2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
35 static pgd_t
*boot_hyp_pgd
;
36 static pgd_t
*hyp_pgd
;
37 static pgd_t
*merged_hyp_pgd
;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex
);
40 static unsigned long hyp_idmap_start
;
41 static unsigned long hyp_idmap_end
;
42 static phys_addr_t hyp_idmap_vector
;
44 #define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
47 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
48 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
50 static bool memslot_is_logging(struct kvm_memory_slot
*memslot
)
52 return memslot
->dirty_bitmap
&& !(memslot
->flags
& KVM_MEM_READONLY
);
56 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
57 * @kvm: pointer to kvm structure.
59 * Interface to HYP function to flush all VM TLB entries
61 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
63 kvm_call_hyp(__kvm_tlb_flush_vmid
, kvm
);
66 static void kvm_tlb_flush_vmid_ipa(struct kvm
*kvm
, phys_addr_t ipa
)
68 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa
, kvm
, ipa
);
72 * D-Cache management functions. They take the page table entries by
73 * value, as they are flushing the cache using the kernel mapping (or
76 static void kvm_flush_dcache_pte(pte_t pte
)
78 __kvm_flush_dcache_pte(pte
);
81 static void kvm_flush_dcache_pmd(pmd_t pmd
)
83 __kvm_flush_dcache_pmd(pmd
);
86 static void kvm_flush_dcache_pud(pud_t pud
)
88 __kvm_flush_dcache_pud(pud
);
91 static bool kvm_is_device_pfn(unsigned long pfn
)
93 return !pfn_valid(pfn
);
97 * stage2_dissolve_pmd() - clear and flush huge PMD entry
98 * @kvm: pointer to kvm structure.
100 * @pmd: pmd pointer for IPA
102 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
103 * pages in the range dirty.
105 static void stage2_dissolve_pmd(struct kvm
*kvm
, phys_addr_t addr
, pmd_t
*pmd
)
107 if (!pmd_thp_or_huge(*pmd
))
111 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
112 put_page(virt_to_page(pmd
));
115 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
120 BUG_ON(max
> KVM_NR_MEM_OBJS
);
121 if (cache
->nobjs
>= min
)
123 while (cache
->nobjs
< max
) {
124 page
= (void *)__get_free_page(PGALLOC_GFP
);
127 cache
->objects
[cache
->nobjs
++] = page
;
132 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
135 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
138 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
)
142 BUG_ON(!mc
|| !mc
->nobjs
);
143 p
= mc
->objects
[--mc
->nobjs
];
147 static void clear_stage2_pgd_entry(struct kvm
*kvm
, pgd_t
*pgd
, phys_addr_t addr
)
149 pud_t
*pud_table __maybe_unused
= stage2_pud_offset(pgd
, 0UL);
150 stage2_pgd_clear(pgd
);
151 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
152 stage2_pud_free(pud_table
);
153 put_page(virt_to_page(pgd
));
156 static void clear_stage2_pud_entry(struct kvm
*kvm
, pud_t
*pud
, phys_addr_t addr
)
158 pmd_t
*pmd_table __maybe_unused
= stage2_pmd_offset(pud
, 0);
159 VM_BUG_ON(stage2_pud_huge(*pud
));
160 stage2_pud_clear(pud
);
161 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
162 stage2_pmd_free(pmd_table
);
163 put_page(virt_to_page(pud
));
166 static void clear_stage2_pmd_entry(struct kvm
*kvm
, pmd_t
*pmd
, phys_addr_t addr
)
168 pte_t
*pte_table
= pte_offset_kernel(pmd
, 0);
169 VM_BUG_ON(pmd_thp_or_huge(*pmd
));
171 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
172 pte_free_kernel(NULL
, pte_table
);
173 put_page(virt_to_page(pmd
));
177 * Unmapping vs dcache management:
179 * If a guest maps certain memory pages as uncached, all writes will
180 * bypass the data cache and go directly to RAM. However, the CPUs
181 * can still speculate reads (not writes) and fill cache lines with
184 * Those cache lines will be *clean* cache lines though, so a
185 * clean+invalidate operation is equivalent to an invalidate
186 * operation, because no cache lines are marked dirty.
188 * Those clean cache lines could be filled prior to an uncached write
189 * by the guest, and the cache coherent IO subsystem would therefore
190 * end up writing old data to disk.
192 * This is why right after unmapping a page/section and invalidating
193 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
194 * the IO subsystem will never hit in the cache.
196 static void unmap_stage2_ptes(struct kvm
*kvm
, pmd_t
*pmd
,
197 phys_addr_t addr
, phys_addr_t end
)
199 phys_addr_t start_addr
= addr
;
200 pte_t
*pte
, *start_pte
;
202 start_pte
= pte
= pte_offset_kernel(pmd
, addr
);
204 if (!pte_none(*pte
)) {
205 pte_t old_pte
= *pte
;
207 kvm_set_pte(pte
, __pte(0));
208 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
210 /* No need to invalidate the cache for device mappings */
211 if (!kvm_is_device_pfn(pte_pfn(old_pte
)))
212 kvm_flush_dcache_pte(old_pte
);
214 put_page(virt_to_page(pte
));
216 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
218 if (stage2_pte_table_empty(start_pte
))
219 clear_stage2_pmd_entry(kvm
, pmd
, start_addr
);
222 static void unmap_stage2_pmds(struct kvm
*kvm
, pud_t
*pud
,
223 phys_addr_t addr
, phys_addr_t end
)
225 phys_addr_t next
, start_addr
= addr
;
226 pmd_t
*pmd
, *start_pmd
;
228 start_pmd
= pmd
= stage2_pmd_offset(pud
, addr
);
230 next
= stage2_pmd_addr_end(addr
, end
);
231 if (!pmd_none(*pmd
)) {
232 if (pmd_thp_or_huge(*pmd
)) {
233 pmd_t old_pmd
= *pmd
;
236 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
238 kvm_flush_dcache_pmd(old_pmd
);
240 put_page(virt_to_page(pmd
));
242 unmap_stage2_ptes(kvm
, pmd
, addr
, next
);
245 } while (pmd
++, addr
= next
, addr
!= end
);
247 if (stage2_pmd_table_empty(start_pmd
))
248 clear_stage2_pud_entry(kvm
, pud
, start_addr
);
251 static void unmap_stage2_puds(struct kvm
*kvm
, pgd_t
*pgd
,
252 phys_addr_t addr
, phys_addr_t end
)
254 phys_addr_t next
, start_addr
= addr
;
255 pud_t
*pud
, *start_pud
;
257 start_pud
= pud
= stage2_pud_offset(pgd
, addr
);
259 next
= stage2_pud_addr_end(addr
, end
);
260 if (!stage2_pud_none(*pud
)) {
261 if (stage2_pud_huge(*pud
)) {
262 pud_t old_pud
= *pud
;
264 stage2_pud_clear(pud
);
265 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
266 kvm_flush_dcache_pud(old_pud
);
267 put_page(virt_to_page(pud
));
269 unmap_stage2_pmds(kvm
, pud
, addr
, next
);
272 } while (pud
++, addr
= next
, addr
!= end
);
274 if (stage2_pud_table_empty(start_pud
))
275 clear_stage2_pgd_entry(kvm
, pgd
, start_addr
);
279 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
280 * @kvm: The VM pointer
281 * @start: The intermediate physical base address of the range to unmap
282 * @size: The size of the area to unmap
284 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
285 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
286 * destroying the VM), otherwise another faulting VCPU may come in and mess
287 * with things behind our backs.
289 static void unmap_stage2_range(struct kvm
*kvm
, phys_addr_t start
, u64 size
)
292 phys_addr_t addr
= start
, end
= start
+ size
;
295 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(addr
);
297 next
= stage2_pgd_addr_end(addr
, end
);
298 if (!stage2_pgd_none(*pgd
))
299 unmap_stage2_puds(kvm
, pgd
, addr
, next
);
300 } while (pgd
++, addr
= next
, addr
!= end
);
303 static void stage2_flush_ptes(struct kvm
*kvm
, pmd_t
*pmd
,
304 phys_addr_t addr
, phys_addr_t end
)
308 pte
= pte_offset_kernel(pmd
, addr
);
310 if (!pte_none(*pte
) && !kvm_is_device_pfn(pte_pfn(*pte
)))
311 kvm_flush_dcache_pte(*pte
);
312 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
315 static void stage2_flush_pmds(struct kvm
*kvm
, pud_t
*pud
,
316 phys_addr_t addr
, phys_addr_t end
)
321 pmd
= stage2_pmd_offset(pud
, addr
);
323 next
= stage2_pmd_addr_end(addr
, end
);
324 if (!pmd_none(*pmd
)) {
325 if (pmd_thp_or_huge(*pmd
))
326 kvm_flush_dcache_pmd(*pmd
);
328 stage2_flush_ptes(kvm
, pmd
, addr
, next
);
330 } while (pmd
++, addr
= next
, addr
!= end
);
333 static void stage2_flush_puds(struct kvm
*kvm
, pgd_t
*pgd
,
334 phys_addr_t addr
, phys_addr_t end
)
339 pud
= stage2_pud_offset(pgd
, addr
);
341 next
= stage2_pud_addr_end(addr
, end
);
342 if (!stage2_pud_none(*pud
)) {
343 if (stage2_pud_huge(*pud
))
344 kvm_flush_dcache_pud(*pud
);
346 stage2_flush_pmds(kvm
, pud
, addr
, next
);
348 } while (pud
++, addr
= next
, addr
!= end
);
351 static void stage2_flush_memslot(struct kvm
*kvm
,
352 struct kvm_memory_slot
*memslot
)
354 phys_addr_t addr
= memslot
->base_gfn
<< PAGE_SHIFT
;
355 phys_addr_t end
= addr
+ PAGE_SIZE
* memslot
->npages
;
359 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(addr
);
361 next
= stage2_pgd_addr_end(addr
, end
);
362 stage2_flush_puds(kvm
, pgd
, addr
, next
);
363 } while (pgd
++, addr
= next
, addr
!= end
);
367 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
368 * @kvm: The struct kvm pointer
370 * Go through the stage 2 page tables and invalidate any cache lines
371 * backing memory already mapped to the VM.
373 static void stage2_flush_vm(struct kvm
*kvm
)
375 struct kvm_memslots
*slots
;
376 struct kvm_memory_slot
*memslot
;
379 idx
= srcu_read_lock(&kvm
->srcu
);
380 spin_lock(&kvm
->mmu_lock
);
382 slots
= kvm_memslots(kvm
);
383 kvm_for_each_memslot(memslot
, slots
)
384 stage2_flush_memslot(kvm
, memslot
);
386 spin_unlock(&kvm
->mmu_lock
);
387 srcu_read_unlock(&kvm
->srcu
, idx
);
390 static void clear_hyp_pgd_entry(pgd_t
*pgd
)
392 pud_t
*pud_table __maybe_unused
= pud_offset(pgd
, 0UL);
394 pud_free(NULL
, pud_table
);
395 put_page(virt_to_page(pgd
));
398 static void clear_hyp_pud_entry(pud_t
*pud
)
400 pmd_t
*pmd_table __maybe_unused
= pmd_offset(pud
, 0);
401 VM_BUG_ON(pud_huge(*pud
));
403 pmd_free(NULL
, pmd_table
);
404 put_page(virt_to_page(pud
));
407 static void clear_hyp_pmd_entry(pmd_t
*pmd
)
409 pte_t
*pte_table
= pte_offset_kernel(pmd
, 0);
410 VM_BUG_ON(pmd_thp_or_huge(*pmd
));
412 pte_free_kernel(NULL
, pte_table
);
413 put_page(virt_to_page(pmd
));
416 static void unmap_hyp_ptes(pmd_t
*pmd
, phys_addr_t addr
, phys_addr_t end
)
418 pte_t
*pte
, *start_pte
;
420 start_pte
= pte
= pte_offset_kernel(pmd
, addr
);
422 if (!pte_none(*pte
)) {
423 kvm_set_pte(pte
, __pte(0));
424 put_page(virt_to_page(pte
));
426 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
428 if (hyp_pte_table_empty(start_pte
))
429 clear_hyp_pmd_entry(pmd
);
432 static void unmap_hyp_pmds(pud_t
*pud
, phys_addr_t addr
, phys_addr_t end
)
435 pmd_t
*pmd
, *start_pmd
;
437 start_pmd
= pmd
= pmd_offset(pud
, addr
);
439 next
= pmd_addr_end(addr
, end
);
440 /* Hyp doesn't use huge pmds */
442 unmap_hyp_ptes(pmd
, addr
, next
);
443 } while (pmd
++, addr
= next
, addr
!= end
);
445 if (hyp_pmd_table_empty(start_pmd
))
446 clear_hyp_pud_entry(pud
);
449 static void unmap_hyp_puds(pgd_t
*pgd
, phys_addr_t addr
, phys_addr_t end
)
452 pud_t
*pud
, *start_pud
;
454 start_pud
= pud
= pud_offset(pgd
, addr
);
456 next
= pud_addr_end(addr
, end
);
457 /* Hyp doesn't use huge puds */
459 unmap_hyp_pmds(pud
, addr
, next
);
460 } while (pud
++, addr
= next
, addr
!= end
);
462 if (hyp_pud_table_empty(start_pud
))
463 clear_hyp_pgd_entry(pgd
);
466 static void unmap_hyp_range(pgd_t
*pgdp
, phys_addr_t start
, u64 size
)
469 phys_addr_t addr
= start
, end
= start
+ size
;
473 * We don't unmap anything from HYP, except at the hyp tear down.
474 * Hence, we don't have to invalidate the TLBs here.
476 pgd
= pgdp
+ pgd_index(addr
);
478 next
= pgd_addr_end(addr
, end
);
480 unmap_hyp_puds(pgd
, addr
, next
);
481 } while (pgd
++, addr
= next
, addr
!= end
);
485 * free_hyp_pgds - free Hyp-mode page tables
487 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
488 * therefore contains either mappings in the kernel memory area (above
489 * PAGE_OFFSET), or device mappings in the vmalloc range (from
490 * VMALLOC_START to VMALLOC_END).
492 * boot_hyp_pgd should only map two pages for the init code.
494 void free_hyp_pgds(void)
498 mutex_lock(&kvm_hyp_pgd_mutex
);
501 unmap_hyp_range(boot_hyp_pgd
, hyp_idmap_start
, PAGE_SIZE
);
502 free_pages((unsigned long)boot_hyp_pgd
, hyp_pgd_order
);
507 unmap_hyp_range(hyp_pgd
, hyp_idmap_start
, PAGE_SIZE
);
508 for (addr
= PAGE_OFFSET
; virt_addr_valid(addr
); addr
+= PGDIR_SIZE
)
509 unmap_hyp_range(hyp_pgd
, kern_hyp_va(addr
), PGDIR_SIZE
);
510 for (addr
= VMALLOC_START
; is_vmalloc_addr((void*)addr
); addr
+= PGDIR_SIZE
)
511 unmap_hyp_range(hyp_pgd
, kern_hyp_va(addr
), PGDIR_SIZE
);
513 free_pages((unsigned long)hyp_pgd
, hyp_pgd_order
);
516 if (merged_hyp_pgd
) {
517 clear_page(merged_hyp_pgd
);
518 free_page((unsigned long)merged_hyp_pgd
);
519 merged_hyp_pgd
= NULL
;
522 mutex_unlock(&kvm_hyp_pgd_mutex
);
525 static void create_hyp_pte_mappings(pmd_t
*pmd
, unsigned long start
,
526 unsigned long end
, unsigned long pfn
,
534 pte
= pte_offset_kernel(pmd
, addr
);
535 kvm_set_pte(pte
, pfn_pte(pfn
, prot
));
536 get_page(virt_to_page(pte
));
537 kvm_flush_dcache_to_poc(pte
, sizeof(*pte
));
539 } while (addr
+= PAGE_SIZE
, addr
!= end
);
542 static int create_hyp_pmd_mappings(pud_t
*pud
, unsigned long start
,
543 unsigned long end
, unsigned long pfn
,
548 unsigned long addr
, next
;
552 pmd
= pmd_offset(pud
, addr
);
554 BUG_ON(pmd_sect(*pmd
));
556 if (pmd_none(*pmd
)) {
557 pte
= pte_alloc_one_kernel(NULL
, addr
);
559 kvm_err("Cannot allocate Hyp pte\n");
562 pmd_populate_kernel(NULL
, pmd
, pte
);
563 get_page(virt_to_page(pmd
));
564 kvm_flush_dcache_to_poc(pmd
, sizeof(*pmd
));
567 next
= pmd_addr_end(addr
, end
);
569 create_hyp_pte_mappings(pmd
, addr
, next
, pfn
, prot
);
570 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
571 } while (addr
= next
, addr
!= end
);
576 static int create_hyp_pud_mappings(pgd_t
*pgd
, unsigned long start
,
577 unsigned long end
, unsigned long pfn
,
582 unsigned long addr
, next
;
587 pud
= pud_offset(pgd
, addr
);
589 if (pud_none_or_clear_bad(pud
)) {
590 pmd
= pmd_alloc_one(NULL
, addr
);
592 kvm_err("Cannot allocate Hyp pmd\n");
595 pud_populate(NULL
, pud
, pmd
);
596 get_page(virt_to_page(pud
));
597 kvm_flush_dcache_to_poc(pud
, sizeof(*pud
));
600 next
= pud_addr_end(addr
, end
);
601 ret
= create_hyp_pmd_mappings(pud
, addr
, next
, pfn
, prot
);
604 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
605 } while (addr
= next
, addr
!= end
);
610 static int __create_hyp_mappings(pgd_t
*pgdp
,
611 unsigned long start
, unsigned long end
,
612 unsigned long pfn
, pgprot_t prot
)
616 unsigned long addr
, next
;
619 mutex_lock(&kvm_hyp_pgd_mutex
);
620 addr
= start
& PAGE_MASK
;
621 end
= PAGE_ALIGN(end
);
623 pgd
= pgdp
+ pgd_index(addr
);
625 if (pgd_none(*pgd
)) {
626 pud
= pud_alloc_one(NULL
, addr
);
628 kvm_err("Cannot allocate Hyp pud\n");
632 pgd_populate(NULL
, pgd
, pud
);
633 get_page(virt_to_page(pgd
));
634 kvm_flush_dcache_to_poc(pgd
, sizeof(*pgd
));
637 next
= pgd_addr_end(addr
, end
);
638 err
= create_hyp_pud_mappings(pgd
, addr
, next
, pfn
, prot
);
641 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
642 } while (addr
= next
, addr
!= end
);
644 mutex_unlock(&kvm_hyp_pgd_mutex
);
648 static phys_addr_t
kvm_kaddr_to_phys(void *kaddr
)
650 if (!is_vmalloc_addr(kaddr
)) {
651 BUG_ON(!virt_addr_valid(kaddr
));
654 return page_to_phys(vmalloc_to_page(kaddr
)) +
655 offset_in_page(kaddr
);
660 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
661 * @from: The virtual kernel start address of the range
662 * @to: The virtual kernel end address of the range (exclusive)
663 * @prot: The protection to be applied to this range
665 * The same virtual address as the kernel virtual address is also used
666 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
669 int create_hyp_mappings(void *from
, void *to
, pgprot_t prot
)
671 phys_addr_t phys_addr
;
672 unsigned long virt_addr
;
673 unsigned long start
= kern_hyp_va((unsigned long)from
);
674 unsigned long end
= kern_hyp_va((unsigned long)to
);
676 if (is_kernel_in_hyp_mode())
679 start
= start
& PAGE_MASK
;
680 end
= PAGE_ALIGN(end
);
682 for (virt_addr
= start
; virt_addr
< end
; virt_addr
+= PAGE_SIZE
) {
685 phys_addr
= kvm_kaddr_to_phys(from
+ virt_addr
- start
);
686 err
= __create_hyp_mappings(hyp_pgd
, virt_addr
,
687 virt_addr
+ PAGE_SIZE
,
688 __phys_to_pfn(phys_addr
),
698 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
699 * @from: The kernel start VA of the range
700 * @to: The kernel end VA of the range (exclusive)
701 * @phys_addr: The physical start address which gets mapped
703 * The resulting HYP VA is the same as the kernel VA, modulo
706 int create_hyp_io_mappings(void *from
, void *to
, phys_addr_t phys_addr
)
708 unsigned long start
= kern_hyp_va((unsigned long)from
);
709 unsigned long end
= kern_hyp_va((unsigned long)to
);
711 if (is_kernel_in_hyp_mode())
714 /* Check for a valid kernel IO mapping */
715 if (!is_vmalloc_addr(from
) || !is_vmalloc_addr(to
- 1))
718 return __create_hyp_mappings(hyp_pgd
, start
, end
,
719 __phys_to_pfn(phys_addr
), PAGE_HYP_DEVICE
);
723 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
724 * @kvm: The KVM struct pointer for the VM.
726 * Allocates only the stage-2 HW PGD level table(s) (can support either full
727 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
730 * Note we don't need locking here as this is only called when the VM is
731 * created, which can only be done once.
733 int kvm_alloc_stage2_pgd(struct kvm
*kvm
)
737 if (kvm
->arch
.pgd
!= NULL
) {
738 kvm_err("kvm_arch already initialized?\n");
742 /* Allocate the HW PGD, making sure that each page gets its own refcount */
743 pgd
= alloc_pages_exact(S2_PGD_SIZE
, GFP_KERNEL
| __GFP_ZERO
);
751 static void stage2_unmap_memslot(struct kvm
*kvm
,
752 struct kvm_memory_slot
*memslot
)
754 hva_t hva
= memslot
->userspace_addr
;
755 phys_addr_t addr
= memslot
->base_gfn
<< PAGE_SHIFT
;
756 phys_addr_t size
= PAGE_SIZE
* memslot
->npages
;
757 hva_t reg_end
= hva
+ size
;
760 * A memory region could potentially cover multiple VMAs, and any holes
761 * between them, so iterate over all of them to find out if we should
764 * +--------------------------------------------+
765 * +---------------+----------------+ +----------------+
766 * | : VMA 1 | VMA 2 | | VMA 3 : |
767 * +---------------+----------------+ +----------------+
769 * +--------------------------------------------+
772 struct vm_area_struct
*vma
= find_vma(current
->mm
, hva
);
773 hva_t vm_start
, vm_end
;
775 if (!vma
|| vma
->vm_start
>= reg_end
)
779 * Take the intersection of this VMA with the memory region
781 vm_start
= max(hva
, vma
->vm_start
);
782 vm_end
= min(reg_end
, vma
->vm_end
);
784 if (!(vma
->vm_flags
& VM_PFNMAP
)) {
785 gpa_t gpa
= addr
+ (vm_start
- memslot
->userspace_addr
);
786 unmap_stage2_range(kvm
, gpa
, vm_end
- vm_start
);
789 } while (hva
< reg_end
);
793 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
794 * @kvm: The struct kvm pointer
796 * Go through the memregions and unmap any reguler RAM
797 * backing memory already mapped to the VM.
799 void stage2_unmap_vm(struct kvm
*kvm
)
801 struct kvm_memslots
*slots
;
802 struct kvm_memory_slot
*memslot
;
805 idx
= srcu_read_lock(&kvm
->srcu
);
806 spin_lock(&kvm
->mmu_lock
);
808 slots
= kvm_memslots(kvm
);
809 kvm_for_each_memslot(memslot
, slots
)
810 stage2_unmap_memslot(kvm
, memslot
);
812 spin_unlock(&kvm
->mmu_lock
);
813 srcu_read_unlock(&kvm
->srcu
, idx
);
817 * kvm_free_stage2_pgd - free all stage-2 tables
818 * @kvm: The KVM struct pointer for the VM.
820 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
821 * underlying level-2 and level-3 tables before freeing the actual level-1 table
822 * and setting the struct pointer to NULL.
824 * Note we don't need locking here as this is only called when the VM is
825 * destroyed, which can only be done once.
827 void kvm_free_stage2_pgd(struct kvm
*kvm
)
829 if (kvm
->arch
.pgd
== NULL
)
832 unmap_stage2_range(kvm
, 0, KVM_PHYS_SIZE
);
833 /* Free the HW pgd, one page at a time */
834 free_pages_exact(kvm
->arch
.pgd
, S2_PGD_SIZE
);
835 kvm
->arch
.pgd
= NULL
;
838 static pud_t
*stage2_get_pud(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
844 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(addr
);
845 if (WARN_ON(stage2_pgd_none(*pgd
))) {
848 pud
= mmu_memory_cache_alloc(cache
);
849 stage2_pgd_populate(pgd
, pud
);
850 get_page(virt_to_page(pgd
));
853 return stage2_pud_offset(pgd
, addr
);
856 static pmd_t
*stage2_get_pmd(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
862 pud
= stage2_get_pud(kvm
, cache
, addr
);
863 if (stage2_pud_none(*pud
)) {
866 pmd
= mmu_memory_cache_alloc(cache
);
867 stage2_pud_populate(pud
, pmd
);
868 get_page(virt_to_page(pud
));
871 return stage2_pmd_offset(pud
, addr
);
874 static int stage2_set_pmd_huge(struct kvm
*kvm
, struct kvm_mmu_memory_cache
875 *cache
, phys_addr_t addr
, const pmd_t
*new_pmd
)
879 pmd
= stage2_get_pmd(kvm
, cache
, addr
);
883 * Mapping in huge pages should only happen through a fault. If a
884 * page is merged into a transparent huge page, the individual
885 * subpages of that huge page should be unmapped through MMU
886 * notifiers before we get here.
888 * Merging of CompoundPages is not supported; they should become
889 * splitting first, unmapped, merged, and mapped back in on-demand.
891 VM_BUG_ON(pmd_present(*pmd
) && pmd_pfn(*pmd
) != pmd_pfn(*new_pmd
));
894 if (pmd_present(old_pmd
)) {
896 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
898 get_page(virt_to_page(pmd
));
901 kvm_set_pmd(pmd
, *new_pmd
);
905 static int stage2_set_pte(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
906 phys_addr_t addr
, const pte_t
*new_pte
,
911 bool iomap
= flags
& KVM_S2PTE_FLAG_IS_IOMAP
;
912 bool logging_active
= flags
& KVM_S2_FLAG_LOGGING_ACTIVE
;
914 VM_BUG_ON(logging_active
&& !cache
);
916 /* Create stage-2 page table mapping - Levels 0 and 1 */
917 pmd
= stage2_get_pmd(kvm
, cache
, addr
);
920 * Ignore calls from kvm_set_spte_hva for unallocated
927 * While dirty page logging - dissolve huge PMD, then continue on to
931 stage2_dissolve_pmd(kvm
, addr
, pmd
);
933 /* Create stage-2 page mappings - Level 2 */
934 if (pmd_none(*pmd
)) {
936 return 0; /* ignore calls from kvm_set_spte_hva */
937 pte
= mmu_memory_cache_alloc(cache
);
938 pmd_populate_kernel(NULL
, pmd
, pte
);
939 get_page(virt_to_page(pmd
));
942 pte
= pte_offset_kernel(pmd
, addr
);
944 if (iomap
&& pte_present(*pte
))
947 /* Create 2nd stage page table mapping - Level 3 */
949 if (pte_present(old_pte
)) {
950 kvm_set_pte(pte
, __pte(0));
951 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
953 get_page(virt_to_page(pte
));
956 kvm_set_pte(pte
, *new_pte
);
960 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
961 static int stage2_ptep_test_and_clear_young(pte_t
*pte
)
963 if (pte_young(*pte
)) {
964 *pte
= pte_mkold(*pte
);
970 static int stage2_ptep_test_and_clear_young(pte_t
*pte
)
972 return __ptep_test_and_clear_young(pte
);
976 static int stage2_pmdp_test_and_clear_young(pmd_t
*pmd
)
978 return stage2_ptep_test_and_clear_young((pte_t
*)pmd
);
982 * kvm_phys_addr_ioremap - map a device range to guest IPA
984 * @kvm: The KVM pointer
985 * @guest_ipa: The IPA at which to insert the mapping
986 * @pa: The physical address of the device
987 * @size: The size of the mapping
989 int kvm_phys_addr_ioremap(struct kvm
*kvm
, phys_addr_t guest_ipa
,
990 phys_addr_t pa
, unsigned long size
, bool writable
)
992 phys_addr_t addr
, end
;
995 struct kvm_mmu_memory_cache cache
= { 0, };
997 end
= (guest_ipa
+ size
+ PAGE_SIZE
- 1) & PAGE_MASK
;
998 pfn
= __phys_to_pfn(pa
);
1000 for (addr
= guest_ipa
; addr
< end
; addr
+= PAGE_SIZE
) {
1001 pte_t pte
= pfn_pte(pfn
, PAGE_S2_DEVICE
);
1004 pte
= kvm_s2pte_mkwrite(pte
);
1006 ret
= mmu_topup_memory_cache(&cache
, KVM_MMU_CACHE_MIN_PAGES
,
1010 spin_lock(&kvm
->mmu_lock
);
1011 ret
= stage2_set_pte(kvm
, &cache
, addr
, &pte
,
1012 KVM_S2PTE_FLAG_IS_IOMAP
);
1013 spin_unlock(&kvm
->mmu_lock
);
1021 mmu_free_memory_cache(&cache
);
1025 static bool transparent_hugepage_adjust(kvm_pfn_t
*pfnp
, phys_addr_t
*ipap
)
1027 kvm_pfn_t pfn
= *pfnp
;
1028 gfn_t gfn
= *ipap
>> PAGE_SHIFT
;
1030 if (PageTransCompoundMap(pfn_to_page(pfn
))) {
1033 * The address we faulted on is backed by a transparent huge
1034 * page. However, because we map the compound huge page and
1035 * not the individual tail page, we need to transfer the
1036 * refcount to the head page. We have to be careful that the
1037 * THP doesn't start to split while we are adjusting the
1040 * We are sure this doesn't happen, because mmu_notifier_retry
1041 * was successful and we are holding the mmu_lock, so if this
1042 * THP is trying to split, it will be blocked in the mmu
1043 * notifier before touching any of the pages, specifically
1044 * before being able to call __split_huge_page_refcount().
1046 * We can therefore safely transfer the refcount from PG_tail
1047 * to PG_head and switch the pfn from a tail page to the head
1050 mask
= PTRS_PER_PMD
- 1;
1051 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
1054 kvm_release_pfn_clean(pfn
);
1066 static bool kvm_is_write_fault(struct kvm_vcpu
*vcpu
)
1068 if (kvm_vcpu_trap_is_iabt(vcpu
))
1071 return kvm_vcpu_dabt_iswrite(vcpu
);
1075 * stage2_wp_ptes - write protect PMD range
1076 * @pmd: pointer to pmd entry
1077 * @addr: range start address
1078 * @end: range end address
1080 static void stage2_wp_ptes(pmd_t
*pmd
, phys_addr_t addr
, phys_addr_t end
)
1084 pte
= pte_offset_kernel(pmd
, addr
);
1086 if (!pte_none(*pte
)) {
1087 if (!kvm_s2pte_readonly(pte
))
1088 kvm_set_s2pte_readonly(pte
);
1090 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1094 * stage2_wp_pmds - write protect PUD range
1095 * @pud: pointer to pud entry
1096 * @addr: range start address
1097 * @end: range end address
1099 static void stage2_wp_pmds(pud_t
*pud
, phys_addr_t addr
, phys_addr_t end
)
1104 pmd
= stage2_pmd_offset(pud
, addr
);
1107 next
= stage2_pmd_addr_end(addr
, end
);
1108 if (!pmd_none(*pmd
)) {
1109 if (pmd_thp_or_huge(*pmd
)) {
1110 if (!kvm_s2pmd_readonly(pmd
))
1111 kvm_set_s2pmd_readonly(pmd
);
1113 stage2_wp_ptes(pmd
, addr
, next
);
1116 } while (pmd
++, addr
= next
, addr
!= end
);
1120 * stage2_wp_puds - write protect PGD range
1121 * @pgd: pointer to pgd entry
1122 * @addr: range start address
1123 * @end: range end address
1125 * Process PUD entries, for a huge PUD we cause a panic.
1127 static void stage2_wp_puds(pgd_t
*pgd
, phys_addr_t addr
, phys_addr_t end
)
1132 pud
= stage2_pud_offset(pgd
, addr
);
1134 next
= stage2_pud_addr_end(addr
, end
);
1135 if (!stage2_pud_none(*pud
)) {
1136 /* TODO:PUD not supported, revisit later if supported */
1137 BUG_ON(stage2_pud_huge(*pud
));
1138 stage2_wp_pmds(pud
, addr
, next
);
1140 } while (pud
++, addr
= next
, addr
!= end
);
1144 * stage2_wp_range() - write protect stage2 memory region range
1145 * @kvm: The KVM pointer
1146 * @addr: Start address of range
1147 * @end: End address of range
1149 static void stage2_wp_range(struct kvm
*kvm
, phys_addr_t addr
, phys_addr_t end
)
1154 pgd
= kvm
->arch
.pgd
+ stage2_pgd_index(addr
);
1157 * Release kvm_mmu_lock periodically if the memory region is
1158 * large. Otherwise, we may see kernel panics with
1159 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1160 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1161 * will also starve other vCPUs.
1163 if (need_resched() || spin_needbreak(&kvm
->mmu_lock
))
1164 cond_resched_lock(&kvm
->mmu_lock
);
1166 next
= stage2_pgd_addr_end(addr
, end
);
1167 if (stage2_pgd_present(*pgd
))
1168 stage2_wp_puds(pgd
, addr
, next
);
1169 } while (pgd
++, addr
= next
, addr
!= end
);
1173 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1174 * @kvm: The KVM pointer
1175 * @slot: The memory slot to write protect
1177 * Called to start logging dirty pages after memory region
1178 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1179 * all present PMD and PTEs are write protected in the memory region.
1180 * Afterwards read of dirty page log can be called.
1182 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1183 * serializing operations for VM memory regions.
1185 void kvm_mmu_wp_memory_region(struct kvm
*kvm
, int slot
)
1187 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1188 struct kvm_memory_slot
*memslot
= id_to_memslot(slots
, slot
);
1189 phys_addr_t start
= memslot
->base_gfn
<< PAGE_SHIFT
;
1190 phys_addr_t end
= (memslot
->base_gfn
+ memslot
->npages
) << PAGE_SHIFT
;
1192 spin_lock(&kvm
->mmu_lock
);
1193 stage2_wp_range(kvm
, start
, end
);
1194 spin_unlock(&kvm
->mmu_lock
);
1195 kvm_flush_remote_tlbs(kvm
);
1199 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1200 * @kvm: The KVM pointer
1201 * @slot: The memory slot associated with mask
1202 * @gfn_offset: The gfn offset in memory slot
1203 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1204 * slot to be write protected
1206 * Walks bits set in mask write protects the associated pte's. Caller must
1207 * acquire kvm_mmu_lock.
1209 static void kvm_mmu_write_protect_pt_masked(struct kvm
*kvm
,
1210 struct kvm_memory_slot
*slot
,
1211 gfn_t gfn_offset
, unsigned long mask
)
1213 phys_addr_t base_gfn
= slot
->base_gfn
+ gfn_offset
;
1214 phys_addr_t start
= (base_gfn
+ __ffs(mask
)) << PAGE_SHIFT
;
1215 phys_addr_t end
= (base_gfn
+ __fls(mask
) + 1) << PAGE_SHIFT
;
1217 stage2_wp_range(kvm
, start
, end
);
1221 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1224 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1225 * enable dirty logging for them.
1227 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm
*kvm
,
1228 struct kvm_memory_slot
*slot
,
1229 gfn_t gfn_offset
, unsigned long mask
)
1231 kvm_mmu_write_protect_pt_masked(kvm
, slot
, gfn_offset
, mask
);
1234 static void coherent_cache_guest_page(struct kvm_vcpu
*vcpu
, kvm_pfn_t pfn
,
1235 unsigned long size
, bool uncached
)
1237 __coherent_cache_guest_page(vcpu
, pfn
, size
, uncached
);
1240 static int user_mem_abort(struct kvm_vcpu
*vcpu
, phys_addr_t fault_ipa
,
1241 struct kvm_memory_slot
*memslot
, unsigned long hva
,
1242 unsigned long fault_status
)
1245 bool write_fault
, writable
, hugetlb
= false, force_pte
= false;
1246 unsigned long mmu_seq
;
1247 gfn_t gfn
= fault_ipa
>> PAGE_SHIFT
;
1248 struct kvm
*kvm
= vcpu
->kvm
;
1249 struct kvm_mmu_memory_cache
*memcache
= &vcpu
->arch
.mmu_page_cache
;
1250 struct vm_area_struct
*vma
;
1252 pgprot_t mem_type
= PAGE_S2
;
1253 bool fault_ipa_uncached
;
1254 bool logging_active
= memslot_is_logging(memslot
);
1255 unsigned long flags
= 0;
1257 write_fault
= kvm_is_write_fault(vcpu
);
1258 if (fault_status
== FSC_PERM
&& !write_fault
) {
1259 kvm_err("Unexpected L2 read permission error\n");
1263 /* Let's check if we will get back a huge page backed by hugetlbfs */
1264 down_read(¤t
->mm
->mmap_sem
);
1265 vma
= find_vma_intersection(current
->mm
, hva
, hva
+ 1);
1266 if (unlikely(!vma
)) {
1267 kvm_err("Failed to find VMA for hva 0x%lx\n", hva
);
1268 up_read(¤t
->mm
->mmap_sem
);
1272 if (is_vm_hugetlb_page(vma
) && !logging_active
) {
1274 gfn
= (fault_ipa
& PMD_MASK
) >> PAGE_SHIFT
;
1277 * Pages belonging to memslots that don't have the same
1278 * alignment for userspace and IPA cannot be mapped using
1279 * block descriptors even if the pages belong to a THP for
1280 * the process, because the stage-2 block descriptor will
1281 * cover more than a single THP and we loose atomicity for
1282 * unmapping, updates, and splits of the THP or other pages
1283 * in the stage-2 block range.
1285 if ((memslot
->userspace_addr
& ~PMD_MASK
) !=
1286 ((memslot
->base_gfn
<< PAGE_SHIFT
) & ~PMD_MASK
))
1289 up_read(¤t
->mm
->mmap_sem
);
1291 /* We need minimum second+third level pages */
1292 ret
= mmu_topup_memory_cache(memcache
, KVM_MMU_CACHE_MIN_PAGES
,
1297 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
1299 * Ensure the read of mmu_notifier_seq happens before we call
1300 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1301 * the page we just got a reference to gets unmapped before we have a
1302 * chance to grab the mmu_lock, which ensure that if the page gets
1303 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1304 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1305 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1309 pfn
= gfn_to_pfn_prot(kvm
, gfn
, write_fault
, &writable
);
1310 if (is_error_noslot_pfn(pfn
))
1313 if (kvm_is_device_pfn(pfn
)) {
1314 mem_type
= PAGE_S2_DEVICE
;
1315 flags
|= KVM_S2PTE_FLAG_IS_IOMAP
;
1316 } else if (logging_active
) {
1318 * Faults on pages in a memslot with logging enabled
1319 * should not be mapped with huge pages (it introduces churn
1320 * and performance degradation), so force a pte mapping.
1323 flags
|= KVM_S2_FLAG_LOGGING_ACTIVE
;
1326 * Only actually map the page as writable if this was a write
1333 spin_lock(&kvm
->mmu_lock
);
1334 if (mmu_notifier_retry(kvm
, mmu_seq
))
1337 if (!hugetlb
&& !force_pte
)
1338 hugetlb
= transparent_hugepage_adjust(&pfn
, &fault_ipa
);
1340 fault_ipa_uncached
= memslot
->flags
& KVM_MEMSLOT_INCOHERENT
;
1343 pmd_t new_pmd
= pfn_pmd(pfn
, mem_type
);
1344 new_pmd
= pmd_mkhuge(new_pmd
);
1346 new_pmd
= kvm_s2pmd_mkwrite(new_pmd
);
1347 kvm_set_pfn_dirty(pfn
);
1349 coherent_cache_guest_page(vcpu
, pfn
, PMD_SIZE
, fault_ipa_uncached
);
1350 ret
= stage2_set_pmd_huge(kvm
, memcache
, fault_ipa
, &new_pmd
);
1352 pte_t new_pte
= pfn_pte(pfn
, mem_type
);
1355 new_pte
= kvm_s2pte_mkwrite(new_pte
);
1356 kvm_set_pfn_dirty(pfn
);
1357 mark_page_dirty(kvm
, gfn
);
1359 coherent_cache_guest_page(vcpu
, pfn
, PAGE_SIZE
, fault_ipa_uncached
);
1360 ret
= stage2_set_pte(kvm
, memcache
, fault_ipa
, &new_pte
, flags
);
1364 spin_unlock(&kvm
->mmu_lock
);
1365 kvm_set_pfn_accessed(pfn
);
1366 kvm_release_pfn_clean(pfn
);
1371 * Resolve the access fault by making the page young again.
1372 * Note that because the faulting entry is guaranteed not to be
1373 * cached in the TLB, we don't need to invalidate anything.
1374 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1375 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1377 static void handle_access_fault(struct kvm_vcpu
*vcpu
, phys_addr_t fault_ipa
)
1382 bool pfn_valid
= false;
1384 trace_kvm_access_fault(fault_ipa
);
1386 spin_lock(&vcpu
->kvm
->mmu_lock
);
1388 pmd
= stage2_get_pmd(vcpu
->kvm
, NULL
, fault_ipa
);
1389 if (!pmd
|| pmd_none(*pmd
)) /* Nothing there */
1392 if (pmd_thp_or_huge(*pmd
)) { /* THP, HugeTLB */
1393 *pmd
= pmd_mkyoung(*pmd
);
1394 pfn
= pmd_pfn(*pmd
);
1399 pte
= pte_offset_kernel(pmd
, fault_ipa
);
1400 if (pte_none(*pte
)) /* Nothing there either */
1403 *pte
= pte_mkyoung(*pte
); /* Just a page... */
1404 pfn
= pte_pfn(*pte
);
1407 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1409 kvm_set_pfn_accessed(pfn
);
1413 * kvm_handle_guest_abort - handles all 2nd stage aborts
1414 * @vcpu: the VCPU pointer
1415 * @run: the kvm_run structure
1417 * Any abort that gets to the host is almost guaranteed to be caused by a
1418 * missing second stage translation table entry, which can mean that either the
1419 * guest simply needs more memory and we must allocate an appropriate page or it
1420 * can mean that the guest tried to access I/O memory, which is emulated by user
1421 * space. The distinction is based on the IPA causing the fault and whether this
1422 * memory region has been registered as standard RAM by user space.
1424 int kvm_handle_guest_abort(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1426 unsigned long fault_status
;
1427 phys_addr_t fault_ipa
;
1428 struct kvm_memory_slot
*memslot
;
1430 bool is_iabt
, write_fault
, writable
;
1434 is_iabt
= kvm_vcpu_trap_is_iabt(vcpu
);
1435 if (unlikely(!is_iabt
&& kvm_vcpu_dabt_isextabt(vcpu
))) {
1436 kvm_inject_vabt(vcpu
);
1440 fault_ipa
= kvm_vcpu_get_fault_ipa(vcpu
);
1442 trace_kvm_guest_fault(*vcpu_pc(vcpu
), kvm_vcpu_get_hsr(vcpu
),
1443 kvm_vcpu_get_hfar(vcpu
), fault_ipa
);
1445 /* Check the stage-2 fault is trans. fault or write fault */
1446 fault_status
= kvm_vcpu_trap_get_fault_type(vcpu
);
1447 if (fault_status
!= FSC_FAULT
&& fault_status
!= FSC_PERM
&&
1448 fault_status
!= FSC_ACCESS
) {
1449 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1450 kvm_vcpu_trap_get_class(vcpu
),
1451 (unsigned long)kvm_vcpu_trap_get_fault(vcpu
),
1452 (unsigned long)kvm_vcpu_get_hsr(vcpu
));
1456 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1458 gfn
= fault_ipa
>> PAGE_SHIFT
;
1459 memslot
= gfn_to_memslot(vcpu
->kvm
, gfn
);
1460 hva
= gfn_to_hva_memslot_prot(memslot
, gfn
, &writable
);
1461 write_fault
= kvm_is_write_fault(vcpu
);
1462 if (kvm_is_error_hva(hva
) || (write_fault
&& !writable
)) {
1464 /* Prefetch Abort on I/O address */
1465 kvm_inject_pabt(vcpu
, kvm_vcpu_get_hfar(vcpu
));
1471 * Check for a cache maintenance operation. Since we
1472 * ended-up here, we know it is outside of any memory
1473 * slot. But we can't find out if that is for a device,
1474 * or if the guest is just being stupid. The only thing
1475 * we know for sure is that this range cannot be cached.
1477 * So let's assume that the guest is just being
1478 * cautious, and skip the instruction.
1480 if (kvm_vcpu_dabt_is_cm(vcpu
)) {
1481 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
1487 * The IPA is reported as [MAX:12], so we need to
1488 * complement it with the bottom 12 bits from the
1489 * faulting VA. This is always 12 bits, irrespective
1492 fault_ipa
|= kvm_vcpu_get_hfar(vcpu
) & ((1 << 12) - 1);
1493 ret
= io_mem_abort(vcpu
, run
, fault_ipa
);
1497 /* Userspace should not be able to register out-of-bounds IPAs */
1498 VM_BUG_ON(fault_ipa
>= KVM_PHYS_SIZE
);
1500 if (fault_status
== FSC_ACCESS
) {
1501 handle_access_fault(vcpu
, fault_ipa
);
1506 ret
= user_mem_abort(vcpu
, fault_ipa
, memslot
, hva
, fault_status
);
1510 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
1514 static int handle_hva_to_gpa(struct kvm
*kvm
,
1515 unsigned long start
,
1517 int (*handler
)(struct kvm
*kvm
,
1518 gpa_t gpa
, void *data
),
1521 struct kvm_memslots
*slots
;
1522 struct kvm_memory_slot
*memslot
;
1525 slots
= kvm_memslots(kvm
);
1527 /* we only care about the pages that the guest sees */
1528 kvm_for_each_memslot(memslot
, slots
) {
1529 unsigned long hva_start
, hva_end
;
1532 hva_start
= max(start
, memslot
->userspace_addr
);
1533 hva_end
= min(end
, memslot
->userspace_addr
+
1534 (memslot
->npages
<< PAGE_SHIFT
));
1535 if (hva_start
>= hva_end
)
1539 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1540 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1542 gfn
= hva_to_gfn_memslot(hva_start
, memslot
);
1543 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
1545 for (; gfn
< gfn_end
; ++gfn
) {
1546 gpa_t gpa
= gfn
<< PAGE_SHIFT
;
1547 ret
|= handler(kvm
, gpa
, data
);
1554 static int kvm_unmap_hva_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
1556 unmap_stage2_range(kvm
, gpa
, PAGE_SIZE
);
1560 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
1562 unsigned long end
= hva
+ PAGE_SIZE
;
1567 trace_kvm_unmap_hva(hva
);
1568 handle_hva_to_gpa(kvm
, hva
, end
, &kvm_unmap_hva_handler
, NULL
);
1572 int kvm_unmap_hva_range(struct kvm
*kvm
,
1573 unsigned long start
, unsigned long end
)
1578 trace_kvm_unmap_hva_range(start
, end
);
1579 handle_hva_to_gpa(kvm
, start
, end
, &kvm_unmap_hva_handler
, NULL
);
1583 static int kvm_set_spte_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
1585 pte_t
*pte
= (pte_t
*)data
;
1588 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1589 * flag clear because MMU notifiers will have unmapped a huge PMD before
1590 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1591 * therefore stage2_set_pte() never needs to clear out a huge PMD
1592 * through this calling path.
1594 stage2_set_pte(kvm
, NULL
, gpa
, pte
, 0);
1599 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1601 unsigned long end
= hva
+ PAGE_SIZE
;
1607 trace_kvm_set_spte_hva(hva
);
1608 stage2_pte
= pfn_pte(pte_pfn(pte
), PAGE_S2
);
1609 handle_hva_to_gpa(kvm
, hva
, end
, &kvm_set_spte_handler
, &stage2_pte
);
1612 static int kvm_age_hva_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
1617 pmd
= stage2_get_pmd(kvm
, NULL
, gpa
);
1618 if (!pmd
|| pmd_none(*pmd
)) /* Nothing there */
1621 if (pmd_thp_or_huge(*pmd
)) /* THP, HugeTLB */
1622 return stage2_pmdp_test_and_clear_young(pmd
);
1624 pte
= pte_offset_kernel(pmd
, gpa
);
1628 return stage2_ptep_test_and_clear_young(pte
);
1631 static int kvm_test_age_hva_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
1636 pmd
= stage2_get_pmd(kvm
, NULL
, gpa
);
1637 if (!pmd
|| pmd_none(*pmd
)) /* Nothing there */
1640 if (pmd_thp_or_huge(*pmd
)) /* THP, HugeTLB */
1641 return pmd_young(*pmd
);
1643 pte
= pte_offset_kernel(pmd
, gpa
);
1644 if (!pte_none(*pte
)) /* Just a page... */
1645 return pte_young(*pte
);
1650 int kvm_age_hva(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1652 trace_kvm_age_hva(start
, end
);
1653 return handle_hva_to_gpa(kvm
, start
, end
, kvm_age_hva_handler
, NULL
);
1656 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
1658 trace_kvm_test_age_hva(hva
);
1659 return handle_hva_to_gpa(kvm
, hva
, hva
, kvm_test_age_hva_handler
, NULL
);
1662 void kvm_mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
1664 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_cache
);
1667 phys_addr_t
kvm_mmu_get_httbr(void)
1669 if (__kvm_cpu_uses_extended_idmap())
1670 return virt_to_phys(merged_hyp_pgd
);
1672 return virt_to_phys(hyp_pgd
);
1675 phys_addr_t
kvm_get_idmap_vector(void)
1677 return hyp_idmap_vector
;
1680 phys_addr_t
kvm_get_idmap_start(void)
1682 return hyp_idmap_start
;
1685 static int kvm_map_idmap_text(pgd_t
*pgd
)
1689 /* Create the idmap in the boot page tables */
1690 err
= __create_hyp_mappings(pgd
,
1691 hyp_idmap_start
, hyp_idmap_end
,
1692 __phys_to_pfn(hyp_idmap_start
),
1695 kvm_err("Failed to idmap %lx-%lx\n",
1696 hyp_idmap_start
, hyp_idmap_end
);
1701 int kvm_mmu_init(void)
1705 hyp_idmap_start
= kvm_virt_to_phys(__hyp_idmap_text_start
);
1706 hyp_idmap_end
= kvm_virt_to_phys(__hyp_idmap_text_end
);
1707 hyp_idmap_vector
= kvm_virt_to_phys(__kvm_hyp_init
);
1710 * We rely on the linker script to ensure at build time that the HYP
1711 * init code does not cross a page boundary.
1713 BUG_ON((hyp_idmap_start
^ (hyp_idmap_end
- 1)) & PAGE_MASK
);
1715 kvm_info("IDMAP page: %lx\n", hyp_idmap_start
);
1716 kvm_info("HYP VA range: %lx:%lx\n",
1717 kern_hyp_va(PAGE_OFFSET
), kern_hyp_va(~0UL));
1719 if (hyp_idmap_start
>= kern_hyp_va(PAGE_OFFSET
) &&
1720 hyp_idmap_start
< kern_hyp_va(~0UL) &&
1721 hyp_idmap_start
!= (unsigned long)__hyp_idmap_text_start
) {
1723 * The idmap page is intersecting with the VA space,
1724 * it is not safe to continue further.
1726 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1731 hyp_pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
, hyp_pgd_order
);
1733 kvm_err("Hyp mode PGD not allocated\n");
1738 if (__kvm_cpu_uses_extended_idmap()) {
1739 boot_hyp_pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
,
1741 if (!boot_hyp_pgd
) {
1742 kvm_err("Hyp boot PGD not allocated\n");
1747 err
= kvm_map_idmap_text(boot_hyp_pgd
);
1751 merged_hyp_pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
1752 if (!merged_hyp_pgd
) {
1753 kvm_err("Failed to allocate extra HYP pgd\n");
1756 __kvm_extend_hypmap(boot_hyp_pgd
, hyp_pgd
, merged_hyp_pgd
,
1759 err
= kvm_map_idmap_text(hyp_pgd
);
1770 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
1771 const struct kvm_userspace_memory_region
*mem
,
1772 const struct kvm_memory_slot
*old
,
1773 const struct kvm_memory_slot
*new,
1774 enum kvm_mr_change change
)
1777 * At this point memslot has been committed and there is an
1778 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1779 * memory slot is write protected.
1781 if (change
!= KVM_MR_DELETE
&& mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
)
1782 kvm_mmu_wp_memory_region(kvm
, mem
->slot
);
1785 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
1786 struct kvm_memory_slot
*memslot
,
1787 const struct kvm_userspace_memory_region
*mem
,
1788 enum kvm_mr_change change
)
1790 hva_t hva
= mem
->userspace_addr
;
1791 hva_t reg_end
= hva
+ mem
->memory_size
;
1792 bool writable
= !(mem
->flags
& KVM_MEM_READONLY
);
1795 if (change
!= KVM_MR_CREATE
&& change
!= KVM_MR_MOVE
&&
1796 change
!= KVM_MR_FLAGS_ONLY
)
1800 * Prevent userspace from creating a memory region outside of the IPA
1801 * space addressable by the KVM guest IPA space.
1803 if (memslot
->base_gfn
+ memslot
->npages
>=
1804 (KVM_PHYS_SIZE
>> PAGE_SHIFT
))
1808 * A memory region could potentially cover multiple VMAs, and any holes
1809 * between them, so iterate over all of them to find out if we can map
1810 * any of them right now.
1812 * +--------------------------------------------+
1813 * +---------------+----------------+ +----------------+
1814 * | : VMA 1 | VMA 2 | | VMA 3 : |
1815 * +---------------+----------------+ +----------------+
1817 * +--------------------------------------------+
1820 struct vm_area_struct
*vma
= find_vma(current
->mm
, hva
);
1821 hva_t vm_start
, vm_end
;
1823 if (!vma
|| vma
->vm_start
>= reg_end
)
1827 * Mapping a read-only VMA is only allowed if the
1828 * memory region is configured as read-only.
1830 if (writable
&& !(vma
->vm_flags
& VM_WRITE
)) {
1836 * Take the intersection of this VMA with the memory region
1838 vm_start
= max(hva
, vma
->vm_start
);
1839 vm_end
= min(reg_end
, vma
->vm_end
);
1841 if (vma
->vm_flags
& VM_PFNMAP
) {
1842 gpa_t gpa
= mem
->guest_phys_addr
+
1843 (vm_start
- mem
->userspace_addr
);
1846 pa
= (phys_addr_t
)vma
->vm_pgoff
<< PAGE_SHIFT
;
1847 pa
+= vm_start
- vma
->vm_start
;
1849 /* IO region dirty page logging not allowed */
1850 if (memslot
->flags
& KVM_MEM_LOG_DIRTY_PAGES
)
1853 ret
= kvm_phys_addr_ioremap(kvm
, gpa
, pa
,
1860 } while (hva
< reg_end
);
1862 if (change
== KVM_MR_FLAGS_ONLY
)
1865 spin_lock(&kvm
->mmu_lock
);
1867 unmap_stage2_range(kvm
, mem
->guest_phys_addr
, mem
->memory_size
);
1869 stage2_flush_memslot(kvm
, memslot
);
1870 spin_unlock(&kvm
->mmu_lock
);
1874 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
1875 struct kvm_memory_slot
*dont
)
1879 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
1880 unsigned long npages
)
1883 * Readonly memslots are not incoherent with the caches by definition,
1884 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1885 * that the guest may consider devices and hence map as uncached.
1886 * To prevent incoherency issues in these cases, tag all readonly
1887 * regions as incoherent.
1889 if (slot
->flags
& KVM_MEM_READONLY
)
1890 slot
->flags
|= KVM_MEMSLOT_INCOHERENT
;
1894 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
1898 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
1900 kvm_free_stage2_pgd(kvm
);
1903 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
1904 struct kvm_memory_slot
*slot
)
1906 gpa_t gpa
= slot
->base_gfn
<< PAGE_SHIFT
;
1907 phys_addr_t size
= slot
->npages
<< PAGE_SHIFT
;
1909 spin_lock(&kvm
->mmu_lock
);
1910 unmap_stage2_range(kvm
, gpa
, size
);
1911 spin_unlock(&kvm
->mmu_lock
);
1915 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1918 * - S/W ops are local to a CPU (not broadcast)
1919 * - We have line migration behind our back (speculation)
1920 * - System caches don't support S/W at all (damn!)
1922 * In the face of the above, the best we can do is to try and convert
1923 * S/W ops to VA ops. Because the guest is not allowed to infer the
1924 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1925 * which is a rather good thing for us.
1927 * Also, it is only used when turning caches on/off ("The expected
1928 * usage of the cache maintenance instructions that operate by set/way
1929 * is associated with the cache maintenance instructions associated
1930 * with the powerdown and powerup of caches, if this is required by
1931 * the implementation.").
1933 * We use the following policy:
1935 * - If we trap a S/W operation, we enable VM trapping to detect
1936 * caches being turned on/off, and do a full clean.
1938 * - We flush the caches on both caches being turned on and off.
1940 * - Once the caches are enabled, we stop trapping VM ops.
1942 void kvm_set_way_flush(struct kvm_vcpu
*vcpu
)
1944 unsigned long hcr
= vcpu_get_hcr(vcpu
);
1947 * If this is the first time we do a S/W operation
1948 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1951 * Otherwise, rely on the VM trapping to wait for the MMU +
1952 * Caches to be turned off. At that point, we'll be able to
1953 * clean the caches again.
1955 if (!(hcr
& HCR_TVM
)) {
1956 trace_kvm_set_way_flush(*vcpu_pc(vcpu
),
1957 vcpu_has_cache_enabled(vcpu
));
1958 stage2_flush_vm(vcpu
->kvm
);
1959 vcpu_set_hcr(vcpu
, hcr
| HCR_TVM
);
1963 void kvm_toggle_cache(struct kvm_vcpu
*vcpu
, bool was_enabled
)
1965 bool now_enabled
= vcpu_has_cache_enabled(vcpu
);
1968 * If switching the MMU+caches on, need to invalidate the caches.
1969 * If switching it off, need to clean the caches.
1970 * Clean + invalidate does the trick always.
1972 if (now_enabled
!= was_enabled
)
1973 stage2_flush_vm(vcpu
->kvm
);
1975 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1977 vcpu_set_hcr(vcpu
, vcpu_get_hcr(vcpu
) & ~HCR_TVM
);
1979 trace_kvm_toggle_cache(*vcpu_pc(vcpu
), was_enabled
, now_enabled
);