of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / fs / ubifs / file.c
blobeff62801acbf10524e31f8ad7816c160e6f88a90
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when flusher thread is doing
41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49 * set as well. However, UBIFS disables readahead.
52 #include "ubifs.h"
53 #include <linux/mount.h>
54 #include <linux/slab.h>
56 static int read_block(struct inode *inode, void *addr, unsigned int block,
57 struct ubifs_data_node *dn)
59 struct ubifs_info *c = inode->i_sb->s_fs_info;
60 int err, len, out_len;
61 union ubifs_key key;
62 unsigned int dlen;
64 data_key_init(c, &key, inode->i_ino, block);
65 err = ubifs_tnc_lookup(c, &key, dn);
66 if (err) {
67 if (err == -ENOENT)
68 /* Not found, so it must be a hole */
69 memset(addr, 0, UBIFS_BLOCK_SIZE);
70 return err;
73 ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
74 ubifs_inode(inode)->creat_sqnum);
75 len = le32_to_cpu(dn->size);
76 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
77 goto dump;
79 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
80 out_len = UBIFS_BLOCK_SIZE;
81 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
82 le16_to_cpu(dn->compr_type));
83 if (err || len != out_len)
84 goto dump;
87 * Data length can be less than a full block, even for blocks that are
88 * not the last in the file (e.g., as a result of making a hole and
89 * appending data). Ensure that the remainder is zeroed out.
91 if (len < UBIFS_BLOCK_SIZE)
92 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
94 return 0;
96 dump:
97 ubifs_err(c, "bad data node (block %u, inode %lu)",
98 block, inode->i_ino);
99 ubifs_dump_node(c, dn);
100 return -EINVAL;
103 static int do_readpage(struct page *page)
105 void *addr;
106 int err = 0, i;
107 unsigned int block, beyond;
108 struct ubifs_data_node *dn;
109 struct inode *inode = page->mapping->host;
110 loff_t i_size = i_size_read(inode);
112 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
113 inode->i_ino, page->index, i_size, page->flags);
114 ubifs_assert(!PageChecked(page));
115 ubifs_assert(!PagePrivate(page));
117 addr = kmap(page);
119 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
120 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
121 if (block >= beyond) {
122 /* Reading beyond inode */
123 SetPageChecked(page);
124 memset(addr, 0, PAGE_CACHE_SIZE);
125 goto out;
128 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
129 if (!dn) {
130 err = -ENOMEM;
131 goto error;
134 i = 0;
135 while (1) {
136 int ret;
138 if (block >= beyond) {
139 /* Reading beyond inode */
140 err = -ENOENT;
141 memset(addr, 0, UBIFS_BLOCK_SIZE);
142 } else {
143 ret = read_block(inode, addr, block, dn);
144 if (ret) {
145 err = ret;
146 if (err != -ENOENT)
147 break;
148 } else if (block + 1 == beyond) {
149 int dlen = le32_to_cpu(dn->size);
150 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
152 if (ilen && ilen < dlen)
153 memset(addr + ilen, 0, dlen - ilen);
156 if (++i >= UBIFS_BLOCKS_PER_PAGE)
157 break;
158 block += 1;
159 addr += UBIFS_BLOCK_SIZE;
161 if (err) {
162 struct ubifs_info *c = inode->i_sb->s_fs_info;
163 if (err == -ENOENT) {
164 /* Not found, so it must be a hole */
165 SetPageChecked(page);
166 dbg_gen("hole");
167 goto out_free;
169 ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
170 page->index, inode->i_ino, err);
171 goto error;
174 out_free:
175 kfree(dn);
176 out:
177 SetPageUptodate(page);
178 ClearPageError(page);
179 flush_dcache_page(page);
180 kunmap(page);
181 return 0;
183 error:
184 kfree(dn);
185 ClearPageUptodate(page);
186 SetPageError(page);
187 flush_dcache_page(page);
188 kunmap(page);
189 return err;
193 * release_new_page_budget - release budget of a new page.
194 * @c: UBIFS file-system description object
196 * This is a helper function which releases budget corresponding to the budget
197 * of one new page of data.
199 static void release_new_page_budget(struct ubifs_info *c)
201 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
203 ubifs_release_budget(c, &req);
207 * release_existing_page_budget - release budget of an existing page.
208 * @c: UBIFS file-system description object
210 * This is a helper function which releases budget corresponding to the budget
211 * of changing one one page of data which already exists on the flash media.
213 static void release_existing_page_budget(struct ubifs_info *c)
215 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
217 ubifs_release_budget(c, &req);
220 static int write_begin_slow(struct address_space *mapping,
221 loff_t pos, unsigned len, struct page **pagep,
222 unsigned flags)
224 struct inode *inode = mapping->host;
225 struct ubifs_info *c = inode->i_sb->s_fs_info;
226 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
227 struct ubifs_budget_req req = { .new_page = 1 };
228 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
229 struct page *page;
231 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
232 inode->i_ino, pos, len, inode->i_size);
235 * At the slow path we have to budget before locking the page, because
236 * budgeting may force write-back, which would wait on locked pages and
237 * deadlock if we had the page locked. At this point we do not know
238 * anything about the page, so assume that this is a new page which is
239 * written to a hole. This corresponds to largest budget. Later the
240 * budget will be amended if this is not true.
242 if (appending)
243 /* We are appending data, budget for inode change */
244 req.dirtied_ino = 1;
246 err = ubifs_budget_space(c, &req);
247 if (unlikely(err))
248 return err;
250 page = grab_cache_page_write_begin(mapping, index, flags);
251 if (unlikely(!page)) {
252 ubifs_release_budget(c, &req);
253 return -ENOMEM;
256 if (!PageUptodate(page)) {
257 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
258 SetPageChecked(page);
259 else {
260 err = do_readpage(page);
261 if (err) {
262 unlock_page(page);
263 page_cache_release(page);
264 ubifs_release_budget(c, &req);
265 return err;
269 SetPageUptodate(page);
270 ClearPageError(page);
273 if (PagePrivate(page))
275 * The page is dirty, which means it was budgeted twice:
276 * o first time the budget was allocated by the task which
277 * made the page dirty and set the PG_private flag;
278 * o and then we budgeted for it for the second time at the
279 * very beginning of this function.
281 * So what we have to do is to release the page budget we
282 * allocated.
284 release_new_page_budget(c);
285 else if (!PageChecked(page))
287 * We are changing a page which already exists on the media.
288 * This means that changing the page does not make the amount
289 * of indexing information larger, and this part of the budget
290 * which we have already acquired may be released.
292 ubifs_convert_page_budget(c);
294 if (appending) {
295 struct ubifs_inode *ui = ubifs_inode(inode);
298 * 'ubifs_write_end()' is optimized from the fast-path part of
299 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
300 * if data is appended.
302 mutex_lock(&ui->ui_mutex);
303 if (ui->dirty)
305 * The inode is dirty already, so we may free the
306 * budget we allocated.
308 ubifs_release_dirty_inode_budget(c, ui);
311 *pagep = page;
312 return 0;
316 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
317 * @c: UBIFS file-system description object
318 * @page: page to allocate budget for
319 * @ui: UBIFS inode object the page belongs to
320 * @appending: non-zero if the page is appended
322 * This is a helper function for 'ubifs_write_begin()' which allocates budget
323 * for the operation. The budget is allocated differently depending on whether
324 * this is appending, whether the page is dirty or not, and so on. This
325 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
326 * in case of success and %-ENOSPC in case of failure.
328 static int allocate_budget(struct ubifs_info *c, struct page *page,
329 struct ubifs_inode *ui, int appending)
331 struct ubifs_budget_req req = { .fast = 1 };
333 if (PagePrivate(page)) {
334 if (!appending)
336 * The page is dirty and we are not appending, which
337 * means no budget is needed at all.
339 return 0;
341 mutex_lock(&ui->ui_mutex);
342 if (ui->dirty)
344 * The page is dirty and we are appending, so the inode
345 * has to be marked as dirty. However, it is already
346 * dirty, so we do not need any budget. We may return,
347 * but @ui->ui_mutex hast to be left locked because we
348 * should prevent write-back from flushing the inode
349 * and freeing the budget. The lock will be released in
350 * 'ubifs_write_end()'.
352 return 0;
355 * The page is dirty, we are appending, the inode is clean, so
356 * we need to budget the inode change.
358 req.dirtied_ino = 1;
359 } else {
360 if (PageChecked(page))
362 * The page corresponds to a hole and does not
363 * exist on the media. So changing it makes
364 * make the amount of indexing information
365 * larger, and we have to budget for a new
366 * page.
368 req.new_page = 1;
369 else
371 * Not a hole, the change will not add any new
372 * indexing information, budget for page
373 * change.
375 req.dirtied_page = 1;
377 if (appending) {
378 mutex_lock(&ui->ui_mutex);
379 if (!ui->dirty)
381 * The inode is clean but we will have to mark
382 * it as dirty because we are appending. This
383 * needs a budget.
385 req.dirtied_ino = 1;
389 return ubifs_budget_space(c, &req);
393 * This function is called when a page of data is going to be written. Since
394 * the page of data will not necessarily go to the flash straight away, UBIFS
395 * has to reserve space on the media for it, which is done by means of
396 * budgeting.
398 * This is the hot-path of the file-system and we are trying to optimize it as
399 * much as possible. For this reasons it is split on 2 parts - slow and fast.
401 * There many budgeting cases:
402 * o a new page is appended - we have to budget for a new page and for
403 * changing the inode; however, if the inode is already dirty, there is
404 * no need to budget for it;
405 * o an existing clean page is changed - we have budget for it; if the page
406 * does not exist on the media (a hole), we have to budget for a new
407 * page; otherwise, we may budget for changing an existing page; the
408 * difference between these cases is that changing an existing page does
409 * not introduce anything new to the FS indexing information, so it does
410 * not grow, and smaller budget is acquired in this case;
411 * o an existing dirty page is changed - no need to budget at all, because
412 * the page budget has been acquired by earlier, when the page has been
413 * marked dirty.
415 * UBIFS budgeting sub-system may force write-back if it thinks there is no
416 * space to reserve. This imposes some locking restrictions and makes it
417 * impossible to take into account the above cases, and makes it impossible to
418 * optimize budgeting.
420 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
421 * there is a plenty of flash space and the budget will be acquired quickly,
422 * without forcing write-back. The slow path does not make this assumption.
424 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
425 loff_t pos, unsigned len, unsigned flags,
426 struct page **pagep, void **fsdata)
428 struct inode *inode = mapping->host;
429 struct ubifs_info *c = inode->i_sb->s_fs_info;
430 struct ubifs_inode *ui = ubifs_inode(inode);
431 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
432 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
433 int skipped_read = 0;
434 struct page *page;
436 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
437 ubifs_assert(!c->ro_media && !c->ro_mount);
439 if (unlikely(c->ro_error))
440 return -EROFS;
442 /* Try out the fast-path part first */
443 page = grab_cache_page_write_begin(mapping, index, flags);
444 if (unlikely(!page))
445 return -ENOMEM;
447 if (!PageUptodate(page)) {
448 /* The page is not loaded from the flash */
449 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
451 * We change whole page so no need to load it. But we
452 * do not know whether this page exists on the media or
453 * not, so we assume the latter because it requires
454 * larger budget. The assumption is that it is better
455 * to budget a bit more than to read the page from the
456 * media. Thus, we are setting the @PG_checked flag
457 * here.
459 SetPageChecked(page);
460 skipped_read = 1;
461 } else {
462 err = do_readpage(page);
463 if (err) {
464 unlock_page(page);
465 page_cache_release(page);
466 return err;
470 SetPageUptodate(page);
471 ClearPageError(page);
474 err = allocate_budget(c, page, ui, appending);
475 if (unlikely(err)) {
476 ubifs_assert(err == -ENOSPC);
478 * If we skipped reading the page because we were going to
479 * write all of it, then it is not up to date.
481 if (skipped_read) {
482 ClearPageChecked(page);
483 ClearPageUptodate(page);
486 * Budgeting failed which means it would have to force
487 * write-back but didn't, because we set the @fast flag in the
488 * request. Write-back cannot be done now, while we have the
489 * page locked, because it would deadlock. Unlock and free
490 * everything and fall-back to slow-path.
492 if (appending) {
493 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
494 mutex_unlock(&ui->ui_mutex);
496 unlock_page(page);
497 page_cache_release(page);
499 return write_begin_slow(mapping, pos, len, pagep, flags);
503 * Whee, we acquired budgeting quickly - without involving
504 * garbage-collection, committing or forcing write-back. We return
505 * with @ui->ui_mutex locked if we are appending pages, and unlocked
506 * otherwise. This is an optimization (slightly hacky though).
508 *pagep = page;
509 return 0;
514 * cancel_budget - cancel budget.
515 * @c: UBIFS file-system description object
516 * @page: page to cancel budget for
517 * @ui: UBIFS inode object the page belongs to
518 * @appending: non-zero if the page is appended
520 * This is a helper function for a page write operation. It unlocks the
521 * @ui->ui_mutex in case of appending.
523 static void cancel_budget(struct ubifs_info *c, struct page *page,
524 struct ubifs_inode *ui, int appending)
526 if (appending) {
527 if (!ui->dirty)
528 ubifs_release_dirty_inode_budget(c, ui);
529 mutex_unlock(&ui->ui_mutex);
531 if (!PagePrivate(page)) {
532 if (PageChecked(page))
533 release_new_page_budget(c);
534 else
535 release_existing_page_budget(c);
539 static int ubifs_write_end(struct file *file, struct address_space *mapping,
540 loff_t pos, unsigned len, unsigned copied,
541 struct page *page, void *fsdata)
543 struct inode *inode = mapping->host;
544 struct ubifs_inode *ui = ubifs_inode(inode);
545 struct ubifs_info *c = inode->i_sb->s_fs_info;
546 loff_t end_pos = pos + len;
547 int appending = !!(end_pos > inode->i_size);
549 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
550 inode->i_ino, pos, page->index, len, copied, inode->i_size);
552 if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
554 * VFS copied less data to the page that it intended and
555 * declared in its '->write_begin()' call via the @len
556 * argument. If the page was not up-to-date, and @len was
557 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
558 * not load it from the media (for optimization reasons). This
559 * means that part of the page contains garbage. So read the
560 * page now.
562 dbg_gen("copied %d instead of %d, read page and repeat",
563 copied, len);
564 cancel_budget(c, page, ui, appending);
565 ClearPageChecked(page);
568 * Return 0 to force VFS to repeat the whole operation, or the
569 * error code if 'do_readpage()' fails.
571 copied = do_readpage(page);
572 goto out;
575 if (!PagePrivate(page)) {
576 SetPagePrivate(page);
577 atomic_long_inc(&c->dirty_pg_cnt);
578 __set_page_dirty_nobuffers(page);
581 if (appending) {
582 i_size_write(inode, end_pos);
583 ui->ui_size = end_pos;
585 * Note, we do not set @I_DIRTY_PAGES (which means that the
586 * inode has dirty pages), this has been done in
587 * '__set_page_dirty_nobuffers()'.
589 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
590 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
591 mutex_unlock(&ui->ui_mutex);
594 out:
595 unlock_page(page);
596 page_cache_release(page);
597 return copied;
601 * populate_page - copy data nodes into a page for bulk-read.
602 * @c: UBIFS file-system description object
603 * @page: page
604 * @bu: bulk-read information
605 * @n: next zbranch slot
607 * This function returns %0 on success and a negative error code on failure.
609 static int populate_page(struct ubifs_info *c, struct page *page,
610 struct bu_info *bu, int *n)
612 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
613 struct inode *inode = page->mapping->host;
614 loff_t i_size = i_size_read(inode);
615 unsigned int page_block;
616 void *addr, *zaddr;
617 pgoff_t end_index;
619 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
620 inode->i_ino, page->index, i_size, page->flags);
622 addr = zaddr = kmap(page);
624 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
625 if (!i_size || page->index > end_index) {
626 hole = 1;
627 memset(addr, 0, PAGE_CACHE_SIZE);
628 goto out_hole;
631 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
632 while (1) {
633 int err, len, out_len, dlen;
635 if (nn >= bu->cnt) {
636 hole = 1;
637 memset(addr, 0, UBIFS_BLOCK_SIZE);
638 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
639 struct ubifs_data_node *dn;
641 dn = bu->buf + (bu->zbranch[nn].offs - offs);
643 ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
644 ubifs_inode(inode)->creat_sqnum);
646 len = le32_to_cpu(dn->size);
647 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
648 goto out_err;
650 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
651 out_len = UBIFS_BLOCK_SIZE;
652 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
653 le16_to_cpu(dn->compr_type));
654 if (err || len != out_len)
655 goto out_err;
657 if (len < UBIFS_BLOCK_SIZE)
658 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
660 nn += 1;
661 read = (i << UBIFS_BLOCK_SHIFT) + len;
662 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
663 nn += 1;
664 continue;
665 } else {
666 hole = 1;
667 memset(addr, 0, UBIFS_BLOCK_SIZE);
669 if (++i >= UBIFS_BLOCKS_PER_PAGE)
670 break;
671 addr += UBIFS_BLOCK_SIZE;
672 page_block += 1;
675 if (end_index == page->index) {
676 int len = i_size & (PAGE_CACHE_SIZE - 1);
678 if (len && len < read)
679 memset(zaddr + len, 0, read - len);
682 out_hole:
683 if (hole) {
684 SetPageChecked(page);
685 dbg_gen("hole");
688 SetPageUptodate(page);
689 ClearPageError(page);
690 flush_dcache_page(page);
691 kunmap(page);
692 *n = nn;
693 return 0;
695 out_err:
696 ClearPageUptodate(page);
697 SetPageError(page);
698 flush_dcache_page(page);
699 kunmap(page);
700 ubifs_err(c, "bad data node (block %u, inode %lu)",
701 page_block, inode->i_ino);
702 return -EINVAL;
706 * ubifs_do_bulk_read - do bulk-read.
707 * @c: UBIFS file-system description object
708 * @bu: bulk-read information
709 * @page1: first page to read
711 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
713 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
714 struct page *page1)
716 pgoff_t offset = page1->index, end_index;
717 struct address_space *mapping = page1->mapping;
718 struct inode *inode = mapping->host;
719 struct ubifs_inode *ui = ubifs_inode(inode);
720 int err, page_idx, page_cnt, ret = 0, n = 0;
721 int allocate = bu->buf ? 0 : 1;
722 loff_t isize;
724 err = ubifs_tnc_get_bu_keys(c, bu);
725 if (err)
726 goto out_warn;
728 if (bu->eof) {
729 /* Turn off bulk-read at the end of the file */
730 ui->read_in_a_row = 1;
731 ui->bulk_read = 0;
734 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
735 if (!page_cnt) {
737 * This happens when there are multiple blocks per page and the
738 * blocks for the first page we are looking for, are not
739 * together. If all the pages were like this, bulk-read would
740 * reduce performance, so we turn it off for a while.
742 goto out_bu_off;
745 if (bu->cnt) {
746 if (allocate) {
748 * Allocate bulk-read buffer depending on how many data
749 * nodes we are going to read.
751 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
752 bu->zbranch[bu->cnt - 1].len -
753 bu->zbranch[0].offs;
754 ubifs_assert(bu->buf_len > 0);
755 ubifs_assert(bu->buf_len <= c->leb_size);
756 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
757 if (!bu->buf)
758 goto out_bu_off;
761 err = ubifs_tnc_bulk_read(c, bu);
762 if (err)
763 goto out_warn;
766 err = populate_page(c, page1, bu, &n);
767 if (err)
768 goto out_warn;
770 unlock_page(page1);
771 ret = 1;
773 isize = i_size_read(inode);
774 if (isize == 0)
775 goto out_free;
776 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
778 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
779 pgoff_t page_offset = offset + page_idx;
780 struct page *page;
782 if (page_offset > end_index)
783 break;
784 page = find_or_create_page(mapping, page_offset,
785 GFP_NOFS | __GFP_COLD);
786 if (!page)
787 break;
788 if (!PageUptodate(page))
789 err = populate_page(c, page, bu, &n);
790 unlock_page(page);
791 page_cache_release(page);
792 if (err)
793 break;
796 ui->last_page_read = offset + page_idx - 1;
798 out_free:
799 if (allocate)
800 kfree(bu->buf);
801 return ret;
803 out_warn:
804 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
805 goto out_free;
807 out_bu_off:
808 ui->read_in_a_row = ui->bulk_read = 0;
809 goto out_free;
813 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
814 * @page: page from which to start bulk-read.
816 * Some flash media are capable of reading sequentially at faster rates. UBIFS
817 * bulk-read facility is designed to take advantage of that, by reading in one
818 * go consecutive data nodes that are also located consecutively in the same
819 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
821 static int ubifs_bulk_read(struct page *page)
823 struct inode *inode = page->mapping->host;
824 struct ubifs_info *c = inode->i_sb->s_fs_info;
825 struct ubifs_inode *ui = ubifs_inode(inode);
826 pgoff_t index = page->index, last_page_read = ui->last_page_read;
827 struct bu_info *bu;
828 int err = 0, allocated = 0;
830 ui->last_page_read = index;
831 if (!c->bulk_read)
832 return 0;
835 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
836 * so don't bother if we cannot lock the mutex.
838 if (!mutex_trylock(&ui->ui_mutex))
839 return 0;
841 if (index != last_page_read + 1) {
842 /* Turn off bulk-read if we stop reading sequentially */
843 ui->read_in_a_row = 1;
844 if (ui->bulk_read)
845 ui->bulk_read = 0;
846 goto out_unlock;
849 if (!ui->bulk_read) {
850 ui->read_in_a_row += 1;
851 if (ui->read_in_a_row < 3)
852 goto out_unlock;
853 /* Three reads in a row, so switch on bulk-read */
854 ui->bulk_read = 1;
858 * If possible, try to use pre-allocated bulk-read information, which
859 * is protected by @c->bu_mutex.
861 if (mutex_trylock(&c->bu_mutex))
862 bu = &c->bu;
863 else {
864 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
865 if (!bu)
866 goto out_unlock;
868 bu->buf = NULL;
869 allocated = 1;
872 bu->buf_len = c->max_bu_buf_len;
873 data_key_init(c, &bu->key, inode->i_ino,
874 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
875 err = ubifs_do_bulk_read(c, bu, page);
877 if (!allocated)
878 mutex_unlock(&c->bu_mutex);
879 else
880 kfree(bu);
882 out_unlock:
883 mutex_unlock(&ui->ui_mutex);
884 return err;
887 static int ubifs_readpage(struct file *file, struct page *page)
889 if (ubifs_bulk_read(page))
890 return 0;
891 do_readpage(page);
892 unlock_page(page);
893 return 0;
896 static int do_writepage(struct page *page, int len)
898 int err = 0, i, blen;
899 unsigned int block;
900 void *addr;
901 union ubifs_key key;
902 struct inode *inode = page->mapping->host;
903 struct ubifs_info *c = inode->i_sb->s_fs_info;
905 #ifdef UBIFS_DEBUG
906 struct ubifs_inode *ui = ubifs_inode(inode);
907 spin_lock(&ui->ui_lock);
908 ubifs_assert(page->index <= ui->synced_i_size >> PAGE_CACHE_SHIFT);
909 spin_unlock(&ui->ui_lock);
910 #endif
912 /* Update radix tree tags */
913 set_page_writeback(page);
915 addr = kmap(page);
916 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
917 i = 0;
918 while (len) {
919 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
920 data_key_init(c, &key, inode->i_ino, block);
921 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
922 if (err)
923 break;
924 if (++i >= UBIFS_BLOCKS_PER_PAGE)
925 break;
926 block += 1;
927 addr += blen;
928 len -= blen;
930 if (err) {
931 SetPageError(page);
932 ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
933 page->index, inode->i_ino, err);
934 ubifs_ro_mode(c, err);
937 ubifs_assert(PagePrivate(page));
938 if (PageChecked(page))
939 release_new_page_budget(c);
940 else
941 release_existing_page_budget(c);
943 atomic_long_dec(&c->dirty_pg_cnt);
944 ClearPagePrivate(page);
945 ClearPageChecked(page);
947 kunmap(page);
948 unlock_page(page);
949 end_page_writeback(page);
950 return err;
954 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
955 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
956 * situation when a we have an inode with size 0, then a megabyte of data is
957 * appended to the inode, then write-back starts and flushes some amount of the
958 * dirty pages, the journal becomes full, commit happens and finishes, and then
959 * an unclean reboot happens. When the file system is mounted next time, the
960 * inode size would still be 0, but there would be many pages which are beyond
961 * the inode size, they would be indexed and consume flash space. Because the
962 * journal has been committed, the replay would not be able to detect this
963 * situation and correct the inode size. This means UBIFS would have to scan
964 * whole index and correct all inode sizes, which is long an unacceptable.
966 * To prevent situations like this, UBIFS writes pages back only if they are
967 * within the last synchronized inode size, i.e. the size which has been
968 * written to the flash media last time. Otherwise, UBIFS forces inode
969 * write-back, thus making sure the on-flash inode contains current inode size,
970 * and then keeps writing pages back.
972 * Some locking issues explanation. 'ubifs_writepage()' first is called with
973 * the page locked, and it locks @ui_mutex. However, write-back does take inode
974 * @i_mutex, which means other VFS operations may be run on this inode at the
975 * same time. And the problematic one is truncation to smaller size, from where
976 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
977 * then drops the truncated pages. And while dropping the pages, it takes the
978 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
979 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
980 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
982 * XXX(truncate): with the new truncate sequence this is not true anymore,
983 * and the calls to truncate_setsize can be move around freely. They should
984 * be moved to the very end of the truncate sequence.
986 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
987 * inode size. How do we do this if @inode->i_size may became smaller while we
988 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
989 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
990 * internally and updates it under @ui_mutex.
992 * Q: why we do not worry that if we race with truncation, we may end up with a
993 * situation when the inode is truncated while we are in the middle of
994 * 'do_writepage()', so we do write beyond inode size?
995 * A: If we are in the middle of 'do_writepage()', truncation would be locked
996 * on the page lock and it would not write the truncated inode node to the
997 * journal before we have finished.
999 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1001 struct inode *inode = page->mapping->host;
1002 struct ubifs_inode *ui = ubifs_inode(inode);
1003 loff_t i_size = i_size_read(inode), synced_i_size;
1004 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
1005 int err, len = i_size & (PAGE_CACHE_SIZE - 1);
1006 void *kaddr;
1008 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1009 inode->i_ino, page->index, page->flags);
1010 ubifs_assert(PagePrivate(page));
1012 /* Is the page fully outside @i_size? (truncate in progress) */
1013 if (page->index > end_index || (page->index == end_index && !len)) {
1014 err = 0;
1015 goto out_unlock;
1018 spin_lock(&ui->ui_lock);
1019 synced_i_size = ui->synced_i_size;
1020 spin_unlock(&ui->ui_lock);
1022 /* Is the page fully inside @i_size? */
1023 if (page->index < end_index) {
1024 if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1025 err = inode->i_sb->s_op->write_inode(inode, NULL);
1026 if (err)
1027 goto out_unlock;
1029 * The inode has been written, but the write-buffer has
1030 * not been synchronized, so in case of an unclean
1031 * reboot we may end up with some pages beyond inode
1032 * size, but they would be in the journal (because
1033 * commit flushes write buffers) and recovery would deal
1034 * with this.
1037 return do_writepage(page, PAGE_CACHE_SIZE);
1041 * The page straddles @i_size. It must be zeroed out on each and every
1042 * writepage invocation because it may be mmapped. "A file is mapped
1043 * in multiples of the page size. For a file that is not a multiple of
1044 * the page size, the remaining memory is zeroed when mapped, and
1045 * writes to that region are not written out to the file."
1047 kaddr = kmap_atomic(page);
1048 memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1049 flush_dcache_page(page);
1050 kunmap_atomic(kaddr);
1052 if (i_size > synced_i_size) {
1053 err = inode->i_sb->s_op->write_inode(inode, NULL);
1054 if (err)
1055 goto out_unlock;
1058 return do_writepage(page, len);
1060 out_unlock:
1061 unlock_page(page);
1062 return err;
1066 * do_attr_changes - change inode attributes.
1067 * @inode: inode to change attributes for
1068 * @attr: describes attributes to change
1070 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1072 if (attr->ia_valid & ATTR_UID)
1073 inode->i_uid = attr->ia_uid;
1074 if (attr->ia_valid & ATTR_GID)
1075 inode->i_gid = attr->ia_gid;
1076 if (attr->ia_valid & ATTR_ATIME)
1077 inode->i_atime = timespec_trunc(attr->ia_atime,
1078 inode->i_sb->s_time_gran);
1079 if (attr->ia_valid & ATTR_MTIME)
1080 inode->i_mtime = timespec_trunc(attr->ia_mtime,
1081 inode->i_sb->s_time_gran);
1082 if (attr->ia_valid & ATTR_CTIME)
1083 inode->i_ctime = timespec_trunc(attr->ia_ctime,
1084 inode->i_sb->s_time_gran);
1085 if (attr->ia_valid & ATTR_MODE) {
1086 umode_t mode = attr->ia_mode;
1088 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1089 mode &= ~S_ISGID;
1090 inode->i_mode = mode;
1095 * do_truncation - truncate an inode.
1096 * @c: UBIFS file-system description object
1097 * @inode: inode to truncate
1098 * @attr: inode attribute changes description
1100 * This function implements VFS '->setattr()' call when the inode is truncated
1101 * to a smaller size. Returns zero in case of success and a negative error code
1102 * in case of failure.
1104 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1105 const struct iattr *attr)
1107 int err;
1108 struct ubifs_budget_req req;
1109 loff_t old_size = inode->i_size, new_size = attr->ia_size;
1110 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1111 struct ubifs_inode *ui = ubifs_inode(inode);
1113 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1114 memset(&req, 0, sizeof(struct ubifs_budget_req));
1117 * If this is truncation to a smaller size, and we do not truncate on a
1118 * block boundary, budget for changing one data block, because the last
1119 * block will be re-written.
1121 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1122 req.dirtied_page = 1;
1124 req.dirtied_ino = 1;
1125 /* A funny way to budget for truncation node */
1126 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1127 err = ubifs_budget_space(c, &req);
1128 if (err) {
1130 * Treat truncations to zero as deletion and always allow them,
1131 * just like we do for '->unlink()'.
1133 if (new_size || err != -ENOSPC)
1134 return err;
1135 budgeted = 0;
1138 truncate_setsize(inode, new_size);
1140 if (offset) {
1141 pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1142 struct page *page;
1144 page = find_lock_page(inode->i_mapping, index);
1145 if (page) {
1146 if (PageDirty(page)) {
1148 * 'ubifs_jnl_truncate()' will try to truncate
1149 * the last data node, but it contains
1150 * out-of-date data because the page is dirty.
1151 * Write the page now, so that
1152 * 'ubifs_jnl_truncate()' will see an already
1153 * truncated (and up to date) data node.
1155 ubifs_assert(PagePrivate(page));
1157 clear_page_dirty_for_io(page);
1158 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1159 offset = new_size &
1160 (PAGE_CACHE_SIZE - 1);
1161 err = do_writepage(page, offset);
1162 page_cache_release(page);
1163 if (err)
1164 goto out_budg;
1166 * We could now tell 'ubifs_jnl_truncate()' not
1167 * to read the last block.
1169 } else {
1171 * We could 'kmap()' the page and pass the data
1172 * to 'ubifs_jnl_truncate()' to save it from
1173 * having to read it.
1175 unlock_page(page);
1176 page_cache_release(page);
1181 mutex_lock(&ui->ui_mutex);
1182 ui->ui_size = inode->i_size;
1183 /* Truncation changes inode [mc]time */
1184 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1185 /* Other attributes may be changed at the same time as well */
1186 do_attr_changes(inode, attr);
1187 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1188 mutex_unlock(&ui->ui_mutex);
1190 out_budg:
1191 if (budgeted)
1192 ubifs_release_budget(c, &req);
1193 else {
1194 c->bi.nospace = c->bi.nospace_rp = 0;
1195 smp_wmb();
1197 return err;
1201 * do_setattr - change inode attributes.
1202 * @c: UBIFS file-system description object
1203 * @inode: inode to change attributes for
1204 * @attr: inode attribute changes description
1206 * This function implements VFS '->setattr()' call for all cases except
1207 * truncations to smaller size. Returns zero in case of success and a negative
1208 * error code in case of failure.
1210 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1211 const struct iattr *attr)
1213 int err, release;
1214 loff_t new_size = attr->ia_size;
1215 struct ubifs_inode *ui = ubifs_inode(inode);
1216 struct ubifs_budget_req req = { .dirtied_ino = 1,
1217 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1219 err = ubifs_budget_space(c, &req);
1220 if (err)
1221 return err;
1223 if (attr->ia_valid & ATTR_SIZE) {
1224 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1225 truncate_setsize(inode, new_size);
1228 mutex_lock(&ui->ui_mutex);
1229 if (attr->ia_valid & ATTR_SIZE) {
1230 /* Truncation changes inode [mc]time */
1231 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1232 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1233 ui->ui_size = inode->i_size;
1236 do_attr_changes(inode, attr);
1238 release = ui->dirty;
1239 if (attr->ia_valid & ATTR_SIZE)
1241 * Inode length changed, so we have to make sure
1242 * @I_DIRTY_DATASYNC is set.
1244 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1245 else
1246 mark_inode_dirty_sync(inode);
1247 mutex_unlock(&ui->ui_mutex);
1249 if (release)
1250 ubifs_release_budget(c, &req);
1251 if (IS_SYNC(inode))
1252 err = inode->i_sb->s_op->write_inode(inode, NULL);
1253 return err;
1256 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1258 int err;
1259 struct inode *inode = d_inode(dentry);
1260 struct ubifs_info *c = inode->i_sb->s_fs_info;
1262 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1263 inode->i_ino, inode->i_mode, attr->ia_valid);
1264 err = inode_change_ok(inode, attr);
1265 if (err)
1266 return err;
1268 err = dbg_check_synced_i_size(c, inode);
1269 if (err)
1270 return err;
1272 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1273 /* Truncation to a smaller size */
1274 err = do_truncation(c, inode, attr);
1275 else
1276 err = do_setattr(c, inode, attr);
1278 return err;
1281 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1282 unsigned int length)
1284 struct inode *inode = page->mapping->host;
1285 struct ubifs_info *c = inode->i_sb->s_fs_info;
1287 ubifs_assert(PagePrivate(page));
1288 if (offset || length < PAGE_CACHE_SIZE)
1289 /* Partial page remains dirty */
1290 return;
1292 if (PageChecked(page))
1293 release_new_page_budget(c);
1294 else
1295 release_existing_page_budget(c);
1297 atomic_long_dec(&c->dirty_pg_cnt);
1298 ClearPagePrivate(page);
1299 ClearPageChecked(page);
1302 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1304 struct inode *inode = file->f_mapping->host;
1305 struct ubifs_info *c = inode->i_sb->s_fs_info;
1306 int err;
1308 dbg_gen("syncing inode %lu", inode->i_ino);
1310 if (c->ro_mount)
1312 * For some really strange reasons VFS does not filter out
1313 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1315 return 0;
1317 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1318 if (err)
1319 return err;
1320 mutex_lock(&inode->i_mutex);
1322 /* Synchronize the inode unless this is a 'datasync()' call. */
1323 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1324 err = inode->i_sb->s_op->write_inode(inode, NULL);
1325 if (err)
1326 goto out;
1330 * Nodes related to this inode may still sit in a write-buffer. Flush
1331 * them.
1333 err = ubifs_sync_wbufs_by_inode(c, inode);
1334 out:
1335 mutex_unlock(&inode->i_mutex);
1336 return err;
1340 * mctime_update_needed - check if mtime or ctime update is needed.
1341 * @inode: the inode to do the check for
1342 * @now: current time
1344 * This helper function checks if the inode mtime/ctime should be updated or
1345 * not. If current values of the time-stamps are within the UBIFS inode time
1346 * granularity, they are not updated. This is an optimization.
1348 static inline int mctime_update_needed(const struct inode *inode,
1349 const struct timespec *now)
1351 if (!timespec_equal(&inode->i_mtime, now) ||
1352 !timespec_equal(&inode->i_ctime, now))
1353 return 1;
1354 return 0;
1357 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1359 * ubifs_update_time - update time of inode.
1360 * @inode: inode to update
1362 * This function updates time of the inode.
1364 int ubifs_update_time(struct inode *inode, struct timespec *time,
1365 int flags)
1367 struct ubifs_inode *ui = ubifs_inode(inode);
1368 struct ubifs_info *c = inode->i_sb->s_fs_info;
1369 struct ubifs_budget_req req = { .dirtied_ino = 1,
1370 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1371 int iflags = I_DIRTY_TIME;
1372 int err, release;
1374 err = ubifs_budget_space(c, &req);
1375 if (err)
1376 return err;
1378 mutex_lock(&ui->ui_mutex);
1379 if (flags & S_ATIME)
1380 inode->i_atime = *time;
1381 if (flags & S_CTIME)
1382 inode->i_ctime = *time;
1383 if (flags & S_MTIME)
1384 inode->i_mtime = *time;
1386 if (!(inode->i_sb->s_flags & MS_LAZYTIME))
1387 iflags |= I_DIRTY_SYNC;
1389 release = ui->dirty;
1390 __mark_inode_dirty(inode, iflags);
1391 mutex_unlock(&ui->ui_mutex);
1392 if (release)
1393 ubifs_release_budget(c, &req);
1394 return 0;
1396 #endif
1399 * update_ctime - update mtime and ctime of an inode.
1400 * @inode: inode to update
1402 * This function updates mtime and ctime of the inode if it is not equivalent to
1403 * current time. Returns zero in case of success and a negative error code in
1404 * case of failure.
1406 static int update_mctime(struct inode *inode)
1408 struct timespec now = ubifs_current_time(inode);
1409 struct ubifs_inode *ui = ubifs_inode(inode);
1410 struct ubifs_info *c = inode->i_sb->s_fs_info;
1412 if (mctime_update_needed(inode, &now)) {
1413 int err, release;
1414 struct ubifs_budget_req req = { .dirtied_ino = 1,
1415 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1417 err = ubifs_budget_space(c, &req);
1418 if (err)
1419 return err;
1421 mutex_lock(&ui->ui_mutex);
1422 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1423 release = ui->dirty;
1424 mark_inode_dirty_sync(inode);
1425 mutex_unlock(&ui->ui_mutex);
1426 if (release)
1427 ubifs_release_budget(c, &req);
1430 return 0;
1433 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1435 int err = update_mctime(file_inode(iocb->ki_filp));
1436 if (err)
1437 return err;
1439 return generic_file_write_iter(iocb, from);
1442 static int ubifs_set_page_dirty(struct page *page)
1444 int ret;
1446 ret = __set_page_dirty_nobuffers(page);
1448 * An attempt to dirty a page without budgeting for it - should not
1449 * happen.
1451 ubifs_assert(ret == 0);
1452 return ret;
1455 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1458 * An attempt to release a dirty page without budgeting for it - should
1459 * not happen.
1461 if (PageWriteback(page))
1462 return 0;
1463 ubifs_assert(PagePrivate(page));
1464 ubifs_assert(0);
1465 ClearPagePrivate(page);
1466 ClearPageChecked(page);
1467 return 1;
1471 * mmap()d file has taken write protection fault and is being made writable.
1472 * UBIFS must ensure page is budgeted for.
1474 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma,
1475 struct vm_fault *vmf)
1477 struct page *page = vmf->page;
1478 struct inode *inode = file_inode(vma->vm_file);
1479 struct ubifs_info *c = inode->i_sb->s_fs_info;
1480 struct timespec now = ubifs_current_time(inode);
1481 struct ubifs_budget_req req = { .new_page = 1 };
1482 int err, update_time;
1484 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1485 i_size_read(inode));
1486 ubifs_assert(!c->ro_media && !c->ro_mount);
1488 if (unlikely(c->ro_error))
1489 return VM_FAULT_SIGBUS; /* -EROFS */
1492 * We have not locked @page so far so we may budget for changing the
1493 * page. Note, we cannot do this after we locked the page, because
1494 * budgeting may cause write-back which would cause deadlock.
1496 * At the moment we do not know whether the page is dirty or not, so we
1497 * assume that it is not and budget for a new page. We could look at
1498 * the @PG_private flag and figure this out, but we may race with write
1499 * back and the page state may change by the time we lock it, so this
1500 * would need additional care. We do not bother with this at the
1501 * moment, although it might be good idea to do. Instead, we allocate
1502 * budget for a new page and amend it later on if the page was in fact
1503 * dirty.
1505 * The budgeting-related logic of this function is similar to what we
1506 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1507 * for more comments.
1509 update_time = mctime_update_needed(inode, &now);
1510 if (update_time)
1512 * We have to change inode time stamp which requires extra
1513 * budgeting.
1515 req.dirtied_ino = 1;
1517 err = ubifs_budget_space(c, &req);
1518 if (unlikely(err)) {
1519 if (err == -ENOSPC)
1520 ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1521 inode->i_ino);
1522 return VM_FAULT_SIGBUS;
1525 lock_page(page);
1526 if (unlikely(page->mapping != inode->i_mapping ||
1527 page_offset(page) > i_size_read(inode))) {
1528 /* Page got truncated out from underneath us */
1529 err = -EINVAL;
1530 goto out_unlock;
1533 if (PagePrivate(page))
1534 release_new_page_budget(c);
1535 else {
1536 if (!PageChecked(page))
1537 ubifs_convert_page_budget(c);
1538 SetPagePrivate(page);
1539 atomic_long_inc(&c->dirty_pg_cnt);
1540 __set_page_dirty_nobuffers(page);
1543 if (update_time) {
1544 int release;
1545 struct ubifs_inode *ui = ubifs_inode(inode);
1547 mutex_lock(&ui->ui_mutex);
1548 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1549 release = ui->dirty;
1550 mark_inode_dirty_sync(inode);
1551 mutex_unlock(&ui->ui_mutex);
1552 if (release)
1553 ubifs_release_dirty_inode_budget(c, ui);
1556 wait_for_stable_page(page);
1557 return VM_FAULT_LOCKED;
1559 out_unlock:
1560 unlock_page(page);
1561 ubifs_release_budget(c, &req);
1562 if (err)
1563 err = VM_FAULT_SIGBUS;
1564 return err;
1567 static const struct vm_operations_struct ubifs_file_vm_ops = {
1568 .fault = filemap_fault,
1569 .map_pages = filemap_map_pages,
1570 .page_mkwrite = ubifs_vm_page_mkwrite,
1573 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1575 int err;
1577 err = generic_file_mmap(file, vma);
1578 if (err)
1579 return err;
1580 vma->vm_ops = &ubifs_file_vm_ops;
1581 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1582 file_accessed(file);
1583 #endif
1584 return 0;
1587 const struct address_space_operations ubifs_file_address_operations = {
1588 .readpage = ubifs_readpage,
1589 .writepage = ubifs_writepage,
1590 .write_begin = ubifs_write_begin,
1591 .write_end = ubifs_write_end,
1592 .invalidatepage = ubifs_invalidatepage,
1593 .set_page_dirty = ubifs_set_page_dirty,
1594 .releasepage = ubifs_releasepage,
1597 const struct inode_operations ubifs_file_inode_operations = {
1598 .setattr = ubifs_setattr,
1599 .getattr = ubifs_getattr,
1600 .setxattr = ubifs_setxattr,
1601 .getxattr = ubifs_getxattr,
1602 .listxattr = ubifs_listxattr,
1603 .removexattr = ubifs_removexattr,
1604 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1605 .update_time = ubifs_update_time,
1606 #endif
1609 const struct inode_operations ubifs_symlink_inode_operations = {
1610 .readlink = generic_readlink,
1611 .get_link = simple_get_link,
1612 .setattr = ubifs_setattr,
1613 .getattr = ubifs_getattr,
1614 .setxattr = ubifs_setxattr,
1615 .getxattr = ubifs_getxattr,
1616 .listxattr = ubifs_listxattr,
1617 .removexattr = ubifs_removexattr,
1618 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1619 .update_time = ubifs_update_time,
1620 #endif
1623 const struct file_operations ubifs_file_operations = {
1624 .llseek = generic_file_llseek,
1625 .read_iter = generic_file_read_iter,
1626 .write_iter = ubifs_write_iter,
1627 .mmap = ubifs_file_mmap,
1628 .fsync = ubifs_fsync,
1629 .unlocked_ioctl = ubifs_ioctl,
1630 .splice_read = generic_file_splice_read,
1631 .splice_write = iter_file_splice_write,
1632 #ifdef CONFIG_COMPAT
1633 .compat_ioctl = ubifs_compat_ioctl,
1634 #endif