2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when flusher thread is doing
41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49 * set as well. However, UBIFS disables readahead.
53 #include <linux/mount.h>
54 #include <linux/slab.h>
56 static int read_block(struct inode
*inode
, void *addr
, unsigned int block
,
57 struct ubifs_data_node
*dn
)
59 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
60 int err
, len
, out_len
;
64 data_key_init(c
, &key
, inode
->i_ino
, block
);
65 err
= ubifs_tnc_lookup(c
, &key
, dn
);
68 /* Not found, so it must be a hole */
69 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
73 ubifs_assert(le64_to_cpu(dn
->ch
.sqnum
) >
74 ubifs_inode(inode
)->creat_sqnum
);
75 len
= le32_to_cpu(dn
->size
);
76 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
79 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
80 out_len
= UBIFS_BLOCK_SIZE
;
81 err
= ubifs_decompress(c
, &dn
->data
, dlen
, addr
, &out_len
,
82 le16_to_cpu(dn
->compr_type
));
83 if (err
|| len
!= out_len
)
87 * Data length can be less than a full block, even for blocks that are
88 * not the last in the file (e.g., as a result of making a hole and
89 * appending data). Ensure that the remainder is zeroed out.
91 if (len
< UBIFS_BLOCK_SIZE
)
92 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
97 ubifs_err(c
, "bad data node (block %u, inode %lu)",
99 ubifs_dump_node(c
, dn
);
103 static int do_readpage(struct page
*page
)
107 unsigned int block
, beyond
;
108 struct ubifs_data_node
*dn
;
109 struct inode
*inode
= page
->mapping
->host
;
110 loff_t i_size
= i_size_read(inode
);
112 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
113 inode
->i_ino
, page
->index
, i_size
, page
->flags
);
114 ubifs_assert(!PageChecked(page
));
115 ubifs_assert(!PagePrivate(page
));
119 block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
120 beyond
= (i_size
+ UBIFS_BLOCK_SIZE
- 1) >> UBIFS_BLOCK_SHIFT
;
121 if (block
>= beyond
) {
122 /* Reading beyond inode */
123 SetPageChecked(page
);
124 memset(addr
, 0, PAGE_CACHE_SIZE
);
128 dn
= kmalloc(UBIFS_MAX_DATA_NODE_SZ
, GFP_NOFS
);
138 if (block
>= beyond
) {
139 /* Reading beyond inode */
141 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
143 ret
= read_block(inode
, addr
, block
, dn
);
148 } else if (block
+ 1 == beyond
) {
149 int dlen
= le32_to_cpu(dn
->size
);
150 int ilen
= i_size
& (UBIFS_BLOCK_SIZE
- 1);
152 if (ilen
&& ilen
< dlen
)
153 memset(addr
+ ilen
, 0, dlen
- ilen
);
156 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
159 addr
+= UBIFS_BLOCK_SIZE
;
162 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
163 if (err
== -ENOENT
) {
164 /* Not found, so it must be a hole */
165 SetPageChecked(page
);
169 ubifs_err(c
, "cannot read page %lu of inode %lu, error %d",
170 page
->index
, inode
->i_ino
, err
);
177 SetPageUptodate(page
);
178 ClearPageError(page
);
179 flush_dcache_page(page
);
185 ClearPageUptodate(page
);
187 flush_dcache_page(page
);
193 * release_new_page_budget - release budget of a new page.
194 * @c: UBIFS file-system description object
196 * This is a helper function which releases budget corresponding to the budget
197 * of one new page of data.
199 static void release_new_page_budget(struct ubifs_info
*c
)
201 struct ubifs_budget_req req
= { .recalculate
= 1, .new_page
= 1 };
203 ubifs_release_budget(c
, &req
);
207 * release_existing_page_budget - release budget of an existing page.
208 * @c: UBIFS file-system description object
210 * This is a helper function which releases budget corresponding to the budget
211 * of changing one one page of data which already exists on the flash media.
213 static void release_existing_page_budget(struct ubifs_info
*c
)
215 struct ubifs_budget_req req
= { .dd_growth
= c
->bi
.page_budget
};
217 ubifs_release_budget(c
, &req
);
220 static int write_begin_slow(struct address_space
*mapping
,
221 loff_t pos
, unsigned len
, struct page
**pagep
,
224 struct inode
*inode
= mapping
->host
;
225 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
226 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
227 struct ubifs_budget_req req
= { .new_page
= 1 };
228 int uninitialized_var(err
), appending
= !!(pos
+ len
> inode
->i_size
);
231 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
232 inode
->i_ino
, pos
, len
, inode
->i_size
);
235 * At the slow path we have to budget before locking the page, because
236 * budgeting may force write-back, which would wait on locked pages and
237 * deadlock if we had the page locked. At this point we do not know
238 * anything about the page, so assume that this is a new page which is
239 * written to a hole. This corresponds to largest budget. Later the
240 * budget will be amended if this is not true.
243 /* We are appending data, budget for inode change */
246 err
= ubifs_budget_space(c
, &req
);
250 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
251 if (unlikely(!page
)) {
252 ubifs_release_budget(c
, &req
);
256 if (!PageUptodate(page
)) {
257 if (!(pos
& ~PAGE_CACHE_MASK
) && len
== PAGE_CACHE_SIZE
)
258 SetPageChecked(page
);
260 err
= do_readpage(page
);
263 page_cache_release(page
);
264 ubifs_release_budget(c
, &req
);
269 SetPageUptodate(page
);
270 ClearPageError(page
);
273 if (PagePrivate(page
))
275 * The page is dirty, which means it was budgeted twice:
276 * o first time the budget was allocated by the task which
277 * made the page dirty and set the PG_private flag;
278 * o and then we budgeted for it for the second time at the
279 * very beginning of this function.
281 * So what we have to do is to release the page budget we
284 release_new_page_budget(c
);
285 else if (!PageChecked(page
))
287 * We are changing a page which already exists on the media.
288 * This means that changing the page does not make the amount
289 * of indexing information larger, and this part of the budget
290 * which we have already acquired may be released.
292 ubifs_convert_page_budget(c
);
295 struct ubifs_inode
*ui
= ubifs_inode(inode
);
298 * 'ubifs_write_end()' is optimized from the fast-path part of
299 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
300 * if data is appended.
302 mutex_lock(&ui
->ui_mutex
);
305 * The inode is dirty already, so we may free the
306 * budget we allocated.
308 ubifs_release_dirty_inode_budget(c
, ui
);
316 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
317 * @c: UBIFS file-system description object
318 * @page: page to allocate budget for
319 * @ui: UBIFS inode object the page belongs to
320 * @appending: non-zero if the page is appended
322 * This is a helper function for 'ubifs_write_begin()' which allocates budget
323 * for the operation. The budget is allocated differently depending on whether
324 * this is appending, whether the page is dirty or not, and so on. This
325 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
326 * in case of success and %-ENOSPC in case of failure.
328 static int allocate_budget(struct ubifs_info
*c
, struct page
*page
,
329 struct ubifs_inode
*ui
, int appending
)
331 struct ubifs_budget_req req
= { .fast
= 1 };
333 if (PagePrivate(page
)) {
336 * The page is dirty and we are not appending, which
337 * means no budget is needed at all.
341 mutex_lock(&ui
->ui_mutex
);
344 * The page is dirty and we are appending, so the inode
345 * has to be marked as dirty. However, it is already
346 * dirty, so we do not need any budget. We may return,
347 * but @ui->ui_mutex hast to be left locked because we
348 * should prevent write-back from flushing the inode
349 * and freeing the budget. The lock will be released in
350 * 'ubifs_write_end()'.
355 * The page is dirty, we are appending, the inode is clean, so
356 * we need to budget the inode change.
360 if (PageChecked(page
))
362 * The page corresponds to a hole and does not
363 * exist on the media. So changing it makes
364 * make the amount of indexing information
365 * larger, and we have to budget for a new
371 * Not a hole, the change will not add any new
372 * indexing information, budget for page
375 req
.dirtied_page
= 1;
378 mutex_lock(&ui
->ui_mutex
);
381 * The inode is clean but we will have to mark
382 * it as dirty because we are appending. This
389 return ubifs_budget_space(c
, &req
);
393 * This function is called when a page of data is going to be written. Since
394 * the page of data will not necessarily go to the flash straight away, UBIFS
395 * has to reserve space on the media for it, which is done by means of
398 * This is the hot-path of the file-system and we are trying to optimize it as
399 * much as possible. For this reasons it is split on 2 parts - slow and fast.
401 * There many budgeting cases:
402 * o a new page is appended - we have to budget for a new page and for
403 * changing the inode; however, if the inode is already dirty, there is
404 * no need to budget for it;
405 * o an existing clean page is changed - we have budget for it; if the page
406 * does not exist on the media (a hole), we have to budget for a new
407 * page; otherwise, we may budget for changing an existing page; the
408 * difference between these cases is that changing an existing page does
409 * not introduce anything new to the FS indexing information, so it does
410 * not grow, and smaller budget is acquired in this case;
411 * o an existing dirty page is changed - no need to budget at all, because
412 * the page budget has been acquired by earlier, when the page has been
415 * UBIFS budgeting sub-system may force write-back if it thinks there is no
416 * space to reserve. This imposes some locking restrictions and makes it
417 * impossible to take into account the above cases, and makes it impossible to
418 * optimize budgeting.
420 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
421 * there is a plenty of flash space and the budget will be acquired quickly,
422 * without forcing write-back. The slow path does not make this assumption.
424 static int ubifs_write_begin(struct file
*file
, struct address_space
*mapping
,
425 loff_t pos
, unsigned len
, unsigned flags
,
426 struct page
**pagep
, void **fsdata
)
428 struct inode
*inode
= mapping
->host
;
429 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
430 struct ubifs_inode
*ui
= ubifs_inode(inode
);
431 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
432 int uninitialized_var(err
), appending
= !!(pos
+ len
> inode
->i_size
);
433 int skipped_read
= 0;
436 ubifs_assert(ubifs_inode(inode
)->ui_size
== inode
->i_size
);
437 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
439 if (unlikely(c
->ro_error
))
442 /* Try out the fast-path part first */
443 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
447 if (!PageUptodate(page
)) {
448 /* The page is not loaded from the flash */
449 if (!(pos
& ~PAGE_CACHE_MASK
) && len
== PAGE_CACHE_SIZE
) {
451 * We change whole page so no need to load it. But we
452 * do not know whether this page exists on the media or
453 * not, so we assume the latter because it requires
454 * larger budget. The assumption is that it is better
455 * to budget a bit more than to read the page from the
456 * media. Thus, we are setting the @PG_checked flag
459 SetPageChecked(page
);
462 err
= do_readpage(page
);
465 page_cache_release(page
);
470 SetPageUptodate(page
);
471 ClearPageError(page
);
474 err
= allocate_budget(c
, page
, ui
, appending
);
476 ubifs_assert(err
== -ENOSPC
);
478 * If we skipped reading the page because we were going to
479 * write all of it, then it is not up to date.
482 ClearPageChecked(page
);
483 ClearPageUptodate(page
);
486 * Budgeting failed which means it would have to force
487 * write-back but didn't, because we set the @fast flag in the
488 * request. Write-back cannot be done now, while we have the
489 * page locked, because it would deadlock. Unlock and free
490 * everything and fall-back to slow-path.
493 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
494 mutex_unlock(&ui
->ui_mutex
);
497 page_cache_release(page
);
499 return write_begin_slow(mapping
, pos
, len
, pagep
, flags
);
503 * Whee, we acquired budgeting quickly - without involving
504 * garbage-collection, committing or forcing write-back. We return
505 * with @ui->ui_mutex locked if we are appending pages, and unlocked
506 * otherwise. This is an optimization (slightly hacky though).
514 * cancel_budget - cancel budget.
515 * @c: UBIFS file-system description object
516 * @page: page to cancel budget for
517 * @ui: UBIFS inode object the page belongs to
518 * @appending: non-zero if the page is appended
520 * This is a helper function for a page write operation. It unlocks the
521 * @ui->ui_mutex in case of appending.
523 static void cancel_budget(struct ubifs_info
*c
, struct page
*page
,
524 struct ubifs_inode
*ui
, int appending
)
528 ubifs_release_dirty_inode_budget(c
, ui
);
529 mutex_unlock(&ui
->ui_mutex
);
531 if (!PagePrivate(page
)) {
532 if (PageChecked(page
))
533 release_new_page_budget(c
);
535 release_existing_page_budget(c
);
539 static int ubifs_write_end(struct file
*file
, struct address_space
*mapping
,
540 loff_t pos
, unsigned len
, unsigned copied
,
541 struct page
*page
, void *fsdata
)
543 struct inode
*inode
= mapping
->host
;
544 struct ubifs_inode
*ui
= ubifs_inode(inode
);
545 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
546 loff_t end_pos
= pos
+ len
;
547 int appending
= !!(end_pos
> inode
->i_size
);
549 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
550 inode
->i_ino
, pos
, page
->index
, len
, copied
, inode
->i_size
);
552 if (unlikely(copied
< len
&& len
== PAGE_CACHE_SIZE
)) {
554 * VFS copied less data to the page that it intended and
555 * declared in its '->write_begin()' call via the @len
556 * argument. If the page was not up-to-date, and @len was
557 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
558 * not load it from the media (for optimization reasons). This
559 * means that part of the page contains garbage. So read the
562 dbg_gen("copied %d instead of %d, read page and repeat",
564 cancel_budget(c
, page
, ui
, appending
);
565 ClearPageChecked(page
);
568 * Return 0 to force VFS to repeat the whole operation, or the
569 * error code if 'do_readpage()' fails.
571 copied
= do_readpage(page
);
575 if (!PagePrivate(page
)) {
576 SetPagePrivate(page
);
577 atomic_long_inc(&c
->dirty_pg_cnt
);
578 __set_page_dirty_nobuffers(page
);
582 i_size_write(inode
, end_pos
);
583 ui
->ui_size
= end_pos
;
585 * Note, we do not set @I_DIRTY_PAGES (which means that the
586 * inode has dirty pages), this has been done in
587 * '__set_page_dirty_nobuffers()'.
589 __mark_inode_dirty(inode
, I_DIRTY_DATASYNC
);
590 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
591 mutex_unlock(&ui
->ui_mutex
);
596 page_cache_release(page
);
601 * populate_page - copy data nodes into a page for bulk-read.
602 * @c: UBIFS file-system description object
604 * @bu: bulk-read information
605 * @n: next zbranch slot
607 * This function returns %0 on success and a negative error code on failure.
609 static int populate_page(struct ubifs_info
*c
, struct page
*page
,
610 struct bu_info
*bu
, int *n
)
612 int i
= 0, nn
= *n
, offs
= bu
->zbranch
[0].offs
, hole
= 0, read
= 0;
613 struct inode
*inode
= page
->mapping
->host
;
614 loff_t i_size
= i_size_read(inode
);
615 unsigned int page_block
;
619 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
620 inode
->i_ino
, page
->index
, i_size
, page
->flags
);
622 addr
= zaddr
= kmap(page
);
624 end_index
= (i_size
- 1) >> PAGE_CACHE_SHIFT
;
625 if (!i_size
|| page
->index
> end_index
) {
627 memset(addr
, 0, PAGE_CACHE_SIZE
);
631 page_block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
633 int err
, len
, out_len
, dlen
;
637 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
638 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) == page_block
) {
639 struct ubifs_data_node
*dn
;
641 dn
= bu
->buf
+ (bu
->zbranch
[nn
].offs
- offs
);
643 ubifs_assert(le64_to_cpu(dn
->ch
.sqnum
) >
644 ubifs_inode(inode
)->creat_sqnum
);
646 len
= le32_to_cpu(dn
->size
);
647 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
650 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
651 out_len
= UBIFS_BLOCK_SIZE
;
652 err
= ubifs_decompress(c
, &dn
->data
, dlen
, addr
, &out_len
,
653 le16_to_cpu(dn
->compr_type
));
654 if (err
|| len
!= out_len
)
657 if (len
< UBIFS_BLOCK_SIZE
)
658 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
661 read
= (i
<< UBIFS_BLOCK_SHIFT
) + len
;
662 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) < page_block
) {
667 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
669 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
671 addr
+= UBIFS_BLOCK_SIZE
;
675 if (end_index
== page
->index
) {
676 int len
= i_size
& (PAGE_CACHE_SIZE
- 1);
678 if (len
&& len
< read
)
679 memset(zaddr
+ len
, 0, read
- len
);
684 SetPageChecked(page
);
688 SetPageUptodate(page
);
689 ClearPageError(page
);
690 flush_dcache_page(page
);
696 ClearPageUptodate(page
);
698 flush_dcache_page(page
);
700 ubifs_err(c
, "bad data node (block %u, inode %lu)",
701 page_block
, inode
->i_ino
);
706 * ubifs_do_bulk_read - do bulk-read.
707 * @c: UBIFS file-system description object
708 * @bu: bulk-read information
709 * @page1: first page to read
711 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
713 static int ubifs_do_bulk_read(struct ubifs_info
*c
, struct bu_info
*bu
,
716 pgoff_t offset
= page1
->index
, end_index
;
717 struct address_space
*mapping
= page1
->mapping
;
718 struct inode
*inode
= mapping
->host
;
719 struct ubifs_inode
*ui
= ubifs_inode(inode
);
720 int err
, page_idx
, page_cnt
, ret
= 0, n
= 0;
721 int allocate
= bu
->buf
? 0 : 1;
724 err
= ubifs_tnc_get_bu_keys(c
, bu
);
729 /* Turn off bulk-read at the end of the file */
730 ui
->read_in_a_row
= 1;
734 page_cnt
= bu
->blk_cnt
>> UBIFS_BLOCKS_PER_PAGE_SHIFT
;
737 * This happens when there are multiple blocks per page and the
738 * blocks for the first page we are looking for, are not
739 * together. If all the pages were like this, bulk-read would
740 * reduce performance, so we turn it off for a while.
748 * Allocate bulk-read buffer depending on how many data
749 * nodes we are going to read.
751 bu
->buf_len
= bu
->zbranch
[bu
->cnt
- 1].offs
+
752 bu
->zbranch
[bu
->cnt
- 1].len
-
754 ubifs_assert(bu
->buf_len
> 0);
755 ubifs_assert(bu
->buf_len
<= c
->leb_size
);
756 bu
->buf
= kmalloc(bu
->buf_len
, GFP_NOFS
| __GFP_NOWARN
);
761 err
= ubifs_tnc_bulk_read(c
, bu
);
766 err
= populate_page(c
, page1
, bu
, &n
);
773 isize
= i_size_read(inode
);
776 end_index
= ((isize
- 1) >> PAGE_CACHE_SHIFT
);
778 for (page_idx
= 1; page_idx
< page_cnt
; page_idx
++) {
779 pgoff_t page_offset
= offset
+ page_idx
;
782 if (page_offset
> end_index
)
784 page
= find_or_create_page(mapping
, page_offset
,
785 GFP_NOFS
| __GFP_COLD
);
788 if (!PageUptodate(page
))
789 err
= populate_page(c
, page
, bu
, &n
);
791 page_cache_release(page
);
796 ui
->last_page_read
= offset
+ page_idx
- 1;
804 ubifs_warn(c
, "ignoring error %d and skipping bulk-read", err
);
808 ui
->read_in_a_row
= ui
->bulk_read
= 0;
813 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
814 * @page: page from which to start bulk-read.
816 * Some flash media are capable of reading sequentially at faster rates. UBIFS
817 * bulk-read facility is designed to take advantage of that, by reading in one
818 * go consecutive data nodes that are also located consecutively in the same
819 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
821 static int ubifs_bulk_read(struct page
*page
)
823 struct inode
*inode
= page
->mapping
->host
;
824 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
825 struct ubifs_inode
*ui
= ubifs_inode(inode
);
826 pgoff_t index
= page
->index
, last_page_read
= ui
->last_page_read
;
828 int err
= 0, allocated
= 0;
830 ui
->last_page_read
= index
;
835 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
836 * so don't bother if we cannot lock the mutex.
838 if (!mutex_trylock(&ui
->ui_mutex
))
841 if (index
!= last_page_read
+ 1) {
842 /* Turn off bulk-read if we stop reading sequentially */
843 ui
->read_in_a_row
= 1;
849 if (!ui
->bulk_read
) {
850 ui
->read_in_a_row
+= 1;
851 if (ui
->read_in_a_row
< 3)
853 /* Three reads in a row, so switch on bulk-read */
858 * If possible, try to use pre-allocated bulk-read information, which
859 * is protected by @c->bu_mutex.
861 if (mutex_trylock(&c
->bu_mutex
))
864 bu
= kmalloc(sizeof(struct bu_info
), GFP_NOFS
| __GFP_NOWARN
);
872 bu
->buf_len
= c
->max_bu_buf_len
;
873 data_key_init(c
, &bu
->key
, inode
->i_ino
,
874 page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
);
875 err
= ubifs_do_bulk_read(c
, bu
, page
);
878 mutex_unlock(&c
->bu_mutex
);
883 mutex_unlock(&ui
->ui_mutex
);
887 static int ubifs_readpage(struct file
*file
, struct page
*page
)
889 if (ubifs_bulk_read(page
))
896 static int do_writepage(struct page
*page
, int len
)
898 int err
= 0, i
, blen
;
902 struct inode
*inode
= page
->mapping
->host
;
903 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
906 struct ubifs_inode
*ui
= ubifs_inode(inode
);
907 spin_lock(&ui
->ui_lock
);
908 ubifs_assert(page
->index
<= ui
->synced_i_size
>> PAGE_CACHE_SHIFT
);
909 spin_unlock(&ui
->ui_lock
);
912 /* Update radix tree tags */
913 set_page_writeback(page
);
916 block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
919 blen
= min_t(int, len
, UBIFS_BLOCK_SIZE
);
920 data_key_init(c
, &key
, inode
->i_ino
, block
);
921 err
= ubifs_jnl_write_data(c
, inode
, &key
, addr
, blen
);
924 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
932 ubifs_err(c
, "cannot write page %lu of inode %lu, error %d",
933 page
->index
, inode
->i_ino
, err
);
934 ubifs_ro_mode(c
, err
);
937 ubifs_assert(PagePrivate(page
));
938 if (PageChecked(page
))
939 release_new_page_budget(c
);
941 release_existing_page_budget(c
);
943 atomic_long_dec(&c
->dirty_pg_cnt
);
944 ClearPagePrivate(page
);
945 ClearPageChecked(page
);
949 end_page_writeback(page
);
954 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
955 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
956 * situation when a we have an inode with size 0, then a megabyte of data is
957 * appended to the inode, then write-back starts and flushes some amount of the
958 * dirty pages, the journal becomes full, commit happens and finishes, and then
959 * an unclean reboot happens. When the file system is mounted next time, the
960 * inode size would still be 0, but there would be many pages which are beyond
961 * the inode size, they would be indexed and consume flash space. Because the
962 * journal has been committed, the replay would not be able to detect this
963 * situation and correct the inode size. This means UBIFS would have to scan
964 * whole index and correct all inode sizes, which is long an unacceptable.
966 * To prevent situations like this, UBIFS writes pages back only if they are
967 * within the last synchronized inode size, i.e. the size which has been
968 * written to the flash media last time. Otherwise, UBIFS forces inode
969 * write-back, thus making sure the on-flash inode contains current inode size,
970 * and then keeps writing pages back.
972 * Some locking issues explanation. 'ubifs_writepage()' first is called with
973 * the page locked, and it locks @ui_mutex. However, write-back does take inode
974 * @i_mutex, which means other VFS operations may be run on this inode at the
975 * same time. And the problematic one is truncation to smaller size, from where
976 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
977 * then drops the truncated pages. And while dropping the pages, it takes the
978 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
979 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
980 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
982 * XXX(truncate): with the new truncate sequence this is not true anymore,
983 * and the calls to truncate_setsize can be move around freely. They should
984 * be moved to the very end of the truncate sequence.
986 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
987 * inode size. How do we do this if @inode->i_size may became smaller while we
988 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
989 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
990 * internally and updates it under @ui_mutex.
992 * Q: why we do not worry that if we race with truncation, we may end up with a
993 * situation when the inode is truncated while we are in the middle of
994 * 'do_writepage()', so we do write beyond inode size?
995 * A: If we are in the middle of 'do_writepage()', truncation would be locked
996 * on the page lock and it would not write the truncated inode node to the
997 * journal before we have finished.
999 static int ubifs_writepage(struct page
*page
, struct writeback_control
*wbc
)
1001 struct inode
*inode
= page
->mapping
->host
;
1002 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1003 loff_t i_size
= i_size_read(inode
), synced_i_size
;
1004 pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1005 int err
, len
= i_size
& (PAGE_CACHE_SIZE
- 1);
1008 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1009 inode
->i_ino
, page
->index
, page
->flags
);
1010 ubifs_assert(PagePrivate(page
));
1012 /* Is the page fully outside @i_size? (truncate in progress) */
1013 if (page
->index
> end_index
|| (page
->index
== end_index
&& !len
)) {
1018 spin_lock(&ui
->ui_lock
);
1019 synced_i_size
= ui
->synced_i_size
;
1020 spin_unlock(&ui
->ui_lock
);
1022 /* Is the page fully inside @i_size? */
1023 if (page
->index
< end_index
) {
1024 if (page
->index
>= synced_i_size
>> PAGE_CACHE_SHIFT
) {
1025 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1029 * The inode has been written, but the write-buffer has
1030 * not been synchronized, so in case of an unclean
1031 * reboot we may end up with some pages beyond inode
1032 * size, but they would be in the journal (because
1033 * commit flushes write buffers) and recovery would deal
1037 return do_writepage(page
, PAGE_CACHE_SIZE
);
1041 * The page straddles @i_size. It must be zeroed out on each and every
1042 * writepage invocation because it may be mmapped. "A file is mapped
1043 * in multiples of the page size. For a file that is not a multiple of
1044 * the page size, the remaining memory is zeroed when mapped, and
1045 * writes to that region are not written out to the file."
1047 kaddr
= kmap_atomic(page
);
1048 memset(kaddr
+ len
, 0, PAGE_CACHE_SIZE
- len
);
1049 flush_dcache_page(page
);
1050 kunmap_atomic(kaddr
);
1052 if (i_size
> synced_i_size
) {
1053 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1058 return do_writepage(page
, len
);
1066 * do_attr_changes - change inode attributes.
1067 * @inode: inode to change attributes for
1068 * @attr: describes attributes to change
1070 static void do_attr_changes(struct inode
*inode
, const struct iattr
*attr
)
1072 if (attr
->ia_valid
& ATTR_UID
)
1073 inode
->i_uid
= attr
->ia_uid
;
1074 if (attr
->ia_valid
& ATTR_GID
)
1075 inode
->i_gid
= attr
->ia_gid
;
1076 if (attr
->ia_valid
& ATTR_ATIME
)
1077 inode
->i_atime
= timespec_trunc(attr
->ia_atime
,
1078 inode
->i_sb
->s_time_gran
);
1079 if (attr
->ia_valid
& ATTR_MTIME
)
1080 inode
->i_mtime
= timespec_trunc(attr
->ia_mtime
,
1081 inode
->i_sb
->s_time_gran
);
1082 if (attr
->ia_valid
& ATTR_CTIME
)
1083 inode
->i_ctime
= timespec_trunc(attr
->ia_ctime
,
1084 inode
->i_sb
->s_time_gran
);
1085 if (attr
->ia_valid
& ATTR_MODE
) {
1086 umode_t mode
= attr
->ia_mode
;
1088 if (!in_group_p(inode
->i_gid
) && !capable(CAP_FSETID
))
1090 inode
->i_mode
= mode
;
1095 * do_truncation - truncate an inode.
1096 * @c: UBIFS file-system description object
1097 * @inode: inode to truncate
1098 * @attr: inode attribute changes description
1100 * This function implements VFS '->setattr()' call when the inode is truncated
1101 * to a smaller size. Returns zero in case of success and a negative error code
1102 * in case of failure.
1104 static int do_truncation(struct ubifs_info
*c
, struct inode
*inode
,
1105 const struct iattr
*attr
)
1108 struct ubifs_budget_req req
;
1109 loff_t old_size
= inode
->i_size
, new_size
= attr
->ia_size
;
1110 int offset
= new_size
& (UBIFS_BLOCK_SIZE
- 1), budgeted
= 1;
1111 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1113 dbg_gen("ino %lu, size %lld -> %lld", inode
->i_ino
, old_size
, new_size
);
1114 memset(&req
, 0, sizeof(struct ubifs_budget_req
));
1117 * If this is truncation to a smaller size, and we do not truncate on a
1118 * block boundary, budget for changing one data block, because the last
1119 * block will be re-written.
1121 if (new_size
& (UBIFS_BLOCK_SIZE
- 1))
1122 req
.dirtied_page
= 1;
1124 req
.dirtied_ino
= 1;
1125 /* A funny way to budget for truncation node */
1126 req
.dirtied_ino_d
= UBIFS_TRUN_NODE_SZ
;
1127 err
= ubifs_budget_space(c
, &req
);
1130 * Treat truncations to zero as deletion and always allow them,
1131 * just like we do for '->unlink()'.
1133 if (new_size
|| err
!= -ENOSPC
)
1138 truncate_setsize(inode
, new_size
);
1141 pgoff_t index
= new_size
>> PAGE_CACHE_SHIFT
;
1144 page
= find_lock_page(inode
->i_mapping
, index
);
1146 if (PageDirty(page
)) {
1148 * 'ubifs_jnl_truncate()' will try to truncate
1149 * the last data node, but it contains
1150 * out-of-date data because the page is dirty.
1151 * Write the page now, so that
1152 * 'ubifs_jnl_truncate()' will see an already
1153 * truncated (and up to date) data node.
1155 ubifs_assert(PagePrivate(page
));
1157 clear_page_dirty_for_io(page
);
1158 if (UBIFS_BLOCKS_PER_PAGE_SHIFT
)
1160 (PAGE_CACHE_SIZE
- 1);
1161 err
= do_writepage(page
, offset
);
1162 page_cache_release(page
);
1166 * We could now tell 'ubifs_jnl_truncate()' not
1167 * to read the last block.
1171 * We could 'kmap()' the page and pass the data
1172 * to 'ubifs_jnl_truncate()' to save it from
1173 * having to read it.
1176 page_cache_release(page
);
1181 mutex_lock(&ui
->ui_mutex
);
1182 ui
->ui_size
= inode
->i_size
;
1183 /* Truncation changes inode [mc]time */
1184 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1185 /* Other attributes may be changed at the same time as well */
1186 do_attr_changes(inode
, attr
);
1187 err
= ubifs_jnl_truncate(c
, inode
, old_size
, new_size
);
1188 mutex_unlock(&ui
->ui_mutex
);
1192 ubifs_release_budget(c
, &req
);
1194 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
1201 * do_setattr - change inode attributes.
1202 * @c: UBIFS file-system description object
1203 * @inode: inode to change attributes for
1204 * @attr: inode attribute changes description
1206 * This function implements VFS '->setattr()' call for all cases except
1207 * truncations to smaller size. Returns zero in case of success and a negative
1208 * error code in case of failure.
1210 static int do_setattr(struct ubifs_info
*c
, struct inode
*inode
,
1211 const struct iattr
*attr
)
1214 loff_t new_size
= attr
->ia_size
;
1215 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1216 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1217 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1219 err
= ubifs_budget_space(c
, &req
);
1223 if (attr
->ia_valid
& ATTR_SIZE
) {
1224 dbg_gen("size %lld -> %lld", inode
->i_size
, new_size
);
1225 truncate_setsize(inode
, new_size
);
1228 mutex_lock(&ui
->ui_mutex
);
1229 if (attr
->ia_valid
& ATTR_SIZE
) {
1230 /* Truncation changes inode [mc]time */
1231 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1232 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1233 ui
->ui_size
= inode
->i_size
;
1236 do_attr_changes(inode
, attr
);
1238 release
= ui
->dirty
;
1239 if (attr
->ia_valid
& ATTR_SIZE
)
1241 * Inode length changed, so we have to make sure
1242 * @I_DIRTY_DATASYNC is set.
1244 __mark_inode_dirty(inode
, I_DIRTY_SYNC
| I_DIRTY_DATASYNC
);
1246 mark_inode_dirty_sync(inode
);
1247 mutex_unlock(&ui
->ui_mutex
);
1250 ubifs_release_budget(c
, &req
);
1252 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1256 int ubifs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1259 struct inode
*inode
= d_inode(dentry
);
1260 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1262 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1263 inode
->i_ino
, inode
->i_mode
, attr
->ia_valid
);
1264 err
= inode_change_ok(inode
, attr
);
1268 err
= dbg_check_synced_i_size(c
, inode
);
1272 if ((attr
->ia_valid
& ATTR_SIZE
) && attr
->ia_size
< inode
->i_size
)
1273 /* Truncation to a smaller size */
1274 err
= do_truncation(c
, inode
, attr
);
1276 err
= do_setattr(c
, inode
, attr
);
1281 static void ubifs_invalidatepage(struct page
*page
, unsigned int offset
,
1282 unsigned int length
)
1284 struct inode
*inode
= page
->mapping
->host
;
1285 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1287 ubifs_assert(PagePrivate(page
));
1288 if (offset
|| length
< PAGE_CACHE_SIZE
)
1289 /* Partial page remains dirty */
1292 if (PageChecked(page
))
1293 release_new_page_budget(c
);
1295 release_existing_page_budget(c
);
1297 atomic_long_dec(&c
->dirty_pg_cnt
);
1298 ClearPagePrivate(page
);
1299 ClearPageChecked(page
);
1302 int ubifs_fsync(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1304 struct inode
*inode
= file
->f_mapping
->host
;
1305 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1308 dbg_gen("syncing inode %lu", inode
->i_ino
);
1312 * For some really strange reasons VFS does not filter out
1313 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1317 err
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
1320 mutex_lock(&inode
->i_mutex
);
1322 /* Synchronize the inode unless this is a 'datasync()' call. */
1323 if (!datasync
|| (inode
->i_state
& I_DIRTY_DATASYNC
)) {
1324 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1330 * Nodes related to this inode may still sit in a write-buffer. Flush
1333 err
= ubifs_sync_wbufs_by_inode(c
, inode
);
1335 mutex_unlock(&inode
->i_mutex
);
1340 * mctime_update_needed - check if mtime or ctime update is needed.
1341 * @inode: the inode to do the check for
1342 * @now: current time
1344 * This helper function checks if the inode mtime/ctime should be updated or
1345 * not. If current values of the time-stamps are within the UBIFS inode time
1346 * granularity, they are not updated. This is an optimization.
1348 static inline int mctime_update_needed(const struct inode
*inode
,
1349 const struct timespec
*now
)
1351 if (!timespec_equal(&inode
->i_mtime
, now
) ||
1352 !timespec_equal(&inode
->i_ctime
, now
))
1357 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1359 * ubifs_update_time - update time of inode.
1360 * @inode: inode to update
1362 * This function updates time of the inode.
1364 int ubifs_update_time(struct inode
*inode
, struct timespec
*time
,
1367 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1368 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1369 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1370 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1371 int iflags
= I_DIRTY_TIME
;
1374 err
= ubifs_budget_space(c
, &req
);
1378 mutex_lock(&ui
->ui_mutex
);
1379 if (flags
& S_ATIME
)
1380 inode
->i_atime
= *time
;
1381 if (flags
& S_CTIME
)
1382 inode
->i_ctime
= *time
;
1383 if (flags
& S_MTIME
)
1384 inode
->i_mtime
= *time
;
1386 if (!(inode
->i_sb
->s_flags
& MS_LAZYTIME
))
1387 iflags
|= I_DIRTY_SYNC
;
1389 release
= ui
->dirty
;
1390 __mark_inode_dirty(inode
, iflags
);
1391 mutex_unlock(&ui
->ui_mutex
);
1393 ubifs_release_budget(c
, &req
);
1399 * update_ctime - update mtime and ctime of an inode.
1400 * @inode: inode to update
1402 * This function updates mtime and ctime of the inode if it is not equivalent to
1403 * current time. Returns zero in case of success and a negative error code in
1406 static int update_mctime(struct inode
*inode
)
1408 struct timespec now
= ubifs_current_time(inode
);
1409 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1410 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1412 if (mctime_update_needed(inode
, &now
)) {
1414 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1415 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1417 err
= ubifs_budget_space(c
, &req
);
1421 mutex_lock(&ui
->ui_mutex
);
1422 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1423 release
= ui
->dirty
;
1424 mark_inode_dirty_sync(inode
);
1425 mutex_unlock(&ui
->ui_mutex
);
1427 ubifs_release_budget(c
, &req
);
1433 static ssize_t
ubifs_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
1435 int err
= update_mctime(file_inode(iocb
->ki_filp
));
1439 return generic_file_write_iter(iocb
, from
);
1442 static int ubifs_set_page_dirty(struct page
*page
)
1446 ret
= __set_page_dirty_nobuffers(page
);
1448 * An attempt to dirty a page without budgeting for it - should not
1451 ubifs_assert(ret
== 0);
1455 static int ubifs_releasepage(struct page
*page
, gfp_t unused_gfp_flags
)
1458 * An attempt to release a dirty page without budgeting for it - should
1461 if (PageWriteback(page
))
1463 ubifs_assert(PagePrivate(page
));
1465 ClearPagePrivate(page
);
1466 ClearPageChecked(page
);
1471 * mmap()d file has taken write protection fault and is being made writable.
1472 * UBIFS must ensure page is budgeted for.
1474 static int ubifs_vm_page_mkwrite(struct vm_area_struct
*vma
,
1475 struct vm_fault
*vmf
)
1477 struct page
*page
= vmf
->page
;
1478 struct inode
*inode
= file_inode(vma
->vm_file
);
1479 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1480 struct timespec now
= ubifs_current_time(inode
);
1481 struct ubifs_budget_req req
= { .new_page
= 1 };
1482 int err
, update_time
;
1484 dbg_gen("ino %lu, pg %lu, i_size %lld", inode
->i_ino
, page
->index
,
1485 i_size_read(inode
));
1486 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
1488 if (unlikely(c
->ro_error
))
1489 return VM_FAULT_SIGBUS
; /* -EROFS */
1492 * We have not locked @page so far so we may budget for changing the
1493 * page. Note, we cannot do this after we locked the page, because
1494 * budgeting may cause write-back which would cause deadlock.
1496 * At the moment we do not know whether the page is dirty or not, so we
1497 * assume that it is not and budget for a new page. We could look at
1498 * the @PG_private flag and figure this out, but we may race with write
1499 * back and the page state may change by the time we lock it, so this
1500 * would need additional care. We do not bother with this at the
1501 * moment, although it might be good idea to do. Instead, we allocate
1502 * budget for a new page and amend it later on if the page was in fact
1505 * The budgeting-related logic of this function is similar to what we
1506 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1507 * for more comments.
1509 update_time
= mctime_update_needed(inode
, &now
);
1512 * We have to change inode time stamp which requires extra
1515 req
.dirtied_ino
= 1;
1517 err
= ubifs_budget_space(c
, &req
);
1518 if (unlikely(err
)) {
1520 ubifs_warn(c
, "out of space for mmapped file (inode number %lu)",
1522 return VM_FAULT_SIGBUS
;
1526 if (unlikely(page
->mapping
!= inode
->i_mapping
||
1527 page_offset(page
) > i_size_read(inode
))) {
1528 /* Page got truncated out from underneath us */
1533 if (PagePrivate(page
))
1534 release_new_page_budget(c
);
1536 if (!PageChecked(page
))
1537 ubifs_convert_page_budget(c
);
1538 SetPagePrivate(page
);
1539 atomic_long_inc(&c
->dirty_pg_cnt
);
1540 __set_page_dirty_nobuffers(page
);
1545 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1547 mutex_lock(&ui
->ui_mutex
);
1548 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1549 release
= ui
->dirty
;
1550 mark_inode_dirty_sync(inode
);
1551 mutex_unlock(&ui
->ui_mutex
);
1553 ubifs_release_dirty_inode_budget(c
, ui
);
1556 wait_for_stable_page(page
);
1557 return VM_FAULT_LOCKED
;
1561 ubifs_release_budget(c
, &req
);
1563 err
= VM_FAULT_SIGBUS
;
1567 static const struct vm_operations_struct ubifs_file_vm_ops
= {
1568 .fault
= filemap_fault
,
1569 .map_pages
= filemap_map_pages
,
1570 .page_mkwrite
= ubifs_vm_page_mkwrite
,
1573 static int ubifs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1577 err
= generic_file_mmap(file
, vma
);
1580 vma
->vm_ops
= &ubifs_file_vm_ops
;
1581 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1582 file_accessed(file
);
1587 const struct address_space_operations ubifs_file_address_operations
= {
1588 .readpage
= ubifs_readpage
,
1589 .writepage
= ubifs_writepage
,
1590 .write_begin
= ubifs_write_begin
,
1591 .write_end
= ubifs_write_end
,
1592 .invalidatepage
= ubifs_invalidatepage
,
1593 .set_page_dirty
= ubifs_set_page_dirty
,
1594 .releasepage
= ubifs_releasepage
,
1597 const struct inode_operations ubifs_file_inode_operations
= {
1598 .setattr
= ubifs_setattr
,
1599 .getattr
= ubifs_getattr
,
1600 .setxattr
= ubifs_setxattr
,
1601 .getxattr
= ubifs_getxattr
,
1602 .listxattr
= ubifs_listxattr
,
1603 .removexattr
= ubifs_removexattr
,
1604 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1605 .update_time
= ubifs_update_time
,
1609 const struct inode_operations ubifs_symlink_inode_operations
= {
1610 .readlink
= generic_readlink
,
1611 .get_link
= simple_get_link
,
1612 .setattr
= ubifs_setattr
,
1613 .getattr
= ubifs_getattr
,
1614 .setxattr
= ubifs_setxattr
,
1615 .getxattr
= ubifs_getxattr
,
1616 .listxattr
= ubifs_listxattr
,
1617 .removexattr
= ubifs_removexattr
,
1618 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1619 .update_time
= ubifs_update_time
,
1623 const struct file_operations ubifs_file_operations
= {
1624 .llseek
= generic_file_llseek
,
1625 .read_iter
= generic_file_read_iter
,
1626 .write_iter
= ubifs_write_iter
,
1627 .mmap
= ubifs_file_mmap
,
1628 .fsync
= ubifs_fsync
,
1629 .unlocked_ioctl
= ubifs_ioctl
,
1630 .splice_read
= generic_file_splice_read
,
1631 .splice_write
= iter_file_splice_write
,
1632 #ifdef CONFIG_COMPAT
1633 .compat_ioctl
= ubifs_compat_ioctl
,