2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37 #include <linux/ratelimit.h>
43 * Convert IB-specific error message to RDS error message and call core
46 static void rds_ib_send_complete(struct rds_message
*rm
,
48 void (*complete
)(struct rds_message
*rm
, int status
))
53 case IB_WC_WR_FLUSH_ERR
:
57 notify_status
= RDS_RDMA_SUCCESS
;
60 case IB_WC_REM_ACCESS_ERR
:
61 notify_status
= RDS_RDMA_REMOTE_ERROR
;
65 notify_status
= RDS_RDMA_OTHER_ERROR
;
68 complete(rm
, notify_status
);
71 static void rds_ib_send_unmap_data(struct rds_ib_connection
*ic
,
72 struct rm_data_op
*op
,
76 ib_dma_unmap_sg(ic
->i_cm_id
->device
,
77 op
->op_sg
, op
->op_nents
,
81 static void rds_ib_send_unmap_rdma(struct rds_ib_connection
*ic
,
82 struct rm_rdma_op
*op
,
86 ib_dma_unmap_sg(ic
->i_cm_id
->device
,
87 op
->op_sg
, op
->op_nents
,
88 op
->op_write
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
92 /* If the user asked for a completion notification on this
93 * message, we can implement three different semantics:
94 * 1. Notify when we received the ACK on the RDS message
95 * that was queued with the RDMA. This provides reliable
96 * notification of RDMA status at the expense of a one-way
98 * 2. Notify when the IB stack gives us the completion event for
100 * 3. Notify when the IB stack gives us the completion event for
101 * the accompanying RDS messages.
102 * Here, we implement approach #3. To implement approach #2,
103 * we would need to take an event for the rdma WR. To implement #1,
104 * don't call rds_rdma_send_complete at all, and fall back to the notify
105 * handling in the ACK processing code.
107 * Note: There's no need to explicitly sync any RDMA buffers using
108 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
109 * operation itself unmapped the RDMA buffers, which takes care
112 rds_ib_send_complete(container_of(op
, struct rds_message
, rdma
),
113 wc_status
, rds_rdma_send_complete
);
116 rds_stats_add(s_send_rdma_bytes
, op
->op_bytes
);
118 rds_stats_add(s_recv_rdma_bytes
, op
->op_bytes
);
121 static void rds_ib_send_unmap_atomic(struct rds_ib_connection
*ic
,
122 struct rm_atomic_op
*op
,
125 /* unmap atomic recvbuf */
127 ib_dma_unmap_sg(ic
->i_cm_id
->device
, op
->op_sg
, 1,
132 rds_ib_send_complete(container_of(op
, struct rds_message
, atomic
),
133 wc_status
, rds_atomic_send_complete
);
135 if (op
->op_type
== RDS_ATOMIC_TYPE_CSWP
)
136 rds_ib_stats_inc(s_ib_atomic_cswp
);
138 rds_ib_stats_inc(s_ib_atomic_fadd
);
142 * Unmap the resources associated with a struct send_work.
144 * Returns the rm for no good reason other than it is unobtainable
145 * other than by switching on wr.opcode, currently, and the caller,
146 * the event handler, needs it.
148 static struct rds_message
*rds_ib_send_unmap_op(struct rds_ib_connection
*ic
,
149 struct rds_ib_send_work
*send
,
152 struct rds_message
*rm
= NULL
;
154 /* In the error case, wc.opcode sometimes contains garbage */
155 switch (send
->s_wr
.opcode
) {
158 rm
= container_of(send
->s_op
, struct rds_message
, data
);
159 rds_ib_send_unmap_data(ic
, send
->s_op
, wc_status
);
162 case IB_WR_RDMA_WRITE
:
163 case IB_WR_RDMA_READ
:
165 rm
= container_of(send
->s_op
, struct rds_message
, rdma
);
166 rds_ib_send_unmap_rdma(ic
, send
->s_op
, wc_status
);
169 case IB_WR_ATOMIC_FETCH_AND_ADD
:
170 case IB_WR_ATOMIC_CMP_AND_SWP
:
172 rm
= container_of(send
->s_op
, struct rds_message
, atomic
);
173 rds_ib_send_unmap_atomic(ic
, send
->s_op
, wc_status
);
177 printk_ratelimited(KERN_NOTICE
178 "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
179 __func__
, send
->s_wr
.opcode
);
183 send
->s_wr
.opcode
= 0xdead;
188 void rds_ib_send_init_ring(struct rds_ib_connection
*ic
)
190 struct rds_ib_send_work
*send
;
193 for (i
= 0, send
= ic
->i_sends
; i
< ic
->i_send_ring
.w_nr
; i
++, send
++) {
198 send
->s_wr
.wr_id
= i
| RDS_IB_SEND_OP
;
199 send
->s_wr
.sg_list
= send
->s_sge
;
200 send
->s_wr
.ex
.imm_data
= 0;
202 sge
= &send
->s_sge
[0];
203 sge
->addr
= ic
->i_send_hdrs_dma
+ (i
* sizeof(struct rds_header
));
204 sge
->length
= sizeof(struct rds_header
);
205 sge
->lkey
= ic
->i_pd
->local_dma_lkey
;
207 send
->s_sge
[1].lkey
= ic
->i_pd
->local_dma_lkey
;
211 void rds_ib_send_clear_ring(struct rds_ib_connection
*ic
)
213 struct rds_ib_send_work
*send
;
216 for (i
= 0, send
= ic
->i_sends
; i
< ic
->i_send_ring
.w_nr
; i
++, send
++) {
217 if (send
->s_op
&& send
->s_wr
.opcode
!= 0xdead)
218 rds_ib_send_unmap_op(ic
, send
, IB_WC_WR_FLUSH_ERR
);
223 * The only fast path caller always has a non-zero nr, so we don't
224 * bother testing nr before performing the atomic sub.
226 static void rds_ib_sub_signaled(struct rds_ib_connection
*ic
, int nr
)
228 if ((atomic_sub_return(nr
, &ic
->i_signaled_sends
) == 0) &&
229 waitqueue_active(&rds_ib_ring_empty_wait
))
230 wake_up(&rds_ib_ring_empty_wait
);
231 BUG_ON(atomic_read(&ic
->i_signaled_sends
) < 0);
235 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
236 * operations performed in the send path. As the sender allocs and potentially
237 * unallocs the next free entry in the ring it doesn't alter which is
238 * the next to be freed, which is what this is concerned with.
240 void rds_ib_send_cqe_handler(struct rds_ib_connection
*ic
, struct ib_wc
*wc
)
242 struct rds_message
*rm
= NULL
;
243 struct rds_connection
*conn
= ic
->conn
;
244 struct rds_ib_send_work
*send
;
251 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
252 (unsigned long long)wc
->wr_id
, wc
->status
,
253 ib_wc_status_msg(wc
->status
), wc
->byte_len
,
254 be32_to_cpu(wc
->ex
.imm_data
));
255 rds_ib_stats_inc(s_ib_tx_cq_event
);
257 if (wc
->wr_id
== RDS_IB_ACK_WR_ID
) {
258 if (time_after(jiffies
, ic
->i_ack_queued
+ HZ
/ 2))
259 rds_ib_stats_inc(s_ib_tx_stalled
);
260 rds_ib_ack_send_complete(ic
);
264 oldest
= rds_ib_ring_oldest(&ic
->i_send_ring
);
266 completed
= rds_ib_ring_completed(&ic
->i_send_ring
,
267 (wc
->wr_id
& ~RDS_IB_SEND_OP
),
270 for (i
= 0; i
< completed
; i
++) {
271 send
= &ic
->i_sends
[oldest
];
272 if (send
->s_wr
.send_flags
& IB_SEND_SIGNALED
)
275 rm
= rds_ib_send_unmap_op(ic
, send
, wc
->status
);
277 if (time_after(jiffies
, send
->s_queued
+ HZ
/ 2))
278 rds_ib_stats_inc(s_ib_tx_stalled
);
281 if (send
->s_op
== rm
->m_final_op
) {
282 /* If anyone waited for this message to get
283 * flushed out, wake them up now
285 rds_message_unmapped(rm
);
291 oldest
= (oldest
+ 1) % ic
->i_send_ring
.w_nr
;
294 rds_ib_ring_free(&ic
->i_send_ring
, completed
);
295 rds_ib_sub_signaled(ic
, nr_sig
);
298 if (test_and_clear_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
) ||
299 test_bit(0, &conn
->c_map_queued
))
300 queue_delayed_work(rds_wq
, &conn
->c_send_w
, 0);
302 /* We expect errors as the qp is drained during shutdown */
303 if (wc
->status
!= IB_WC_SUCCESS
&& rds_conn_up(conn
)) {
304 rds_ib_conn_error(conn
, "send completion on %pI4 had status %u (%s), disconnecting and reconnecting\n",
305 &conn
->c_faddr
, wc
->status
,
306 ib_wc_status_msg(wc
->status
));
311 * This is the main function for allocating credits when sending
314 * Conceptually, we have two counters:
315 * - send credits: this tells us how many WRs we're allowed
316 * to submit without overruning the receiver's queue. For
317 * each SEND WR we post, we decrement this by one.
319 * - posted credits: this tells us how many WRs we recently
320 * posted to the receive queue. This value is transferred
321 * to the peer as a "credit update" in a RDS header field.
322 * Every time we transmit credits to the peer, we subtract
323 * the amount of transferred credits from this counter.
325 * It is essential that we avoid situations where both sides have
326 * exhausted their send credits, and are unable to send new credits
327 * to the peer. We achieve this by requiring that we send at least
328 * one credit update to the peer before exhausting our credits.
329 * When new credits arrive, we subtract one credit that is withheld
330 * until we've posted new buffers and are ready to transmit these
331 * credits (see rds_ib_send_add_credits below).
333 * The RDS send code is essentially single-threaded; rds_send_xmit
334 * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
335 * However, the ACK sending code is independent and can race with
338 * In the send path, we need to update the counters for send credits
339 * and the counter of posted buffers atomically - when we use the
340 * last available credit, we cannot allow another thread to race us
341 * and grab the posted credits counter. Hence, we have to use a
342 * spinlock to protect the credit counter, or use atomics.
344 * Spinlocks shared between the send and the receive path are bad,
345 * because they create unnecessary delays. An early implementation
346 * using a spinlock showed a 5% degradation in throughput at some
349 * This implementation avoids spinlocks completely, putting both
350 * counters into a single atomic, and updating that atomic using
351 * atomic_add (in the receive path, when receiving fresh credits),
352 * and using atomic_cmpxchg when updating the two counters.
354 int rds_ib_send_grab_credits(struct rds_ib_connection
*ic
,
355 u32 wanted
, u32
*adv_credits
, int need_posted
, int max_posted
)
357 unsigned int avail
, posted
, got
= 0, advertise
;
366 oldval
= newval
= atomic_read(&ic
->i_credits
);
367 posted
= IB_GET_POST_CREDITS(oldval
);
368 avail
= IB_GET_SEND_CREDITS(oldval
);
370 rdsdebug("wanted=%u credits=%u posted=%u\n",
371 wanted
, avail
, posted
);
373 /* The last credit must be used to send a credit update. */
374 if (avail
&& !posted
)
377 if (avail
< wanted
) {
378 struct rds_connection
*conn
= ic
->i_cm_id
->context
;
380 /* Oops, there aren't that many credits left! */
381 set_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
);
384 /* Sometimes you get what you want, lalala. */
387 newval
-= IB_SET_SEND_CREDITS(got
);
390 * If need_posted is non-zero, then the caller wants
391 * the posted regardless of whether any send credits are
394 if (posted
&& (got
|| need_posted
)) {
395 advertise
= min_t(unsigned int, posted
, max_posted
);
396 newval
-= IB_SET_POST_CREDITS(advertise
);
399 /* Finally bill everything */
400 if (atomic_cmpxchg(&ic
->i_credits
, oldval
, newval
) != oldval
)
403 *adv_credits
= advertise
;
407 void rds_ib_send_add_credits(struct rds_connection
*conn
, unsigned int credits
)
409 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
414 rdsdebug("credits=%u current=%u%s\n",
416 IB_GET_SEND_CREDITS(atomic_read(&ic
->i_credits
)),
417 test_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
) ? ", ll_send_full" : "");
419 atomic_add(IB_SET_SEND_CREDITS(credits
), &ic
->i_credits
);
420 if (test_and_clear_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
))
421 queue_delayed_work(rds_wq
, &conn
->c_send_w
, 0);
423 WARN_ON(IB_GET_SEND_CREDITS(credits
) >= 16384);
425 rds_ib_stats_inc(s_ib_rx_credit_updates
);
428 void rds_ib_advertise_credits(struct rds_connection
*conn
, unsigned int posted
)
430 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
435 atomic_add(IB_SET_POST_CREDITS(posted
), &ic
->i_credits
);
437 /* Decide whether to send an update to the peer now.
438 * If we would send a credit update for every single buffer we
439 * post, we would end up with an ACK storm (ACK arrives,
440 * consumes buffer, we refill the ring, send ACK to remote
441 * advertising the newly posted buffer... ad inf)
443 * Performance pretty much depends on how often we send
444 * credit updates - too frequent updates mean lots of ACKs.
445 * Too infrequent updates, and the peer will run out of
446 * credits and has to throttle.
447 * For the time being, 16 seems to be a good compromise.
449 if (IB_GET_POST_CREDITS(atomic_read(&ic
->i_credits
)) >= 16)
450 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
453 static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection
*ic
,
454 struct rds_ib_send_work
*send
,
458 * We want to delay signaling completions just enough to get
459 * the batching benefits but not so much that we create dead time
462 if (ic
->i_unsignaled_wrs
-- == 0 || notify
) {
463 ic
->i_unsignaled_wrs
= rds_ib_sysctl_max_unsig_wrs
;
464 send
->s_wr
.send_flags
|= IB_SEND_SIGNALED
;
471 * This can be called multiple times for a given message. The first time
472 * we see a message we map its scatterlist into the IB device so that
473 * we can provide that mapped address to the IB scatter gather entries
474 * in the IB work requests. We translate the scatterlist into a series
475 * of work requests that fragment the message. These work requests complete
476 * in order so we pass ownership of the message to the completion handler
477 * once we send the final fragment.
479 * The RDS core uses the c_send_lock to only enter this function once
480 * per connection. This makes sure that the tx ring alloc/unalloc pairs
481 * don't get out of sync and confuse the ring.
483 int rds_ib_xmit(struct rds_connection
*conn
, struct rds_message
*rm
,
484 unsigned int hdr_off
, unsigned int sg
, unsigned int off
)
486 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
487 struct ib_device
*dev
= ic
->i_cm_id
->device
;
488 struct rds_ib_send_work
*send
= NULL
;
489 struct rds_ib_send_work
*first
;
490 struct rds_ib_send_work
*prev
;
491 struct ib_send_wr
*failed_wr
;
492 struct scatterlist
*scat
;
496 u32 credit_alloc
= 0;
502 int flow_controlled
= 0;
505 BUG_ON(off
% RDS_FRAG_SIZE
);
506 BUG_ON(hdr_off
!= 0 && hdr_off
!= sizeof(struct rds_header
));
508 /* Do not send cong updates to IB loopback */
510 && rm
->m_inc
.i_hdr
.h_flags
& RDS_FLAG_CONG_BITMAP
) {
511 rds_cong_map_updated(conn
->c_fcong
, ~(u64
) 0);
512 scat
= &rm
->data
.op_sg
[sg
];
513 ret
= max_t(int, RDS_CONG_MAP_BYTES
, scat
->length
);
514 return sizeof(struct rds_header
) + ret
;
517 /* FIXME we may overallocate here */
518 if (be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
) == 0)
521 i
= ceil(be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
), RDS_FRAG_SIZE
);
523 work_alloc
= rds_ib_ring_alloc(&ic
->i_send_ring
, i
, &pos
);
524 if (work_alloc
== 0) {
525 set_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
);
526 rds_ib_stats_inc(s_ib_tx_ring_full
);
532 credit_alloc
= rds_ib_send_grab_credits(ic
, work_alloc
, &posted
, 0, RDS_MAX_ADV_CREDIT
);
533 adv_credits
+= posted
;
534 if (credit_alloc
< work_alloc
) {
535 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
- credit_alloc
);
536 work_alloc
= credit_alloc
;
539 if (work_alloc
== 0) {
540 set_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
);
541 rds_ib_stats_inc(s_ib_tx_throttle
);
547 /* map the message the first time we see it */
548 if (!ic
->i_data_op
) {
549 if (rm
->data
.op_nents
) {
550 rm
->data
.op_count
= ib_dma_map_sg(dev
,
554 rdsdebug("ic %p mapping rm %p: %d\n", ic
, rm
, rm
->data
.op_count
);
555 if (rm
->data
.op_count
== 0) {
556 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure
);
557 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
558 ret
= -ENOMEM
; /* XXX ? */
562 rm
->data
.op_count
= 0;
565 rds_message_addref(rm
);
566 rm
->data
.op_dmasg
= 0;
567 rm
->data
.op_dmaoff
= 0;
568 ic
->i_data_op
= &rm
->data
;
570 /* Finalize the header */
571 if (test_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
))
572 rm
->m_inc
.i_hdr
.h_flags
|= RDS_FLAG_ACK_REQUIRED
;
573 if (test_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
))
574 rm
->m_inc
.i_hdr
.h_flags
|= RDS_FLAG_RETRANSMITTED
;
576 /* If it has a RDMA op, tell the peer we did it. This is
577 * used by the peer to release use-once RDMA MRs. */
578 if (rm
->rdma
.op_active
) {
579 struct rds_ext_header_rdma ext_hdr
;
581 ext_hdr
.h_rdma_rkey
= cpu_to_be32(rm
->rdma
.op_rkey
);
582 rds_message_add_extension(&rm
->m_inc
.i_hdr
,
583 RDS_EXTHDR_RDMA
, &ext_hdr
, sizeof(ext_hdr
));
585 if (rm
->m_rdma_cookie
) {
586 rds_message_add_rdma_dest_extension(&rm
->m_inc
.i_hdr
,
587 rds_rdma_cookie_key(rm
->m_rdma_cookie
),
588 rds_rdma_cookie_offset(rm
->m_rdma_cookie
));
591 /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
592 * we should not do this unless we have a chance of at least
593 * sticking the header into the send ring. Which is why we
594 * should call rds_ib_ring_alloc first. */
595 rm
->m_inc
.i_hdr
.h_ack
= cpu_to_be64(rds_ib_piggyb_ack(ic
));
596 rds_message_make_checksum(&rm
->m_inc
.i_hdr
);
599 * Update adv_credits since we reset the ACK_REQUIRED bit.
602 rds_ib_send_grab_credits(ic
, 0, &posted
, 1, RDS_MAX_ADV_CREDIT
- adv_credits
);
603 adv_credits
+= posted
;
604 BUG_ON(adv_credits
> 255);
608 /* Sometimes you want to put a fence between an RDMA
609 * READ and the following SEND.
610 * We could either do this all the time
611 * or when requested by the user. Right now, we let
612 * the application choose.
614 if (rm
->rdma
.op_active
&& rm
->rdma
.op_fence
)
615 send_flags
= IB_SEND_FENCE
;
617 /* Each frag gets a header. Msgs may be 0 bytes */
618 send
= &ic
->i_sends
[pos
];
621 scat
= &ic
->i_data_op
->op_sg
[rm
->data
.op_dmasg
];
624 unsigned int len
= 0;
626 /* Set up the header */
627 send
->s_wr
.send_flags
= send_flags
;
628 send
->s_wr
.opcode
= IB_WR_SEND
;
629 send
->s_wr
.num_sge
= 1;
630 send
->s_wr
.next
= NULL
;
631 send
->s_queued
= jiffies
;
634 send
->s_sge
[0].addr
= ic
->i_send_hdrs_dma
635 + (pos
* sizeof(struct rds_header
));
636 send
->s_sge
[0].length
= sizeof(struct rds_header
);
638 memcpy(&ic
->i_send_hdrs
[pos
], &rm
->m_inc
.i_hdr
, sizeof(struct rds_header
));
640 /* Set up the data, if present */
642 && scat
!= &rm
->data
.op_sg
[rm
->data
.op_count
]) {
643 len
= min(RDS_FRAG_SIZE
,
644 ib_sg_dma_len(dev
, scat
) - rm
->data
.op_dmaoff
);
645 send
->s_wr
.num_sge
= 2;
647 send
->s_sge
[1].addr
= ib_sg_dma_address(dev
, scat
);
648 send
->s_sge
[1].addr
+= rm
->data
.op_dmaoff
;
649 send
->s_sge
[1].length
= len
;
652 rm
->data
.op_dmaoff
+= len
;
653 if (rm
->data
.op_dmaoff
== ib_sg_dma_len(dev
, scat
)) {
656 rm
->data
.op_dmaoff
= 0;
660 rds_ib_set_wr_signal_state(ic
, send
, 0);
663 * Always signal the last one if we're stopping due to flow control.
665 if (ic
->i_flowctl
&& flow_controlled
&& i
== (work_alloc
-1))
666 send
->s_wr
.send_flags
|= IB_SEND_SIGNALED
| IB_SEND_SOLICITED
;
668 if (send
->s_wr
.send_flags
& IB_SEND_SIGNALED
)
671 rdsdebug("send %p wr %p num_sge %u next %p\n", send
,
672 &send
->s_wr
, send
->s_wr
.num_sge
, send
->s_wr
.next
);
674 if (ic
->i_flowctl
&& adv_credits
) {
675 struct rds_header
*hdr
= &ic
->i_send_hdrs
[pos
];
677 /* add credit and redo the header checksum */
678 hdr
->h_credit
= adv_credits
;
679 rds_message_make_checksum(hdr
);
681 rds_ib_stats_inc(s_ib_tx_credit_updates
);
685 prev
->s_wr
.next
= &send
->s_wr
;
688 pos
= (pos
+ 1) % ic
->i_send_ring
.w_nr
;
689 send
= &ic
->i_sends
[pos
];
692 } while (i
< work_alloc
693 && scat
!= &rm
->data
.op_sg
[rm
->data
.op_count
]);
695 /* Account the RDS header in the number of bytes we sent, but just once.
696 * The caller has no concept of fragmentation. */
698 bytes_sent
+= sizeof(struct rds_header
);
700 /* if we finished the message then send completion owns it */
701 if (scat
== &rm
->data
.op_sg
[rm
->data
.op_count
]) {
702 prev
->s_op
= ic
->i_data_op
;
703 prev
->s_wr
.send_flags
|= IB_SEND_SOLICITED
;
704 if (!(prev
->s_wr
.send_flags
& IB_SEND_SIGNALED
)) {
705 ic
->i_unsignaled_wrs
= rds_ib_sysctl_max_unsig_wrs
;
706 prev
->s_wr
.send_flags
|= IB_SEND_SIGNALED
;
709 ic
->i_data_op
= NULL
;
712 /* Put back wrs & credits we didn't use */
713 if (i
< work_alloc
) {
714 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
- i
);
717 if (ic
->i_flowctl
&& i
< credit_alloc
)
718 rds_ib_send_add_credits(conn
, credit_alloc
- i
);
721 atomic_add(nr_sig
, &ic
->i_signaled_sends
);
723 /* XXX need to worry about failed_wr and partial sends. */
724 failed_wr
= &first
->s_wr
;
725 ret
= ib_post_send(ic
->i_cm_id
->qp
, &first
->s_wr
, &failed_wr
);
726 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic
,
727 first
, &first
->s_wr
, ret
, failed_wr
);
728 BUG_ON(failed_wr
!= &first
->s_wr
);
730 printk(KERN_WARNING
"RDS/IB: ib_post_send to %pI4 "
731 "returned %d\n", &conn
->c_faddr
, ret
);
732 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
733 rds_ib_sub_signaled(ic
, nr_sig
);
735 ic
->i_data_op
= prev
->s_op
;
739 rds_ib_conn_error(ic
->conn
, "ib_post_send failed\n");
750 * Issue atomic operation.
751 * A simplified version of the rdma case, we always map 1 SG, and
752 * only 8 bytes, for the return value from the atomic operation.
754 int rds_ib_xmit_atomic(struct rds_connection
*conn
, struct rm_atomic_op
*op
)
756 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
757 struct rds_ib_send_work
*send
= NULL
;
758 struct ib_send_wr
*failed_wr
;
759 struct rds_ib_device
*rds_ibdev
;
765 rds_ibdev
= ib_get_client_data(ic
->i_cm_id
->device
, &rds_ib_client
);
767 work_alloc
= rds_ib_ring_alloc(&ic
->i_send_ring
, 1, &pos
);
768 if (work_alloc
!= 1) {
769 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
770 rds_ib_stats_inc(s_ib_tx_ring_full
);
775 /* address of send request in ring */
776 send
= &ic
->i_sends
[pos
];
777 send
->s_queued
= jiffies
;
779 if (op
->op_type
== RDS_ATOMIC_TYPE_CSWP
) {
780 send
->s_atomic_wr
.wr
.opcode
= IB_WR_MASKED_ATOMIC_CMP_AND_SWP
;
781 send
->s_atomic_wr
.compare_add
= op
->op_m_cswp
.compare
;
782 send
->s_atomic_wr
.swap
= op
->op_m_cswp
.swap
;
783 send
->s_atomic_wr
.compare_add_mask
= op
->op_m_cswp
.compare_mask
;
784 send
->s_atomic_wr
.swap_mask
= op
->op_m_cswp
.swap_mask
;
786 send
->s_atomic_wr
.wr
.opcode
= IB_WR_MASKED_ATOMIC_FETCH_AND_ADD
;
787 send
->s_atomic_wr
.compare_add
= op
->op_m_fadd
.add
;
788 send
->s_atomic_wr
.swap
= 0;
789 send
->s_atomic_wr
.compare_add_mask
= op
->op_m_fadd
.nocarry_mask
;
790 send
->s_atomic_wr
.swap_mask
= 0;
792 nr_sig
= rds_ib_set_wr_signal_state(ic
, send
, op
->op_notify
);
793 send
->s_atomic_wr
.wr
.num_sge
= 1;
794 send
->s_atomic_wr
.wr
.next
= NULL
;
795 send
->s_atomic_wr
.remote_addr
= op
->op_remote_addr
;
796 send
->s_atomic_wr
.rkey
= op
->op_rkey
;
798 rds_message_addref(container_of(send
->s_op
, struct rds_message
, atomic
));
800 /* map 8 byte retval buffer to the device */
801 ret
= ib_dma_map_sg(ic
->i_cm_id
->device
, op
->op_sg
, 1, DMA_FROM_DEVICE
);
802 rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic
, op
, ret
);
804 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
805 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure
);
806 ret
= -ENOMEM
; /* XXX ? */
810 /* Convert our struct scatterlist to struct ib_sge */
811 send
->s_sge
[0].addr
= ib_sg_dma_address(ic
->i_cm_id
->device
, op
->op_sg
);
812 send
->s_sge
[0].length
= ib_sg_dma_len(ic
->i_cm_id
->device
, op
->op_sg
);
813 send
->s_sge
[0].lkey
= ic
->i_pd
->local_dma_lkey
;
815 rdsdebug("rva %Lx rpa %Lx len %u\n", op
->op_remote_addr
,
816 send
->s_sge
[0].addr
, send
->s_sge
[0].length
);
819 atomic_add(nr_sig
, &ic
->i_signaled_sends
);
821 failed_wr
= &send
->s_atomic_wr
.wr
;
822 ret
= ib_post_send(ic
->i_cm_id
->qp
, &send
->s_atomic_wr
.wr
, &failed_wr
);
823 rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic
,
824 send
, &send
->s_atomic_wr
, ret
, failed_wr
);
825 BUG_ON(failed_wr
!= &send
->s_atomic_wr
.wr
);
827 printk(KERN_WARNING
"RDS/IB: atomic ib_post_send to %pI4 "
828 "returned %d\n", &conn
->c_faddr
, ret
);
829 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
830 rds_ib_sub_signaled(ic
, nr_sig
);
834 if (unlikely(failed_wr
!= &send
->s_atomic_wr
.wr
)) {
835 printk(KERN_WARNING
"RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret
);
836 BUG_ON(failed_wr
!= &send
->s_atomic_wr
.wr
);
843 int rds_ib_xmit_rdma(struct rds_connection
*conn
, struct rm_rdma_op
*op
)
845 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
846 struct rds_ib_send_work
*send
= NULL
;
847 struct rds_ib_send_work
*first
;
848 struct rds_ib_send_work
*prev
;
849 struct ib_send_wr
*failed_wr
;
850 struct scatterlist
*scat
;
852 u64 remote_addr
= op
->op_remote_addr
;
853 u32 max_sge
= ic
->rds_ibdev
->max_sge
;
863 /* map the op the first time we see it */
864 if (!op
->op_mapped
) {
865 op
->op_count
= ib_dma_map_sg(ic
->i_cm_id
->device
,
866 op
->op_sg
, op
->op_nents
, (op
->op_write
) ?
867 DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
868 rdsdebug("ic %p mapping op %p: %d\n", ic
, op
, op
->op_count
);
869 if (op
->op_count
== 0) {
870 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure
);
871 ret
= -ENOMEM
; /* XXX ? */
879 * Instead of knowing how to return a partial rdma read/write we insist that there
880 * be enough work requests to send the entire message.
882 i
= ceil(op
->op_count
, max_sge
);
884 work_alloc
= rds_ib_ring_alloc(&ic
->i_send_ring
, i
, &pos
);
885 if (work_alloc
!= i
) {
886 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
887 rds_ib_stats_inc(s_ib_tx_ring_full
);
892 send
= &ic
->i_sends
[pos
];
895 scat
= &op
->op_sg
[0];
897 num_sge
= op
->op_count
;
899 for (i
= 0; i
< work_alloc
&& scat
!= &op
->op_sg
[op
->op_count
]; i
++) {
900 send
->s_wr
.send_flags
= 0;
901 send
->s_queued
= jiffies
;
904 nr_sig
+= rds_ib_set_wr_signal_state(ic
, send
, op
->op_notify
);
906 send
->s_wr
.opcode
= op
->op_write
? IB_WR_RDMA_WRITE
: IB_WR_RDMA_READ
;
907 send
->s_rdma_wr
.remote_addr
= remote_addr
;
908 send
->s_rdma_wr
.rkey
= op
->op_rkey
;
910 if (num_sge
> max_sge
) {
911 send
->s_rdma_wr
.wr
.num_sge
= max_sge
;
914 send
->s_rdma_wr
.wr
.num_sge
= num_sge
;
917 send
->s_rdma_wr
.wr
.next
= NULL
;
920 prev
->s_rdma_wr
.wr
.next
= &send
->s_rdma_wr
.wr
;
922 for (j
= 0; j
< send
->s_rdma_wr
.wr
.num_sge
&&
923 scat
!= &op
->op_sg
[op
->op_count
]; j
++) {
924 len
= ib_sg_dma_len(ic
->i_cm_id
->device
, scat
);
925 send
->s_sge
[j
].addr
=
926 ib_sg_dma_address(ic
->i_cm_id
->device
, scat
);
927 send
->s_sge
[j
].length
= len
;
928 send
->s_sge
[j
].lkey
= ic
->i_pd
->local_dma_lkey
;
931 rdsdebug("ic %p sent %d remote_addr %llu\n", ic
, sent
, remote_addr
);
937 rdsdebug("send %p wr %p num_sge %u next %p\n", send
,
939 send
->s_rdma_wr
.wr
.num_sge
,
940 send
->s_rdma_wr
.wr
.next
);
943 if (++send
== &ic
->i_sends
[ic
->i_send_ring
.w_nr
])
947 /* give a reference to the last op */
948 if (scat
== &op
->op_sg
[op
->op_count
]) {
950 rds_message_addref(container_of(op
, struct rds_message
, rdma
));
953 if (i
< work_alloc
) {
954 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
- i
);
959 atomic_add(nr_sig
, &ic
->i_signaled_sends
);
961 failed_wr
= &first
->s_rdma_wr
.wr
;
962 ret
= ib_post_send(ic
->i_cm_id
->qp
, &first
->s_rdma_wr
.wr
, &failed_wr
);
963 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic
,
964 first
, &first
->s_rdma_wr
.wr
, ret
, failed_wr
);
965 BUG_ON(failed_wr
!= &first
->s_rdma_wr
.wr
);
967 printk(KERN_WARNING
"RDS/IB: rdma ib_post_send to %pI4 "
968 "returned %d\n", &conn
->c_faddr
, ret
);
969 rds_ib_ring_unalloc(&ic
->i_send_ring
, work_alloc
);
970 rds_ib_sub_signaled(ic
, nr_sig
);
974 if (unlikely(failed_wr
!= &first
->s_rdma_wr
.wr
)) {
975 printk(KERN_WARNING
"RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret
);
976 BUG_ON(failed_wr
!= &first
->s_rdma_wr
.wr
);
984 void rds_ib_xmit_complete(struct rds_connection
*conn
)
986 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
988 /* We may have a pending ACK or window update we were unable
989 * to send previously (due to flow control). Try again. */
990 rds_ib_attempt_ack(ic
);