2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
32 #include "xfs_attr_sf.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
50 #include "xfs_bmap_btree.h"
52 kmem_zone_t
*xfs_inode_zone
;
55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
56 * freed from a file in a single transaction.
58 #define XFS_ITRUNC_MAX_EXTENTS 2
60 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
62 STATIC
int xfs_iunlink_remove(xfs_trans_t
*, xfs_inode_t
*);
65 * helper function to extract extent size hint from inode
71 if ((ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
) && ip
->i_d
.di_extsize
)
72 return ip
->i_d
.di_extsize
;
73 if (XFS_IS_REALTIME_INODE(ip
))
74 return ip
->i_mount
->m_sb
.sb_rextsize
;
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
90 * The functions return a value which should be given to the corresponding
94 xfs_ilock_data_map_shared(
97 uint lock_mode
= XFS_ILOCK_SHARED
;
99 if (ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
&&
100 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) == 0)
101 lock_mode
= XFS_ILOCK_EXCL
;
102 xfs_ilock(ip
, lock_mode
);
107 xfs_ilock_attr_map_shared(
108 struct xfs_inode
*ip
)
110 uint lock_mode
= XFS_ILOCK_SHARED
;
112 if (ip
->i_d
.di_aformat
== XFS_DINODE_FMT_BTREE
&&
113 (ip
->i_afp
->if_flags
& XFS_IFEXTENTS
) == 0)
114 lock_mode
= XFS_ILOCK_EXCL
;
115 xfs_ilock(ip
, lock_mode
);
120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121 * the i_lock. This routine allows various combinations of the locks to be
124 * The 3 locks should always be ordered so that the IO lock is obtained first,
125 * the mmap lock second and the ilock last in order to prevent deadlock.
127 * Basic locking order:
129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
131 * mmap_sem locking order:
133 * i_iolock -> page lock -> mmap_sem
134 * mmap_sem -> i_mmap_lock -> page_lock
136 * The difference in mmap_sem locking order mean that we cannot hold the
137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139 * in get_user_pages() to map the user pages into the kernel address space for
140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141 * page faults already hold the mmap_sem.
143 * Hence to serialise fully against both syscall and mmap based IO, we need to
144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145 * taken in places where we need to invalidate the page cache in a race
146 * free manner (e.g. truncate, hole punch and other extent manipulation
154 trace_xfs_ilock(ip
, lock_flags
, _RET_IP_
);
157 * You can't set both SHARED and EXCL for the same lock,
158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
161 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
162 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
163 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
164 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
165 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
166 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
167 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
169 if (lock_flags
& XFS_IOLOCK_EXCL
)
170 mrupdate_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
171 else if (lock_flags
& XFS_IOLOCK_SHARED
)
172 mraccess_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
174 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
175 mrupdate_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
176 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
177 mraccess_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
179 if (lock_flags
& XFS_ILOCK_EXCL
)
180 mrupdate_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
181 else if (lock_flags
& XFS_ILOCK_SHARED
)
182 mraccess_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
186 * This is just like xfs_ilock(), except that the caller
187 * is guaranteed not to sleep. It returns 1 if it gets
188 * the requested locks and 0 otherwise. If the IO lock is
189 * obtained but the inode lock cannot be, then the IO lock
190 * is dropped before returning.
192 * ip -- the inode being locked
193 * lock_flags -- this parameter indicates the inode's locks to be
194 * to be locked. See the comment for xfs_ilock() for a list
202 trace_xfs_ilock_nowait(ip
, lock_flags
, _RET_IP_
);
205 * You can't set both SHARED and EXCL for the same lock,
206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
209 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
210 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
211 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
212 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
213 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
214 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
215 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
217 if (lock_flags
& XFS_IOLOCK_EXCL
) {
218 if (!mrtryupdate(&ip
->i_iolock
))
220 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
221 if (!mrtryaccess(&ip
->i_iolock
))
225 if (lock_flags
& XFS_MMAPLOCK_EXCL
) {
226 if (!mrtryupdate(&ip
->i_mmaplock
))
227 goto out_undo_iolock
;
228 } else if (lock_flags
& XFS_MMAPLOCK_SHARED
) {
229 if (!mrtryaccess(&ip
->i_mmaplock
))
230 goto out_undo_iolock
;
233 if (lock_flags
& XFS_ILOCK_EXCL
) {
234 if (!mrtryupdate(&ip
->i_lock
))
235 goto out_undo_mmaplock
;
236 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
237 if (!mrtryaccess(&ip
->i_lock
))
238 goto out_undo_mmaplock
;
243 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
244 mrunlock_excl(&ip
->i_mmaplock
);
245 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
246 mrunlock_shared(&ip
->i_mmaplock
);
248 if (lock_flags
& XFS_IOLOCK_EXCL
)
249 mrunlock_excl(&ip
->i_iolock
);
250 else if (lock_flags
& XFS_IOLOCK_SHARED
)
251 mrunlock_shared(&ip
->i_iolock
);
257 * xfs_iunlock() is used to drop the inode locks acquired with
258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260 * that we know which locks to drop.
262 * ip -- the inode being unlocked
263 * lock_flags -- this parameter indicates the inode's locks to be
264 * to be unlocked. See the comment for xfs_ilock() for a list
265 * of valid values for this parameter.
274 * You can't set both SHARED and EXCL for the same lock,
275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
278 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
279 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
280 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
281 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
282 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
283 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
284 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
285 ASSERT(lock_flags
!= 0);
287 if (lock_flags
& XFS_IOLOCK_EXCL
)
288 mrunlock_excl(&ip
->i_iolock
);
289 else if (lock_flags
& XFS_IOLOCK_SHARED
)
290 mrunlock_shared(&ip
->i_iolock
);
292 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
293 mrunlock_excl(&ip
->i_mmaplock
);
294 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
295 mrunlock_shared(&ip
->i_mmaplock
);
297 if (lock_flags
& XFS_ILOCK_EXCL
)
298 mrunlock_excl(&ip
->i_lock
);
299 else if (lock_flags
& XFS_ILOCK_SHARED
)
300 mrunlock_shared(&ip
->i_lock
);
302 trace_xfs_iunlock(ip
, lock_flags
, _RET_IP_
);
306 * give up write locks. the i/o lock cannot be held nested
307 * if it is being demoted.
314 ASSERT(lock_flags
& (XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
));
316 ~(XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
)) == 0);
318 if (lock_flags
& XFS_ILOCK_EXCL
)
319 mrdemote(&ip
->i_lock
);
320 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
321 mrdemote(&ip
->i_mmaplock
);
322 if (lock_flags
& XFS_IOLOCK_EXCL
)
323 mrdemote(&ip
->i_iolock
);
325 trace_xfs_ilock_demote(ip
, lock_flags
, _RET_IP_
);
328 #if defined(DEBUG) || defined(XFS_WARN)
334 if (lock_flags
& (XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
)) {
335 if (!(lock_flags
& XFS_ILOCK_SHARED
))
336 return !!ip
->i_lock
.mr_writer
;
337 return rwsem_is_locked(&ip
->i_lock
.mr_lock
);
340 if (lock_flags
& (XFS_MMAPLOCK_EXCL
|XFS_MMAPLOCK_SHARED
)) {
341 if (!(lock_flags
& XFS_MMAPLOCK_SHARED
))
342 return !!ip
->i_mmaplock
.mr_writer
;
343 return rwsem_is_locked(&ip
->i_mmaplock
.mr_lock
);
346 if (lock_flags
& (XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
)) {
347 if (!(lock_flags
& XFS_IOLOCK_SHARED
))
348 return !!ip
->i_iolock
.mr_writer
;
349 return rwsem_is_locked(&ip
->i_iolock
.mr_lock
);
359 int xfs_small_retries
;
360 int xfs_middle_retries
;
361 int xfs_lots_retries
;
366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
369 * errors and warnings.
371 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
373 xfs_lockdep_subclass_ok(
376 return subclass
< MAX_LOCKDEP_SUBCLASSES
;
379 #define xfs_lockdep_subclass_ok(subclass) (true)
383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
384 * value. This can be called for any type of inode lock combination, including
385 * parent locking. Care must be taken to ensure we don't overrun the subclass
386 * storage fields in the class mask we build.
389 xfs_lock_inumorder(int lock_mode
, int subclass
)
393 ASSERT(!(lock_mode
& (XFS_ILOCK_PARENT
| XFS_ILOCK_RTBITMAP
|
395 ASSERT(xfs_lockdep_subclass_ok(subclass
));
397 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)) {
398 ASSERT(subclass
<= XFS_IOLOCK_MAX_SUBCLASS
);
399 ASSERT(xfs_lockdep_subclass_ok(subclass
+
400 XFS_IOLOCK_PARENT_VAL
));
401 class += subclass
<< XFS_IOLOCK_SHIFT
;
402 if (lock_mode
& XFS_IOLOCK_PARENT
)
403 class += XFS_IOLOCK_PARENT_VAL
<< XFS_IOLOCK_SHIFT
;
406 if (lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) {
407 ASSERT(subclass
<= XFS_MMAPLOCK_MAX_SUBCLASS
);
408 class += subclass
<< XFS_MMAPLOCK_SHIFT
;
411 if (lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)) {
412 ASSERT(subclass
<= XFS_ILOCK_MAX_SUBCLASS
);
413 class += subclass
<< XFS_ILOCK_SHIFT
;
416 return (lock_mode
& ~XFS_LOCK_SUBCLASS_MASK
) | class;
420 * The following routine will lock n inodes in exclusive mode. We assume the
421 * caller calls us with the inodes in i_ino order.
423 * We need to detect deadlock where an inode that we lock is in the AIL and we
424 * start waiting for another inode that is locked by a thread in a long running
425 * transaction (such as truncate). This can result in deadlock since the long
426 * running trans might need to wait for the inode we just locked in order to
427 * push the tail and free space in the log.
429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
431 * lock more than one at a time, lockdep will report false positives saying we
432 * have violated locking orders.
440 int attempts
= 0, i
, j
, try_lock
;
444 * Currently supports between 2 and 5 inodes with exclusive locking. We
445 * support an arbitrary depth of locking here, but absolute limits on
446 * inodes depend on the the type of locking and the limits placed by
447 * lockdep annotations in xfs_lock_inumorder. These are all checked by
450 ASSERT(ips
&& inodes
>= 2 && inodes
<= 5);
451 ASSERT(lock_mode
& (XFS_IOLOCK_EXCL
| XFS_MMAPLOCK_EXCL
|
453 ASSERT(!(lock_mode
& (XFS_IOLOCK_SHARED
| XFS_MMAPLOCK_SHARED
|
455 ASSERT(!(lock_mode
& XFS_IOLOCK_EXCL
) ||
456 inodes
<= XFS_IOLOCK_MAX_SUBCLASS
+ 1);
457 ASSERT(!(lock_mode
& XFS_MMAPLOCK_EXCL
) ||
458 inodes
<= XFS_MMAPLOCK_MAX_SUBCLASS
+ 1);
459 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
) ||
460 inodes
<= XFS_ILOCK_MAX_SUBCLASS
+ 1);
462 if (lock_mode
& XFS_IOLOCK_EXCL
) {
463 ASSERT(!(lock_mode
& (XFS_MMAPLOCK_EXCL
| XFS_ILOCK_EXCL
)));
464 } else if (lock_mode
& XFS_MMAPLOCK_EXCL
)
465 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
));
470 for (; i
< inodes
; i
++) {
473 if (i
&& (ips
[i
] == ips
[i
- 1])) /* Already locked */
477 * If try_lock is not set yet, make sure all locked inodes are
478 * not in the AIL. If any are, set try_lock to be used later.
481 for (j
= (i
- 1); j
>= 0 && !try_lock
; j
--) {
482 lp
= (xfs_log_item_t
*)ips
[j
]->i_itemp
;
483 if (lp
&& (lp
->li_flags
& XFS_LI_IN_AIL
))
489 * If any of the previous locks we have locked is in the AIL,
490 * we must TRY to get the second and subsequent locks. If
491 * we can't get any, we must release all we have
495 xfs_ilock(ips
[i
], xfs_lock_inumorder(lock_mode
, i
));
499 /* try_lock means we have an inode locked that is in the AIL. */
501 if (xfs_ilock_nowait(ips
[i
], xfs_lock_inumorder(lock_mode
, i
)))
505 * Unlock all previous guys and try again. xfs_iunlock will try
506 * to push the tail if the inode is in the AIL.
509 for (j
= i
- 1; j
>= 0; j
--) {
511 * Check to see if we've already unlocked this one. Not
512 * the first one going back, and the inode ptr is the
515 if (j
!= (i
- 1) && ips
[j
] == ips
[j
+ 1])
518 xfs_iunlock(ips
[j
], lock_mode
);
521 if ((attempts
% 5) == 0) {
522 delay(1); /* Don't just spin the CPU */
534 if (attempts
< 5) xfs_small_retries
++;
535 else if (attempts
< 100) xfs_middle_retries
++;
536 else xfs_lots_retries
++;
544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
546 * lock more than one at a time, lockdep will report false positives saying we
547 * have violated locking orders.
559 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)) {
560 ASSERT(!(lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)));
561 ASSERT(!(lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
562 } else if (lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
))
563 ASSERT(!(lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
565 ASSERT(ip0
->i_ino
!= ip1
->i_ino
);
567 if (ip0
->i_ino
> ip1
->i_ino
) {
574 xfs_ilock(ip0
, xfs_lock_inumorder(lock_mode
, 0));
577 * If the first lock we have locked is in the AIL, we must TRY to get
578 * the second lock. If we can't get it, we must release the first one
581 lp
= (xfs_log_item_t
*)ip0
->i_itemp
;
582 if (lp
&& (lp
->li_flags
& XFS_LI_IN_AIL
)) {
583 if (!xfs_ilock_nowait(ip1
, xfs_lock_inumorder(lock_mode
, 1))) {
584 xfs_iunlock(ip0
, lock_mode
);
585 if ((++attempts
% 5) == 0)
586 delay(1); /* Don't just spin the CPU */
590 xfs_ilock(ip1
, xfs_lock_inumorder(lock_mode
, 1));
597 struct xfs_inode
*ip
)
599 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IFLOCK_BIT
);
600 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IFLOCK_BIT
);
603 prepare_to_wait_exclusive(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
604 if (xfs_isiflocked(ip
))
606 } while (!xfs_iflock_nowait(ip
));
608 finish_wait(wq
, &wait
.wait
);
617 if (di_flags
& XFS_DIFLAG_ANY
) {
618 if (di_flags
& XFS_DIFLAG_REALTIME
)
619 flags
|= XFS_XFLAG_REALTIME
;
620 if (di_flags
& XFS_DIFLAG_PREALLOC
)
621 flags
|= XFS_XFLAG_PREALLOC
;
622 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
623 flags
|= XFS_XFLAG_IMMUTABLE
;
624 if (di_flags
& XFS_DIFLAG_APPEND
)
625 flags
|= XFS_XFLAG_APPEND
;
626 if (di_flags
& XFS_DIFLAG_SYNC
)
627 flags
|= XFS_XFLAG_SYNC
;
628 if (di_flags
& XFS_DIFLAG_NOATIME
)
629 flags
|= XFS_XFLAG_NOATIME
;
630 if (di_flags
& XFS_DIFLAG_NODUMP
)
631 flags
|= XFS_XFLAG_NODUMP
;
632 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
633 flags
|= XFS_XFLAG_RTINHERIT
;
634 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
635 flags
|= XFS_XFLAG_PROJINHERIT
;
636 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
637 flags
|= XFS_XFLAG_NOSYMLINKS
;
638 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
639 flags
|= XFS_XFLAG_EXTSIZE
;
640 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
641 flags
|= XFS_XFLAG_EXTSZINHERIT
;
642 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
643 flags
|= XFS_XFLAG_NODEFRAG
;
644 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
645 flags
|= XFS_XFLAG_FILESTREAM
;
655 xfs_icdinode_t
*dic
= &ip
->i_d
;
657 return _xfs_dic2xflags(dic
->di_flags
) |
658 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
665 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
666 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
670 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
671 * is allowed, otherwise it has to be an exact match. If a CI match is found,
672 * ci_name->name will point to a the actual name (caller must free) or
673 * will be set to NULL if an exact match is found.
678 struct xfs_name
*name
,
680 struct xfs_name
*ci_name
)
685 trace_xfs_lookup(dp
, name
);
687 if (XFS_FORCED_SHUTDOWN(dp
->i_mount
))
690 xfs_ilock(dp
, XFS_IOLOCK_SHARED
);
691 error
= xfs_dir_lookup(NULL
, dp
, name
, &inum
, ci_name
);
695 error
= xfs_iget(dp
->i_mount
, NULL
, inum
, 0, 0, ipp
);
699 xfs_iunlock(dp
, XFS_IOLOCK_SHARED
);
704 kmem_free(ci_name
->name
);
706 xfs_iunlock(dp
, XFS_IOLOCK_SHARED
);
712 * Allocate an inode on disk and return a copy of its in-core version.
713 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
714 * appropriately within the inode. The uid and gid for the inode are
715 * set according to the contents of the given cred structure.
717 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
718 * has a free inode available, call xfs_iget() to obtain the in-core
719 * version of the allocated inode. Finally, fill in the inode and
720 * log its initial contents. In this case, ialloc_context would be
723 * If xfs_dialloc() does not have an available inode, it will replenish
724 * its supply by doing an allocation. Since we can only do one
725 * allocation within a transaction without deadlocks, we must commit
726 * the current transaction before returning the inode itself.
727 * In this case, therefore, we will set ialloc_context and return.
728 * The caller should then commit the current transaction, start a new
729 * transaction, and call xfs_ialloc() again to actually get the inode.
731 * To ensure that some other process does not grab the inode that
732 * was allocated during the first call to xfs_ialloc(), this routine
733 * also returns the [locked] bp pointing to the head of the freelist
734 * as ialloc_context. The caller should hold this buffer across
735 * the commit and pass it back into this routine on the second call.
737 * If we are allocating quota inodes, we do not have a parent inode
738 * to attach to or associate with (i.e. pip == NULL) because they
739 * are not linked into the directory structure - they are attached
740 * directly to the superblock - and so have no parent.
751 xfs_buf_t
**ialloc_context
,
754 struct xfs_mount
*mp
= tp
->t_mountp
;
762 * Call the space management code to pick
763 * the on-disk inode to be allocated.
765 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
766 ialloc_context
, &ino
);
769 if (*ialloc_context
|| ino
== NULLFSINO
) {
773 ASSERT(*ialloc_context
== NULL
);
776 * Get the in-core inode with the lock held exclusively.
777 * This is because we're setting fields here we need
778 * to prevent others from looking at until we're done.
780 error
= xfs_iget(mp
, tp
, ino
, XFS_IGET_CREATE
,
781 XFS_ILOCK_EXCL
, &ip
);
787 * We always convert v1 inodes to v2 now - we only support filesystems
788 * with >= v2 inode capability, so there is no reason for ever leaving
789 * an inode in v1 format.
791 if (ip
->i_d
.di_version
== 1)
792 ip
->i_d
.di_version
= 2;
794 ip
->i_d
.di_mode
= mode
;
795 ip
->i_d
.di_onlink
= 0;
796 ip
->i_d
.di_nlink
= nlink
;
797 ASSERT(ip
->i_d
.di_nlink
== nlink
);
798 ip
->i_d
.di_uid
= xfs_kuid_to_uid(current_fsuid());
799 ip
->i_d
.di_gid
= xfs_kgid_to_gid(current_fsgid());
800 xfs_set_projid(ip
, prid
);
801 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
803 if (pip
&& XFS_INHERIT_GID(pip
)) {
804 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
805 if ((pip
->i_d
.di_mode
& S_ISGID
) && S_ISDIR(mode
)) {
806 ip
->i_d
.di_mode
|= S_ISGID
;
811 * If the group ID of the new file does not match the effective group
812 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
813 * (and only if the irix_sgid_inherit compatibility variable is set).
815 if ((irix_sgid_inherit
) &&
816 (ip
->i_d
.di_mode
& S_ISGID
) &&
817 (!in_group_p(xfs_gid_to_kgid(ip
->i_d
.di_gid
)))) {
818 ip
->i_d
.di_mode
&= ~S_ISGID
;
822 ip
->i_d
.di_nextents
= 0;
823 ASSERT(ip
->i_d
.di_nblocks
== 0);
825 tv
= current_fs_time(mp
->m_super
);
826 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
827 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
828 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
829 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
832 * di_gen will have been taken care of in xfs_iread.
834 ip
->i_d
.di_extsize
= 0;
835 ip
->i_d
.di_dmevmask
= 0;
836 ip
->i_d
.di_dmstate
= 0;
837 ip
->i_d
.di_flags
= 0;
839 if (ip
->i_d
.di_version
== 3) {
840 ASSERT(ip
->i_d
.di_ino
== ino
);
841 ASSERT(uuid_equal(&ip
->i_d
.di_uuid
, &mp
->m_sb
.sb_meta_uuid
));
843 ip
->i_d
.di_changecount
= 1;
845 ip
->i_d
.di_flags2
= 0;
846 memset(&(ip
->i_d
.di_pad2
[0]), 0, sizeof(ip
->i_d
.di_pad2
));
847 ip
->i_d
.di_crtime
= ip
->i_d
.di_mtime
;
851 flags
= XFS_ILOG_CORE
;
852 switch (mode
& S_IFMT
) {
857 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
858 ip
->i_df
.if_u2
.if_rdev
= rdev
;
859 ip
->i_df
.if_flags
= 0;
860 flags
|= XFS_ILOG_DEV
;
864 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
868 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
869 di_flags
|= XFS_DIFLAG_RTINHERIT
;
870 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
871 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
872 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
874 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
875 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
876 } else if (S_ISREG(mode
)) {
877 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
878 di_flags
|= XFS_DIFLAG_REALTIME
;
879 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
880 di_flags
|= XFS_DIFLAG_EXTSIZE
;
881 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
884 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
886 di_flags
|= XFS_DIFLAG_NOATIME
;
887 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
889 di_flags
|= XFS_DIFLAG_NODUMP
;
890 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
892 di_flags
|= XFS_DIFLAG_SYNC
;
893 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
894 xfs_inherit_nosymlinks
)
895 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
896 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
897 xfs_inherit_nodefrag
)
898 di_flags
|= XFS_DIFLAG_NODEFRAG
;
899 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
900 di_flags
|= XFS_DIFLAG_FILESTREAM
;
901 ip
->i_d
.di_flags
|= di_flags
;
905 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
906 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
907 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
908 ip
->i_df
.if_u1
.if_extents
= NULL
;
914 * Attribute fork settings for new inode.
916 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
917 ip
->i_d
.di_anextents
= 0;
920 * Log the new values stuffed into the inode.
922 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
923 xfs_trans_log_inode(tp
, ip
, flags
);
925 /* now that we have an i_mode we can setup the inode structure */
933 * Allocates a new inode from disk and return a pointer to the
934 * incore copy. This routine will internally commit the current
935 * transaction and allocate a new one if the Space Manager needed
936 * to do an allocation to replenish the inode free-list.
938 * This routine is designed to be called from xfs_create and
944 xfs_trans_t
**tpp
, /* input: current transaction;
945 output: may be a new transaction. */
946 xfs_inode_t
*dp
, /* directory within whose allocate
951 prid_t prid
, /* project id */
952 int okalloc
, /* ok to allocate new space */
953 xfs_inode_t
**ipp
, /* pointer to inode; it will be
960 xfs_buf_t
*ialloc_context
= NULL
;
966 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
969 * xfs_ialloc will return a pointer to an incore inode if
970 * the Space Manager has an available inode on the free
971 * list. Otherwise, it will do an allocation and replenish
972 * the freelist. Since we can only do one allocation per
973 * transaction without deadlocks, we will need to commit the
974 * current transaction and start a new one. We will then
975 * need to call xfs_ialloc again to get the inode.
977 * If xfs_ialloc did an allocation to replenish the freelist,
978 * it returns the bp containing the head of the freelist as
979 * ialloc_context. We will hold a lock on it across the
980 * transaction commit so that no other process can steal
981 * the inode(s) that we've just allocated.
983 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
, okalloc
,
984 &ialloc_context
, &ip
);
987 * Return an error if we were unable to allocate a new inode.
988 * This should only happen if we run out of space on disk or
989 * encounter a disk error.
995 if (!ialloc_context
&& !ip
) {
1001 * If the AGI buffer is non-NULL, then we were unable to get an
1002 * inode in one operation. We need to commit the current
1003 * transaction and call xfs_ialloc() again. It is guaranteed
1004 * to succeed the second time.
1006 if (ialloc_context
) {
1008 * Normally, xfs_trans_commit releases all the locks.
1009 * We call bhold to hang on to the ialloc_context across
1010 * the commit. Holding this buffer prevents any other
1011 * processes from doing any allocations in this
1014 xfs_trans_bhold(tp
, ialloc_context
);
1017 * We want the quota changes to be associated with the next
1018 * transaction, NOT this one. So, detach the dqinfo from this
1019 * and attach it to the next transaction.
1024 dqinfo
= (void *)tp
->t_dqinfo
;
1025 tp
->t_dqinfo
= NULL
;
1026 tflags
= tp
->t_flags
& XFS_TRANS_DQ_DIRTY
;
1027 tp
->t_flags
&= ~(XFS_TRANS_DQ_DIRTY
);
1030 code
= xfs_trans_roll(&tp
, 0);
1031 if (committed
!= NULL
)
1035 * Re-attach the quota info that we detached from prev trx.
1038 tp
->t_dqinfo
= dqinfo
;
1039 tp
->t_flags
|= tflags
;
1043 xfs_buf_relse(ialloc_context
);
1048 xfs_trans_bjoin(tp
, ialloc_context
);
1051 * Call ialloc again. Since we've locked out all
1052 * other allocations in this allocation group,
1053 * this call should always succeed.
1055 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
,
1056 okalloc
, &ialloc_context
, &ip
);
1059 * If we get an error at this point, return to the caller
1060 * so that the current transaction can be aborted.
1067 ASSERT(!ialloc_context
&& ip
);
1070 if (committed
!= NULL
)
1081 * Decrement the link count on an inode & log the change.
1082 * If this causes the link count to go to zero, initiate the
1083 * logging activity required to truncate a file.
1092 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1094 ASSERT (ip
->i_d
.di_nlink
> 0);
1096 drop_nlink(VFS_I(ip
));
1097 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1100 if (ip
->i_d
.di_nlink
== 0) {
1102 * We're dropping the last link to this file.
1103 * Move the on-disk inode to the AGI unlinked list.
1104 * From xfs_inactive() we will pull the inode from
1105 * the list and free it.
1107 error
= xfs_iunlink(tp
, ip
);
1113 * Increment the link count on an inode & log the change.
1120 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1122 ASSERT(ip
->i_d
.di_version
> 1);
1123 ASSERT(ip
->i_d
.di_nlink
> 0 || (VFS_I(ip
)->i_state
& I_LINKABLE
));
1125 inc_nlink(VFS_I(ip
));
1126 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1133 struct xfs_name
*name
,
1138 int is_dir
= S_ISDIR(mode
);
1139 struct xfs_mount
*mp
= dp
->i_mount
;
1140 struct xfs_inode
*ip
= NULL
;
1141 struct xfs_trans
*tp
= NULL
;
1143 xfs_bmap_free_t free_list
;
1144 xfs_fsblock_t first_block
;
1145 bool unlock_dp_on_error
= false;
1148 struct xfs_dquot
*udqp
= NULL
;
1149 struct xfs_dquot
*gdqp
= NULL
;
1150 struct xfs_dquot
*pdqp
= NULL
;
1151 struct xfs_trans_res
*tres
;
1154 trace_xfs_create(dp
, name
);
1156 if (XFS_FORCED_SHUTDOWN(mp
))
1159 prid
= xfs_get_initial_prid(dp
);
1162 * Make sure that we have allocated dquot(s) on disk.
1164 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1165 xfs_kgid_to_gid(current_fsgid()), prid
,
1166 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1167 &udqp
, &gdqp
, &pdqp
);
1173 resblks
= XFS_MKDIR_SPACE_RES(mp
, name
->len
);
1174 tres
= &M_RES(mp
)->tr_mkdir
;
1175 tp
= xfs_trans_alloc(mp
, XFS_TRANS_MKDIR
);
1177 resblks
= XFS_CREATE_SPACE_RES(mp
, name
->len
);
1178 tres
= &M_RES(mp
)->tr_create
;
1179 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CREATE
);
1183 * Initially assume that the file does not exist and
1184 * reserve the resources for that case. If that is not
1185 * the case we'll drop the one we have and get a more
1186 * appropriate transaction later.
1188 error
= xfs_trans_reserve(tp
, tres
, resblks
, 0);
1189 if (error
== -ENOSPC
) {
1190 /* flush outstanding delalloc blocks and retry */
1191 xfs_flush_inodes(mp
);
1192 error
= xfs_trans_reserve(tp
, tres
, resblks
, 0);
1194 if (error
== -ENOSPC
) {
1195 /* No space at all so try a "no-allocation" reservation */
1197 error
= xfs_trans_reserve(tp
, tres
, 0, 0);
1200 goto out_trans_cancel
;
1203 xfs_ilock(dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
|
1204 XFS_IOLOCK_PARENT
| XFS_ILOCK_PARENT
);
1205 unlock_dp_on_error
= true;
1207 xfs_bmap_init(&free_list
, &first_block
);
1210 * Reserve disk quota and the inode.
1212 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1213 pdqp
, resblks
, 1, 0);
1215 goto out_trans_cancel
;
1218 error
= xfs_dir_canenter(tp
, dp
, name
);
1220 goto out_trans_cancel
;
1224 * A newly created regular or special file just has one directory
1225 * entry pointing to them, but a directory also the "." entry
1226 * pointing to itself.
1228 error
= xfs_dir_ialloc(&tp
, dp
, mode
, is_dir
? 2 : 1, rdev
,
1229 prid
, resblks
> 0, &ip
, &committed
);
1231 goto out_trans_cancel
;
1234 * Now we join the directory inode to the transaction. We do not do it
1235 * earlier because xfs_dir_ialloc might commit the previous transaction
1236 * (and release all the locks). An error from here on will result in
1237 * the transaction cancel unlocking dp so don't do it explicitly in the
1240 xfs_trans_ijoin(tp
, dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1241 unlock_dp_on_error
= false;
1243 error
= xfs_dir_createname(tp
, dp
, name
, ip
->i_ino
,
1244 &first_block
, &free_list
, resblks
?
1245 resblks
- XFS_IALLOC_SPACE_RES(mp
) : 0);
1247 ASSERT(error
!= -ENOSPC
);
1248 goto out_trans_cancel
;
1250 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1251 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
1254 error
= xfs_dir_init(tp
, ip
, dp
);
1256 goto out_bmap_cancel
;
1258 error
= xfs_bumplink(tp
, dp
);
1260 goto out_bmap_cancel
;
1264 * If this is a synchronous mount, make sure that the
1265 * create transaction goes to disk before returning to
1268 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1269 xfs_trans_set_sync(tp
);
1272 * Attach the dquot(s) to the inodes and modify them incore.
1273 * These ids of the inode couldn't have changed since the new
1274 * inode has been locked ever since it was created.
1276 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1278 error
= xfs_bmap_finish(&tp
, &free_list
, &committed
);
1280 goto out_bmap_cancel
;
1282 error
= xfs_trans_commit(tp
);
1284 goto out_release_inode
;
1286 xfs_qm_dqrele(udqp
);
1287 xfs_qm_dqrele(gdqp
);
1288 xfs_qm_dqrele(pdqp
);
1294 xfs_bmap_cancel(&free_list
);
1296 xfs_trans_cancel(tp
);
1299 * Wait until after the current transaction is aborted to finish the
1300 * setup of the inode and release the inode. This prevents recursive
1301 * transactions and deadlocks from xfs_inactive.
1304 xfs_finish_inode_setup(ip
);
1308 xfs_qm_dqrele(udqp
);
1309 xfs_qm_dqrele(gdqp
);
1310 xfs_qm_dqrele(pdqp
);
1312 if (unlock_dp_on_error
)
1313 xfs_iunlock(dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1319 struct xfs_inode
*dp
,
1320 struct dentry
*dentry
,
1322 struct xfs_inode
**ipp
)
1324 struct xfs_mount
*mp
= dp
->i_mount
;
1325 struct xfs_inode
*ip
= NULL
;
1326 struct xfs_trans
*tp
= NULL
;
1329 struct xfs_dquot
*udqp
= NULL
;
1330 struct xfs_dquot
*gdqp
= NULL
;
1331 struct xfs_dquot
*pdqp
= NULL
;
1332 struct xfs_trans_res
*tres
;
1335 if (XFS_FORCED_SHUTDOWN(mp
))
1338 prid
= xfs_get_initial_prid(dp
);
1341 * Make sure that we have allocated dquot(s) on disk.
1343 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1344 xfs_kgid_to_gid(current_fsgid()), prid
,
1345 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1346 &udqp
, &gdqp
, &pdqp
);
1350 resblks
= XFS_IALLOC_SPACE_RES(mp
);
1351 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CREATE_TMPFILE
);
1353 tres
= &M_RES(mp
)->tr_create_tmpfile
;
1354 error
= xfs_trans_reserve(tp
, tres
, resblks
, 0);
1355 if (error
== -ENOSPC
) {
1356 /* No space at all so try a "no-allocation" reservation */
1358 error
= xfs_trans_reserve(tp
, tres
, 0, 0);
1361 goto out_trans_cancel
;
1363 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1364 pdqp
, resblks
, 1, 0);
1366 goto out_trans_cancel
;
1368 error
= xfs_dir_ialloc(&tp
, dp
, mode
, 1, 0,
1369 prid
, resblks
> 0, &ip
, NULL
);
1371 goto out_trans_cancel
;
1373 if (mp
->m_flags
& XFS_MOUNT_WSYNC
)
1374 xfs_trans_set_sync(tp
);
1377 * Attach the dquot(s) to the inodes and modify them incore.
1378 * These ids of the inode couldn't have changed since the new
1379 * inode has been locked ever since it was created.
1381 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1384 error
= xfs_iunlink(tp
, ip
);
1386 goto out_trans_cancel
;
1388 error
= xfs_trans_commit(tp
);
1390 goto out_release_inode
;
1392 xfs_qm_dqrele(udqp
);
1393 xfs_qm_dqrele(gdqp
);
1394 xfs_qm_dqrele(pdqp
);
1400 xfs_trans_cancel(tp
);
1403 * Wait until after the current transaction is aborted to finish the
1404 * setup of the inode and release the inode. This prevents recursive
1405 * transactions and deadlocks from xfs_inactive.
1408 xfs_finish_inode_setup(ip
);
1412 xfs_qm_dqrele(udqp
);
1413 xfs_qm_dqrele(gdqp
);
1414 xfs_qm_dqrele(pdqp
);
1423 struct xfs_name
*target_name
)
1425 xfs_mount_t
*mp
= tdp
->i_mount
;
1428 xfs_bmap_free_t free_list
;
1429 xfs_fsblock_t first_block
;
1433 trace_xfs_link(tdp
, target_name
);
1435 ASSERT(!S_ISDIR(sip
->i_d
.di_mode
));
1437 if (XFS_FORCED_SHUTDOWN(mp
))
1440 error
= xfs_qm_dqattach(sip
, 0);
1444 error
= xfs_qm_dqattach(tdp
, 0);
1448 tp
= xfs_trans_alloc(mp
, XFS_TRANS_LINK
);
1449 resblks
= XFS_LINK_SPACE_RES(mp
, target_name
->len
);
1450 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_link
, resblks
, 0);
1451 if (error
== -ENOSPC
) {
1453 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_link
, 0, 0);
1458 xfs_ilock(tdp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
1459 xfs_lock_two_inodes(sip
, tdp
, XFS_ILOCK_EXCL
);
1461 xfs_trans_ijoin(tp
, sip
, XFS_ILOCK_EXCL
);
1462 xfs_trans_ijoin(tp
, tdp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1465 * If we are using project inheritance, we only allow hard link
1466 * creation in our tree when the project IDs are the same; else
1467 * the tree quota mechanism could be circumvented.
1469 if (unlikely((tdp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
1470 (xfs_get_projid(tdp
) != xfs_get_projid(sip
)))) {
1476 error
= xfs_dir_canenter(tp
, tdp
, target_name
);
1481 xfs_bmap_init(&free_list
, &first_block
);
1483 if (sip
->i_d
.di_nlink
== 0) {
1484 error
= xfs_iunlink_remove(tp
, sip
);
1489 error
= xfs_dir_createname(tp
, tdp
, target_name
, sip
->i_ino
,
1490 &first_block
, &free_list
, resblks
);
1493 xfs_trans_ichgtime(tp
, tdp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1494 xfs_trans_log_inode(tp
, tdp
, XFS_ILOG_CORE
);
1496 error
= xfs_bumplink(tp
, sip
);
1501 * If this is a synchronous mount, make sure that the
1502 * link transaction goes to disk before returning to
1505 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
)) {
1506 xfs_trans_set_sync(tp
);
1509 error
= xfs_bmap_finish (&tp
, &free_list
, &committed
);
1511 xfs_bmap_cancel(&free_list
);
1515 return xfs_trans_commit(tp
);
1518 xfs_trans_cancel(tp
);
1524 * Free up the underlying blocks past new_size. The new size must be smaller
1525 * than the current size. This routine can be used both for the attribute and
1526 * data fork, and does not modify the inode size, which is left to the caller.
1528 * The transaction passed to this routine must have made a permanent log
1529 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1530 * given transaction and start new ones, so make sure everything involved in
1531 * the transaction is tidy before calling here. Some transaction will be
1532 * returned to the caller to be committed. The incoming transaction must
1533 * already include the inode, and both inode locks must be held exclusively.
1534 * The inode must also be "held" within the transaction. On return the inode
1535 * will be "held" within the returned transaction. This routine does NOT
1536 * require any disk space to be reserved for it within the transaction.
1538 * If we get an error, we must return with the inode locked and linked into the
1539 * current transaction. This keeps things simple for the higher level code,
1540 * because it always knows that the inode is locked and held in the transaction
1541 * that returns to it whether errors occur or not. We don't mark the inode
1542 * dirty on error so that transactions can be easily aborted if possible.
1545 xfs_itruncate_extents(
1546 struct xfs_trans
**tpp
,
1547 struct xfs_inode
*ip
,
1549 xfs_fsize_t new_size
)
1551 struct xfs_mount
*mp
= ip
->i_mount
;
1552 struct xfs_trans
*tp
= *tpp
;
1553 xfs_bmap_free_t free_list
;
1554 xfs_fsblock_t first_block
;
1555 xfs_fileoff_t first_unmap_block
;
1556 xfs_fileoff_t last_block
;
1557 xfs_filblks_t unmap_len
;
1562 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
1563 ASSERT(!atomic_read(&VFS_I(ip
)->i_count
) ||
1564 xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1565 ASSERT(new_size
<= XFS_ISIZE(ip
));
1566 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1567 ASSERT(ip
->i_itemp
!= NULL
);
1568 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1569 ASSERT(!XFS_NOT_DQATTACHED(mp
, ip
));
1571 trace_xfs_itruncate_extents_start(ip
, new_size
);
1574 * Since it is possible for space to become allocated beyond
1575 * the end of the file (in a crash where the space is allocated
1576 * but the inode size is not yet updated), simply remove any
1577 * blocks which show up between the new EOF and the maximum
1578 * possible file size. If the first block to be removed is
1579 * beyond the maximum file size (ie it is the same as last_block),
1580 * then there is nothing to do.
1582 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1583 last_block
= XFS_B_TO_FSB(mp
, mp
->m_super
->s_maxbytes
);
1584 if (first_unmap_block
== last_block
)
1587 ASSERT(first_unmap_block
< last_block
);
1588 unmap_len
= last_block
- first_unmap_block
+ 1;
1590 xfs_bmap_init(&free_list
, &first_block
);
1591 error
= xfs_bunmapi(tp
, ip
,
1592 first_unmap_block
, unmap_len
,
1593 xfs_bmapi_aflag(whichfork
),
1594 XFS_ITRUNC_MAX_EXTENTS
,
1595 &first_block
, &free_list
,
1598 goto out_bmap_cancel
;
1601 * Duplicate the transaction that has the permanent
1602 * reservation and commit the old transaction.
1604 error
= xfs_bmap_finish(&tp
, &free_list
, &committed
);
1606 xfs_trans_ijoin(tp
, ip
, 0);
1608 goto out_bmap_cancel
;
1610 error
= xfs_trans_roll(&tp
, ip
);
1616 * Always re-log the inode so that our permanent transaction can keep
1617 * on rolling it forward in the log.
1619 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1621 trace_xfs_itruncate_extents_end(ip
, new_size
);
1628 * If the bunmapi call encounters an error, return to the caller where
1629 * the transaction can be properly aborted. We just need to make sure
1630 * we're not holding any resources that we were not when we came in.
1632 xfs_bmap_cancel(&free_list
);
1640 xfs_mount_t
*mp
= ip
->i_mount
;
1643 if (!S_ISREG(ip
->i_d
.di_mode
) || (ip
->i_d
.di_mode
== 0))
1646 /* If this is a read-only mount, don't do this (would generate I/O) */
1647 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1650 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1654 * If we previously truncated this file and removed old data
1655 * in the process, we want to initiate "early" writeout on
1656 * the last close. This is an attempt to combat the notorious
1657 * NULL files problem which is particularly noticeable from a
1658 * truncate down, buffered (re-)write (delalloc), followed by
1659 * a crash. What we are effectively doing here is
1660 * significantly reducing the time window where we'd otherwise
1661 * be exposed to that problem.
1663 truncated
= xfs_iflags_test_and_clear(ip
, XFS_ITRUNCATED
);
1665 xfs_iflags_clear(ip
, XFS_IDIRTY_RELEASE
);
1666 if (ip
->i_delayed_blks
> 0) {
1667 error
= filemap_flush(VFS_I(ip
)->i_mapping
);
1674 if (ip
->i_d
.di_nlink
== 0)
1677 if (xfs_can_free_eofblocks(ip
, false)) {
1680 * If we can't get the iolock just skip truncating the blocks
1681 * past EOF because we could deadlock with the mmap_sem
1682 * otherwise. We'll get another chance to drop them once the
1683 * last reference to the inode is dropped, so we'll never leak
1684 * blocks permanently.
1686 * Further, check if the inode is being opened, written and
1687 * closed frequently and we have delayed allocation blocks
1688 * outstanding (e.g. streaming writes from the NFS server),
1689 * truncating the blocks past EOF will cause fragmentation to
1692 * In this case don't do the truncation, either, but we have to
1693 * be careful how we detect this case. Blocks beyond EOF show
1694 * up as i_delayed_blks even when the inode is clean, so we
1695 * need to truncate them away first before checking for a dirty
1696 * release. Hence on the first dirty close we will still remove
1697 * the speculative allocation, but after that we will leave it
1700 if (xfs_iflags_test(ip
, XFS_IDIRTY_RELEASE
))
1703 error
= xfs_free_eofblocks(mp
, ip
, true);
1704 if (error
&& error
!= -EAGAIN
)
1707 /* delalloc blocks after truncation means it really is dirty */
1708 if (ip
->i_delayed_blks
)
1709 xfs_iflags_set(ip
, XFS_IDIRTY_RELEASE
);
1715 * xfs_inactive_truncate
1717 * Called to perform a truncate when an inode becomes unlinked.
1720 xfs_inactive_truncate(
1721 struct xfs_inode
*ip
)
1723 struct xfs_mount
*mp
= ip
->i_mount
;
1724 struct xfs_trans
*tp
;
1727 tp
= xfs_trans_alloc(mp
, XFS_TRANS_INACTIVE
);
1728 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_itruncate
, 0, 0);
1730 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1731 xfs_trans_cancel(tp
);
1735 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1736 xfs_trans_ijoin(tp
, ip
, 0);
1739 * Log the inode size first to prevent stale data exposure in the event
1740 * of a system crash before the truncate completes. See the related
1741 * comment in xfs_setattr_size() for details.
1743 ip
->i_d
.di_size
= 0;
1744 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1746 error
= xfs_itruncate_extents(&tp
, ip
, XFS_DATA_FORK
, 0);
1748 goto error_trans_cancel
;
1750 ASSERT(ip
->i_d
.di_nextents
== 0);
1752 error
= xfs_trans_commit(tp
);
1756 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1760 xfs_trans_cancel(tp
);
1762 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1767 * xfs_inactive_ifree()
1769 * Perform the inode free when an inode is unlinked.
1773 struct xfs_inode
*ip
)
1775 xfs_bmap_free_t free_list
;
1776 xfs_fsblock_t first_block
;
1778 struct xfs_mount
*mp
= ip
->i_mount
;
1779 struct xfs_trans
*tp
;
1782 tp
= xfs_trans_alloc(mp
, XFS_TRANS_INACTIVE
);
1785 * The ifree transaction might need to allocate blocks for record
1786 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1787 * allow ifree to dip into the reserved block pool if necessary.
1789 * Freeing large sets of inodes generally means freeing inode chunks,
1790 * directory and file data blocks, so this should be relatively safe.
1791 * Only under severe circumstances should it be possible to free enough
1792 * inodes to exhaust the reserve block pool via finobt expansion while
1793 * at the same time not creating free space in the filesystem.
1795 * Send a warning if the reservation does happen to fail, as the inode
1796 * now remains allocated and sits on the unlinked list until the fs is
1799 tp
->t_flags
|= XFS_TRANS_RESERVE
;
1800 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_ifree
,
1801 XFS_IFREE_SPACE_RES(mp
), 0);
1803 if (error
== -ENOSPC
) {
1804 xfs_warn_ratelimited(mp
,
1805 "Failed to remove inode(s) from unlinked list. "
1806 "Please free space, unmount and run xfs_repair.");
1808 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1810 xfs_trans_cancel(tp
);
1814 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1815 xfs_trans_ijoin(tp
, ip
, 0);
1817 xfs_bmap_init(&free_list
, &first_block
);
1818 error
= xfs_ifree(tp
, ip
, &free_list
);
1821 * If we fail to free the inode, shut down. The cancel
1822 * might do that, we need to make sure. Otherwise the
1823 * inode might be lost for a long time or forever.
1825 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1826 xfs_notice(mp
, "%s: xfs_ifree returned error %d",
1828 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1830 xfs_trans_cancel(tp
);
1831 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1836 * Credit the quota account(s). The inode is gone.
1838 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_ICOUNT
, -1);
1841 * Just ignore errors at this point. There is nothing we can do except
1842 * to try to keep going. Make sure it's not a silent error.
1844 error
= xfs_bmap_finish(&tp
, &free_list
, &committed
);
1846 xfs_notice(mp
, "%s: xfs_bmap_finish returned error %d",
1848 xfs_bmap_cancel(&free_list
);
1850 error
= xfs_trans_commit(tp
);
1852 xfs_notice(mp
, "%s: xfs_trans_commit returned error %d",
1855 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1862 * This is called when the vnode reference count for the vnode
1863 * goes to zero. If the file has been unlinked, then it must
1864 * now be truncated. Also, we clear all of the read-ahead state
1865 * kept for the inode here since the file is now closed.
1871 struct xfs_mount
*mp
;
1876 * If the inode is already free, then there can be nothing
1879 if (ip
->i_d
.di_mode
== 0) {
1880 ASSERT(ip
->i_df
.if_real_bytes
== 0);
1881 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
1887 /* If this is a read-only mount, don't do this (would generate I/O) */
1888 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1891 if (ip
->i_d
.di_nlink
!= 0) {
1893 * force is true because we are evicting an inode from the
1894 * cache. Post-eof blocks must be freed, lest we end up with
1895 * broken free space accounting.
1897 if (xfs_can_free_eofblocks(ip
, true))
1898 xfs_free_eofblocks(mp
, ip
, false);
1903 if (S_ISREG(ip
->i_d
.di_mode
) &&
1904 (ip
->i_d
.di_size
!= 0 || XFS_ISIZE(ip
) != 0 ||
1905 ip
->i_d
.di_nextents
> 0 || ip
->i_delayed_blks
> 0))
1908 error
= xfs_qm_dqattach(ip
, 0);
1912 if (S_ISLNK(ip
->i_d
.di_mode
))
1913 error
= xfs_inactive_symlink(ip
);
1915 error
= xfs_inactive_truncate(ip
);
1920 * If there are attributes associated with the file then blow them away
1921 * now. The code calls a routine that recursively deconstructs the
1922 * attribute fork. If also blows away the in-core attribute fork.
1924 if (XFS_IFORK_Q(ip
)) {
1925 error
= xfs_attr_inactive(ip
);
1931 ASSERT(ip
->i_d
.di_anextents
== 0);
1932 ASSERT(ip
->i_d
.di_forkoff
== 0);
1937 error
= xfs_inactive_ifree(ip
);
1942 * Release the dquots held by inode, if any.
1944 xfs_qm_dqdetach(ip
);
1948 * This is called when the inode's link count goes to 0.
1949 * We place the on-disk inode on a list in the AGI. It
1950 * will be pulled from this list when the inode is freed.
1967 ASSERT(ip
->i_d
.di_nlink
== 0);
1968 ASSERT(ip
->i_d
.di_mode
!= 0);
1973 * Get the agi buffer first. It ensures lock ordering
1976 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1979 agi
= XFS_BUF_TO_AGI(agibp
);
1982 * Get the index into the agi hash table for the
1983 * list this inode will go on.
1985 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1987 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1988 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1989 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1991 if (agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
)) {
1993 * There is already another inode in the bucket we need
1994 * to add ourselves to. Add us at the front of the list.
1995 * Here we put the head pointer into our next pointer,
1996 * and then we fall through to point the head at us.
1998 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2003 ASSERT(dip
->di_next_unlinked
== cpu_to_be32(NULLAGINO
));
2004 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
2005 offset
= ip
->i_imap
.im_boffset
+
2006 offsetof(xfs_dinode_t
, di_next_unlinked
);
2008 /* need to recalc the inode CRC if appropriate */
2009 xfs_dinode_calc_crc(mp
, dip
);
2011 xfs_trans_inode_buf(tp
, ibp
);
2012 xfs_trans_log_buf(tp
, ibp
, offset
,
2013 (offset
+ sizeof(xfs_agino_t
) - 1));
2014 xfs_inobp_check(mp
, ibp
);
2018 * Point the bucket head pointer at the inode being inserted.
2021 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
2022 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2023 (sizeof(xfs_agino_t
) * bucket_index
);
2024 xfs_trans_buf_set_type(tp
, agibp
, XFS_BLFT_AGI_BUF
);
2025 xfs_trans_log_buf(tp
, agibp
, offset
,
2026 (offset
+ sizeof(xfs_agino_t
) - 1));
2031 * Pull the on-disk inode from the AGI unlinked list.
2044 xfs_agnumber_t agno
;
2046 xfs_agino_t next_agino
;
2047 xfs_buf_t
*last_ibp
;
2048 xfs_dinode_t
*last_dip
= NULL
;
2050 int offset
, last_offset
= 0;
2054 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
2057 * Get the agi buffer first. It ensures lock ordering
2060 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
2064 agi
= XFS_BUF_TO_AGI(agibp
);
2067 * Get the index into the agi hash table for the
2068 * list this inode will go on.
2070 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2072 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2073 ASSERT(agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
));
2074 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2076 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
2078 * We're at the head of the list. Get the inode's on-disk
2079 * buffer to see if there is anyone after us on the list.
2080 * Only modify our next pointer if it is not already NULLAGINO.
2081 * This saves us the overhead of dealing with the buffer when
2082 * there is no need to change it.
2084 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2087 xfs_warn(mp
, "%s: xfs_imap_to_bp returned error %d.",
2091 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2092 ASSERT(next_agino
!= 0);
2093 if (next_agino
!= NULLAGINO
) {
2094 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2095 offset
= ip
->i_imap
.im_boffset
+
2096 offsetof(xfs_dinode_t
, di_next_unlinked
);
2098 /* need to recalc the inode CRC if appropriate */
2099 xfs_dinode_calc_crc(mp
, dip
);
2101 xfs_trans_inode_buf(tp
, ibp
);
2102 xfs_trans_log_buf(tp
, ibp
, offset
,
2103 (offset
+ sizeof(xfs_agino_t
) - 1));
2104 xfs_inobp_check(mp
, ibp
);
2106 xfs_trans_brelse(tp
, ibp
);
2109 * Point the bucket head pointer at the next inode.
2111 ASSERT(next_agino
!= 0);
2112 ASSERT(next_agino
!= agino
);
2113 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2114 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2115 (sizeof(xfs_agino_t
) * bucket_index
);
2116 xfs_trans_buf_set_type(tp
, agibp
, XFS_BLFT_AGI_BUF
);
2117 xfs_trans_log_buf(tp
, agibp
, offset
,
2118 (offset
+ sizeof(xfs_agino_t
) - 1));
2121 * We need to search the list for the inode being freed.
2123 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2125 while (next_agino
!= agino
) {
2126 struct xfs_imap imap
;
2129 xfs_trans_brelse(tp
, last_ibp
);
2132 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2134 error
= xfs_imap(mp
, tp
, next_ino
, &imap
, 0);
2137 "%s: xfs_imap returned error %d.",
2142 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &last_dip
,
2146 "%s: xfs_imap_to_bp returned error %d.",
2151 last_offset
= imap
.im_boffset
;
2152 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
2153 ASSERT(next_agino
!= NULLAGINO
);
2154 ASSERT(next_agino
!= 0);
2158 * Now last_ibp points to the buffer previous to us on the
2159 * unlinked list. Pull us from the list.
2161 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2164 xfs_warn(mp
, "%s: xfs_imap_to_bp(2) returned error %d.",
2168 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2169 ASSERT(next_agino
!= 0);
2170 ASSERT(next_agino
!= agino
);
2171 if (next_agino
!= NULLAGINO
) {
2172 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2173 offset
= ip
->i_imap
.im_boffset
+
2174 offsetof(xfs_dinode_t
, di_next_unlinked
);
2176 /* need to recalc the inode CRC if appropriate */
2177 xfs_dinode_calc_crc(mp
, dip
);
2179 xfs_trans_inode_buf(tp
, ibp
);
2180 xfs_trans_log_buf(tp
, ibp
, offset
,
2181 (offset
+ sizeof(xfs_agino_t
) - 1));
2182 xfs_inobp_check(mp
, ibp
);
2184 xfs_trans_brelse(tp
, ibp
);
2187 * Point the previous inode on the list to the next inode.
2189 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
2190 ASSERT(next_agino
!= 0);
2191 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2193 /* need to recalc the inode CRC if appropriate */
2194 xfs_dinode_calc_crc(mp
, last_dip
);
2196 xfs_trans_inode_buf(tp
, last_ibp
);
2197 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2198 (offset
+ sizeof(xfs_agino_t
) - 1));
2199 xfs_inobp_check(mp
, last_ibp
);
2205 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2206 * inodes that are in memory - they all must be marked stale and attached to
2207 * the cluster buffer.
2211 xfs_inode_t
*free_ip
,
2213 struct xfs_icluster
*xic
)
2215 xfs_mount_t
*mp
= free_ip
->i_mount
;
2216 int blks_per_cluster
;
2217 int inodes_per_cluster
;
2224 xfs_inode_log_item_t
*iip
;
2225 xfs_log_item_t
*lip
;
2226 struct xfs_perag
*pag
;
2229 inum
= xic
->first_ino
;
2230 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
2231 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
2232 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
2233 nbufs
= mp
->m_ialloc_blks
/ blks_per_cluster
;
2235 for (j
= 0; j
< nbufs
; j
++, inum
+= inodes_per_cluster
) {
2237 * The allocation bitmap tells us which inodes of the chunk were
2238 * physically allocated. Skip the cluster if an inode falls into
2241 ioffset
= inum
- xic
->first_ino
;
2242 if ((xic
->alloc
& XFS_INOBT_MASK(ioffset
)) == 0) {
2243 ASSERT(do_mod(ioffset
, inodes_per_cluster
) == 0);
2247 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2248 XFS_INO_TO_AGBNO(mp
, inum
));
2251 * We obtain and lock the backing buffer first in the process
2252 * here, as we have to ensure that any dirty inode that we
2253 * can't get the flush lock on is attached to the buffer.
2254 * If we scan the in-memory inodes first, then buffer IO can
2255 * complete before we get a lock on it, and hence we may fail
2256 * to mark all the active inodes on the buffer stale.
2258 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2259 mp
->m_bsize
* blks_per_cluster
,
2266 * This buffer may not have been correctly initialised as we
2267 * didn't read it from disk. That's not important because we are
2268 * only using to mark the buffer as stale in the log, and to
2269 * attach stale cached inodes on it. That means it will never be
2270 * dispatched for IO. If it is, we want to know about it, and we
2271 * want it to fail. We can acheive this by adding a write
2272 * verifier to the buffer.
2274 bp
->b_ops
= &xfs_inode_buf_ops
;
2277 * Walk the inodes already attached to the buffer and mark them
2278 * stale. These will all have the flush locks held, so an
2279 * in-memory inode walk can't lock them. By marking them all
2280 * stale first, we will not attempt to lock them in the loop
2281 * below as the XFS_ISTALE flag will be set.
2285 if (lip
->li_type
== XFS_LI_INODE
) {
2286 iip
= (xfs_inode_log_item_t
*)lip
;
2287 ASSERT(iip
->ili_logged
== 1);
2288 lip
->li_cb
= xfs_istale_done
;
2289 xfs_trans_ail_copy_lsn(mp
->m_ail
,
2290 &iip
->ili_flush_lsn
,
2291 &iip
->ili_item
.li_lsn
);
2292 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2294 lip
= lip
->li_bio_list
;
2299 * For each inode in memory attempt to add it to the inode
2300 * buffer and set it up for being staled on buffer IO
2301 * completion. This is safe as we've locked out tail pushing
2302 * and flushing by locking the buffer.
2304 * We have already marked every inode that was part of a
2305 * transaction stale above, which means there is no point in
2306 * even trying to lock them.
2308 for (i
= 0; i
< inodes_per_cluster
; i
++) {
2311 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2312 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2314 /* Inode not in memory, nothing to do */
2321 * because this is an RCU protected lookup, we could
2322 * find a recently freed or even reallocated inode
2323 * during the lookup. We need to check under the
2324 * i_flags_lock for a valid inode here. Skip it if it
2325 * is not valid, the wrong inode or stale.
2327 spin_lock(&ip
->i_flags_lock
);
2328 if (ip
->i_ino
!= inum
+ i
||
2329 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
2330 spin_unlock(&ip
->i_flags_lock
);
2334 spin_unlock(&ip
->i_flags_lock
);
2337 * Don't try to lock/unlock the current inode, but we
2338 * _cannot_ skip the other inodes that we did not find
2339 * in the list attached to the buffer and are not
2340 * already marked stale. If we can't lock it, back off
2343 if (ip
!= free_ip
&&
2344 !xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2352 xfs_iflags_set(ip
, XFS_ISTALE
);
2355 * we don't need to attach clean inodes or those only
2356 * with unlogged changes (which we throw away, anyway).
2359 if (!iip
|| xfs_inode_clean(ip
)) {
2360 ASSERT(ip
!= free_ip
);
2362 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2366 iip
->ili_last_fields
= iip
->ili_fields
;
2367 iip
->ili_fields
= 0;
2368 iip
->ili_fsync_fields
= 0;
2369 iip
->ili_logged
= 1;
2370 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2371 &iip
->ili_item
.li_lsn
);
2373 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
2377 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2380 xfs_trans_stale_inode_buf(tp
, bp
);
2381 xfs_trans_binval(tp
, bp
);
2389 * This is called to return an inode to the inode free list.
2390 * The inode should already be truncated to 0 length and have
2391 * no pages associated with it. This routine also assumes that
2392 * the inode is already a part of the transaction.
2394 * The on-disk copy of the inode will have been added to the list
2395 * of unlinked inodes in the AGI. We need to remove the inode from
2396 * that list atomically with respect to freeing it here.
2402 xfs_bmap_free_t
*flist
)
2405 struct xfs_icluster xic
= { 0 };
2407 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2408 ASSERT(ip
->i_d
.di_nlink
== 0);
2409 ASSERT(ip
->i_d
.di_nextents
== 0);
2410 ASSERT(ip
->i_d
.di_anextents
== 0);
2411 ASSERT(ip
->i_d
.di_size
== 0 || !S_ISREG(ip
->i_d
.di_mode
));
2412 ASSERT(ip
->i_d
.di_nblocks
== 0);
2415 * Pull the on-disk inode from the AGI unlinked list.
2417 error
= xfs_iunlink_remove(tp
, ip
);
2421 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &xic
);
2425 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2426 ip
->i_d
.di_flags
= 0;
2427 ip
->i_d
.di_dmevmask
= 0;
2428 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2429 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2430 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2432 * Bump the generation count so no one will be confused
2433 * by reincarnations of this inode.
2436 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2439 error
= xfs_ifree_cluster(ip
, tp
, &xic
);
2445 * This is called to unpin an inode. The caller must have the inode locked
2446 * in at least shared mode so that the buffer cannot be subsequently pinned
2447 * once someone is waiting for it to be unpinned.
2451 struct xfs_inode
*ip
)
2453 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2455 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2457 /* Give the log a push to start the unpinning I/O */
2458 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2464 struct xfs_inode
*ip
)
2466 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IPINNED_BIT
);
2467 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IPINNED_BIT
);
2472 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2473 if (xfs_ipincount(ip
))
2475 } while (xfs_ipincount(ip
));
2476 finish_wait(wq
, &wait
.wait
);
2481 struct xfs_inode
*ip
)
2483 if (xfs_ipincount(ip
))
2484 __xfs_iunpin_wait(ip
);
2488 * Removing an inode from the namespace involves removing the directory entry
2489 * and dropping the link count on the inode. Removing the directory entry can
2490 * result in locking an AGF (directory blocks were freed) and removing a link
2491 * count can result in placing the inode on an unlinked list which results in
2494 * The big problem here is that we have an ordering constraint on AGF and AGI
2495 * locking - inode allocation locks the AGI, then can allocate a new extent for
2496 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2497 * removes the inode from the unlinked list, requiring that we lock the AGI
2498 * first, and then freeing the inode can result in an inode chunk being freed
2499 * and hence freeing disk space requiring that we lock an AGF.
2501 * Hence the ordering that is imposed by other parts of the code is AGI before
2502 * AGF. This means we cannot remove the directory entry before we drop the inode
2503 * reference count and put it on the unlinked list as this results in a lock
2504 * order of AGF then AGI, and this can deadlock against inode allocation and
2505 * freeing. Therefore we must drop the link counts before we remove the
2508 * This is still safe from a transactional point of view - it is not until we
2509 * get to xfs_bmap_finish() that we have the possibility of multiple
2510 * transactions in this operation. Hence as long as we remove the directory
2511 * entry and drop the link count in the first transaction of the remove
2512 * operation, there are no transactional constraints on the ordering here.
2517 struct xfs_name
*name
,
2520 xfs_mount_t
*mp
= dp
->i_mount
;
2521 xfs_trans_t
*tp
= NULL
;
2522 int is_dir
= S_ISDIR(ip
->i_d
.di_mode
);
2524 xfs_bmap_free_t free_list
;
2525 xfs_fsblock_t first_block
;
2529 trace_xfs_remove(dp
, name
);
2531 if (XFS_FORCED_SHUTDOWN(mp
))
2534 error
= xfs_qm_dqattach(dp
, 0);
2538 error
= xfs_qm_dqattach(ip
, 0);
2543 tp
= xfs_trans_alloc(mp
, XFS_TRANS_RMDIR
);
2545 tp
= xfs_trans_alloc(mp
, XFS_TRANS_REMOVE
);
2548 * We try to get the real space reservation first,
2549 * allowing for directory btree deletion(s) implying
2550 * possible bmap insert(s). If we can't get the space
2551 * reservation then we use 0 instead, and avoid the bmap
2552 * btree insert(s) in the directory code by, if the bmap
2553 * insert tries to happen, instead trimming the LAST
2554 * block from the directory.
2556 resblks
= XFS_REMOVE_SPACE_RES(mp
);
2557 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_remove
, resblks
, 0);
2558 if (error
== -ENOSPC
) {
2560 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_remove
, 0, 0);
2563 ASSERT(error
!= -ENOSPC
);
2564 goto out_trans_cancel
;
2567 xfs_ilock(dp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2568 xfs_lock_two_inodes(dp
, ip
, XFS_ILOCK_EXCL
);
2570 xfs_trans_ijoin(tp
, dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2571 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
2574 * If we're removing a directory perform some additional validation.
2577 ASSERT(ip
->i_d
.di_nlink
>= 2);
2578 if (ip
->i_d
.di_nlink
!= 2) {
2580 goto out_trans_cancel
;
2582 if (!xfs_dir_isempty(ip
)) {
2584 goto out_trans_cancel
;
2587 /* Drop the link from ip's "..". */
2588 error
= xfs_droplink(tp
, dp
);
2590 goto out_trans_cancel
;
2592 /* Drop the "." link from ip to self. */
2593 error
= xfs_droplink(tp
, ip
);
2595 goto out_trans_cancel
;
2598 * When removing a non-directory we need to log the parent
2599 * inode here. For a directory this is done implicitly
2600 * by the xfs_droplink call for the ".." entry.
2602 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
2604 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2606 /* Drop the link from dp to ip. */
2607 error
= xfs_droplink(tp
, ip
);
2609 goto out_trans_cancel
;
2611 xfs_bmap_init(&free_list
, &first_block
);
2612 error
= xfs_dir_removename(tp
, dp
, name
, ip
->i_ino
,
2613 &first_block
, &free_list
, resblks
);
2615 ASSERT(error
!= -ENOENT
);
2616 goto out_bmap_cancel
;
2620 * If this is a synchronous mount, make sure that the
2621 * remove transaction goes to disk before returning to
2624 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2625 xfs_trans_set_sync(tp
);
2627 error
= xfs_bmap_finish(&tp
, &free_list
, &committed
);
2629 goto out_bmap_cancel
;
2631 error
= xfs_trans_commit(tp
);
2635 if (is_dir
&& xfs_inode_is_filestream(ip
))
2636 xfs_filestream_deassociate(ip
);
2641 xfs_bmap_cancel(&free_list
);
2643 xfs_trans_cancel(tp
);
2649 * Enter all inodes for a rename transaction into a sorted array.
2651 #define __XFS_SORT_INODES 5
2653 xfs_sort_for_rename(
2654 struct xfs_inode
*dp1
, /* in: old (source) directory inode */
2655 struct xfs_inode
*dp2
, /* in: new (target) directory inode */
2656 struct xfs_inode
*ip1
, /* in: inode of old entry */
2657 struct xfs_inode
*ip2
, /* in: inode of new entry */
2658 struct xfs_inode
*wip
, /* in: whiteout inode */
2659 struct xfs_inode
**i_tab
,/* out: sorted array of inodes */
2660 int *num_inodes
) /* in/out: inodes in array */
2664 ASSERT(*num_inodes
== __XFS_SORT_INODES
);
2665 memset(i_tab
, 0, *num_inodes
* sizeof(struct xfs_inode
*));
2668 * i_tab contains a list of pointers to inodes. We initialize
2669 * the table here & we'll sort it. We will then use it to
2670 * order the acquisition of the inode locks.
2672 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2685 * Sort the elements via bubble sort. (Remember, there are at
2686 * most 5 elements to sort, so this is adequate.)
2688 for (i
= 0; i
< *num_inodes
; i
++) {
2689 for (j
= 1; j
< *num_inodes
; j
++) {
2690 if (i_tab
[j
]->i_ino
< i_tab
[j
-1]->i_ino
) {
2691 struct xfs_inode
*temp
= i_tab
[j
];
2692 i_tab
[j
] = i_tab
[j
-1];
2701 struct xfs_trans
*tp
,
2702 struct xfs_bmap_free
*free_list
)
2708 * If this is a synchronous mount, make sure that the rename transaction
2709 * goes to disk before returning to the user.
2711 if (tp
->t_mountp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2712 xfs_trans_set_sync(tp
);
2714 error
= xfs_bmap_finish(&tp
, free_list
, &committed
);
2716 xfs_bmap_cancel(free_list
);
2717 xfs_trans_cancel(tp
);
2721 return xfs_trans_commit(tp
);
2725 * xfs_cross_rename()
2727 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2731 struct xfs_trans
*tp
,
2732 struct xfs_inode
*dp1
,
2733 struct xfs_name
*name1
,
2734 struct xfs_inode
*ip1
,
2735 struct xfs_inode
*dp2
,
2736 struct xfs_name
*name2
,
2737 struct xfs_inode
*ip2
,
2738 struct xfs_bmap_free
*free_list
,
2739 xfs_fsblock_t
*first_block
,
2747 /* Swap inode number for dirent in first parent */
2748 error
= xfs_dir_replace(tp
, dp1
, name1
,
2750 first_block
, free_list
, spaceres
);
2752 goto out_trans_abort
;
2754 /* Swap inode number for dirent in second parent */
2755 error
= xfs_dir_replace(tp
, dp2
, name2
,
2757 first_block
, free_list
, spaceres
);
2759 goto out_trans_abort
;
2762 * If we're renaming one or more directories across different parents,
2763 * update the respective ".." entries (and link counts) to match the new
2767 dp2_flags
= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2769 if (S_ISDIR(ip2
->i_d
.di_mode
)) {
2770 error
= xfs_dir_replace(tp
, ip2
, &xfs_name_dotdot
,
2771 dp1
->i_ino
, first_block
,
2772 free_list
, spaceres
);
2774 goto out_trans_abort
;
2776 /* transfer ip2 ".." reference to dp1 */
2777 if (!S_ISDIR(ip1
->i_d
.di_mode
)) {
2778 error
= xfs_droplink(tp
, dp2
);
2780 goto out_trans_abort
;
2781 error
= xfs_bumplink(tp
, dp1
);
2783 goto out_trans_abort
;
2787 * Although ip1 isn't changed here, userspace needs
2788 * to be warned about the change, so that applications
2789 * relying on it (like backup ones), will properly
2792 ip1_flags
|= XFS_ICHGTIME_CHG
;
2793 ip2_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2796 if (S_ISDIR(ip1
->i_d
.di_mode
)) {
2797 error
= xfs_dir_replace(tp
, ip1
, &xfs_name_dotdot
,
2798 dp2
->i_ino
, first_block
,
2799 free_list
, spaceres
);
2801 goto out_trans_abort
;
2803 /* transfer ip1 ".." reference to dp2 */
2804 if (!S_ISDIR(ip2
->i_d
.di_mode
)) {
2805 error
= xfs_droplink(tp
, dp1
);
2807 goto out_trans_abort
;
2808 error
= xfs_bumplink(tp
, dp2
);
2810 goto out_trans_abort
;
2814 * Although ip2 isn't changed here, userspace needs
2815 * to be warned about the change, so that applications
2816 * relying on it (like backup ones), will properly
2819 ip1_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2820 ip2_flags
|= XFS_ICHGTIME_CHG
;
2825 xfs_trans_ichgtime(tp
, ip1
, ip1_flags
);
2826 xfs_trans_log_inode(tp
, ip1
, XFS_ILOG_CORE
);
2829 xfs_trans_ichgtime(tp
, ip2
, ip2_flags
);
2830 xfs_trans_log_inode(tp
, ip2
, XFS_ILOG_CORE
);
2833 xfs_trans_ichgtime(tp
, dp2
, dp2_flags
);
2834 xfs_trans_log_inode(tp
, dp2
, XFS_ILOG_CORE
);
2836 xfs_trans_ichgtime(tp
, dp1
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2837 xfs_trans_log_inode(tp
, dp1
, XFS_ILOG_CORE
);
2838 return xfs_finish_rename(tp
, free_list
);
2841 xfs_bmap_cancel(free_list
);
2842 xfs_trans_cancel(tp
);
2847 * xfs_rename_alloc_whiteout()
2849 * Return a referenced, unlinked, unlocked inode that that can be used as a
2850 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2851 * crash between allocating the inode and linking it into the rename transaction
2852 * recovery will free the inode and we won't leak it.
2855 xfs_rename_alloc_whiteout(
2856 struct xfs_inode
*dp
,
2857 struct xfs_inode
**wip
)
2859 struct xfs_inode
*tmpfile
;
2862 error
= xfs_create_tmpfile(dp
, NULL
, S_IFCHR
| WHITEOUT_MODE
, &tmpfile
);
2867 * Prepare the tmpfile inode as if it were created through the VFS.
2868 * Otherwise, the link increment paths will complain about nlink 0->1.
2869 * Drop the link count as done by d_tmpfile(), complete the inode setup
2870 * and flag it as linkable.
2872 drop_nlink(VFS_I(tmpfile
));
2873 xfs_finish_inode_setup(tmpfile
);
2874 VFS_I(tmpfile
)->i_state
|= I_LINKABLE
;
2885 struct xfs_inode
*src_dp
,
2886 struct xfs_name
*src_name
,
2887 struct xfs_inode
*src_ip
,
2888 struct xfs_inode
*target_dp
,
2889 struct xfs_name
*target_name
,
2890 struct xfs_inode
*target_ip
,
2893 struct xfs_mount
*mp
= src_dp
->i_mount
;
2894 struct xfs_trans
*tp
;
2895 struct xfs_bmap_free free_list
;
2896 xfs_fsblock_t first_block
;
2897 struct xfs_inode
*wip
= NULL
; /* whiteout inode */
2898 struct xfs_inode
*inodes
[__XFS_SORT_INODES
];
2899 int num_inodes
= __XFS_SORT_INODES
;
2900 bool new_parent
= (src_dp
!= target_dp
);
2901 bool src_is_directory
= S_ISDIR(src_ip
->i_d
.di_mode
);
2905 trace_xfs_rename(src_dp
, target_dp
, src_name
, target_name
);
2907 if ((flags
& RENAME_EXCHANGE
) && !target_ip
)
2911 * If we are doing a whiteout operation, allocate the whiteout inode
2912 * we will be placing at the target and ensure the type is set
2915 if (flags
& RENAME_WHITEOUT
) {
2916 ASSERT(!(flags
& (RENAME_NOREPLACE
| RENAME_EXCHANGE
)));
2917 error
= xfs_rename_alloc_whiteout(target_dp
, &wip
);
2921 /* setup target dirent info as whiteout */
2922 src_name
->type
= XFS_DIR3_FT_CHRDEV
;
2925 xfs_sort_for_rename(src_dp
, target_dp
, src_ip
, target_ip
, wip
,
2926 inodes
, &num_inodes
);
2928 tp
= xfs_trans_alloc(mp
, XFS_TRANS_RENAME
);
2929 spaceres
= XFS_RENAME_SPACE_RES(mp
, target_name
->len
);
2930 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_rename
, spaceres
, 0);
2931 if (error
== -ENOSPC
) {
2933 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_rename
, 0, 0);
2936 goto out_trans_cancel
;
2939 * Attach the dquots to the inodes
2941 error
= xfs_qm_vop_rename_dqattach(inodes
);
2943 goto out_trans_cancel
;
2946 * Lock all the participating inodes. Depending upon whether
2947 * the target_name exists in the target directory, and
2948 * whether the target directory is the same as the source
2949 * directory, we can lock from 2 to 4 inodes.
2952 xfs_ilock(src_dp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2954 xfs_lock_two_inodes(src_dp
, target_dp
,
2955 XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2957 xfs_lock_inodes(inodes
, num_inodes
, XFS_ILOCK_EXCL
);
2960 * Join all the inodes to the transaction. From this point on,
2961 * we can rely on either trans_commit or trans_cancel to unlock
2964 xfs_trans_ijoin(tp
, src_dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2966 xfs_trans_ijoin(tp
, target_dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2967 xfs_trans_ijoin(tp
, src_ip
, XFS_ILOCK_EXCL
);
2969 xfs_trans_ijoin(tp
, target_ip
, XFS_ILOCK_EXCL
);
2971 xfs_trans_ijoin(tp
, wip
, XFS_ILOCK_EXCL
);
2974 * If we are using project inheritance, we only allow renames
2975 * into our tree when the project IDs are the same; else the
2976 * tree quota mechanism would be circumvented.
2978 if (unlikely((target_dp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
2979 (xfs_get_projid(target_dp
) != xfs_get_projid(src_ip
)))) {
2981 goto out_trans_cancel
;
2984 xfs_bmap_init(&free_list
, &first_block
);
2986 /* RENAME_EXCHANGE is unique from here on. */
2987 if (flags
& RENAME_EXCHANGE
)
2988 return xfs_cross_rename(tp
, src_dp
, src_name
, src_ip
,
2989 target_dp
, target_name
, target_ip
,
2990 &free_list
, &first_block
, spaceres
);
2993 * Set up the target.
2995 if (target_ip
== NULL
) {
2997 * If there's no space reservation, check the entry will
2998 * fit before actually inserting it.
3001 error
= xfs_dir_canenter(tp
, target_dp
, target_name
);
3003 goto out_trans_cancel
;
3006 * If target does not exist and the rename crosses
3007 * directories, adjust the target directory link count
3008 * to account for the ".." reference from the new entry.
3010 error
= xfs_dir_createname(tp
, target_dp
, target_name
,
3011 src_ip
->i_ino
, &first_block
,
3012 &free_list
, spaceres
);
3014 goto out_bmap_cancel
;
3016 xfs_trans_ichgtime(tp
, target_dp
,
3017 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3019 if (new_parent
&& src_is_directory
) {
3020 error
= xfs_bumplink(tp
, target_dp
);
3022 goto out_bmap_cancel
;
3024 } else { /* target_ip != NULL */
3026 * If target exists and it's a directory, check that both
3027 * target and source are directories and that target can be
3028 * destroyed, or that neither is a directory.
3030 if (S_ISDIR(target_ip
->i_d
.di_mode
)) {
3032 * Make sure target dir is empty.
3034 if (!(xfs_dir_isempty(target_ip
)) ||
3035 (target_ip
->i_d
.di_nlink
> 2)) {
3037 goto out_trans_cancel
;
3042 * Link the source inode under the target name.
3043 * If the source inode is a directory and we are moving
3044 * it across directories, its ".." entry will be
3045 * inconsistent until we replace that down below.
3047 * In case there is already an entry with the same
3048 * name at the destination directory, remove it first.
3050 error
= xfs_dir_replace(tp
, target_dp
, target_name
,
3052 &first_block
, &free_list
, spaceres
);
3054 goto out_bmap_cancel
;
3056 xfs_trans_ichgtime(tp
, target_dp
,
3057 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3060 * Decrement the link count on the target since the target
3061 * dir no longer points to it.
3063 error
= xfs_droplink(tp
, target_ip
);
3065 goto out_bmap_cancel
;
3067 if (src_is_directory
) {
3069 * Drop the link from the old "." entry.
3071 error
= xfs_droplink(tp
, target_ip
);
3073 goto out_bmap_cancel
;
3075 } /* target_ip != NULL */
3078 * Remove the source.
3080 if (new_parent
&& src_is_directory
) {
3082 * Rewrite the ".." entry to point to the new
3085 error
= xfs_dir_replace(tp
, src_ip
, &xfs_name_dotdot
,
3087 &first_block
, &free_list
, spaceres
);
3088 ASSERT(error
!= -EEXIST
);
3090 goto out_bmap_cancel
;
3094 * We always want to hit the ctime on the source inode.
3096 * This isn't strictly required by the standards since the source
3097 * inode isn't really being changed, but old unix file systems did
3098 * it and some incremental backup programs won't work without it.
3100 xfs_trans_ichgtime(tp
, src_ip
, XFS_ICHGTIME_CHG
);
3101 xfs_trans_log_inode(tp
, src_ip
, XFS_ILOG_CORE
);
3104 * Adjust the link count on src_dp. This is necessary when
3105 * renaming a directory, either within one parent when
3106 * the target existed, or across two parent directories.
3108 if (src_is_directory
&& (new_parent
|| target_ip
!= NULL
)) {
3111 * Decrement link count on src_directory since the
3112 * entry that's moved no longer points to it.
3114 error
= xfs_droplink(tp
, src_dp
);
3116 goto out_bmap_cancel
;
3120 * For whiteouts, we only need to update the source dirent with the
3121 * inode number of the whiteout inode rather than removing it
3125 error
= xfs_dir_replace(tp
, src_dp
, src_name
, wip
->i_ino
,
3126 &first_block
, &free_list
, spaceres
);
3128 error
= xfs_dir_removename(tp
, src_dp
, src_name
, src_ip
->i_ino
,
3129 &first_block
, &free_list
, spaceres
);
3131 goto out_bmap_cancel
;
3134 * For whiteouts, we need to bump the link count on the whiteout inode.
3135 * This means that failures all the way up to this point leave the inode
3136 * on the unlinked list and so cleanup is a simple matter of dropping
3137 * the remaining reference to it. If we fail here after bumping the link
3138 * count, we're shutting down the filesystem so we'll never see the
3139 * intermediate state on disk.
3142 ASSERT(VFS_I(wip
)->i_nlink
== 0 && wip
->i_d
.di_nlink
== 0);
3143 error
= xfs_bumplink(tp
, wip
);
3145 goto out_bmap_cancel
;
3146 error
= xfs_iunlink_remove(tp
, wip
);
3148 goto out_bmap_cancel
;
3149 xfs_trans_log_inode(tp
, wip
, XFS_ILOG_CORE
);
3152 * Now we have a real link, clear the "I'm a tmpfile" state
3153 * flag from the inode so it doesn't accidentally get misused in
3156 VFS_I(wip
)->i_state
&= ~I_LINKABLE
;
3159 xfs_trans_ichgtime(tp
, src_dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3160 xfs_trans_log_inode(tp
, src_dp
, XFS_ILOG_CORE
);
3162 xfs_trans_log_inode(tp
, target_dp
, XFS_ILOG_CORE
);
3164 error
= xfs_finish_rename(tp
, &free_list
);
3170 xfs_bmap_cancel(&free_list
);
3172 xfs_trans_cancel(tp
);
3183 xfs_mount_t
*mp
= ip
->i_mount
;
3184 struct xfs_perag
*pag
;
3185 unsigned long first_index
, mask
;
3186 unsigned long inodes_per_cluster
;
3188 xfs_inode_t
**ilist
;
3195 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
3197 inodes_per_cluster
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
3198 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
3199 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
3203 mask
= ~(((mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
)) - 1);
3204 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
3206 /* really need a gang lookup range call here */
3207 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
3208 first_index
, inodes_per_cluster
);
3212 for (i
= 0; i
< nr_found
; i
++) {
3218 * because this is an RCU protected lookup, we could find a
3219 * recently freed or even reallocated inode during the lookup.
3220 * We need to check under the i_flags_lock for a valid inode
3221 * here. Skip it if it is not valid or the wrong inode.
3223 spin_lock(&ip
->i_flags_lock
);
3225 (XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
) {
3226 spin_unlock(&ip
->i_flags_lock
);
3229 spin_unlock(&ip
->i_flags_lock
);
3232 * Do an un-protected check to see if the inode is dirty and
3233 * is a candidate for flushing. These checks will be repeated
3234 * later after the appropriate locks are acquired.
3236 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
3240 * Try to get locks. If any are unavailable or it is pinned,
3241 * then this inode cannot be flushed and is skipped.
3244 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
3246 if (!xfs_iflock_nowait(iq
)) {
3247 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3250 if (xfs_ipincount(iq
)) {
3252 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3257 * arriving here means that this inode can be flushed. First
3258 * re-check that it's dirty before flushing.
3260 if (!xfs_inode_clean(iq
)) {
3262 error
= xfs_iflush_int(iq
, bp
);
3264 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3265 goto cluster_corrupt_out
;
3271 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3275 XFS_STATS_INC(mp
, xs_icluster_flushcnt
);
3276 XFS_STATS_ADD(mp
, xs_icluster_flushinode
, clcount
);
3287 cluster_corrupt_out
:
3289 * Corruption detected in the clustering loop. Invalidate the
3290 * inode buffer and shut down the filesystem.
3294 * Clean up the buffer. If it was delwri, just release it --
3295 * brelse can handle it with no problems. If not, shut down the
3296 * filesystem before releasing the buffer.
3298 bufwasdelwri
= (bp
->b_flags
& _XBF_DELWRI_Q
);
3302 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3304 if (!bufwasdelwri
) {
3306 * Just like incore_relse: if we have b_iodone functions,
3307 * mark the buffer as an error and call them. Otherwise
3308 * mark it as stale and brelse.
3313 xfs_buf_ioerror(bp
, -EIO
);
3322 * Unlocks the flush lock
3324 xfs_iflush_abort(iq
, false);
3327 return -EFSCORRUPTED
;
3331 * Flush dirty inode metadata into the backing buffer.
3333 * The caller must have the inode lock and the inode flush lock held. The
3334 * inode lock will still be held upon return to the caller, and the inode
3335 * flush lock will be released after the inode has reached the disk.
3337 * The caller must write out the buffer returned in *bpp and release it.
3341 struct xfs_inode
*ip
,
3342 struct xfs_buf
**bpp
)
3344 struct xfs_mount
*mp
= ip
->i_mount
;
3346 struct xfs_dinode
*dip
;
3349 XFS_STATS_INC(mp
, xs_iflush_count
);
3351 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3352 ASSERT(xfs_isiflocked(ip
));
3353 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3354 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3358 xfs_iunpin_wait(ip
);
3361 * For stale inodes we cannot rely on the backing buffer remaining
3362 * stale in cache for the remaining life of the stale inode and so
3363 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3364 * inodes below. We have to check this after ensuring the inode is
3365 * unpinned so that it is safe to reclaim the stale inode after the
3368 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
3374 * This may have been unpinned because the filesystem is shutting
3375 * down forcibly. If that's the case we must not write this inode
3376 * to disk, because the log record didn't make it to disk.
3378 * We also have to remove the log item from the AIL in this case,
3379 * as we wait for an empty AIL as part of the unmount process.
3381 if (XFS_FORCED_SHUTDOWN(mp
)) {
3387 * Get the buffer containing the on-disk inode.
3389 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &bp
, XBF_TRYLOCK
,
3397 * First flush out the inode that xfs_iflush was called with.
3399 error
= xfs_iflush_int(ip
, bp
);
3404 * If the buffer is pinned then push on the log now so we won't
3405 * get stuck waiting in the write for too long.
3407 if (xfs_buf_ispinned(bp
))
3408 xfs_log_force(mp
, 0);
3412 * see if other inodes can be gathered into this write
3414 error
= xfs_iflush_cluster(ip
, bp
);
3416 goto cluster_corrupt_out
;
3423 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3424 cluster_corrupt_out
:
3425 error
= -EFSCORRUPTED
;
3428 * Unlocks the flush lock
3430 xfs_iflush_abort(ip
, false);
3436 struct xfs_inode
*ip
,
3439 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
3440 struct xfs_dinode
*dip
;
3441 struct xfs_mount
*mp
= ip
->i_mount
;
3443 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3444 ASSERT(xfs_isiflocked(ip
));
3445 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3446 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3447 ASSERT(iip
!= NULL
&& iip
->ili_fields
!= 0);
3448 ASSERT(ip
->i_d
.di_version
> 1);
3450 /* set *dip = inode's place in the buffer */
3451 dip
= xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
3453 if (XFS_TEST_ERROR(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
),
3454 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3455 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3456 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3457 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
3460 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3461 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3462 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3463 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3464 __func__
, ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3467 if (S_ISREG(ip
->i_d
.di_mode
)) {
3469 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3470 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3471 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3472 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3473 "%s: Bad regular inode %Lu, ptr 0x%p",
3474 __func__
, ip
->i_ino
, ip
);
3477 } else if (S_ISDIR(ip
->i_d
.di_mode
)) {
3479 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3480 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3481 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3482 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3483 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3484 "%s: Bad directory inode %Lu, ptr 0x%p",
3485 __func__
, ip
->i_ino
, ip
);
3489 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3490 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3491 XFS_RANDOM_IFLUSH_5
)) {
3492 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3493 "%s: detected corrupt incore inode %Lu, "
3494 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3495 __func__
, ip
->i_ino
,
3496 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3497 ip
->i_d
.di_nblocks
, ip
);
3500 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3501 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3502 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3503 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3504 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3509 * Inode item log recovery for v2 inodes are dependent on the
3510 * di_flushiter count for correct sequencing. We bump the flush
3511 * iteration count so we can detect flushes which postdate a log record
3512 * during recovery. This is redundant as we now log every change and
3513 * hence this can't happen but we need to still do it to ensure
3514 * backwards compatibility with old kernels that predate logging all
3517 if (ip
->i_d
.di_version
< 3)
3518 ip
->i_d
.di_flushiter
++;
3521 * Copy the dirty parts of the inode into the on-disk
3522 * inode. We always copy out the core of the inode,
3523 * because if the inode is dirty at all the core must
3526 xfs_dinode_to_disk(dip
, &ip
->i_d
);
3528 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3529 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3530 ip
->i_d
.di_flushiter
= 0;
3532 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
);
3533 if (XFS_IFORK_Q(ip
))
3534 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
);
3535 xfs_inobp_check(mp
, bp
);
3538 * We've recorded everything logged in the inode, so we'd like to clear
3539 * the ili_fields bits so we don't log and flush things unnecessarily.
3540 * However, we can't stop logging all this information until the data
3541 * we've copied into the disk buffer is written to disk. If we did we
3542 * might overwrite the copy of the inode in the log with all the data
3543 * after re-logging only part of it, and in the face of a crash we
3544 * wouldn't have all the data we need to recover.
3546 * What we do is move the bits to the ili_last_fields field. When
3547 * logging the inode, these bits are moved back to the ili_fields field.
3548 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3549 * know that the information those bits represent is permanently on
3550 * disk. As long as the flush completes before the inode is logged
3551 * again, then both ili_fields and ili_last_fields will be cleared.
3553 * We can play with the ili_fields bits here, because the inode lock
3554 * must be held exclusively in order to set bits there and the flush
3555 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3556 * done routine can tell whether or not to look in the AIL. Also, store
3557 * the current LSN of the inode so that we can tell whether the item has
3558 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3559 * need the AIL lock, because it is a 64 bit value that cannot be read
3562 iip
->ili_last_fields
= iip
->ili_fields
;
3563 iip
->ili_fields
= 0;
3564 iip
->ili_fsync_fields
= 0;
3565 iip
->ili_logged
= 1;
3567 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3568 &iip
->ili_item
.li_lsn
);
3571 * Attach the function xfs_iflush_done to the inode's
3572 * buffer. This will remove the inode from the AIL
3573 * and unlock the inode's flush lock when the inode is
3574 * completely written to disk.
3576 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
3578 /* update the lsn in the on disk inode if required */
3579 if (ip
->i_d
.di_version
== 3)
3580 dip
->di_lsn
= cpu_to_be64(iip
->ili_item
.li_lsn
);
3582 /* generate the checksum. */
3583 xfs_dinode_calc_crc(mp
, dip
);
3585 ASSERT(bp
->b_fspriv
!= NULL
);
3586 ASSERT(bp
->b_iodone
!= NULL
);
3590 return -EFSCORRUPTED
;