1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
14 #include <linux/bio.h>
15 #endif /* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
26 #define list_entry_next(pos, member) \
27 list_entry(pos->member.next, typeof(*pos), member)
30 * Ceph uses the messenger to exchange ceph_msg messages with other
31 * hosts in the system. The messenger provides ordered and reliable
32 * delivery. We tolerate TCP disconnects by reconnecting (with
33 * exponential backoff) in the case of a fault (disconnection, bad
34 * crc, protocol error). Acks allow sent messages to be discarded by
39 * We track the state of the socket on a given connection using
40 * values defined below. The transition to a new socket state is
41 * handled by a function which verifies we aren't coming from an
45 * | NEW* | transient initial state
47 * | con_sock_state_init()
50 * | CLOSED | initialized, but no socket (and no
51 * ---------- TCP connection)
53 * | \ con_sock_state_connecting()
54 * | ----------------------
56 * + con_sock_state_closed() \
57 * |+--------------------------- \
60 * | | CLOSING | socket event; \ \
61 * | ----------- await close \ \
64 * | + con_sock_state_closing() \ |
66 * | / --------------- | |
69 * | / -----------------| CONNECTING | socket created, TCP
70 * | | / -------------- connect initiated
71 * | | | con_sock_state_connected()
74 * | CONNECTED | TCP connection established
77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
80 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
81 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
82 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
83 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
84 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
89 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
90 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
91 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
92 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
93 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
94 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
97 * ceph_connection flag bits
99 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
100 * messages on errors */
101 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
102 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
103 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
104 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
106 static bool con_flag_valid(unsigned long con_flag
)
109 case CON_FLAG_LOSSYTX
:
110 case CON_FLAG_KEEPALIVE_PENDING
:
111 case CON_FLAG_WRITE_PENDING
:
112 case CON_FLAG_SOCK_CLOSED
:
113 case CON_FLAG_BACKOFF
:
120 static void con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
122 BUG_ON(!con_flag_valid(con_flag
));
124 clear_bit(con_flag
, &con
->flags
);
127 static void con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
129 BUG_ON(!con_flag_valid(con_flag
));
131 set_bit(con_flag
, &con
->flags
);
134 static bool con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
136 BUG_ON(!con_flag_valid(con_flag
));
138 return test_bit(con_flag
, &con
->flags
);
141 static bool con_flag_test_and_clear(struct ceph_connection
*con
,
142 unsigned long con_flag
)
144 BUG_ON(!con_flag_valid(con_flag
));
146 return test_and_clear_bit(con_flag
, &con
->flags
);
149 static bool con_flag_test_and_set(struct ceph_connection
*con
,
150 unsigned long con_flag
)
152 BUG_ON(!con_flag_valid(con_flag
));
154 return test_and_set_bit(con_flag
, &con
->flags
);
157 /* Slab caches for frequently-allocated structures */
159 static struct kmem_cache
*ceph_msg_cache
;
160 static struct kmem_cache
*ceph_msg_data_cache
;
162 /* static tag bytes (protocol control messages) */
163 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
164 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
165 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
166 static char tag_keepalive2
= CEPH_MSGR_TAG_KEEPALIVE2
;
168 #ifdef CONFIG_LOCKDEP
169 static struct lock_class_key socket_class
;
173 * When skipping (ignoring) a block of input we read it into a "skip
174 * buffer," which is this many bytes in size.
176 #define SKIP_BUF_SIZE 1024
178 static void queue_con(struct ceph_connection
*con
);
179 static void cancel_con(struct ceph_connection
*con
);
180 static void ceph_con_workfn(struct work_struct
*);
181 static void con_fault(struct ceph_connection
*con
);
184 * Nicely render a sockaddr as a string. An array of formatted
185 * strings is used, to approximate reentrancy.
187 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
188 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
189 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
190 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
192 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
193 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
195 static struct page
*zero_page
; /* used in certain error cases */
197 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
201 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
202 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
204 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
207 switch (ss
->ss_family
) {
209 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
210 ntohs(in4
->sin_port
));
214 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
215 ntohs(in6
->sin6_port
));
219 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
225 EXPORT_SYMBOL(ceph_pr_addr
);
227 static void encode_my_addr(struct ceph_messenger
*msgr
)
229 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
230 ceph_encode_addr(&msgr
->my_enc_addr
);
234 * work queue for all reading and writing to/from the socket.
236 static struct workqueue_struct
*ceph_msgr_wq
;
238 static int ceph_msgr_slab_init(void)
240 BUG_ON(ceph_msg_cache
);
241 ceph_msg_cache
= kmem_cache_create("ceph_msg",
242 sizeof (struct ceph_msg
),
243 __alignof__(struct ceph_msg
), 0, NULL
);
248 BUG_ON(ceph_msg_data_cache
);
249 ceph_msg_data_cache
= kmem_cache_create("ceph_msg_data",
250 sizeof (struct ceph_msg_data
),
251 __alignof__(struct ceph_msg_data
),
253 if (ceph_msg_data_cache
)
256 kmem_cache_destroy(ceph_msg_cache
);
257 ceph_msg_cache
= NULL
;
262 static void ceph_msgr_slab_exit(void)
264 BUG_ON(!ceph_msg_data_cache
);
265 kmem_cache_destroy(ceph_msg_data_cache
);
266 ceph_msg_data_cache
= NULL
;
268 BUG_ON(!ceph_msg_cache
);
269 kmem_cache_destroy(ceph_msg_cache
);
270 ceph_msg_cache
= NULL
;
273 static void _ceph_msgr_exit(void)
276 destroy_workqueue(ceph_msgr_wq
);
280 BUG_ON(zero_page
== NULL
);
281 page_cache_release(zero_page
);
284 ceph_msgr_slab_exit();
287 int ceph_msgr_init(void)
289 if (ceph_msgr_slab_init())
292 BUG_ON(zero_page
!= NULL
);
293 zero_page
= ZERO_PAGE(0);
294 page_cache_get(zero_page
);
297 * The number of active work items is limited by the number of
298 * connections, so leave @max_active at default.
300 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM
, 0);
304 pr_err("msgr_init failed to create workqueue\n");
309 EXPORT_SYMBOL(ceph_msgr_init
);
311 void ceph_msgr_exit(void)
313 BUG_ON(ceph_msgr_wq
== NULL
);
317 EXPORT_SYMBOL(ceph_msgr_exit
);
319 void ceph_msgr_flush(void)
321 flush_workqueue(ceph_msgr_wq
);
323 EXPORT_SYMBOL(ceph_msgr_flush
);
325 /* Connection socket state transition functions */
327 static void con_sock_state_init(struct ceph_connection
*con
)
331 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
332 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
333 printk("%s: unexpected old state %d\n", __func__
, old_state
);
334 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
335 CON_SOCK_STATE_CLOSED
);
338 static void con_sock_state_connecting(struct ceph_connection
*con
)
342 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
343 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
344 printk("%s: unexpected old state %d\n", __func__
, old_state
);
345 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
346 CON_SOCK_STATE_CONNECTING
);
349 static void con_sock_state_connected(struct ceph_connection
*con
)
353 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
354 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
355 printk("%s: unexpected old state %d\n", __func__
, old_state
);
356 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
357 CON_SOCK_STATE_CONNECTED
);
360 static void con_sock_state_closing(struct ceph_connection
*con
)
364 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
365 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
366 old_state
!= CON_SOCK_STATE_CONNECTED
&&
367 old_state
!= CON_SOCK_STATE_CLOSING
))
368 printk("%s: unexpected old state %d\n", __func__
, old_state
);
369 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
370 CON_SOCK_STATE_CLOSING
);
373 static void con_sock_state_closed(struct ceph_connection
*con
)
377 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
378 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
379 old_state
!= CON_SOCK_STATE_CLOSING
&&
380 old_state
!= CON_SOCK_STATE_CONNECTING
&&
381 old_state
!= CON_SOCK_STATE_CLOSED
))
382 printk("%s: unexpected old state %d\n", __func__
, old_state
);
383 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
384 CON_SOCK_STATE_CLOSED
);
388 * socket callback functions
391 /* data available on socket, or listen socket received a connect */
392 static void ceph_sock_data_ready(struct sock
*sk
)
394 struct ceph_connection
*con
= sk
->sk_user_data
;
395 if (atomic_read(&con
->msgr
->stopping
)) {
399 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
400 dout("%s on %p state = %lu, queueing work\n", __func__
,
406 /* socket has buffer space for writing */
407 static void ceph_sock_write_space(struct sock
*sk
)
409 struct ceph_connection
*con
= sk
->sk_user_data
;
411 /* only queue to workqueue if there is data we want to write,
412 * and there is sufficient space in the socket buffer to accept
413 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
414 * doesn't get called again until try_write() fills the socket
415 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
416 * and net/core/stream.c:sk_stream_write_space().
418 if (con_flag_test(con
, CON_FLAG_WRITE_PENDING
)) {
419 if (sk_stream_is_writeable(sk
)) {
420 dout("%s %p queueing write work\n", __func__
, con
);
421 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
425 dout("%s %p nothing to write\n", __func__
, con
);
429 /* socket's state has changed */
430 static void ceph_sock_state_change(struct sock
*sk
)
432 struct ceph_connection
*con
= sk
->sk_user_data
;
434 dout("%s %p state = %lu sk_state = %u\n", __func__
,
435 con
, con
->state
, sk
->sk_state
);
437 switch (sk
->sk_state
) {
439 dout("%s TCP_CLOSE\n", __func__
);
441 dout("%s TCP_CLOSE_WAIT\n", __func__
);
442 con_sock_state_closing(con
);
443 con_flag_set(con
, CON_FLAG_SOCK_CLOSED
);
446 case TCP_ESTABLISHED
:
447 dout("%s TCP_ESTABLISHED\n", __func__
);
448 con_sock_state_connected(con
);
451 default: /* Everything else is uninteresting */
457 * set up socket callbacks
459 static void set_sock_callbacks(struct socket
*sock
,
460 struct ceph_connection
*con
)
462 struct sock
*sk
= sock
->sk
;
463 sk
->sk_user_data
= con
;
464 sk
->sk_data_ready
= ceph_sock_data_ready
;
465 sk
->sk_write_space
= ceph_sock_write_space
;
466 sk
->sk_state_change
= ceph_sock_state_change
;
475 * initiate connection to a remote socket.
477 static int ceph_tcp_connect(struct ceph_connection
*con
)
479 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
484 ret
= sock_create_kern(read_pnet(&con
->msgr
->net
), paddr
->ss_family
,
485 SOCK_STREAM
, IPPROTO_TCP
, &sock
);
488 sock
->sk
->sk_allocation
= GFP_NOFS
;
490 #ifdef CONFIG_LOCKDEP
491 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
494 set_sock_callbacks(sock
, con
);
496 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
498 con_sock_state_connecting(con
);
499 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
501 if (ret
== -EINPROGRESS
) {
502 dout("connect %s EINPROGRESS sk_state = %u\n",
503 ceph_pr_addr(&con
->peer_addr
.in_addr
),
505 } else if (ret
< 0) {
506 pr_err("connect %s error %d\n",
507 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
512 if (ceph_test_opt(from_msgr(con
->msgr
), TCP_NODELAY
)) {
515 ret
= kernel_setsockopt(sock
, SOL_TCP
, TCP_NODELAY
,
516 (char *)&optval
, sizeof(optval
));
518 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
526 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
528 struct kvec iov
= {buf
, len
};
529 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
532 r
= kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
538 static int ceph_tcp_recvpage(struct socket
*sock
, struct page
*page
,
539 int page_offset
, size_t length
)
544 BUG_ON(page_offset
+ length
> PAGE_SIZE
);
548 ret
= ceph_tcp_recvmsg(sock
, kaddr
+ page_offset
, length
);
555 * write something. @more is true if caller will be sending more data
558 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
559 size_t kvlen
, size_t len
, int more
)
561 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
565 msg
.msg_flags
|= MSG_MORE
;
567 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
569 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
575 static int __ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
576 int offset
, size_t size
, bool more
)
578 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| (more
? MSG_MORE
: MSG_EOR
);
581 ret
= kernel_sendpage(sock
, page
, offset
, size
, flags
);
588 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
589 int offset
, size_t size
, bool more
)
594 /* sendpage cannot properly handle pages with page_count == 0,
595 * we need to fallback to sendmsg if that's the case */
596 if (page_count(page
) >= 1)
597 return __ceph_tcp_sendpage(sock
, page
, offset
, size
, more
);
599 iov
.iov_base
= kmap(page
) + offset
;
601 ret
= ceph_tcp_sendmsg(sock
, &iov
, 1, size
, more
);
608 * Shutdown/close the socket for the given connection.
610 static int con_close_socket(struct ceph_connection
*con
)
614 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
616 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
617 sock_release(con
->sock
);
622 * Forcibly clear the SOCK_CLOSED flag. It gets set
623 * independent of the connection mutex, and we could have
624 * received a socket close event before we had the chance to
625 * shut the socket down.
627 con_flag_clear(con
, CON_FLAG_SOCK_CLOSED
);
629 con_sock_state_closed(con
);
634 * Reset a connection. Discard all incoming and outgoing messages
635 * and clear *_seq state.
637 static void ceph_msg_remove(struct ceph_msg
*msg
)
639 list_del_init(&msg
->list_head
);
643 static void ceph_msg_remove_list(struct list_head
*head
)
645 while (!list_empty(head
)) {
646 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
648 ceph_msg_remove(msg
);
652 static void reset_connection(struct ceph_connection
*con
)
654 /* reset connection, out_queue, msg_ and connect_seq */
655 /* discard existing out_queue and msg_seq */
656 dout("reset_connection %p\n", con
);
657 ceph_msg_remove_list(&con
->out_queue
);
658 ceph_msg_remove_list(&con
->out_sent
);
661 BUG_ON(con
->in_msg
->con
!= con
);
662 ceph_msg_put(con
->in_msg
);
666 con
->connect_seq
= 0;
669 BUG_ON(con
->out_msg
->con
!= con
);
670 ceph_msg_put(con
->out_msg
);
674 con
->in_seq_acked
= 0;
678 * mark a peer down. drop any open connections.
680 void ceph_con_close(struct ceph_connection
*con
)
682 mutex_lock(&con
->mutex
);
683 dout("con_close %p peer %s\n", con
,
684 ceph_pr_addr(&con
->peer_addr
.in_addr
));
685 con
->state
= CON_STATE_CLOSED
;
687 con_flag_clear(con
, CON_FLAG_LOSSYTX
); /* so we retry next connect */
688 con_flag_clear(con
, CON_FLAG_KEEPALIVE_PENDING
);
689 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
690 con_flag_clear(con
, CON_FLAG_BACKOFF
);
692 reset_connection(con
);
693 con
->peer_global_seq
= 0;
695 con_close_socket(con
);
696 mutex_unlock(&con
->mutex
);
698 EXPORT_SYMBOL(ceph_con_close
);
701 * Reopen a closed connection, with a new peer address.
703 void ceph_con_open(struct ceph_connection
*con
,
704 __u8 entity_type
, __u64 entity_num
,
705 struct ceph_entity_addr
*addr
)
707 mutex_lock(&con
->mutex
);
708 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
710 WARN_ON(con
->state
!= CON_STATE_CLOSED
);
711 con
->state
= CON_STATE_PREOPEN
;
713 con
->peer_name
.type
= (__u8
) entity_type
;
714 con
->peer_name
.num
= cpu_to_le64(entity_num
);
716 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
717 con
->delay
= 0; /* reset backoff memory */
718 mutex_unlock(&con
->mutex
);
721 EXPORT_SYMBOL(ceph_con_open
);
724 * return true if this connection ever successfully opened
726 bool ceph_con_opened(struct ceph_connection
*con
)
728 return con
->connect_seq
> 0;
732 * initialize a new connection.
734 void ceph_con_init(struct ceph_connection
*con
, void *private,
735 const struct ceph_connection_operations
*ops
,
736 struct ceph_messenger
*msgr
)
738 dout("con_init %p\n", con
);
739 memset(con
, 0, sizeof(*con
));
740 con
->private = private;
744 con_sock_state_init(con
);
746 mutex_init(&con
->mutex
);
747 INIT_LIST_HEAD(&con
->out_queue
);
748 INIT_LIST_HEAD(&con
->out_sent
);
749 INIT_DELAYED_WORK(&con
->work
, ceph_con_workfn
);
751 con
->state
= CON_STATE_CLOSED
;
753 EXPORT_SYMBOL(ceph_con_init
);
757 * We maintain a global counter to order connection attempts. Get
758 * a unique seq greater than @gt.
760 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
764 spin_lock(&msgr
->global_seq_lock
);
765 if (msgr
->global_seq
< gt
)
766 msgr
->global_seq
= gt
;
767 ret
= ++msgr
->global_seq
;
768 spin_unlock(&msgr
->global_seq_lock
);
772 static void con_out_kvec_reset(struct ceph_connection
*con
)
774 con
->out_kvec_left
= 0;
775 con
->out_kvec_bytes
= 0;
776 con
->out_kvec_cur
= &con
->out_kvec
[0];
779 static void con_out_kvec_add(struct ceph_connection
*con
,
780 size_t size
, void *data
)
784 index
= con
->out_kvec_left
;
785 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
787 con
->out_kvec
[index
].iov_len
= size
;
788 con
->out_kvec
[index
].iov_base
= data
;
789 con
->out_kvec_left
++;
790 con
->out_kvec_bytes
+= size
;
796 * For a bio data item, a piece is whatever remains of the next
797 * entry in the current bio iovec, or the first entry in the next
800 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
803 struct ceph_msg_data
*data
= cursor
->data
;
806 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
811 cursor
->resid
= min(length
, data
->bio_length
);
813 cursor
->bvec_iter
= bio
->bi_iter
;
815 cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
);
818 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
822 struct ceph_msg_data
*data
= cursor
->data
;
824 struct bio_vec bio_vec
;
826 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
831 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
833 *page_offset
= (size_t) bio_vec
.bv_offset
;
834 BUG_ON(*page_offset
>= PAGE_SIZE
);
835 if (cursor
->last_piece
) /* pagelist offset is always 0 */
836 *length
= cursor
->resid
;
838 *length
= (size_t) bio_vec
.bv_len
;
839 BUG_ON(*length
> cursor
->resid
);
840 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
842 return bio_vec
.bv_page
;
845 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
849 struct bio_vec bio_vec
;
851 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_BIO
);
856 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
858 /* Advance the cursor offset */
860 BUG_ON(cursor
->resid
< bytes
);
861 cursor
->resid
-= bytes
;
863 bio_advance_iter(bio
, &cursor
->bvec_iter
, bytes
);
865 if (bytes
< bio_vec
.bv_len
)
866 return false; /* more bytes to process in this segment */
868 /* Move on to the next segment, and possibly the next bio */
870 if (!cursor
->bvec_iter
.bi_size
) {
874 cursor
->bvec_iter
= bio
->bi_iter
;
876 memset(&cursor
->bvec_iter
, 0,
877 sizeof(cursor
->bvec_iter
));
880 if (!cursor
->last_piece
) {
881 BUG_ON(!cursor
->resid
);
883 /* A short read is OK, so use <= rather than == */
884 if (cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
))
885 cursor
->last_piece
= true;
890 #endif /* CONFIG_BLOCK */
893 * For a page array, a piece comes from the first page in the array
894 * that has not already been fully consumed.
896 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
899 struct ceph_msg_data
*data
= cursor
->data
;
902 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
904 BUG_ON(!data
->pages
);
905 BUG_ON(!data
->length
);
907 cursor
->resid
= min(length
, data
->length
);
908 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
909 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
910 cursor
->page_index
= 0;
911 BUG_ON(page_count
> (int)USHRT_MAX
);
912 cursor
->page_count
= (unsigned short)page_count
;
913 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
914 cursor
->last_piece
= cursor
->page_offset
+ cursor
->resid
<= PAGE_SIZE
;
918 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
919 size_t *page_offset
, size_t *length
)
921 struct ceph_msg_data
*data
= cursor
->data
;
923 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
925 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
926 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
928 *page_offset
= cursor
->page_offset
;
929 if (cursor
->last_piece
)
930 *length
= cursor
->resid
;
932 *length
= PAGE_SIZE
- *page_offset
;
934 return data
->pages
[cursor
->page_index
];
937 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
940 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
942 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
944 /* Advance the cursor page offset */
946 cursor
->resid
-= bytes
;
947 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
948 if (!bytes
|| cursor
->page_offset
)
949 return false; /* more bytes to process in the current page */
952 return false; /* no more data */
954 /* Move on to the next page; offset is already at 0 */
956 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
957 cursor
->page_index
++;
958 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
964 * For a pagelist, a piece is whatever remains to be consumed in the
965 * first page in the list, or the front of the next page.
968 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
971 struct ceph_msg_data
*data
= cursor
->data
;
972 struct ceph_pagelist
*pagelist
;
975 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
977 pagelist
= data
->pagelist
;
981 return; /* pagelist can be assigned but empty */
983 BUG_ON(list_empty(&pagelist
->head
));
984 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
986 cursor
->resid
= min(length
, pagelist
->length
);
989 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
993 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
994 size_t *page_offset
, size_t *length
)
996 struct ceph_msg_data
*data
= cursor
->data
;
997 struct ceph_pagelist
*pagelist
;
999 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1001 pagelist
= data
->pagelist
;
1004 BUG_ON(!cursor
->page
);
1005 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1007 /* offset of first page in pagelist is always 0 */
1008 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
1009 if (cursor
->last_piece
)
1010 *length
= cursor
->resid
;
1012 *length
= PAGE_SIZE
- *page_offset
;
1014 return cursor
->page
;
1017 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
1020 struct ceph_msg_data
*data
= cursor
->data
;
1021 struct ceph_pagelist
*pagelist
;
1023 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1025 pagelist
= data
->pagelist
;
1028 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1029 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
1031 /* Advance the cursor offset */
1033 cursor
->resid
-= bytes
;
1034 cursor
->offset
+= bytes
;
1035 /* offset of first page in pagelist is always 0 */
1036 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
1037 return false; /* more bytes to process in the current page */
1040 return false; /* no more data */
1042 /* Move on to the next page */
1044 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
1045 cursor
->page
= list_entry_next(cursor
->page
, lru
);
1046 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1052 * Message data is handled (sent or received) in pieces, where each
1053 * piece resides on a single page. The network layer might not
1054 * consume an entire piece at once. A data item's cursor keeps
1055 * track of which piece is next to process and how much remains to
1056 * be processed in that piece. It also tracks whether the current
1057 * piece is the last one in the data item.
1059 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1061 size_t length
= cursor
->total_resid
;
1063 switch (cursor
->data
->type
) {
1064 case CEPH_MSG_DATA_PAGELIST
:
1065 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1067 case CEPH_MSG_DATA_PAGES
:
1068 ceph_msg_data_pages_cursor_init(cursor
, length
);
1071 case CEPH_MSG_DATA_BIO
:
1072 ceph_msg_data_bio_cursor_init(cursor
, length
);
1074 #endif /* CONFIG_BLOCK */
1075 case CEPH_MSG_DATA_NONE
:
1080 cursor
->need_crc
= true;
1083 static void ceph_msg_data_cursor_init(struct ceph_msg
*msg
, size_t length
)
1085 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1086 struct ceph_msg_data
*data
;
1089 BUG_ON(length
> msg
->data_length
);
1090 BUG_ON(list_empty(&msg
->data
));
1092 cursor
->data_head
= &msg
->data
;
1093 cursor
->total_resid
= length
;
1094 data
= list_first_entry(&msg
->data
, struct ceph_msg_data
, links
);
1095 cursor
->data
= data
;
1097 __ceph_msg_data_cursor_init(cursor
);
1101 * Return the page containing the next piece to process for a given
1102 * data item, and supply the page offset and length of that piece.
1103 * Indicate whether this is the last piece in this data item.
1105 static struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1106 size_t *page_offset
, size_t *length
,
1111 switch (cursor
->data
->type
) {
1112 case CEPH_MSG_DATA_PAGELIST
:
1113 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1115 case CEPH_MSG_DATA_PAGES
:
1116 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1119 case CEPH_MSG_DATA_BIO
:
1120 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1122 #endif /* CONFIG_BLOCK */
1123 case CEPH_MSG_DATA_NONE
:
1129 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1132 *last_piece
= cursor
->last_piece
;
1138 * Returns true if the result moves the cursor on to the next piece
1141 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
,
1146 BUG_ON(bytes
> cursor
->resid
);
1147 switch (cursor
->data
->type
) {
1148 case CEPH_MSG_DATA_PAGELIST
:
1149 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1151 case CEPH_MSG_DATA_PAGES
:
1152 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1155 case CEPH_MSG_DATA_BIO
:
1156 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1158 #endif /* CONFIG_BLOCK */
1159 case CEPH_MSG_DATA_NONE
:
1164 cursor
->total_resid
-= bytes
;
1166 if (!cursor
->resid
&& cursor
->total_resid
) {
1167 WARN_ON(!cursor
->last_piece
);
1168 BUG_ON(list_is_last(&cursor
->data
->links
, cursor
->data_head
));
1169 cursor
->data
= list_entry_next(cursor
->data
, links
);
1170 __ceph_msg_data_cursor_init(cursor
);
1173 cursor
->need_crc
= new_piece
;
1178 static void prepare_message_data(struct ceph_msg
*msg
, u32 data_len
)
1183 /* Initialize data cursor */
1185 ceph_msg_data_cursor_init(msg
, (size_t)data_len
);
1189 * Prepare footer for currently outgoing message, and finish things
1190 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1192 static void prepare_write_message_footer(struct ceph_connection
*con
)
1194 struct ceph_msg
*m
= con
->out_msg
;
1195 int v
= con
->out_kvec_left
;
1197 m
->footer
.flags
|= CEPH_MSG_FOOTER_COMPLETE
;
1199 dout("prepare_write_message_footer %p\n", con
);
1200 con
->out_kvec_is_msg
= true;
1201 con
->out_kvec
[v
].iov_base
= &m
->footer
;
1202 if (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
) {
1203 if (con
->ops
->sign_message
)
1204 con
->ops
->sign_message(m
);
1207 con
->out_kvec
[v
].iov_len
= sizeof(m
->footer
);
1208 con
->out_kvec_bytes
+= sizeof(m
->footer
);
1210 m
->old_footer
.flags
= m
->footer
.flags
;
1211 con
->out_kvec
[v
].iov_len
= sizeof(m
->old_footer
);
1212 con
->out_kvec_bytes
+= sizeof(m
->old_footer
);
1214 con
->out_kvec_left
++;
1215 con
->out_more
= m
->more_to_follow
;
1216 con
->out_msg_done
= true;
1220 * Prepare headers for the next outgoing message.
1222 static void prepare_write_message(struct ceph_connection
*con
)
1227 con_out_kvec_reset(con
);
1228 con
->out_kvec_is_msg
= true;
1229 con
->out_msg_done
= false;
1231 /* Sneak an ack in there first? If we can get it into the same
1232 * TCP packet that's a good thing. */
1233 if (con
->in_seq
> con
->in_seq_acked
) {
1234 con
->in_seq_acked
= con
->in_seq
;
1235 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1236 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1237 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1238 &con
->out_temp_ack
);
1241 BUG_ON(list_empty(&con
->out_queue
));
1242 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
1244 BUG_ON(m
->con
!= con
);
1246 /* put message on sent list */
1248 list_move_tail(&m
->list_head
, &con
->out_sent
);
1251 * only assign outgoing seq # if we haven't sent this message
1252 * yet. if it is requeued, resend with it's original seq.
1254 if (m
->needs_out_seq
) {
1255 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
1256 m
->needs_out_seq
= false;
1258 WARN_ON(m
->data_length
!= le32_to_cpu(m
->hdr
.data_len
));
1260 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1261 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
1262 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
1264 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
1266 /* tag + hdr + front + middle */
1267 con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
1268 con_out_kvec_add(con
, sizeof (m
->hdr
), &m
->hdr
);
1269 con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
1272 con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
1273 m
->middle
->vec
.iov_base
);
1275 /* fill in crc (except data pages), footer */
1276 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
1277 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
1278 con
->out_msg
->footer
.flags
= 0;
1280 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
1281 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
1283 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
1284 m
->middle
->vec
.iov_len
);
1285 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
1287 con
->out_msg
->footer
.middle_crc
= 0;
1288 dout("%s front_crc %u middle_crc %u\n", __func__
,
1289 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
1290 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
1292 /* is there a data payload? */
1293 con
->out_msg
->footer
.data_crc
= 0;
1294 if (m
->data_length
) {
1295 prepare_message_data(con
->out_msg
, m
->data_length
);
1296 con
->out_more
= 1; /* data + footer will follow */
1298 /* no, queue up footer too and be done */
1299 prepare_write_message_footer(con
);
1302 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1308 static void prepare_write_ack(struct ceph_connection
*con
)
1310 dout("prepare_write_ack %p %llu -> %llu\n", con
,
1311 con
->in_seq_acked
, con
->in_seq
);
1312 con
->in_seq_acked
= con
->in_seq
;
1314 con_out_kvec_reset(con
);
1316 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1318 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1319 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1320 &con
->out_temp_ack
);
1322 con
->out_more
= 1; /* more will follow.. eventually.. */
1323 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1327 * Prepare to share the seq during handshake
1329 static void prepare_write_seq(struct ceph_connection
*con
)
1331 dout("prepare_write_seq %p %llu -> %llu\n", con
,
1332 con
->in_seq_acked
, con
->in_seq
);
1333 con
->in_seq_acked
= con
->in_seq
;
1335 con_out_kvec_reset(con
);
1337 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1338 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1339 &con
->out_temp_ack
);
1341 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1345 * Prepare to write keepalive byte.
1347 static void prepare_write_keepalive(struct ceph_connection
*con
)
1349 dout("prepare_write_keepalive %p\n", con
);
1350 con_out_kvec_reset(con
);
1351 if (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
) {
1352 struct timespec now
= CURRENT_TIME
;
1354 con_out_kvec_add(con
, sizeof(tag_keepalive2
), &tag_keepalive2
);
1355 ceph_encode_timespec(&con
->out_temp_keepalive2
, &now
);
1356 con_out_kvec_add(con
, sizeof(con
->out_temp_keepalive2
),
1357 &con
->out_temp_keepalive2
);
1359 con_out_kvec_add(con
, sizeof(tag_keepalive
), &tag_keepalive
);
1361 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1365 * Connection negotiation.
1368 static struct ceph_auth_handshake
*get_connect_authorizer(struct ceph_connection
*con
,
1371 struct ceph_auth_handshake
*auth
;
1373 if (!con
->ops
->get_authorizer
) {
1374 con
->out_connect
.authorizer_protocol
= CEPH_AUTH_UNKNOWN
;
1375 con
->out_connect
.authorizer_len
= 0;
1379 /* Can't hold the mutex while getting authorizer */
1380 mutex_unlock(&con
->mutex
);
1381 auth
= con
->ops
->get_authorizer(con
, auth_proto
, con
->auth_retry
);
1382 mutex_lock(&con
->mutex
);
1386 if (con
->state
!= CON_STATE_NEGOTIATING
)
1387 return ERR_PTR(-EAGAIN
);
1389 con
->auth_reply_buf
= auth
->authorizer_reply_buf
;
1390 con
->auth_reply_buf_len
= auth
->authorizer_reply_buf_len
;
1395 * We connected to a peer and are saying hello.
1397 static void prepare_write_banner(struct ceph_connection
*con
)
1399 con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
1400 con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
1401 &con
->msgr
->my_enc_addr
);
1404 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1407 static int prepare_write_connect(struct ceph_connection
*con
)
1409 unsigned int global_seq
= get_global_seq(con
->msgr
, 0);
1412 struct ceph_auth_handshake
*auth
;
1414 switch (con
->peer_name
.type
) {
1415 case CEPH_ENTITY_TYPE_MON
:
1416 proto
= CEPH_MONC_PROTOCOL
;
1418 case CEPH_ENTITY_TYPE_OSD
:
1419 proto
= CEPH_OSDC_PROTOCOL
;
1421 case CEPH_ENTITY_TYPE_MDS
:
1422 proto
= CEPH_MDSC_PROTOCOL
;
1428 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
1429 con
->connect_seq
, global_seq
, proto
);
1431 con
->out_connect
.features
=
1432 cpu_to_le64(from_msgr(con
->msgr
)->supported_features
);
1433 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
1434 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
1435 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
1436 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
1437 con
->out_connect
.flags
= 0;
1439 auth_proto
= CEPH_AUTH_UNKNOWN
;
1440 auth
= get_connect_authorizer(con
, &auth_proto
);
1442 return PTR_ERR(auth
);
1444 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_proto
);
1445 con
->out_connect
.authorizer_len
= auth
?
1446 cpu_to_le32(auth
->authorizer_buf_len
) : 0;
1448 con_out_kvec_add(con
, sizeof (con
->out_connect
),
1450 if (auth
&& auth
->authorizer_buf_len
)
1451 con_out_kvec_add(con
, auth
->authorizer_buf_len
,
1452 auth
->authorizer_buf
);
1455 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1461 * write as much of pending kvecs to the socket as we can.
1463 * 0 -> socket full, but more to do
1466 static int write_partial_kvec(struct ceph_connection
*con
)
1470 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
1471 while (con
->out_kvec_bytes
> 0) {
1472 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
1473 con
->out_kvec_left
, con
->out_kvec_bytes
,
1477 con
->out_kvec_bytes
-= ret
;
1478 if (con
->out_kvec_bytes
== 0)
1481 /* account for full iov entries consumed */
1482 while (ret
>= con
->out_kvec_cur
->iov_len
) {
1483 BUG_ON(!con
->out_kvec_left
);
1484 ret
-= con
->out_kvec_cur
->iov_len
;
1485 con
->out_kvec_cur
++;
1486 con
->out_kvec_left
--;
1488 /* and for a partially-consumed entry */
1490 con
->out_kvec_cur
->iov_len
-= ret
;
1491 con
->out_kvec_cur
->iov_base
+= ret
;
1494 con
->out_kvec_left
= 0;
1495 con
->out_kvec_is_msg
= false;
1498 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
1499 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
1500 return ret
; /* done! */
1503 static u32
ceph_crc32c_page(u32 crc
, struct page
*page
,
1504 unsigned int page_offset
,
1505 unsigned int length
)
1510 BUG_ON(kaddr
== NULL
);
1511 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1517 * Write as much message data payload as we can. If we finish, queue
1519 * 1 -> done, footer is now queued in out_kvec[].
1520 * 0 -> socket full, but more to do
1523 static int write_partial_message_data(struct ceph_connection
*con
)
1525 struct ceph_msg
*msg
= con
->out_msg
;
1526 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1527 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
1530 dout("%s %p msg %p\n", __func__
, con
, msg
);
1532 if (list_empty(&msg
->data
))
1536 * Iterate through each page that contains data to be
1537 * written, and send as much as possible for each.
1539 * If we are calculating the data crc (the default), we will
1540 * need to map the page. If we have no pages, they have
1541 * been revoked, so use the zero page.
1543 crc
= do_datacrc
? le32_to_cpu(msg
->footer
.data_crc
) : 0;
1544 while (cursor
->resid
) {
1552 page
= ceph_msg_data_next(cursor
, &page_offset
, &length
,
1554 ret
= ceph_tcp_sendpage(con
->sock
, page
, page_offset
,
1555 length
, !last_piece
);
1558 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1562 if (do_datacrc
&& cursor
->need_crc
)
1563 crc
= ceph_crc32c_page(crc
, page
, page_offset
, length
);
1564 need_crc
= ceph_msg_data_advance(cursor
, (size_t)ret
);
1567 dout("%s %p msg %p done\n", __func__
, con
, msg
);
1569 /* prepare and queue up footer, too */
1571 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1573 msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
1574 con_out_kvec_reset(con
);
1575 prepare_write_message_footer(con
);
1577 return 1; /* must return > 0 to indicate success */
1583 static int write_partial_skip(struct ceph_connection
*con
)
1587 while (con
->out_skip
> 0) {
1588 size_t size
= min(con
->out_skip
, (int) PAGE_CACHE_SIZE
);
1590 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, true);
1593 con
->out_skip
-= ret
;
1601 * Prepare to read connection handshake, or an ack.
1603 static void prepare_read_banner(struct ceph_connection
*con
)
1605 dout("prepare_read_banner %p\n", con
);
1606 con
->in_base_pos
= 0;
1609 static void prepare_read_connect(struct ceph_connection
*con
)
1611 dout("prepare_read_connect %p\n", con
);
1612 con
->in_base_pos
= 0;
1615 static void prepare_read_ack(struct ceph_connection
*con
)
1617 dout("prepare_read_ack %p\n", con
);
1618 con
->in_base_pos
= 0;
1621 static void prepare_read_seq(struct ceph_connection
*con
)
1623 dout("prepare_read_seq %p\n", con
);
1624 con
->in_base_pos
= 0;
1625 con
->in_tag
= CEPH_MSGR_TAG_SEQ
;
1628 static void prepare_read_tag(struct ceph_connection
*con
)
1630 dout("prepare_read_tag %p\n", con
);
1631 con
->in_base_pos
= 0;
1632 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1635 static void prepare_read_keepalive_ack(struct ceph_connection
*con
)
1637 dout("prepare_read_keepalive_ack %p\n", con
);
1638 con
->in_base_pos
= 0;
1642 * Prepare to read a message.
1644 static int prepare_read_message(struct ceph_connection
*con
)
1646 dout("prepare_read_message %p\n", con
);
1647 BUG_ON(con
->in_msg
!= NULL
);
1648 con
->in_base_pos
= 0;
1649 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
1654 static int read_partial(struct ceph_connection
*con
,
1655 int end
, int size
, void *object
)
1657 while (con
->in_base_pos
< end
) {
1658 int left
= end
- con
->in_base_pos
;
1659 int have
= size
- left
;
1660 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
1663 con
->in_base_pos
+= ret
;
1670 * Read all or part of the connect-side handshake on a new connection
1672 static int read_partial_banner(struct ceph_connection
*con
)
1678 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1681 size
= strlen(CEPH_BANNER
);
1683 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1687 size
= sizeof (con
->actual_peer_addr
);
1689 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1693 size
= sizeof (con
->peer_addr_for_me
);
1695 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1703 static int read_partial_connect(struct ceph_connection
*con
)
1709 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1711 size
= sizeof (con
->in_reply
);
1713 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1717 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1719 ret
= read_partial(con
, end
, size
, con
->auth_reply_buf
);
1723 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1724 con
, (int)con
->in_reply
.tag
,
1725 le32_to_cpu(con
->in_reply
.connect_seq
),
1726 le32_to_cpu(con
->in_reply
.global_seq
));
1733 * Verify the hello banner looks okay.
1735 static int verify_hello(struct ceph_connection
*con
)
1737 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1738 pr_err("connect to %s got bad banner\n",
1739 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1740 con
->error_msg
= "protocol error, bad banner";
1746 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1748 struct in_addr
*addr
= &((struct sockaddr_in
*)ss
)->sin_addr
;
1749 struct in6_addr
*addr6
= &((struct sockaddr_in6
*)ss
)->sin6_addr
;
1751 switch (ss
->ss_family
) {
1753 return addr
->s_addr
== htonl(INADDR_ANY
);
1755 return ipv6_addr_any(addr6
);
1761 static int addr_port(struct sockaddr_storage
*ss
)
1763 switch (ss
->ss_family
) {
1765 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1767 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1772 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1774 switch (ss
->ss_family
) {
1776 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1779 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1785 * Unlike other *_pton function semantics, zero indicates success.
1787 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1788 char delim
, const char **ipend
)
1790 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1791 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1793 memset(ss
, 0, sizeof(*ss
));
1795 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1796 ss
->ss_family
= AF_INET
;
1800 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1801 ss
->ss_family
= AF_INET6
;
1809 * Extract hostname string and resolve using kernel DNS facility.
1811 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1812 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1813 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1815 const char *end
, *delim_p
;
1816 char *colon_p
, *ip_addr
= NULL
;
1820 * The end of the hostname occurs immediately preceding the delimiter or
1821 * the port marker (':') where the delimiter takes precedence.
1823 delim_p
= memchr(name
, delim
, namelen
);
1824 colon_p
= memchr(name
, ':', namelen
);
1826 if (delim_p
&& colon_p
)
1827 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1828 else if (!delim_p
&& colon_p
)
1832 if (!end
) /* case: hostname:/ */
1833 end
= name
+ namelen
;
1839 /* do dns_resolve upcall */
1840 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1842 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1850 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1851 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1856 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1857 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1864 * Parse a server name (IP or hostname). If a valid IP address is not found
1865 * then try to extract a hostname to resolve using userspace DNS upcall.
1867 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1868 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1872 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1874 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1880 * Parse an ip[:port] list into an addr array. Use the default
1881 * monitor port if a port isn't specified.
1883 int ceph_parse_ips(const char *c
, const char *end
,
1884 struct ceph_entity_addr
*addr
,
1885 int max_count
, int *count
)
1887 int i
, ret
= -EINVAL
;
1890 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1891 for (i
= 0; i
< max_count
; i
++) {
1893 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1902 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1911 dout("missing matching ']'\n");
1918 if (p
< end
&& *p
== ':') {
1921 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1922 port
= (port
* 10) + (*p
- '0');
1926 port
= CEPH_MON_PORT
;
1927 else if (port
> 65535)
1930 port
= CEPH_MON_PORT
;
1933 addr_set_port(ss
, port
);
1935 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1952 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1955 EXPORT_SYMBOL(ceph_parse_ips
);
1957 static int process_banner(struct ceph_connection
*con
)
1959 dout("process_banner on %p\n", con
);
1961 if (verify_hello(con
) < 0)
1964 ceph_decode_addr(&con
->actual_peer_addr
);
1965 ceph_decode_addr(&con
->peer_addr_for_me
);
1968 * Make sure the other end is who we wanted. note that the other
1969 * end may not yet know their ip address, so if it's 0.0.0.0, give
1970 * them the benefit of the doubt.
1972 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1973 sizeof(con
->peer_addr
)) != 0 &&
1974 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1975 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1976 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1977 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1978 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1979 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1980 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1981 con
->error_msg
= "wrong peer at address";
1986 * did we learn our address?
1988 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
1989 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
1991 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
1992 &con
->peer_addr_for_me
.in_addr
,
1993 sizeof(con
->peer_addr_for_me
.in_addr
));
1994 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
1995 encode_my_addr(con
->msgr
);
1996 dout("process_banner learned my addr is %s\n",
1997 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
2003 static int process_connect(struct ceph_connection
*con
)
2005 u64 sup_feat
= from_msgr(con
->msgr
)->supported_features
;
2006 u64 req_feat
= from_msgr(con
->msgr
)->required_features
;
2007 u64 server_feat
= ceph_sanitize_features(
2008 le64_to_cpu(con
->in_reply
.features
));
2011 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
2013 switch (con
->in_reply
.tag
) {
2014 case CEPH_MSGR_TAG_FEATURES
:
2015 pr_err("%s%lld %s feature set mismatch,"
2016 " my %llx < server's %llx, missing %llx\n",
2017 ENTITY_NAME(con
->peer_name
),
2018 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2019 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
2020 con
->error_msg
= "missing required protocol features";
2021 reset_connection(con
);
2024 case CEPH_MSGR_TAG_BADPROTOVER
:
2025 pr_err("%s%lld %s protocol version mismatch,"
2026 " my %d != server's %d\n",
2027 ENTITY_NAME(con
->peer_name
),
2028 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2029 le32_to_cpu(con
->out_connect
.protocol_version
),
2030 le32_to_cpu(con
->in_reply
.protocol_version
));
2031 con
->error_msg
= "protocol version mismatch";
2032 reset_connection(con
);
2035 case CEPH_MSGR_TAG_BADAUTHORIZER
:
2037 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
2039 if (con
->auth_retry
== 2) {
2040 con
->error_msg
= "connect authorization failure";
2043 con_out_kvec_reset(con
);
2044 ret
= prepare_write_connect(con
);
2047 prepare_read_connect(con
);
2050 case CEPH_MSGR_TAG_RESETSESSION
:
2052 * If we connected with a large connect_seq but the peer
2053 * has no record of a session with us (no connection, or
2054 * connect_seq == 0), they will send RESETSESION to indicate
2055 * that they must have reset their session, and may have
2058 dout("process_connect got RESET peer seq %u\n",
2059 le32_to_cpu(con
->in_reply
.connect_seq
));
2060 pr_err("%s%lld %s connection reset\n",
2061 ENTITY_NAME(con
->peer_name
),
2062 ceph_pr_addr(&con
->peer_addr
.in_addr
));
2063 reset_connection(con
);
2064 con_out_kvec_reset(con
);
2065 ret
= prepare_write_connect(con
);
2068 prepare_read_connect(con
);
2070 /* Tell ceph about it. */
2071 mutex_unlock(&con
->mutex
);
2072 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
2073 if (con
->ops
->peer_reset
)
2074 con
->ops
->peer_reset(con
);
2075 mutex_lock(&con
->mutex
);
2076 if (con
->state
!= CON_STATE_NEGOTIATING
)
2080 case CEPH_MSGR_TAG_RETRY_SESSION
:
2082 * If we sent a smaller connect_seq than the peer has, try
2083 * again with a larger value.
2085 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2086 le32_to_cpu(con
->out_connect
.connect_seq
),
2087 le32_to_cpu(con
->in_reply
.connect_seq
));
2088 con
->connect_seq
= le32_to_cpu(con
->in_reply
.connect_seq
);
2089 con_out_kvec_reset(con
);
2090 ret
= prepare_write_connect(con
);
2093 prepare_read_connect(con
);
2096 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
2098 * If we sent a smaller global_seq than the peer has, try
2099 * again with a larger value.
2101 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2102 con
->peer_global_seq
,
2103 le32_to_cpu(con
->in_reply
.global_seq
));
2104 get_global_seq(con
->msgr
,
2105 le32_to_cpu(con
->in_reply
.global_seq
));
2106 con_out_kvec_reset(con
);
2107 ret
= prepare_write_connect(con
);
2110 prepare_read_connect(con
);
2113 case CEPH_MSGR_TAG_SEQ
:
2114 case CEPH_MSGR_TAG_READY
:
2115 if (req_feat
& ~server_feat
) {
2116 pr_err("%s%lld %s protocol feature mismatch,"
2117 " my required %llx > server's %llx, need %llx\n",
2118 ENTITY_NAME(con
->peer_name
),
2119 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2120 req_feat
, server_feat
, req_feat
& ~server_feat
);
2121 con
->error_msg
= "missing required protocol features";
2122 reset_connection(con
);
2126 WARN_ON(con
->state
!= CON_STATE_NEGOTIATING
);
2127 con
->state
= CON_STATE_OPEN
;
2128 con
->auth_retry
= 0; /* we authenticated; clear flag */
2129 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
2131 con
->peer_features
= server_feat
;
2132 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2133 con
->peer_global_seq
,
2134 le32_to_cpu(con
->in_reply
.connect_seq
),
2136 WARN_ON(con
->connect_seq
!=
2137 le32_to_cpu(con
->in_reply
.connect_seq
));
2139 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
2140 con_flag_set(con
, CON_FLAG_LOSSYTX
);
2142 con
->delay
= 0; /* reset backoff memory */
2144 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_SEQ
) {
2145 prepare_write_seq(con
);
2146 prepare_read_seq(con
);
2148 prepare_read_tag(con
);
2152 case CEPH_MSGR_TAG_WAIT
:
2154 * If there is a connection race (we are opening
2155 * connections to each other), one of us may just have
2156 * to WAIT. This shouldn't happen if we are the
2159 con
->error_msg
= "protocol error, got WAIT as client";
2163 con
->error_msg
= "protocol error, garbage tag during connect";
2171 * read (part of) an ack
2173 static int read_partial_ack(struct ceph_connection
*con
)
2175 int size
= sizeof (con
->in_temp_ack
);
2178 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
2182 * We can finally discard anything that's been acked.
2184 static void process_ack(struct ceph_connection
*con
)
2187 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
2190 while (!list_empty(&con
->out_sent
)) {
2191 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
2193 seq
= le64_to_cpu(m
->hdr
.seq
);
2196 dout("got ack for seq %llu type %d at %p\n", seq
,
2197 le16_to_cpu(m
->hdr
.type
), m
);
2198 m
->ack_stamp
= jiffies
;
2201 prepare_read_tag(con
);
2205 static int read_partial_message_section(struct ceph_connection
*con
,
2206 struct kvec
*section
,
2207 unsigned int sec_len
, u32
*crc
)
2213 while (section
->iov_len
< sec_len
) {
2214 BUG_ON(section
->iov_base
== NULL
);
2215 left
= sec_len
- section
->iov_len
;
2216 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
2217 section
->iov_len
, left
);
2220 section
->iov_len
+= ret
;
2222 if (section
->iov_len
== sec_len
)
2223 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
2228 static int read_partial_msg_data(struct ceph_connection
*con
)
2230 struct ceph_msg
*msg
= con
->in_msg
;
2231 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
2232 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
2240 if (list_empty(&msg
->data
))
2244 crc
= con
->in_data_crc
;
2245 while (cursor
->resid
) {
2246 page
= ceph_msg_data_next(cursor
, &page_offset
, &length
, NULL
);
2247 ret
= ceph_tcp_recvpage(con
->sock
, page
, page_offset
, length
);
2250 con
->in_data_crc
= crc
;
2256 crc
= ceph_crc32c_page(crc
, page
, page_offset
, ret
);
2257 (void) ceph_msg_data_advance(cursor
, (size_t)ret
);
2260 con
->in_data_crc
= crc
;
2262 return 1; /* must return > 0 to indicate success */
2266 * read (part of) a message.
2268 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
);
2270 static int read_partial_message(struct ceph_connection
*con
)
2272 struct ceph_msg
*m
= con
->in_msg
;
2276 unsigned int front_len
, middle_len
, data_len
;
2277 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
2278 bool need_sign
= (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
);
2282 dout("read_partial_message con %p msg %p\n", con
, m
);
2285 size
= sizeof (con
->in_hdr
);
2287 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
2291 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
2292 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
2293 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2294 crc
, con
->in_hdr
.crc
);
2298 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2299 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
2301 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2302 if (middle_len
> CEPH_MSG_MAX_MIDDLE_LEN
)
2304 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2305 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
2309 seq
= le64_to_cpu(con
->in_hdr
.seq
);
2310 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
2311 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2312 ENTITY_NAME(con
->peer_name
),
2313 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2314 seq
, con
->in_seq
+ 1);
2315 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2317 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2319 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
2320 pr_err("read_partial_message bad seq %lld expected %lld\n",
2321 seq
, con
->in_seq
+ 1);
2322 con
->error_msg
= "bad message sequence # for incoming message";
2326 /* allocate message? */
2330 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
2331 front_len
, data_len
);
2332 ret
= ceph_con_in_msg_alloc(con
, &skip
);
2336 BUG_ON(!con
->in_msg
^ skip
);
2338 /* skip this message */
2339 dout("alloc_msg said skip message\n");
2340 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2342 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2347 BUG_ON(!con
->in_msg
);
2348 BUG_ON(con
->in_msg
->con
!= con
);
2350 m
->front
.iov_len
= 0; /* haven't read it yet */
2352 m
->middle
->vec
.iov_len
= 0;
2354 /* prepare for data payload, if any */
2357 prepare_message_data(con
->in_msg
, data_len
);
2361 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
2362 &con
->in_front_crc
);
2368 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
2370 &con
->in_middle_crc
);
2377 ret
= read_partial_msg_data(con
);
2384 size
= sizeof(m
->footer
);
2386 size
= sizeof(m
->old_footer
);
2389 ret
= read_partial(con
, end
, size
, &m
->footer
);
2394 m
->footer
.flags
= m
->old_footer
.flags
;
2398 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2399 m
, front_len
, m
->footer
.front_crc
, middle_len
,
2400 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
2403 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
2404 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2405 m
, con
->in_front_crc
, m
->footer
.front_crc
);
2408 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
2409 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2410 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
2414 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
2415 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
2416 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
2417 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
2421 if (need_sign
&& con
->ops
->check_message_signature
&&
2422 con
->ops
->check_message_signature(m
)) {
2423 pr_err("read_partial_message %p signature check failed\n", m
);
2427 return 1; /* done! */
2431 * Process message. This happens in the worker thread. The callback should
2432 * be careful not to do anything that waits on other incoming messages or it
2435 static void process_message(struct ceph_connection
*con
)
2437 struct ceph_msg
*msg
= con
->in_msg
;
2439 BUG_ON(con
->in_msg
->con
!= con
);
2442 /* if first message, set peer_name */
2443 if (con
->peer_name
.type
== 0)
2444 con
->peer_name
= msg
->hdr
.src
;
2447 mutex_unlock(&con
->mutex
);
2449 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2450 msg
, le64_to_cpu(msg
->hdr
.seq
),
2451 ENTITY_NAME(msg
->hdr
.src
),
2452 le16_to_cpu(msg
->hdr
.type
),
2453 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2454 le32_to_cpu(msg
->hdr
.front_len
),
2455 le32_to_cpu(msg
->hdr
.data_len
),
2456 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
2457 con
->ops
->dispatch(con
, msg
);
2459 mutex_lock(&con
->mutex
);
2462 static int read_keepalive_ack(struct ceph_connection
*con
)
2464 struct ceph_timespec ceph_ts
;
2465 size_t size
= sizeof(ceph_ts
);
2466 int ret
= read_partial(con
, size
, size
, &ceph_ts
);
2469 ceph_decode_timespec(&con
->last_keepalive_ack
, &ceph_ts
);
2470 prepare_read_tag(con
);
2475 * Write something to the socket. Called in a worker thread when the
2476 * socket appears to be writeable and we have something ready to send.
2478 static int try_write(struct ceph_connection
*con
)
2482 dout("try_write start %p state %lu\n", con
, con
->state
);
2485 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
2487 /* open the socket first? */
2488 if (con
->state
== CON_STATE_PREOPEN
) {
2490 con
->state
= CON_STATE_CONNECTING
;
2492 con_out_kvec_reset(con
);
2493 prepare_write_banner(con
);
2494 prepare_read_banner(con
);
2496 BUG_ON(con
->in_msg
);
2497 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2498 dout("try_write initiating connect on %p new state %lu\n",
2500 ret
= ceph_tcp_connect(con
);
2502 con
->error_msg
= "connect error";
2508 /* kvec data queued? */
2509 if (con
->out_skip
) {
2510 ret
= write_partial_skip(con
);
2514 if (con
->out_kvec_left
) {
2515 ret
= write_partial_kvec(con
);
2522 if (con
->out_msg_done
) {
2523 ceph_msg_put(con
->out_msg
);
2524 con
->out_msg
= NULL
; /* we're done with this one */
2528 ret
= write_partial_message_data(con
);
2530 goto more_kvec
; /* we need to send the footer, too! */
2534 dout("try_write write_partial_message_data err %d\n",
2541 if (con
->state
== CON_STATE_OPEN
) {
2542 if (con_flag_test_and_clear(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2543 prepare_write_keepalive(con
);
2546 /* is anything else pending? */
2547 if (!list_empty(&con
->out_queue
)) {
2548 prepare_write_message(con
);
2551 if (con
->in_seq
> con
->in_seq_acked
) {
2552 prepare_write_ack(con
);
2557 /* Nothing to do! */
2558 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2559 dout("try_write nothing else to write.\n");
2562 dout("try_write done on %p ret %d\n", con
, ret
);
2569 * Read what we can from the socket.
2571 static int try_read(struct ceph_connection
*con
)
2576 dout("try_read start on %p state %lu\n", con
, con
->state
);
2577 if (con
->state
!= CON_STATE_CONNECTING
&&
2578 con
->state
!= CON_STATE_NEGOTIATING
&&
2579 con
->state
!= CON_STATE_OPEN
)
2584 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
2587 if (con
->state
== CON_STATE_CONNECTING
) {
2588 dout("try_read connecting\n");
2589 ret
= read_partial_banner(con
);
2592 ret
= process_banner(con
);
2596 con
->state
= CON_STATE_NEGOTIATING
;
2599 * Received banner is good, exchange connection info.
2600 * Do not reset out_kvec, as sending our banner raced
2601 * with receiving peer banner after connect completed.
2603 ret
= prepare_write_connect(con
);
2606 prepare_read_connect(con
);
2608 /* Send connection info before awaiting response */
2612 if (con
->state
== CON_STATE_NEGOTIATING
) {
2613 dout("try_read negotiating\n");
2614 ret
= read_partial_connect(con
);
2617 ret
= process_connect(con
);
2623 WARN_ON(con
->state
!= CON_STATE_OPEN
);
2625 if (con
->in_base_pos
< 0) {
2627 * skipping + discarding content.
2629 * FIXME: there must be a better way to do this!
2631 static char buf
[SKIP_BUF_SIZE
];
2632 int skip
= min((int) sizeof (buf
), -con
->in_base_pos
);
2634 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
2635 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
2638 con
->in_base_pos
+= ret
;
2639 if (con
->in_base_pos
)
2642 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2646 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2649 dout("try_read got tag %d\n", (int)con
->in_tag
);
2650 switch (con
->in_tag
) {
2651 case CEPH_MSGR_TAG_MSG
:
2652 prepare_read_message(con
);
2654 case CEPH_MSGR_TAG_ACK
:
2655 prepare_read_ack(con
);
2657 case CEPH_MSGR_TAG_KEEPALIVE2_ACK
:
2658 prepare_read_keepalive_ack(con
);
2660 case CEPH_MSGR_TAG_CLOSE
:
2661 con_close_socket(con
);
2662 con
->state
= CON_STATE_CLOSED
;
2668 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2669 ret
= read_partial_message(con
);
2673 con
->error_msg
= "bad crc/signature";
2679 con
->error_msg
= "io error";
2684 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2686 process_message(con
);
2687 if (con
->state
== CON_STATE_OPEN
)
2688 prepare_read_tag(con
);
2691 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
||
2692 con
->in_tag
== CEPH_MSGR_TAG_SEQ
) {
2694 * the final handshake seq exchange is semantically
2695 * equivalent to an ACK
2697 ret
= read_partial_ack(con
);
2703 if (con
->in_tag
== CEPH_MSGR_TAG_KEEPALIVE2_ACK
) {
2704 ret
= read_keepalive_ack(con
);
2711 dout("try_read done on %p ret %d\n", con
, ret
);
2715 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2716 con
->error_msg
= "protocol error, garbage tag";
2723 * Atomically queue work on a connection after the specified delay.
2724 * Bump @con reference to avoid races with connection teardown.
2725 * Returns 0 if work was queued, or an error code otherwise.
2727 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
2729 if (!con
->ops
->get(con
)) {
2730 dout("%s %p ref count 0\n", __func__
, con
);
2734 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
2735 dout("%s %p - already queued\n", __func__
, con
);
2740 dout("%s %p %lu\n", __func__
, con
, delay
);
2744 static void queue_con(struct ceph_connection
*con
)
2746 (void) queue_con_delay(con
, 0);
2749 static void cancel_con(struct ceph_connection
*con
)
2751 if (cancel_delayed_work(&con
->work
)) {
2752 dout("%s %p\n", __func__
, con
);
2757 static bool con_sock_closed(struct ceph_connection
*con
)
2759 if (!con_flag_test_and_clear(con
, CON_FLAG_SOCK_CLOSED
))
2763 case CON_STATE_ ## x: \
2764 con->error_msg = "socket closed (con state " #x ")"; \
2767 switch (con
->state
) {
2775 pr_warn("%s con %p unrecognized state %lu\n",
2776 __func__
, con
, con
->state
);
2777 con
->error_msg
= "unrecognized con state";
2786 static bool con_backoff(struct ceph_connection
*con
)
2790 if (!con_flag_test_and_clear(con
, CON_FLAG_BACKOFF
))
2793 ret
= queue_con_delay(con
, round_jiffies_relative(con
->delay
));
2795 dout("%s: con %p FAILED to back off %lu\n", __func__
,
2797 BUG_ON(ret
== -ENOENT
);
2798 con_flag_set(con
, CON_FLAG_BACKOFF
);
2804 /* Finish fault handling; con->mutex must *not* be held here */
2806 static void con_fault_finish(struct ceph_connection
*con
)
2809 * in case we faulted due to authentication, invalidate our
2810 * current tickets so that we can get new ones.
2812 if (con
->auth_retry
&& con
->ops
->invalidate_authorizer
) {
2813 dout("calling invalidate_authorizer()\n");
2814 con
->ops
->invalidate_authorizer(con
);
2817 if (con
->ops
->fault
)
2818 con
->ops
->fault(con
);
2822 * Do some work on a connection. Drop a connection ref when we're done.
2824 static void ceph_con_workfn(struct work_struct
*work
)
2826 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2830 mutex_lock(&con
->mutex
);
2834 if ((fault
= con_sock_closed(con
))) {
2835 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
2838 if (con_backoff(con
)) {
2839 dout("%s: con %p BACKOFF\n", __func__
, con
);
2842 if (con
->state
== CON_STATE_STANDBY
) {
2843 dout("%s: con %p STANDBY\n", __func__
, con
);
2846 if (con
->state
== CON_STATE_CLOSED
) {
2847 dout("%s: con %p CLOSED\n", __func__
, con
);
2851 if (con
->state
== CON_STATE_PREOPEN
) {
2852 dout("%s: con %p PREOPEN\n", __func__
, con
);
2856 ret
= try_read(con
);
2860 if (!con
->error_msg
)
2861 con
->error_msg
= "socket error on read";
2866 ret
= try_write(con
);
2870 if (!con
->error_msg
)
2871 con
->error_msg
= "socket error on write";
2875 break; /* If we make it to here, we're done */
2879 mutex_unlock(&con
->mutex
);
2882 con_fault_finish(con
);
2888 * Generic error/fault handler. A retry mechanism is used with
2889 * exponential backoff
2891 static void con_fault(struct ceph_connection
*con
)
2893 dout("fault %p state %lu to peer %s\n",
2894 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2896 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2897 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2898 con
->error_msg
= NULL
;
2900 WARN_ON(con
->state
!= CON_STATE_CONNECTING
&&
2901 con
->state
!= CON_STATE_NEGOTIATING
&&
2902 con
->state
!= CON_STATE_OPEN
);
2904 con_close_socket(con
);
2906 if (con_flag_test(con
, CON_FLAG_LOSSYTX
)) {
2907 dout("fault on LOSSYTX channel, marking CLOSED\n");
2908 con
->state
= CON_STATE_CLOSED
;
2913 BUG_ON(con
->in_msg
->con
!= con
);
2914 ceph_msg_put(con
->in_msg
);
2918 /* Requeue anything that hasn't been acked */
2919 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2921 /* If there are no messages queued or keepalive pending, place
2922 * the connection in a STANDBY state */
2923 if (list_empty(&con
->out_queue
) &&
2924 !con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2925 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2926 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2927 con
->state
= CON_STATE_STANDBY
;
2929 /* retry after a delay. */
2930 con
->state
= CON_STATE_PREOPEN
;
2931 if (con
->delay
== 0)
2932 con
->delay
= BASE_DELAY_INTERVAL
;
2933 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2935 con_flag_set(con
, CON_FLAG_BACKOFF
);
2943 * initialize a new messenger instance
2945 void ceph_messenger_init(struct ceph_messenger
*msgr
,
2946 struct ceph_entity_addr
*myaddr
)
2948 spin_lock_init(&msgr
->global_seq_lock
);
2951 msgr
->inst
.addr
= *myaddr
;
2953 /* select a random nonce */
2954 msgr
->inst
.addr
.type
= 0;
2955 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2956 encode_my_addr(msgr
);
2958 atomic_set(&msgr
->stopping
, 0);
2959 write_pnet(&msgr
->net
, get_net(current
->nsproxy
->net_ns
));
2961 dout("%s %p\n", __func__
, msgr
);
2963 EXPORT_SYMBOL(ceph_messenger_init
);
2965 void ceph_messenger_fini(struct ceph_messenger
*msgr
)
2967 put_net(read_pnet(&msgr
->net
));
2969 EXPORT_SYMBOL(ceph_messenger_fini
);
2971 static void msg_con_set(struct ceph_msg
*msg
, struct ceph_connection
*con
)
2974 msg
->con
->ops
->put(msg
->con
);
2976 msg
->con
= con
? con
->ops
->get(con
) : NULL
;
2977 BUG_ON(msg
->con
!= con
);
2980 static void clear_standby(struct ceph_connection
*con
)
2982 /* come back from STANDBY? */
2983 if (con
->state
== CON_STATE_STANDBY
) {
2984 dout("clear_standby %p and ++connect_seq\n", con
);
2985 con
->state
= CON_STATE_PREOPEN
;
2987 WARN_ON(con_flag_test(con
, CON_FLAG_WRITE_PENDING
));
2988 WARN_ON(con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
));
2993 * Queue up an outgoing message on the given connection.
2995 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2998 msg
->hdr
.src
= con
->msgr
->inst
.name
;
2999 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
3000 msg
->needs_out_seq
= true;
3002 mutex_lock(&con
->mutex
);
3004 if (con
->state
== CON_STATE_CLOSED
) {
3005 dout("con_send %p closed, dropping %p\n", con
, msg
);
3007 mutex_unlock(&con
->mutex
);
3011 msg_con_set(msg
, con
);
3013 BUG_ON(!list_empty(&msg
->list_head
));
3014 list_add_tail(&msg
->list_head
, &con
->out_queue
);
3015 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
3016 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
3017 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
3018 le32_to_cpu(msg
->hdr
.front_len
),
3019 le32_to_cpu(msg
->hdr
.middle_len
),
3020 le32_to_cpu(msg
->hdr
.data_len
));
3023 mutex_unlock(&con
->mutex
);
3025 /* if there wasn't anything waiting to send before, queue
3027 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3030 EXPORT_SYMBOL(ceph_con_send
);
3033 * Revoke a message that was previously queued for send
3035 void ceph_msg_revoke(struct ceph_msg
*msg
)
3037 struct ceph_connection
*con
= msg
->con
;
3040 dout("%s msg %p null con\n", __func__
, msg
);
3041 return; /* Message not in our possession */
3044 mutex_lock(&con
->mutex
);
3045 if (!list_empty(&msg
->list_head
)) {
3046 dout("%s %p msg %p - was on queue\n", __func__
, con
, msg
);
3047 list_del_init(&msg
->list_head
);
3052 if (con
->out_msg
== msg
) {
3053 dout("%s %p msg %p - was sending\n", __func__
, con
, msg
);
3054 con
->out_msg
= NULL
;
3055 if (con
->out_kvec_is_msg
) {
3056 con
->out_skip
= con
->out_kvec_bytes
;
3057 con
->out_kvec_is_msg
= false;
3063 mutex_unlock(&con
->mutex
);
3067 * Revoke a message that we may be reading data into
3069 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
3071 struct ceph_connection
*con
= msg
->con
;
3074 dout("%s msg %p null con\n", __func__
, msg
);
3075 return; /* Message not in our possession */
3078 mutex_lock(&con
->mutex
);
3079 if (con
->in_msg
== msg
) {
3080 unsigned int front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
3081 unsigned int middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
3082 unsigned int data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
3084 /* skip rest of message */
3085 dout("%s %p msg %p revoked\n", __func__
, con
, msg
);
3086 con
->in_base_pos
= con
->in_base_pos
-
3087 sizeof(struct ceph_msg_header
) -
3091 sizeof(struct ceph_msg_footer
);
3092 ceph_msg_put(con
->in_msg
);
3094 con
->in_tag
= CEPH_MSGR_TAG_READY
;
3097 dout("%s %p in_msg %p msg %p no-op\n",
3098 __func__
, con
, con
->in_msg
, msg
);
3100 mutex_unlock(&con
->mutex
);
3104 * Queue a keepalive byte to ensure the tcp connection is alive.
3106 void ceph_con_keepalive(struct ceph_connection
*con
)
3108 dout("con_keepalive %p\n", con
);
3109 mutex_lock(&con
->mutex
);
3111 mutex_unlock(&con
->mutex
);
3112 if (con_flag_test_and_set(con
, CON_FLAG_KEEPALIVE_PENDING
) == 0 &&
3113 con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3116 EXPORT_SYMBOL(ceph_con_keepalive
);
3118 bool ceph_con_keepalive_expired(struct ceph_connection
*con
,
3119 unsigned long interval
)
3122 (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
)) {
3123 struct timespec now
= CURRENT_TIME
;
3125 jiffies_to_timespec(interval
, &ts
);
3126 ts
= timespec_add(con
->last_keepalive_ack
, ts
);
3127 return timespec_compare(&now
, &ts
) >= 0;
3132 static struct ceph_msg_data
*ceph_msg_data_create(enum ceph_msg_data_type type
)
3134 struct ceph_msg_data
*data
;
3136 if (WARN_ON(!ceph_msg_data_type_valid(type
)))
3139 data
= kmem_cache_zalloc(ceph_msg_data_cache
, GFP_NOFS
);
3142 INIT_LIST_HEAD(&data
->links
);
3147 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
3152 WARN_ON(!list_empty(&data
->links
));
3153 if (data
->type
== CEPH_MSG_DATA_PAGELIST
)
3154 ceph_pagelist_release(data
->pagelist
);
3155 kmem_cache_free(ceph_msg_data_cache
, data
);
3158 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
3159 size_t length
, size_t alignment
)
3161 struct ceph_msg_data
*data
;
3166 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGES
);
3168 data
->pages
= pages
;
3169 data
->length
= length
;
3170 data
->alignment
= alignment
& ~PAGE_MASK
;
3172 list_add_tail(&data
->links
, &msg
->data
);
3173 msg
->data_length
+= length
;
3175 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
3177 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
3178 struct ceph_pagelist
*pagelist
)
3180 struct ceph_msg_data
*data
;
3183 BUG_ON(!pagelist
->length
);
3185 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST
);
3187 data
->pagelist
= pagelist
;
3189 list_add_tail(&data
->links
, &msg
->data
);
3190 msg
->data_length
+= pagelist
->length
;
3192 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
3195 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct bio
*bio
,
3198 struct ceph_msg_data
*data
;
3202 data
= ceph_msg_data_create(CEPH_MSG_DATA_BIO
);
3205 data
->bio_length
= length
;
3207 list_add_tail(&data
->links
, &msg
->data
);
3208 msg
->data_length
+= length
;
3210 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
3211 #endif /* CONFIG_BLOCK */
3214 * construct a new message with given type, size
3215 * the new msg has a ref count of 1.
3217 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
3222 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
3226 m
->hdr
.type
= cpu_to_le16(type
);
3227 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
3228 m
->hdr
.front_len
= cpu_to_le32(front_len
);
3230 INIT_LIST_HEAD(&m
->list_head
);
3231 kref_init(&m
->kref
);
3232 INIT_LIST_HEAD(&m
->data
);
3236 m
->front
.iov_base
= ceph_kvmalloc(front_len
, flags
);
3237 if (m
->front
.iov_base
== NULL
) {
3238 dout("ceph_msg_new can't allocate %d bytes\n",
3243 m
->front
.iov_base
= NULL
;
3245 m
->front_alloc_len
= m
->front
.iov_len
= front_len
;
3247 dout("ceph_msg_new %p front %d\n", m
, front_len
);
3254 pr_err("msg_new can't create type %d front %d\n", type
,
3258 dout("msg_new can't create type %d front %d\n", type
,
3263 EXPORT_SYMBOL(ceph_msg_new
);
3266 * Allocate "middle" portion of a message, if it is needed and wasn't
3267 * allocated by alloc_msg. This allows us to read a small fixed-size
3268 * per-type header in the front and then gracefully fail (i.e.,
3269 * propagate the error to the caller based on info in the front) when
3270 * the middle is too large.
3272 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3274 int type
= le16_to_cpu(msg
->hdr
.type
);
3275 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
3277 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
3278 ceph_msg_type_name(type
), middle_len
);
3279 BUG_ON(!middle_len
);
3280 BUG_ON(msg
->middle
);
3282 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
3289 * Allocate a message for receiving an incoming message on a
3290 * connection, and save the result in con->in_msg. Uses the
3291 * connection's private alloc_msg op if available.
3293 * Returns 0 on success, or a negative error code.
3295 * On success, if we set *skip = 1:
3296 * - the next message should be skipped and ignored.
3297 * - con->in_msg == NULL
3298 * or if we set *skip = 0:
3299 * - con->in_msg is non-null.
3300 * On error (ENOMEM, EAGAIN, ...),
3301 * - con->in_msg == NULL
3303 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
)
3305 struct ceph_msg_header
*hdr
= &con
->in_hdr
;
3306 int middle_len
= le32_to_cpu(hdr
->middle_len
);
3307 struct ceph_msg
*msg
;
3310 BUG_ON(con
->in_msg
!= NULL
);
3311 BUG_ON(!con
->ops
->alloc_msg
);
3313 mutex_unlock(&con
->mutex
);
3314 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
3315 mutex_lock(&con
->mutex
);
3316 if (con
->state
!= CON_STATE_OPEN
) {
3323 msg_con_set(msg
, con
);
3327 * Null message pointer means either we should skip
3328 * this message or we couldn't allocate memory. The
3329 * former is not an error.
3334 con
->error_msg
= "error allocating memory for incoming message";
3337 memcpy(&con
->in_msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
3339 if (middle_len
&& !con
->in_msg
->middle
) {
3340 ret
= ceph_alloc_middle(con
, con
->in_msg
);
3342 ceph_msg_put(con
->in_msg
);
3352 * Free a generically kmalloc'd message.
3354 static void ceph_msg_free(struct ceph_msg
*m
)
3356 dout("%s %p\n", __func__
, m
);
3357 kvfree(m
->front
.iov_base
);
3358 kmem_cache_free(ceph_msg_cache
, m
);
3361 static void ceph_msg_release(struct kref
*kref
)
3363 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
3365 struct list_head
*links
;
3366 struct list_head
*next
;
3368 dout("%s %p\n", __func__
, m
);
3369 WARN_ON(!list_empty(&m
->list_head
));
3371 msg_con_set(m
, NULL
);
3373 /* drop middle, data, if any */
3375 ceph_buffer_put(m
->middle
);
3379 list_splice_init(&m
->data
, &data
);
3380 list_for_each_safe(links
, next
, &data
) {
3381 struct ceph_msg_data
*data
;
3383 data
= list_entry(links
, struct ceph_msg_data
, links
);
3384 list_del_init(links
);
3385 ceph_msg_data_destroy(data
);
3390 ceph_msgpool_put(m
->pool
, m
);
3395 struct ceph_msg
*ceph_msg_get(struct ceph_msg
*msg
)
3397 dout("%s %p (was %d)\n", __func__
, msg
,
3398 atomic_read(&msg
->kref
.refcount
));
3399 kref_get(&msg
->kref
);
3402 EXPORT_SYMBOL(ceph_msg_get
);
3404 void ceph_msg_put(struct ceph_msg
*msg
)
3406 dout("%s %p (was %d)\n", __func__
, msg
,
3407 atomic_read(&msg
->kref
.refcount
));
3408 kref_put(&msg
->kref
, ceph_msg_release
);
3410 EXPORT_SYMBOL(ceph_msg_put
);
3412 void ceph_msg_dump(struct ceph_msg
*msg
)
3414 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg
,
3415 msg
->front_alloc_len
, msg
->data_length
);
3416 print_hex_dump(KERN_DEBUG
, "header: ",
3417 DUMP_PREFIX_OFFSET
, 16, 1,
3418 &msg
->hdr
, sizeof(msg
->hdr
), true);
3419 print_hex_dump(KERN_DEBUG
, " front: ",
3420 DUMP_PREFIX_OFFSET
, 16, 1,
3421 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
3423 print_hex_dump(KERN_DEBUG
, "middle: ",
3424 DUMP_PREFIX_OFFSET
, 16, 1,
3425 msg
->middle
->vec
.iov_base
,
3426 msg
->middle
->vec
.iov_len
, true);
3427 print_hex_dump(KERN_DEBUG
, "footer: ",
3428 DUMP_PREFIX_OFFSET
, 16, 1,
3429 &msg
->footer
, sizeof(msg
->footer
), true);
3431 EXPORT_SYMBOL(ceph_msg_dump
);