2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 * Added support for runtime switching of the policy type
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
65 #include "conditional.h"
73 int selinux_policycap_netpeer
;
74 int selinux_policycap_openperm
;
75 int selinux_policycap_alwaysnetwork
;
77 static DEFINE_RWLOCK(policy_rwlock
);
79 static struct sidtab sidtab
;
80 struct policydb policydb
;
84 * The largest sequence number that has been used when
85 * providing an access decision to the access vector cache.
86 * The sequence number only changes when a policy change
89 static u32 latest_granting
;
91 /* Forward declaration. */
92 static int context_struct_to_string(struct context
*context
, char **scontext
,
95 static void context_struct_compute_av(struct context
*scontext
,
96 struct context
*tcontext
,
98 struct av_decision
*avd
,
99 struct extended_perms
*xperms
);
101 struct selinux_mapping
{
102 u16 value
; /* policy value */
104 u32 perms
[sizeof(u32
) * 8];
107 static struct selinux_mapping
*current_mapping
;
108 static u16 current_mapping_size
;
110 static int selinux_set_mapping(struct policydb
*pol
,
111 struct security_class_mapping
*map
,
112 struct selinux_mapping
**out_map_p
,
115 struct selinux_mapping
*out_map
= NULL
;
116 size_t size
= sizeof(struct selinux_mapping
);
119 bool print_unknown_handle
= false;
121 /* Find number of classes in the input mapping */
128 /* Allocate space for the class records, plus one for class zero */
129 out_map
= kcalloc(++i
, size
, GFP_ATOMIC
);
133 /* Store the raw class and permission values */
135 while (map
[j
].name
) {
136 struct security_class_mapping
*p_in
= map
+ (j
++);
137 struct selinux_mapping
*p_out
= out_map
+ j
;
139 /* An empty class string skips ahead */
140 if (!strcmp(p_in
->name
, "")) {
141 p_out
->num_perms
= 0;
145 p_out
->value
= string_to_security_class(pol
, p_in
->name
);
148 "SELinux: Class %s not defined in policy.\n",
150 if (pol
->reject_unknown
)
152 p_out
->num_perms
= 0;
153 print_unknown_handle
= true;
158 while (p_in
->perms
&& p_in
->perms
[k
]) {
159 /* An empty permission string skips ahead */
160 if (!*p_in
->perms
[k
]) {
164 p_out
->perms
[k
] = string_to_av_perm(pol
, p_out
->value
,
166 if (!p_out
->perms
[k
]) {
168 "SELinux: Permission %s in class %s not defined in policy.\n",
169 p_in
->perms
[k
], p_in
->name
);
170 if (pol
->reject_unknown
)
172 print_unknown_handle
= true;
177 p_out
->num_perms
= k
;
180 if (print_unknown_handle
)
181 printk(KERN_INFO
"SELinux: the above unknown classes and permissions will be %s\n",
182 pol
->allow_unknown
? "allowed" : "denied");
184 *out_map_p
= out_map
;
193 * Get real, policy values from mapped values
196 static u16
unmap_class(u16 tclass
)
198 if (tclass
< current_mapping_size
)
199 return current_mapping
[tclass
].value
;
205 * Get kernel value for class from its policy value
207 static u16
map_class(u16 pol_value
)
211 for (i
= 1; i
< current_mapping_size
; i
++) {
212 if (current_mapping
[i
].value
== pol_value
)
216 return SECCLASS_NULL
;
219 static void map_decision(u16 tclass
, struct av_decision
*avd
,
222 if (tclass
< current_mapping_size
) {
223 unsigned i
, n
= current_mapping
[tclass
].num_perms
;
226 for (i
= 0, result
= 0; i
< n
; i
++) {
227 if (avd
->allowed
& current_mapping
[tclass
].perms
[i
])
229 if (allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
232 avd
->allowed
= result
;
234 for (i
= 0, result
= 0; i
< n
; i
++)
235 if (avd
->auditallow
& current_mapping
[tclass
].perms
[i
])
237 avd
->auditallow
= result
;
239 for (i
= 0, result
= 0; i
< n
; i
++) {
240 if (avd
->auditdeny
& current_mapping
[tclass
].perms
[i
])
242 if (!allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
246 * In case the kernel has a bug and requests a permission
247 * between num_perms and the maximum permission number, we
248 * should audit that denial
250 for (; i
< (sizeof(u32
)*8); i
++)
252 avd
->auditdeny
= result
;
256 int security_mls_enabled(void)
258 return policydb
.mls_enabled
;
262 * Return the boolean value of a constraint expression
263 * when it is applied to the specified source and target
266 * xcontext is a special beast... It is used by the validatetrans rules
267 * only. For these rules, scontext is the context before the transition,
268 * tcontext is the context after the transition, and xcontext is the context
269 * of the process performing the transition. All other callers of
270 * constraint_expr_eval should pass in NULL for xcontext.
272 static int constraint_expr_eval(struct context
*scontext
,
273 struct context
*tcontext
,
274 struct context
*xcontext
,
275 struct constraint_expr
*cexpr
)
279 struct role_datum
*r1
, *r2
;
280 struct mls_level
*l1
, *l2
;
281 struct constraint_expr
*e
;
282 int s
[CEXPR_MAXDEPTH
];
285 for (e
= cexpr
; e
; e
= e
->next
) {
286 switch (e
->expr_type
) {
302 if (sp
== (CEXPR_MAXDEPTH
- 1))
306 val1
= scontext
->user
;
307 val2
= tcontext
->user
;
310 val1
= scontext
->type
;
311 val2
= tcontext
->type
;
314 val1
= scontext
->role
;
315 val2
= tcontext
->role
;
316 r1
= policydb
.role_val_to_struct
[val1
- 1];
317 r2
= policydb
.role_val_to_struct
[val2
- 1];
320 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
324 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
328 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
330 !ebitmap_get_bit(&r2
->dominates
,
338 l1
= &(scontext
->range
.level
[0]);
339 l2
= &(tcontext
->range
.level
[0]);
342 l1
= &(scontext
->range
.level
[0]);
343 l2
= &(tcontext
->range
.level
[1]);
346 l1
= &(scontext
->range
.level
[1]);
347 l2
= &(tcontext
->range
.level
[0]);
350 l1
= &(scontext
->range
.level
[1]);
351 l2
= &(tcontext
->range
.level
[1]);
354 l1
= &(scontext
->range
.level
[0]);
355 l2
= &(scontext
->range
.level
[1]);
358 l1
= &(tcontext
->range
.level
[0]);
359 l2
= &(tcontext
->range
.level
[1]);
364 s
[++sp
] = mls_level_eq(l1
, l2
);
367 s
[++sp
] = !mls_level_eq(l1
, l2
);
370 s
[++sp
] = mls_level_dom(l1
, l2
);
373 s
[++sp
] = mls_level_dom(l2
, l1
);
376 s
[++sp
] = mls_level_incomp(l2
, l1
);
390 s
[++sp
] = (val1
== val2
);
393 s
[++sp
] = (val1
!= val2
);
401 if (sp
== (CEXPR_MAXDEPTH
-1))
404 if (e
->attr
& CEXPR_TARGET
)
406 else if (e
->attr
& CEXPR_XTARGET
) {
413 if (e
->attr
& CEXPR_USER
)
415 else if (e
->attr
& CEXPR_ROLE
)
417 else if (e
->attr
& CEXPR_TYPE
)
426 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
429 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
447 * security_dump_masked_av - dumps masked permissions during
448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
450 static int dump_masked_av_helper(void *k
, void *d
, void *args
)
452 struct perm_datum
*pdatum
= d
;
453 char **permission_names
= args
;
455 BUG_ON(pdatum
->value
< 1 || pdatum
->value
> 32);
457 permission_names
[pdatum
->value
- 1] = (char *)k
;
462 static void security_dump_masked_av(struct context
*scontext
,
463 struct context
*tcontext
,
468 struct common_datum
*common_dat
;
469 struct class_datum
*tclass_dat
;
470 struct audit_buffer
*ab
;
472 char *scontext_name
= NULL
;
473 char *tcontext_name
= NULL
;
474 char *permission_names
[32];
477 bool need_comma
= false;
482 tclass_name
= sym_name(&policydb
, SYM_CLASSES
, tclass
- 1);
483 tclass_dat
= policydb
.class_val_to_struct
[tclass
- 1];
484 common_dat
= tclass_dat
->comdatum
;
486 /* init permission_names */
488 hashtab_map(common_dat
->permissions
.table
,
489 dump_masked_av_helper
, permission_names
) < 0)
492 if (hashtab_map(tclass_dat
->permissions
.table
,
493 dump_masked_av_helper
, permission_names
) < 0)
496 /* get scontext/tcontext in text form */
497 if (context_struct_to_string(scontext
,
498 &scontext_name
, &length
) < 0)
501 if (context_struct_to_string(tcontext
,
502 &tcontext_name
, &length
) < 0)
505 /* audit a message */
506 ab
= audit_log_start(current
->audit_context
,
507 GFP_ATOMIC
, AUDIT_SELINUX_ERR
);
511 audit_log_format(ab
, "op=security_compute_av reason=%s "
512 "scontext=%s tcontext=%s tclass=%s perms=",
513 reason
, scontext_name
, tcontext_name
, tclass_name
);
515 for (index
= 0; index
< 32; index
++) {
516 u32 mask
= (1 << index
);
518 if ((mask
& permissions
) == 0)
521 audit_log_format(ab
, "%s%s",
522 need_comma
? "," : "",
523 permission_names
[index
]
524 ? permission_names
[index
] : "????");
529 /* release scontext/tcontext */
530 kfree(tcontext_name
);
531 kfree(scontext_name
);
537 * security_boundary_permission - drops violated permissions
538 * on boundary constraint.
540 static void type_attribute_bounds_av(struct context
*scontext
,
541 struct context
*tcontext
,
543 struct av_decision
*avd
)
545 struct context lo_scontext
;
546 struct context lo_tcontext
;
547 struct av_decision lo_avd
;
548 struct type_datum
*source
;
549 struct type_datum
*target
;
552 source
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
556 target
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
560 if (source
->bounds
) {
561 memset(&lo_avd
, 0, sizeof(lo_avd
));
563 memcpy(&lo_scontext
, scontext
, sizeof(lo_scontext
));
564 lo_scontext
.type
= source
->bounds
;
566 context_struct_compute_av(&lo_scontext
,
571 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
572 return; /* no masked permission */
573 masked
= ~lo_avd
.allowed
& avd
->allowed
;
576 if (target
->bounds
) {
577 memset(&lo_avd
, 0, sizeof(lo_avd
));
579 memcpy(&lo_tcontext
, tcontext
, sizeof(lo_tcontext
));
580 lo_tcontext
.type
= target
->bounds
;
582 context_struct_compute_av(scontext
,
587 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
588 return; /* no masked permission */
589 masked
= ~lo_avd
.allowed
& avd
->allowed
;
592 if (source
->bounds
&& target
->bounds
) {
593 memset(&lo_avd
, 0, sizeof(lo_avd
));
595 * lo_scontext and lo_tcontext are already
599 context_struct_compute_av(&lo_scontext
,
604 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
605 return; /* no masked permission */
606 masked
= ~lo_avd
.allowed
& avd
->allowed
;
610 /* mask violated permissions */
611 avd
->allowed
&= ~masked
;
613 /* audit masked permissions */
614 security_dump_masked_av(scontext
, tcontext
,
615 tclass
, masked
, "bounds");
620 * flag which drivers have permissions
621 * only looking for ioctl based extended permssions
623 void services_compute_xperms_drivers(
624 struct extended_perms
*xperms
,
625 struct avtab_node
*node
)
629 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
630 /* if one or more driver has all permissions allowed */
631 for (i
= 0; i
< ARRAY_SIZE(xperms
->drivers
.p
); i
++)
632 xperms
->drivers
.p
[i
] |= node
->datum
.u
.xperms
->perms
.p
[i
];
633 } else if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
634 /* if allowing permissions within a driver */
635 security_xperm_set(xperms
->drivers
.p
,
636 node
->datum
.u
.xperms
->driver
);
639 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
640 if (node
->key
.specified
& AVTAB_XPERMS_ALLOWED
)
645 * Compute access vectors and extended permissions based on a context
646 * structure pair for the permissions in a particular class.
648 static void context_struct_compute_av(struct context
*scontext
,
649 struct context
*tcontext
,
651 struct av_decision
*avd
,
652 struct extended_perms
*xperms
)
654 struct constraint_node
*constraint
;
655 struct role_allow
*ra
;
656 struct avtab_key avkey
;
657 struct avtab_node
*node
;
658 struct class_datum
*tclass_datum
;
659 struct ebitmap
*sattr
, *tattr
;
660 struct ebitmap_node
*snode
, *tnode
;
665 avd
->auditdeny
= 0xffffffff;
667 memset(&xperms
->drivers
, 0, sizeof(xperms
->drivers
));
671 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
672 if (printk_ratelimit())
673 printk(KERN_WARNING
"SELinux: Invalid class %hu\n", tclass
);
677 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
680 * If a specific type enforcement rule was defined for
681 * this permission check, then use it.
683 avkey
.target_class
= tclass
;
684 avkey
.specified
= AVTAB_AV
| AVTAB_XPERMS
;
685 sattr
= flex_array_get(policydb
.type_attr_map_array
, scontext
->type
- 1);
687 tattr
= flex_array_get(policydb
.type_attr_map_array
, tcontext
->type
- 1);
689 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
690 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
691 avkey
.source_type
= i
+ 1;
692 avkey
.target_type
= j
+ 1;
693 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
695 node
= avtab_search_node_next(node
, avkey
.specified
)) {
696 if (node
->key
.specified
== AVTAB_ALLOWED
)
697 avd
->allowed
|= node
->datum
.u
.data
;
698 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
699 avd
->auditallow
|= node
->datum
.u
.data
;
700 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
701 avd
->auditdeny
&= node
->datum
.u
.data
;
702 else if (xperms
&& (node
->key
.specified
& AVTAB_XPERMS
))
703 services_compute_xperms_drivers(xperms
, node
);
706 /* Check conditional av table for additional permissions */
707 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
,
714 * Remove any permissions prohibited by a constraint (this includes
717 constraint
= tclass_datum
->constraints
;
719 if ((constraint
->permissions
& (avd
->allowed
)) &&
720 !constraint_expr_eval(scontext
, tcontext
, NULL
,
722 avd
->allowed
&= ~(constraint
->permissions
);
724 constraint
= constraint
->next
;
728 * If checking process transition permission and the
729 * role is changing, then check the (current_role, new_role)
732 if (tclass
== policydb
.process_class
&&
733 (avd
->allowed
& policydb
.process_trans_perms
) &&
734 scontext
->role
!= tcontext
->role
) {
735 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
736 if (scontext
->role
== ra
->role
&&
737 tcontext
->role
== ra
->new_role
)
741 avd
->allowed
&= ~policydb
.process_trans_perms
;
745 * If the given source and target types have boundary
746 * constraint, lazy checks have to mask any violated
747 * permission and notice it to userspace via audit.
749 type_attribute_bounds_av(scontext
, tcontext
,
753 static int security_validtrans_handle_fail(struct context
*ocontext
,
754 struct context
*ncontext
,
755 struct context
*tcontext
,
758 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
759 u32 olen
, nlen
, tlen
;
761 if (context_struct_to_string(ocontext
, &o
, &olen
))
763 if (context_struct_to_string(ncontext
, &n
, &nlen
))
765 if (context_struct_to_string(tcontext
, &t
, &tlen
))
767 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
768 "op=security_validate_transition seresult=denied"
769 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
770 o
, n
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
776 if (!selinux_enforcing
)
781 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
784 struct context
*ocontext
;
785 struct context
*ncontext
;
786 struct context
*tcontext
;
787 struct class_datum
*tclass_datum
;
788 struct constraint_node
*constraint
;
795 read_lock(&policy_rwlock
);
797 tclass
= unmap_class(orig_tclass
);
799 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
800 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n",
805 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
807 ocontext
= sidtab_search(&sidtab
, oldsid
);
809 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
815 ncontext
= sidtab_search(&sidtab
, newsid
);
817 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
823 tcontext
= sidtab_search(&sidtab
, tasksid
);
825 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
831 constraint
= tclass_datum
->validatetrans
;
833 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
835 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
839 constraint
= constraint
->next
;
843 read_unlock(&policy_rwlock
);
848 * security_bounded_transition - check whether the given
849 * transition is directed to bounded, or not.
850 * It returns 0, if @newsid is bounded by @oldsid.
851 * Otherwise, it returns error code.
853 * @oldsid : current security identifier
854 * @newsid : destinated security identifier
856 int security_bounded_transition(u32 old_sid
, u32 new_sid
)
858 struct context
*old_context
, *new_context
;
859 struct type_datum
*type
;
863 read_lock(&policy_rwlock
);
866 old_context
= sidtab_search(&sidtab
, old_sid
);
868 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
874 new_context
= sidtab_search(&sidtab
, new_sid
);
876 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
882 /* type/domain unchanged */
883 if (old_context
->type
== new_context
->type
)
886 index
= new_context
->type
;
888 type
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
892 /* not bounded anymore */
897 /* @newsid is bounded by @oldsid */
899 if (type
->bounds
== old_context
->type
)
902 index
= type
->bounds
;
906 char *old_name
= NULL
;
907 char *new_name
= NULL
;
910 if (!context_struct_to_string(old_context
,
911 &old_name
, &length
) &&
912 !context_struct_to_string(new_context
,
913 &new_name
, &length
)) {
914 audit_log(current
->audit_context
,
915 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
916 "op=security_bounded_transition "
918 "oldcontext=%s newcontext=%s",
925 read_unlock(&policy_rwlock
);
930 static void avd_init(struct av_decision
*avd
)
934 avd
->auditdeny
= 0xffffffff;
935 avd
->seqno
= latest_granting
;
939 void services_compute_xperms_decision(struct extended_perms_decision
*xpermd
,
940 struct avtab_node
*node
)
944 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
945 if (xpermd
->driver
!= node
->datum
.u
.xperms
->driver
)
947 } else if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
948 if (!security_xperm_test(node
->datum
.u
.xperms
->perms
.p
,
955 if (node
->key
.specified
== AVTAB_XPERMS_ALLOWED
) {
956 xpermd
->used
|= XPERMS_ALLOWED
;
957 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
958 memset(xpermd
->allowed
->p
, 0xff,
959 sizeof(xpermd
->allowed
->p
));
961 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
962 for (i
= 0; i
< ARRAY_SIZE(xpermd
->allowed
->p
); i
++)
963 xpermd
->allowed
->p
[i
] |=
964 node
->datum
.u
.xperms
->perms
.p
[i
];
966 } else if (node
->key
.specified
== AVTAB_XPERMS_AUDITALLOW
) {
967 xpermd
->used
|= XPERMS_AUDITALLOW
;
968 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
969 memset(xpermd
->auditallow
->p
, 0xff,
970 sizeof(xpermd
->auditallow
->p
));
972 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
973 for (i
= 0; i
< ARRAY_SIZE(xpermd
->auditallow
->p
); i
++)
974 xpermd
->auditallow
->p
[i
] |=
975 node
->datum
.u
.xperms
->perms
.p
[i
];
977 } else if (node
->key
.specified
== AVTAB_XPERMS_DONTAUDIT
) {
978 xpermd
->used
|= XPERMS_DONTAUDIT
;
979 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
980 memset(xpermd
->dontaudit
->p
, 0xff,
981 sizeof(xpermd
->dontaudit
->p
));
983 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
984 for (i
= 0; i
< ARRAY_SIZE(xpermd
->dontaudit
->p
); i
++)
985 xpermd
->dontaudit
->p
[i
] |=
986 node
->datum
.u
.xperms
->perms
.p
[i
];
993 void security_compute_xperms_decision(u32 ssid
,
997 struct extended_perms_decision
*xpermd
)
1000 struct context
*scontext
, *tcontext
;
1001 struct avtab_key avkey
;
1002 struct avtab_node
*node
;
1003 struct ebitmap
*sattr
, *tattr
;
1004 struct ebitmap_node
*snode
, *tnode
;
1007 xpermd
->driver
= driver
;
1009 memset(xpermd
->allowed
->p
, 0, sizeof(xpermd
->allowed
->p
));
1010 memset(xpermd
->auditallow
->p
, 0, sizeof(xpermd
->auditallow
->p
));
1011 memset(xpermd
->dontaudit
->p
, 0, sizeof(xpermd
->dontaudit
->p
));
1013 read_lock(&policy_rwlock
);
1014 if (!ss_initialized
)
1017 scontext
= sidtab_search(&sidtab
, ssid
);
1019 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1024 tcontext
= sidtab_search(&sidtab
, tsid
);
1026 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1031 tclass
= unmap_class(orig_tclass
);
1032 if (unlikely(orig_tclass
&& !tclass
)) {
1033 if (policydb
.allow_unknown
)
1039 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
1040 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass
);
1044 avkey
.target_class
= tclass
;
1045 avkey
.specified
= AVTAB_XPERMS
;
1046 sattr
= flex_array_get(policydb
.type_attr_map_array
,
1047 scontext
->type
- 1);
1049 tattr
= flex_array_get(policydb
.type_attr_map_array
,
1050 tcontext
->type
- 1);
1052 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
1053 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
1054 avkey
.source_type
= i
+ 1;
1055 avkey
.target_type
= j
+ 1;
1056 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
1058 node
= avtab_search_node_next(node
, avkey
.specified
))
1059 services_compute_xperms_decision(xpermd
, node
);
1061 cond_compute_xperms(&policydb
.te_cond_avtab
,
1066 read_unlock(&policy_rwlock
);
1069 memset(xpermd
->allowed
->p
, 0xff, sizeof(xpermd
->allowed
->p
));
1074 * security_compute_av - Compute access vector decisions.
1075 * @ssid: source security identifier
1076 * @tsid: target security identifier
1077 * @tclass: target security class
1078 * @avd: access vector decisions
1079 * @xperms: extended permissions
1081 * Compute a set of access vector decisions based on the
1082 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1084 void security_compute_av(u32 ssid
,
1087 struct av_decision
*avd
,
1088 struct extended_perms
*xperms
)
1091 struct context
*scontext
= NULL
, *tcontext
= NULL
;
1093 read_lock(&policy_rwlock
);
1096 if (!ss_initialized
)
1099 scontext
= sidtab_search(&sidtab
, ssid
);
1101 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1106 /* permissive domain? */
1107 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
1108 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
1110 tcontext
= sidtab_search(&sidtab
, tsid
);
1112 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1117 tclass
= unmap_class(orig_tclass
);
1118 if (unlikely(orig_tclass
&& !tclass
)) {
1119 if (policydb
.allow_unknown
)
1123 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
, xperms
);
1124 map_decision(orig_tclass
, avd
, policydb
.allow_unknown
);
1126 read_unlock(&policy_rwlock
);
1129 avd
->allowed
= 0xffffffff;
1133 void security_compute_av_user(u32 ssid
,
1136 struct av_decision
*avd
)
1138 struct context
*scontext
= NULL
, *tcontext
= NULL
;
1140 read_lock(&policy_rwlock
);
1142 if (!ss_initialized
)
1145 scontext
= sidtab_search(&sidtab
, ssid
);
1147 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1152 /* permissive domain? */
1153 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
1154 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
1156 tcontext
= sidtab_search(&sidtab
, tsid
);
1158 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1163 if (unlikely(!tclass
)) {
1164 if (policydb
.allow_unknown
)
1169 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
, NULL
);
1171 read_unlock(&policy_rwlock
);
1174 avd
->allowed
= 0xffffffff;
1179 * Write the security context string representation of
1180 * the context structure `context' into a dynamically
1181 * allocated string of the correct size. Set `*scontext'
1182 * to point to this string and set `*scontext_len' to
1183 * the length of the string.
1185 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
1194 *scontext_len
= context
->len
;
1196 *scontext
= kstrdup(context
->str
, GFP_ATOMIC
);
1203 /* Compute the size of the context. */
1204 *scontext_len
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) + 1;
1205 *scontext_len
+= strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) + 1;
1206 *scontext_len
+= strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1)) + 1;
1207 *scontext_len
+= mls_compute_context_len(context
);
1212 /* Allocate space for the context; caller must free this space. */
1213 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1216 *scontext
= scontextp
;
1219 * Copy the user name, role name and type name into the context.
1221 scontextp
+= sprintf(scontextp
, "%s:%s:%s",
1222 sym_name(&policydb
, SYM_USERS
, context
->user
- 1),
1223 sym_name(&policydb
, SYM_ROLES
, context
->role
- 1),
1224 sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1226 mls_sid_to_context(context
, &scontextp
);
1233 #include "initial_sid_to_string.h"
1235 const char *security_get_initial_sid_context(u32 sid
)
1237 if (unlikely(sid
> SECINITSID_NUM
))
1239 return initial_sid_to_string
[sid
];
1242 static int security_sid_to_context_core(u32 sid
, char **scontext
,
1243 u32
*scontext_len
, int force
)
1245 struct context
*context
;
1252 if (!ss_initialized
) {
1253 if (sid
<= SECINITSID_NUM
) {
1256 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
1259 scontextp
= kmemdup(initial_sid_to_string
[sid
],
1260 *scontext_len
, GFP_ATOMIC
);
1265 *scontext
= scontextp
;
1268 printk(KERN_ERR
"SELinux: %s: called before initial "
1269 "load_policy on unknown SID %d\n", __func__
, sid
);
1273 read_lock(&policy_rwlock
);
1275 context
= sidtab_search_force(&sidtab
, sid
);
1277 context
= sidtab_search(&sidtab
, sid
);
1279 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1284 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
1286 read_unlock(&policy_rwlock
);
1293 * security_sid_to_context - Obtain a context for a given SID.
1294 * @sid: security identifier, SID
1295 * @scontext: security context
1296 * @scontext_len: length in bytes
1298 * Write the string representation of the context associated with @sid
1299 * into a dynamically allocated string of the correct size. Set @scontext
1300 * to point to this string and set @scontext_len to the length of the string.
1302 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
1304 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 0);
1307 int security_sid_to_context_force(u32 sid
, char **scontext
, u32
*scontext_len
)
1309 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 1);
1313 * Caveat: Mutates scontext.
1315 static int string_to_context_struct(struct policydb
*pol
,
1316 struct sidtab
*sidtabp
,
1319 struct context
*ctx
,
1322 struct role_datum
*role
;
1323 struct type_datum
*typdatum
;
1324 struct user_datum
*usrdatum
;
1325 char *scontextp
, *p
, oldc
;
1330 /* Parse the security context. */
1333 scontextp
= (char *) scontext
;
1335 /* Extract the user. */
1337 while (*p
&& *p
!= ':')
1345 usrdatum
= hashtab_search(pol
->p_users
.table
, scontextp
);
1349 ctx
->user
= usrdatum
->value
;
1353 while (*p
&& *p
!= ':')
1361 role
= hashtab_search(pol
->p_roles
.table
, scontextp
);
1364 ctx
->role
= role
->value
;
1368 while (*p
&& *p
!= ':')
1373 typdatum
= hashtab_search(pol
->p_types
.table
, scontextp
);
1374 if (!typdatum
|| typdatum
->attribute
)
1377 ctx
->type
= typdatum
->value
;
1379 rc
= mls_context_to_sid(pol
, oldc
, &p
, ctx
, sidtabp
, def_sid
);
1384 if ((p
- scontext
) < scontext_len
)
1387 /* Check the validity of the new context. */
1388 if (!policydb_context_isvalid(pol
, ctx
))
1393 context_destroy(ctx
);
1397 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
1398 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
,
1401 char *scontext2
, *str
= NULL
;
1402 struct context context
;
1405 /* An empty security context is never valid. */
1409 if (!ss_initialized
) {
1412 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
1413 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
1418 *sid
= SECINITSID_KERNEL
;
1423 /* Copy the string so that we can modify the copy as we parse it. */
1424 scontext2
= kmalloc(scontext_len
+ 1, gfp_flags
);
1427 memcpy(scontext2
, scontext
, scontext_len
);
1428 scontext2
[scontext_len
] = 0;
1431 /* Save another copy for storing in uninterpreted form */
1433 str
= kstrdup(scontext2
, gfp_flags
);
1438 read_lock(&policy_rwlock
);
1439 rc
= string_to_context_struct(&policydb
, &sidtab
, scontext2
,
1440 scontext_len
, &context
, def_sid
);
1441 if (rc
== -EINVAL
&& force
) {
1443 context
.len
= scontext_len
;
1447 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
1448 context_destroy(&context
);
1450 read_unlock(&policy_rwlock
);
1458 * security_context_to_sid - Obtain a SID for a given security context.
1459 * @scontext: security context
1460 * @scontext_len: length in bytes
1461 * @sid: security identifier, SID
1462 * @gfp: context for the allocation
1464 * Obtains a SID associated with the security context that
1465 * has the string representation specified by @scontext.
1466 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1467 * memory is available, or 0 on success.
1469 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
,
1472 return security_context_to_sid_core(scontext
, scontext_len
,
1473 sid
, SECSID_NULL
, gfp
, 0);
1476 int security_context_str_to_sid(const char *scontext
, u32
*sid
, gfp_t gfp
)
1478 return security_context_to_sid(scontext
, strlen(scontext
), sid
, gfp
);
1482 * security_context_to_sid_default - Obtain a SID for a given security context,
1483 * falling back to specified default if needed.
1485 * @scontext: security context
1486 * @scontext_len: length in bytes
1487 * @sid: security identifier, SID
1488 * @def_sid: default SID to assign on error
1490 * Obtains a SID associated with the security context that
1491 * has the string representation specified by @scontext.
1492 * The default SID is passed to the MLS layer to be used to allow
1493 * kernel labeling of the MLS field if the MLS field is not present
1494 * (for upgrading to MLS without full relabel).
1495 * Implicitly forces adding of the context even if it cannot be mapped yet.
1496 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1497 * memory is available, or 0 on success.
1499 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
1500 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
1502 return security_context_to_sid_core(scontext
, scontext_len
,
1503 sid
, def_sid
, gfp_flags
, 1);
1506 int security_context_to_sid_force(const char *scontext
, u32 scontext_len
,
1509 return security_context_to_sid_core(scontext
, scontext_len
,
1510 sid
, SECSID_NULL
, GFP_KERNEL
, 1);
1513 static int compute_sid_handle_invalid_context(
1514 struct context
*scontext
,
1515 struct context
*tcontext
,
1517 struct context
*newcontext
)
1519 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
1520 u32 slen
, tlen
, nlen
;
1522 if (context_struct_to_string(scontext
, &s
, &slen
))
1524 if (context_struct_to_string(tcontext
, &t
, &tlen
))
1526 if (context_struct_to_string(newcontext
, &n
, &nlen
))
1528 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1529 "op=security_compute_sid invalid_context=%s"
1533 n
, s
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
1538 if (!selinux_enforcing
)
1543 static void filename_compute_type(struct policydb
*p
, struct context
*newcontext
,
1544 u32 stype
, u32 ttype
, u16 tclass
,
1545 const char *objname
)
1547 struct filename_trans ft
;
1548 struct filename_trans_datum
*otype
;
1551 * Most filename trans rules are going to live in specific directories
1552 * like /dev or /var/run. This bitmap will quickly skip rule searches
1553 * if the ttype does not contain any rules.
1555 if (!ebitmap_get_bit(&p
->filename_trans_ttypes
, ttype
))
1563 otype
= hashtab_search(p
->filename_trans
, &ft
);
1565 newcontext
->type
= otype
->otype
;
1568 static int security_compute_sid(u32 ssid
,
1572 const char *objname
,
1576 struct class_datum
*cladatum
= NULL
;
1577 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
1578 struct role_trans
*roletr
= NULL
;
1579 struct avtab_key avkey
;
1580 struct avtab_datum
*avdatum
;
1581 struct avtab_node
*node
;
1586 if (!ss_initialized
) {
1587 switch (orig_tclass
) {
1588 case SECCLASS_PROCESS
: /* kernel value */
1598 context_init(&newcontext
);
1600 read_lock(&policy_rwlock
);
1603 tclass
= unmap_class(orig_tclass
);
1604 sock
= security_is_socket_class(orig_tclass
);
1606 tclass
= orig_tclass
;
1607 sock
= security_is_socket_class(map_class(tclass
));
1610 scontext
= sidtab_search(&sidtab
, ssid
);
1612 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1617 tcontext
= sidtab_search(&sidtab
, tsid
);
1619 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1625 if (tclass
&& tclass
<= policydb
.p_classes
.nprim
)
1626 cladatum
= policydb
.class_val_to_struct
[tclass
- 1];
1628 /* Set the user identity. */
1629 switch (specified
) {
1630 case AVTAB_TRANSITION
:
1632 if (cladatum
&& cladatum
->default_user
== DEFAULT_TARGET
) {
1633 newcontext
.user
= tcontext
->user
;
1635 /* notice this gets both DEFAULT_SOURCE and unset */
1636 /* Use the process user identity. */
1637 newcontext
.user
= scontext
->user
;
1641 /* Use the related object owner. */
1642 newcontext
.user
= tcontext
->user
;
1646 /* Set the role to default values. */
1647 if (cladatum
&& cladatum
->default_role
== DEFAULT_SOURCE
) {
1648 newcontext
.role
= scontext
->role
;
1649 } else if (cladatum
&& cladatum
->default_role
== DEFAULT_TARGET
) {
1650 newcontext
.role
= tcontext
->role
;
1652 if ((tclass
== policydb
.process_class
) || (sock
== true))
1653 newcontext
.role
= scontext
->role
;
1655 newcontext
.role
= OBJECT_R_VAL
;
1658 /* Set the type to default values. */
1659 if (cladatum
&& cladatum
->default_type
== DEFAULT_SOURCE
) {
1660 newcontext
.type
= scontext
->type
;
1661 } else if (cladatum
&& cladatum
->default_type
== DEFAULT_TARGET
) {
1662 newcontext
.type
= tcontext
->type
;
1664 if ((tclass
== policydb
.process_class
) || (sock
== true)) {
1665 /* Use the type of process. */
1666 newcontext
.type
= scontext
->type
;
1668 /* Use the type of the related object. */
1669 newcontext
.type
= tcontext
->type
;
1673 /* Look for a type transition/member/change rule. */
1674 avkey
.source_type
= scontext
->type
;
1675 avkey
.target_type
= tcontext
->type
;
1676 avkey
.target_class
= tclass
;
1677 avkey
.specified
= specified
;
1678 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
1680 /* If no permanent rule, also check for enabled conditional rules */
1682 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
1683 for (; node
; node
= avtab_search_node_next(node
, specified
)) {
1684 if (node
->key
.specified
& AVTAB_ENABLED
) {
1685 avdatum
= &node
->datum
;
1692 /* Use the type from the type transition/member/change rule. */
1693 newcontext
.type
= avdatum
->u
.data
;
1696 /* if we have a objname this is a file trans check so check those rules */
1698 filename_compute_type(&policydb
, &newcontext
, scontext
->type
,
1699 tcontext
->type
, tclass
, objname
);
1701 /* Check for class-specific changes. */
1702 if (specified
& AVTAB_TRANSITION
) {
1703 /* Look for a role transition rule. */
1704 for (roletr
= policydb
.role_tr
; roletr
; roletr
= roletr
->next
) {
1705 if ((roletr
->role
== scontext
->role
) &&
1706 (roletr
->type
== tcontext
->type
) &&
1707 (roletr
->tclass
== tclass
)) {
1708 /* Use the role transition rule. */
1709 newcontext
.role
= roletr
->new_role
;
1715 /* Set the MLS attributes.
1716 This is done last because it may allocate memory. */
1717 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
,
1722 /* Check the validity of the context. */
1723 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1724 rc
= compute_sid_handle_invalid_context(scontext
,
1731 /* Obtain the sid for the context. */
1732 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1734 read_unlock(&policy_rwlock
);
1735 context_destroy(&newcontext
);
1741 * security_transition_sid - Compute the SID for a new subject/object.
1742 * @ssid: source security identifier
1743 * @tsid: target security identifier
1744 * @tclass: target security class
1745 * @out_sid: security identifier for new subject/object
1747 * Compute a SID to use for labeling a new subject or object in the
1748 * class @tclass based on a SID pair (@ssid, @tsid).
1749 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1750 * if insufficient memory is available, or %0 if the new SID was
1751 * computed successfully.
1753 int security_transition_sid(u32 ssid
, u32 tsid
, u16 tclass
,
1754 const struct qstr
*qstr
, u32
*out_sid
)
1756 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1757 qstr
? qstr
->name
: NULL
, out_sid
, true);
1760 int security_transition_sid_user(u32 ssid
, u32 tsid
, u16 tclass
,
1761 const char *objname
, u32
*out_sid
)
1763 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1764 objname
, out_sid
, false);
1768 * security_member_sid - Compute the SID for member selection.
1769 * @ssid: source security identifier
1770 * @tsid: target security identifier
1771 * @tclass: target security class
1772 * @out_sid: security identifier for selected member
1774 * Compute a SID to use when selecting a member of a polyinstantiated
1775 * object of class @tclass based on a SID pair (@ssid, @tsid).
1776 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1777 * if insufficient memory is available, or %0 if the SID was
1778 * computed successfully.
1780 int security_member_sid(u32 ssid
,
1785 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, NULL
,
1790 * security_change_sid - Compute the SID for object relabeling.
1791 * @ssid: source security identifier
1792 * @tsid: target security identifier
1793 * @tclass: target security class
1794 * @out_sid: security identifier for selected member
1796 * Compute a SID to use for relabeling an object of class @tclass
1797 * based on a SID pair (@ssid, @tsid).
1798 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1799 * if insufficient memory is available, or %0 if the SID was
1800 * computed successfully.
1802 int security_change_sid(u32 ssid
,
1807 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, NULL
,
1811 /* Clone the SID into the new SID table. */
1812 static int clone_sid(u32 sid
,
1813 struct context
*context
,
1816 struct sidtab
*s
= arg
;
1818 if (sid
> SECINITSID_NUM
)
1819 return sidtab_insert(s
, sid
, context
);
1824 static inline int convert_context_handle_invalid_context(struct context
*context
)
1829 if (selinux_enforcing
)
1832 if (!context_struct_to_string(context
, &s
, &len
)) {
1833 printk(KERN_WARNING
"SELinux: Context %s would be invalid if enforcing\n", s
);
1839 struct convert_context_args
{
1840 struct policydb
*oldp
;
1841 struct policydb
*newp
;
1845 * Convert the values in the security context
1846 * structure `c' from the values specified
1847 * in the policy `p->oldp' to the values specified
1848 * in the policy `p->newp'. Verify that the
1849 * context is valid under the new policy.
1851 static int convert_context(u32 key
,
1855 struct convert_context_args
*args
;
1856 struct context oldc
;
1857 struct ocontext
*oc
;
1858 struct mls_range
*range
;
1859 struct role_datum
*role
;
1860 struct type_datum
*typdatum
;
1861 struct user_datum
*usrdatum
;
1866 if (key
<= SECINITSID_NUM
)
1875 s
= kstrdup(c
->str
, GFP_KERNEL
);
1879 rc
= string_to_context_struct(args
->newp
, NULL
, s
,
1880 c
->len
, &ctx
, SECSID_NULL
);
1883 printk(KERN_INFO
"SELinux: Context %s became valid (mapped).\n",
1885 /* Replace string with mapped representation. */
1887 memcpy(c
, &ctx
, sizeof(*c
));
1889 } else if (rc
== -EINVAL
) {
1890 /* Retain string representation for later mapping. */
1894 /* Other error condition, e.g. ENOMEM. */
1895 printk(KERN_ERR
"SELinux: Unable to map context %s, rc = %d.\n",
1901 rc
= context_cpy(&oldc
, c
);
1905 /* Convert the user. */
1907 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1908 sym_name(args
->oldp
, SYM_USERS
, c
->user
- 1));
1911 c
->user
= usrdatum
->value
;
1913 /* Convert the role. */
1915 role
= hashtab_search(args
->newp
->p_roles
.table
,
1916 sym_name(args
->oldp
, SYM_ROLES
, c
->role
- 1));
1919 c
->role
= role
->value
;
1921 /* Convert the type. */
1923 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1924 sym_name(args
->oldp
, SYM_TYPES
, c
->type
- 1));
1927 c
->type
= typdatum
->value
;
1929 /* Convert the MLS fields if dealing with MLS policies */
1930 if (args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1931 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1934 } else if (args
->oldp
->mls_enabled
&& !args
->newp
->mls_enabled
) {
1936 * Switching between MLS and non-MLS policy:
1937 * free any storage used by the MLS fields in the
1938 * context for all existing entries in the sidtab.
1940 mls_context_destroy(c
);
1941 } else if (!args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1943 * Switching between non-MLS and MLS policy:
1944 * ensure that the MLS fields of the context for all
1945 * existing entries in the sidtab are filled in with a
1946 * suitable default value, likely taken from one of the
1949 oc
= args
->newp
->ocontexts
[OCON_ISID
];
1950 while (oc
&& oc
->sid
[0] != SECINITSID_UNLABELED
)
1954 printk(KERN_ERR
"SELinux: unable to look up"
1955 " the initial SIDs list\n");
1958 range
= &oc
->context
[0].range
;
1959 rc
= mls_range_set(c
, range
);
1964 /* Check the validity of the new context. */
1965 if (!policydb_context_isvalid(args
->newp
, c
)) {
1966 rc
= convert_context_handle_invalid_context(&oldc
);
1971 context_destroy(&oldc
);
1977 /* Map old representation to string and save it. */
1978 rc
= context_struct_to_string(&oldc
, &s
, &len
);
1981 context_destroy(&oldc
);
1985 printk(KERN_INFO
"SELinux: Context %s became invalid (unmapped).\n",
1991 static void security_load_policycaps(void)
1993 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
1994 POLICYDB_CAPABILITY_NETPEER
);
1995 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
1996 POLICYDB_CAPABILITY_OPENPERM
);
1997 selinux_policycap_alwaysnetwork
= ebitmap_get_bit(&policydb
.policycaps
,
1998 POLICYDB_CAPABILITY_ALWAYSNETWORK
);
2001 static int security_preserve_bools(struct policydb
*p
);
2004 * security_load_policy - Load a security policy configuration.
2005 * @data: binary policy data
2006 * @len: length of data in bytes
2008 * Load a new set of security policy configuration data,
2009 * validate it and convert the SID table as necessary.
2010 * This function will flush the access vector cache after
2011 * loading the new policy.
2013 int security_load_policy(void *data
, size_t len
)
2015 struct policydb
*oldpolicydb
, *newpolicydb
;
2016 struct sidtab oldsidtab
, newsidtab
;
2017 struct selinux_mapping
*oldmap
, *map
= NULL
;
2018 struct convert_context_args args
;
2022 struct policy_file file
= { data
, len
}, *fp
= &file
;
2024 oldpolicydb
= kzalloc(2 * sizeof(*oldpolicydb
), GFP_KERNEL
);
2029 newpolicydb
= oldpolicydb
+ 1;
2031 if (!ss_initialized
) {
2033 rc
= policydb_read(&policydb
, fp
);
2035 avtab_cache_destroy();
2040 rc
= selinux_set_mapping(&policydb
, secclass_map
,
2042 ¤t_mapping_size
);
2044 policydb_destroy(&policydb
);
2045 avtab_cache_destroy();
2049 rc
= policydb_load_isids(&policydb
, &sidtab
);
2051 policydb_destroy(&policydb
);
2052 avtab_cache_destroy();
2056 security_load_policycaps();
2058 seqno
= ++latest_granting
;
2059 selinux_complete_init();
2060 avc_ss_reset(seqno
);
2061 selnl_notify_policyload(seqno
);
2062 selinux_status_update_policyload(seqno
);
2063 selinux_netlbl_cache_invalidate();
2064 selinux_xfrm_notify_policyload();
2069 sidtab_hash_eval(&sidtab
, "sids");
2072 rc
= policydb_read(newpolicydb
, fp
);
2076 newpolicydb
->len
= len
;
2077 /* If switching between different policy types, log MLS status */
2078 if (policydb
.mls_enabled
&& !newpolicydb
->mls_enabled
)
2079 printk(KERN_INFO
"SELinux: Disabling MLS support...\n");
2080 else if (!policydb
.mls_enabled
&& newpolicydb
->mls_enabled
)
2081 printk(KERN_INFO
"SELinux: Enabling MLS support...\n");
2083 rc
= policydb_load_isids(newpolicydb
, &newsidtab
);
2085 printk(KERN_ERR
"SELinux: unable to load the initial SIDs\n");
2086 policydb_destroy(newpolicydb
);
2090 rc
= selinux_set_mapping(newpolicydb
, secclass_map
, &map
, &map_size
);
2094 rc
= security_preserve_bools(newpolicydb
);
2096 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
2100 /* Clone the SID table. */
2101 sidtab_shutdown(&sidtab
);
2103 rc
= sidtab_map(&sidtab
, clone_sid
, &newsidtab
);
2108 * Convert the internal representations of contexts
2109 * in the new SID table.
2111 args
.oldp
= &policydb
;
2112 args
.newp
= newpolicydb
;
2113 rc
= sidtab_map(&newsidtab
, convert_context
, &args
);
2115 printk(KERN_ERR
"SELinux: unable to convert the internal"
2116 " representation of contexts in the new SID"
2121 /* Save the old policydb and SID table to free later. */
2122 memcpy(oldpolicydb
, &policydb
, sizeof(policydb
));
2123 sidtab_set(&oldsidtab
, &sidtab
);
2125 /* Install the new policydb and SID table. */
2126 write_lock_irq(&policy_rwlock
);
2127 memcpy(&policydb
, newpolicydb
, sizeof(policydb
));
2128 sidtab_set(&sidtab
, &newsidtab
);
2129 security_load_policycaps();
2130 oldmap
= current_mapping
;
2131 current_mapping
= map
;
2132 current_mapping_size
= map_size
;
2133 seqno
= ++latest_granting
;
2134 write_unlock_irq(&policy_rwlock
);
2136 /* Free the old policydb and SID table. */
2137 policydb_destroy(oldpolicydb
);
2138 sidtab_destroy(&oldsidtab
);
2141 avc_ss_reset(seqno
);
2142 selnl_notify_policyload(seqno
);
2143 selinux_status_update_policyload(seqno
);
2144 selinux_netlbl_cache_invalidate();
2145 selinux_xfrm_notify_policyload();
2152 sidtab_destroy(&newsidtab
);
2153 policydb_destroy(newpolicydb
);
2160 size_t security_policydb_len(void)
2164 read_lock(&policy_rwlock
);
2166 read_unlock(&policy_rwlock
);
2172 * security_port_sid - Obtain the SID for a port.
2173 * @protocol: protocol number
2174 * @port: port number
2175 * @out_sid: security identifier
2177 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
2182 read_lock(&policy_rwlock
);
2184 c
= policydb
.ocontexts
[OCON_PORT
];
2186 if (c
->u
.port
.protocol
== protocol
&&
2187 c
->u
.port
.low_port
<= port
&&
2188 c
->u
.port
.high_port
>= port
)
2195 rc
= sidtab_context_to_sid(&sidtab
,
2201 *out_sid
= c
->sid
[0];
2203 *out_sid
= SECINITSID_PORT
;
2207 read_unlock(&policy_rwlock
);
2212 * security_netif_sid - Obtain the SID for a network interface.
2213 * @name: interface name
2214 * @if_sid: interface SID
2216 int security_netif_sid(char *name
, u32
*if_sid
)
2221 read_lock(&policy_rwlock
);
2223 c
= policydb
.ocontexts
[OCON_NETIF
];
2225 if (strcmp(name
, c
->u
.name
) == 0)
2231 if (!c
->sid
[0] || !c
->sid
[1]) {
2232 rc
= sidtab_context_to_sid(&sidtab
,
2237 rc
= sidtab_context_to_sid(&sidtab
,
2243 *if_sid
= c
->sid
[0];
2245 *if_sid
= SECINITSID_NETIF
;
2248 read_unlock(&policy_rwlock
);
2252 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
2256 for (i
= 0; i
< 4; i
++)
2257 if (addr
[i
] != (input
[i
] & mask
[i
])) {
2266 * security_node_sid - Obtain the SID for a node (host).
2267 * @domain: communication domain aka address family
2269 * @addrlen: address length in bytes
2270 * @out_sid: security identifier
2272 int security_node_sid(u16 domain
,
2280 read_lock(&policy_rwlock
);
2287 if (addrlen
!= sizeof(u32
))
2290 addr
= *((u32
*)addrp
);
2292 c
= policydb
.ocontexts
[OCON_NODE
];
2294 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
2303 if (addrlen
!= sizeof(u64
) * 2)
2305 c
= policydb
.ocontexts
[OCON_NODE6
];
2307 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
2316 *out_sid
= SECINITSID_NODE
;
2322 rc
= sidtab_context_to_sid(&sidtab
,
2328 *out_sid
= c
->sid
[0];
2330 *out_sid
= SECINITSID_NODE
;
2335 read_unlock(&policy_rwlock
);
2342 * security_get_user_sids - Obtain reachable SIDs for a user.
2343 * @fromsid: starting SID
2344 * @username: username
2345 * @sids: array of reachable SIDs for user
2346 * @nel: number of elements in @sids
2348 * Generate the set of SIDs for legal security contexts
2349 * for a given user that can be reached by @fromsid.
2350 * Set *@sids to point to a dynamically allocated
2351 * array containing the set of SIDs. Set *@nel to the
2352 * number of elements in the array.
2355 int security_get_user_sids(u32 fromsid
,
2360 struct context
*fromcon
, usercon
;
2361 u32
*mysids
= NULL
, *mysids2
, sid
;
2362 u32 mynel
= 0, maxnel
= SIDS_NEL
;
2363 struct user_datum
*user
;
2364 struct role_datum
*role
;
2365 struct ebitmap_node
*rnode
, *tnode
;
2371 if (!ss_initialized
)
2374 read_lock(&policy_rwlock
);
2376 context_init(&usercon
);
2379 fromcon
= sidtab_search(&sidtab
, fromsid
);
2384 user
= hashtab_search(policydb
.p_users
.table
, username
);
2388 usercon
.user
= user
->value
;
2391 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
2395 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
2396 role
= policydb
.role_val_to_struct
[i
];
2397 usercon
.role
= i
+ 1;
2398 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
2399 usercon
.type
= j
+ 1;
2401 if (mls_setup_user_range(fromcon
, user
, &usercon
))
2404 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
2407 if (mynel
< maxnel
) {
2408 mysids
[mynel
++] = sid
;
2412 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
2415 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
2418 mysids
[mynel
++] = sid
;
2424 read_unlock(&policy_rwlock
);
2431 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
2436 for (i
= 0, j
= 0; i
< mynel
; i
++) {
2437 struct av_decision dummy_avd
;
2438 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
2439 SECCLASS_PROCESS
, /* kernel value */
2440 PROCESS__TRANSITION
, AVC_STRICT
,
2443 mysids2
[j
++] = mysids
[i
];
2455 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2456 * @fstype: filesystem type
2457 * @path: path from root of mount
2458 * @sclass: file security class
2459 * @sid: SID for path
2461 * Obtain a SID to use for a file in a filesystem that
2462 * cannot support xattr or use a fixed labeling behavior like
2463 * transition SIDs or task SIDs.
2465 * The caller must acquire the policy_rwlock before calling this function.
2467 static inline int __security_genfs_sid(const char *fstype
,
2474 struct genfs
*genfs
;
2478 while (path
[0] == '/' && path
[1] == '/')
2481 sclass
= unmap_class(orig_sclass
);
2482 *sid
= SECINITSID_UNLABELED
;
2484 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
2485 cmp
= strcmp(fstype
, genfs
->fstype
);
2494 for (c
= genfs
->head
; c
; c
= c
->next
) {
2495 len
= strlen(c
->u
.name
);
2496 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
2497 (strncmp(c
->u
.name
, path
, len
) == 0))
2506 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0], &c
->sid
[0]);
2518 * security_genfs_sid - Obtain a SID for a file in a filesystem
2519 * @fstype: filesystem type
2520 * @path: path from root of mount
2521 * @sclass: file security class
2522 * @sid: SID for path
2524 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2527 int security_genfs_sid(const char *fstype
,
2534 read_lock(&policy_rwlock
);
2535 retval
= __security_genfs_sid(fstype
, path
, orig_sclass
, sid
);
2536 read_unlock(&policy_rwlock
);
2541 * security_fs_use - Determine how to handle labeling for a filesystem.
2542 * @sb: superblock in question
2544 int security_fs_use(struct super_block
*sb
)
2548 struct superblock_security_struct
*sbsec
= sb
->s_security
;
2549 const char *fstype
= sb
->s_type
->name
;
2551 read_lock(&policy_rwlock
);
2553 c
= policydb
.ocontexts
[OCON_FSUSE
];
2555 if (strcmp(fstype
, c
->u
.name
) == 0)
2561 sbsec
->behavior
= c
->v
.behavior
;
2563 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0],
2568 sbsec
->sid
= c
->sid
[0];
2570 rc
= __security_genfs_sid(fstype
, "/", SECCLASS_DIR
,
2573 sbsec
->behavior
= SECURITY_FS_USE_NONE
;
2576 sbsec
->behavior
= SECURITY_FS_USE_GENFS
;
2581 read_unlock(&policy_rwlock
);
2585 int security_get_bools(int *len
, char ***names
, int **values
)
2589 read_lock(&policy_rwlock
);
2594 *len
= policydb
.p_bools
.nprim
;
2599 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
2604 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
2608 for (i
= 0; i
< *len
; i
++) {
2609 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
2612 (*names
)[i
] = kstrdup(sym_name(&policydb
, SYM_BOOLS
, i
), GFP_ATOMIC
);
2618 read_unlock(&policy_rwlock
);
2622 for (i
= 0; i
< *len
; i
++)
2630 int security_set_bools(int len
, int *values
)
2633 int lenp
, seqno
= 0;
2634 struct cond_node
*cur
;
2636 write_lock_irq(&policy_rwlock
);
2639 lenp
= policydb
.p_bools
.nprim
;
2643 for (i
= 0; i
< len
; i
++) {
2644 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
2645 audit_log(current
->audit_context
, GFP_ATOMIC
,
2646 AUDIT_MAC_CONFIG_CHANGE
,
2647 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2648 sym_name(&policydb
, SYM_BOOLS
, i
),
2650 policydb
.bool_val_to_struct
[i
]->state
,
2651 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
2652 audit_get_sessionid(current
));
2655 policydb
.bool_val_to_struct
[i
]->state
= 1;
2657 policydb
.bool_val_to_struct
[i
]->state
= 0;
2660 for (cur
= policydb
.cond_list
; cur
; cur
= cur
->next
) {
2661 rc
= evaluate_cond_node(&policydb
, cur
);
2666 seqno
= ++latest_granting
;
2669 write_unlock_irq(&policy_rwlock
);
2671 avc_ss_reset(seqno
);
2672 selnl_notify_policyload(seqno
);
2673 selinux_status_update_policyload(seqno
);
2674 selinux_xfrm_notify_policyload();
2679 int security_get_bool_value(int bool)
2684 read_lock(&policy_rwlock
);
2687 len
= policydb
.p_bools
.nprim
;
2691 rc
= policydb
.bool_val_to_struct
[bool]->state
;
2693 read_unlock(&policy_rwlock
);
2697 static int security_preserve_bools(struct policydb
*p
)
2699 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
2700 char **bnames
= NULL
;
2701 struct cond_bool_datum
*booldatum
;
2702 struct cond_node
*cur
;
2704 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
2707 for (i
= 0; i
< nbools
; i
++) {
2708 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
2710 booldatum
->state
= bvalues
[i
];
2712 for (cur
= p
->cond_list
; cur
; cur
= cur
->next
) {
2713 rc
= evaluate_cond_node(p
, cur
);
2720 for (i
= 0; i
< nbools
; i
++)
2729 * security_sid_mls_copy() - computes a new sid based on the given
2730 * sid and the mls portion of mls_sid.
2732 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2734 struct context
*context1
;
2735 struct context
*context2
;
2736 struct context newcon
;
2742 if (!ss_initialized
|| !policydb
.mls_enabled
) {
2747 context_init(&newcon
);
2749 read_lock(&policy_rwlock
);
2752 context1
= sidtab_search(&sidtab
, sid
);
2754 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2760 context2
= sidtab_search(&sidtab
, mls_sid
);
2762 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2767 newcon
.user
= context1
->user
;
2768 newcon
.role
= context1
->role
;
2769 newcon
.type
= context1
->type
;
2770 rc
= mls_context_cpy(&newcon
, context2
);
2774 /* Check the validity of the new context. */
2775 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2776 rc
= convert_context_handle_invalid_context(&newcon
);
2778 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2779 audit_log(current
->audit_context
,
2780 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2781 "op=security_sid_mls_copy "
2782 "invalid_context=%s", s
);
2789 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2791 read_unlock(&policy_rwlock
);
2792 context_destroy(&newcon
);
2798 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2799 * @nlbl_sid: NetLabel SID
2800 * @nlbl_type: NetLabel labeling protocol type
2801 * @xfrm_sid: XFRM SID
2804 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2805 * resolved into a single SID it is returned via @peer_sid and the function
2806 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2807 * returns a negative value. A table summarizing the behavior is below:
2809 * | function return | @sid
2810 * ------------------------------+-----------------+-----------------
2811 * no peer labels | 0 | SECSID_NULL
2812 * single peer label | 0 | <peer_label>
2813 * multiple, consistent labels | 0 | <peer_label>
2814 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2817 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2822 struct context
*nlbl_ctx
;
2823 struct context
*xfrm_ctx
;
2825 *peer_sid
= SECSID_NULL
;
2827 /* handle the common (which also happens to be the set of easy) cases
2828 * right away, these two if statements catch everything involving a
2829 * single or absent peer SID/label */
2830 if (xfrm_sid
== SECSID_NULL
) {
2831 *peer_sid
= nlbl_sid
;
2834 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2835 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2837 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2838 *peer_sid
= xfrm_sid
;
2842 /* we don't need to check ss_initialized here since the only way both
2843 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2844 * security server was initialized and ss_initialized was true */
2845 if (!policydb
.mls_enabled
)
2848 read_lock(&policy_rwlock
);
2851 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2853 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2854 __func__
, nlbl_sid
);
2858 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2860 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2861 __func__
, xfrm_sid
);
2864 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2868 /* at present NetLabel SIDs/labels really only carry MLS
2869 * information so if the MLS portion of the NetLabel SID
2870 * matches the MLS portion of the labeled XFRM SID/label
2871 * then pass along the XFRM SID as it is the most
2873 *peer_sid
= xfrm_sid
;
2875 read_unlock(&policy_rwlock
);
2879 static int get_classes_callback(void *k
, void *d
, void *args
)
2881 struct class_datum
*datum
= d
;
2882 char *name
= k
, **classes
= args
;
2883 int value
= datum
->value
- 1;
2885 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2886 if (!classes
[value
])
2892 int security_get_classes(char ***classes
, int *nclasses
)
2896 read_lock(&policy_rwlock
);
2899 *nclasses
= policydb
.p_classes
.nprim
;
2900 *classes
= kcalloc(*nclasses
, sizeof(**classes
), GFP_ATOMIC
);
2904 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2908 for (i
= 0; i
< *nclasses
; i
++)
2909 kfree((*classes
)[i
]);
2914 read_unlock(&policy_rwlock
);
2918 static int get_permissions_callback(void *k
, void *d
, void *args
)
2920 struct perm_datum
*datum
= d
;
2921 char *name
= k
, **perms
= args
;
2922 int value
= datum
->value
- 1;
2924 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2931 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2934 struct class_datum
*match
;
2936 read_lock(&policy_rwlock
);
2939 match
= hashtab_search(policydb
.p_classes
.table
, class);
2941 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
2947 *nperms
= match
->permissions
.nprim
;
2948 *perms
= kcalloc(*nperms
, sizeof(**perms
), GFP_ATOMIC
);
2952 if (match
->comdatum
) {
2953 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2954 get_permissions_callback
, *perms
);
2959 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2965 read_unlock(&policy_rwlock
);
2969 read_unlock(&policy_rwlock
);
2970 for (i
= 0; i
< *nperms
; i
++)
2976 int security_get_reject_unknown(void)
2978 return policydb
.reject_unknown
;
2981 int security_get_allow_unknown(void)
2983 return policydb
.allow_unknown
;
2987 * security_policycap_supported - Check for a specific policy capability
2988 * @req_cap: capability
2991 * This function queries the currently loaded policy to see if it supports the
2992 * capability specified by @req_cap. Returns true (1) if the capability is
2993 * supported, false (0) if it isn't supported.
2996 int security_policycap_supported(unsigned int req_cap
)
3000 read_lock(&policy_rwlock
);
3001 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
3002 read_unlock(&policy_rwlock
);
3007 struct selinux_audit_rule
{
3009 struct context au_ctxt
;
3012 void selinux_audit_rule_free(void *vrule
)
3014 struct selinux_audit_rule
*rule
= vrule
;
3017 context_destroy(&rule
->au_ctxt
);
3022 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
3024 struct selinux_audit_rule
*tmprule
;
3025 struct role_datum
*roledatum
;
3026 struct type_datum
*typedatum
;
3027 struct user_datum
*userdatum
;
3028 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
3033 if (!ss_initialized
)
3037 case AUDIT_SUBJ_USER
:
3038 case AUDIT_SUBJ_ROLE
:
3039 case AUDIT_SUBJ_TYPE
:
3040 case AUDIT_OBJ_USER
:
3041 case AUDIT_OBJ_ROLE
:
3042 case AUDIT_OBJ_TYPE
:
3043 /* only 'equals' and 'not equals' fit user, role, and type */
3044 if (op
!= Audit_equal
&& op
!= Audit_not_equal
)
3047 case AUDIT_SUBJ_SEN
:
3048 case AUDIT_SUBJ_CLR
:
3049 case AUDIT_OBJ_LEV_LOW
:
3050 case AUDIT_OBJ_LEV_HIGH
:
3051 /* we do not allow a range, indicated by the presence of '-' */
3052 if (strchr(rulestr
, '-'))
3056 /* only the above fields are valid */
3060 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
3064 context_init(&tmprule
->au_ctxt
);
3066 read_lock(&policy_rwlock
);
3068 tmprule
->au_seqno
= latest_granting
;
3071 case AUDIT_SUBJ_USER
:
3072 case AUDIT_OBJ_USER
:
3074 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
3077 tmprule
->au_ctxt
.user
= userdatum
->value
;
3079 case AUDIT_SUBJ_ROLE
:
3080 case AUDIT_OBJ_ROLE
:
3082 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
3085 tmprule
->au_ctxt
.role
= roledatum
->value
;
3087 case AUDIT_SUBJ_TYPE
:
3088 case AUDIT_OBJ_TYPE
:
3090 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
3093 tmprule
->au_ctxt
.type
= typedatum
->value
;
3095 case AUDIT_SUBJ_SEN
:
3096 case AUDIT_SUBJ_CLR
:
3097 case AUDIT_OBJ_LEV_LOW
:
3098 case AUDIT_OBJ_LEV_HIGH
:
3099 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
3106 read_unlock(&policy_rwlock
);
3109 selinux_audit_rule_free(tmprule
);
3118 /* Check to see if the rule contains any selinux fields */
3119 int selinux_audit_rule_known(struct audit_krule
*rule
)
3123 for (i
= 0; i
< rule
->field_count
; i
++) {
3124 struct audit_field
*f
= &rule
->fields
[i
];
3126 case AUDIT_SUBJ_USER
:
3127 case AUDIT_SUBJ_ROLE
:
3128 case AUDIT_SUBJ_TYPE
:
3129 case AUDIT_SUBJ_SEN
:
3130 case AUDIT_SUBJ_CLR
:
3131 case AUDIT_OBJ_USER
:
3132 case AUDIT_OBJ_ROLE
:
3133 case AUDIT_OBJ_TYPE
:
3134 case AUDIT_OBJ_LEV_LOW
:
3135 case AUDIT_OBJ_LEV_HIGH
:
3143 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
3144 struct audit_context
*actx
)
3146 struct context
*ctxt
;
3147 struct mls_level
*level
;
3148 struct selinux_audit_rule
*rule
= vrule
;
3151 if (unlikely(!rule
)) {
3152 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3156 read_lock(&policy_rwlock
);
3158 if (rule
->au_seqno
< latest_granting
) {
3163 ctxt
= sidtab_search(&sidtab
, sid
);
3164 if (unlikely(!ctxt
)) {
3165 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3171 /* a field/op pair that is not caught here will simply fall through
3174 case AUDIT_SUBJ_USER
:
3175 case AUDIT_OBJ_USER
:
3178 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
3180 case Audit_not_equal
:
3181 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
3185 case AUDIT_SUBJ_ROLE
:
3186 case AUDIT_OBJ_ROLE
:
3189 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
3191 case Audit_not_equal
:
3192 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
3196 case AUDIT_SUBJ_TYPE
:
3197 case AUDIT_OBJ_TYPE
:
3200 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
3202 case Audit_not_equal
:
3203 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
3207 case AUDIT_SUBJ_SEN
:
3208 case AUDIT_SUBJ_CLR
:
3209 case AUDIT_OBJ_LEV_LOW
:
3210 case AUDIT_OBJ_LEV_HIGH
:
3211 level
= ((field
== AUDIT_SUBJ_SEN
||
3212 field
== AUDIT_OBJ_LEV_LOW
) ?
3213 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
3216 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3219 case Audit_not_equal
:
3220 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3224 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3226 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3230 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3234 match
= (mls_level_dom(level
,
3235 &rule
->au_ctxt
.range
.level
[0]) &&
3236 !mls_level_eq(level
,
3237 &rule
->au_ctxt
.range
.level
[0]));
3240 match
= mls_level_dom(level
,
3241 &rule
->au_ctxt
.range
.level
[0]);
3247 read_unlock(&policy_rwlock
);
3251 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
3253 static int aurule_avc_callback(u32 event
)
3257 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
3258 err
= aurule_callback();
3262 static int __init
aurule_init(void)
3266 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
);
3268 panic("avc_add_callback() failed, error %d\n", err
);
3272 __initcall(aurule_init
);
3274 #ifdef CONFIG_NETLABEL
3276 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3277 * @secattr: the NetLabel packet security attributes
3278 * @sid: the SELinux SID
3281 * Attempt to cache the context in @ctx, which was derived from the packet in
3282 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3283 * already been initialized.
3286 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
3291 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
3292 if (sid_cache
== NULL
)
3294 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
3295 if (secattr
->cache
== NULL
) {
3301 secattr
->cache
->free
= kfree
;
3302 secattr
->cache
->data
= sid_cache
;
3303 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
3307 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3308 * @secattr: the NetLabel packet security attributes
3309 * @sid: the SELinux SID
3312 * Convert the given NetLabel security attributes in @secattr into a
3313 * SELinux SID. If the @secattr field does not contain a full SELinux
3314 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3315 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3316 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3317 * conversion for future lookups. Returns zero on success, negative values on
3321 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
3325 struct context
*ctx
;
3326 struct context ctx_new
;
3328 if (!ss_initialized
) {
3333 read_lock(&policy_rwlock
);
3335 if (secattr
->flags
& NETLBL_SECATTR_CACHE
)
3336 *sid
= *(u32
*)secattr
->cache
->data
;
3337 else if (secattr
->flags
& NETLBL_SECATTR_SECID
)
3338 *sid
= secattr
->attr
.secid
;
3339 else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
3341 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
3345 context_init(&ctx_new
);
3346 ctx_new
.user
= ctx
->user
;
3347 ctx_new
.role
= ctx
->role
;
3348 ctx_new
.type
= ctx
->type
;
3349 mls_import_netlbl_lvl(&ctx_new
, secattr
);
3350 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
3351 rc
= mls_import_netlbl_cat(&ctx_new
, secattr
);
3356 if (!mls_context_isvalid(&policydb
, &ctx_new
))
3359 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
3363 security_netlbl_cache_add(secattr
, *sid
);
3365 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3369 read_unlock(&policy_rwlock
);
3372 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3374 read_unlock(&policy_rwlock
);
3379 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3380 * @sid: the SELinux SID
3381 * @secattr: the NetLabel packet security attributes
3384 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3385 * Returns zero on success, negative values on failure.
3388 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
3391 struct context
*ctx
;
3393 if (!ss_initialized
)
3396 read_lock(&policy_rwlock
);
3399 ctx
= sidtab_search(&sidtab
, sid
);
3404 secattr
->domain
= kstrdup(sym_name(&policydb
, SYM_TYPES
, ctx
->type
- 1),
3406 if (secattr
->domain
== NULL
)
3409 secattr
->attr
.secid
= sid
;
3410 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
| NETLBL_SECATTR_SECID
;
3411 mls_export_netlbl_lvl(ctx
, secattr
);
3412 rc
= mls_export_netlbl_cat(ctx
, secattr
);
3414 read_unlock(&policy_rwlock
);
3417 #endif /* CONFIG_NETLABEL */
3420 * security_read_policy - read the policy.
3421 * @data: binary policy data
3422 * @len: length of data in bytes
3425 int security_read_policy(void **data
, size_t *len
)
3428 struct policy_file fp
;
3430 if (!ss_initialized
)
3433 *len
= security_policydb_len();
3435 *data
= vmalloc_user(*len
);
3442 read_lock(&policy_rwlock
);
3443 rc
= policydb_write(&policydb
, &fp
);
3444 read_unlock(&policy_rwlock
);
3449 *len
= (unsigned long)fp
.data
- (unsigned long)*data
;