of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / net / bluetooth / ecc.c
blobe1709f8467acacb216241ec03f845a0043464c3b
1 /*
2 * Copyright (c) 2013, Kenneth MacKay
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 #include <linux/random.h>
29 #include "ecc.h"
31 /* 256-bit curve */
32 #define ECC_BYTES 32
34 #define MAX_TRIES 16
36 /* Number of u64's needed */
37 #define NUM_ECC_DIGITS (ECC_BYTES / 8)
39 struct ecc_point {
40 u64 x[NUM_ECC_DIGITS];
41 u64 y[NUM_ECC_DIGITS];
44 typedef struct {
45 u64 m_low;
46 u64 m_high;
47 } uint128_t;
49 #define CURVE_P_32 { 0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, \
50 0x0000000000000000ull, 0xFFFFFFFF00000001ull }
52 #define CURVE_G_32 { \
53 { 0xF4A13945D898C296ull, 0x77037D812DEB33A0ull, \
54 0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull }, \
55 { 0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull, \
56 0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull } \
59 #define CURVE_N_32 { 0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull, \
60 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull }
62 static u64 curve_p[NUM_ECC_DIGITS] = CURVE_P_32;
63 static struct ecc_point curve_g = CURVE_G_32;
64 static u64 curve_n[NUM_ECC_DIGITS] = CURVE_N_32;
66 static void vli_clear(u64 *vli)
68 int i;
70 for (i = 0; i < NUM_ECC_DIGITS; i++)
71 vli[i] = 0;
74 /* Returns true if vli == 0, false otherwise. */
75 static bool vli_is_zero(const u64 *vli)
77 int i;
79 for (i = 0; i < NUM_ECC_DIGITS; i++) {
80 if (vli[i])
81 return false;
84 return true;
87 /* Returns nonzero if bit bit of vli is set. */
88 static u64 vli_test_bit(const u64 *vli, unsigned int bit)
90 return (vli[bit / 64] & ((u64) 1 << (bit % 64)));
93 /* Counts the number of 64-bit "digits" in vli. */
94 static unsigned int vli_num_digits(const u64 *vli)
96 int i;
98 /* Search from the end until we find a non-zero digit.
99 * We do it in reverse because we expect that most digits will
100 * be nonzero.
102 for (i = NUM_ECC_DIGITS - 1; i >= 0 && vli[i] == 0; i--);
104 return (i + 1);
107 /* Counts the number of bits required for vli. */
108 static unsigned int vli_num_bits(const u64 *vli)
110 unsigned int i, num_digits;
111 u64 digit;
113 num_digits = vli_num_digits(vli);
114 if (num_digits == 0)
115 return 0;
117 digit = vli[num_digits - 1];
118 for (i = 0; digit; i++)
119 digit >>= 1;
121 return ((num_digits - 1) * 64 + i);
124 /* Sets dest = src. */
125 static void vli_set(u64 *dest, const u64 *src)
127 int i;
129 for (i = 0; i < NUM_ECC_DIGITS; i++)
130 dest[i] = src[i];
133 /* Returns sign of left - right. */
134 static int vli_cmp(const u64 *left, const u64 *right)
136 int i;
138 for (i = NUM_ECC_DIGITS - 1; i >= 0; i--) {
139 if (left[i] > right[i])
140 return 1;
141 else if (left[i] < right[i])
142 return -1;
145 return 0;
148 /* Computes result = in << c, returning carry. Can modify in place
149 * (if result == in). 0 < shift < 64.
151 static u64 vli_lshift(u64 *result, const u64 *in,
152 unsigned int shift)
154 u64 carry = 0;
155 int i;
157 for (i = 0; i < NUM_ECC_DIGITS; i++) {
158 u64 temp = in[i];
160 result[i] = (temp << shift) | carry;
161 carry = temp >> (64 - shift);
164 return carry;
167 /* Computes vli = vli >> 1. */
168 static void vli_rshift1(u64 *vli)
170 u64 *end = vli;
171 u64 carry = 0;
173 vli += NUM_ECC_DIGITS;
175 while (vli-- > end) {
176 u64 temp = *vli;
177 *vli = (temp >> 1) | carry;
178 carry = temp << 63;
182 /* Computes result = left + right, returning carry. Can modify in place. */
183 static u64 vli_add(u64 *result, const u64 *left,
184 const u64 *right)
186 u64 carry = 0;
187 int i;
189 for (i = 0; i < NUM_ECC_DIGITS; i++) {
190 u64 sum;
192 sum = left[i] + right[i] + carry;
193 if (sum != left[i])
194 carry = (sum < left[i]);
196 result[i] = sum;
199 return carry;
202 /* Computes result = left - right, returning borrow. Can modify in place. */
203 static u64 vli_sub(u64 *result, const u64 *left, const u64 *right)
205 u64 borrow = 0;
206 int i;
208 for (i = 0; i < NUM_ECC_DIGITS; i++) {
209 u64 diff;
211 diff = left[i] - right[i] - borrow;
212 if (diff != left[i])
213 borrow = (diff > left[i]);
215 result[i] = diff;
218 return borrow;
221 static uint128_t mul_64_64(u64 left, u64 right)
223 u64 a0 = left & 0xffffffffull;
224 u64 a1 = left >> 32;
225 u64 b0 = right & 0xffffffffull;
226 u64 b1 = right >> 32;
227 u64 m0 = a0 * b0;
228 u64 m1 = a0 * b1;
229 u64 m2 = a1 * b0;
230 u64 m3 = a1 * b1;
231 uint128_t result;
233 m2 += (m0 >> 32);
234 m2 += m1;
236 /* Overflow */
237 if (m2 < m1)
238 m3 += 0x100000000ull;
240 result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
241 result.m_high = m3 + (m2 >> 32);
243 return result;
246 static uint128_t add_128_128(uint128_t a, uint128_t b)
248 uint128_t result;
250 result.m_low = a.m_low + b.m_low;
251 result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
253 return result;
256 static void vli_mult(u64 *result, const u64 *left, const u64 *right)
258 uint128_t r01 = { 0, 0 };
259 u64 r2 = 0;
260 unsigned int i, k;
262 /* Compute each digit of result in sequence, maintaining the
263 * carries.
265 for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) {
266 unsigned int min;
268 if (k < NUM_ECC_DIGITS)
269 min = 0;
270 else
271 min = (k + 1) - NUM_ECC_DIGITS;
273 for (i = min; i <= k && i < NUM_ECC_DIGITS; i++) {
274 uint128_t product;
276 product = mul_64_64(left[i], right[k - i]);
278 r01 = add_128_128(r01, product);
279 r2 += (r01.m_high < product.m_high);
282 result[k] = r01.m_low;
283 r01.m_low = r01.m_high;
284 r01.m_high = r2;
285 r2 = 0;
288 result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low;
291 static void vli_square(u64 *result, const u64 *left)
293 uint128_t r01 = { 0, 0 };
294 u64 r2 = 0;
295 int i, k;
297 for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) {
298 unsigned int min;
300 if (k < NUM_ECC_DIGITS)
301 min = 0;
302 else
303 min = (k + 1) - NUM_ECC_DIGITS;
305 for (i = min; i <= k && i <= k - i; i++) {
306 uint128_t product;
308 product = mul_64_64(left[i], left[k - i]);
310 if (i < k - i) {
311 r2 += product.m_high >> 63;
312 product.m_high = (product.m_high << 1) |
313 (product.m_low >> 63);
314 product.m_low <<= 1;
317 r01 = add_128_128(r01, product);
318 r2 += (r01.m_high < product.m_high);
321 result[k] = r01.m_low;
322 r01.m_low = r01.m_high;
323 r01.m_high = r2;
324 r2 = 0;
327 result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low;
330 /* Computes result = (left + right) % mod.
331 * Assumes that left < mod and right < mod, result != mod.
333 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
334 const u64 *mod)
336 u64 carry;
338 carry = vli_add(result, left, right);
340 /* result > mod (result = mod + remainder), so subtract mod to
341 * get remainder.
343 if (carry || vli_cmp(result, mod) >= 0)
344 vli_sub(result, result, mod);
347 /* Computes result = (left - right) % mod.
348 * Assumes that left < mod and right < mod, result != mod.
350 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
351 const u64 *mod)
353 u64 borrow = vli_sub(result, left, right);
355 /* In this case, p_result == -diff == (max int) - diff.
356 * Since -x % d == d - x, we can get the correct result from
357 * result + mod (with overflow).
359 if (borrow)
360 vli_add(result, result, mod);
363 /* Computes result = product % curve_p
364 from http://www.nsa.gov/ia/_files/nist-routines.pdf */
365 static void vli_mmod_fast(u64 *result, const u64 *product)
367 u64 tmp[NUM_ECC_DIGITS];
368 int carry;
370 /* t */
371 vli_set(result, product);
373 /* s1 */
374 tmp[0] = 0;
375 tmp[1] = product[5] & 0xffffffff00000000ull;
376 tmp[2] = product[6];
377 tmp[3] = product[7];
378 carry = vli_lshift(tmp, tmp, 1);
379 carry += vli_add(result, result, tmp);
381 /* s2 */
382 tmp[1] = product[6] << 32;
383 tmp[2] = (product[6] >> 32) | (product[7] << 32);
384 tmp[3] = product[7] >> 32;
385 carry += vli_lshift(tmp, tmp, 1);
386 carry += vli_add(result, result, tmp);
388 /* s3 */
389 tmp[0] = product[4];
390 tmp[1] = product[5] & 0xffffffff;
391 tmp[2] = 0;
392 tmp[3] = product[7];
393 carry += vli_add(result, result, tmp);
395 /* s4 */
396 tmp[0] = (product[4] >> 32) | (product[5] << 32);
397 tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
398 tmp[2] = product[7];
399 tmp[3] = (product[6] >> 32) | (product[4] << 32);
400 carry += vli_add(result, result, tmp);
402 /* d1 */
403 tmp[0] = (product[5] >> 32) | (product[6] << 32);
404 tmp[1] = (product[6] >> 32);
405 tmp[2] = 0;
406 tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
407 carry -= vli_sub(result, result, tmp);
409 /* d2 */
410 tmp[0] = product[6];
411 tmp[1] = product[7];
412 tmp[2] = 0;
413 tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
414 carry -= vli_sub(result, result, tmp);
416 /* d3 */
417 tmp[0] = (product[6] >> 32) | (product[7] << 32);
418 tmp[1] = (product[7] >> 32) | (product[4] << 32);
419 tmp[2] = (product[4] >> 32) | (product[5] << 32);
420 tmp[3] = (product[6] << 32);
421 carry -= vli_sub(result, result, tmp);
423 /* d4 */
424 tmp[0] = product[7];
425 tmp[1] = product[4] & 0xffffffff00000000ull;
426 tmp[2] = product[5];
427 tmp[3] = product[6] & 0xffffffff00000000ull;
428 carry -= vli_sub(result, result, tmp);
430 if (carry < 0) {
431 do {
432 carry += vli_add(result, result, curve_p);
433 } while (carry < 0);
434 } else {
435 while (carry || vli_cmp(curve_p, result) != 1)
436 carry -= vli_sub(result, result, curve_p);
440 /* Computes result = (left * right) % curve_p. */
441 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right)
443 u64 product[2 * NUM_ECC_DIGITS];
445 vli_mult(product, left, right);
446 vli_mmod_fast(result, product);
449 /* Computes result = left^2 % curve_p. */
450 static void vli_mod_square_fast(u64 *result, const u64 *left)
452 u64 product[2 * NUM_ECC_DIGITS];
454 vli_square(product, left);
455 vli_mmod_fast(result, product);
458 #define EVEN(vli) (!(vli[0] & 1))
459 /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
460 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
461 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
463 static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod)
465 u64 a[NUM_ECC_DIGITS], b[NUM_ECC_DIGITS];
466 u64 u[NUM_ECC_DIGITS], v[NUM_ECC_DIGITS];
467 u64 carry;
468 int cmp_result;
470 if (vli_is_zero(input)) {
471 vli_clear(result);
472 return;
475 vli_set(a, input);
476 vli_set(b, mod);
477 vli_clear(u);
478 u[0] = 1;
479 vli_clear(v);
481 while ((cmp_result = vli_cmp(a, b)) != 0) {
482 carry = 0;
484 if (EVEN(a)) {
485 vli_rshift1(a);
487 if (!EVEN(u))
488 carry = vli_add(u, u, mod);
490 vli_rshift1(u);
491 if (carry)
492 u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
493 } else if (EVEN(b)) {
494 vli_rshift1(b);
496 if (!EVEN(v))
497 carry = vli_add(v, v, mod);
499 vli_rshift1(v);
500 if (carry)
501 v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
502 } else if (cmp_result > 0) {
503 vli_sub(a, a, b);
504 vli_rshift1(a);
506 if (vli_cmp(u, v) < 0)
507 vli_add(u, u, mod);
509 vli_sub(u, u, v);
510 if (!EVEN(u))
511 carry = vli_add(u, u, mod);
513 vli_rshift1(u);
514 if (carry)
515 u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
516 } else {
517 vli_sub(b, b, a);
518 vli_rshift1(b);
520 if (vli_cmp(v, u) < 0)
521 vli_add(v, v, mod);
523 vli_sub(v, v, u);
524 if (!EVEN(v))
525 carry = vli_add(v, v, mod);
527 vli_rshift1(v);
528 if (carry)
529 v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
533 vli_set(result, u);
536 /* ------ Point operations ------ */
538 /* Returns true if p_point is the point at infinity, false otherwise. */
539 static bool ecc_point_is_zero(const struct ecc_point *point)
541 return (vli_is_zero(point->x) && vli_is_zero(point->y));
544 /* Point multiplication algorithm using Montgomery's ladder with co-Z
545 * coordinates. From http://eprint.iacr.org/2011/338.pdf
548 /* Double in place */
549 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1)
551 /* t1 = x, t2 = y, t3 = z */
552 u64 t4[NUM_ECC_DIGITS];
553 u64 t5[NUM_ECC_DIGITS];
555 if (vli_is_zero(z1))
556 return;
558 vli_mod_square_fast(t4, y1); /* t4 = y1^2 */
559 vli_mod_mult_fast(t5, x1, t4); /* t5 = x1*y1^2 = A */
560 vli_mod_square_fast(t4, t4); /* t4 = y1^4 */
561 vli_mod_mult_fast(y1, y1, z1); /* t2 = y1*z1 = z3 */
562 vli_mod_square_fast(z1, z1); /* t3 = z1^2 */
564 vli_mod_add(x1, x1, z1, curve_p); /* t1 = x1 + z1^2 */
565 vli_mod_add(z1, z1, z1, curve_p); /* t3 = 2*z1^2 */
566 vli_mod_sub(z1, x1, z1, curve_p); /* t3 = x1 - z1^2 */
567 vli_mod_mult_fast(x1, x1, z1); /* t1 = x1^2 - z1^4 */
569 vli_mod_add(z1, x1, x1, curve_p); /* t3 = 2*(x1^2 - z1^4) */
570 vli_mod_add(x1, x1, z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */
571 if (vli_test_bit(x1, 0)) {
572 u64 carry = vli_add(x1, x1, curve_p);
573 vli_rshift1(x1);
574 x1[NUM_ECC_DIGITS - 1] |= carry << 63;
575 } else {
576 vli_rshift1(x1);
578 /* t1 = 3/2*(x1^2 - z1^4) = B */
580 vli_mod_square_fast(z1, x1); /* t3 = B^2 */
581 vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - A */
582 vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - 2A = x3 */
583 vli_mod_sub(t5, t5, z1, curve_p); /* t5 = A - x3 */
584 vli_mod_mult_fast(x1, x1, t5); /* t1 = B * (A - x3) */
585 vli_mod_sub(t4, x1, t4, curve_p); /* t4 = B * (A - x3) - y1^4 = y3 */
587 vli_set(x1, z1);
588 vli_set(z1, y1);
589 vli_set(y1, t4);
592 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
593 static void apply_z(u64 *x1, u64 *y1, u64 *z)
595 u64 t1[NUM_ECC_DIGITS];
597 vli_mod_square_fast(t1, z); /* z^2 */
598 vli_mod_mult_fast(x1, x1, t1); /* x1 * z^2 */
599 vli_mod_mult_fast(t1, t1, z); /* z^3 */
600 vli_mod_mult_fast(y1, y1, t1); /* y1 * z^3 */
603 /* P = (x1, y1) => 2P, (x2, y2) => P' */
604 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
605 u64 *p_initial_z)
607 u64 z[NUM_ECC_DIGITS];
609 vli_set(x2, x1);
610 vli_set(y2, y1);
612 vli_clear(z);
613 z[0] = 1;
615 if (p_initial_z)
616 vli_set(z, p_initial_z);
618 apply_z(x1, y1, z);
620 ecc_point_double_jacobian(x1, y1, z);
622 apply_z(x2, y2, z);
625 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
626 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
627 * or P => P', Q => P + Q
629 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2)
631 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
632 u64 t5[NUM_ECC_DIGITS];
634 vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */
635 vli_mod_square_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */
636 vli_mod_mult_fast(x1, x1, t5); /* t1 = x1*A = B */
637 vli_mod_mult_fast(x2, x2, t5); /* t3 = x2*A = C */
638 vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */
639 vli_mod_square_fast(t5, y2); /* t5 = (y2 - y1)^2 = D */
641 vli_mod_sub(t5, t5, x1, curve_p); /* t5 = D - B */
642 vli_mod_sub(t5, t5, x2, curve_p); /* t5 = D - B - C = x3 */
643 vli_mod_sub(x2, x2, x1, curve_p); /* t3 = C - B */
644 vli_mod_mult_fast(y1, y1, x2); /* t2 = y1*(C - B) */
645 vli_mod_sub(x2, x1, t5, curve_p); /* t3 = B - x3 */
646 vli_mod_mult_fast(y2, y2, x2); /* t4 = (y2 - y1)*(B - x3) */
647 vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */
649 vli_set(x2, t5);
652 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
653 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
654 * or P => P - Q, Q => P + Q
656 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2)
658 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
659 u64 t5[NUM_ECC_DIGITS];
660 u64 t6[NUM_ECC_DIGITS];
661 u64 t7[NUM_ECC_DIGITS];
663 vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */
664 vli_mod_square_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */
665 vli_mod_mult_fast(x1, x1, t5); /* t1 = x1*A = B */
666 vli_mod_mult_fast(x2, x2, t5); /* t3 = x2*A = C */
667 vli_mod_add(t5, y2, y1, curve_p); /* t4 = y2 + y1 */
668 vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */
670 vli_mod_sub(t6, x2, x1, curve_p); /* t6 = C - B */
671 vli_mod_mult_fast(y1, y1, t6); /* t2 = y1 * (C - B) */
672 vli_mod_add(t6, x1, x2, curve_p); /* t6 = B + C */
673 vli_mod_square_fast(x2, y2); /* t3 = (y2 - y1)^2 */
674 vli_mod_sub(x2, x2, t6, curve_p); /* t3 = x3 */
676 vli_mod_sub(t7, x1, x2, curve_p); /* t7 = B - x3 */
677 vli_mod_mult_fast(y2, y2, t7); /* t4 = (y2 - y1)*(B - x3) */
678 vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */
680 vli_mod_square_fast(t7, t5); /* t7 = (y2 + y1)^2 = F */
681 vli_mod_sub(t7, t7, t6, curve_p); /* t7 = x3' */
682 vli_mod_sub(t6, t7, x1, curve_p); /* t6 = x3' - B */
683 vli_mod_mult_fast(t6, t6, t5); /* t6 = (y2 + y1)*(x3' - B) */
684 vli_mod_sub(y1, t6, y1, curve_p); /* t2 = y3' */
686 vli_set(x1, t7);
689 static void ecc_point_mult(struct ecc_point *result,
690 const struct ecc_point *point, u64 *scalar,
691 u64 *initial_z, int num_bits)
693 /* R0 and R1 */
694 u64 rx[2][NUM_ECC_DIGITS];
695 u64 ry[2][NUM_ECC_DIGITS];
696 u64 z[NUM_ECC_DIGITS];
697 int i, nb;
699 vli_set(rx[1], point->x);
700 vli_set(ry[1], point->y);
702 xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z);
704 for (i = num_bits - 2; i > 0; i--) {
705 nb = !vli_test_bit(scalar, i);
706 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]);
707 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]);
710 nb = !vli_test_bit(scalar, 0);
711 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]);
713 /* Find final 1/Z value. */
714 vli_mod_sub(z, rx[1], rx[0], curve_p); /* X1 - X0 */
715 vli_mod_mult_fast(z, z, ry[1 - nb]); /* Yb * (X1 - X0) */
716 vli_mod_mult_fast(z, z, point->x); /* xP * Yb * (X1 - X0) */
717 vli_mod_inv(z, z, curve_p); /* 1 / (xP * Yb * (X1 - X0)) */
718 vli_mod_mult_fast(z, z, point->y); /* yP / (xP * Yb * (X1 - X0)) */
719 vli_mod_mult_fast(z, z, rx[1 - nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */
720 /* End 1/Z calculation */
722 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]);
724 apply_z(rx[0], ry[0], z);
726 vli_set(result->x, rx[0]);
727 vli_set(result->y, ry[0]);
730 static void ecc_bytes2native(const u8 bytes[ECC_BYTES],
731 u64 native[NUM_ECC_DIGITS])
733 int i;
735 for (i = 0; i < NUM_ECC_DIGITS; i++) {
736 const u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i);
738 native[NUM_ECC_DIGITS - 1 - i] =
739 ((u64) digit[0] << 0) |
740 ((u64) digit[1] << 8) |
741 ((u64) digit[2] << 16) |
742 ((u64) digit[3] << 24) |
743 ((u64) digit[4] << 32) |
744 ((u64) digit[5] << 40) |
745 ((u64) digit[6] << 48) |
746 ((u64) digit[7] << 56);
750 static void ecc_native2bytes(const u64 native[NUM_ECC_DIGITS],
751 u8 bytes[ECC_BYTES])
753 int i;
755 for (i = 0; i < NUM_ECC_DIGITS; i++) {
756 u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i);
758 digit[0] = native[NUM_ECC_DIGITS - 1 - i] >> 0;
759 digit[1] = native[NUM_ECC_DIGITS - 1 - i] >> 8;
760 digit[2] = native[NUM_ECC_DIGITS - 1 - i] >> 16;
761 digit[3] = native[NUM_ECC_DIGITS - 1 - i] >> 24;
762 digit[4] = native[NUM_ECC_DIGITS - 1 - i] >> 32;
763 digit[5] = native[NUM_ECC_DIGITS - 1 - i] >> 40;
764 digit[6] = native[NUM_ECC_DIGITS - 1 - i] >> 48;
765 digit[7] = native[NUM_ECC_DIGITS - 1 - i] >> 56;
769 bool ecc_make_key(u8 public_key[64], u8 private_key[32])
771 struct ecc_point pk;
772 u64 priv[NUM_ECC_DIGITS];
773 unsigned int tries = 0;
775 do {
776 if (tries++ >= MAX_TRIES)
777 return false;
779 get_random_bytes(priv, ECC_BYTES);
781 if (vli_is_zero(priv))
782 continue;
784 /* Make sure the private key is in the range [1, n-1]. */
785 if (vli_cmp(curve_n, priv) != 1)
786 continue;
788 ecc_point_mult(&pk, &curve_g, priv, NULL, vli_num_bits(priv));
789 } while (ecc_point_is_zero(&pk));
791 ecc_native2bytes(priv, private_key);
792 ecc_native2bytes(pk.x, public_key);
793 ecc_native2bytes(pk.y, &public_key[32]);
795 return true;
798 bool ecdh_shared_secret(const u8 public_key[64], const u8 private_key[32],
799 u8 secret[32])
801 u64 priv[NUM_ECC_DIGITS];
802 u64 rand[NUM_ECC_DIGITS];
803 struct ecc_point product, pk;
805 get_random_bytes(rand, ECC_BYTES);
807 ecc_bytes2native(public_key, pk.x);
808 ecc_bytes2native(&public_key[32], pk.y);
809 ecc_bytes2native(private_key, priv);
811 ecc_point_mult(&product, &pk, priv, rand, vli_num_bits(priv));
813 ecc_native2bytes(product.x, secret);
815 return !ecc_point_is_zero(&product);