2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
38 #include "xfs_icache.h"
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
46 static const struct vm_operations_struct xfs_file_vm_ops
;
49 * Locking primitives for read and write IO paths to ensure we consistently use
50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
57 if (type
& XFS_IOLOCK_EXCL
)
58 mutex_lock(&VFS_I(ip
)->i_mutex
);
67 xfs_iunlock(ip
, type
);
68 if (type
& XFS_IOLOCK_EXCL
)
69 mutex_unlock(&VFS_I(ip
)->i_mutex
);
77 xfs_ilock_demote(ip
, type
);
78 if (type
& XFS_IOLOCK_EXCL
)
79 mutex_unlock(&VFS_I(ip
)->i_mutex
);
83 * xfs_iozero clears the specified range supplied via the page cache (except in
84 * the DAX case). Writes through the page cache will allocate blocks over holes,
85 * though the callers usually map the holes first and avoid them. If a block is
86 * not completely zeroed, then it will be read from disk before being partially
89 * In the DAX case, we can just directly write to the underlying pages. This
90 * will not allocate blocks, but will avoid holes and unwritten extents and so
91 * not do unnecessary work.
95 struct xfs_inode
*ip
, /* inode */
96 loff_t pos
, /* offset in file */
97 size_t count
) /* size of data to zero */
100 struct address_space
*mapping
;
104 mapping
= VFS_I(ip
)->i_mapping
;
106 unsigned offset
, bytes
;
109 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
110 bytes
= PAGE_CACHE_SIZE
- offset
;
114 if (IS_DAX(VFS_I(ip
))) {
115 status
= dax_zero_page_range(VFS_I(ip
), pos
, bytes
,
116 xfs_get_blocks_direct
);
120 status
= pagecache_write_begin(NULL
, mapping
, pos
, bytes
,
121 AOP_FLAG_UNINTERRUPTIBLE
,
126 zero_user(page
, offset
, bytes
);
128 status
= pagecache_write_end(NULL
, mapping
, pos
, bytes
,
129 bytes
, page
, fsdata
);
130 WARN_ON(status
<= 0); /* can't return less than zero! */
141 xfs_update_prealloc_flags(
142 struct xfs_inode
*ip
,
143 enum xfs_prealloc_flags flags
)
145 struct xfs_trans
*tp
;
148 tp
= xfs_trans_alloc(ip
->i_mount
, XFS_TRANS_WRITEID
);
149 error
= xfs_trans_reserve(tp
, &M_RES(ip
->i_mount
)->tr_writeid
, 0, 0);
151 xfs_trans_cancel(tp
);
155 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
156 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
158 if (!(flags
& XFS_PREALLOC_INVISIBLE
)) {
159 ip
->i_d
.di_mode
&= ~S_ISUID
;
160 if (ip
->i_d
.di_mode
& S_IXGRP
)
161 ip
->i_d
.di_mode
&= ~S_ISGID
;
162 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
165 if (flags
& XFS_PREALLOC_SET
)
166 ip
->i_d
.di_flags
|= XFS_DIFLAG_PREALLOC
;
167 if (flags
& XFS_PREALLOC_CLEAR
)
168 ip
->i_d
.di_flags
&= ~XFS_DIFLAG_PREALLOC
;
170 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
171 if (flags
& XFS_PREALLOC_SYNC
)
172 xfs_trans_set_sync(tp
);
173 return xfs_trans_commit(tp
);
177 * Fsync operations on directories are much simpler than on regular files,
178 * as there is no file data to flush, and thus also no need for explicit
179 * cache flush operations, and there are no non-transaction metadata updates
180 * on directories either.
189 struct xfs_inode
*ip
= XFS_I(file
->f_mapping
->host
);
190 struct xfs_mount
*mp
= ip
->i_mount
;
193 trace_xfs_dir_fsync(ip
);
195 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
196 if (xfs_ipincount(ip
))
197 lsn
= ip
->i_itemp
->ili_last_lsn
;
198 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
202 return _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, NULL
);
212 struct inode
*inode
= file
->f_mapping
->host
;
213 struct xfs_inode
*ip
= XFS_I(inode
);
214 struct xfs_mount
*mp
= ip
->i_mount
;
219 trace_xfs_file_fsync(ip
);
221 error
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
225 if (XFS_FORCED_SHUTDOWN(mp
))
228 xfs_iflags_clear(ip
, XFS_ITRUNCATED
);
230 if (mp
->m_flags
& XFS_MOUNT_BARRIER
) {
232 * If we have an RT and/or log subvolume we need to make sure
233 * to flush the write cache the device used for file data
234 * first. This is to ensure newly written file data make
235 * it to disk before logging the new inode size in case of
236 * an extending write.
238 if (XFS_IS_REALTIME_INODE(ip
))
239 xfs_blkdev_issue_flush(mp
->m_rtdev_targp
);
240 else if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
241 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
245 * All metadata updates are logged, which means that we just have to
246 * flush the log up to the latest LSN that touched the inode. If we have
247 * concurrent fsync/fdatasync() calls, we need them to all block on the
248 * log force before we clear the ili_fsync_fields field. This ensures
249 * that we don't get a racing sync operation that does not wait for the
250 * metadata to hit the journal before returning. If we race with
251 * clearing the ili_fsync_fields, then all that will happen is the log
252 * force will do nothing as the lsn will already be on disk. We can't
253 * race with setting ili_fsync_fields because that is done under
254 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
255 * until after the ili_fsync_fields is cleared.
257 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
258 if (xfs_ipincount(ip
)) {
260 (ip
->i_itemp
->ili_fsync_fields
& ~XFS_ILOG_TIMESTAMP
))
261 lsn
= ip
->i_itemp
->ili_last_lsn
;
265 error
= _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, &log_flushed
);
266 ip
->i_itemp
->ili_fsync_fields
= 0;
268 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
271 * If we only have a single device, and the log force about was
272 * a no-op we might have to flush the data device cache here.
273 * This can only happen for fdatasync/O_DSYNC if we were overwriting
274 * an already allocated file and thus do not have any metadata to
277 if ((mp
->m_flags
& XFS_MOUNT_BARRIER
) &&
278 mp
->m_logdev_targp
== mp
->m_ddev_targp
&&
279 !XFS_IS_REALTIME_INODE(ip
) &&
281 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
291 struct file
*file
= iocb
->ki_filp
;
292 struct inode
*inode
= file
->f_mapping
->host
;
293 struct xfs_inode
*ip
= XFS_I(inode
);
294 struct xfs_mount
*mp
= ip
->i_mount
;
295 size_t size
= iov_iter_count(to
);
299 loff_t pos
= iocb
->ki_pos
;
301 XFS_STATS_INC(mp
, xs_read_calls
);
303 if (unlikely(iocb
->ki_flags
& IOCB_DIRECT
))
304 ioflags
|= XFS_IO_ISDIRECT
;
305 if (file
->f_mode
& FMODE_NOCMTIME
)
306 ioflags
|= XFS_IO_INVIS
;
308 if ((ioflags
& XFS_IO_ISDIRECT
) && !IS_DAX(inode
)) {
309 xfs_buftarg_t
*target
=
310 XFS_IS_REALTIME_INODE(ip
) ?
311 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
312 /* DIO must be aligned to device logical sector size */
313 if ((pos
| size
) & target
->bt_logical_sectormask
) {
314 if (pos
== i_size_read(inode
))
320 n
= mp
->m_super
->s_maxbytes
- pos
;
321 if (n
<= 0 || size
== 0)
327 if (XFS_FORCED_SHUTDOWN(mp
))
331 * Locking is a bit tricky here. If we take an exclusive lock for direct
332 * IO, we effectively serialise all new concurrent read IO to this file
333 * and block it behind IO that is currently in progress because IO in
334 * progress holds the IO lock shared. We only need to hold the lock
335 * exclusive to blow away the page cache, so only take lock exclusively
336 * if the page cache needs invalidation. This allows the normal direct
337 * IO case of no page cache pages to proceeed concurrently without
340 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
341 if ((ioflags
& XFS_IO_ISDIRECT
) && inode
->i_mapping
->nrpages
) {
342 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
343 xfs_rw_ilock(ip
, XFS_IOLOCK_EXCL
);
346 * The generic dio code only flushes the range of the particular
347 * I/O. Because we take an exclusive lock here, this whole
348 * sequence is considerably more expensive for us. This has a
349 * noticeable performance impact for any file with cached pages,
350 * even when outside of the range of the particular I/O.
352 * Hence, amortize the cost of the lock against a full file
353 * flush and reduce the chances of repeated iolock cycles going
356 if (inode
->i_mapping
->nrpages
) {
357 ret
= filemap_write_and_wait(VFS_I(ip
)->i_mapping
);
359 xfs_rw_iunlock(ip
, XFS_IOLOCK_EXCL
);
364 * Invalidate whole pages. This can return an error if
365 * we fail to invalidate a page, but this should never
366 * happen on XFS. Warn if it does fail.
368 ret
= invalidate_inode_pages2(VFS_I(ip
)->i_mapping
);
372 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
375 trace_xfs_file_read(ip
, size
, pos
, ioflags
);
377 ret
= generic_file_read_iter(iocb
, to
);
379 XFS_STATS_ADD(mp
, xs_read_bytes
, ret
);
381 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
386 xfs_file_splice_read(
389 struct pipe_inode_info
*pipe
,
393 struct xfs_inode
*ip
= XFS_I(infilp
->f_mapping
->host
);
397 XFS_STATS_INC(ip
->i_mount
, xs_read_calls
);
399 if (infilp
->f_mode
& FMODE_NOCMTIME
)
400 ioflags
|= XFS_IO_INVIS
;
402 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
405 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
407 trace_xfs_file_splice_read(ip
, count
, *ppos
, ioflags
);
409 /* for dax, we need to avoid the page cache */
410 if (IS_DAX(VFS_I(ip
)))
411 ret
= default_file_splice_read(infilp
, ppos
, pipe
, count
, flags
);
413 ret
= generic_file_splice_read(infilp
, ppos
, pipe
, count
, flags
);
415 XFS_STATS_ADD(ip
->i_mount
, xs_read_bytes
, ret
);
417 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
422 * This routine is called to handle zeroing any space in the last block of the
423 * file that is beyond the EOF. We do this since the size is being increased
424 * without writing anything to that block and we don't want to read the
425 * garbage on the disk.
427 STATIC
int /* error (positive) */
429 struct xfs_inode
*ip
,
434 struct xfs_mount
*mp
= ip
->i_mount
;
435 xfs_fileoff_t last_fsb
= XFS_B_TO_FSBT(mp
, isize
);
436 int zero_offset
= XFS_B_FSB_OFFSET(mp
, isize
);
440 struct xfs_bmbt_irec imap
;
442 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
443 error
= xfs_bmapi_read(ip
, last_fsb
, 1, &imap
, &nimaps
, 0);
444 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
451 * If the block underlying isize is just a hole, then there
452 * is nothing to zero.
454 if (imap
.br_startblock
== HOLESTARTBLOCK
)
457 zero_len
= mp
->m_sb
.sb_blocksize
- zero_offset
;
458 if (isize
+ zero_len
> offset
)
459 zero_len
= offset
- isize
;
461 return xfs_iozero(ip
, isize
, zero_len
);
465 * Zero any on disk space between the current EOF and the new, larger EOF.
467 * This handles the normal case of zeroing the remainder of the last block in
468 * the file and the unusual case of zeroing blocks out beyond the size of the
469 * file. This second case only happens with fixed size extents and when the
470 * system crashes before the inode size was updated but after blocks were
473 * Expects the iolock to be held exclusive, and will take the ilock internally.
475 int /* error (positive) */
477 struct xfs_inode
*ip
,
478 xfs_off_t offset
, /* starting I/O offset */
479 xfs_fsize_t isize
, /* current inode size */
482 struct xfs_mount
*mp
= ip
->i_mount
;
483 xfs_fileoff_t start_zero_fsb
;
484 xfs_fileoff_t end_zero_fsb
;
485 xfs_fileoff_t zero_count_fsb
;
486 xfs_fileoff_t last_fsb
;
487 xfs_fileoff_t zero_off
;
488 xfs_fsize_t zero_len
;
491 struct xfs_bmbt_irec imap
;
493 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
494 ASSERT(offset
> isize
);
496 trace_xfs_zero_eof(ip
, isize
, offset
- isize
);
499 * First handle zeroing the block on which isize resides.
501 * We only zero a part of that block so it is handled specially.
503 if (XFS_B_FSB_OFFSET(mp
, isize
) != 0) {
504 error
= xfs_zero_last_block(ip
, offset
, isize
, did_zeroing
);
510 * Calculate the range between the new size and the old where blocks
511 * needing to be zeroed may exist.
513 * To get the block where the last byte in the file currently resides,
514 * we need to subtract one from the size and truncate back to a block
515 * boundary. We subtract 1 in case the size is exactly on a block
518 last_fsb
= isize
? XFS_B_TO_FSBT(mp
, isize
- 1) : (xfs_fileoff_t
)-1;
519 start_zero_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
520 end_zero_fsb
= XFS_B_TO_FSBT(mp
, offset
- 1);
521 ASSERT((xfs_sfiloff_t
)last_fsb
< (xfs_sfiloff_t
)start_zero_fsb
);
522 if (last_fsb
== end_zero_fsb
) {
524 * The size was only incremented on its last block.
525 * We took care of that above, so just return.
530 ASSERT(start_zero_fsb
<= end_zero_fsb
);
531 while (start_zero_fsb
<= end_zero_fsb
) {
533 zero_count_fsb
= end_zero_fsb
- start_zero_fsb
+ 1;
535 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
536 error
= xfs_bmapi_read(ip
, start_zero_fsb
, zero_count_fsb
,
538 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
544 if (imap
.br_state
== XFS_EXT_UNWRITTEN
||
545 imap
.br_startblock
== HOLESTARTBLOCK
) {
546 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
547 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
552 * There are blocks we need to zero.
554 zero_off
= XFS_FSB_TO_B(mp
, start_zero_fsb
);
555 zero_len
= XFS_FSB_TO_B(mp
, imap
.br_blockcount
);
557 if ((zero_off
+ zero_len
) > offset
)
558 zero_len
= offset
- zero_off
;
560 error
= xfs_iozero(ip
, zero_off
, zero_len
);
565 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
566 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
573 * Common pre-write limit and setup checks.
575 * Called with the iolocked held either shared and exclusive according to
576 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
577 * if called for a direct write beyond i_size.
580 xfs_file_aio_write_checks(
582 struct iov_iter
*from
,
585 struct file
*file
= iocb
->ki_filp
;
586 struct inode
*inode
= file
->f_mapping
->host
;
587 struct xfs_inode
*ip
= XFS_I(inode
);
589 size_t count
= iov_iter_count(from
);
590 bool drained_dio
= false;
593 error
= generic_write_checks(iocb
, from
);
597 error
= xfs_break_layouts(inode
, iolock
, true);
601 /* For changing security info in file_remove_privs() we need i_mutex */
602 if (*iolock
== XFS_IOLOCK_SHARED
&& !IS_NOSEC(inode
)) {
603 xfs_rw_iunlock(ip
, *iolock
);
604 *iolock
= XFS_IOLOCK_EXCL
;
605 xfs_rw_ilock(ip
, *iolock
);
609 * If the offset is beyond the size of the file, we need to zero any
610 * blocks that fall between the existing EOF and the start of this
611 * write. If zeroing is needed and we are currently holding the
612 * iolock shared, we need to update it to exclusive which implies
613 * having to redo all checks before.
615 * We need to serialise against EOF updates that occur in IO
616 * completions here. We want to make sure that nobody is changing the
617 * size while we do this check until we have placed an IO barrier (i.e.
618 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
619 * The spinlock effectively forms a memory barrier once we have the
620 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
621 * and hence be able to correctly determine if we need to run zeroing.
623 spin_lock(&ip
->i_flags_lock
);
624 if (iocb
->ki_pos
> i_size_read(inode
)) {
627 spin_unlock(&ip
->i_flags_lock
);
629 if (*iolock
== XFS_IOLOCK_SHARED
) {
630 xfs_rw_iunlock(ip
, *iolock
);
631 *iolock
= XFS_IOLOCK_EXCL
;
632 xfs_rw_ilock(ip
, *iolock
);
633 iov_iter_reexpand(from
, count
);
636 * We now have an IO submission barrier in place, but
637 * AIO can do EOF updates during IO completion and hence
638 * we now need to wait for all of them to drain. Non-AIO
639 * DIO will have drained before we are given the
640 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
643 inode_dio_wait(inode
);
647 error
= xfs_zero_eof(ip
, iocb
->ki_pos
, i_size_read(inode
), &zero
);
651 spin_unlock(&ip
->i_flags_lock
);
654 * Updating the timestamps will grab the ilock again from
655 * xfs_fs_dirty_inode, so we have to call it after dropping the
656 * lock above. Eventually we should look into a way to avoid
657 * the pointless lock roundtrip.
659 if (likely(!(file
->f_mode
& FMODE_NOCMTIME
))) {
660 error
= file_update_time(file
);
666 * If we're writing the file then make sure to clear the setuid and
667 * setgid bits if the process is not being run by root. This keeps
668 * people from modifying setuid and setgid binaries.
670 if (!IS_NOSEC(inode
))
671 return file_remove_privs(file
);
676 * xfs_file_dio_aio_write - handle direct IO writes
678 * Lock the inode appropriately to prepare for and issue a direct IO write.
679 * By separating it from the buffered write path we remove all the tricky to
680 * follow locking changes and looping.
682 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
683 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
684 * pages are flushed out.
686 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
687 * allowing them to be done in parallel with reads and other direct IO writes.
688 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
689 * needs to do sub-block zeroing and that requires serialisation against other
690 * direct IOs to the same block. In this case we need to serialise the
691 * submission of the unaligned IOs so that we don't get racing block zeroing in
692 * the dio layer. To avoid the problem with aio, we also need to wait for
693 * outstanding IOs to complete so that unwritten extent conversion is completed
694 * before we try to map the overlapping block. This is currently implemented by
695 * hitting it with a big hammer (i.e. inode_dio_wait()).
697 * Returns with locks held indicated by @iolock and errors indicated by
698 * negative return values.
701 xfs_file_dio_aio_write(
703 struct iov_iter
*from
)
705 struct file
*file
= iocb
->ki_filp
;
706 struct address_space
*mapping
= file
->f_mapping
;
707 struct inode
*inode
= mapping
->host
;
708 struct xfs_inode
*ip
= XFS_I(inode
);
709 struct xfs_mount
*mp
= ip
->i_mount
;
711 int unaligned_io
= 0;
713 size_t count
= iov_iter_count(from
);
714 loff_t pos
= iocb
->ki_pos
;
716 struct iov_iter data
;
717 struct xfs_buftarg
*target
= XFS_IS_REALTIME_INODE(ip
) ?
718 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
720 /* DIO must be aligned to device logical sector size */
721 if (!IS_DAX(inode
) && ((pos
| count
) & target
->bt_logical_sectormask
))
724 /* "unaligned" here means not aligned to a filesystem block */
725 if ((pos
& mp
->m_blockmask
) || ((pos
+ count
) & mp
->m_blockmask
))
729 * We don't need to take an exclusive lock unless there page cache needs
730 * to be invalidated or unaligned IO is being executed. We don't need to
731 * consider the EOF extension case here because
732 * xfs_file_aio_write_checks() will relock the inode as necessary for
733 * EOF zeroing cases and fill out the new inode size as appropriate.
735 if (unaligned_io
|| mapping
->nrpages
)
736 iolock
= XFS_IOLOCK_EXCL
;
738 iolock
= XFS_IOLOCK_SHARED
;
739 xfs_rw_ilock(ip
, iolock
);
742 * Recheck if there are cached pages that need invalidate after we got
743 * the iolock to protect against other threads adding new pages while
744 * we were waiting for the iolock.
746 if (mapping
->nrpages
&& iolock
== XFS_IOLOCK_SHARED
) {
747 xfs_rw_iunlock(ip
, iolock
);
748 iolock
= XFS_IOLOCK_EXCL
;
749 xfs_rw_ilock(ip
, iolock
);
752 ret
= xfs_file_aio_write_checks(iocb
, from
, &iolock
);
755 count
= iov_iter_count(from
);
757 end
= pos
+ count
- 1;
760 * See xfs_file_read_iter() for why we do a full-file flush here.
762 if (mapping
->nrpages
) {
763 ret
= filemap_write_and_wait(VFS_I(ip
)->i_mapping
);
767 * Invalidate whole pages. This can return an error if we fail
768 * to invalidate a page, but this should never happen on XFS.
769 * Warn if it does fail.
771 ret
= invalidate_inode_pages2(VFS_I(ip
)->i_mapping
);
777 * If we are doing unaligned IO, wait for all other IO to drain,
778 * otherwise demote the lock if we had to flush cached pages
781 inode_dio_wait(inode
);
782 else if (iolock
== XFS_IOLOCK_EXCL
) {
783 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
784 iolock
= XFS_IOLOCK_SHARED
;
787 trace_xfs_file_direct_write(ip
, count
, iocb
->ki_pos
, 0);
790 ret
= mapping
->a_ops
->direct_IO(iocb
, &data
, pos
);
792 /* see generic_file_direct_write() for why this is necessary */
793 if (mapping
->nrpages
) {
794 invalidate_inode_pages2_range(mapping
,
795 pos
>> PAGE_CACHE_SHIFT
,
796 end
>> PAGE_CACHE_SHIFT
);
801 iov_iter_advance(from
, ret
);
805 xfs_rw_iunlock(ip
, iolock
);
808 * No fallback to buffered IO on errors for XFS. DAX can result in
809 * partial writes, but direct IO will either complete fully or fail.
811 ASSERT(ret
< 0 || ret
== count
|| IS_DAX(VFS_I(ip
)));
816 xfs_file_buffered_aio_write(
818 struct iov_iter
*from
)
820 struct file
*file
= iocb
->ki_filp
;
821 struct address_space
*mapping
= file
->f_mapping
;
822 struct inode
*inode
= mapping
->host
;
823 struct xfs_inode
*ip
= XFS_I(inode
);
826 int iolock
= XFS_IOLOCK_EXCL
;
828 xfs_rw_ilock(ip
, iolock
);
830 ret
= xfs_file_aio_write_checks(iocb
, from
, &iolock
);
834 /* We can write back this queue in page reclaim */
835 current
->backing_dev_info
= inode_to_bdi(inode
);
838 trace_xfs_file_buffered_write(ip
, iov_iter_count(from
),
840 ret
= generic_perform_write(file
, from
, iocb
->ki_pos
);
841 if (likely(ret
>= 0))
845 * If we hit a space limit, try to free up some lingering preallocated
846 * space before returning an error. In the case of ENOSPC, first try to
847 * write back all dirty inodes to free up some of the excess reserved
848 * metadata space. This reduces the chances that the eofblocks scan
849 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
850 * also behaves as a filter to prevent too many eofblocks scans from
851 * running at the same time.
853 if (ret
== -EDQUOT
&& !enospc
) {
854 enospc
= xfs_inode_free_quota_eofblocks(ip
);
857 } else if (ret
== -ENOSPC
&& !enospc
) {
858 struct xfs_eofblocks eofb
= {0};
861 xfs_flush_inodes(ip
->i_mount
);
862 eofb
.eof_scan_owner
= ip
->i_ino
; /* for locking */
863 eofb
.eof_flags
= XFS_EOF_FLAGS_SYNC
;
864 xfs_icache_free_eofblocks(ip
->i_mount
, &eofb
);
868 current
->backing_dev_info
= NULL
;
870 xfs_rw_iunlock(ip
, iolock
);
877 struct iov_iter
*from
)
879 struct file
*file
= iocb
->ki_filp
;
880 struct address_space
*mapping
= file
->f_mapping
;
881 struct inode
*inode
= mapping
->host
;
882 struct xfs_inode
*ip
= XFS_I(inode
);
884 size_t ocount
= iov_iter_count(from
);
886 XFS_STATS_INC(ip
->i_mount
, xs_write_calls
);
891 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
894 if ((iocb
->ki_flags
& IOCB_DIRECT
) || IS_DAX(inode
))
895 ret
= xfs_file_dio_aio_write(iocb
, from
);
897 ret
= xfs_file_buffered_aio_write(iocb
, from
);
902 XFS_STATS_ADD(ip
->i_mount
, xs_write_bytes
, ret
);
904 /* Handle various SYNC-type writes */
905 err
= generic_write_sync(file
, iocb
->ki_pos
- ret
, ret
);
912 #define XFS_FALLOC_FL_SUPPORTED \
913 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
914 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
915 FALLOC_FL_INSERT_RANGE)
924 struct inode
*inode
= file_inode(file
);
925 struct xfs_inode
*ip
= XFS_I(inode
);
927 enum xfs_prealloc_flags flags
= 0;
928 uint iolock
= XFS_IOLOCK_EXCL
;
930 bool do_file_insert
= 0;
932 if (!S_ISREG(inode
->i_mode
))
934 if (mode
& ~XFS_FALLOC_FL_SUPPORTED
)
937 xfs_ilock(ip
, iolock
);
938 error
= xfs_break_layouts(inode
, &iolock
, false);
942 xfs_ilock(ip
, XFS_MMAPLOCK_EXCL
);
943 iolock
|= XFS_MMAPLOCK_EXCL
;
945 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
946 error
= xfs_free_file_space(ip
, offset
, len
);
949 } else if (mode
& FALLOC_FL_COLLAPSE_RANGE
) {
950 unsigned blksize_mask
= (1 << inode
->i_blkbits
) - 1;
952 if (offset
& blksize_mask
|| len
& blksize_mask
) {
958 * There is no need to overlap collapse range with EOF,
959 * in which case it is effectively a truncate operation
961 if (offset
+ len
>= i_size_read(inode
)) {
966 new_size
= i_size_read(inode
) - len
;
968 error
= xfs_collapse_file_space(ip
, offset
, len
);
971 } else if (mode
& FALLOC_FL_INSERT_RANGE
) {
972 unsigned blksize_mask
= (1 << inode
->i_blkbits
) - 1;
974 new_size
= i_size_read(inode
) + len
;
975 if (offset
& blksize_mask
|| len
& blksize_mask
) {
980 /* check the new inode size does not wrap through zero */
981 if (new_size
> inode
->i_sb
->s_maxbytes
) {
986 /* Offset should be less than i_size */
987 if (offset
>= i_size_read(inode
)) {
993 flags
|= XFS_PREALLOC_SET
;
995 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
996 offset
+ len
> i_size_read(inode
)) {
997 new_size
= offset
+ len
;
998 error
= inode_newsize_ok(inode
, new_size
);
1003 if (mode
& FALLOC_FL_ZERO_RANGE
)
1004 error
= xfs_zero_file_space(ip
, offset
, len
);
1006 error
= xfs_alloc_file_space(ip
, offset
, len
,
1007 XFS_BMAPI_PREALLOC
);
1012 if (file
->f_flags
& O_DSYNC
)
1013 flags
|= XFS_PREALLOC_SYNC
;
1015 error
= xfs_update_prealloc_flags(ip
, flags
);
1019 /* Change file size if needed */
1023 iattr
.ia_valid
= ATTR_SIZE
;
1024 iattr
.ia_size
= new_size
;
1025 error
= xfs_setattr_size(ip
, &iattr
);
1031 * Perform hole insertion now that the file size has been
1032 * updated so that if we crash during the operation we don't
1033 * leave shifted extents past EOF and hence losing access to
1034 * the data that is contained within them.
1037 error
= xfs_insert_file_space(ip
, offset
, len
);
1040 xfs_iunlock(ip
, iolock
);
1047 struct inode
*inode
,
1050 if (!(file
->f_flags
& O_LARGEFILE
) && i_size_read(inode
) > MAX_NON_LFS
)
1052 if (XFS_FORCED_SHUTDOWN(XFS_M(inode
->i_sb
)))
1059 struct inode
*inode
,
1062 struct xfs_inode
*ip
= XFS_I(inode
);
1066 error
= xfs_file_open(inode
, file
);
1071 * If there are any blocks, read-ahead block 0 as we're almost
1072 * certain to have the next operation be a read there.
1074 mode
= xfs_ilock_data_map_shared(ip
);
1075 if (ip
->i_d
.di_nextents
> 0)
1076 xfs_dir3_data_readahead(ip
, 0, -1);
1077 xfs_iunlock(ip
, mode
);
1083 struct inode
*inode
,
1086 return xfs_release(XFS_I(inode
));
1092 struct dir_context
*ctx
)
1094 struct inode
*inode
= file_inode(file
);
1095 xfs_inode_t
*ip
= XFS_I(inode
);
1099 * The Linux API doesn't pass down the total size of the buffer
1100 * we read into down to the filesystem. With the filldir concept
1101 * it's not needed for correct information, but the XFS dir2 leaf
1102 * code wants an estimate of the buffer size to calculate it's
1103 * readahead window and size the buffers used for mapping to
1106 * Try to give it an estimate that's good enough, maybe at some
1107 * point we can change the ->readdir prototype to include the
1108 * buffer size. For now we use the current glibc buffer size.
1110 bufsize
= (size_t)min_t(loff_t
, 32768, ip
->i_d
.di_size
);
1112 return xfs_readdir(ip
, ctx
, bufsize
);
1116 * This type is designed to indicate the type of offset we would like
1117 * to search from page cache for xfs_seek_hole_data().
1125 * Lookup the desired type of offset from the given page.
1127 * On success, return true and the offset argument will point to the
1128 * start of the region that was found. Otherwise this function will
1129 * return false and keep the offset argument unchanged.
1132 xfs_lookup_buffer_offset(
1137 loff_t lastoff
= page_offset(page
);
1139 struct buffer_head
*bh
, *head
;
1141 bh
= head
= page_buffers(page
);
1144 * Unwritten extents that have data in the page
1145 * cache covering them can be identified by the
1146 * BH_Unwritten state flag. Pages with multiple
1147 * buffers might have a mix of holes, data and
1148 * unwritten extents - any buffer with valid
1149 * data in it should have BH_Uptodate flag set
1152 if (buffer_unwritten(bh
) ||
1153 buffer_uptodate(bh
)) {
1154 if (type
== DATA_OFF
)
1157 if (type
== HOLE_OFF
)
1165 lastoff
+= bh
->b_size
;
1166 } while ((bh
= bh
->b_this_page
) != head
);
1172 * This routine is called to find out and return a data or hole offset
1173 * from the page cache for unwritten extents according to the desired
1174 * type for xfs_seek_hole_data().
1176 * The argument offset is used to tell where we start to search from the
1177 * page cache. Map is used to figure out the end points of the range to
1180 * Return true if the desired type of offset was found, and the argument
1181 * offset is filled with that address. Otherwise, return false and keep
1185 xfs_find_get_desired_pgoff(
1186 struct inode
*inode
,
1187 struct xfs_bmbt_irec
*map
,
1191 struct xfs_inode
*ip
= XFS_I(inode
);
1192 struct xfs_mount
*mp
= ip
->i_mount
;
1193 struct pagevec pvec
;
1197 loff_t startoff
= *offset
;
1198 loff_t lastoff
= startoff
;
1201 pagevec_init(&pvec
, 0);
1203 index
= startoff
>> PAGE_CACHE_SHIFT
;
1204 endoff
= XFS_FSB_TO_B(mp
, map
->br_startoff
+ map
->br_blockcount
);
1205 end
= endoff
>> PAGE_CACHE_SHIFT
;
1211 want
= min_t(pgoff_t
, end
- index
, PAGEVEC_SIZE
);
1212 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, index
,
1215 * No page mapped into given range. If we are searching holes
1216 * and if this is the first time we got into the loop, it means
1217 * that the given offset is landed in a hole, return it.
1219 * If we have already stepped through some block buffers to find
1220 * holes but they all contains data. In this case, the last
1221 * offset is already updated and pointed to the end of the last
1222 * mapped page, if it does not reach the endpoint to search,
1223 * that means there should be a hole between them.
1225 if (nr_pages
== 0) {
1226 /* Data search found nothing */
1227 if (type
== DATA_OFF
)
1230 ASSERT(type
== HOLE_OFF
);
1231 if (lastoff
== startoff
|| lastoff
< endoff
) {
1239 * At lease we found one page. If this is the first time we
1240 * step into the loop, and if the first page index offset is
1241 * greater than the given search offset, a hole was found.
1243 if (type
== HOLE_OFF
&& lastoff
== startoff
&&
1244 lastoff
< page_offset(pvec
.pages
[0])) {
1249 for (i
= 0; i
< nr_pages
; i
++) {
1250 struct page
*page
= pvec
.pages
[i
];
1254 * At this point, the page may be truncated or
1255 * invalidated (changing page->mapping to NULL),
1256 * or even swizzled back from swapper_space to tmpfs
1257 * file mapping. However, page->index will not change
1258 * because we have a reference on the page.
1260 * Searching done if the page index is out of range.
1261 * If the current offset is not reaches the end of
1262 * the specified search range, there should be a hole
1265 if (page
->index
> end
) {
1266 if (type
== HOLE_OFF
&& lastoff
< endoff
) {
1275 * Page truncated or invalidated(page->mapping == NULL).
1276 * We can freely skip it and proceed to check the next
1279 if (unlikely(page
->mapping
!= inode
->i_mapping
)) {
1284 if (!page_has_buffers(page
)) {
1289 found
= xfs_lookup_buffer_offset(page
, &b_offset
, type
);
1292 * The found offset may be less than the start
1293 * point to search if this is the first time to
1296 *offset
= max_t(loff_t
, startoff
, b_offset
);
1302 * We either searching data but nothing was found, or
1303 * searching hole but found a data buffer. In either
1304 * case, probably the next page contains the desired
1305 * things, update the last offset to it so.
1307 lastoff
= page_offset(page
) + PAGE_SIZE
;
1312 * The number of returned pages less than our desired, search
1313 * done. In this case, nothing was found for searching data,
1314 * but we found a hole behind the last offset.
1316 if (nr_pages
< want
) {
1317 if (type
== HOLE_OFF
) {
1324 index
= pvec
.pages
[i
- 1]->index
+ 1;
1325 pagevec_release(&pvec
);
1326 } while (index
<= end
);
1329 pagevec_release(&pvec
);
1339 struct inode
*inode
= file
->f_mapping
->host
;
1340 struct xfs_inode
*ip
= XFS_I(inode
);
1341 struct xfs_mount
*mp
= ip
->i_mount
;
1342 loff_t
uninitialized_var(offset
);
1344 xfs_fileoff_t fsbno
;
1349 if (XFS_FORCED_SHUTDOWN(mp
))
1352 lock
= xfs_ilock_data_map_shared(ip
);
1354 isize
= i_size_read(inode
);
1355 if (start
>= isize
) {
1361 * Try to read extents from the first block indicated
1362 * by fsbno to the end block of the file.
1364 fsbno
= XFS_B_TO_FSBT(mp
, start
);
1365 end
= XFS_B_TO_FSB(mp
, isize
);
1368 struct xfs_bmbt_irec map
[2];
1372 error
= xfs_bmapi_read(ip
, fsbno
, end
- fsbno
, map
, &nmap
,
1377 /* No extents at given offset, must be beyond EOF */
1383 for (i
= 0; i
< nmap
; i
++) {
1384 offset
= max_t(loff_t
, start
,
1385 XFS_FSB_TO_B(mp
, map
[i
].br_startoff
));
1387 /* Landed in the hole we wanted? */
1388 if (whence
== SEEK_HOLE
&&
1389 map
[i
].br_startblock
== HOLESTARTBLOCK
)
1392 /* Landed in the data extent we wanted? */
1393 if (whence
== SEEK_DATA
&&
1394 (map
[i
].br_startblock
== DELAYSTARTBLOCK
||
1395 (map
[i
].br_state
== XFS_EXT_NORM
&&
1396 !isnullstartblock(map
[i
].br_startblock
))))
1400 * Landed in an unwritten extent, try to search
1401 * for hole or data from page cache.
1403 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
) {
1404 if (xfs_find_get_desired_pgoff(inode
, &map
[i
],
1405 whence
== SEEK_HOLE
? HOLE_OFF
: DATA_OFF
,
1412 * We only received one extent out of the two requested. This
1413 * means we've hit EOF and didn't find what we are looking for.
1417 * If we were looking for a hole, set offset to
1418 * the end of the file (i.e., there is an implicit
1419 * hole at the end of any file).
1421 if (whence
== SEEK_HOLE
) {
1426 * If we were looking for data, it's nowhere to be found
1428 ASSERT(whence
== SEEK_DATA
);
1436 * Nothing was found, proceed to the next round of search
1437 * if the next reading offset is not at or beyond EOF.
1439 fsbno
= map
[i
- 1].br_startoff
+ map
[i
- 1].br_blockcount
;
1440 start
= XFS_FSB_TO_B(mp
, fsbno
);
1441 if (start
>= isize
) {
1442 if (whence
== SEEK_HOLE
) {
1446 ASSERT(whence
== SEEK_DATA
);
1454 * If at this point we have found the hole we wanted, the returned
1455 * offset may be bigger than the file size as it may be aligned to
1456 * page boundary for unwritten extents. We need to deal with this
1457 * situation in particular.
1459 if (whence
== SEEK_HOLE
)
1460 offset
= min_t(loff_t
, offset
, isize
);
1461 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
1464 xfs_iunlock(ip
, lock
);
1481 return generic_file_llseek(file
, offset
, whence
);
1484 return xfs_seek_hole_data(file
, offset
, whence
);
1491 * Locking for serialisation of IO during page faults. This results in a lock
1495 * sb_start_pagefault(vfs, freeze)
1496 * i_mmaplock (XFS - truncate serialisation)
1498 * i_lock (XFS - extent map serialisation)
1502 * mmap()d file has taken write protection fault and is being made writable. We
1503 * can set the page state up correctly for a writable page, which means we can
1504 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1508 xfs_filemap_page_mkwrite(
1509 struct vm_area_struct
*vma
,
1510 struct vm_fault
*vmf
)
1512 struct inode
*inode
= file_inode(vma
->vm_file
);
1515 trace_xfs_filemap_page_mkwrite(XFS_I(inode
));
1517 sb_start_pagefault(inode
->i_sb
);
1518 file_update_time(vma
->vm_file
);
1519 xfs_ilock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1521 if (IS_DAX(inode
)) {
1522 ret
= __dax_mkwrite(vma
, vmf
, xfs_get_blocks_dax_fault
, NULL
);
1524 ret
= block_page_mkwrite(vma
, vmf
, xfs_get_blocks
);
1525 ret
= block_page_mkwrite_return(ret
);
1528 xfs_iunlock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1529 sb_end_pagefault(inode
->i_sb
);
1536 struct vm_area_struct
*vma
,
1537 struct vm_fault
*vmf
)
1539 struct inode
*inode
= file_inode(vma
->vm_file
);
1542 trace_xfs_filemap_fault(XFS_I(inode
));
1544 /* DAX can shortcut the normal fault path on write faults! */
1545 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && IS_DAX(inode
))
1546 return xfs_filemap_page_mkwrite(vma
, vmf
);
1548 xfs_ilock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1549 if (IS_DAX(inode
)) {
1551 * we do not want to trigger unwritten extent conversion on read
1552 * faults - that is unnecessary overhead and would also require
1553 * changes to xfs_get_blocks_direct() to map unwritten extent
1554 * ioend for conversion on read-only mappings.
1556 ret
= __dax_fault(vma
, vmf
, xfs_get_blocks_dax_fault
, NULL
);
1558 ret
= filemap_fault(vma
, vmf
);
1559 xfs_iunlock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1565 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1566 * both read and write faults. Hence we need to handle both cases. There is no
1567 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1568 * handle both cases here. @flags carries the information on the type of fault
1572 xfs_filemap_pmd_fault(
1573 struct vm_area_struct
*vma
,
1578 struct inode
*inode
= file_inode(vma
->vm_file
);
1579 struct xfs_inode
*ip
= XFS_I(inode
);
1583 return VM_FAULT_FALLBACK
;
1585 trace_xfs_filemap_pmd_fault(ip
);
1587 if (flags
& FAULT_FLAG_WRITE
) {
1588 sb_start_pagefault(inode
->i_sb
);
1589 file_update_time(vma
->vm_file
);
1592 xfs_ilock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1593 ret
= __dax_pmd_fault(vma
, addr
, pmd
, flags
, xfs_get_blocks_dax_fault
,
1595 xfs_iunlock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1597 if (flags
& FAULT_FLAG_WRITE
)
1598 sb_end_pagefault(inode
->i_sb
);
1604 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1605 * updates on write faults. In reality, it's need to serialise against
1606 * truncate similar to page_mkwrite. Hence we open-code dax_pfn_mkwrite()
1607 * here and cycle the XFS_MMAPLOCK_SHARED to ensure we serialise the fault
1611 xfs_filemap_pfn_mkwrite(
1612 struct vm_area_struct
*vma
,
1613 struct vm_fault
*vmf
)
1616 struct inode
*inode
= file_inode(vma
->vm_file
);
1617 struct xfs_inode
*ip
= XFS_I(inode
);
1618 int ret
= VM_FAULT_NOPAGE
;
1621 trace_xfs_filemap_pfn_mkwrite(ip
);
1623 sb_start_pagefault(inode
->i_sb
);
1624 file_update_time(vma
->vm_file
);
1626 /* check if the faulting page hasn't raced with truncate */
1627 xfs_ilock(ip
, XFS_MMAPLOCK_SHARED
);
1628 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1629 if (vmf
->pgoff
>= size
)
1630 ret
= VM_FAULT_SIGBUS
;
1631 xfs_iunlock(ip
, XFS_MMAPLOCK_SHARED
);
1632 sb_end_pagefault(inode
->i_sb
);
1637 static const struct vm_operations_struct xfs_file_vm_ops
= {
1638 .fault
= xfs_filemap_fault
,
1639 .pmd_fault
= xfs_filemap_pmd_fault
,
1640 .map_pages
= filemap_map_pages
,
1641 .page_mkwrite
= xfs_filemap_page_mkwrite
,
1642 .pfn_mkwrite
= xfs_filemap_pfn_mkwrite
,
1648 struct vm_area_struct
*vma
)
1650 file_accessed(filp
);
1651 vma
->vm_ops
= &xfs_file_vm_ops
;
1652 if (IS_DAX(file_inode(filp
)))
1653 vma
->vm_flags
|= VM_MIXEDMAP
| VM_HUGEPAGE
;
1657 const struct file_operations xfs_file_operations
= {
1658 .llseek
= xfs_file_llseek
,
1659 .read_iter
= xfs_file_read_iter
,
1660 .write_iter
= xfs_file_write_iter
,
1661 .splice_read
= xfs_file_splice_read
,
1662 .splice_write
= iter_file_splice_write
,
1663 .unlocked_ioctl
= xfs_file_ioctl
,
1664 #ifdef CONFIG_COMPAT
1665 .compat_ioctl
= xfs_file_compat_ioctl
,
1667 .mmap
= xfs_file_mmap
,
1668 .open
= xfs_file_open
,
1669 .release
= xfs_file_release
,
1670 .fsync
= xfs_file_fsync
,
1671 .fallocate
= xfs_file_fallocate
,
1674 const struct file_operations xfs_dir_file_operations
= {
1675 .open
= xfs_dir_open
,
1676 .read
= generic_read_dir
,
1677 .iterate
= xfs_file_readdir
,
1678 .llseek
= generic_file_llseek
,
1679 .unlocked_ioctl
= xfs_file_ioctl
,
1680 #ifdef CONFIG_COMPAT
1681 .compat_ioctl
= xfs_file_compat_ioctl
,
1683 .fsync
= xfs_dir_fsync
,