1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/crc32.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
46 #include <linux/firmware.h>
47 #include <asm/processor.h> /* Processor type for cache alignment. */
48 #include <linux/uaccess.h>
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
55 #define HAS_BROKEN_FIRMWARE
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
60 #ifdef HAS_BROKEN_FIRMWARE
61 #define PADDING_MASK 3
65 * Define this if using the driver with the zero-copy patch
69 #if IS_ENABLED(CONFIG_VLAN_8021Q)
73 /* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
76 /* Used for tuning interrupt latency vs. overhead. */
77 static int intr_latency
;
78 static int small_frames
;
80 static int debug
= 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81 static int max_interrupt_work
= 20;
83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
85 static const int multicast_filter_limit
= 512;
86 /* Whether to do TCP/UDP checksums in hardware */
87 static int enable_hw_cksum
= 1;
89 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105 static int rx_copybreak
= PKT_BUF_SZ
;
107 static int rx_copybreak
/* = 0 */;
110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
112 #define DMA_BURST_SIZE 64
114 #define DMA_BURST_SIZE 128
117 /* Operational parameters that are set at compile time. */
119 /* The "native" ring sizes are either 256 or 2048.
120 However in some modes a descriptor may be marked to wrap the ring earlier.
122 #define RX_RING_SIZE 256
123 #define TX_RING_SIZE 32
124 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
125 #define DONE_Q_SIZE 1024
126 /* All queues must be aligned on a 256-byte boundary */
127 #define QUEUE_ALIGN 256
129 #if RX_RING_SIZE > 256
130 #define RX_Q_ENTRIES Rx2048QEntries
132 #define RX_Q_ENTRIES Rx256QEntries
135 /* Operational parameters that usually are not changed. */
136 /* Time in jiffies before concluding the transmitter is hung. */
137 #define TX_TIMEOUT (2 * HZ)
139 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
140 /* 64-bit dma_addr_t */
141 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
142 #define netdrv_addr_t __le64
143 #define cpu_to_dma(x) cpu_to_le64(x)
144 #define dma_to_cpu(x) le64_to_cpu(x)
145 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
150 #else /* 32-bit dma_addr_t */
151 #define netdrv_addr_t __le32
152 #define cpu_to_dma(x) cpu_to_le32(x)
153 #define dma_to_cpu(x) le32_to_cpu(x)
154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
161 #define skb_first_frag_len(skb) skb_headlen(skb)
162 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
165 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
166 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
168 /* These identify the driver base version and may not be removed. */
169 static const char version
[] =
170 KERN_INFO
"starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
171 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION
", " DRV_RELDATE
")\n";
173 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION
);
177 MODULE_FIRMWARE(FIRMWARE_RX
);
178 MODULE_FIRMWARE(FIRMWARE_TX
);
180 module_param(max_interrupt_work
, int, 0);
181 module_param(mtu
, int, 0);
182 module_param(debug
, int, 0);
183 module_param(rx_copybreak
, int, 0);
184 module_param(intr_latency
, int, 0);
185 module_param(small_frames
, int, 0);
186 module_param(enable_hw_cksum
, int, 0);
187 MODULE_PARM_DESC(max_interrupt_work
, "Maximum events handled per interrupt");
188 MODULE_PARM_DESC(mtu
, "MTU (all boards)");
189 MODULE_PARM_DESC(debug
, "Debug level (0-6)");
190 MODULE_PARM_DESC(rx_copybreak
, "Copy breakpoint for copy-only-tiny-frames");
191 MODULE_PARM_DESC(intr_latency
, "Maximum interrupt latency, in microseconds");
192 MODULE_PARM_DESC(small_frames
, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
193 MODULE_PARM_DESC(enable_hw_cksum
, "Enable/disable hardware cksum support (0/1)");
198 I. Board Compatibility
200 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
202 II. Board-specific settings
204 III. Driver operation
208 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
209 ring sizes are set fixed by the hardware, but may optionally be wrapped
210 earlier by the END bit in the descriptor.
211 This driver uses that hardware queue size for the Rx ring, where a large
212 number of entries has no ill effect beyond increases the potential backlog.
213 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
214 disables the queue layer priority ordering and we have no mechanism to
215 utilize the hardware two-level priority queue. When modifying the
216 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
219 IIIb/c. Transmit/Receive Structure
221 See the Adaptec manual for the many possible structures, and options for
222 each structure. There are far too many to document all of them here.
224 For transmit this driver uses type 0/1 transmit descriptors (depending
225 on the 32/64 bitness of the architecture), and relies on automatic
226 minimum-length padding. It does not use the completion queue
227 consumer index, but instead checks for non-zero status entries.
229 For receive this driver uses type 2/3 receive descriptors. The driver
230 allocates full frame size skbuffs for the Rx ring buffers, so all frames
231 should fit in a single descriptor. The driver does not use the completion
232 queue consumer index, but instead checks for non-zero status entries.
234 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
235 is allocated and the frame is copied to the new skbuff. When the incoming
236 frame is larger, the skbuff is passed directly up the protocol stack.
237 Buffers consumed this way are replaced by newly allocated skbuffs in a later
240 A notable aspect of operation is that unaligned buffers are not permitted by
241 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
242 isn't longword aligned, which may cause problems on some machine
243 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
244 the frame into a new skbuff unconditionally. Copied frames are put into the
245 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
247 IIId. Synchronization
249 The driver runs as two independent, single-threaded flows of control. One
250 is the send-packet routine, which enforces single-threaded use by the
251 dev->tbusy flag. The other thread is the interrupt handler, which is single
252 threaded by the hardware and interrupt handling software.
254 The send packet thread has partial control over the Tx ring and the netif_queue
255 status. If the number of free Tx slots in the ring falls below a certain number
256 (currently hardcoded to 4), it signals the upper layer to stop the queue.
258 The interrupt handler has exclusive control over the Rx ring and records stats
259 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
260 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
261 number of free Tx slow is above the threshold, it signals the upper layer to
268 The Adaptec Starfire manuals, available only from Adaptec.
269 http://www.scyld.com/expert/100mbps.html
270 http://www.scyld.com/expert/NWay.html
274 - StopOnPerr is broken, don't enable
275 - Hardware ethernet padding exposes random data, perform software padding
276 instead (unverified -- works correctly for all the hardware I have)
282 enum chip_capability_flags
{CanHaveMII
=1, };
288 static const struct pci_device_id starfire_pci_tbl
[] = {
289 { PCI_VDEVICE(ADAPTEC
, 0x6915), CH_6915
},
292 MODULE_DEVICE_TABLE(pci
, starfire_pci_tbl
);
294 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
295 static const struct chip_info
{
299 { "Adaptec Starfire 6915", CanHaveMII
},
303 /* Offsets to the device registers.
304 Unlike software-only systems, device drivers interact with complex hardware.
305 It's not useful to define symbolic names for every register bit in the
306 device. The name can only partially document the semantics and make
307 the driver longer and more difficult to read.
308 In general, only the important configuration values or bits changed
309 multiple times should be defined symbolically.
311 enum register_offsets
{
312 PCIDeviceConfig
=0x50040, GenCtrl
=0x50070, IntrTimerCtrl
=0x50074,
313 IntrClear
=0x50080, IntrStatus
=0x50084, IntrEnable
=0x50088,
314 MIICtrl
=0x52000, TxStationAddr
=0x50120, EEPROMCtrl
=0x51000,
315 GPIOCtrl
=0x5008C, TxDescCtrl
=0x50090,
316 TxRingPtr
=0x50098, HiPriTxRingPtr
=0x50094, /* Low and High priority. */
317 TxRingHiAddr
=0x5009C, /* 64 bit address extension. */
318 TxProducerIdx
=0x500A0, TxConsumerIdx
=0x500A4,
320 CompletionHiAddr
=0x500B4, TxCompletionAddr
=0x500B8,
321 RxCompletionAddr
=0x500BC, RxCompletionQ2Addr
=0x500C0,
322 CompletionQConsumerIdx
=0x500C4, RxDMACtrl
=0x500D0,
323 RxDescQCtrl
=0x500D4, RxDescQHiAddr
=0x500DC, RxDescQAddr
=0x500E0,
324 RxDescQIdx
=0x500E8, RxDMAStatus
=0x500F0, RxFilterMode
=0x500F4,
325 TxMode
=0x55000, VlanType
=0x55064,
326 PerfFilterTable
=0x56000, HashTable
=0x56100,
327 TxGfpMem
=0x58000, RxGfpMem
=0x5a000,
331 * Bits in the interrupt status/mask registers.
332 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
333 * enables all the interrupt sources that are or'ed into those status bits.
335 enum intr_status_bits
{
336 IntrLinkChange
=0xf0000000, IntrStatsMax
=0x08000000,
337 IntrAbnormalSummary
=0x02000000, IntrGeneralTimer
=0x01000000,
338 IntrSoftware
=0x800000, IntrRxComplQ1Low
=0x400000,
339 IntrTxComplQLow
=0x200000, IntrPCI
=0x100000,
340 IntrDMAErr
=0x080000, IntrTxDataLow
=0x040000,
341 IntrRxComplQ2Low
=0x020000, IntrRxDescQ1Low
=0x010000,
342 IntrNormalSummary
=0x8000, IntrTxDone
=0x4000,
343 IntrTxDMADone
=0x2000, IntrTxEmpty
=0x1000,
344 IntrEarlyRxQ2
=0x0800, IntrEarlyRxQ1
=0x0400,
345 IntrRxQ2Done
=0x0200, IntrRxQ1Done
=0x0100,
346 IntrRxGFPDead
=0x80, IntrRxDescQ2Low
=0x40,
347 IntrNoTxCsum
=0x20, IntrTxBadID
=0x10,
348 IntrHiPriTxBadID
=0x08, IntrRxGfp
=0x04,
349 IntrTxGfp
=0x02, IntrPCIPad
=0x01,
351 IntrRxDone
=IntrRxQ2Done
| IntrRxQ1Done
,
352 IntrRxEmpty
=IntrRxDescQ1Low
| IntrRxDescQ2Low
,
353 IntrNormalMask
=0xff00, IntrAbnormalMask
=0x3ff00fe,
356 /* Bits in the RxFilterMode register. */
358 AcceptBroadcast
=0x04, AcceptAllMulticast
=0x02, AcceptAll
=0x01,
359 AcceptMulticast
=0x10, PerfectFilter
=0x40, HashFilter
=0x30,
360 PerfectFilterVlan
=0x80, MinVLANPrio
=0xE000, VlanMode
=0x0200,
364 /* Bits in the TxMode register */
366 MiiSoftReset
=0x8000, MIILoopback
=0x4000,
367 TxFlowEnable
=0x0800, RxFlowEnable
=0x0400,
368 PadEnable
=0x04, FullDuplex
=0x02, HugeFrame
=0x01,
371 /* Bits in the TxDescCtrl register. */
373 TxDescSpaceUnlim
=0x00, TxDescSpace32
=0x10, TxDescSpace64
=0x20,
374 TxDescSpace128
=0x30, TxDescSpace256
=0x40,
375 TxDescType0
=0x00, TxDescType1
=0x01, TxDescType2
=0x02,
376 TxDescType3
=0x03, TxDescType4
=0x04,
377 TxNoDMACompletion
=0x08,
378 TxDescQAddr64bit
=0x80, TxDescQAddr32bit
=0,
379 TxHiPriFIFOThreshShift
=24, TxPadLenShift
=16,
380 TxDMABurstSizeShift
=8,
383 /* Bits in the RxDescQCtrl register. */
385 RxBufferLenShift
=16, RxMinDescrThreshShift
=0,
386 RxPrefetchMode
=0x8000, RxVariableQ
=0x2000,
387 Rx2048QEntries
=0x4000, Rx256QEntries
=0,
388 RxDescAddr64bit
=0x1000, RxDescAddr32bit
=0,
389 RxDescQAddr64bit
=0x0100, RxDescQAddr32bit
=0,
390 RxDescSpace4
=0x000, RxDescSpace8
=0x100,
391 RxDescSpace16
=0x200, RxDescSpace32
=0x300,
392 RxDescSpace64
=0x400, RxDescSpace128
=0x500,
396 /* Bits in the RxDMACtrl register. */
397 enum rx_dmactrl_bits
{
398 RxReportBadFrames
=0x80000000, RxDMAShortFrames
=0x40000000,
399 RxDMABadFrames
=0x20000000, RxDMACrcErrorFrames
=0x10000000,
400 RxDMAControlFrame
=0x08000000, RxDMAPauseFrame
=0x04000000,
401 RxChecksumIgnore
=0, RxChecksumRejectTCPUDP
=0x02000000,
402 RxChecksumRejectTCPOnly
=0x01000000,
403 RxCompletionQ2Enable
=0x800000,
404 RxDMAQ2Disable
=0, RxDMAQ2FPOnly
=0x100000,
405 RxDMAQ2SmallPkt
=0x200000, RxDMAQ2HighPrio
=0x300000,
406 RxDMAQ2NonIP
=0x400000,
407 RxUseBackupQueue
=0x080000, RxDMACRC
=0x040000,
408 RxEarlyIntThreshShift
=12, RxHighPrioThreshShift
=8,
412 /* Bits in the RxCompletionAddr register */
414 RxComplQAddr64bit
=0x80, RxComplQAddr32bit
=0,
415 RxComplProducerWrEn
=0x40,
416 RxComplType0
=0x00, RxComplType1
=0x10,
417 RxComplType2
=0x20, RxComplType3
=0x30,
418 RxComplThreshShift
=0,
421 /* Bits in the TxCompletionAddr register */
423 TxComplQAddr64bit
=0x80, TxComplQAddr32bit
=0,
424 TxComplProducerWrEn
=0x40,
425 TxComplIntrStatus
=0x20,
426 CommonQueueMode
=0x10,
427 TxComplThreshShift
=0,
430 /* Bits in the GenCtrl register */
432 RxEnable
=0x05, TxEnable
=0x0a,
433 RxGFPEnable
=0x10, TxGFPEnable
=0x20,
436 /* Bits in the IntrTimerCtrl register */
437 enum intr_ctrl_bits
{
438 Timer10X
=0x800, EnableIntrMasking
=0x60, SmallFrameBypass
=0x100,
439 SmallFrame64
=0, SmallFrame128
=0x200, SmallFrame256
=0x400, SmallFrame512
=0x600,
440 IntrLatencyMask
=0x1f,
443 /* The Rx and Tx buffer descriptors. */
444 struct starfire_rx_desc
{
445 netdrv_addr_t rxaddr
;
448 RxDescValid
=1, RxDescEndRing
=2,
451 /* Completion queue entry. */
452 struct short_rx_done_desc
{
453 __le32 status
; /* Low 16 bits is length. */
455 struct basic_rx_done_desc
{
456 __le32 status
; /* Low 16 bits is length. */
460 struct csum_rx_done_desc
{
461 __le32 status
; /* Low 16 bits is length. */
462 __le16 csum
; /* Partial checksum */
465 struct full_rx_done_desc
{
466 __le32 status
; /* Low 16 bits is length. */
470 __le16 csum
; /* partial checksum */
473 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
475 typedef struct full_rx_done_desc rx_done_desc
;
476 #define RxComplType RxComplType3
477 #else /* not VLAN_SUPPORT */
478 typedef struct csum_rx_done_desc rx_done_desc
;
479 #define RxComplType RxComplType2
480 #endif /* not VLAN_SUPPORT */
483 RxOK
=0x20000000, RxFIFOErr
=0x10000000, RxBufQ2
=0x08000000,
486 /* Type 1 Tx descriptor. */
487 struct starfire_tx_desc_1
{
488 __le32 status
; /* Upper bits are status, lower 16 length. */
492 /* Type 2 Tx descriptor. */
493 struct starfire_tx_desc_2
{
494 __le32 status
; /* Upper bits are status, lower 16 length. */
500 typedef struct starfire_tx_desc_2 starfire_tx_desc
;
501 #define TX_DESC_TYPE TxDescType2
502 #else /* not ADDR_64BITS */
503 typedef struct starfire_tx_desc_1 starfire_tx_desc
;
504 #define TX_DESC_TYPE TxDescType1
505 #endif /* not ADDR_64BITS */
506 #define TX_DESC_SPACING TxDescSpaceUnlim
510 TxCRCEn
=0x01000000, TxDescIntr
=0x08000000,
511 TxRingWrap
=0x04000000, TxCalTCP
=0x02000000,
513 struct tx_done_desc
{
514 __le32 status
; /* timestamp, index. */
516 __le32 intrstatus
; /* interrupt status */
520 struct rx_ring_info
{
524 struct tx_ring_info
{
527 unsigned int used_slots
;
531 struct netdev_private
{
532 /* Descriptor rings first for alignment. */
533 struct starfire_rx_desc
*rx_ring
;
534 starfire_tx_desc
*tx_ring
;
535 dma_addr_t rx_ring_dma
;
536 dma_addr_t tx_ring_dma
;
537 /* The addresses of rx/tx-in-place skbuffs. */
538 struct rx_ring_info rx_info
[RX_RING_SIZE
];
539 struct tx_ring_info tx_info
[TX_RING_SIZE
];
540 /* Pointers to completion queues (full pages). */
541 rx_done_desc
*rx_done_q
;
542 dma_addr_t rx_done_q_dma
;
543 unsigned int rx_done
;
544 struct tx_done_desc
*tx_done_q
;
545 dma_addr_t tx_done_q_dma
;
546 unsigned int tx_done
;
547 struct napi_struct napi
;
548 struct net_device
*dev
;
549 struct pci_dev
*pci_dev
;
551 unsigned long active_vlans
[BITS_TO_LONGS(VLAN_N_VID
)];
554 dma_addr_t queue_mem_dma
;
555 size_t queue_mem_size
;
557 /* Frequently used values: keep some adjacent for cache effect. */
559 unsigned int cur_rx
, dirty_rx
; /* Producer/consumer ring indices */
560 unsigned int cur_tx
, dirty_tx
, reap_tx
;
561 unsigned int rx_buf_sz
; /* Based on MTU+slack. */
562 /* These values keep track of the transceiver/media in use. */
563 int speed100
; /* Set if speed == 100MBit. */
567 /* MII transceiver section. */
568 struct mii_if_info mii_if
; /* MII lib hooks/info */
569 int phy_cnt
; /* MII device addresses. */
570 unsigned char phys
[PHY_CNT
]; /* MII device addresses. */
575 static int mdio_read(struct net_device
*dev
, int phy_id
, int location
);
576 static void mdio_write(struct net_device
*dev
, int phy_id
, int location
, int value
);
577 static int netdev_open(struct net_device
*dev
);
578 static void check_duplex(struct net_device
*dev
);
579 static void tx_timeout(struct net_device
*dev
);
580 static void init_ring(struct net_device
*dev
);
581 static netdev_tx_t
start_tx(struct sk_buff
*skb
, struct net_device
*dev
);
582 static irqreturn_t
intr_handler(int irq
, void *dev_instance
);
583 static void netdev_error(struct net_device
*dev
, int intr_status
);
584 static int __netdev_rx(struct net_device
*dev
, int *quota
);
585 static int netdev_poll(struct napi_struct
*napi
, int budget
);
586 static void refill_rx_ring(struct net_device
*dev
);
587 static void netdev_error(struct net_device
*dev
, int intr_status
);
588 static void set_rx_mode(struct net_device
*dev
);
589 static struct net_device_stats
*get_stats(struct net_device
*dev
);
590 static int netdev_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
591 static int netdev_close(struct net_device
*dev
);
592 static void netdev_media_change(struct net_device
*dev
);
593 static const struct ethtool_ops ethtool_ops
;
597 static int netdev_vlan_rx_add_vid(struct net_device
*dev
,
598 __be16 proto
, u16 vid
)
600 struct netdev_private
*np
= netdev_priv(dev
);
602 spin_lock(&np
->lock
);
604 printk("%s: Adding vlanid %d to vlan filter\n", dev
->name
, vid
);
605 set_bit(vid
, np
->active_vlans
);
607 spin_unlock(&np
->lock
);
612 static int netdev_vlan_rx_kill_vid(struct net_device
*dev
,
613 __be16 proto
, u16 vid
)
615 struct netdev_private
*np
= netdev_priv(dev
);
617 spin_lock(&np
->lock
);
619 printk("%s: removing vlanid %d from vlan filter\n", dev
->name
, vid
);
620 clear_bit(vid
, np
->active_vlans
);
622 spin_unlock(&np
->lock
);
626 #endif /* VLAN_SUPPORT */
629 static const struct net_device_ops netdev_ops
= {
630 .ndo_open
= netdev_open
,
631 .ndo_stop
= netdev_close
,
632 .ndo_start_xmit
= start_tx
,
633 .ndo_tx_timeout
= tx_timeout
,
634 .ndo_get_stats
= get_stats
,
635 .ndo_set_rx_mode
= set_rx_mode
,
636 .ndo_do_ioctl
= netdev_ioctl
,
637 .ndo_set_mac_address
= eth_mac_addr
,
638 .ndo_validate_addr
= eth_validate_addr
,
640 .ndo_vlan_rx_add_vid
= netdev_vlan_rx_add_vid
,
641 .ndo_vlan_rx_kill_vid
= netdev_vlan_rx_kill_vid
,
645 static int starfire_init_one(struct pci_dev
*pdev
,
646 const struct pci_device_id
*ent
)
648 struct device
*d
= &pdev
->dev
;
649 struct netdev_private
*np
;
650 int i
, irq
, chip_idx
= ent
->driver_data
;
651 struct net_device
*dev
;
654 int drv_flags
, io_size
;
657 /* when built into the kernel, we only print version if device is found */
659 static int printed_version
;
660 if (!printed_version
++)
664 if (pci_enable_device (pdev
))
667 ioaddr
= pci_resource_start(pdev
, 0);
668 io_size
= pci_resource_len(pdev
, 0);
669 if (!ioaddr
|| ((pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
) == 0)) {
670 dev_err(d
, "no PCI MEM resources, aborting\n");
674 dev
= alloc_etherdev(sizeof(*np
));
678 SET_NETDEV_DEV(dev
, &pdev
->dev
);
682 if (pci_request_regions (pdev
, DRV_NAME
)) {
683 dev_err(d
, "cannot reserve PCI resources, aborting\n");
684 goto err_out_free_netdev
;
687 base
= ioremap(ioaddr
, io_size
);
689 dev_err(d
, "cannot remap %#x @ %#lx, aborting\n",
691 goto err_out_free_res
;
694 pci_set_master(pdev
);
696 /* enable MWI -- it vastly improves Rx performance on sparc64 */
697 pci_try_set_mwi(pdev
);
700 /* Starfire can do TCP/UDP checksumming */
702 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
703 #endif /* ZEROCOPY */
706 dev
->features
|= NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_HW_VLAN_CTAG_FILTER
;
707 #endif /* VLAN_RX_KILL_VID */
709 dev
->features
|= NETIF_F_HIGHDMA
;
710 #endif /* ADDR_64BITS */
712 /* Serial EEPROM reads are hidden by the hardware. */
713 for (i
= 0; i
< 6; i
++)
714 dev
->dev_addr
[i
] = readb(base
+ EEPROMCtrl
+ 20 - i
);
716 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
718 for (i
= 0; i
< 0x20; i
++)
720 (unsigned int)readb(base
+ EEPROMCtrl
+ i
),
721 i
% 16 != 15 ? " " : "\n");
724 /* Issue soft reset */
725 writel(MiiSoftReset
, base
+ TxMode
);
727 writel(0, base
+ TxMode
);
729 /* Reset the chip to erase previous misconfiguration. */
730 writel(1, base
+ PCIDeviceConfig
);
732 while (--boguscnt
> 0) {
734 if ((readl(base
+ PCIDeviceConfig
) & 1) == 0)
738 printk("%s: chipset reset never completed!\n", dev
->name
);
739 /* wait a little longer */
742 np
= netdev_priv(dev
);
745 spin_lock_init(&np
->lock
);
746 pci_set_drvdata(pdev
, dev
);
750 np
->mii_if
.dev
= dev
;
751 np
->mii_if
.mdio_read
= mdio_read
;
752 np
->mii_if
.mdio_write
= mdio_write
;
753 np
->mii_if
.phy_id_mask
= 0x1f;
754 np
->mii_if
.reg_num_mask
= 0x1f;
756 drv_flags
= netdrv_tbl
[chip_idx
].drv_flags
;
760 /* timer resolution is 128 * 0.8us */
761 np
->intr_timer_ctrl
= (((intr_latency
* 10) / 1024) & IntrLatencyMask
) |
762 Timer10X
| EnableIntrMasking
;
764 if (small_frames
> 0) {
765 np
->intr_timer_ctrl
|= SmallFrameBypass
;
766 switch (small_frames
) {
768 np
->intr_timer_ctrl
|= SmallFrame64
;
771 np
->intr_timer_ctrl
|= SmallFrame128
;
774 np
->intr_timer_ctrl
|= SmallFrame256
;
777 np
->intr_timer_ctrl
|= SmallFrame512
;
778 if (small_frames
> 512)
779 printk("Adjusting small_frames down to 512\n");
784 dev
->netdev_ops
= &netdev_ops
;
785 dev
->watchdog_timeo
= TX_TIMEOUT
;
786 dev
->ethtool_ops
= ðtool_ops
;
788 netif_napi_add(dev
, &np
->napi
, netdev_poll
, max_interrupt_work
);
793 if (register_netdev(dev
))
794 goto err_out_cleardev
;
796 printk(KERN_INFO
"%s: %s at %p, %pM, IRQ %d.\n",
797 dev
->name
, netdrv_tbl
[chip_idx
].name
, base
,
800 if (drv_flags
& CanHaveMII
) {
801 int phy
, phy_idx
= 0;
803 for (phy
= 0; phy
< 32 && phy_idx
< PHY_CNT
; phy
++) {
804 mdio_write(dev
, phy
, MII_BMCR
, BMCR_RESET
);
807 while (--boguscnt
> 0)
808 if ((mdio_read(dev
, phy
, MII_BMCR
) & BMCR_RESET
) == 0)
811 printk("%s: PHY#%d reset never completed!\n", dev
->name
, phy
);
814 mii_status
= mdio_read(dev
, phy
, MII_BMSR
);
815 if (mii_status
!= 0) {
816 np
->phys
[phy_idx
++] = phy
;
817 np
->mii_if
.advertising
= mdio_read(dev
, phy
, MII_ADVERTISE
);
818 printk(KERN_INFO
"%s: MII PHY found at address %d, status "
819 "%#4.4x advertising %#4.4x.\n",
820 dev
->name
, phy
, mii_status
, np
->mii_if
.advertising
);
821 /* there can be only one PHY on-board */
825 np
->phy_cnt
= phy_idx
;
827 np
->mii_if
.phy_id
= np
->phys
[0];
829 memset(&np
->mii_if
, 0, sizeof(np
->mii_if
));
832 printk(KERN_INFO
"%s: scatter-gather and hardware TCP cksumming %s.\n",
833 dev
->name
, enable_hw_cksum
? "enabled" : "disabled");
839 pci_release_regions (pdev
);
846 /* Read the MII Management Data I/O (MDIO) interfaces. */
847 static int mdio_read(struct net_device
*dev
, int phy_id
, int location
)
849 struct netdev_private
*np
= netdev_priv(dev
);
850 void __iomem
*mdio_addr
= np
->base
+ MIICtrl
+ (phy_id
<<7) + (location
<<2);
851 int result
, boguscnt
=1000;
852 /* ??? Should we add a busy-wait here? */
854 result
= readl(mdio_addr
);
855 } while ((result
& 0xC0000000) != 0x80000000 && --boguscnt
> 0);
858 if ((result
& 0xffff) == 0xffff)
860 return result
& 0xffff;
864 static void mdio_write(struct net_device
*dev
, int phy_id
, int location
, int value
)
866 struct netdev_private
*np
= netdev_priv(dev
);
867 void __iomem
*mdio_addr
= np
->base
+ MIICtrl
+ (phy_id
<<7) + (location
<<2);
868 writel(value
, mdio_addr
);
869 /* The busy-wait will occur before a read. */
873 static int netdev_open(struct net_device
*dev
)
875 const struct firmware
*fw_rx
, *fw_tx
;
876 const __be32
*fw_rx_data
, *fw_tx_data
;
877 struct netdev_private
*np
= netdev_priv(dev
);
878 void __iomem
*ioaddr
= np
->base
;
879 const int irq
= np
->pci_dev
->irq
;
881 size_t tx_size
, rx_size
;
882 size_t tx_done_q_size
, rx_done_q_size
, tx_ring_size
, rx_ring_size
;
884 /* Do we ever need to reset the chip??? */
886 retval
= request_irq(irq
, intr_handler
, IRQF_SHARED
, dev
->name
, dev
);
890 /* Disable the Rx and Tx, and reset the chip. */
891 writel(0, ioaddr
+ GenCtrl
);
892 writel(1, ioaddr
+ PCIDeviceConfig
);
894 printk(KERN_DEBUG
"%s: netdev_open() irq %d.\n",
897 /* Allocate the various queues. */
898 if (!np
->queue_mem
) {
899 tx_done_q_size
= ((sizeof(struct tx_done_desc
) * DONE_Q_SIZE
+ QUEUE_ALIGN
- 1) / QUEUE_ALIGN
) * QUEUE_ALIGN
;
900 rx_done_q_size
= ((sizeof(rx_done_desc
) * DONE_Q_SIZE
+ QUEUE_ALIGN
- 1) / QUEUE_ALIGN
) * QUEUE_ALIGN
;
901 tx_ring_size
= ((sizeof(starfire_tx_desc
) * TX_RING_SIZE
+ QUEUE_ALIGN
- 1) / QUEUE_ALIGN
) * QUEUE_ALIGN
;
902 rx_ring_size
= sizeof(struct starfire_rx_desc
) * RX_RING_SIZE
;
903 np
->queue_mem_size
= tx_done_q_size
+ rx_done_q_size
+ tx_ring_size
+ rx_ring_size
;
904 np
->queue_mem
= pci_alloc_consistent(np
->pci_dev
, np
->queue_mem_size
, &np
->queue_mem_dma
);
905 if (np
->queue_mem
== NULL
) {
910 np
->tx_done_q
= np
->queue_mem
;
911 np
->tx_done_q_dma
= np
->queue_mem_dma
;
912 np
->rx_done_q
= (void *) np
->tx_done_q
+ tx_done_q_size
;
913 np
->rx_done_q_dma
= np
->tx_done_q_dma
+ tx_done_q_size
;
914 np
->tx_ring
= (void *) np
->rx_done_q
+ rx_done_q_size
;
915 np
->tx_ring_dma
= np
->rx_done_q_dma
+ rx_done_q_size
;
916 np
->rx_ring
= (void *) np
->tx_ring
+ tx_ring_size
;
917 np
->rx_ring_dma
= np
->tx_ring_dma
+ tx_ring_size
;
920 /* Start with no carrier, it gets adjusted later */
921 netif_carrier_off(dev
);
923 /* Set the size of the Rx buffers. */
924 writel((np
->rx_buf_sz
<< RxBufferLenShift
) |
925 (0 << RxMinDescrThreshShift
) |
926 RxPrefetchMode
| RxVariableQ
|
928 RX_DESC_Q_ADDR_SIZE
| RX_DESC_ADDR_SIZE
|
930 ioaddr
+ RxDescQCtrl
);
932 /* Set up the Rx DMA controller. */
933 writel(RxChecksumIgnore
|
934 (0 << RxEarlyIntThreshShift
) |
935 (6 << RxHighPrioThreshShift
) |
936 ((DMA_BURST_SIZE
/ 32) << RxBurstSizeShift
),
939 /* Set Tx descriptor */
940 writel((2 << TxHiPriFIFOThreshShift
) |
941 (0 << TxPadLenShift
) |
942 ((DMA_BURST_SIZE
/ 32) << TxDMABurstSizeShift
) |
943 TX_DESC_Q_ADDR_SIZE
|
944 TX_DESC_SPACING
| TX_DESC_TYPE
,
945 ioaddr
+ TxDescCtrl
);
947 writel( (np
->queue_mem_dma
>> 16) >> 16, ioaddr
+ RxDescQHiAddr
);
948 writel( (np
->queue_mem_dma
>> 16) >> 16, ioaddr
+ TxRingHiAddr
);
949 writel( (np
->queue_mem_dma
>> 16) >> 16, ioaddr
+ CompletionHiAddr
);
950 writel(np
->rx_ring_dma
, ioaddr
+ RxDescQAddr
);
951 writel(np
->tx_ring_dma
, ioaddr
+ TxRingPtr
);
953 writel(np
->tx_done_q_dma
, ioaddr
+ TxCompletionAddr
);
954 writel(np
->rx_done_q_dma
|
956 (0 << RxComplThreshShift
),
957 ioaddr
+ RxCompletionAddr
);
960 printk(KERN_DEBUG
"%s: Filling in the station address.\n", dev
->name
);
962 /* Fill both the Tx SA register and the Rx perfect filter. */
963 for (i
= 0; i
< 6; i
++)
964 writeb(dev
->dev_addr
[i
], ioaddr
+ TxStationAddr
+ 5 - i
);
965 /* The first entry is special because it bypasses the VLAN filter.
967 writew(0, ioaddr
+ PerfFilterTable
);
968 writew(0, ioaddr
+ PerfFilterTable
+ 4);
969 writew(0, ioaddr
+ PerfFilterTable
+ 8);
970 for (i
= 1; i
< 16; i
++) {
971 __be16
*eaddrs
= (__be16
*)dev
->dev_addr
;
972 void __iomem
*setup_frm
= ioaddr
+ PerfFilterTable
+ i
* 16;
973 writew(be16_to_cpu(eaddrs
[2]), setup_frm
); setup_frm
+= 4;
974 writew(be16_to_cpu(eaddrs
[1]), setup_frm
); setup_frm
+= 4;
975 writew(be16_to_cpu(eaddrs
[0]), setup_frm
); setup_frm
+= 8;
978 /* Initialize other registers. */
979 /* Configure the PCI bus bursts and FIFO thresholds. */
980 np
->tx_mode
= TxFlowEnable
|RxFlowEnable
|PadEnable
; /* modified when link is up. */
981 writel(MiiSoftReset
| np
->tx_mode
, ioaddr
+ TxMode
);
983 writel(np
->tx_mode
, ioaddr
+ TxMode
);
984 np
->tx_threshold
= 4;
985 writel(np
->tx_threshold
, ioaddr
+ TxThreshold
);
987 writel(np
->intr_timer_ctrl
, ioaddr
+ IntrTimerCtrl
);
989 napi_enable(&np
->napi
);
991 netif_start_queue(dev
);
994 printk(KERN_DEBUG
"%s: Setting the Rx and Tx modes.\n", dev
->name
);
997 np
->mii_if
.advertising
= mdio_read(dev
, np
->phys
[0], MII_ADVERTISE
);
1000 /* Enable GPIO interrupts on link change */
1001 writel(0x0f00ff00, ioaddr
+ GPIOCtrl
);
1003 /* Set the interrupt mask */
1004 writel(IntrRxDone
| IntrRxEmpty
| IntrDMAErr
|
1005 IntrTxDMADone
| IntrStatsMax
| IntrLinkChange
|
1006 IntrRxGFPDead
| IntrNoTxCsum
| IntrTxBadID
,
1007 ioaddr
+ IntrEnable
);
1008 /* Enable PCI interrupts. */
1009 writel(0x00800000 | readl(ioaddr
+ PCIDeviceConfig
),
1010 ioaddr
+ PCIDeviceConfig
);
1013 /* Set VLAN type to 802.1q */
1014 writel(ETH_P_8021Q
, ioaddr
+ VlanType
);
1015 #endif /* VLAN_SUPPORT */
1017 retval
= request_firmware(&fw_rx
, FIRMWARE_RX
, &np
->pci_dev
->dev
);
1019 printk(KERN_ERR
"starfire: Failed to load firmware \"%s\"\n",
1023 if (fw_rx
->size
% 4) {
1024 printk(KERN_ERR
"starfire: bogus length %zu in \"%s\"\n",
1025 fw_rx
->size
, FIRMWARE_RX
);
1029 retval
= request_firmware(&fw_tx
, FIRMWARE_TX
, &np
->pci_dev
->dev
);
1031 printk(KERN_ERR
"starfire: Failed to load firmware \"%s\"\n",
1035 if (fw_tx
->size
% 4) {
1036 printk(KERN_ERR
"starfire: bogus length %zu in \"%s\"\n",
1037 fw_tx
->size
, FIRMWARE_TX
);
1041 fw_rx_data
= (const __be32
*)&fw_rx
->data
[0];
1042 fw_tx_data
= (const __be32
*)&fw_tx
->data
[0];
1043 rx_size
= fw_rx
->size
/ 4;
1044 tx_size
= fw_tx
->size
/ 4;
1046 /* Load Rx/Tx firmware into the frame processors */
1047 for (i
= 0; i
< rx_size
; i
++)
1048 writel(be32_to_cpup(&fw_rx_data
[i
]), ioaddr
+ RxGfpMem
+ i
* 4);
1049 for (i
= 0; i
< tx_size
; i
++)
1050 writel(be32_to_cpup(&fw_tx_data
[i
]), ioaddr
+ TxGfpMem
+ i
* 4);
1051 if (enable_hw_cksum
)
1052 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1053 writel(TxEnable
|TxGFPEnable
|RxEnable
|RxGFPEnable
, ioaddr
+ GenCtrl
);
1055 /* Enable the Rx and Tx units only. */
1056 writel(TxEnable
|RxEnable
, ioaddr
+ GenCtrl
);
1059 printk(KERN_DEBUG
"%s: Done netdev_open().\n",
1063 release_firmware(fw_tx
);
1065 release_firmware(fw_rx
);
1073 static void check_duplex(struct net_device
*dev
)
1075 struct netdev_private
*np
= netdev_priv(dev
);
1077 int silly_count
= 1000;
1079 mdio_write(dev
, np
->phys
[0], MII_ADVERTISE
, np
->mii_if
.advertising
);
1080 mdio_write(dev
, np
->phys
[0], MII_BMCR
, BMCR_RESET
);
1082 while (--silly_count
&& mdio_read(dev
, np
->phys
[0], MII_BMCR
) & BMCR_RESET
)
1085 printk("%s: MII reset failed!\n", dev
->name
);
1089 reg0
= mdio_read(dev
, np
->phys
[0], MII_BMCR
);
1091 if (!np
->mii_if
.force_media
) {
1092 reg0
|= BMCR_ANENABLE
| BMCR_ANRESTART
;
1094 reg0
&= ~(BMCR_ANENABLE
| BMCR_ANRESTART
);
1096 reg0
|= BMCR_SPEED100
;
1097 if (np
->mii_if
.full_duplex
)
1098 reg0
|= BMCR_FULLDPLX
;
1099 printk(KERN_DEBUG
"%s: Link forced to %sMbit %s-duplex\n",
1101 np
->speed100
? "100" : "10",
1102 np
->mii_if
.full_duplex
? "full" : "half");
1104 mdio_write(dev
, np
->phys
[0], MII_BMCR
, reg0
);
1108 static void tx_timeout(struct net_device
*dev
)
1110 struct netdev_private
*np
= netdev_priv(dev
);
1111 void __iomem
*ioaddr
= np
->base
;
1114 printk(KERN_WARNING
"%s: Transmit timed out, status %#8.8x, "
1115 "resetting...\n", dev
->name
, (int) readl(ioaddr
+ IntrStatus
));
1117 /* Perhaps we should reinitialize the hardware here. */
1120 * Stop and restart the interface.
1121 * Cheat and increase the debug level temporarily.
1129 /* Trigger an immediate transmit demand. */
1131 netif_trans_update(dev
); /* prevent tx timeout */
1132 dev
->stats
.tx_errors
++;
1133 netif_wake_queue(dev
);
1137 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1138 static void init_ring(struct net_device
*dev
)
1140 struct netdev_private
*np
= netdev_priv(dev
);
1143 np
->cur_rx
= np
->cur_tx
= np
->reap_tx
= 0;
1144 np
->dirty_rx
= np
->dirty_tx
= np
->rx_done
= np
->tx_done
= 0;
1146 np
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PKT_BUF_SZ
: dev
->mtu
+ 32);
1148 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1149 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1150 struct sk_buff
*skb
= netdev_alloc_skb(dev
, np
->rx_buf_sz
);
1151 np
->rx_info
[i
].skb
= skb
;
1154 np
->rx_info
[i
].mapping
= pci_map_single(np
->pci_dev
, skb
->data
, np
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1155 /* Grrr, we cannot offset to correctly align the IP header. */
1156 np
->rx_ring
[i
].rxaddr
= cpu_to_dma(np
->rx_info
[i
].mapping
| RxDescValid
);
1158 writew(i
- 1, np
->base
+ RxDescQIdx
);
1159 np
->dirty_rx
= (unsigned int)(i
- RX_RING_SIZE
);
1161 /* Clear the remainder of the Rx buffer ring. */
1162 for ( ; i
< RX_RING_SIZE
; i
++) {
1163 np
->rx_ring
[i
].rxaddr
= 0;
1164 np
->rx_info
[i
].skb
= NULL
;
1165 np
->rx_info
[i
].mapping
= 0;
1167 /* Mark the last entry as wrapping the ring. */
1168 np
->rx_ring
[RX_RING_SIZE
- 1].rxaddr
|= cpu_to_dma(RxDescEndRing
);
1170 /* Clear the completion rings. */
1171 for (i
= 0; i
< DONE_Q_SIZE
; i
++) {
1172 np
->rx_done_q
[i
].status
= 0;
1173 np
->tx_done_q
[i
].status
= 0;
1176 for (i
= 0; i
< TX_RING_SIZE
; i
++)
1177 memset(&np
->tx_info
[i
], 0, sizeof(np
->tx_info
[i
]));
1181 static netdev_tx_t
start_tx(struct sk_buff
*skb
, struct net_device
*dev
)
1183 struct netdev_private
*np
= netdev_priv(dev
);
1189 * be cautious here, wrapping the queue has weird semantics
1190 * and we may not have enough slots even when it seems we do.
1192 if ((np
->cur_tx
- np
->dirty_tx
) + skb_num_frags(skb
) * 2 > TX_RING_SIZE
) {
1193 netif_stop_queue(dev
);
1194 return NETDEV_TX_BUSY
;
1197 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1198 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1199 if (skb_padto(skb
, (skb
->len
+ PADDING_MASK
) & ~PADDING_MASK
))
1200 return NETDEV_TX_OK
;
1202 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1204 entry
= np
->cur_tx
% TX_RING_SIZE
;
1205 for (i
= 0; i
< skb_num_frags(skb
); i
++) {
1210 np
->tx_info
[entry
].skb
= skb
;
1212 if (entry
>= TX_RING_SIZE
- skb_num_frags(skb
)) {
1213 status
|= TxRingWrap
;
1217 status
|= TxDescIntr
;
1220 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1222 dev
->stats
.tx_compressed
++;
1224 status
|= skb_first_frag_len(skb
) | (skb_num_frags(skb
) << 16);
1226 np
->tx_info
[entry
].mapping
=
1227 pci_map_single(np
->pci_dev
, skb
->data
, skb_first_frag_len(skb
), PCI_DMA_TODEVICE
);
1229 const skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1230 status
|= skb_frag_size(this_frag
);
1231 np
->tx_info
[entry
].mapping
=
1232 pci_map_single(np
->pci_dev
,
1233 skb_frag_address(this_frag
),
1234 skb_frag_size(this_frag
),
1238 np
->tx_ring
[entry
].addr
= cpu_to_dma(np
->tx_info
[entry
].mapping
);
1239 np
->tx_ring
[entry
].status
= cpu_to_le32(status
);
1241 printk(KERN_DEBUG
"%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1242 dev
->name
, np
->cur_tx
, np
->dirty_tx
,
1245 np
->tx_info
[entry
].used_slots
= TX_RING_SIZE
- entry
;
1246 np
->cur_tx
+= np
->tx_info
[entry
].used_slots
;
1249 np
->tx_info
[entry
].used_slots
= 1;
1250 np
->cur_tx
+= np
->tx_info
[entry
].used_slots
;
1253 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1254 if (np
->cur_tx
% (TX_RING_SIZE
/ 2) == 0)
1258 /* Non-x86: explicitly flush descriptor cache lines here. */
1259 /* Ensure all descriptors are written back before the transmit is
1263 /* Update the producer index. */
1264 writel(entry
* (sizeof(starfire_tx_desc
) / 8), np
->base
+ TxProducerIdx
);
1266 /* 4 is arbitrary, but should be ok */
1267 if ((np
->cur_tx
- np
->dirty_tx
) + 4 > TX_RING_SIZE
)
1268 netif_stop_queue(dev
);
1270 return NETDEV_TX_OK
;
1274 /* The interrupt handler does all of the Rx thread work and cleans up
1275 after the Tx thread. */
1276 static irqreturn_t
intr_handler(int irq
, void *dev_instance
)
1278 struct net_device
*dev
= dev_instance
;
1279 struct netdev_private
*np
= netdev_priv(dev
);
1280 void __iomem
*ioaddr
= np
->base
;
1281 int boguscnt
= max_interrupt_work
;
1287 u32 intr_status
= readl(ioaddr
+ IntrClear
);
1290 printk(KERN_DEBUG
"%s: Interrupt status %#8.8x.\n",
1291 dev
->name
, intr_status
);
1293 if (intr_status
== 0 || intr_status
== (u32
) -1)
1298 if (intr_status
& (IntrRxDone
| IntrRxEmpty
)) {
1301 if (likely(napi_schedule_prep(&np
->napi
))) {
1302 __napi_schedule(&np
->napi
);
1303 enable
= readl(ioaddr
+ IntrEnable
);
1304 enable
&= ~(IntrRxDone
| IntrRxEmpty
);
1305 writel(enable
, ioaddr
+ IntrEnable
);
1306 /* flush PCI posting buffers */
1307 readl(ioaddr
+ IntrEnable
);
1309 /* Paranoia check */
1310 enable
= readl(ioaddr
+ IntrEnable
);
1311 if (enable
& (IntrRxDone
| IntrRxEmpty
)) {
1313 "%s: interrupt while in poll!\n",
1315 enable
&= ~(IntrRxDone
| IntrRxEmpty
);
1316 writel(enable
, ioaddr
+ IntrEnable
);
1321 /* Scavenge the skbuff list based on the Tx-done queue.
1322 There are redundant checks here that may be cleaned up
1323 after the driver has proven to be reliable. */
1324 consumer
= readl(ioaddr
+ TxConsumerIdx
);
1326 printk(KERN_DEBUG
"%s: Tx Consumer index is %d.\n",
1327 dev
->name
, consumer
);
1329 while ((tx_status
= le32_to_cpu(np
->tx_done_q
[np
->tx_done
].status
)) != 0) {
1331 printk(KERN_DEBUG
"%s: Tx completion #%d entry %d is %#8.8x.\n",
1332 dev
->name
, np
->dirty_tx
, np
->tx_done
, tx_status
);
1333 if ((tx_status
& 0xe0000000) == 0xa0000000) {
1334 dev
->stats
.tx_packets
++;
1335 } else if ((tx_status
& 0xe0000000) == 0x80000000) {
1336 u16 entry
= (tx_status
& 0x7fff) / sizeof(starfire_tx_desc
);
1337 struct sk_buff
*skb
= np
->tx_info
[entry
].skb
;
1338 np
->tx_info
[entry
].skb
= NULL
;
1339 pci_unmap_single(np
->pci_dev
,
1340 np
->tx_info
[entry
].mapping
,
1341 skb_first_frag_len(skb
),
1343 np
->tx_info
[entry
].mapping
= 0;
1344 np
->dirty_tx
+= np
->tx_info
[entry
].used_slots
;
1345 entry
= (entry
+ np
->tx_info
[entry
].used_slots
) % TX_RING_SIZE
;
1348 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1349 pci_unmap_single(np
->pci_dev
,
1350 np
->tx_info
[entry
].mapping
,
1351 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
1358 dev_kfree_skb_irq(skb
);
1360 np
->tx_done_q
[np
->tx_done
].status
= 0;
1361 np
->tx_done
= (np
->tx_done
+ 1) % DONE_Q_SIZE
;
1363 writew(np
->tx_done
, ioaddr
+ CompletionQConsumerIdx
+ 2);
1365 if (netif_queue_stopped(dev
) &&
1366 (np
->cur_tx
- np
->dirty_tx
+ 4 < TX_RING_SIZE
)) {
1367 /* The ring is no longer full, wake the queue. */
1368 netif_wake_queue(dev
);
1371 /* Stats overflow */
1372 if (intr_status
& IntrStatsMax
)
1375 /* Media change interrupt. */
1376 if (intr_status
& IntrLinkChange
)
1377 netdev_media_change(dev
);
1379 /* Abnormal error summary/uncommon events handlers. */
1380 if (intr_status
& IntrAbnormalSummary
)
1381 netdev_error(dev
, intr_status
);
1383 if (--boguscnt
< 0) {
1385 printk(KERN_WARNING
"%s: Too much work at interrupt, "
1387 dev
->name
, intr_status
);
1393 printk(KERN_DEBUG
"%s: exiting interrupt, status=%#8.8x.\n",
1394 dev
->name
, (int) readl(ioaddr
+ IntrStatus
));
1395 return IRQ_RETVAL(handled
);
1400 * This routine is logically part of the interrupt/poll handler, but separated
1401 * for clarity and better register allocation.
1403 static int __netdev_rx(struct net_device
*dev
, int *quota
)
1405 struct netdev_private
*np
= netdev_priv(dev
);
1409 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1410 while ((desc_status
= le32_to_cpu(np
->rx_done_q
[np
->rx_done
].status
)) != 0) {
1411 struct sk_buff
*skb
;
1414 rx_done_desc
*desc
= &np
->rx_done_q
[np
->rx_done
];
1417 printk(KERN_DEBUG
" netdev_rx() status of %d was %#8.8x.\n", np
->rx_done
, desc_status
);
1418 if (!(desc_status
& RxOK
)) {
1419 /* There was an error. */
1421 printk(KERN_DEBUG
" netdev_rx() Rx error was %#8.8x.\n", desc_status
);
1422 dev
->stats
.rx_errors
++;
1423 if (desc_status
& RxFIFOErr
)
1424 dev
->stats
.rx_fifo_errors
++;
1428 if (*quota
<= 0) { /* out of rx quota */
1434 pkt_len
= desc_status
; /* Implicitly Truncate */
1435 entry
= (desc_status
>> 16) & 0x7ff;
1438 printk(KERN_DEBUG
" netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len
, *quota
);
1439 /* Check if the packet is long enough to accept without copying
1440 to a minimally-sized skbuff. */
1441 if (pkt_len
< rx_copybreak
&&
1442 (skb
= netdev_alloc_skb(dev
, pkt_len
+ 2)) != NULL
) {
1443 skb_reserve(skb
, 2); /* 16 byte align the IP header */
1444 pci_dma_sync_single_for_cpu(np
->pci_dev
,
1445 np
->rx_info
[entry
].mapping
,
1446 pkt_len
, PCI_DMA_FROMDEVICE
);
1447 skb_copy_to_linear_data(skb
, np
->rx_info
[entry
].skb
->data
, pkt_len
);
1448 pci_dma_sync_single_for_device(np
->pci_dev
,
1449 np
->rx_info
[entry
].mapping
,
1450 pkt_len
, PCI_DMA_FROMDEVICE
);
1451 skb_put(skb
, pkt_len
);
1453 pci_unmap_single(np
->pci_dev
, np
->rx_info
[entry
].mapping
, np
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1454 skb
= np
->rx_info
[entry
].skb
;
1455 skb_put(skb
, pkt_len
);
1456 np
->rx_info
[entry
].skb
= NULL
;
1457 np
->rx_info
[entry
].mapping
= 0;
1459 #ifndef final_version /* Remove after testing. */
1460 /* You will want this info for the initial debug. */
1462 printk(KERN_DEBUG
" Rx data %pM %pM %2.2x%2.2x.\n",
1463 skb
->data
, skb
->data
+ 6,
1464 skb
->data
[12], skb
->data
[13]);
1468 skb
->protocol
= eth_type_trans(skb
, dev
);
1471 printk(KERN_DEBUG
" netdev_rx() status2 of %d was %#4.4x.\n", np
->rx_done
, le16_to_cpu(desc
->status2
));
1473 if (le16_to_cpu(desc
->status2
) & 0x0100) {
1474 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1475 dev
->stats
.rx_compressed
++;
1478 * This feature doesn't seem to be working, at least
1479 * with the two firmware versions I have. If the GFP sees
1480 * an IP fragment, it either ignores it completely, or reports
1481 * "bad checksum" on it.
1483 * Maybe I missed something -- corrections are welcome.
1484 * Until then, the printk stays. :-) -Ion
1486 else if (le16_to_cpu(desc
->status2
) & 0x0040) {
1487 skb
->ip_summed
= CHECKSUM_COMPLETE
;
1488 skb
->csum
= le16_to_cpu(desc
->csum
);
1489 printk(KERN_DEBUG
"%s: checksum_hw, status2 = %#x\n", dev
->name
, le16_to_cpu(desc
->status2
));
1492 if (le16_to_cpu(desc
->status2
) & 0x0200) {
1493 u16 vlid
= le16_to_cpu(desc
->vlanid
);
1496 printk(KERN_DEBUG
" netdev_rx() vlanid = %d\n",
1499 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vlid
);
1501 #endif /* VLAN_SUPPORT */
1502 netif_receive_skb(skb
);
1503 dev
->stats
.rx_packets
++;
1508 np
->rx_done
= (np
->rx_done
+ 1) % DONE_Q_SIZE
;
1511 if (*quota
== 0) { /* out of rx quota */
1515 writew(np
->rx_done
, np
->base
+ CompletionQConsumerIdx
);
1518 refill_rx_ring(dev
);
1520 printk(KERN_DEBUG
" exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1521 retcode
, np
->rx_done
, desc_status
);
1525 static int netdev_poll(struct napi_struct
*napi
, int budget
)
1527 struct netdev_private
*np
= container_of(napi
, struct netdev_private
, napi
);
1528 struct net_device
*dev
= np
->dev
;
1530 void __iomem
*ioaddr
= np
->base
;
1534 writel(IntrRxDone
| IntrRxEmpty
, ioaddr
+ IntrClear
);
1536 if (__netdev_rx(dev
, "a
))
1539 intr_status
= readl(ioaddr
+ IntrStatus
);
1540 } while (intr_status
& (IntrRxDone
| IntrRxEmpty
));
1542 napi_complete(napi
);
1543 intr_status
= readl(ioaddr
+ IntrEnable
);
1544 intr_status
|= IntrRxDone
| IntrRxEmpty
;
1545 writel(intr_status
, ioaddr
+ IntrEnable
);
1549 printk(KERN_DEBUG
" exiting netdev_poll(): %d.\n",
1552 /* Restart Rx engine if stopped. */
1553 return budget
- quota
;
1556 static void refill_rx_ring(struct net_device
*dev
)
1558 struct netdev_private
*np
= netdev_priv(dev
);
1559 struct sk_buff
*skb
;
1562 /* Refill the Rx ring buffers. */
1563 for (; np
->cur_rx
- np
->dirty_rx
> 0; np
->dirty_rx
++) {
1564 entry
= np
->dirty_rx
% RX_RING_SIZE
;
1565 if (np
->rx_info
[entry
].skb
== NULL
) {
1566 skb
= netdev_alloc_skb(dev
, np
->rx_buf_sz
);
1567 np
->rx_info
[entry
].skb
= skb
;
1569 break; /* Better luck next round. */
1570 np
->rx_info
[entry
].mapping
=
1571 pci_map_single(np
->pci_dev
, skb
->data
, np
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1572 np
->rx_ring
[entry
].rxaddr
=
1573 cpu_to_dma(np
->rx_info
[entry
].mapping
| RxDescValid
);
1575 if (entry
== RX_RING_SIZE
- 1)
1576 np
->rx_ring
[entry
].rxaddr
|= cpu_to_dma(RxDescEndRing
);
1579 writew(entry
, np
->base
+ RxDescQIdx
);
1583 static void netdev_media_change(struct net_device
*dev
)
1585 struct netdev_private
*np
= netdev_priv(dev
);
1586 void __iomem
*ioaddr
= np
->base
;
1587 u16 reg0
, reg1
, reg4
, reg5
;
1589 u32 new_intr_timer_ctrl
;
1591 /* reset status first */
1592 mdio_read(dev
, np
->phys
[0], MII_BMCR
);
1593 mdio_read(dev
, np
->phys
[0], MII_BMSR
);
1595 reg0
= mdio_read(dev
, np
->phys
[0], MII_BMCR
);
1596 reg1
= mdio_read(dev
, np
->phys
[0], MII_BMSR
);
1598 if (reg1
& BMSR_LSTATUS
) {
1600 if (reg0
& BMCR_ANENABLE
) {
1601 /* autonegotiation is enabled */
1602 reg4
= mdio_read(dev
, np
->phys
[0], MII_ADVERTISE
);
1603 reg5
= mdio_read(dev
, np
->phys
[0], MII_LPA
);
1604 if (reg4
& ADVERTISE_100FULL
&& reg5
& LPA_100FULL
) {
1606 np
->mii_if
.full_duplex
= 1;
1607 } else if (reg4
& ADVERTISE_100HALF
&& reg5
& LPA_100HALF
) {
1609 np
->mii_if
.full_duplex
= 0;
1610 } else if (reg4
& ADVERTISE_10FULL
&& reg5
& LPA_10FULL
) {
1612 np
->mii_if
.full_duplex
= 1;
1615 np
->mii_if
.full_duplex
= 0;
1618 /* autonegotiation is disabled */
1619 if (reg0
& BMCR_SPEED100
)
1623 if (reg0
& BMCR_FULLDPLX
)
1624 np
->mii_if
.full_duplex
= 1;
1626 np
->mii_if
.full_duplex
= 0;
1628 netif_carrier_on(dev
);
1629 printk(KERN_DEBUG
"%s: Link is up, running at %sMbit %s-duplex\n",
1631 np
->speed100
? "100" : "10",
1632 np
->mii_if
.full_duplex
? "full" : "half");
1634 new_tx_mode
= np
->tx_mode
& ~FullDuplex
; /* duplex setting */
1635 if (np
->mii_if
.full_duplex
)
1636 new_tx_mode
|= FullDuplex
;
1637 if (np
->tx_mode
!= new_tx_mode
) {
1638 np
->tx_mode
= new_tx_mode
;
1639 writel(np
->tx_mode
| MiiSoftReset
, ioaddr
+ TxMode
);
1641 writel(np
->tx_mode
, ioaddr
+ TxMode
);
1644 new_intr_timer_ctrl
= np
->intr_timer_ctrl
& ~Timer10X
;
1646 new_intr_timer_ctrl
|= Timer10X
;
1647 if (np
->intr_timer_ctrl
!= new_intr_timer_ctrl
) {
1648 np
->intr_timer_ctrl
= new_intr_timer_ctrl
;
1649 writel(new_intr_timer_ctrl
, ioaddr
+ IntrTimerCtrl
);
1652 netif_carrier_off(dev
);
1653 printk(KERN_DEBUG
"%s: Link is down\n", dev
->name
);
1658 static void netdev_error(struct net_device
*dev
, int intr_status
)
1660 struct netdev_private
*np
= netdev_priv(dev
);
1662 /* Came close to underrunning the Tx FIFO, increase threshold. */
1663 if (intr_status
& IntrTxDataLow
) {
1664 if (np
->tx_threshold
<= PKT_BUF_SZ
/ 16) {
1665 writel(++np
->tx_threshold
, np
->base
+ TxThreshold
);
1666 printk(KERN_NOTICE
"%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1667 dev
->name
, np
->tx_threshold
* 16);
1669 printk(KERN_WARNING
"%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev
->name
);
1671 if (intr_status
& IntrRxGFPDead
) {
1672 dev
->stats
.rx_fifo_errors
++;
1673 dev
->stats
.rx_errors
++;
1675 if (intr_status
& (IntrNoTxCsum
| IntrDMAErr
)) {
1676 dev
->stats
.tx_fifo_errors
++;
1677 dev
->stats
.tx_errors
++;
1679 if ((intr_status
& ~(IntrNormalMask
| IntrAbnormalSummary
| IntrLinkChange
| IntrStatsMax
| IntrTxDataLow
| IntrRxGFPDead
| IntrNoTxCsum
| IntrPCIPad
)) && debug
)
1680 printk(KERN_ERR
"%s: Something Wicked happened! %#8.8x.\n",
1681 dev
->name
, intr_status
);
1685 static struct net_device_stats
*get_stats(struct net_device
*dev
)
1687 struct netdev_private
*np
= netdev_priv(dev
);
1688 void __iomem
*ioaddr
= np
->base
;
1690 /* This adapter architecture needs no SMP locks. */
1691 dev
->stats
.tx_bytes
= readl(ioaddr
+ 0x57010);
1692 dev
->stats
.rx_bytes
= readl(ioaddr
+ 0x57044);
1693 dev
->stats
.tx_packets
= readl(ioaddr
+ 0x57000);
1694 dev
->stats
.tx_aborted_errors
=
1695 readl(ioaddr
+ 0x57024) + readl(ioaddr
+ 0x57028);
1696 dev
->stats
.tx_window_errors
= readl(ioaddr
+ 0x57018);
1697 dev
->stats
.collisions
=
1698 readl(ioaddr
+ 0x57004) + readl(ioaddr
+ 0x57008);
1700 /* The chip only need report frame silently dropped. */
1701 dev
->stats
.rx_dropped
+= readw(ioaddr
+ RxDMAStatus
);
1702 writew(0, ioaddr
+ RxDMAStatus
);
1703 dev
->stats
.rx_crc_errors
= readl(ioaddr
+ 0x5703C);
1704 dev
->stats
.rx_frame_errors
= readl(ioaddr
+ 0x57040);
1705 dev
->stats
.rx_length_errors
= readl(ioaddr
+ 0x57058);
1706 dev
->stats
.rx_missed_errors
= readl(ioaddr
+ 0x5707C);
1712 static u32
set_vlan_mode(struct netdev_private
*np
)
1716 void __iomem
*filter_addr
= np
->base
+ HashTable
+ 8;
1719 for_each_set_bit(vid
, np
->active_vlans
, VLAN_N_VID
) {
1720 if (vlan_count
== 32)
1722 writew(vid
, filter_addr
);
1726 if (vlan_count
== 32) {
1727 ret
|= PerfectFilterVlan
;
1728 while (vlan_count
< 32) {
1729 writew(0, filter_addr
);
1736 #endif /* VLAN_SUPPORT */
1738 static void set_rx_mode(struct net_device
*dev
)
1740 struct netdev_private
*np
= netdev_priv(dev
);
1741 void __iomem
*ioaddr
= np
->base
;
1742 u32 rx_mode
= MinVLANPrio
;
1743 struct netdev_hw_addr
*ha
;
1747 rx_mode
|= set_vlan_mode(np
);
1748 #endif /* VLAN_SUPPORT */
1750 if (dev
->flags
& IFF_PROMISC
) { /* Set promiscuous. */
1751 rx_mode
|= AcceptAll
;
1752 } else if ((netdev_mc_count(dev
) > multicast_filter_limit
) ||
1753 (dev
->flags
& IFF_ALLMULTI
)) {
1754 /* Too many to match, or accept all multicasts. */
1755 rx_mode
|= AcceptBroadcast
|AcceptAllMulticast
|PerfectFilter
;
1756 } else if (netdev_mc_count(dev
) <= 14) {
1757 /* Use the 16 element perfect filter, skip first two entries. */
1758 void __iomem
*filter_addr
= ioaddr
+ PerfFilterTable
+ 2 * 16;
1760 netdev_for_each_mc_addr(ha
, dev
) {
1761 eaddrs
= (__be16
*) ha
->addr
;
1762 writew(be16_to_cpu(eaddrs
[2]), filter_addr
); filter_addr
+= 4;
1763 writew(be16_to_cpu(eaddrs
[1]), filter_addr
); filter_addr
+= 4;
1764 writew(be16_to_cpu(eaddrs
[0]), filter_addr
); filter_addr
+= 8;
1766 eaddrs
= (__be16
*)dev
->dev_addr
;
1767 i
= netdev_mc_count(dev
) + 2;
1769 writew(be16_to_cpu(eaddrs
[0]), filter_addr
); filter_addr
+= 4;
1770 writew(be16_to_cpu(eaddrs
[1]), filter_addr
); filter_addr
+= 4;
1771 writew(be16_to_cpu(eaddrs
[2]), filter_addr
); filter_addr
+= 8;
1773 rx_mode
|= AcceptBroadcast
|PerfectFilter
;
1775 /* Must use a multicast hash table. */
1776 void __iomem
*filter_addr
;
1778 __le16 mc_filter
[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1780 memset(mc_filter
, 0, sizeof(mc_filter
));
1781 netdev_for_each_mc_addr(ha
, dev
) {
1782 /* The chip uses the upper 9 CRC bits
1783 as index into the hash table */
1784 int bit_nr
= ether_crc_le(ETH_ALEN
, ha
->addr
) >> 23;
1785 __le32
*fptr
= (__le32
*) &mc_filter
[(bit_nr
>> 4) & ~1];
1787 *fptr
|= cpu_to_le32(1 << (bit_nr
& 31));
1789 /* Clear the perfect filter list, skip first two entries. */
1790 filter_addr
= ioaddr
+ PerfFilterTable
+ 2 * 16;
1791 eaddrs
= (__be16
*)dev
->dev_addr
;
1792 for (i
= 2; i
< 16; i
++) {
1793 writew(be16_to_cpu(eaddrs
[0]), filter_addr
); filter_addr
+= 4;
1794 writew(be16_to_cpu(eaddrs
[1]), filter_addr
); filter_addr
+= 4;
1795 writew(be16_to_cpu(eaddrs
[2]), filter_addr
); filter_addr
+= 8;
1797 for (filter_addr
= ioaddr
+ HashTable
, i
= 0; i
< 32; filter_addr
+= 16, i
++)
1798 writew(mc_filter
[i
], filter_addr
);
1799 rx_mode
|= AcceptBroadcast
|PerfectFilter
|HashFilter
;
1801 writel(rx_mode
, ioaddr
+ RxFilterMode
);
1804 static int check_if_running(struct net_device
*dev
)
1806 if (!netif_running(dev
))
1811 static void get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1813 struct netdev_private
*np
= netdev_priv(dev
);
1814 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
1815 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
1816 strlcpy(info
->bus_info
, pci_name(np
->pci_dev
), sizeof(info
->bus_info
));
1819 static int get_link_ksettings(struct net_device
*dev
,
1820 struct ethtool_link_ksettings
*cmd
)
1822 struct netdev_private
*np
= netdev_priv(dev
);
1823 spin_lock_irq(&np
->lock
);
1824 mii_ethtool_get_link_ksettings(&np
->mii_if
, cmd
);
1825 spin_unlock_irq(&np
->lock
);
1829 static int set_link_ksettings(struct net_device
*dev
,
1830 const struct ethtool_link_ksettings
*cmd
)
1832 struct netdev_private
*np
= netdev_priv(dev
);
1834 spin_lock_irq(&np
->lock
);
1835 res
= mii_ethtool_set_link_ksettings(&np
->mii_if
, cmd
);
1836 spin_unlock_irq(&np
->lock
);
1841 static int nway_reset(struct net_device
*dev
)
1843 struct netdev_private
*np
= netdev_priv(dev
);
1844 return mii_nway_restart(&np
->mii_if
);
1847 static u32
get_link(struct net_device
*dev
)
1849 struct netdev_private
*np
= netdev_priv(dev
);
1850 return mii_link_ok(&np
->mii_if
);
1853 static u32
get_msglevel(struct net_device
*dev
)
1858 static void set_msglevel(struct net_device
*dev
, u32 val
)
1863 static const struct ethtool_ops ethtool_ops
= {
1864 .begin
= check_if_running
,
1865 .get_drvinfo
= get_drvinfo
,
1866 .nway_reset
= nway_reset
,
1867 .get_link
= get_link
,
1868 .get_msglevel
= get_msglevel
,
1869 .set_msglevel
= set_msglevel
,
1870 .get_link_ksettings
= get_link_ksettings
,
1871 .set_link_ksettings
= set_link_ksettings
,
1874 static int netdev_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1876 struct netdev_private
*np
= netdev_priv(dev
);
1877 struct mii_ioctl_data
*data
= if_mii(rq
);
1880 if (!netif_running(dev
))
1883 spin_lock_irq(&np
->lock
);
1884 rc
= generic_mii_ioctl(&np
->mii_if
, data
, cmd
, NULL
);
1885 spin_unlock_irq(&np
->lock
);
1887 if ((cmd
== SIOCSMIIREG
) && (data
->phy_id
== np
->phys
[0]))
1893 static int netdev_close(struct net_device
*dev
)
1895 struct netdev_private
*np
= netdev_priv(dev
);
1896 void __iomem
*ioaddr
= np
->base
;
1899 netif_stop_queue(dev
);
1901 napi_disable(&np
->napi
);
1904 printk(KERN_DEBUG
"%s: Shutting down ethercard, Intr status %#8.8x.\n",
1905 dev
->name
, (int) readl(ioaddr
+ IntrStatus
));
1906 printk(KERN_DEBUG
"%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1907 dev
->name
, np
->cur_tx
, np
->dirty_tx
,
1908 np
->cur_rx
, np
->dirty_rx
);
1911 /* Disable interrupts by clearing the interrupt mask. */
1912 writel(0, ioaddr
+ IntrEnable
);
1914 /* Stop the chip's Tx and Rx processes. */
1915 writel(0, ioaddr
+ GenCtrl
);
1916 readl(ioaddr
+ GenCtrl
);
1919 printk(KERN_DEBUG
" Tx ring at %#llx:\n",
1920 (long long) np
->tx_ring_dma
);
1921 for (i
= 0; i
< 8 /* TX_RING_SIZE is huge! */; i
++)
1922 printk(KERN_DEBUG
" #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1923 i
, le32_to_cpu(np
->tx_ring
[i
].status
),
1924 (long long) dma_to_cpu(np
->tx_ring
[i
].addr
),
1925 le32_to_cpu(np
->tx_done_q
[i
].status
));
1926 printk(KERN_DEBUG
" Rx ring at %#llx -> %p:\n",
1927 (long long) np
->rx_ring_dma
, np
->rx_done_q
);
1929 for (i
= 0; i
< 8 /* RX_RING_SIZE */; i
++) {
1930 printk(KERN_DEBUG
" #%d desc. %#llx -> %#8.8x\n",
1931 i
, (long long) dma_to_cpu(np
->rx_ring
[i
].rxaddr
), le32_to_cpu(np
->rx_done_q
[i
].status
));
1935 free_irq(np
->pci_dev
->irq
, dev
);
1937 /* Free all the skbuffs in the Rx queue. */
1938 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1939 np
->rx_ring
[i
].rxaddr
= cpu_to_dma(0xBADF00D0); /* An invalid address. */
1940 if (np
->rx_info
[i
].skb
!= NULL
) {
1941 pci_unmap_single(np
->pci_dev
, np
->rx_info
[i
].mapping
, np
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1942 dev_kfree_skb(np
->rx_info
[i
].skb
);
1944 np
->rx_info
[i
].skb
= NULL
;
1945 np
->rx_info
[i
].mapping
= 0;
1947 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1948 struct sk_buff
*skb
= np
->tx_info
[i
].skb
;
1951 pci_unmap_single(np
->pci_dev
,
1952 np
->tx_info
[i
].mapping
,
1953 skb_first_frag_len(skb
), PCI_DMA_TODEVICE
);
1954 np
->tx_info
[i
].mapping
= 0;
1956 np
->tx_info
[i
].skb
= NULL
;
1963 static int starfire_suspend(struct pci_dev
*pdev
, pm_message_t state
)
1965 struct net_device
*dev
= pci_get_drvdata(pdev
);
1967 if (netif_running(dev
)) {
1968 netif_device_detach(dev
);
1972 pci_save_state(pdev
);
1973 pci_set_power_state(pdev
, pci_choose_state(pdev
,state
));
1978 static int starfire_resume(struct pci_dev
*pdev
)
1980 struct net_device
*dev
= pci_get_drvdata(pdev
);
1982 pci_set_power_state(pdev
, PCI_D0
);
1983 pci_restore_state(pdev
);
1985 if (netif_running(dev
)) {
1987 netif_device_attach(dev
);
1992 #endif /* CONFIG_PM */
1995 static void starfire_remove_one(struct pci_dev
*pdev
)
1997 struct net_device
*dev
= pci_get_drvdata(pdev
);
1998 struct netdev_private
*np
= netdev_priv(dev
);
2002 unregister_netdev(dev
);
2005 pci_free_consistent(pdev
, np
->queue_mem_size
, np
->queue_mem
, np
->queue_mem_dma
);
2008 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2009 pci_set_power_state(pdev
, PCI_D3hot
); /* go to sleep in D3 mode */
2010 pci_disable_device(pdev
);
2013 pci_release_regions(pdev
);
2015 free_netdev(dev
); /* Will also free np!! */
2019 static struct pci_driver starfire_driver
= {
2021 .probe
= starfire_init_one
,
2022 .remove
= starfire_remove_one
,
2024 .suspend
= starfire_suspend
,
2025 .resume
= starfire_resume
,
2026 #endif /* CONFIG_PM */
2027 .id_table
= starfire_pci_tbl
,
2031 static int __init
starfire_init (void)
2033 /* when a module, this is printed whether or not devices are found in probe */
2037 printk(KERN_INFO DRV_NAME
": polling (NAPI) enabled\n");
2040 BUILD_BUG_ON(sizeof(dma_addr_t
) != sizeof(netdrv_addr_t
));
2042 return pci_register_driver(&starfire_driver
);
2046 static void __exit
starfire_cleanup (void)
2048 pci_unregister_driver (&starfire_driver
);
2052 module_init(starfire_init
);
2053 module_exit(starfire_cleanup
);