of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / net / sunrpc / xprtrdma / rpc_rdma.c
blobc10d9699441c3390d384e90f7dfc15ef9cd0ee27
1 /*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 * rpc_rdma.c
43 * This file contains the guts of the RPC RDMA protocol, and
44 * does marshaling/unmarshaling, etc. It is also where interfacing
45 * to the Linux RPC framework lives.
48 #include "xprt_rdma.h"
50 #include <linux/highmem.h>
52 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
53 # define RPCDBG_FACILITY RPCDBG_TRANS
54 #endif
56 enum rpcrdma_chunktype {
57 rpcrdma_noch = 0,
58 rpcrdma_readch,
59 rpcrdma_areadch,
60 rpcrdma_writech,
61 rpcrdma_replych
64 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
65 static const char transfertypes[][12] = {
66 "pure inline", /* no chunks */
67 " read chunk", /* some argument via rdma read */
68 "*read chunk", /* entire request via rdma read */
69 "write chunk", /* some result via rdma write */
70 "reply chunk" /* entire reply via rdma write */
72 #endif
74 /* The client can send a request inline as long as the RPCRDMA header
75 * plus the RPC call fit under the transport's inline limit. If the
76 * combined call message size exceeds that limit, the client must use
77 * the read chunk list for this operation.
79 static bool rpcrdma_args_inline(struct rpc_rqst *rqst)
81 unsigned int callsize = RPCRDMA_HDRLEN_MIN + rqst->rq_snd_buf.len;
83 return callsize <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst);
86 /* The client can't know how large the actual reply will be. Thus it
87 * plans for the largest possible reply for that particular ULP
88 * operation. If the maximum combined reply message size exceeds that
89 * limit, the client must provide a write list or a reply chunk for
90 * this request.
92 static bool rpcrdma_results_inline(struct rpc_rqst *rqst)
94 unsigned int repsize = RPCRDMA_HDRLEN_MIN + rqst->rq_rcv_buf.buflen;
96 return repsize <= RPCRDMA_INLINE_READ_THRESHOLD(rqst);
99 static int
100 rpcrdma_tail_pullup(struct xdr_buf *buf)
102 size_t tlen = buf->tail[0].iov_len;
103 size_t skip = tlen & 3;
105 /* Do not include the tail if it is only an XDR pad */
106 if (tlen < 4)
107 return 0;
109 /* xdr_write_pages() adds a pad at the beginning of the tail
110 * if the content in "buf->pages" is unaligned. Force the
111 * tail's actual content to land at the next XDR position
112 * after the head instead.
114 if (skip) {
115 unsigned char *src, *dst;
116 unsigned int count;
118 src = buf->tail[0].iov_base;
119 dst = buf->head[0].iov_base;
120 dst += buf->head[0].iov_len;
122 src += skip;
123 tlen -= skip;
125 dprintk("RPC: %s: skip=%zu, memmove(%p, %p, %zu)\n",
126 __func__, skip, dst, src, tlen);
128 for (count = tlen; count; count--)
129 *dst++ = *src++;
132 return tlen;
136 * Chunk assembly from upper layer xdr_buf.
138 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
139 * elements. Segments are then coalesced when registered, if possible
140 * within the selected memreg mode.
142 * Returns positive number of segments converted, or a negative errno.
145 static int
146 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
147 enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
149 int len, n = 0, p;
150 int page_base;
151 struct page **ppages;
153 if (pos == 0 && xdrbuf->head[0].iov_len) {
154 seg[n].mr_page = NULL;
155 seg[n].mr_offset = xdrbuf->head[0].iov_base;
156 seg[n].mr_len = xdrbuf->head[0].iov_len;
157 ++n;
160 len = xdrbuf->page_len;
161 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
162 page_base = xdrbuf->page_base & ~PAGE_MASK;
163 p = 0;
164 while (len && n < nsegs) {
165 if (!ppages[p]) {
166 /* alloc the pagelist for receiving buffer */
167 ppages[p] = alloc_page(GFP_ATOMIC);
168 if (!ppages[p])
169 return -ENOMEM;
171 seg[n].mr_page = ppages[p];
172 seg[n].mr_offset = (void *)(unsigned long) page_base;
173 seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
174 if (seg[n].mr_len > PAGE_SIZE)
175 return -EIO;
176 len -= seg[n].mr_len;
177 ++n;
178 ++p;
179 page_base = 0; /* page offset only applies to first page */
182 /* Message overflows the seg array */
183 if (len && n == nsegs)
184 return -EIO;
186 /* When encoding the read list, the tail is always sent inline */
187 if (type == rpcrdma_readch)
188 return n;
190 if (xdrbuf->tail[0].iov_len) {
191 /* the rpcrdma protocol allows us to omit any trailing
192 * xdr pad bytes, saving the server an RDMA operation. */
193 if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
194 return n;
195 if (n == nsegs)
196 /* Tail remains, but we're out of segments */
197 return -EIO;
198 seg[n].mr_page = NULL;
199 seg[n].mr_offset = xdrbuf->tail[0].iov_base;
200 seg[n].mr_len = xdrbuf->tail[0].iov_len;
201 ++n;
204 return n;
208 * Create read/write chunk lists, and reply chunks, for RDMA
210 * Assume check against THRESHOLD has been done, and chunks are required.
211 * Assume only encoding one list entry for read|write chunks. The NFSv3
212 * protocol is simple enough to allow this as it only has a single "bulk
213 * result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
214 * RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
216 * When used for a single reply chunk (which is a special write
217 * chunk used for the entire reply, rather than just the data), it
218 * is used primarily for READDIR and READLINK which would otherwise
219 * be severely size-limited by a small rdma inline read max. The server
220 * response will come back as an RDMA Write, followed by a message
221 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
222 * chunks do not provide data alignment, however they do not require
223 * "fixup" (moving the response to the upper layer buffer) either.
225 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
227 * Read chunklist (a linked list):
228 * N elements, position P (same P for all chunks of same arg!):
229 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
231 * Write chunklist (a list of (one) counted array):
232 * N elements:
233 * 1 - N - HLOO - HLOO - ... - HLOO - 0
235 * Reply chunk (a counted array):
236 * N elements:
237 * 1 - N - HLOO - HLOO - ... - HLOO
239 * Returns positive RPC/RDMA header size, or negative errno.
242 static ssize_t
243 rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
244 struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
246 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
247 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
248 int n, nsegs, nchunks = 0;
249 unsigned int pos;
250 struct rpcrdma_mr_seg *seg = req->rl_segments;
251 struct rpcrdma_read_chunk *cur_rchunk = NULL;
252 struct rpcrdma_write_array *warray = NULL;
253 struct rpcrdma_write_chunk *cur_wchunk = NULL;
254 __be32 *iptr = headerp->rm_body.rm_chunks;
255 int (*map)(struct rpcrdma_xprt *, struct rpcrdma_mr_seg *, int, bool);
257 if (type == rpcrdma_readch || type == rpcrdma_areadch) {
258 /* a read chunk - server will RDMA Read our memory */
259 cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
260 } else {
261 /* a write or reply chunk - server will RDMA Write our memory */
262 *iptr++ = xdr_zero; /* encode a NULL read chunk list */
263 if (type == rpcrdma_replych)
264 *iptr++ = xdr_zero; /* a NULL write chunk list */
265 warray = (struct rpcrdma_write_array *) iptr;
266 cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
269 if (type == rpcrdma_replych || type == rpcrdma_areadch)
270 pos = 0;
271 else
272 pos = target->head[0].iov_len;
274 nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
275 if (nsegs < 0)
276 return nsegs;
278 map = r_xprt->rx_ia.ri_ops->ro_map;
279 do {
280 n = map(r_xprt, seg, nsegs, cur_wchunk != NULL);
281 if (n <= 0)
282 goto out;
283 if (cur_rchunk) { /* read */
284 cur_rchunk->rc_discrim = xdr_one;
285 /* all read chunks have the same "position" */
286 cur_rchunk->rc_position = cpu_to_be32(pos);
287 cur_rchunk->rc_target.rs_handle =
288 cpu_to_be32(seg->mr_rkey);
289 cur_rchunk->rc_target.rs_length =
290 cpu_to_be32(seg->mr_len);
291 xdr_encode_hyper(
292 (__be32 *)&cur_rchunk->rc_target.rs_offset,
293 seg->mr_base);
294 dprintk("RPC: %s: read chunk "
295 "elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
296 seg->mr_len, (unsigned long long)seg->mr_base,
297 seg->mr_rkey, pos, n < nsegs ? "more" : "last");
298 cur_rchunk++;
299 r_xprt->rx_stats.read_chunk_count++;
300 } else { /* write/reply */
301 cur_wchunk->wc_target.rs_handle =
302 cpu_to_be32(seg->mr_rkey);
303 cur_wchunk->wc_target.rs_length =
304 cpu_to_be32(seg->mr_len);
305 xdr_encode_hyper(
306 (__be32 *)&cur_wchunk->wc_target.rs_offset,
307 seg->mr_base);
308 dprintk("RPC: %s: %s chunk "
309 "elem %d@0x%llx:0x%x (%s)\n", __func__,
310 (type == rpcrdma_replych) ? "reply" : "write",
311 seg->mr_len, (unsigned long long)seg->mr_base,
312 seg->mr_rkey, n < nsegs ? "more" : "last");
313 cur_wchunk++;
314 if (type == rpcrdma_replych)
315 r_xprt->rx_stats.reply_chunk_count++;
316 else
317 r_xprt->rx_stats.write_chunk_count++;
318 r_xprt->rx_stats.total_rdma_request += seg->mr_len;
320 nchunks++;
321 seg += n;
322 nsegs -= n;
323 } while (nsegs);
325 /* success. all failures return above */
326 req->rl_nchunks = nchunks;
329 * finish off header. If write, marshal discrim and nchunks.
331 if (cur_rchunk) {
332 iptr = (__be32 *) cur_rchunk;
333 *iptr++ = xdr_zero; /* finish the read chunk list */
334 *iptr++ = xdr_zero; /* encode a NULL write chunk list */
335 *iptr++ = xdr_zero; /* encode a NULL reply chunk */
336 } else {
337 warray->wc_discrim = xdr_one;
338 warray->wc_nchunks = cpu_to_be32(nchunks);
339 iptr = (__be32 *) cur_wchunk;
340 if (type == rpcrdma_writech) {
341 *iptr++ = xdr_zero; /* finish the write chunk list */
342 *iptr++ = xdr_zero; /* encode a NULL reply chunk */
347 * Return header size.
349 return (unsigned char *)iptr - (unsigned char *)headerp;
351 out:
352 for (pos = 0; nchunks--;)
353 pos += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt,
354 &req->rl_segments[pos]);
355 return n;
359 * Copy write data inline.
360 * This function is used for "small" requests. Data which is passed
361 * to RPC via iovecs (or page list) is copied directly into the
362 * pre-registered memory buffer for this request. For small amounts
363 * of data, this is efficient. The cutoff value is tunable.
365 static void rpcrdma_inline_pullup(struct rpc_rqst *rqst)
367 int i, npages, curlen;
368 int copy_len;
369 unsigned char *srcp, *destp;
370 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
371 int page_base;
372 struct page **ppages;
374 destp = rqst->rq_svec[0].iov_base;
375 curlen = rqst->rq_svec[0].iov_len;
376 destp += curlen;
378 dprintk("RPC: %s: destp 0x%p len %d hdrlen %d\n",
379 __func__, destp, rqst->rq_slen, curlen);
381 copy_len = rqst->rq_snd_buf.page_len;
383 if (rqst->rq_snd_buf.tail[0].iov_len) {
384 curlen = rqst->rq_snd_buf.tail[0].iov_len;
385 if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
386 memmove(destp + copy_len,
387 rqst->rq_snd_buf.tail[0].iov_base, curlen);
388 r_xprt->rx_stats.pullup_copy_count += curlen;
390 dprintk("RPC: %s: tail destp 0x%p len %d\n",
391 __func__, destp + copy_len, curlen);
392 rqst->rq_svec[0].iov_len += curlen;
394 r_xprt->rx_stats.pullup_copy_count += copy_len;
396 page_base = rqst->rq_snd_buf.page_base;
397 ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
398 page_base &= ~PAGE_MASK;
399 npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
400 for (i = 0; copy_len && i < npages; i++) {
401 curlen = PAGE_SIZE - page_base;
402 if (curlen > copy_len)
403 curlen = copy_len;
404 dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n",
405 __func__, i, destp, copy_len, curlen);
406 srcp = kmap_atomic(ppages[i]);
407 memcpy(destp, srcp+page_base, curlen);
408 kunmap_atomic(srcp);
409 rqst->rq_svec[0].iov_len += curlen;
410 destp += curlen;
411 copy_len -= curlen;
412 page_base = 0;
414 /* header now contains entire send message */
418 * Marshal a request: the primary job of this routine is to choose
419 * the transfer modes. See comments below.
421 * Uses multiple RDMA IOVs for a request:
422 * [0] -- RPC RDMA header, which uses memory from the *start* of the
423 * preregistered buffer that already holds the RPC data in
424 * its middle.
425 * [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
426 * [2] -- optional padding.
427 * [3] -- if padded, header only in [1] and data here.
429 * Returns zero on success, otherwise a negative errno.
433 rpcrdma_marshal_req(struct rpc_rqst *rqst)
435 struct rpc_xprt *xprt = rqst->rq_xprt;
436 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
437 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
438 char *base;
439 size_t rpclen;
440 ssize_t hdrlen;
441 enum rpcrdma_chunktype rtype, wtype;
442 struct rpcrdma_msg *headerp;
444 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
445 if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
446 return rpcrdma_bc_marshal_reply(rqst);
447 #endif
450 * rpclen gets amount of data in first buffer, which is the
451 * pre-registered buffer.
453 base = rqst->rq_svec[0].iov_base;
454 rpclen = rqst->rq_svec[0].iov_len;
456 headerp = rdmab_to_msg(req->rl_rdmabuf);
457 /* don't byte-swap XID, it's already done in request */
458 headerp->rm_xid = rqst->rq_xid;
459 headerp->rm_vers = rpcrdma_version;
460 headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
461 headerp->rm_type = rdma_msg;
464 * Chunks needed for results?
466 * o Read ops return data as write chunk(s), header as inline.
467 * o If the expected result is under the inline threshold, all ops
468 * return as inline.
469 * o Large non-read ops return as a single reply chunk.
471 if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
472 wtype = rpcrdma_writech;
473 else if (rpcrdma_results_inline(rqst))
474 wtype = rpcrdma_noch;
475 else
476 wtype = rpcrdma_replych;
479 * Chunks needed for arguments?
481 * o If the total request is under the inline threshold, all ops
482 * are sent as inline.
483 * o Large write ops transmit data as read chunk(s), header as
484 * inline.
485 * o Large non-write ops are sent with the entire message as a
486 * single read chunk (protocol 0-position special case).
488 * This assumes that the upper layer does not present a request
489 * that both has a data payload, and whose non-data arguments
490 * by themselves are larger than the inline threshold.
492 if (rpcrdma_args_inline(rqst)) {
493 rtype = rpcrdma_noch;
494 } else if (rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
495 rtype = rpcrdma_readch;
496 } else {
497 r_xprt->rx_stats.nomsg_call_count++;
498 headerp->rm_type = htonl(RDMA_NOMSG);
499 rtype = rpcrdma_areadch;
500 rpclen = 0;
503 /* The following simplification is not true forever */
504 if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
505 wtype = rpcrdma_noch;
506 if (rtype != rpcrdma_noch && wtype != rpcrdma_noch) {
507 dprintk("RPC: %s: cannot marshal multiple chunk lists\n",
508 __func__);
509 return -EIO;
512 hdrlen = RPCRDMA_HDRLEN_MIN;
515 * Pull up any extra send data into the preregistered buffer.
516 * When padding is in use and applies to the transfer, insert
517 * it and change the message type.
519 if (rtype == rpcrdma_noch) {
521 rpcrdma_inline_pullup(rqst);
523 headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
524 headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
525 headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
526 /* new length after pullup */
527 rpclen = rqst->rq_svec[0].iov_len;
528 } else if (rtype == rpcrdma_readch)
529 rpclen += rpcrdma_tail_pullup(&rqst->rq_snd_buf);
530 if (rtype != rpcrdma_noch) {
531 hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf,
532 headerp, rtype);
533 wtype = rtype; /* simplify dprintk */
535 } else if (wtype != rpcrdma_noch) {
536 hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf,
537 headerp, wtype);
539 if (hdrlen < 0)
540 return hdrlen;
542 dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd"
543 " headerp 0x%p base 0x%p lkey 0x%x\n",
544 __func__, transfertypes[wtype], hdrlen, rpclen,
545 headerp, base, rdmab_lkey(req->rl_rdmabuf));
548 * initialize send_iov's - normally only two: rdma chunk header and
549 * single preregistered RPC header buffer, but if padding is present,
550 * then use a preregistered (and zeroed) pad buffer between the RPC
551 * header and any write data. In all non-rdma cases, any following
552 * data has been copied into the RPC header buffer.
554 req->rl_send_iov[0].addr = rdmab_addr(req->rl_rdmabuf);
555 req->rl_send_iov[0].length = hdrlen;
556 req->rl_send_iov[0].lkey = rdmab_lkey(req->rl_rdmabuf);
558 req->rl_niovs = 1;
559 if (rtype == rpcrdma_areadch)
560 return 0;
562 req->rl_send_iov[1].addr = rdmab_addr(req->rl_sendbuf);
563 req->rl_send_iov[1].length = rpclen;
564 req->rl_send_iov[1].lkey = rdmab_lkey(req->rl_sendbuf);
566 req->rl_niovs = 2;
567 return 0;
571 * Chase down a received write or reply chunklist to get length
572 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
574 static int
575 rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
577 unsigned int i, total_len;
578 struct rpcrdma_write_chunk *cur_wchunk;
579 char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
581 i = be32_to_cpu(**iptrp);
582 if (i > max)
583 return -1;
584 cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
585 total_len = 0;
586 while (i--) {
587 struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
588 ifdebug(FACILITY) {
589 u64 off;
590 xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
591 dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n",
592 __func__,
593 be32_to_cpu(seg->rs_length),
594 (unsigned long long)off,
595 be32_to_cpu(seg->rs_handle));
597 total_len += be32_to_cpu(seg->rs_length);
598 ++cur_wchunk;
600 /* check and adjust for properly terminated write chunk */
601 if (wrchunk) {
602 __be32 *w = (__be32 *) cur_wchunk;
603 if (*w++ != xdr_zero)
604 return -1;
605 cur_wchunk = (struct rpcrdma_write_chunk *) w;
607 if ((char *)cur_wchunk > base + rep->rr_len)
608 return -1;
610 *iptrp = (__be32 *) cur_wchunk;
611 return total_len;
615 * Scatter inline received data back into provided iov's.
617 static void
618 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
620 int i, npages, curlen, olen;
621 char *destp;
622 struct page **ppages;
623 int page_base;
625 curlen = rqst->rq_rcv_buf.head[0].iov_len;
626 if (curlen > copy_len) { /* write chunk header fixup */
627 curlen = copy_len;
628 rqst->rq_rcv_buf.head[0].iov_len = curlen;
631 dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
632 __func__, srcp, copy_len, curlen);
634 /* Shift pointer for first receive segment only */
635 rqst->rq_rcv_buf.head[0].iov_base = srcp;
636 srcp += curlen;
637 copy_len -= curlen;
639 olen = copy_len;
640 i = 0;
641 rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
642 page_base = rqst->rq_rcv_buf.page_base;
643 ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
644 page_base &= ~PAGE_MASK;
646 if (copy_len && rqst->rq_rcv_buf.page_len) {
647 npages = PAGE_ALIGN(page_base +
648 rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
649 for (; i < npages; i++) {
650 curlen = PAGE_SIZE - page_base;
651 if (curlen > copy_len)
652 curlen = copy_len;
653 dprintk("RPC: %s: page %d"
654 " srcp 0x%p len %d curlen %d\n",
655 __func__, i, srcp, copy_len, curlen);
656 destp = kmap_atomic(ppages[i]);
657 memcpy(destp + page_base, srcp, curlen);
658 flush_dcache_page(ppages[i]);
659 kunmap_atomic(destp);
660 srcp += curlen;
661 copy_len -= curlen;
662 if (copy_len == 0)
663 break;
664 page_base = 0;
668 if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
669 curlen = copy_len;
670 if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
671 curlen = rqst->rq_rcv_buf.tail[0].iov_len;
672 if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
673 memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
674 dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n",
675 __func__, srcp, copy_len, curlen);
676 rqst->rq_rcv_buf.tail[0].iov_len = curlen;
677 copy_len -= curlen; ++i;
678 } else
679 rqst->rq_rcv_buf.tail[0].iov_len = 0;
681 if (pad) {
682 /* implicit padding on terminal chunk */
683 unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
684 while (pad--)
685 p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
688 if (copy_len)
689 dprintk("RPC: %s: %d bytes in"
690 " %d extra segments (%d lost)\n",
691 __func__, olen, i, copy_len);
693 /* TBD avoid a warning from call_decode() */
694 rqst->rq_private_buf = rqst->rq_rcv_buf;
697 void
698 rpcrdma_connect_worker(struct work_struct *work)
700 struct rpcrdma_ep *ep =
701 container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
702 struct rpcrdma_xprt *r_xprt =
703 container_of(ep, struct rpcrdma_xprt, rx_ep);
704 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
706 spin_lock_bh(&xprt->transport_lock);
707 if (++xprt->connect_cookie == 0) /* maintain a reserved value */
708 ++xprt->connect_cookie;
709 if (ep->rep_connected > 0) {
710 if (!xprt_test_and_set_connected(xprt))
711 xprt_wake_pending_tasks(xprt, 0);
712 } else {
713 if (xprt_test_and_clear_connected(xprt))
714 xprt_wake_pending_tasks(xprt, -ENOTCONN);
716 spin_unlock_bh(&xprt->transport_lock);
719 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
720 /* By convention, backchannel calls arrive via rdma_msg type
721 * messages, and never populate the chunk lists. This makes
722 * the RPC/RDMA header small and fixed in size, so it is
723 * straightforward to check the RPC header's direction field.
725 static bool
726 rpcrdma_is_bcall(struct rpcrdma_msg *headerp)
728 __be32 *p = (__be32 *)headerp;
730 if (headerp->rm_type != rdma_msg)
731 return false;
732 if (headerp->rm_body.rm_chunks[0] != xdr_zero)
733 return false;
734 if (headerp->rm_body.rm_chunks[1] != xdr_zero)
735 return false;
736 if (headerp->rm_body.rm_chunks[2] != xdr_zero)
737 return false;
739 /* sanity */
740 if (p[7] != headerp->rm_xid)
741 return false;
742 /* call direction */
743 if (p[8] != cpu_to_be32(RPC_CALL))
744 return false;
746 return true;
748 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
751 * This function is called when an async event is posted to
752 * the connection which changes the connection state. All it
753 * does at this point is mark the connection up/down, the rpc
754 * timers do the rest.
756 void
757 rpcrdma_conn_func(struct rpcrdma_ep *ep)
759 schedule_delayed_work(&ep->rep_connect_worker, 0);
762 /* Process received RPC/RDMA messages.
764 * Errors must result in the RPC task either being awakened, or
765 * allowed to timeout, to discover the errors at that time.
767 void
768 rpcrdma_reply_handler(struct rpcrdma_rep *rep)
770 struct rpcrdma_msg *headerp;
771 struct rpcrdma_req *req;
772 struct rpc_rqst *rqst;
773 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
774 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
775 __be32 *iptr;
776 int rdmalen, status;
777 unsigned long cwnd;
778 u32 credits;
780 dprintk("RPC: %s: incoming rep %p\n", __func__, rep);
782 if (rep->rr_len == RPCRDMA_BAD_LEN)
783 goto out_badstatus;
784 if (rep->rr_len < RPCRDMA_HDRLEN_MIN)
785 goto out_shortreply;
787 headerp = rdmab_to_msg(rep->rr_rdmabuf);
788 if (headerp->rm_vers != rpcrdma_version)
789 goto out_badversion;
790 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
791 if (rpcrdma_is_bcall(headerp))
792 goto out_bcall;
793 #endif
795 /* Match incoming rpcrdma_rep to an rpcrdma_req to
796 * get context for handling any incoming chunks.
798 spin_lock_bh(&xprt->transport_lock);
799 rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
800 if (!rqst)
801 goto out_nomatch;
803 req = rpcr_to_rdmar(rqst);
804 if (req->rl_reply)
805 goto out_duplicate;
807 dprintk("RPC: %s: reply 0x%p completes request 0x%p\n"
808 " RPC request 0x%p xid 0x%08x\n",
809 __func__, rep, req, rqst,
810 be32_to_cpu(headerp->rm_xid));
812 /* from here on, the reply is no longer an orphan */
813 req->rl_reply = rep;
814 xprt->reestablish_timeout = 0;
816 /* check for expected message types */
817 /* The order of some of these tests is important. */
818 switch (headerp->rm_type) {
819 case rdma_msg:
820 /* never expect read chunks */
821 /* never expect reply chunks (two ways to check) */
822 /* never expect write chunks without having offered RDMA */
823 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
824 (headerp->rm_body.rm_chunks[1] == xdr_zero &&
825 headerp->rm_body.rm_chunks[2] != xdr_zero) ||
826 (headerp->rm_body.rm_chunks[1] != xdr_zero &&
827 req->rl_nchunks == 0))
828 goto badheader;
829 if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
830 /* count any expected write chunks in read reply */
831 /* start at write chunk array count */
832 iptr = &headerp->rm_body.rm_chunks[2];
833 rdmalen = rpcrdma_count_chunks(rep,
834 req->rl_nchunks, 1, &iptr);
835 /* check for validity, and no reply chunk after */
836 if (rdmalen < 0 || *iptr++ != xdr_zero)
837 goto badheader;
838 rep->rr_len -=
839 ((unsigned char *)iptr - (unsigned char *)headerp);
840 status = rep->rr_len + rdmalen;
841 r_xprt->rx_stats.total_rdma_reply += rdmalen;
842 /* special case - last chunk may omit padding */
843 if (rdmalen &= 3) {
844 rdmalen = 4 - rdmalen;
845 status += rdmalen;
847 } else {
848 /* else ordinary inline */
849 rdmalen = 0;
850 iptr = (__be32 *)((unsigned char *)headerp +
851 RPCRDMA_HDRLEN_MIN);
852 rep->rr_len -= RPCRDMA_HDRLEN_MIN;
853 status = rep->rr_len;
855 /* Fix up the rpc results for upper layer */
856 rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
857 break;
859 case rdma_nomsg:
860 /* never expect read or write chunks, always reply chunks */
861 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
862 headerp->rm_body.rm_chunks[1] != xdr_zero ||
863 headerp->rm_body.rm_chunks[2] != xdr_one ||
864 req->rl_nchunks == 0)
865 goto badheader;
866 iptr = (__be32 *)((unsigned char *)headerp +
867 RPCRDMA_HDRLEN_MIN);
868 rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
869 if (rdmalen < 0)
870 goto badheader;
871 r_xprt->rx_stats.total_rdma_reply += rdmalen;
872 /* Reply chunk buffer already is the reply vector - no fixup. */
873 status = rdmalen;
874 break;
876 badheader:
877 default:
878 dprintk("%s: invalid rpcrdma reply header (type %d):"
879 " chunks[012] == %d %d %d"
880 " expected chunks <= %d\n",
881 __func__, be32_to_cpu(headerp->rm_type),
882 headerp->rm_body.rm_chunks[0],
883 headerp->rm_body.rm_chunks[1],
884 headerp->rm_body.rm_chunks[2],
885 req->rl_nchunks);
886 status = -EIO;
887 r_xprt->rx_stats.bad_reply_count++;
888 break;
891 credits = be32_to_cpu(headerp->rm_credit);
892 if (credits == 0)
893 credits = 1; /* don't deadlock */
894 else if (credits > r_xprt->rx_buf.rb_max_requests)
895 credits = r_xprt->rx_buf.rb_max_requests;
897 cwnd = xprt->cwnd;
898 xprt->cwnd = credits << RPC_CWNDSHIFT;
899 if (xprt->cwnd > cwnd)
900 xprt_release_rqst_cong(rqst->rq_task);
902 xprt_complete_rqst(rqst->rq_task, status);
903 spin_unlock_bh(&xprt->transport_lock);
904 dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
905 __func__, xprt, rqst, status);
906 return;
908 out_badstatus:
909 rpcrdma_recv_buffer_put(rep);
910 if (r_xprt->rx_ep.rep_connected == 1) {
911 r_xprt->rx_ep.rep_connected = -EIO;
912 rpcrdma_conn_func(&r_xprt->rx_ep);
914 return;
916 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
917 out_bcall:
918 rpcrdma_bc_receive_call(r_xprt, rep);
919 return;
920 #endif
922 out_shortreply:
923 dprintk("RPC: %s: short/invalid reply\n", __func__);
924 goto repost;
926 out_badversion:
927 dprintk("RPC: %s: invalid version %d\n",
928 __func__, be32_to_cpu(headerp->rm_vers));
929 goto repost;
931 out_nomatch:
932 spin_unlock_bh(&xprt->transport_lock);
933 dprintk("RPC: %s: no match for incoming xid 0x%08x len %d\n",
934 __func__, be32_to_cpu(headerp->rm_xid),
935 rep->rr_len);
936 goto repost;
938 out_duplicate:
939 spin_unlock_bh(&xprt->transport_lock);
940 dprintk("RPC: %s: "
941 "duplicate reply %p to RPC request %p: xid 0x%08x\n",
942 __func__, rep, req, be32_to_cpu(headerp->rm_xid));
944 repost:
945 r_xprt->rx_stats.bad_reply_count++;
946 if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
947 rpcrdma_recv_buffer_put(rep);