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2459 copy_size);
2461 journal_mark_dirty(&th, bh);
2462 bytes_copied += copy_size;
2463 set_block_dev_mapped(bh_result, 0, inode);
2465 /* are there still bytes left? */
2466 if (bytes_copied < bh_result->b_size &&
2467 (byte_offset + bytes_copied) < inode->i_size) {
2468 set_cpu_key_k_offset(&key,
2469 cpu_key_k_offset(&key) +
2470 copy_size);
2471 goto research;
2473 } else {
2474 reiserfs_warning(inode->i_sb, "clm-6003",
2475 "bad item inode %lu", inode->i_ino);
2476 retval = -EIO;
2477 goto out;
2479 retval = 0;
2481 out:
2482 pathrelse(&path);
2483 if (trans_running) {
2484 int err = journal_end(&th);
2485 if (err)
2486 retval = err;
2487 trans_running = 0;
2489 reiserfs_write_unlock(inode->i_sb);
2491 /* this is where we fill in holes in the file. */
2492 if (use_get_block) {
2493 retval = reiserfs_get_block(inode, block, bh_result,
2494 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2495 | GET_BLOCK_NO_DANGLE);
2496 if (!retval) {
2497 if (!buffer_mapped(bh_result)
2498 || bh_result->b_blocknr == 0) {
2499 /* get_block failed to find a mapped unformatted node. */
2500 use_get_block = 0;
2501 goto start_over;
2505 kunmap(bh_result->b_page);
2507 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2509 * we've copied data from the page into the direct item, so the
2510 * buffer in the page is now clean, mark it to reflect that.
2512 lock_buffer(bh_result);
2513 clear_buffer_dirty(bh_result);
2514 unlock_buffer(bh_result);
2516 return retval;
2520 * mason@suse.com: updated in 2.5.54 to follow the same general io
2521 * start/recovery path as __block_write_full_page, along with special
2522 * code to handle reiserfs tails.
2524 static int reiserfs_write_full_page(struct page *page,
2525 struct writeback_control *wbc)
2527 struct inode *inode = page->mapping->host;
2528 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2529 int error = 0;
2530 unsigned long block;
2531 sector_t last_block;
2532 struct buffer_head *head, *bh;
2533 int partial = 0;
2534 int nr = 0;
2535 int checked = PageChecked(page);
2536 struct reiserfs_transaction_handle th;
2537 struct super_block *s = inode->i_sb;
2538 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2539 th.t_trans_id = 0;
2541 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2542 if (checked && (current->flags & PF_MEMALLOC)) {
2543 redirty_page_for_writepage(wbc, page);
2544 unlock_page(page);
2545 return 0;
2549 * The page dirty bit is cleared before writepage is called, which
2550 * means we have to tell create_empty_buffers to make dirty buffers
2551 * The page really should be up to date at this point, so tossing
2552 * in the BH_Uptodate is just a sanity check.
2554 if (!page_has_buffers(page)) {
2555 create_empty_buffers(page, s->s_blocksize,
2556 (1 << BH_Dirty) | (1 << BH_Uptodate));
2558 head = page_buffers(page);
2561 * last page in the file, zero out any contents past the
2562 * last byte in the file
2564 if (page->index >= end_index) {
2565 unsigned last_offset;
2567 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2568 /* no file contents in this page */
2569 if (page->index >= end_index + 1 || !last_offset) {
2570 unlock_page(page);
2571 return 0;
2573 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2575 bh = head;
2576 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2577 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2578 /* first map all the buffers, logging any direct items we find */
2579 do {
2580 if (block > last_block) {
2582 * This can happen when the block size is less than
2583 * the page size. The corresponding bytes in the page
2584 * were zero filled above
2586 clear_buffer_dirty(bh);
2587 set_buffer_uptodate(bh);
2588 } else if ((checked || buffer_dirty(bh)) &&
2589 (!buffer_mapped(bh) || (buffer_mapped(bh)
2590 && bh->b_blocknr ==
2591 0))) {
2593 * not mapped yet, or it points to a direct item, search
2594 * the btree for the mapping info, and log any direct
2595 * items found
2597 if ((error = map_block_for_writepage(inode, bh, block))) {
2598 goto fail;
2601 bh = bh->b_this_page;
2602 block++;
2603 } while (bh != head);
2606 * we start the transaction after map_block_for_writepage,
2607 * because it can create holes in the file (an unbounded operation).
2608 * starting it here, we can make a reliable estimate for how many
2609 * blocks we're going to log
2611 if (checked) {
2612 ClearPageChecked(page);
2613 reiserfs_write_lock(s);
2614 error = journal_begin(&th, s, bh_per_page + 1);
2615 if (error) {
2616 reiserfs_write_unlock(s);
2617 goto fail;
2619 reiserfs_update_inode_transaction(inode);
2621 /* now go through and lock any dirty buffers on the page */
2622 do {
2623 get_bh(bh);
2624 if (!buffer_mapped(bh))
2625 continue;
2626 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2627 continue;
2629 if (checked) {
2630 reiserfs_prepare_for_journal(s, bh, 1);
2631 journal_mark_dirty(&th, bh);
2632 continue;
2635 * from this point on, we know the buffer is mapped to a
2636 * real block and not a direct item
2638 if (wbc->sync_mode != WB_SYNC_NONE) {
2639 lock_buffer(bh);
2640 } else {
2641 if (!trylock_buffer(bh)) {
2642 redirty_page_for_writepage(wbc, page);
2643 continue;
2646 if (test_clear_buffer_dirty(bh)) {
2647 mark_buffer_async_write(bh);
2648 } else {
2649 unlock_buffer(bh);
2651 } while ((bh = bh->b_this_page) != head);
2653 if (checked) {
2654 error = journal_end(&th);
2655 reiserfs_write_unlock(s);
2656 if (error)
2657 goto fail;
2659 BUG_ON(PageWriteback(page));
2660 set_page_writeback(page);
2661 unlock_page(page);
2664 * since any buffer might be the only dirty buffer on the page,
2665 * the first submit_bh can bring the page out of writeback.
2666 * be careful with the buffers.
2668 do {
2669 struct buffer_head *next = bh->b_this_page;
2670 if (buffer_async_write(bh)) {
2671 submit_bh(WRITE, bh);
2672 nr++;
2674 put_bh(bh);
2675 bh = next;
2676 } while (bh != head);
2678 error = 0;
2679 done:
2680 if (nr == 0) {
2682 * if this page only had a direct item, it is very possible for
2683 * no io to be required without there being an error. Or,
2684 * someone else could have locked them and sent them down the
2685 * pipe without locking the page
2687 bh = head;
2688 do {
2689 if (!buffer_uptodate(bh)) {
2690 partial = 1;
2691 break;
2693 bh = bh->b_this_page;
2694 } while (bh != head);
2695 if (!partial)
2696 SetPageUptodate(page);
2697 end_page_writeback(page);
2699 return error;
2701 fail:
2703 * catches various errors, we need to make sure any valid dirty blocks
2704 * get to the media. The page is currently locked and not marked for
2705 * writeback
2707 ClearPageUptodate(page);
2708 bh = head;
2709 do {
2710 get_bh(bh);
2711 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2712 lock_buffer(bh);
2713 mark_buffer_async_write(bh);
2714 } else {
2716 * clear any dirty bits that might have come from
2717 * getting attached to a dirty page
2719 clear_buffer_dirty(bh);
2721 bh = bh->b_this_page;
2722 } while (bh != head);
2723 SetPageError(page);
2724 BUG_ON(PageWriteback(page));
2725 set_page_writeback(page);
2726 unlock_page(page);
2727 do {
2728 struct buffer_head *next = bh->b_this_page;
2729 if (buffer_async_write(bh)) {
2730 clear_buffer_dirty(bh);
2731 submit_bh(WRITE, bh);
2732 nr++;
2734 put_bh(bh);
2735 bh = next;
2736 } while (bh != head);
2737 goto done;
2740 static int reiserfs_readpage(struct file *f, struct page *page)
2742 return block_read_full_page(page, reiserfs_get_block);
2745 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2747 struct inode *inode = page->mapping->host;
2748 reiserfs_wait_on_write_block(inode->i_sb);
2749 return reiserfs_write_full_page(page, wbc);
2752 static void reiserfs_truncate_failed_write(struct inode *inode)
2754 truncate_inode_pages(inode->i_mapping, inode->i_size);
2755 reiserfs_truncate_file(inode, 0);
2758 static int reiserfs_write_begin(struct file *file,
2759 struct address_space *mapping,
2760 loff_t pos, unsigned len, unsigned flags,
2761 struct page **pagep, void **fsdata)
2763 struct inode *inode;
2764 struct page *page;
2765 pgoff_t index;
2766 int ret;
2767 int old_ref = 0;
2769 inode = mapping->host;
2770 *fsdata = NULL;
2771 if (flags & AOP_FLAG_CONT_EXPAND &&
2772 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2773 pos ++;
2774 *fsdata = (void *)(unsigned long)flags;
2777 index = pos >> PAGE_CACHE_SHIFT;
2778 page = grab_cache_page_write_begin(mapping, index, flags);
2779 if (!page)
2780 return -ENOMEM;
2781 *pagep = page;
2783 reiserfs_wait_on_write_block(inode->i_sb);
2784 fix_tail_page_for_writing(page);
2785 if (reiserfs_transaction_running(inode->i_sb)) {
2786 struct reiserfs_transaction_handle *th;
2787 th = (struct reiserfs_transaction_handle *)current->
2788 journal_info;
2789 BUG_ON(!th->t_refcount);
2790 BUG_ON(!th->t_trans_id);
2791 old_ref = th->t_refcount;
2792 th->t_refcount++;
2794 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2795 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2796 struct reiserfs_transaction_handle *th = current->journal_info;
2798 * this gets a little ugly. If reiserfs_get_block returned an
2799 * error and left a transacstion running, we've got to close
2800 * it, and we've got to free handle if it was a persistent
2801 * transaction.
2803 * But, if we had nested into an existing transaction, we need
2804 * to just drop the ref count on the handle.
2806 * If old_ref == 0, the transaction is from reiserfs_get_block,
2807 * and it was a persistent trans. Otherwise, it was nested
2808 * above.
2810 if (th->t_refcount > old_ref) {
2811 if (old_ref)
2812 th->t_refcount--;
2813 else {
2814 int err;
2815 reiserfs_write_lock(inode->i_sb);
2816 err = reiserfs_end_persistent_transaction(th);
2817 reiserfs_write_unlock(inode->i_sb);
2818 if (err)
2819 ret = err;
2823 if (ret) {
2824 unlock_page(page);
2825 page_cache_release(page);
2826 /* Truncate allocated blocks */
2827 reiserfs_truncate_failed_write(inode);
2829 return ret;
2832 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2834 struct inode *inode = page->mapping->host;
2835 int ret;
2836 int old_ref = 0;
2837 int depth;
2839 depth = reiserfs_write_unlock_nested(inode->i_sb);
2840 reiserfs_wait_on_write_block(inode->i_sb);
2841 reiserfs_write_lock_nested(inode->i_sb, depth);
2843 fix_tail_page_for_writing(page);
2844 if (reiserfs_transaction_running(inode->i_sb)) {
2845 struct reiserfs_transaction_handle *th;
2846 th = (struct reiserfs_transaction_handle *)current->
2847 journal_info;
2848 BUG_ON(!th->t_refcount);
2849 BUG_ON(!th->t_trans_id);
2850 old_ref = th->t_refcount;
2851 th->t_refcount++;
2854 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2855 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2856 struct reiserfs_transaction_handle *th = current->journal_info;
2858 * this gets a little ugly. If reiserfs_get_block returned an
2859 * error and left a transacstion running, we've got to close
2860 * it, and we've got to free handle if it was a persistent
2861 * transaction.
2863 * But, if we had nested into an existing transaction, we need
2864 * to just drop the ref count on the handle.
2866 * If old_ref == 0, the transaction is from reiserfs_get_block,
2867 * and it was a persistent trans. Otherwise, it was nested
2868 * above.
2870 if (th->t_refcount > old_ref) {
2871 if (old_ref)
2872 th->t_refcount--;
2873 else {
2874 int err;
2875 reiserfs_write_lock(inode->i_sb);
2876 err = reiserfs_end_persistent_transaction(th);
2877 reiserfs_write_unlock(inode->i_sb);
2878 if (err)
2879 ret = err;
2883 return ret;
2887 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2889 return generic_block_bmap(as, block, reiserfs_bmap);
2892 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2893 loff_t pos, unsigned len, unsigned copied,
2894 struct page *page, void *fsdata)
2896 struct inode *inode = page->mapping->host;
2897 int ret = 0;
2898 int update_sd = 0;
2899 struct reiserfs_transaction_handle *th;
2900 unsigned start;
2901 bool locked = false;
2903 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2904 pos ++;
2906 reiserfs_wait_on_write_block(inode->i_sb);
2907 if (reiserfs_transaction_running(inode->i_sb))
2908 th = current->journal_info;
2909 else
2910 th = NULL;
2912 start = pos & (PAGE_CACHE_SIZE - 1);
2913 if (unlikely(copied < len)) {
2914 if (!PageUptodate(page))
2915 copied = 0;
2917 page_zero_new_buffers(page, start + copied, start + len);
2919 flush_dcache_page(page);
2921 reiserfs_commit_page(inode, page, start, start + copied);
2924 * generic_commit_write does this for us, but does not update the
2925 * transaction tracking stuff when the size changes. So, we have
2926 * to do the i_size updates here.
2928 if (pos + copied > inode->i_size) {
2929 struct reiserfs_transaction_handle myth;
2930 reiserfs_write_lock(inode->i_sb);
2931 locked = true;
2933 * If the file have grown beyond the border where it
2934 * can have a tail, unmark it as needing a tail
2935 * packing
2937 if ((have_large_tails(inode->i_sb)
2938 && inode->i_size > i_block_size(inode) * 4)
2939 || (have_small_tails(inode->i_sb)
2940 && inode->i_size > i_block_size(inode)))
2941 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2943 ret = journal_begin(&myth, inode->i_sb, 1);
2944 if (ret)
2945 goto journal_error;
2947 reiserfs_update_inode_transaction(inode);
2948 inode->i_size = pos + copied;
2950 * this will just nest into our transaction. It's important
2951 * to use mark_inode_dirty so the inode gets pushed around on
2952 * the dirty lists, and so that O_SYNC works as expected
2954 mark_inode_dirty(inode);
2955 reiserfs_update_sd(&myth, inode);
2956 update_sd = 1;
2957 ret = journal_end(&myth);
2958 if (ret)
2959 goto journal_error;
2961 if (th) {
2962 if (!locked) {
2963 reiserfs_write_lock(inode->i_sb);
2964 locked = true;
2966 if (!update_sd)
2967 mark_inode_dirty(inode);
2968 ret = reiserfs_end_persistent_transaction(th);
2969 if (ret)
2970 goto out;
2973 out:
2974 if (locked)
2975 reiserfs_write_unlock(inode->i_sb);
2976 unlock_page(page);
2977 page_cache_release(page);
2979 if (pos + len > inode->i_size)
2980 reiserfs_truncate_failed_write(inode);
2982 return ret == 0 ? copied : ret;
2984 journal_error:
2985 reiserfs_write_unlock(inode->i_sb);
2986 locked = false;
2987 if (th) {
2988 if (!update_sd)
2989 reiserfs_update_sd(th, inode);
2990 ret = reiserfs_end_persistent_transaction(th);
2992 goto out;
2995 int reiserfs_commit_write(struct file *f, struct page *page,
2996 unsigned from, unsigned to)
2998 struct inode *inode = page->mapping->host;
2999 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
3000 int ret = 0;
3001 int update_sd = 0;
3002 struct reiserfs_transaction_handle *th = NULL;
3003 int depth;
3005 depth = reiserfs_write_unlock_nested(inode->i_sb);
3006 reiserfs_wait_on_write_block(inode->i_sb);
3007 reiserfs_write_lock_nested(inode->i_sb, depth);
3009 if (reiserfs_transaction_running(inode->i_sb)) {
3010 th = current->journal_info;
3012 reiserfs_commit_page(inode, page, from, to);
3015 * generic_commit_write does this for us, but does not update the
3016 * transaction tracking stuff when the size changes. So, we have
3017 * to do the i_size updates here.
3019 if (pos > inode->i_size) {
3020 struct reiserfs_transaction_handle myth;
3022 * If the file have grown beyond the border where it
3023 * can have a tail, unmark it as needing a tail
3024 * packing
3026 if ((have_large_tails(inode->i_sb)
3027 && inode->i_size > i_block_size(inode) * 4)
3028 || (have_small_tails(inode->i_sb)
3029 && inode->i_size > i_block_size(inode)))
3030 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3032 ret = journal_begin(&myth, inode->i_sb, 1);
3033 if (ret)
3034 goto journal_error;
3036 reiserfs_update_inode_transaction(inode);
3037 inode->i_size = pos;
3039 * this will just nest into our transaction. It's important
3040 * to use mark_inode_dirty so the inode gets pushed around
3041 * on the dirty lists, and so that O_SYNC works as expected
3043 mark_inode_dirty(inode);
3044 reiserfs_update_sd(&myth, inode);
3045 update_sd = 1;
3046 ret = journal_end(&myth);
3047 if (ret)
3048 goto journal_error;
3050 if (th) {
3051 if (!update_sd)
3052 mark_inode_dirty(inode);
3053 ret = reiserfs_end_persistent_transaction(th);
3054 if (ret)
3055 goto out;
3058 out:
3059 return ret;
3061 journal_error:
3062 if (th) {
3063 if (!update_sd)
3064 reiserfs_update_sd(th, inode);
3065 ret = reiserfs_end_persistent_transaction(th);
3068 return ret;
3071 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3073 if (reiserfs_attrs(inode->i_sb)) {
3074 if (sd_attrs & REISERFS_SYNC_FL)
3075 inode->i_flags |= S_SYNC;
3076 else
3077 inode->i_flags &= ~S_SYNC;
3078 if (sd_attrs & REISERFS_IMMUTABLE_FL)
3079 inode->i_flags |= S_IMMUTABLE;
3080 else
3081 inode->i_flags &= ~S_IMMUTABLE;
3082 if (sd_attrs & REISERFS_APPEND_FL)
3083 inode->i_flags |= S_APPEND;
3084 else
3085 inode->i_flags &= ~S_APPEND;
3086 if (sd_attrs & REISERFS_NOATIME_FL)
3087 inode->i_flags |= S_NOATIME;
3088 else
3089 inode->i_flags &= ~S_NOATIME;
3090 if (sd_attrs & REISERFS_NOTAIL_FL)
3091 REISERFS_I(inode)->i_flags |= i_nopack_mask;
3092 else
3093 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3097 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
3099 if (reiserfs_attrs(inode->i_sb)) {
3100 if (inode->i_flags & S_IMMUTABLE)
3101 *sd_attrs |= REISERFS_IMMUTABLE_FL;
3102 else
3103 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
3104 if (inode->i_flags & S_SYNC)
3105 *sd_attrs |= REISERFS_SYNC_FL;
3106 else
3107 *sd_attrs &= ~REISERFS_SYNC_FL;
3108 if (inode->i_flags & S_NOATIME)
3109 *sd_attrs |= REISERFS_NOATIME_FL;
3110 else
3111 *sd_attrs &= ~REISERFS_NOATIME_FL;
3112 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
3113 *sd_attrs |= REISERFS_NOTAIL_FL;
3114 else
3115 *sd_attrs &= ~REISERFS_NOTAIL_FL;
3120 * decide if this buffer needs to stay around for data logging or ordered
3121 * write purposes
3123 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
3125 int ret = 1;
3126 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3128 lock_buffer(bh);
3129 spin_lock(&j->j_dirty_buffers_lock);
3130 if (!buffer_mapped(bh)) {
3131 goto free_jh;
3134 * the page is locked, and the only places that log a data buffer
3135 * also lock the page.
3137 if (reiserfs_file_data_log(inode)) {
3139 * very conservative, leave the buffer pinned if
3140 * anyone might need it.
3142 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3143 ret = 0;
3145 } else if (buffer_dirty(bh)) {
3146 struct reiserfs_journal_list *jl;
3147 struct reiserfs_jh *jh = bh->b_private;
3150 * why is this safe?
3151 * reiserfs_setattr updates i_size in the on disk
3152 * stat data before allowing vmtruncate to be called.
3154 * If buffer was put onto the ordered list for this
3155 * transaction, we know for sure either this transaction
3156 * or an older one already has updated i_size on disk,
3157 * and this ordered data won't be referenced in the file
3158 * if we crash.
3160 * if the buffer was put onto the ordered list for an older
3161 * transaction, we need to leave it around
3163 if (jh && (jl = jh->jl)
3164 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3165 ret = 0;
3167 free_jh:
3168 if (ret && bh->b_private) {
3169 reiserfs_free_jh(bh);
3171 spin_unlock(&j->j_dirty_buffers_lock);
3172 unlock_buffer(bh);
3173 return ret;
3176 /* clm -- taken from fs/buffer.c:block_invalidate_page */
3177 static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
3178 unsigned int length)
3180 struct buffer_head *head, *bh, *next;
3181 struct inode *inode = page->mapping->host;
3182 unsigned int curr_off = 0;
3183 unsigned int stop = offset + length;
3184 int partial_page = (offset || length < PAGE_CACHE_SIZE);
3185 int ret = 1;
3187 BUG_ON(!PageLocked(page));
3189 if (!partial_page)
3190 ClearPageChecked(page);
3192 if (!page_has_buffers(page))
3193 goto out;
3195 head = page_buffers(page);
3196 bh = head;
3197 do {
3198 unsigned int next_off = curr_off + bh->b_size;
3199 next = bh->b_this_page;
3201 if (next_off > stop)
3202 goto out;
3205 * is this block fully invalidated?
3207 if (offset <= curr_off) {
3208 if (invalidatepage_can_drop(inode, bh))
3209 reiserfs_unmap_buffer(bh);
3210 else
3211 ret = 0;
3213 curr_off = next_off;
3214 bh = next;
3215 } while (bh != head);
3218 * We release buffers only if the entire page is being invalidated.
3219 * The get_block cached value has been unconditionally invalidated,
3220 * so real IO is not possible anymore.
3222 if (!partial_page && ret) {
3223 ret = try_to_release_page(page, 0);
3224 /* maybe should BUG_ON(!ret); - neilb */
3226 out:
3227 return;
3230 static int reiserfs_set_page_dirty(struct page *page)
3232 struct inode *inode = page->mapping->host;
3233 if (reiserfs_file_data_log(inode)) {
3234 SetPageChecked(page);
3235 return __set_page_dirty_nobuffers(page);
3237 return __set_page_dirty_buffers(page);
3241 * Returns 1 if the page's buffers were dropped. The page is locked.
3243 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3244 * in the buffers at page_buffers(page).
3246 * even in -o notail mode, we can't be sure an old mount without -o notail
3247 * didn't create files with tails.
3249 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3251 struct inode *inode = page->mapping->host;
3252 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3253 struct buffer_head *head;
3254 struct buffer_head *bh;
3255 int ret = 1;
3257 WARN_ON(PageChecked(page));
3258 spin_lock(&j->j_dirty_buffers_lock);
3259 head = page_buffers(page);
3260 bh = head;
3261 do {
3262 if (bh->b_private) {
3263 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3264 reiserfs_free_jh(bh);
3265 } else {
3266 ret = 0;
3267 break;
3270 bh = bh->b_this_page;
3271 } while (bh != head);
3272 if (ret)
3273 ret = try_to_free_buffers(page);
3274 spin_unlock(&j->j_dirty_buffers_lock);
3275 return ret;
3279 * We thank Mingming Cao for helping us understand in great detail what
3280 * to do in this section of the code.
3282 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3283 loff_t offset)
3285 struct file *file = iocb->ki_filp;
3286 struct inode *inode = file->f_mapping->host;
3287 size_t count = iov_iter_count(iter);
3288 ssize_t ret;
3290 ret = blockdev_direct_IO(iocb, inode, iter, offset,
3291 reiserfs_get_blocks_direct_io);
3294 * In case of error extending write may have instantiated a few
3295 * blocks outside i_size. Trim these off again.
3297 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3298 loff_t isize = i_size_read(inode);
3299 loff_t end = offset + count;
3301 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3302 truncate_setsize(inode, isize);
3303 reiserfs_vfs_truncate_file(inode);
3307 return ret;
3310 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3312 struct inode *inode = d_inode(dentry);
3313 unsigned int ia_valid;
3314 int error;
3316 error = inode_change_ok(inode, attr);
3317 if (error)
3318 return error;
3320 /* must be turned off for recursive notify_change calls */
3321 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3323 if (is_quota_modification(inode, attr)) {
3324 error = dquot_initialize(inode);
3325 if (error)
3326 return error;
3328 reiserfs_write_lock(inode->i_sb);
3329 if (attr->ia_valid & ATTR_SIZE) {
3331 * version 2 items will be caught by the s_maxbytes check
3332 * done for us in vmtruncate
3334 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3335 attr->ia_size > MAX_NON_LFS) {
3336 reiserfs_write_unlock(inode->i_sb);
3337 error = -EFBIG;
3338 goto out;
3341 inode_dio_wait(inode);
3343 /* fill in hole pointers in the expanding truncate case. */
3344 if (attr->ia_size > inode->i_size) {
3345 error = generic_cont_expand_simple(inode, attr->ia_size);
3346 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3347 int err;
3348 struct reiserfs_transaction_handle th;
3349 /* we're changing at most 2 bitmaps, inode + super */
3350 err = journal_begin(&th, inode->i_sb, 4);
3351 if (!err) {
3352 reiserfs_discard_prealloc(&th, inode);
3353 err = journal_end(&th);
3355 if (err)
3356 error = err;
3358 if (error) {
3359 reiserfs_write_unlock(inode->i_sb);
3360 goto out;
3363 * file size is changed, ctime and mtime are
3364 * to be updated
3366 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3369 reiserfs_write_unlock(inode->i_sb);
3371 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3372 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3373 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3374 /* stat data of format v3.5 has 16 bit uid and gid */
3375 error = -EINVAL;
3376 goto out;
3379 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3380 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3381 struct reiserfs_transaction_handle th;
3382 int jbegin_count =
3384 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3385 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3388 error = reiserfs_chown_xattrs(inode, attr);
3390 if (error)
3391 return error;
3394 * (user+group)*(old+new) structure - we count quota
3395 * info and , inode write (sb, inode)
3397 reiserfs_write_lock(inode->i_sb);
3398 error = journal_begin(&th, inode->i_sb, jbegin_count);
3399 reiserfs_write_unlock(inode->i_sb);
3400 if (error)
3401 goto out;
3402 error = dquot_transfer(inode, attr);
3403 reiserfs_write_lock(inode->i_sb);
3404 if (error) {
3405 journal_end(&th);
3406 reiserfs_write_unlock(inode->i_sb);
3407 goto out;
3411 * Update corresponding info in inode so that everything
3412 * is in one transaction
3414 if (attr->ia_valid & ATTR_UID)
3415 inode->i_uid = attr->ia_uid;
3416 if (attr->ia_valid & ATTR_GID)
3417 inode->i_gid = attr->ia_gid;
3418 mark_inode_dirty(inode);
3419 error = journal_end(&th);
3420 reiserfs_write_unlock(inode->i_sb);
3421 if (error)
3422 goto out;
3425 if ((attr->ia_valid & ATTR_SIZE) &&
3426 attr->ia_size != i_size_read(inode)) {
3427 error = inode_newsize_ok(inode, attr->ia_size);
3428 if (!error) {
3430 * Could race against reiserfs_file_release
3431 * if called from NFS, so take tailpack mutex.
3433 mutex_lock(&REISERFS_I(inode)->tailpack);
3434 truncate_setsize(inode, attr->ia_size);
3435 reiserfs_truncate_file(inode, 1);
3436 mutex_unlock(&REISERFS_I(inode)->tailpack);
3440 if (!error) {
3441 setattr_copy(inode, attr);
3442 mark_inode_dirty(inode);
3445 if (!error && reiserfs_posixacl(inode->i_sb)) {
3446 if (attr->ia_valid & ATTR_MODE)
3447 error = reiserfs_acl_chmod(inode);
3450 out:
3451 return error;
3454 const struct address_space_operations reiserfs_address_space_operations = {
3455 .writepage = reiserfs_writepage,
3456 .readpage = reiserfs_readpage,
3457 .readpages = reiserfs_readpages,
3458 .releasepage = reiserfs_releasepage,
3459 .invalidatepage = reiserfs_invalidatepage,
3460 .write_begin = reiserfs_write_begin,
3461 .write_end = reiserfs_write_end,
3462 .bmap = reiserfs_aop_bmap,
3463 .direct_IO = reiserfs_direct_IO,
3464 .set_page_dirty = reiserfs_set_page_dirty,