2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
4 * Copyright (C) 2012 Marvell
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/platform_device.h>
32 #include <linux/skbuff.h>
34 #include "mvneta_bm.h"
40 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
41 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
42 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
43 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
44 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
45 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
46 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
47 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
48 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
49 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
50 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
51 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
52 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
53 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
54 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
55 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
56 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
57 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
59 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
60 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
61 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
62 #define MVNETA_PORT_RX_RESET 0x1cc0
63 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
64 #define MVNETA_PHY_ADDR 0x2000
65 #define MVNETA_PHY_ADDR_MASK 0x1f
66 #define MVNETA_MBUS_RETRY 0x2010
67 #define MVNETA_UNIT_INTR_CAUSE 0x2080
68 #define MVNETA_UNIT_CONTROL 0x20B0
69 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
70 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
71 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
72 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
73 #define MVNETA_BASE_ADDR_ENABLE 0x2290
74 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
75 #define MVNETA_PORT_CONFIG 0x2400
76 #define MVNETA_UNI_PROMISC_MODE BIT(0)
77 #define MVNETA_DEF_RXQ(q) ((q) << 1)
78 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
79 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
80 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
81 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
82 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
83 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
84 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
85 MVNETA_DEF_RXQ_ARP(q) | \
86 MVNETA_DEF_RXQ_TCP(q) | \
87 MVNETA_DEF_RXQ_UDP(q) | \
88 MVNETA_DEF_RXQ_BPDU(q) | \
89 MVNETA_TX_UNSET_ERR_SUM | \
90 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
91 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
92 #define MVNETA_MAC_ADDR_LOW 0x2414
93 #define MVNETA_MAC_ADDR_HIGH 0x2418
94 #define MVNETA_SDMA_CONFIG 0x241c
95 #define MVNETA_SDMA_BRST_SIZE_16 4
96 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
97 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
98 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
99 #define MVNETA_DESC_SWAP BIT(6)
100 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
101 #define MVNETA_PORT_STATUS 0x2444
102 #define MVNETA_TX_IN_PRGRS BIT(1)
103 #define MVNETA_TX_FIFO_EMPTY BIT(8)
104 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
105 #define MVNETA_SERDES_CFG 0x24A0
106 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
107 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
108 #define MVNETA_TYPE_PRIO 0x24bc
109 #define MVNETA_FORCE_UNI BIT(21)
110 #define MVNETA_TXQ_CMD_1 0x24e4
111 #define MVNETA_TXQ_CMD 0x2448
112 #define MVNETA_TXQ_DISABLE_SHIFT 8
113 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
114 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
115 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
116 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
117 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
118 #define MVNETA_ACC_MODE 0x2500
119 #define MVNETA_BM_ADDRESS 0x2504
120 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
121 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
122 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
123 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
124 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
125 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
127 /* Exception Interrupt Port/Queue Cause register
129 * Their behavior depend of the mapping done using the PCPX2Q
130 * registers. For a given CPU if the bit associated to a queue is not
131 * set, then for the register a read from this CPU will always return
132 * 0 and a write won't do anything
135 #define MVNETA_INTR_NEW_CAUSE 0x25a0
136 #define MVNETA_INTR_NEW_MASK 0x25a4
138 /* bits 0..7 = TXQ SENT, one bit per queue.
139 * bits 8..15 = RXQ OCCUP, one bit per queue.
140 * bits 16..23 = RXQ FREE, one bit per queue.
141 * bit 29 = OLD_REG_SUM, see old reg ?
142 * bit 30 = TX_ERR_SUM, one bit for 4 ports
143 * bit 31 = MISC_SUM, one bit for 4 ports
145 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
146 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
147 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
148 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
149 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
151 #define MVNETA_INTR_OLD_CAUSE 0x25a8
152 #define MVNETA_INTR_OLD_MASK 0x25ac
154 /* Data Path Port/Queue Cause Register */
155 #define MVNETA_INTR_MISC_CAUSE 0x25b0
156 #define MVNETA_INTR_MISC_MASK 0x25b4
158 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
159 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
160 #define MVNETA_CAUSE_PTP BIT(4)
162 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
163 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
164 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
165 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
166 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
167 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
168 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
169 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
171 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
176 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
177 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179 #define MVNETA_INTR_ENABLE 0x25b8
180 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
181 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
183 #define MVNETA_RXQ_CMD 0x2680
184 #define MVNETA_RXQ_DISABLE_SHIFT 8
185 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
186 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
187 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
188 #define MVNETA_GMAC_CTRL_0 0x2c00
189 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
190 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
191 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
192 #define MVNETA_GMAC_CTRL_2 0x2c08
193 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
194 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
195 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
196 #define MVNETA_GMAC2_PORT_RESET BIT(6)
197 #define MVNETA_GMAC_STATUS 0x2c10
198 #define MVNETA_GMAC_LINK_UP BIT(0)
199 #define MVNETA_GMAC_SPEED_1000 BIT(1)
200 #define MVNETA_GMAC_SPEED_100 BIT(2)
201 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
202 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
203 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
204 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
205 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
206 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
207 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
208 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
209 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
210 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
211 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
212 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
213 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
214 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
215 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
216 #define MVNETA_MIB_COUNTERS_BASE 0x3000
217 #define MVNETA_MIB_LATE_COLLISION 0x7c
218 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
219 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
220 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
221 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
222 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
223 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
224 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
225 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
226 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
227 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
228 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
229 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
230 #define MVNETA_PORT_TX_RESET 0x3cf0
231 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
232 #define MVNETA_TX_MTU 0x3e0c
233 #define MVNETA_TX_TOKEN_SIZE 0x3e14
234 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
235 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
236 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
238 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
240 /* Descriptor ring Macros */
241 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
242 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
244 /* Various constants */
247 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
248 #define MVNETA_RX_COAL_PKTS 32
249 #define MVNETA_RX_COAL_USEC 100
251 /* The two bytes Marvell header. Either contains a special value used
252 * by Marvell switches when a specific hardware mode is enabled (not
253 * supported by this driver) or is filled automatically by zeroes on
254 * the RX side. Those two bytes being at the front of the Ethernet
255 * header, they allow to have the IP header aligned on a 4 bytes
256 * boundary automatically: the hardware skips those two bytes on its
259 #define MVNETA_MH_SIZE 2
261 #define MVNETA_VLAN_TAG_LEN 4
263 #define MVNETA_TX_CSUM_DEF_SIZE 1600
264 #define MVNETA_TX_CSUM_MAX_SIZE 9800
265 #define MVNETA_ACC_MODE_EXT1 1
266 #define MVNETA_ACC_MODE_EXT2 2
268 #define MVNETA_MAX_DECODE_WIN 6
270 /* Timeout constants */
271 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
272 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
273 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
275 #define MVNETA_TX_MTU_MAX 0x3ffff
277 /* The RSS lookup table actually has 256 entries but we do not use
280 #define MVNETA_RSS_LU_TABLE_SIZE 1
282 /* TSO header size */
283 #define TSO_HEADER_SIZE 128
285 /* Max number of Rx descriptors */
286 #define MVNETA_MAX_RXD 128
288 /* Max number of Tx descriptors */
289 #define MVNETA_MAX_TXD 532
291 /* Max number of allowed TCP segments for software TSO */
292 #define MVNETA_MAX_TSO_SEGS 100
294 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
296 /* descriptor aligned size */
297 #define MVNETA_DESC_ALIGNED_SIZE 32
299 /* Number of bytes to be taken into account by HW when putting incoming data
300 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
301 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
303 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
305 #define MVNETA_RX_PKT_SIZE(mtu) \
306 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
307 ETH_HLEN + ETH_FCS_LEN, \
310 #define IS_TSO_HEADER(txq, addr) \
311 ((addr >= txq->tso_hdrs_phys) && \
312 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
314 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
315 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
317 struct mvneta_statistic
{
318 unsigned short offset
;
320 const char name
[ETH_GSTRING_LEN
];
326 static const struct mvneta_statistic mvneta_statistics
[] = {
327 { 0x3000, T_REG_64
, "good_octets_received", },
328 { 0x3010, T_REG_32
, "good_frames_received", },
329 { 0x3008, T_REG_32
, "bad_octets_received", },
330 { 0x3014, T_REG_32
, "bad_frames_received", },
331 { 0x3018, T_REG_32
, "broadcast_frames_received", },
332 { 0x301c, T_REG_32
, "multicast_frames_received", },
333 { 0x3050, T_REG_32
, "unrec_mac_control_received", },
334 { 0x3058, T_REG_32
, "good_fc_received", },
335 { 0x305c, T_REG_32
, "bad_fc_received", },
336 { 0x3060, T_REG_32
, "undersize_received", },
337 { 0x3064, T_REG_32
, "fragments_received", },
338 { 0x3068, T_REG_32
, "oversize_received", },
339 { 0x306c, T_REG_32
, "jabber_received", },
340 { 0x3070, T_REG_32
, "mac_receive_error", },
341 { 0x3074, T_REG_32
, "bad_crc_event", },
342 { 0x3078, T_REG_32
, "collision", },
343 { 0x307c, T_REG_32
, "late_collision", },
344 { 0x2484, T_REG_32
, "rx_discard", },
345 { 0x2488, T_REG_32
, "rx_overrun", },
346 { 0x3020, T_REG_32
, "frames_64_octets", },
347 { 0x3024, T_REG_32
, "frames_65_to_127_octets", },
348 { 0x3028, T_REG_32
, "frames_128_to_255_octets", },
349 { 0x302c, T_REG_32
, "frames_256_to_511_octets", },
350 { 0x3030, T_REG_32
, "frames_512_to_1023_octets", },
351 { 0x3034, T_REG_32
, "frames_1024_to_max_octets", },
352 { 0x3038, T_REG_64
, "good_octets_sent", },
353 { 0x3040, T_REG_32
, "good_frames_sent", },
354 { 0x3044, T_REG_32
, "excessive_collision", },
355 { 0x3048, T_REG_32
, "multicast_frames_sent", },
356 { 0x304c, T_REG_32
, "broadcast_frames_sent", },
357 { 0x3054, T_REG_32
, "fc_sent", },
358 { 0x300c, T_REG_32
, "internal_mac_transmit_err", },
361 struct mvneta_pcpu_stats
{
362 struct u64_stats_sync syncp
;
369 struct mvneta_pcpu_port
{
370 /* Pointer to the shared port */
371 struct mvneta_port
*pp
;
373 /* Pointer to the CPU-local NAPI struct */
374 struct napi_struct napi
;
376 /* Cause of the previous interrupt */
382 struct mvneta_pcpu_port __percpu
*ports
;
383 struct mvneta_pcpu_stats __percpu
*stats
;
386 unsigned int frag_size
;
388 struct mvneta_rx_queue
*rxqs
;
389 struct mvneta_tx_queue
*txqs
;
390 struct net_device
*dev
;
391 struct hlist_node node_online
;
392 struct hlist_node node_dead
;
394 /* Protect the access to the percpu interrupt registers,
395 * ensuring that the configuration remains coherent.
401 struct napi_struct napi
;
411 struct mii_bus
*mii_bus
;
412 phy_interface_t phy_interface
;
413 struct device_node
*phy_node
;
417 unsigned int tx_csum_limit
;
418 unsigned int use_inband_status
:1;
420 struct mvneta_bm
*bm_priv
;
421 struct mvneta_bm_pool
*pool_long
;
422 struct mvneta_bm_pool
*pool_short
;
425 u64 ethtool_stats
[ARRAY_SIZE(mvneta_statistics
)];
427 u32 indir
[MVNETA_RSS_LU_TABLE_SIZE
];
429 /* Flags for special SoC configurations */
430 bool neta_armada3700
;
431 u16 rx_offset_correction
;
434 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
435 * layout of the transmit and reception DMA descriptors, and their
436 * layout is therefore defined by the hardware design
439 #define MVNETA_TX_L3_OFF_SHIFT 0
440 #define MVNETA_TX_IP_HLEN_SHIFT 8
441 #define MVNETA_TX_L4_UDP BIT(16)
442 #define MVNETA_TX_L3_IP6 BIT(17)
443 #define MVNETA_TXD_IP_CSUM BIT(18)
444 #define MVNETA_TXD_Z_PAD BIT(19)
445 #define MVNETA_TXD_L_DESC BIT(20)
446 #define MVNETA_TXD_F_DESC BIT(21)
447 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
448 MVNETA_TXD_L_DESC | \
450 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
451 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
453 #define MVNETA_RXD_ERR_CRC 0x0
454 #define MVNETA_RXD_BM_POOL_SHIFT 13
455 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
456 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
457 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
458 #define MVNETA_RXD_ERR_LEN BIT(18)
459 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
460 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
461 #define MVNETA_RXD_L3_IP4 BIT(25)
462 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
463 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
465 #if defined(__LITTLE_ENDIAN)
466 struct mvneta_tx_desc
{
467 u32 command
; /* Options used by HW for packet transmitting.*/
468 u16 reserverd1
; /* csum_l4 (for future use) */
469 u16 data_size
; /* Data size of transmitted packet in bytes */
470 u32 buf_phys_addr
; /* Physical addr of transmitted buffer */
471 u32 reserved2
; /* hw_cmd - (for future use, PMT) */
472 u32 reserved3
[4]; /* Reserved - (for future use) */
475 struct mvneta_rx_desc
{
476 u32 status
; /* Info about received packet */
477 u16 reserved1
; /* pnc_info - (for future use, PnC) */
478 u16 data_size
; /* Size of received packet in bytes */
480 u32 buf_phys_addr
; /* Physical address of the buffer */
481 u32 reserved2
; /* pnc_flow_id (for future use, PnC) */
483 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
484 u16 reserved3
; /* prefetch_cmd, for future use */
485 u16 reserved4
; /* csum_l4 - (for future use, PnC) */
487 u32 reserved5
; /* pnc_extra PnC (for future use, PnC) */
488 u32 reserved6
; /* hw_cmd (for future use, PnC and HWF) */
491 struct mvneta_tx_desc
{
492 u16 data_size
; /* Data size of transmitted packet in bytes */
493 u16 reserverd1
; /* csum_l4 (for future use) */
494 u32 command
; /* Options used by HW for packet transmitting.*/
495 u32 reserved2
; /* hw_cmd - (for future use, PMT) */
496 u32 buf_phys_addr
; /* Physical addr of transmitted buffer */
497 u32 reserved3
[4]; /* Reserved - (for future use) */
500 struct mvneta_rx_desc
{
501 u16 data_size
; /* Size of received packet in bytes */
502 u16 reserved1
; /* pnc_info - (for future use, PnC) */
503 u32 status
; /* Info about received packet */
505 u32 reserved2
; /* pnc_flow_id (for future use, PnC) */
506 u32 buf_phys_addr
; /* Physical address of the buffer */
508 u16 reserved4
; /* csum_l4 - (for future use, PnC) */
509 u16 reserved3
; /* prefetch_cmd, for future use */
510 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
512 u32 reserved5
; /* pnc_extra PnC (for future use, PnC) */
513 u32 reserved6
; /* hw_cmd (for future use, PnC and HWF) */
517 struct mvneta_tx_queue
{
518 /* Number of this TX queue, in the range 0-7 */
521 /* Number of TX DMA descriptors in the descriptor ring */
524 /* Number of currently used TX DMA descriptor in the
528 int tx_stop_threshold
;
529 int tx_wake_threshold
;
531 /* Array of transmitted skb */
532 struct sk_buff
**tx_skb
;
534 /* Index of last TX DMA descriptor that was inserted */
537 /* Index of the TX DMA descriptor to be cleaned up */
542 /* Virtual address of the TX DMA descriptors array */
543 struct mvneta_tx_desc
*descs
;
545 /* DMA address of the TX DMA descriptors array */
546 dma_addr_t descs_phys
;
548 /* Index of the last TX DMA descriptor */
551 /* Index of the next TX DMA descriptor to process */
552 int next_desc_to_proc
;
554 /* DMA buffers for TSO headers */
557 /* DMA address of TSO headers */
558 dma_addr_t tso_hdrs_phys
;
560 /* Affinity mask for CPUs*/
561 cpumask_t affinity_mask
;
564 struct mvneta_rx_queue
{
565 /* rx queue number, in the range 0-7 */
568 /* num of rx descriptors in the rx descriptor ring */
571 /* counter of times when mvneta_refill() failed */
577 /* Virtual address of the RX buffer */
578 void **buf_virt_addr
;
580 /* Virtual address of the RX DMA descriptors array */
581 struct mvneta_rx_desc
*descs
;
583 /* DMA address of the RX DMA descriptors array */
584 dma_addr_t descs_phys
;
586 /* Index of the last RX DMA descriptor */
589 /* Index of the next RX DMA descriptor to process */
590 int next_desc_to_proc
;
593 static enum cpuhp_state online_hpstate
;
594 /* The hardware supports eight (8) rx queues, but we are only allowing
595 * the first one to be used. Therefore, let's just allocate one queue.
597 static int rxq_number
= 8;
598 static int txq_number
= 8;
602 static int rx_copybreak __read_mostly
= 256;
604 /* HW BM need that each port be identify by a unique ID */
605 static int global_port_id
;
607 #define MVNETA_DRIVER_NAME "mvneta"
608 #define MVNETA_DRIVER_VERSION "1.0"
610 /* Utility/helper methods */
612 /* Write helper method */
613 static void mvreg_write(struct mvneta_port
*pp
, u32 offset
, u32 data
)
615 writel(data
, pp
->base
+ offset
);
618 /* Read helper method */
619 static u32
mvreg_read(struct mvneta_port
*pp
, u32 offset
)
621 return readl(pp
->base
+ offset
);
624 /* Increment txq get counter */
625 static void mvneta_txq_inc_get(struct mvneta_tx_queue
*txq
)
627 txq
->txq_get_index
++;
628 if (txq
->txq_get_index
== txq
->size
)
629 txq
->txq_get_index
= 0;
632 /* Increment txq put counter */
633 static void mvneta_txq_inc_put(struct mvneta_tx_queue
*txq
)
635 txq
->txq_put_index
++;
636 if (txq
->txq_put_index
== txq
->size
)
637 txq
->txq_put_index
= 0;
641 /* Clear all MIB counters */
642 static void mvneta_mib_counters_clear(struct mvneta_port
*pp
)
647 /* Perform dummy reads from MIB counters */
648 for (i
= 0; i
< MVNETA_MIB_LATE_COLLISION
; i
+= 4)
649 dummy
= mvreg_read(pp
, (MVNETA_MIB_COUNTERS_BASE
+ i
));
650 dummy
= mvreg_read(pp
, MVNETA_RX_DISCARD_FRAME_COUNT
);
651 dummy
= mvreg_read(pp
, MVNETA_OVERRUN_FRAME_COUNT
);
654 /* Get System Network Statistics */
655 static struct rtnl_link_stats64
*
656 mvneta_get_stats64(struct net_device
*dev
,
657 struct rtnl_link_stats64
*stats
)
659 struct mvneta_port
*pp
= netdev_priv(dev
);
663 for_each_possible_cpu(cpu
) {
664 struct mvneta_pcpu_stats
*cpu_stats
;
670 cpu_stats
= per_cpu_ptr(pp
->stats
, cpu
);
672 start
= u64_stats_fetch_begin_irq(&cpu_stats
->syncp
);
673 rx_packets
= cpu_stats
->rx_packets
;
674 rx_bytes
= cpu_stats
->rx_bytes
;
675 tx_packets
= cpu_stats
->tx_packets
;
676 tx_bytes
= cpu_stats
->tx_bytes
;
677 } while (u64_stats_fetch_retry_irq(&cpu_stats
->syncp
, start
));
679 stats
->rx_packets
+= rx_packets
;
680 stats
->rx_bytes
+= rx_bytes
;
681 stats
->tx_packets
+= tx_packets
;
682 stats
->tx_bytes
+= tx_bytes
;
685 stats
->rx_errors
= dev
->stats
.rx_errors
;
686 stats
->rx_dropped
= dev
->stats
.rx_dropped
;
688 stats
->tx_dropped
= dev
->stats
.tx_dropped
;
693 /* Rx descriptors helper methods */
695 /* Checks whether the RX descriptor having this status is both the first
696 * and the last descriptor for the RX packet. Each RX packet is currently
697 * received through a single RX descriptor, so not having each RX
698 * descriptor with its first and last bits set is an error
700 static int mvneta_rxq_desc_is_first_last(u32 status
)
702 return (status
& MVNETA_RXD_FIRST_LAST_DESC
) ==
703 MVNETA_RXD_FIRST_LAST_DESC
;
706 /* Add number of descriptors ready to receive new packets */
707 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port
*pp
,
708 struct mvneta_rx_queue
*rxq
,
711 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
714 while (ndescs
> MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
) {
715 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
),
716 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
<<
717 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
));
718 ndescs
-= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
;
721 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
),
722 (ndescs
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
));
725 /* Get number of RX descriptors occupied by received packets */
726 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port
*pp
,
727 struct mvneta_rx_queue
*rxq
)
731 val
= mvreg_read(pp
, MVNETA_RXQ_STATUS_REG(rxq
->id
));
732 return val
& MVNETA_RXQ_OCCUPIED_ALL_MASK
;
735 /* Update num of rx desc called upon return from rx path or
736 * from mvneta_rxq_drop_pkts().
738 static void mvneta_rxq_desc_num_update(struct mvneta_port
*pp
,
739 struct mvneta_rx_queue
*rxq
,
740 int rx_done
, int rx_filled
)
744 if ((rx_done
<= 0xff) && (rx_filled
<= 0xff)) {
746 (rx_filled
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
);
747 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
), val
);
751 /* Only 255 descriptors can be added at once */
752 while ((rx_done
> 0) || (rx_filled
> 0)) {
753 if (rx_done
<= 0xff) {
760 if (rx_filled
<= 0xff) {
761 val
|= rx_filled
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
;
764 val
|= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
;
767 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
), val
);
771 /* Get pointer to next RX descriptor to be processed by SW */
772 static struct mvneta_rx_desc
*
773 mvneta_rxq_next_desc_get(struct mvneta_rx_queue
*rxq
)
775 int rx_desc
= rxq
->next_desc_to_proc
;
777 rxq
->next_desc_to_proc
= MVNETA_QUEUE_NEXT_DESC(rxq
, rx_desc
);
778 prefetch(rxq
->descs
+ rxq
->next_desc_to_proc
);
779 return rxq
->descs
+ rx_desc
;
782 /* Change maximum receive size of the port. */
783 static void mvneta_max_rx_size_set(struct mvneta_port
*pp
, int max_rx_size
)
787 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
788 val
&= ~MVNETA_GMAC_MAX_RX_SIZE_MASK
;
789 val
|= ((max_rx_size
- MVNETA_MH_SIZE
) / 2) <<
790 MVNETA_GMAC_MAX_RX_SIZE_SHIFT
;
791 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
795 /* Set rx queue offset */
796 static void mvneta_rxq_offset_set(struct mvneta_port
*pp
,
797 struct mvneta_rx_queue
*rxq
,
802 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
803 val
&= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK
;
806 val
|= MVNETA_RXQ_PKT_OFFSET_MASK(offset
>> 3);
807 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
811 /* Tx descriptors helper methods */
813 /* Update HW with number of TX descriptors to be sent */
814 static void mvneta_txq_pend_desc_add(struct mvneta_port
*pp
,
815 struct mvneta_tx_queue
*txq
,
820 /* Only 255 descriptors can be added at once ; Assume caller
821 * process TX desriptors in quanta less than 256
824 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
827 /* Get pointer to next TX descriptor to be processed (send) by HW */
828 static struct mvneta_tx_desc
*
829 mvneta_txq_next_desc_get(struct mvneta_tx_queue
*txq
)
831 int tx_desc
= txq
->next_desc_to_proc
;
833 txq
->next_desc_to_proc
= MVNETA_QUEUE_NEXT_DESC(txq
, tx_desc
);
834 return txq
->descs
+ tx_desc
;
837 /* Release the last allocated TX descriptor. Useful to handle DMA
838 * mapping failures in the TX path.
840 static void mvneta_txq_desc_put(struct mvneta_tx_queue
*txq
)
842 if (txq
->next_desc_to_proc
== 0)
843 txq
->next_desc_to_proc
= txq
->last_desc
- 1;
845 txq
->next_desc_to_proc
--;
848 /* Set rxq buf size */
849 static void mvneta_rxq_buf_size_set(struct mvneta_port
*pp
,
850 struct mvneta_rx_queue
*rxq
,
855 val
= mvreg_read(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
));
857 val
&= ~MVNETA_RXQ_BUF_SIZE_MASK
;
858 val
|= ((buf_size
>> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT
);
860 mvreg_write(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
), val
);
863 /* Disable buffer management (BM) */
864 static void mvneta_rxq_bm_disable(struct mvneta_port
*pp
,
865 struct mvneta_rx_queue
*rxq
)
869 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
870 val
&= ~MVNETA_RXQ_HW_BUF_ALLOC
;
871 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
874 /* Enable buffer management (BM) */
875 static void mvneta_rxq_bm_enable(struct mvneta_port
*pp
,
876 struct mvneta_rx_queue
*rxq
)
880 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
881 val
|= MVNETA_RXQ_HW_BUF_ALLOC
;
882 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
885 /* Notify HW about port's assignment of pool for bigger packets */
886 static void mvneta_rxq_long_pool_set(struct mvneta_port
*pp
,
887 struct mvneta_rx_queue
*rxq
)
891 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
892 val
&= ~MVNETA_RXQ_LONG_POOL_ID_MASK
;
893 val
|= (pp
->pool_long
->id
<< MVNETA_RXQ_LONG_POOL_ID_SHIFT
);
895 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
898 /* Notify HW about port's assignment of pool for smaller packets */
899 static void mvneta_rxq_short_pool_set(struct mvneta_port
*pp
,
900 struct mvneta_rx_queue
*rxq
)
904 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
905 val
&= ~MVNETA_RXQ_SHORT_POOL_ID_MASK
;
906 val
|= (pp
->pool_short
->id
<< MVNETA_RXQ_SHORT_POOL_ID_SHIFT
);
908 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
911 /* Set port's receive buffer size for assigned BM pool */
912 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port
*pp
,
918 if (!IS_ALIGNED(buf_size
, 8)) {
919 dev_warn(pp
->dev
->dev
.parent
,
920 "illegal buf_size value %d, round to %d\n",
921 buf_size
, ALIGN(buf_size
, 8));
922 buf_size
= ALIGN(buf_size
, 8);
925 val
= mvreg_read(pp
, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id
));
926 val
|= buf_size
& MVNETA_PORT_POOL_BUFFER_SZ_MASK
;
927 mvreg_write(pp
, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id
), val
);
930 /* Configure MBUS window in order to enable access BM internal SRAM */
931 static int mvneta_mbus_io_win_set(struct mvneta_port
*pp
, u32 base
, u32 wsize
,
934 u32 win_enable
, win_protect
;
937 win_enable
= mvreg_read(pp
, MVNETA_BASE_ADDR_ENABLE
);
939 if (pp
->bm_win_id
< 0) {
940 /* Find first not occupied window */
941 for (i
= 0; i
< MVNETA_MAX_DECODE_WIN
; i
++) {
942 if (win_enable
& (1 << i
)) {
947 if (i
== MVNETA_MAX_DECODE_WIN
)
953 mvreg_write(pp
, MVNETA_WIN_BASE(i
), 0);
954 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), 0);
957 mvreg_write(pp
, MVNETA_WIN_REMAP(i
), 0);
959 mvreg_write(pp
, MVNETA_WIN_BASE(i
), (base
& 0xffff0000) |
960 (attr
<< 8) | target
);
962 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), (wsize
- 1) & 0xffff0000);
964 win_protect
= mvreg_read(pp
, MVNETA_ACCESS_PROTECT_ENABLE
);
965 win_protect
|= 3 << (2 * i
);
966 mvreg_write(pp
, MVNETA_ACCESS_PROTECT_ENABLE
, win_protect
);
968 win_enable
&= ~(1 << i
);
969 mvreg_write(pp
, MVNETA_BASE_ADDR_ENABLE
, win_enable
);
974 static int mvneta_bm_port_mbus_init(struct mvneta_port
*pp
)
980 /* Get BM window information */
981 err
= mvebu_mbus_get_io_win_info(pp
->bm_priv
->bppi_phys_addr
, &wsize
,
988 /* Open NETA -> BM window */
989 err
= mvneta_mbus_io_win_set(pp
, pp
->bm_priv
->bppi_phys_addr
, wsize
,
992 netdev_info(pp
->dev
, "fail to configure mbus window to BM\n");
998 /* Assign and initialize pools for port. In case of fail
999 * buffer manager will remain disabled for current port.
1001 static int mvneta_bm_port_init(struct platform_device
*pdev
,
1002 struct mvneta_port
*pp
)
1004 struct device_node
*dn
= pdev
->dev
.of_node
;
1005 u32 long_pool_id
, short_pool_id
;
1007 if (!pp
->neta_armada3700
) {
1010 ret
= mvneta_bm_port_mbus_init(pp
);
1015 if (of_property_read_u32(dn
, "bm,pool-long", &long_pool_id
)) {
1016 netdev_info(pp
->dev
, "missing long pool id\n");
1020 /* Create port's long pool depending on mtu */
1021 pp
->pool_long
= mvneta_bm_pool_use(pp
->bm_priv
, long_pool_id
,
1022 MVNETA_BM_LONG
, pp
->id
,
1023 MVNETA_RX_PKT_SIZE(pp
->dev
->mtu
));
1024 if (!pp
->pool_long
) {
1025 netdev_info(pp
->dev
, "fail to obtain long pool for port\n");
1029 pp
->pool_long
->port_map
|= 1 << pp
->id
;
1031 mvneta_bm_pool_bufsize_set(pp
, pp
->pool_long
->buf_size
,
1034 /* If short pool id is not defined, assume using single pool */
1035 if (of_property_read_u32(dn
, "bm,pool-short", &short_pool_id
))
1036 short_pool_id
= long_pool_id
;
1038 /* Create port's short pool */
1039 pp
->pool_short
= mvneta_bm_pool_use(pp
->bm_priv
, short_pool_id
,
1040 MVNETA_BM_SHORT
, pp
->id
,
1041 MVNETA_BM_SHORT_PKT_SIZE
);
1042 if (!pp
->pool_short
) {
1043 netdev_info(pp
->dev
, "fail to obtain short pool for port\n");
1044 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
1048 if (short_pool_id
!= long_pool_id
) {
1049 pp
->pool_short
->port_map
|= 1 << pp
->id
;
1050 mvneta_bm_pool_bufsize_set(pp
, pp
->pool_short
->buf_size
,
1051 pp
->pool_short
->id
);
1057 /* Update settings of a pool for bigger packets */
1058 static void mvneta_bm_update_mtu(struct mvneta_port
*pp
, int mtu
)
1060 struct mvneta_bm_pool
*bm_pool
= pp
->pool_long
;
1061 struct hwbm_pool
*hwbm_pool
= &bm_pool
->hwbm_pool
;
1064 /* Release all buffers from long pool */
1065 mvneta_bm_bufs_free(pp
->bm_priv
, bm_pool
, 1 << pp
->id
);
1066 if (hwbm_pool
->buf_num
) {
1067 WARN(1, "cannot free all buffers in pool %d\n",
1072 bm_pool
->pkt_size
= MVNETA_RX_PKT_SIZE(mtu
);
1073 bm_pool
->buf_size
= MVNETA_RX_BUF_SIZE(bm_pool
->pkt_size
);
1074 hwbm_pool
->frag_size
= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)) +
1075 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool
->pkt_size
));
1077 /* Fill entire long pool */
1078 num
= hwbm_pool_add(hwbm_pool
, hwbm_pool
->size
, GFP_ATOMIC
);
1079 if (num
!= hwbm_pool
->size
) {
1080 WARN(1, "pool %d: %d of %d allocated\n",
1081 bm_pool
->id
, num
, hwbm_pool
->size
);
1084 mvneta_bm_pool_bufsize_set(pp
, bm_pool
->buf_size
, bm_pool
->id
);
1089 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
1090 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
, 1 << pp
->id
);
1093 mvreg_write(pp
, MVNETA_ACC_MODE
, MVNETA_ACC_MODE_EXT1
);
1094 netdev_info(pp
->dev
, "fail to update MTU, fall back to software BM\n");
1097 /* Start the Ethernet port RX and TX activity */
1098 static void mvneta_port_up(struct mvneta_port
*pp
)
1103 /* Enable all initialized TXs. */
1105 for (queue
= 0; queue
< txq_number
; queue
++) {
1106 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
1107 if (txq
->descs
!= NULL
)
1108 q_map
|= (1 << queue
);
1110 mvreg_write(pp
, MVNETA_TXQ_CMD
, q_map
);
1112 /* Enable all initialized RXQs. */
1113 for (queue
= 0; queue
< rxq_number
; queue
++) {
1114 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
1116 if (rxq
->descs
!= NULL
)
1117 q_map
|= (1 << queue
);
1119 mvreg_write(pp
, MVNETA_RXQ_CMD
, q_map
);
1122 /* Stop the Ethernet port activity */
1123 static void mvneta_port_down(struct mvneta_port
*pp
)
1128 /* Stop Rx port activity. Check port Rx activity. */
1129 val
= mvreg_read(pp
, MVNETA_RXQ_CMD
) & MVNETA_RXQ_ENABLE_MASK
;
1131 /* Issue stop command for active channels only */
1133 mvreg_write(pp
, MVNETA_RXQ_CMD
,
1134 val
<< MVNETA_RXQ_DISABLE_SHIFT
);
1136 /* Wait for all Rx activity to terminate. */
1139 if (count
++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC
) {
1140 netdev_warn(pp
->dev
,
1141 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1147 val
= mvreg_read(pp
, MVNETA_RXQ_CMD
);
1148 } while (val
& MVNETA_RXQ_ENABLE_MASK
);
1150 /* Stop Tx port activity. Check port Tx activity. Issue stop
1151 * command for active channels only
1153 val
= (mvreg_read(pp
, MVNETA_TXQ_CMD
)) & MVNETA_TXQ_ENABLE_MASK
;
1156 mvreg_write(pp
, MVNETA_TXQ_CMD
,
1157 (val
<< MVNETA_TXQ_DISABLE_SHIFT
));
1159 /* Wait for all Tx activity to terminate. */
1162 if (count
++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC
) {
1163 netdev_warn(pp
->dev
,
1164 "TIMEOUT for TX stopped status=0x%08x\n",
1170 /* Check TX Command reg that all Txqs are stopped */
1171 val
= mvreg_read(pp
, MVNETA_TXQ_CMD
);
1173 } while (val
& MVNETA_TXQ_ENABLE_MASK
);
1175 /* Double check to verify that TX FIFO is empty */
1178 if (count
++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT
) {
1179 netdev_warn(pp
->dev
,
1180 "TX FIFO empty timeout status=0x%08x\n",
1186 val
= mvreg_read(pp
, MVNETA_PORT_STATUS
);
1187 } while (!(val
& MVNETA_TX_FIFO_EMPTY
) &&
1188 (val
& MVNETA_TX_IN_PRGRS
));
1193 /* Enable the port by setting the port enable bit of the MAC control register */
1194 static void mvneta_port_enable(struct mvneta_port
*pp
)
1199 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
1200 val
|= MVNETA_GMAC0_PORT_ENABLE
;
1201 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
1204 /* Disable the port and wait for about 200 usec before retuning */
1205 static void mvneta_port_disable(struct mvneta_port
*pp
)
1209 /* Reset the Enable bit in the Serial Control Register */
1210 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
1211 val
&= ~MVNETA_GMAC0_PORT_ENABLE
;
1212 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
1217 /* Multicast tables methods */
1219 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1220 static void mvneta_set_ucast_table(struct mvneta_port
*pp
, int queue
)
1228 val
= 0x1 | (queue
<< 1);
1229 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1232 for (offset
= 0; offset
<= 0xc; offset
+= 4)
1233 mvreg_write(pp
, MVNETA_DA_FILT_UCAST_BASE
+ offset
, val
);
1236 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1237 static void mvneta_set_special_mcast_table(struct mvneta_port
*pp
, int queue
)
1245 val
= 0x1 | (queue
<< 1);
1246 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1249 for (offset
= 0; offset
<= 0xfc; offset
+= 4)
1250 mvreg_write(pp
, MVNETA_DA_FILT_SPEC_MCAST
+ offset
, val
);
1254 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1255 static void mvneta_set_other_mcast_table(struct mvneta_port
*pp
, int queue
)
1261 memset(pp
->mcast_count
, 0, sizeof(pp
->mcast_count
));
1264 memset(pp
->mcast_count
, 1, sizeof(pp
->mcast_count
));
1265 val
= 0x1 | (queue
<< 1);
1266 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1269 for (offset
= 0; offset
<= 0xfc; offset
+= 4)
1270 mvreg_write(pp
, MVNETA_DA_FILT_OTH_MCAST
+ offset
, val
);
1273 static void mvneta_set_autoneg(struct mvneta_port
*pp
, int enable
)
1278 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
1279 val
&= ~(MVNETA_GMAC_FORCE_LINK_PASS
|
1280 MVNETA_GMAC_FORCE_LINK_DOWN
|
1281 MVNETA_GMAC_AN_FLOW_CTRL_EN
);
1282 val
|= MVNETA_GMAC_INBAND_AN_ENABLE
|
1283 MVNETA_GMAC_AN_SPEED_EN
|
1284 MVNETA_GMAC_AN_DUPLEX_EN
;
1285 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
1287 val
= mvreg_read(pp
, MVNETA_GMAC_CLOCK_DIVIDER
);
1288 val
|= MVNETA_GMAC_1MS_CLOCK_ENABLE
;
1289 mvreg_write(pp
, MVNETA_GMAC_CLOCK_DIVIDER
, val
);
1291 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
1292 val
|= MVNETA_GMAC2_INBAND_AN_ENABLE
;
1293 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, val
);
1295 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
1296 val
&= ~(MVNETA_GMAC_INBAND_AN_ENABLE
|
1297 MVNETA_GMAC_AN_SPEED_EN
|
1298 MVNETA_GMAC_AN_DUPLEX_EN
);
1299 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
1301 val
= mvreg_read(pp
, MVNETA_GMAC_CLOCK_DIVIDER
);
1302 val
&= ~MVNETA_GMAC_1MS_CLOCK_ENABLE
;
1303 mvreg_write(pp
, MVNETA_GMAC_CLOCK_DIVIDER
, val
);
1305 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
1306 val
&= ~MVNETA_GMAC2_INBAND_AN_ENABLE
;
1307 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, val
);
1311 static void mvneta_percpu_unmask_interrupt(void *arg
)
1313 struct mvneta_port
*pp
= arg
;
1315 /* All the queue are unmasked, but actually only the ones
1316 * mapped to this CPU will be unmasked
1318 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
,
1319 MVNETA_RX_INTR_MASK_ALL
|
1320 MVNETA_TX_INTR_MASK_ALL
|
1321 MVNETA_MISCINTR_INTR_MASK
);
1324 static void mvneta_percpu_mask_interrupt(void *arg
)
1326 struct mvneta_port
*pp
= arg
;
1328 /* All the queue are masked, but actually only the ones
1329 * mapped to this CPU will be masked
1331 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
, 0);
1332 mvreg_write(pp
, MVNETA_INTR_OLD_MASK
, 0);
1333 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
, 0);
1336 static void mvneta_percpu_clear_intr_cause(void *arg
)
1338 struct mvneta_port
*pp
= arg
;
1340 /* All the queue are cleared, but actually only the ones
1341 * mapped to this CPU will be cleared
1343 mvreg_write(pp
, MVNETA_INTR_NEW_CAUSE
, 0);
1344 mvreg_write(pp
, MVNETA_INTR_MISC_CAUSE
, 0);
1345 mvreg_write(pp
, MVNETA_INTR_OLD_CAUSE
, 0);
1348 /* This method sets defaults to the NETA port:
1349 * Clears interrupt Cause and Mask registers.
1350 * Clears all MAC tables.
1351 * Sets defaults to all registers.
1352 * Resets RX and TX descriptor rings.
1354 * This method can be called after mvneta_port_down() to return the port
1355 * settings to defaults.
1357 static void mvneta_defaults_set(struct mvneta_port
*pp
)
1362 int max_cpu
= num_present_cpus();
1364 /* Clear all Cause registers */
1365 on_each_cpu(mvneta_percpu_clear_intr_cause
, pp
, true);
1367 /* Mask all interrupts */
1368 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
1369 mvreg_write(pp
, MVNETA_INTR_ENABLE
, 0);
1371 /* Enable MBUS Retry bit16 */
1372 mvreg_write(pp
, MVNETA_MBUS_RETRY
, 0x20);
1374 /* Set CPU queue access map. CPUs are assigned to the RX and
1375 * TX queues modulo their number. If there is only one TX
1376 * queue then it is assigned to the CPU associated to the
1379 for_each_present_cpu(cpu
) {
1380 int rxq_map
= 0, txq_map
= 0;
1382 if (!pp
->neta_armada3700
) {
1383 for (rxq
= 0; rxq
< rxq_number
; rxq
++)
1384 if ((rxq
% max_cpu
) == cpu
)
1385 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(rxq
);
1387 for (txq
= 0; txq
< txq_number
; txq
++)
1388 if ((txq
% max_cpu
) == cpu
)
1389 txq_map
|= MVNETA_CPU_TXQ_ACCESS(txq
);
1391 /* With only one TX queue we configure a special case
1392 * which will allow to get all the irq on a single
1395 if (txq_number
== 1)
1396 txq_map
= (cpu
== pp
->rxq_def
) ?
1397 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1400 txq_map
= MVNETA_CPU_TXQ_ACCESS_ALL_MASK
;
1401 rxq_map
= MVNETA_CPU_RXQ_ACCESS_ALL_MASK
;
1404 mvreg_write(pp
, MVNETA_CPU_MAP(cpu
), rxq_map
| txq_map
);
1407 /* Reset RX and TX DMAs */
1408 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, MVNETA_PORT_RX_DMA_RESET
);
1409 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, MVNETA_PORT_TX_DMA_RESET
);
1411 /* Disable Legacy WRR, Disable EJP, Release from reset */
1412 mvreg_write(pp
, MVNETA_TXQ_CMD_1
, 0);
1413 for (queue
= 0; queue
< txq_number
; queue
++) {
1414 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(queue
), 0);
1415 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(queue
), 0);
1418 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, 0);
1419 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, 0);
1421 /* Set Port Acceleration Mode */
1423 /* HW buffer management + legacy parser */
1424 val
= MVNETA_ACC_MODE_EXT2
;
1426 /* SW buffer management + legacy parser */
1427 val
= MVNETA_ACC_MODE_EXT1
;
1428 mvreg_write(pp
, MVNETA_ACC_MODE
, val
);
1431 mvreg_write(pp
, MVNETA_BM_ADDRESS
, pp
->bm_priv
->bppi_phys_addr
);
1433 /* Update val of portCfg register accordingly with all RxQueue types */
1434 val
= MVNETA_PORT_CONFIG_DEFL_VALUE(pp
->rxq_def
);
1435 mvreg_write(pp
, MVNETA_PORT_CONFIG
, val
);
1438 mvreg_write(pp
, MVNETA_PORT_CONFIG_EXTEND
, val
);
1439 mvreg_write(pp
, MVNETA_RX_MIN_FRAME_SIZE
, 64);
1441 /* Build PORT_SDMA_CONFIG_REG */
1444 /* Default burst size */
1445 val
|= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16
);
1446 val
|= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16
);
1447 val
|= MVNETA_RX_NO_DATA_SWAP
| MVNETA_TX_NO_DATA_SWAP
;
1449 #if defined(__BIG_ENDIAN)
1450 val
|= MVNETA_DESC_SWAP
;
1453 /* Assign port SDMA configuration */
1454 mvreg_write(pp
, MVNETA_SDMA_CONFIG
, val
);
1456 /* Disable PHY polling in hardware, since we're using the
1457 * kernel phylib to do this.
1459 val
= mvreg_read(pp
, MVNETA_UNIT_CONTROL
);
1460 val
&= ~MVNETA_PHY_POLLING_ENABLE
;
1461 mvreg_write(pp
, MVNETA_UNIT_CONTROL
, val
);
1463 mvneta_set_autoneg(pp
, pp
->use_inband_status
);
1464 mvneta_set_ucast_table(pp
, -1);
1465 mvneta_set_special_mcast_table(pp
, -1);
1466 mvneta_set_other_mcast_table(pp
, -1);
1468 /* Set port interrupt enable register - default enable all */
1469 mvreg_write(pp
, MVNETA_INTR_ENABLE
,
1470 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1471 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK
));
1473 mvneta_mib_counters_clear(pp
);
1476 /* Set max sizes for tx queues */
1477 static void mvneta_txq_max_tx_size_set(struct mvneta_port
*pp
, int max_tx_size
)
1483 mtu
= max_tx_size
* 8;
1484 if (mtu
> MVNETA_TX_MTU_MAX
)
1485 mtu
= MVNETA_TX_MTU_MAX
;
1488 val
= mvreg_read(pp
, MVNETA_TX_MTU
);
1489 val
&= ~MVNETA_TX_MTU_MAX
;
1491 mvreg_write(pp
, MVNETA_TX_MTU
, val
);
1493 /* TX token size and all TXQs token size must be larger that MTU */
1494 val
= mvreg_read(pp
, MVNETA_TX_TOKEN_SIZE
);
1496 size
= val
& MVNETA_TX_TOKEN_SIZE_MAX
;
1499 val
&= ~MVNETA_TX_TOKEN_SIZE_MAX
;
1501 mvreg_write(pp
, MVNETA_TX_TOKEN_SIZE
, val
);
1503 for (queue
= 0; queue
< txq_number
; queue
++) {
1504 val
= mvreg_read(pp
, MVNETA_TXQ_TOKEN_SIZE_REG(queue
));
1506 size
= val
& MVNETA_TXQ_TOKEN_SIZE_MAX
;
1509 val
&= ~MVNETA_TXQ_TOKEN_SIZE_MAX
;
1511 mvreg_write(pp
, MVNETA_TXQ_TOKEN_SIZE_REG(queue
), val
);
1516 /* Set unicast address */
1517 static void mvneta_set_ucast_addr(struct mvneta_port
*pp
, u8 last_nibble
,
1520 unsigned int unicast_reg
;
1521 unsigned int tbl_offset
;
1522 unsigned int reg_offset
;
1524 /* Locate the Unicast table entry */
1525 last_nibble
= (0xf & last_nibble
);
1527 /* offset from unicast tbl base */
1528 tbl_offset
= (last_nibble
/ 4) * 4;
1530 /* offset within the above reg */
1531 reg_offset
= last_nibble
% 4;
1533 unicast_reg
= mvreg_read(pp
, (MVNETA_DA_FILT_UCAST_BASE
+ tbl_offset
));
1536 /* Clear accepts frame bit at specified unicast DA tbl entry */
1537 unicast_reg
&= ~(0xff << (8 * reg_offset
));
1539 unicast_reg
&= ~(0xff << (8 * reg_offset
));
1540 unicast_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
1543 mvreg_write(pp
, (MVNETA_DA_FILT_UCAST_BASE
+ tbl_offset
), unicast_reg
);
1546 /* Set mac address */
1547 static void mvneta_mac_addr_set(struct mvneta_port
*pp
, unsigned char *addr
,
1554 mac_l
= (addr
[4] << 8) | (addr
[5]);
1555 mac_h
= (addr
[0] << 24) | (addr
[1] << 16) |
1556 (addr
[2] << 8) | (addr
[3] << 0);
1558 mvreg_write(pp
, MVNETA_MAC_ADDR_LOW
, mac_l
);
1559 mvreg_write(pp
, MVNETA_MAC_ADDR_HIGH
, mac_h
);
1562 /* Accept frames of this address */
1563 mvneta_set_ucast_addr(pp
, addr
[5], queue
);
1566 /* Set the number of packets that will be received before RX interrupt
1567 * will be generated by HW.
1569 static void mvneta_rx_pkts_coal_set(struct mvneta_port
*pp
,
1570 struct mvneta_rx_queue
*rxq
, u32 value
)
1572 mvreg_write(pp
, MVNETA_RXQ_THRESHOLD_REG(rxq
->id
),
1573 value
| MVNETA_RXQ_NON_OCCUPIED(0));
1574 rxq
->pkts_coal
= value
;
1577 /* Set the time delay in usec before RX interrupt will be generated by
1580 static void mvneta_rx_time_coal_set(struct mvneta_port
*pp
,
1581 struct mvneta_rx_queue
*rxq
, u32 value
)
1584 unsigned long clk_rate
;
1586 clk_rate
= clk_get_rate(pp
->clk
);
1587 val
= (clk_rate
/ 1000000) * value
;
1589 mvreg_write(pp
, MVNETA_RXQ_TIME_COAL_REG(rxq
->id
), val
);
1590 rxq
->time_coal
= value
;
1593 /* Set threshold for TX_DONE pkts coalescing */
1594 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port
*pp
,
1595 struct mvneta_tx_queue
*txq
, u32 value
)
1599 val
= mvreg_read(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
));
1601 val
&= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK
;
1602 val
|= MVNETA_TXQ_SENT_THRESH_MASK(value
);
1604 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), val
);
1606 txq
->done_pkts_coal
= value
;
1609 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1610 static void mvneta_rx_desc_fill(struct mvneta_rx_desc
*rx_desc
,
1611 u32 phys_addr
, void *virt_addr
,
1612 struct mvneta_rx_queue
*rxq
)
1616 rx_desc
->buf_phys_addr
= phys_addr
;
1617 i
= rx_desc
- rxq
->descs
;
1618 rxq
->buf_virt_addr
[i
] = virt_addr
;
1621 /* Decrement sent descriptors counter */
1622 static void mvneta_txq_sent_desc_dec(struct mvneta_port
*pp
,
1623 struct mvneta_tx_queue
*txq
,
1628 /* Only 255 TX descriptors can be updated at once */
1629 while (sent_desc
> 0xff) {
1630 val
= 0xff << MVNETA_TXQ_DEC_SENT_SHIFT
;
1631 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
1632 sent_desc
= sent_desc
- 0xff;
1635 val
= sent_desc
<< MVNETA_TXQ_DEC_SENT_SHIFT
;
1636 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
1639 /* Get number of TX descriptors already sent by HW */
1640 static int mvneta_txq_sent_desc_num_get(struct mvneta_port
*pp
,
1641 struct mvneta_tx_queue
*txq
)
1646 val
= mvreg_read(pp
, MVNETA_TXQ_STATUS_REG(txq
->id
));
1647 sent_desc
= (val
& MVNETA_TXQ_SENT_DESC_MASK
) >>
1648 MVNETA_TXQ_SENT_DESC_SHIFT
;
1653 /* Get number of sent descriptors and decrement counter.
1654 * The number of sent descriptors is returned.
1656 static int mvneta_txq_sent_desc_proc(struct mvneta_port
*pp
,
1657 struct mvneta_tx_queue
*txq
)
1661 /* Get number of sent descriptors */
1662 sent_desc
= mvneta_txq_sent_desc_num_get(pp
, txq
);
1664 /* Decrement sent descriptors counter */
1666 mvneta_txq_sent_desc_dec(pp
, txq
, sent_desc
);
1671 /* Set TXQ descriptors fields relevant for CSUM calculation */
1672 static u32
mvneta_txq_desc_csum(int l3_offs
, int l3_proto
,
1673 int ip_hdr_len
, int l4_proto
)
1677 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1678 * G_L4_chk, L4_type; required only for checksum
1681 command
= l3_offs
<< MVNETA_TX_L3_OFF_SHIFT
;
1682 command
|= ip_hdr_len
<< MVNETA_TX_IP_HLEN_SHIFT
;
1684 if (l3_proto
== htons(ETH_P_IP
))
1685 command
|= MVNETA_TXD_IP_CSUM
;
1687 command
|= MVNETA_TX_L3_IP6
;
1689 if (l4_proto
== IPPROTO_TCP
)
1690 command
|= MVNETA_TX_L4_CSUM_FULL
;
1691 else if (l4_proto
== IPPROTO_UDP
)
1692 command
|= MVNETA_TX_L4_UDP
| MVNETA_TX_L4_CSUM_FULL
;
1694 command
|= MVNETA_TX_L4_CSUM_NOT
;
1700 /* Display more error info */
1701 static void mvneta_rx_error(struct mvneta_port
*pp
,
1702 struct mvneta_rx_desc
*rx_desc
)
1704 u32 status
= rx_desc
->status
;
1706 if (!mvneta_rxq_desc_is_first_last(status
)) {
1708 "bad rx status %08x (buffer oversize), size=%d\n",
1709 status
, rx_desc
->data_size
);
1713 switch (status
& MVNETA_RXD_ERR_CODE_MASK
) {
1714 case MVNETA_RXD_ERR_CRC
:
1715 netdev_err(pp
->dev
, "bad rx status %08x (crc error), size=%d\n",
1716 status
, rx_desc
->data_size
);
1718 case MVNETA_RXD_ERR_OVERRUN
:
1719 netdev_err(pp
->dev
, "bad rx status %08x (overrun error), size=%d\n",
1720 status
, rx_desc
->data_size
);
1722 case MVNETA_RXD_ERR_LEN
:
1723 netdev_err(pp
->dev
, "bad rx status %08x (max frame length error), size=%d\n",
1724 status
, rx_desc
->data_size
);
1726 case MVNETA_RXD_ERR_RESOURCE
:
1727 netdev_err(pp
->dev
, "bad rx status %08x (resource error), size=%d\n",
1728 status
, rx_desc
->data_size
);
1733 /* Handle RX checksum offload based on the descriptor's status */
1734 static void mvneta_rx_csum(struct mvneta_port
*pp
, u32 status
,
1735 struct sk_buff
*skb
)
1737 if ((status
& MVNETA_RXD_L3_IP4
) &&
1738 (status
& MVNETA_RXD_L4_CSUM_OK
)) {
1740 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1744 skb
->ip_summed
= CHECKSUM_NONE
;
1747 /* Return tx queue pointer (find last set bit) according to <cause> returned
1748 * form tx_done reg. <cause> must not be null. The return value is always a
1749 * valid queue for matching the first one found in <cause>.
1751 static struct mvneta_tx_queue
*mvneta_tx_done_policy(struct mvneta_port
*pp
,
1754 int queue
= fls(cause
) - 1;
1756 return &pp
->txqs
[queue
];
1759 /* Free tx queue skbuffs */
1760 static void mvneta_txq_bufs_free(struct mvneta_port
*pp
,
1761 struct mvneta_tx_queue
*txq
, int num
)
1765 for (i
= 0; i
< num
; i
++) {
1766 struct mvneta_tx_desc
*tx_desc
= txq
->descs
+
1768 struct sk_buff
*skb
= txq
->tx_skb
[txq
->txq_get_index
];
1770 mvneta_txq_inc_get(txq
);
1772 if (!IS_TSO_HEADER(txq
, tx_desc
->buf_phys_addr
))
1773 dma_unmap_single(pp
->dev
->dev
.parent
,
1774 tx_desc
->buf_phys_addr
,
1775 tx_desc
->data_size
, DMA_TO_DEVICE
);
1778 dev_kfree_skb_any(skb
);
1782 /* Handle end of transmission */
1783 static void mvneta_txq_done(struct mvneta_port
*pp
,
1784 struct mvneta_tx_queue
*txq
)
1786 struct netdev_queue
*nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
1789 tx_done
= mvneta_txq_sent_desc_proc(pp
, txq
);
1793 mvneta_txq_bufs_free(pp
, txq
, tx_done
);
1795 txq
->count
-= tx_done
;
1797 if (netif_tx_queue_stopped(nq
)) {
1798 if (txq
->count
<= txq
->tx_wake_threshold
)
1799 netif_tx_wake_queue(nq
);
1803 void *mvneta_frag_alloc(unsigned int frag_size
)
1805 if (likely(frag_size
<= PAGE_SIZE
))
1806 return netdev_alloc_frag(frag_size
);
1808 return kmalloc(frag_size
, GFP_ATOMIC
);
1810 EXPORT_SYMBOL_GPL(mvneta_frag_alloc
);
1812 void mvneta_frag_free(unsigned int frag_size
, void *data
)
1814 if (likely(frag_size
<= PAGE_SIZE
))
1815 skb_free_frag(data
);
1819 EXPORT_SYMBOL_GPL(mvneta_frag_free
);
1821 /* Refill processing for SW buffer management */
1822 static int mvneta_rx_refill(struct mvneta_port
*pp
,
1823 struct mvneta_rx_desc
*rx_desc
,
1824 struct mvneta_rx_queue
*rxq
)
1827 dma_addr_t phys_addr
;
1830 data
= mvneta_frag_alloc(pp
->frag_size
);
1834 phys_addr
= dma_map_single(pp
->dev
->dev
.parent
, data
,
1835 MVNETA_RX_BUF_SIZE(pp
->pkt_size
),
1837 if (unlikely(dma_mapping_error(pp
->dev
->dev
.parent
, phys_addr
))) {
1838 mvneta_frag_free(pp
->frag_size
, data
);
1842 phys_addr
+= pp
->rx_offset_correction
;
1843 mvneta_rx_desc_fill(rx_desc
, phys_addr
, data
, rxq
);
1847 /* Handle tx checksum */
1848 static u32
mvneta_skb_tx_csum(struct mvneta_port
*pp
, struct sk_buff
*skb
)
1850 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1852 __be16 l3_proto
= vlan_get_protocol(skb
);
1855 if (l3_proto
== htons(ETH_P_IP
)) {
1856 struct iphdr
*ip4h
= ip_hdr(skb
);
1858 /* Calculate IPv4 checksum and L4 checksum */
1859 ip_hdr_len
= ip4h
->ihl
;
1860 l4_proto
= ip4h
->protocol
;
1861 } else if (l3_proto
== htons(ETH_P_IPV6
)) {
1862 struct ipv6hdr
*ip6h
= ipv6_hdr(skb
);
1864 /* Read l4_protocol from one of IPv6 extra headers */
1865 if (skb_network_header_len(skb
) > 0)
1866 ip_hdr_len
= (skb_network_header_len(skb
) >> 2);
1867 l4_proto
= ip6h
->nexthdr
;
1869 return MVNETA_TX_L4_CSUM_NOT
;
1871 return mvneta_txq_desc_csum(skb_network_offset(skb
),
1872 l3_proto
, ip_hdr_len
, l4_proto
);
1875 return MVNETA_TX_L4_CSUM_NOT
;
1878 /* Drop packets received by the RXQ and free buffers */
1879 static void mvneta_rxq_drop_pkts(struct mvneta_port
*pp
,
1880 struct mvneta_rx_queue
*rxq
)
1884 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
1886 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
1889 for (i
= 0; i
< rx_done
; i
++) {
1890 struct mvneta_rx_desc
*rx_desc
=
1891 mvneta_rxq_next_desc_get(rxq
);
1892 u8 pool_id
= MVNETA_RX_GET_BM_POOL_ID(rx_desc
);
1893 struct mvneta_bm_pool
*bm_pool
;
1895 bm_pool
= &pp
->bm_priv
->bm_pools
[pool_id
];
1896 /* Return dropped buffer to the pool */
1897 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
1898 rx_desc
->buf_phys_addr
);
1903 for (i
= 0; i
< rxq
->size
; i
++) {
1904 struct mvneta_rx_desc
*rx_desc
= rxq
->descs
+ i
;
1905 void *data
= rxq
->buf_virt_addr
[i
];
1907 dma_unmap_single(pp
->dev
->dev
.parent
, rx_desc
->buf_phys_addr
,
1908 MVNETA_RX_BUF_SIZE(pp
->pkt_size
), DMA_FROM_DEVICE
);
1909 mvneta_frag_free(pp
->frag_size
, data
);
1913 /* Main rx processing when using software buffer management */
1914 static int mvneta_rx_swbm(struct mvneta_port
*pp
, int rx_todo
,
1915 struct mvneta_rx_queue
*rxq
)
1917 struct mvneta_pcpu_port
*port
= this_cpu_ptr(pp
->ports
);
1918 struct net_device
*dev
= pp
->dev
;
1923 /* Get number of received packets */
1924 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
1926 if (rx_todo
> rx_done
)
1931 /* Fairness NAPI loop */
1932 while (rx_done
< rx_todo
) {
1933 struct mvneta_rx_desc
*rx_desc
= mvneta_rxq_next_desc_get(rxq
);
1934 struct sk_buff
*skb
;
1935 unsigned char *data
;
1936 dma_addr_t phys_addr
;
1937 u32 rx_status
, frag_size
;
1938 int rx_bytes
, err
, index
;
1941 rx_status
= rx_desc
->status
;
1942 rx_bytes
= rx_desc
->data_size
- (ETH_FCS_LEN
+ MVNETA_MH_SIZE
);
1943 index
= rx_desc
- rxq
->descs
;
1944 data
= rxq
->buf_virt_addr
[index
];
1945 phys_addr
= rx_desc
->buf_phys_addr
;
1947 if (!mvneta_rxq_desc_is_first_last(rx_status
) ||
1948 (rx_status
& MVNETA_RXD_ERR_SUMMARY
)) {
1950 dev
->stats
.rx_errors
++;
1951 mvneta_rx_error(pp
, rx_desc
);
1952 /* leave the descriptor untouched */
1956 if (rx_bytes
<= rx_copybreak
) {
1957 /* better copy a small frame and not unmap the DMA region */
1958 skb
= netdev_alloc_skb_ip_align(dev
, rx_bytes
);
1960 goto err_drop_frame
;
1962 dma_sync_single_range_for_cpu(dev
->dev
.parent
,
1964 MVNETA_MH_SIZE
+ NET_SKB_PAD
,
1967 memcpy(skb_put(skb
, rx_bytes
),
1968 data
+ MVNETA_MH_SIZE
+ NET_SKB_PAD
,
1971 skb
->protocol
= eth_type_trans(skb
, dev
);
1972 mvneta_rx_csum(pp
, rx_status
, skb
);
1973 napi_gro_receive(&port
->napi
, skb
);
1976 rcvd_bytes
+= rx_bytes
;
1978 /* leave the descriptor and buffer untouched */
1982 /* Refill processing */
1983 err
= mvneta_rx_refill(pp
, rx_desc
, rxq
);
1985 netdev_err(dev
, "Linux processing - Can't refill\n");
1987 goto err_drop_frame
;
1990 frag_size
= pp
->frag_size
;
1992 skb
= build_skb(data
, frag_size
> PAGE_SIZE
? 0 : frag_size
);
1994 /* After refill old buffer has to be unmapped regardless
1995 * the skb is successfully built or not.
1997 dma_unmap_single(dev
->dev
.parent
, phys_addr
,
1998 MVNETA_RX_BUF_SIZE(pp
->pkt_size
),
2002 goto err_drop_frame
;
2005 rcvd_bytes
+= rx_bytes
;
2007 /* Linux processing */
2008 skb_reserve(skb
, MVNETA_MH_SIZE
+ NET_SKB_PAD
);
2009 skb_put(skb
, rx_bytes
);
2011 skb
->protocol
= eth_type_trans(skb
, dev
);
2013 mvneta_rx_csum(pp
, rx_status
, skb
);
2015 napi_gro_receive(&port
->napi
, skb
);
2019 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2021 u64_stats_update_begin(&stats
->syncp
);
2022 stats
->rx_packets
+= rcvd_pkts
;
2023 stats
->rx_bytes
+= rcvd_bytes
;
2024 u64_stats_update_end(&stats
->syncp
);
2027 /* Update rxq management counters */
2028 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
2033 /* Main rx processing when using hardware buffer management */
2034 static int mvneta_rx_hwbm(struct mvneta_port
*pp
, int rx_todo
,
2035 struct mvneta_rx_queue
*rxq
)
2037 struct mvneta_pcpu_port
*port
= this_cpu_ptr(pp
->ports
);
2038 struct net_device
*dev
= pp
->dev
;
2043 /* Get number of received packets */
2044 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
2046 if (rx_todo
> rx_done
)
2051 /* Fairness NAPI loop */
2052 while (rx_done
< rx_todo
) {
2053 struct mvneta_rx_desc
*rx_desc
= mvneta_rxq_next_desc_get(rxq
);
2054 struct mvneta_bm_pool
*bm_pool
= NULL
;
2055 struct sk_buff
*skb
;
2056 unsigned char *data
;
2057 dma_addr_t phys_addr
;
2058 u32 rx_status
, frag_size
;
2063 rx_status
= rx_desc
->status
;
2064 rx_bytes
= rx_desc
->data_size
- (ETH_FCS_LEN
+ MVNETA_MH_SIZE
);
2065 data
= (u8
*)(uintptr_t)rx_desc
->buf_cookie
;
2066 phys_addr
= rx_desc
->buf_phys_addr
;
2067 pool_id
= MVNETA_RX_GET_BM_POOL_ID(rx_desc
);
2068 bm_pool
= &pp
->bm_priv
->bm_pools
[pool_id
];
2070 if (!mvneta_rxq_desc_is_first_last(rx_status
) ||
2071 (rx_status
& MVNETA_RXD_ERR_SUMMARY
)) {
2072 err_drop_frame_ret_pool
:
2073 /* Return the buffer to the pool */
2074 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
2075 rx_desc
->buf_phys_addr
);
2077 dev
->stats
.rx_errors
++;
2078 mvneta_rx_error(pp
, rx_desc
);
2079 /* leave the descriptor untouched */
2083 if (rx_bytes
<= rx_copybreak
) {
2084 /* better copy a small frame and not unmap the DMA region */
2085 skb
= netdev_alloc_skb_ip_align(dev
, rx_bytes
);
2087 goto err_drop_frame_ret_pool
;
2089 dma_sync_single_range_for_cpu(dev
->dev
.parent
,
2090 rx_desc
->buf_phys_addr
,
2091 MVNETA_MH_SIZE
+ NET_SKB_PAD
,
2094 memcpy(skb_put(skb
, rx_bytes
),
2095 data
+ MVNETA_MH_SIZE
+ NET_SKB_PAD
,
2098 skb
->protocol
= eth_type_trans(skb
, dev
);
2099 mvneta_rx_csum(pp
, rx_status
, skb
);
2100 napi_gro_receive(&port
->napi
, skb
);
2103 rcvd_bytes
+= rx_bytes
;
2105 /* Return the buffer to the pool */
2106 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
2107 rx_desc
->buf_phys_addr
);
2109 /* leave the descriptor and buffer untouched */
2113 /* Refill processing */
2114 err
= hwbm_pool_refill(&bm_pool
->hwbm_pool
, GFP_ATOMIC
);
2116 netdev_err(dev
, "Linux processing - Can't refill\n");
2118 goto err_drop_frame_ret_pool
;
2121 frag_size
= bm_pool
->hwbm_pool
.frag_size
;
2123 skb
= build_skb(data
, frag_size
> PAGE_SIZE
? 0 : frag_size
);
2125 /* After refill old buffer has to be unmapped regardless
2126 * the skb is successfully built or not.
2128 dma_unmap_single(&pp
->bm_priv
->pdev
->dev
, phys_addr
,
2129 bm_pool
->buf_size
, DMA_FROM_DEVICE
);
2131 goto err_drop_frame
;
2134 rcvd_bytes
+= rx_bytes
;
2136 /* Linux processing */
2137 skb_reserve(skb
, MVNETA_MH_SIZE
+ NET_SKB_PAD
);
2138 skb_put(skb
, rx_bytes
);
2140 skb
->protocol
= eth_type_trans(skb
, dev
);
2142 mvneta_rx_csum(pp
, rx_status
, skb
);
2144 napi_gro_receive(&port
->napi
, skb
);
2148 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2150 u64_stats_update_begin(&stats
->syncp
);
2151 stats
->rx_packets
+= rcvd_pkts
;
2152 stats
->rx_bytes
+= rcvd_bytes
;
2153 u64_stats_update_end(&stats
->syncp
);
2156 /* Update rxq management counters */
2157 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
2163 mvneta_tso_put_hdr(struct sk_buff
*skb
,
2164 struct mvneta_port
*pp
, struct mvneta_tx_queue
*txq
)
2166 struct mvneta_tx_desc
*tx_desc
;
2167 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2169 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2170 tx_desc
= mvneta_txq_next_desc_get(txq
);
2171 tx_desc
->data_size
= hdr_len
;
2172 tx_desc
->command
= mvneta_skb_tx_csum(pp
, skb
);
2173 tx_desc
->command
|= MVNETA_TXD_F_DESC
;
2174 tx_desc
->buf_phys_addr
= txq
->tso_hdrs_phys
+
2175 txq
->txq_put_index
* TSO_HEADER_SIZE
;
2176 mvneta_txq_inc_put(txq
);
2180 mvneta_tso_put_data(struct net_device
*dev
, struct mvneta_tx_queue
*txq
,
2181 struct sk_buff
*skb
, char *data
, int size
,
2182 bool last_tcp
, bool is_last
)
2184 struct mvneta_tx_desc
*tx_desc
;
2186 tx_desc
= mvneta_txq_next_desc_get(txq
);
2187 tx_desc
->data_size
= size
;
2188 tx_desc
->buf_phys_addr
= dma_map_single(dev
->dev
.parent
, data
,
2189 size
, DMA_TO_DEVICE
);
2190 if (unlikely(dma_mapping_error(dev
->dev
.parent
,
2191 tx_desc
->buf_phys_addr
))) {
2192 mvneta_txq_desc_put(txq
);
2196 tx_desc
->command
= 0;
2197 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2200 /* last descriptor in the TCP packet */
2201 tx_desc
->command
= MVNETA_TXD_L_DESC
;
2203 /* last descriptor in SKB */
2205 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2207 mvneta_txq_inc_put(txq
);
2211 static int mvneta_tx_tso(struct sk_buff
*skb
, struct net_device
*dev
,
2212 struct mvneta_tx_queue
*txq
)
2214 int total_len
, data_left
;
2216 struct mvneta_port
*pp
= netdev_priv(dev
);
2218 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2221 /* Count needed descriptors */
2222 if ((txq
->count
+ tso_count_descs(skb
)) >= txq
->size
)
2225 if (skb_headlen(skb
) < (skb_transport_offset(skb
) + tcp_hdrlen(skb
))) {
2226 pr_info("*** Is this even possible???!?!?\n");
2230 /* Initialize the TSO handler, and prepare the first payload */
2231 tso_start(skb
, &tso
);
2233 total_len
= skb
->len
- hdr_len
;
2234 while (total_len
> 0) {
2237 data_left
= min_t(int, skb_shinfo(skb
)->gso_size
, total_len
);
2238 total_len
-= data_left
;
2241 /* prepare packet headers: MAC + IP + TCP */
2242 hdr
= txq
->tso_hdrs
+ txq
->txq_put_index
* TSO_HEADER_SIZE
;
2243 tso_build_hdr(skb
, hdr
, &tso
, data_left
, total_len
== 0);
2245 mvneta_tso_put_hdr(skb
, pp
, txq
);
2247 while (data_left
> 0) {
2251 size
= min_t(int, tso
.size
, data_left
);
2253 if (mvneta_tso_put_data(dev
, txq
, skb
,
2260 tso_build_data(skb
, &tso
, size
);
2267 /* Release all used data descriptors; header descriptors must not
2270 for (i
= desc_count
- 1; i
>= 0; i
--) {
2271 struct mvneta_tx_desc
*tx_desc
= txq
->descs
+ i
;
2272 if (!IS_TSO_HEADER(txq
, tx_desc
->buf_phys_addr
))
2273 dma_unmap_single(pp
->dev
->dev
.parent
,
2274 tx_desc
->buf_phys_addr
,
2277 mvneta_txq_desc_put(txq
);
2282 /* Handle tx fragmentation processing */
2283 static int mvneta_tx_frag_process(struct mvneta_port
*pp
, struct sk_buff
*skb
,
2284 struct mvneta_tx_queue
*txq
)
2286 struct mvneta_tx_desc
*tx_desc
;
2287 int i
, nr_frags
= skb_shinfo(skb
)->nr_frags
;
2289 for (i
= 0; i
< nr_frags
; i
++) {
2290 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2291 void *addr
= page_address(frag
->page
.p
) + frag
->page_offset
;
2293 tx_desc
= mvneta_txq_next_desc_get(txq
);
2294 tx_desc
->data_size
= frag
->size
;
2296 tx_desc
->buf_phys_addr
=
2297 dma_map_single(pp
->dev
->dev
.parent
, addr
,
2298 tx_desc
->data_size
, DMA_TO_DEVICE
);
2300 if (dma_mapping_error(pp
->dev
->dev
.parent
,
2301 tx_desc
->buf_phys_addr
)) {
2302 mvneta_txq_desc_put(txq
);
2306 if (i
== nr_frags
- 1) {
2307 /* Last descriptor */
2308 tx_desc
->command
= MVNETA_TXD_L_DESC
| MVNETA_TXD_Z_PAD
;
2309 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2311 /* Descriptor in the middle: Not First, Not Last */
2312 tx_desc
->command
= 0;
2313 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2315 mvneta_txq_inc_put(txq
);
2321 /* Release all descriptors that were used to map fragments of
2322 * this packet, as well as the corresponding DMA mappings
2324 for (i
= i
- 1; i
>= 0; i
--) {
2325 tx_desc
= txq
->descs
+ i
;
2326 dma_unmap_single(pp
->dev
->dev
.parent
,
2327 tx_desc
->buf_phys_addr
,
2330 mvneta_txq_desc_put(txq
);
2336 /* Main tx processing */
2337 static int mvneta_tx(struct sk_buff
*skb
, struct net_device
*dev
)
2339 struct mvneta_port
*pp
= netdev_priv(dev
);
2340 u16 txq_id
= skb_get_queue_mapping(skb
);
2341 struct mvneta_tx_queue
*txq
= &pp
->txqs
[txq_id
];
2342 struct mvneta_tx_desc
*tx_desc
;
2347 if (!netif_running(dev
))
2350 if (skb_is_gso(skb
)) {
2351 frags
= mvneta_tx_tso(skb
, dev
, txq
);
2355 frags
= skb_shinfo(skb
)->nr_frags
+ 1;
2357 /* Get a descriptor for the first part of the packet */
2358 tx_desc
= mvneta_txq_next_desc_get(txq
);
2360 tx_cmd
= mvneta_skb_tx_csum(pp
, skb
);
2362 tx_desc
->data_size
= skb_headlen(skb
);
2364 tx_desc
->buf_phys_addr
= dma_map_single(dev
->dev
.parent
, skb
->data
,
2367 if (unlikely(dma_mapping_error(dev
->dev
.parent
,
2368 tx_desc
->buf_phys_addr
))) {
2369 mvneta_txq_desc_put(txq
);
2375 /* First and Last descriptor */
2376 tx_cmd
|= MVNETA_TXD_FLZ_DESC
;
2377 tx_desc
->command
= tx_cmd
;
2378 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2379 mvneta_txq_inc_put(txq
);
2381 /* First but not Last */
2382 tx_cmd
|= MVNETA_TXD_F_DESC
;
2383 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2384 mvneta_txq_inc_put(txq
);
2385 tx_desc
->command
= tx_cmd
;
2386 /* Continue with other skb fragments */
2387 if (mvneta_tx_frag_process(pp
, skb
, txq
)) {
2388 dma_unmap_single(dev
->dev
.parent
,
2389 tx_desc
->buf_phys_addr
,
2392 mvneta_txq_desc_put(txq
);
2400 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2401 struct netdev_queue
*nq
= netdev_get_tx_queue(dev
, txq_id
);
2403 txq
->count
+= frags
;
2404 mvneta_txq_pend_desc_add(pp
, txq
, frags
);
2406 if (txq
->count
>= txq
->tx_stop_threshold
)
2407 netif_tx_stop_queue(nq
);
2409 u64_stats_update_begin(&stats
->syncp
);
2410 stats
->tx_packets
++;
2411 stats
->tx_bytes
+= len
;
2412 u64_stats_update_end(&stats
->syncp
);
2414 dev
->stats
.tx_dropped
++;
2415 dev_kfree_skb_any(skb
);
2418 return NETDEV_TX_OK
;
2422 /* Free tx resources, when resetting a port */
2423 static void mvneta_txq_done_force(struct mvneta_port
*pp
,
2424 struct mvneta_tx_queue
*txq
)
2427 int tx_done
= txq
->count
;
2429 mvneta_txq_bufs_free(pp
, txq
, tx_done
);
2433 txq
->txq_put_index
= 0;
2434 txq
->txq_get_index
= 0;
2437 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2438 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2440 static void mvneta_tx_done_gbe(struct mvneta_port
*pp
, u32 cause_tx_done
)
2442 struct mvneta_tx_queue
*txq
;
2443 struct netdev_queue
*nq
;
2445 while (cause_tx_done
) {
2446 txq
= mvneta_tx_done_policy(pp
, cause_tx_done
);
2448 nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
2449 __netif_tx_lock(nq
, smp_processor_id());
2452 mvneta_txq_done(pp
, txq
);
2454 __netif_tx_unlock(nq
);
2455 cause_tx_done
&= ~((1 << txq
->id
));
2459 /* Compute crc8 of the specified address, using a unique algorithm ,
2460 * according to hw spec, different than generic crc8 algorithm
2462 static int mvneta_addr_crc(unsigned char *addr
)
2467 for (i
= 0; i
< ETH_ALEN
; i
++) {
2470 crc
= (crc
^ addr
[i
]) << 8;
2471 for (j
= 7; j
>= 0; j
--) {
2472 if (crc
& (0x100 << j
))
2480 /* This method controls the net device special MAC multicast support.
2481 * The Special Multicast Table for MAC addresses supports MAC of the form
2482 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2483 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2484 * Table entries in the DA-Filter table. This method set the Special
2485 * Multicast Table appropriate entry.
2487 static void mvneta_set_special_mcast_addr(struct mvneta_port
*pp
,
2488 unsigned char last_byte
,
2491 unsigned int smc_table_reg
;
2492 unsigned int tbl_offset
;
2493 unsigned int reg_offset
;
2495 /* Register offset from SMC table base */
2496 tbl_offset
= (last_byte
/ 4);
2497 /* Entry offset within the above reg */
2498 reg_offset
= last_byte
% 4;
2500 smc_table_reg
= mvreg_read(pp
, (MVNETA_DA_FILT_SPEC_MCAST
2504 smc_table_reg
&= ~(0xff << (8 * reg_offset
));
2506 smc_table_reg
&= ~(0xff << (8 * reg_offset
));
2507 smc_table_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
2510 mvreg_write(pp
, MVNETA_DA_FILT_SPEC_MCAST
+ tbl_offset
* 4,
2514 /* This method controls the network device Other MAC multicast support.
2515 * The Other Multicast Table is used for multicast of another type.
2516 * A CRC-8 is used as an index to the Other Multicast Table entries
2517 * in the DA-Filter table.
2518 * The method gets the CRC-8 value from the calling routine and
2519 * sets the Other Multicast Table appropriate entry according to the
2522 static void mvneta_set_other_mcast_addr(struct mvneta_port
*pp
,
2526 unsigned int omc_table_reg
;
2527 unsigned int tbl_offset
;
2528 unsigned int reg_offset
;
2530 tbl_offset
= (crc8
/ 4) * 4; /* Register offset from OMC table base */
2531 reg_offset
= crc8
% 4; /* Entry offset within the above reg */
2533 omc_table_reg
= mvreg_read(pp
, MVNETA_DA_FILT_OTH_MCAST
+ tbl_offset
);
2536 /* Clear accepts frame bit at specified Other DA table entry */
2537 omc_table_reg
&= ~(0xff << (8 * reg_offset
));
2539 omc_table_reg
&= ~(0xff << (8 * reg_offset
));
2540 omc_table_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
2543 mvreg_write(pp
, MVNETA_DA_FILT_OTH_MCAST
+ tbl_offset
, omc_table_reg
);
2546 /* The network device supports multicast using two tables:
2547 * 1) Special Multicast Table for MAC addresses of the form
2548 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2549 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2550 * Table entries in the DA-Filter table.
2551 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2552 * is used as an index to the Other Multicast Table entries in the
2555 static int mvneta_mcast_addr_set(struct mvneta_port
*pp
, unsigned char *p_addr
,
2558 unsigned char crc_result
= 0;
2560 if (memcmp(p_addr
, "\x01\x00\x5e\x00\x00", 5) == 0) {
2561 mvneta_set_special_mcast_addr(pp
, p_addr
[5], queue
);
2565 crc_result
= mvneta_addr_crc(p_addr
);
2567 if (pp
->mcast_count
[crc_result
] == 0) {
2568 netdev_info(pp
->dev
, "No valid Mcast for crc8=0x%02x\n",
2573 pp
->mcast_count
[crc_result
]--;
2574 if (pp
->mcast_count
[crc_result
] != 0) {
2575 netdev_info(pp
->dev
,
2576 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2577 pp
->mcast_count
[crc_result
], crc_result
);
2581 pp
->mcast_count
[crc_result
]++;
2583 mvneta_set_other_mcast_addr(pp
, crc_result
, queue
);
2588 /* Configure Fitering mode of Ethernet port */
2589 static void mvneta_rx_unicast_promisc_set(struct mvneta_port
*pp
,
2592 u32 port_cfg_reg
, val
;
2594 port_cfg_reg
= mvreg_read(pp
, MVNETA_PORT_CONFIG
);
2596 val
= mvreg_read(pp
, MVNETA_TYPE_PRIO
);
2598 /* Set / Clear UPM bit in port configuration register */
2600 /* Accept all Unicast addresses */
2601 port_cfg_reg
|= MVNETA_UNI_PROMISC_MODE
;
2602 val
|= MVNETA_FORCE_UNI
;
2603 mvreg_write(pp
, MVNETA_MAC_ADDR_LOW
, 0xffff);
2604 mvreg_write(pp
, MVNETA_MAC_ADDR_HIGH
, 0xffffffff);
2606 /* Reject all Unicast addresses */
2607 port_cfg_reg
&= ~MVNETA_UNI_PROMISC_MODE
;
2608 val
&= ~MVNETA_FORCE_UNI
;
2611 mvreg_write(pp
, MVNETA_PORT_CONFIG
, port_cfg_reg
);
2612 mvreg_write(pp
, MVNETA_TYPE_PRIO
, val
);
2615 /* register unicast and multicast addresses */
2616 static void mvneta_set_rx_mode(struct net_device
*dev
)
2618 struct mvneta_port
*pp
= netdev_priv(dev
);
2619 struct netdev_hw_addr
*ha
;
2621 if (dev
->flags
& IFF_PROMISC
) {
2622 /* Accept all: Multicast + Unicast */
2623 mvneta_rx_unicast_promisc_set(pp
, 1);
2624 mvneta_set_ucast_table(pp
, pp
->rxq_def
);
2625 mvneta_set_special_mcast_table(pp
, pp
->rxq_def
);
2626 mvneta_set_other_mcast_table(pp
, pp
->rxq_def
);
2628 /* Accept single Unicast */
2629 mvneta_rx_unicast_promisc_set(pp
, 0);
2630 mvneta_set_ucast_table(pp
, -1);
2631 mvneta_mac_addr_set(pp
, dev
->dev_addr
, pp
->rxq_def
);
2633 if (dev
->flags
& IFF_ALLMULTI
) {
2634 /* Accept all multicast */
2635 mvneta_set_special_mcast_table(pp
, pp
->rxq_def
);
2636 mvneta_set_other_mcast_table(pp
, pp
->rxq_def
);
2638 /* Accept only initialized multicast */
2639 mvneta_set_special_mcast_table(pp
, -1);
2640 mvneta_set_other_mcast_table(pp
, -1);
2642 if (!netdev_mc_empty(dev
)) {
2643 netdev_for_each_mc_addr(ha
, dev
) {
2644 mvneta_mcast_addr_set(pp
, ha
->addr
,
2652 /* Interrupt handling - the callback for request_irq() */
2653 static irqreturn_t
mvneta_isr(int irq
, void *dev_id
)
2655 struct mvneta_port
*pp
= (struct mvneta_port
*)dev_id
;
2657 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
, 0);
2658 napi_schedule(&pp
->napi
);
2663 /* Interrupt handling - the callback for request_percpu_irq() */
2664 static irqreturn_t
mvneta_percpu_isr(int irq
, void *dev_id
)
2666 struct mvneta_pcpu_port
*port
= (struct mvneta_pcpu_port
*)dev_id
;
2668 disable_percpu_irq(port
->pp
->dev
->irq
);
2669 napi_schedule(&port
->napi
);
2674 static int mvneta_fixed_link_update(struct mvneta_port
*pp
,
2675 struct phy_device
*phy
)
2677 struct fixed_phy_status status
;
2678 struct fixed_phy_status changed
= {};
2679 u32 gmac_stat
= mvreg_read(pp
, MVNETA_GMAC_STATUS
);
2681 status
.link
= !!(gmac_stat
& MVNETA_GMAC_LINK_UP
);
2682 if (gmac_stat
& MVNETA_GMAC_SPEED_1000
)
2683 status
.speed
= SPEED_1000
;
2684 else if (gmac_stat
& MVNETA_GMAC_SPEED_100
)
2685 status
.speed
= SPEED_100
;
2687 status
.speed
= SPEED_10
;
2688 status
.duplex
= !!(gmac_stat
& MVNETA_GMAC_FULL_DUPLEX
);
2692 fixed_phy_update_state(phy
, &status
, &changed
);
2697 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2698 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2699 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2700 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2701 * Each CPU has its own causeRxTx register
2703 static int mvneta_poll(struct napi_struct
*napi
, int budget
)
2708 struct mvneta_port
*pp
= netdev_priv(napi
->dev
);
2709 struct net_device
*ndev
= pp
->dev
;
2710 struct mvneta_pcpu_port
*port
= this_cpu_ptr(pp
->ports
);
2712 if (!netif_running(pp
->dev
)) {
2713 napi_complete(napi
);
2717 /* Read cause register */
2718 cause_rx_tx
= mvreg_read(pp
, MVNETA_INTR_NEW_CAUSE
);
2719 if (cause_rx_tx
& MVNETA_MISCINTR_INTR_MASK
) {
2720 u32 cause_misc
= mvreg_read(pp
, MVNETA_INTR_MISC_CAUSE
);
2722 mvreg_write(pp
, MVNETA_INTR_MISC_CAUSE
, 0);
2723 if (pp
->use_inband_status
&& (cause_misc
&
2724 (MVNETA_CAUSE_PHY_STATUS_CHANGE
|
2725 MVNETA_CAUSE_LINK_CHANGE
|
2726 MVNETA_CAUSE_PSC_SYNC_CHANGE
))) {
2727 mvneta_fixed_link_update(pp
, ndev
->phydev
);
2731 /* Release Tx descriptors */
2732 if (cause_rx_tx
& MVNETA_TX_INTR_MASK_ALL
) {
2733 mvneta_tx_done_gbe(pp
, (cause_rx_tx
& MVNETA_TX_INTR_MASK_ALL
));
2734 cause_rx_tx
&= ~MVNETA_TX_INTR_MASK_ALL
;
2737 /* For the case where the last mvneta_poll did not process all
2740 rx_queue
= fls(((cause_rx_tx
>> 8) & 0xff));
2742 cause_rx_tx
|= pp
->neta_armada3700
? pp
->cause_rx_tx
:
2746 rx_queue
= rx_queue
- 1;
2748 rx_done
= mvneta_rx_hwbm(pp
, budget
, &pp
->rxqs
[rx_queue
]);
2750 rx_done
= mvneta_rx_swbm(pp
, budget
, &pp
->rxqs
[rx_queue
]);
2757 napi_complete(napi
);
2759 if (pp
->neta_armada3700
) {
2760 unsigned long flags
;
2762 local_irq_save(flags
);
2763 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
,
2764 MVNETA_RX_INTR_MASK(rxq_number
) |
2765 MVNETA_TX_INTR_MASK(txq_number
) |
2766 MVNETA_MISCINTR_INTR_MASK
);
2767 local_irq_restore(flags
);
2769 enable_percpu_irq(pp
->dev
->irq
, 0);
2773 if (pp
->neta_armada3700
)
2774 pp
->cause_rx_tx
= cause_rx_tx
;
2776 port
->cause_rx_tx
= cause_rx_tx
;
2781 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2782 static int mvneta_rxq_fill(struct mvneta_port
*pp
, struct mvneta_rx_queue
*rxq
,
2787 for (i
= 0; i
< num
; i
++) {
2788 memset(rxq
->descs
+ i
, 0, sizeof(struct mvneta_rx_desc
));
2789 if (mvneta_rx_refill(pp
, rxq
->descs
+ i
, rxq
) != 0) {
2790 netdev_err(pp
->dev
, "%s:rxq %d, %d of %d buffs filled\n",
2791 __func__
, rxq
->id
, i
, num
);
2796 /* Add this number of RX descriptors as non occupied (ready to
2799 mvneta_rxq_non_occup_desc_add(pp
, rxq
, i
);
2804 /* Free all packets pending transmit from all TXQs and reset TX port */
2805 static void mvneta_tx_reset(struct mvneta_port
*pp
)
2809 /* free the skb's in the tx ring */
2810 for (queue
= 0; queue
< txq_number
; queue
++)
2811 mvneta_txq_done_force(pp
, &pp
->txqs
[queue
]);
2813 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, MVNETA_PORT_TX_DMA_RESET
);
2814 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, 0);
2817 static void mvneta_rx_reset(struct mvneta_port
*pp
)
2819 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, MVNETA_PORT_RX_DMA_RESET
);
2820 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, 0);
2823 /* Rx/Tx queue initialization/cleanup methods */
2825 /* Create a specified RX queue */
2826 static int mvneta_rxq_init(struct mvneta_port
*pp
,
2827 struct mvneta_rx_queue
*rxq
)
2830 rxq
->size
= pp
->rx_ring_size
;
2832 /* Allocate memory for RX descriptors */
2833 rxq
->descs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2834 rxq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2835 &rxq
->descs_phys
, GFP_KERNEL
);
2836 if (rxq
->descs
== NULL
)
2839 rxq
->last_desc
= rxq
->size
- 1;
2841 /* Set Rx descriptors queue starting address */
2842 mvreg_write(pp
, MVNETA_RXQ_BASE_ADDR_REG(rxq
->id
), rxq
->descs_phys
);
2843 mvreg_write(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
), rxq
->size
);
2846 mvneta_rxq_offset_set(pp
, rxq
, NET_SKB_PAD
- pp
->rx_offset_correction
);
2848 /* Set coalescing pkts and time */
2849 mvneta_rx_pkts_coal_set(pp
, rxq
, rxq
->pkts_coal
);
2850 mvneta_rx_time_coal_set(pp
, rxq
, rxq
->time_coal
);
2853 /* Fill RXQ with buffers from RX pool */
2854 mvneta_rxq_buf_size_set(pp
, rxq
,
2855 MVNETA_RX_BUF_SIZE(pp
->pkt_size
));
2856 mvneta_rxq_bm_disable(pp
, rxq
);
2857 mvneta_rxq_fill(pp
, rxq
, rxq
->size
);
2859 mvneta_rxq_bm_enable(pp
, rxq
);
2860 mvneta_rxq_long_pool_set(pp
, rxq
);
2861 mvneta_rxq_short_pool_set(pp
, rxq
);
2862 mvneta_rxq_non_occup_desc_add(pp
, rxq
, rxq
->size
);
2868 /* Cleanup Rx queue */
2869 static void mvneta_rxq_deinit(struct mvneta_port
*pp
,
2870 struct mvneta_rx_queue
*rxq
)
2872 mvneta_rxq_drop_pkts(pp
, rxq
);
2875 dma_free_coherent(pp
->dev
->dev
.parent
,
2876 rxq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2882 rxq
->next_desc_to_proc
= 0;
2883 rxq
->descs_phys
= 0;
2886 /* Create and initialize a tx queue */
2887 static int mvneta_txq_init(struct mvneta_port
*pp
,
2888 struct mvneta_tx_queue
*txq
)
2892 txq
->size
= pp
->tx_ring_size
;
2894 /* A queue must always have room for at least one skb.
2895 * Therefore, stop the queue when the free entries reaches
2896 * the maximum number of descriptors per skb.
2898 txq
->tx_stop_threshold
= txq
->size
- MVNETA_MAX_SKB_DESCS
;
2899 txq
->tx_wake_threshold
= txq
->tx_stop_threshold
/ 2;
2902 /* Allocate memory for TX descriptors */
2903 txq
->descs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2904 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2905 &txq
->descs_phys
, GFP_KERNEL
);
2906 if (txq
->descs
== NULL
)
2909 txq
->last_desc
= txq
->size
- 1;
2911 /* Set maximum bandwidth for enabled TXQs */
2912 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(txq
->id
), 0x03ffffff);
2913 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(txq
->id
), 0x3fffffff);
2915 /* Set Tx descriptors queue starting address */
2916 mvreg_write(pp
, MVNETA_TXQ_BASE_ADDR_REG(txq
->id
), txq
->descs_phys
);
2917 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), txq
->size
);
2919 txq
->tx_skb
= kmalloc(txq
->size
* sizeof(*txq
->tx_skb
), GFP_KERNEL
);
2920 if (txq
->tx_skb
== NULL
) {
2921 dma_free_coherent(pp
->dev
->dev
.parent
,
2922 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2923 txq
->descs
, txq
->descs_phys
);
2927 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2928 txq
->tso_hdrs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2929 txq
->size
* TSO_HEADER_SIZE
,
2930 &txq
->tso_hdrs_phys
, GFP_KERNEL
);
2931 if (txq
->tso_hdrs
== NULL
) {
2933 dma_free_coherent(pp
->dev
->dev
.parent
,
2934 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2935 txq
->descs
, txq
->descs_phys
);
2938 mvneta_tx_done_pkts_coal_set(pp
, txq
, txq
->done_pkts_coal
);
2940 /* Setup XPS mapping */
2942 cpu
= txq
->id
% num_present_cpus();
2944 cpu
= pp
->rxq_def
% num_present_cpus();
2945 cpumask_set_cpu(cpu
, &txq
->affinity_mask
);
2946 netif_set_xps_queue(pp
->dev
, &txq
->affinity_mask
, txq
->id
);
2951 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2952 static void mvneta_txq_deinit(struct mvneta_port
*pp
,
2953 struct mvneta_tx_queue
*txq
)
2958 dma_free_coherent(pp
->dev
->dev
.parent
,
2959 txq
->size
* TSO_HEADER_SIZE
,
2960 txq
->tso_hdrs
, txq
->tso_hdrs_phys
);
2962 dma_free_coherent(pp
->dev
->dev
.parent
,
2963 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2964 txq
->descs
, txq
->descs_phys
);
2968 txq
->next_desc_to_proc
= 0;
2969 txq
->descs_phys
= 0;
2971 /* Set minimum bandwidth for disabled TXQs */
2972 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(txq
->id
), 0);
2973 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(txq
->id
), 0);
2975 /* Set Tx descriptors queue starting address and size */
2976 mvreg_write(pp
, MVNETA_TXQ_BASE_ADDR_REG(txq
->id
), 0);
2977 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), 0);
2980 /* Cleanup all Tx queues */
2981 static void mvneta_cleanup_txqs(struct mvneta_port
*pp
)
2985 for (queue
= 0; queue
< txq_number
; queue
++)
2986 mvneta_txq_deinit(pp
, &pp
->txqs
[queue
]);
2989 /* Cleanup all Rx queues */
2990 static void mvneta_cleanup_rxqs(struct mvneta_port
*pp
)
2994 for (queue
= 0; queue
< txq_number
; queue
++)
2995 mvneta_rxq_deinit(pp
, &pp
->rxqs
[queue
]);
2999 /* Init all Rx queues */
3000 static int mvneta_setup_rxqs(struct mvneta_port
*pp
)
3004 for (queue
= 0; queue
< rxq_number
; queue
++) {
3005 int err
= mvneta_rxq_init(pp
, &pp
->rxqs
[queue
]);
3008 netdev_err(pp
->dev
, "%s: can't create rxq=%d\n",
3010 mvneta_cleanup_rxqs(pp
);
3018 /* Init all tx queues */
3019 static int mvneta_setup_txqs(struct mvneta_port
*pp
)
3023 for (queue
= 0; queue
< txq_number
; queue
++) {
3024 int err
= mvneta_txq_init(pp
, &pp
->txqs
[queue
]);
3026 netdev_err(pp
->dev
, "%s: can't create txq=%d\n",
3028 mvneta_cleanup_txqs(pp
);
3036 static void mvneta_start_dev(struct mvneta_port
*pp
)
3039 struct net_device
*ndev
= pp
->dev
;
3041 mvneta_max_rx_size_set(pp
, pp
->pkt_size
);
3042 mvneta_txq_max_tx_size_set(pp
, pp
->pkt_size
);
3044 /* start the Rx/Tx activity */
3045 mvneta_port_enable(pp
);
3047 if (!pp
->neta_armada3700
) {
3048 /* Enable polling on the port */
3049 for_each_online_cpu(cpu
) {
3050 struct mvneta_pcpu_port
*port
=
3051 per_cpu_ptr(pp
->ports
, cpu
);
3053 napi_enable(&port
->napi
);
3056 napi_enable(&pp
->napi
);
3059 /* Unmask interrupts. It has to be done from each CPU */
3060 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3062 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3063 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3064 MVNETA_CAUSE_LINK_CHANGE
|
3065 MVNETA_CAUSE_PSC_SYNC_CHANGE
);
3067 phy_start(ndev
->phydev
);
3068 netif_tx_start_all_queues(pp
->dev
);
3071 static void mvneta_stop_dev(struct mvneta_port
*pp
)
3074 struct net_device
*ndev
= pp
->dev
;
3076 phy_stop(ndev
->phydev
);
3078 if (!pp
->neta_armada3700
) {
3079 for_each_online_cpu(cpu
) {
3080 struct mvneta_pcpu_port
*port
=
3081 per_cpu_ptr(pp
->ports
, cpu
);
3083 napi_disable(&port
->napi
);
3086 napi_disable(&pp
->napi
);
3089 netif_carrier_off(pp
->dev
);
3091 mvneta_port_down(pp
);
3092 netif_tx_stop_all_queues(pp
->dev
);
3094 /* Stop the port activity */
3095 mvneta_port_disable(pp
);
3097 /* Clear all ethernet port interrupts */
3098 on_each_cpu(mvneta_percpu_clear_intr_cause
, pp
, true);
3100 /* Mask all ethernet port interrupts */
3101 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3103 mvneta_tx_reset(pp
);
3104 mvneta_rx_reset(pp
);
3107 static void mvneta_percpu_enable(void *arg
)
3109 struct mvneta_port
*pp
= arg
;
3111 enable_percpu_irq(pp
->dev
->irq
, IRQ_TYPE_NONE
);
3114 static void mvneta_percpu_disable(void *arg
)
3116 struct mvneta_port
*pp
= arg
;
3118 disable_percpu_irq(pp
->dev
->irq
);
3121 /* Change the device mtu */
3122 static int mvneta_change_mtu(struct net_device
*dev
, int mtu
)
3124 struct mvneta_port
*pp
= netdev_priv(dev
);
3127 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu
), 8)) {
3128 netdev_info(dev
, "Illegal MTU value %d, rounding to %d\n",
3129 mtu
, ALIGN(MVNETA_RX_PKT_SIZE(mtu
), 8));
3130 mtu
= ALIGN(MVNETA_RX_PKT_SIZE(mtu
), 8);
3135 if (!netif_running(dev
)) {
3137 mvneta_bm_update_mtu(pp
, mtu
);
3139 netdev_update_features(dev
);
3143 /* The interface is running, so we have to force a
3144 * reallocation of the queues
3146 mvneta_stop_dev(pp
);
3147 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3149 mvneta_cleanup_txqs(pp
);
3150 mvneta_cleanup_rxqs(pp
);
3153 mvneta_bm_update_mtu(pp
, mtu
);
3155 pp
->pkt_size
= MVNETA_RX_PKT_SIZE(dev
->mtu
);
3156 pp
->frag_size
= SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp
->pkt_size
)) +
3157 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
3159 ret
= mvneta_setup_rxqs(pp
);
3161 netdev_err(dev
, "unable to setup rxqs after MTU change\n");
3165 ret
= mvneta_setup_txqs(pp
);
3167 netdev_err(dev
, "unable to setup txqs after MTU change\n");
3171 on_each_cpu(mvneta_percpu_enable
, pp
, true);
3172 mvneta_start_dev(pp
);
3175 netdev_update_features(dev
);
3180 static netdev_features_t
mvneta_fix_features(struct net_device
*dev
,
3181 netdev_features_t features
)
3183 struct mvneta_port
*pp
= netdev_priv(dev
);
3185 if (pp
->tx_csum_limit
&& dev
->mtu
> pp
->tx_csum_limit
) {
3186 features
&= ~(NETIF_F_IP_CSUM
| NETIF_F_TSO
);
3188 "Disable IP checksum for MTU greater than %dB\n",
3195 /* Get mac address */
3196 static void mvneta_get_mac_addr(struct mvneta_port
*pp
, unsigned char *addr
)
3198 u32 mac_addr_l
, mac_addr_h
;
3200 mac_addr_l
= mvreg_read(pp
, MVNETA_MAC_ADDR_LOW
);
3201 mac_addr_h
= mvreg_read(pp
, MVNETA_MAC_ADDR_HIGH
);
3202 addr
[0] = (mac_addr_h
>> 24) & 0xFF;
3203 addr
[1] = (mac_addr_h
>> 16) & 0xFF;
3204 addr
[2] = (mac_addr_h
>> 8) & 0xFF;
3205 addr
[3] = mac_addr_h
& 0xFF;
3206 addr
[4] = (mac_addr_l
>> 8) & 0xFF;
3207 addr
[5] = mac_addr_l
& 0xFF;
3210 /* Handle setting mac address */
3211 static int mvneta_set_mac_addr(struct net_device
*dev
, void *addr
)
3213 struct mvneta_port
*pp
= netdev_priv(dev
);
3214 struct sockaddr
*sockaddr
= addr
;
3217 ret
= eth_prepare_mac_addr_change(dev
, addr
);
3220 /* Remove previous address table entry */
3221 mvneta_mac_addr_set(pp
, dev
->dev_addr
, -1);
3223 /* Set new addr in hw */
3224 mvneta_mac_addr_set(pp
, sockaddr
->sa_data
, pp
->rxq_def
);
3226 eth_commit_mac_addr_change(dev
, addr
);
3230 static void mvneta_adjust_link(struct net_device
*ndev
)
3232 struct mvneta_port
*pp
= netdev_priv(ndev
);
3233 struct phy_device
*phydev
= ndev
->phydev
;
3234 int status_change
= 0;
3237 if ((pp
->speed
!= phydev
->speed
) ||
3238 (pp
->duplex
!= phydev
->duplex
)) {
3241 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3242 val
&= ~(MVNETA_GMAC_CONFIG_MII_SPEED
|
3243 MVNETA_GMAC_CONFIG_GMII_SPEED
|
3244 MVNETA_GMAC_CONFIG_FULL_DUPLEX
);
3247 val
|= MVNETA_GMAC_CONFIG_FULL_DUPLEX
;
3249 if (phydev
->speed
== SPEED_1000
)
3250 val
|= MVNETA_GMAC_CONFIG_GMII_SPEED
;
3251 else if (phydev
->speed
== SPEED_100
)
3252 val
|= MVNETA_GMAC_CONFIG_MII_SPEED
;
3254 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
3256 pp
->duplex
= phydev
->duplex
;
3257 pp
->speed
= phydev
->speed
;
3261 if (phydev
->link
!= pp
->link
) {
3262 if (!phydev
->link
) {
3267 pp
->link
= phydev
->link
;
3271 if (status_change
) {
3273 if (!pp
->use_inband_status
) {
3274 u32 val
= mvreg_read(pp
,
3275 MVNETA_GMAC_AUTONEG_CONFIG
);
3276 val
&= ~MVNETA_GMAC_FORCE_LINK_DOWN
;
3277 val
|= MVNETA_GMAC_FORCE_LINK_PASS
;
3278 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
,
3283 if (!pp
->use_inband_status
) {
3284 u32 val
= mvreg_read(pp
,
3285 MVNETA_GMAC_AUTONEG_CONFIG
);
3286 val
&= ~MVNETA_GMAC_FORCE_LINK_PASS
;
3287 val
|= MVNETA_GMAC_FORCE_LINK_DOWN
;
3288 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
,
3291 mvneta_port_down(pp
);
3293 phy_print_status(phydev
);
3297 static int mvneta_mdio_probe(struct mvneta_port
*pp
)
3299 struct phy_device
*phy_dev
;
3301 phy_dev
= of_phy_connect(pp
->dev
, pp
->phy_node
, mvneta_adjust_link
, 0,
3304 netdev_err(pp
->dev
, "could not find the PHY\n");
3308 phy_dev
->supported
&= PHY_GBIT_FEATURES
;
3309 phy_dev
->advertising
= phy_dev
->supported
;
3318 static void mvneta_mdio_remove(struct mvneta_port
*pp
)
3320 struct net_device
*ndev
= pp
->dev
;
3322 phy_disconnect(ndev
->phydev
);
3325 /* Electing a CPU must be done in an atomic way: it should be done
3326 * after or before the removal/insertion of a CPU and this function is
3329 static void mvneta_percpu_elect(struct mvneta_port
*pp
)
3331 int elected_cpu
= 0, max_cpu
, cpu
, i
= 0;
3333 /* Use the cpu associated to the rxq when it is online, in all
3334 * the other cases, use the cpu 0 which can't be offline.
3336 if (cpu_online(pp
->rxq_def
))
3337 elected_cpu
= pp
->rxq_def
;
3339 max_cpu
= num_present_cpus();
3341 for_each_online_cpu(cpu
) {
3342 int rxq_map
= 0, txq_map
= 0;
3345 for (rxq
= 0; rxq
< rxq_number
; rxq
++)
3346 if ((rxq
% max_cpu
) == cpu
)
3347 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(rxq
);
3349 if (cpu
== elected_cpu
)
3350 /* Map the default receive queue queue to the
3353 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(pp
->rxq_def
);
3355 /* We update the TX queue map only if we have one
3356 * queue. In this case we associate the TX queue to
3357 * the CPU bound to the default RX queue
3359 if (txq_number
== 1)
3360 txq_map
= (cpu
== elected_cpu
) ?
3361 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3363 txq_map
= mvreg_read(pp
, MVNETA_CPU_MAP(cpu
)) &
3364 MVNETA_CPU_TXQ_ACCESS_ALL_MASK
;
3366 mvreg_write(pp
, MVNETA_CPU_MAP(cpu
), rxq_map
| txq_map
);
3368 /* Update the interrupt mask on each CPU according the
3371 smp_call_function_single(cpu
, mvneta_percpu_unmask_interrupt
,
3378 static int mvneta_cpu_online(unsigned int cpu
, struct hlist_node
*node
)
3381 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3383 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
3386 spin_lock(&pp
->lock
);
3388 * Configuring the driver for a new CPU while the driver is
3389 * stopping is racy, so just avoid it.
3391 if (pp
->is_stopped
) {
3392 spin_unlock(&pp
->lock
);
3395 netif_tx_stop_all_queues(pp
->dev
);
3398 * We have to synchronise on tha napi of each CPU except the one
3399 * just being woken up
3401 for_each_online_cpu(other_cpu
) {
3402 if (other_cpu
!= cpu
) {
3403 struct mvneta_pcpu_port
*other_port
=
3404 per_cpu_ptr(pp
->ports
, other_cpu
);
3406 napi_synchronize(&other_port
->napi
);
3410 /* Mask all ethernet port interrupts */
3411 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3412 napi_enable(&port
->napi
);
3415 * Enable per-CPU interrupts on the CPU that is
3418 mvneta_percpu_enable(pp
);
3421 * Enable per-CPU interrupt on the one CPU we care
3424 mvneta_percpu_elect(pp
);
3426 /* Unmask all ethernet port interrupts */
3427 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3428 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3429 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3430 MVNETA_CAUSE_LINK_CHANGE
|
3431 MVNETA_CAUSE_PSC_SYNC_CHANGE
);
3432 netif_tx_start_all_queues(pp
->dev
);
3433 spin_unlock(&pp
->lock
);
3437 static int mvneta_cpu_down_prepare(unsigned int cpu
, struct hlist_node
*node
)
3439 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3441 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
3444 * Thanks to this lock we are sure that any pending cpu election is
3447 spin_lock(&pp
->lock
);
3448 /* Mask all ethernet port interrupts */
3449 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3450 spin_unlock(&pp
->lock
);
3452 napi_synchronize(&port
->napi
);
3453 napi_disable(&port
->napi
);
3454 /* Disable per-CPU interrupts on the CPU that is brought down. */
3455 mvneta_percpu_disable(pp
);
3459 static int mvneta_cpu_dead(unsigned int cpu
, struct hlist_node
*node
)
3461 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3464 /* Check if a new CPU must be elected now this on is down */
3465 spin_lock(&pp
->lock
);
3466 mvneta_percpu_elect(pp
);
3467 spin_unlock(&pp
->lock
);
3468 /* Unmask all ethernet port interrupts */
3469 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3470 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3471 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3472 MVNETA_CAUSE_LINK_CHANGE
|
3473 MVNETA_CAUSE_PSC_SYNC_CHANGE
);
3474 netif_tx_start_all_queues(pp
->dev
);
3478 static int mvneta_open(struct net_device
*dev
)
3480 struct mvneta_port
*pp
= netdev_priv(dev
);
3483 pp
->pkt_size
= MVNETA_RX_PKT_SIZE(pp
->dev
->mtu
);
3484 pp
->frag_size
= SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp
->pkt_size
)) +
3485 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
3487 ret
= mvneta_setup_rxqs(pp
);
3491 ret
= mvneta_setup_txqs(pp
);
3493 goto err_cleanup_rxqs
;
3495 /* Connect to port interrupt line */
3496 if (pp
->neta_armada3700
)
3497 ret
= request_irq(pp
->dev
->irq
, mvneta_isr
, 0,
3500 ret
= request_percpu_irq(pp
->dev
->irq
, mvneta_percpu_isr
,
3501 dev
->name
, pp
->ports
);
3503 netdev_err(pp
->dev
, "cannot request irq %d\n", pp
->dev
->irq
);
3504 goto err_cleanup_txqs
;
3507 if (!pp
->neta_armada3700
) {
3508 /* Enable per-CPU interrupt on all the CPU to handle our RX
3511 on_each_cpu(mvneta_percpu_enable
, pp
, true);
3513 pp
->is_stopped
= false;
3514 /* Register a CPU notifier to handle the case where our CPU
3515 * might be taken offline.
3517 ret
= cpuhp_state_add_instance_nocalls(online_hpstate
,
3522 ret
= cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3525 goto err_free_online_hp
;
3528 /* In default link is down */
3529 netif_carrier_off(pp
->dev
);
3531 ret
= mvneta_mdio_probe(pp
);
3533 netdev_err(dev
, "cannot probe MDIO bus\n");
3534 goto err_free_dead_hp
;
3537 mvneta_start_dev(pp
);
3542 if (!pp
->neta_armada3700
)
3543 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3546 if (!pp
->neta_armada3700
)
3547 cpuhp_state_remove_instance_nocalls(online_hpstate
,
3550 if (pp
->neta_armada3700
) {
3551 free_irq(pp
->dev
->irq
, pp
);
3553 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3554 free_percpu_irq(pp
->dev
->irq
, pp
->ports
);
3557 mvneta_cleanup_txqs(pp
);
3559 mvneta_cleanup_rxqs(pp
);
3563 /* Stop the port, free port interrupt line */
3564 static int mvneta_stop(struct net_device
*dev
)
3566 struct mvneta_port
*pp
= netdev_priv(dev
);
3568 if (!pp
->neta_armada3700
) {
3569 /* Inform that we are stopping so we don't want to setup the
3570 * driver for new CPUs in the notifiers. The code of the
3571 * notifier for CPU online is protected by the same spinlock,
3572 * so when we get the lock, the notifer work is done.
3574 spin_lock(&pp
->lock
);
3575 pp
->is_stopped
= true;
3576 spin_unlock(&pp
->lock
);
3578 mvneta_stop_dev(pp
);
3579 mvneta_mdio_remove(pp
);
3581 cpuhp_state_remove_instance_nocalls(online_hpstate
,
3583 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3585 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3586 free_percpu_irq(dev
->irq
, pp
->ports
);
3588 mvneta_stop_dev(pp
);
3589 mvneta_mdio_remove(pp
);
3590 free_irq(dev
->irq
, pp
);
3593 mvneta_cleanup_rxqs(pp
);
3594 mvneta_cleanup_txqs(pp
);
3599 static int mvneta_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
3604 return phy_mii_ioctl(dev
->phydev
, ifr
, cmd
);
3607 /* Ethtool methods */
3609 /* Set link ksettings (phy address, speed) for ethtools */
3611 mvneta_ethtool_set_link_ksettings(struct net_device
*ndev
,
3612 const struct ethtool_link_ksettings
*cmd
)
3614 struct mvneta_port
*pp
= netdev_priv(ndev
);
3615 struct phy_device
*phydev
= ndev
->phydev
;
3620 if ((cmd
->base
.autoneg
== AUTONEG_ENABLE
) != pp
->use_inband_status
) {
3623 mvneta_set_autoneg(pp
, cmd
->base
.autoneg
== AUTONEG_ENABLE
);
3625 if (cmd
->base
.autoneg
== AUTONEG_DISABLE
) {
3626 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3627 val
&= ~(MVNETA_GMAC_CONFIG_MII_SPEED
|
3628 MVNETA_GMAC_CONFIG_GMII_SPEED
|
3629 MVNETA_GMAC_CONFIG_FULL_DUPLEX
);
3632 val
|= MVNETA_GMAC_CONFIG_FULL_DUPLEX
;
3634 if (phydev
->speed
== SPEED_1000
)
3635 val
|= MVNETA_GMAC_CONFIG_GMII_SPEED
;
3636 else if (phydev
->speed
== SPEED_100
)
3637 val
|= MVNETA_GMAC_CONFIG_MII_SPEED
;
3639 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
3642 pp
->use_inband_status
= (cmd
->base
.autoneg
== AUTONEG_ENABLE
);
3643 netdev_info(pp
->dev
, "autoneg status set to %i\n",
3644 pp
->use_inband_status
);
3646 if (netif_running(ndev
)) {
3647 mvneta_port_down(pp
);
3652 return phy_ethtool_ksettings_set(ndev
->phydev
, cmd
);
3655 /* Set interrupt coalescing for ethtools */
3656 static int mvneta_ethtool_set_coalesce(struct net_device
*dev
,
3657 struct ethtool_coalesce
*c
)
3659 struct mvneta_port
*pp
= netdev_priv(dev
);
3662 for (queue
= 0; queue
< rxq_number
; queue
++) {
3663 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
3664 rxq
->time_coal
= c
->rx_coalesce_usecs
;
3665 rxq
->pkts_coal
= c
->rx_max_coalesced_frames
;
3666 mvneta_rx_pkts_coal_set(pp
, rxq
, rxq
->pkts_coal
);
3667 mvneta_rx_time_coal_set(pp
, rxq
, rxq
->time_coal
);
3670 for (queue
= 0; queue
< txq_number
; queue
++) {
3671 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
3672 txq
->done_pkts_coal
= c
->tx_max_coalesced_frames
;
3673 mvneta_tx_done_pkts_coal_set(pp
, txq
, txq
->done_pkts_coal
);
3679 /* get coalescing for ethtools */
3680 static int mvneta_ethtool_get_coalesce(struct net_device
*dev
,
3681 struct ethtool_coalesce
*c
)
3683 struct mvneta_port
*pp
= netdev_priv(dev
);
3685 c
->rx_coalesce_usecs
= pp
->rxqs
[0].time_coal
;
3686 c
->rx_max_coalesced_frames
= pp
->rxqs
[0].pkts_coal
;
3688 c
->tx_max_coalesced_frames
= pp
->txqs
[0].done_pkts_coal
;
3693 static void mvneta_ethtool_get_drvinfo(struct net_device
*dev
,
3694 struct ethtool_drvinfo
*drvinfo
)
3696 strlcpy(drvinfo
->driver
, MVNETA_DRIVER_NAME
,
3697 sizeof(drvinfo
->driver
));
3698 strlcpy(drvinfo
->version
, MVNETA_DRIVER_VERSION
,
3699 sizeof(drvinfo
->version
));
3700 strlcpy(drvinfo
->bus_info
, dev_name(&dev
->dev
),
3701 sizeof(drvinfo
->bus_info
));
3705 static void mvneta_ethtool_get_ringparam(struct net_device
*netdev
,
3706 struct ethtool_ringparam
*ring
)
3708 struct mvneta_port
*pp
= netdev_priv(netdev
);
3710 ring
->rx_max_pending
= MVNETA_MAX_RXD
;
3711 ring
->tx_max_pending
= MVNETA_MAX_TXD
;
3712 ring
->rx_pending
= pp
->rx_ring_size
;
3713 ring
->tx_pending
= pp
->tx_ring_size
;
3716 static int mvneta_ethtool_set_ringparam(struct net_device
*dev
,
3717 struct ethtool_ringparam
*ring
)
3719 struct mvneta_port
*pp
= netdev_priv(dev
);
3721 if ((ring
->rx_pending
== 0) || (ring
->tx_pending
== 0))
3723 pp
->rx_ring_size
= ring
->rx_pending
< MVNETA_MAX_RXD
?
3724 ring
->rx_pending
: MVNETA_MAX_RXD
;
3726 pp
->tx_ring_size
= clamp_t(u16
, ring
->tx_pending
,
3727 MVNETA_MAX_SKB_DESCS
* 2, MVNETA_MAX_TXD
);
3728 if (pp
->tx_ring_size
!= ring
->tx_pending
)
3729 netdev_warn(dev
, "TX queue size set to %u (requested %u)\n",
3730 pp
->tx_ring_size
, ring
->tx_pending
);
3732 if (netif_running(dev
)) {
3734 if (mvneta_open(dev
)) {
3736 "error on opening device after ring param change\n");
3744 static void mvneta_ethtool_get_strings(struct net_device
*netdev
, u32 sset
,
3747 if (sset
== ETH_SS_STATS
) {
3750 for (i
= 0; i
< ARRAY_SIZE(mvneta_statistics
); i
++)
3751 memcpy(data
+ i
* ETH_GSTRING_LEN
,
3752 mvneta_statistics
[i
].name
, ETH_GSTRING_LEN
);
3756 static void mvneta_ethtool_update_stats(struct mvneta_port
*pp
)
3758 const struct mvneta_statistic
*s
;
3759 void __iomem
*base
= pp
->base
;
3764 for (i
= 0, s
= mvneta_statistics
;
3765 s
< mvneta_statistics
+ ARRAY_SIZE(mvneta_statistics
);
3769 val
= readl_relaxed(base
+ s
->offset
);
3770 pp
->ethtool_stats
[i
] += val
;
3773 /* Docs say to read low 32-bit then high */
3774 low
= readl_relaxed(base
+ s
->offset
);
3775 high
= readl_relaxed(base
+ s
->offset
+ 4);
3776 val64
= (u64
)high
<< 32 | low
;
3777 pp
->ethtool_stats
[i
] += val64
;
3783 static void mvneta_ethtool_get_stats(struct net_device
*dev
,
3784 struct ethtool_stats
*stats
, u64
*data
)
3786 struct mvneta_port
*pp
= netdev_priv(dev
);
3789 mvneta_ethtool_update_stats(pp
);
3791 for (i
= 0; i
< ARRAY_SIZE(mvneta_statistics
); i
++)
3792 *data
++ = pp
->ethtool_stats
[i
];
3795 static int mvneta_ethtool_get_sset_count(struct net_device
*dev
, int sset
)
3797 if (sset
== ETH_SS_STATS
)
3798 return ARRAY_SIZE(mvneta_statistics
);
3802 static u32
mvneta_ethtool_get_rxfh_indir_size(struct net_device
*dev
)
3804 return MVNETA_RSS_LU_TABLE_SIZE
;
3807 static int mvneta_ethtool_get_rxnfc(struct net_device
*dev
,
3808 struct ethtool_rxnfc
*info
,
3809 u32
*rules __always_unused
)
3811 switch (info
->cmd
) {
3812 case ETHTOOL_GRXRINGS
:
3813 info
->data
= rxq_number
;
3822 static int mvneta_config_rss(struct mvneta_port
*pp
)
3827 netif_tx_stop_all_queues(pp
->dev
);
3829 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3831 /* We have to synchronise on the napi of each CPU */
3832 for_each_online_cpu(cpu
) {
3833 struct mvneta_pcpu_port
*pcpu_port
=
3834 per_cpu_ptr(pp
->ports
, cpu
);
3836 napi_synchronize(&pcpu_port
->napi
);
3837 napi_disable(&pcpu_port
->napi
);
3840 pp
->rxq_def
= pp
->indir
[0];
3842 /* Update unicast mapping */
3843 mvneta_set_rx_mode(pp
->dev
);
3845 /* Update val of portCfg register accordingly with all RxQueue types */
3846 val
= MVNETA_PORT_CONFIG_DEFL_VALUE(pp
->rxq_def
);
3847 mvreg_write(pp
, MVNETA_PORT_CONFIG
, val
);
3849 /* Update the elected CPU matching the new rxq_def */
3850 spin_lock(&pp
->lock
);
3851 mvneta_percpu_elect(pp
);
3852 spin_unlock(&pp
->lock
);
3854 /* We have to synchronise on the napi of each CPU */
3855 for_each_online_cpu(cpu
) {
3856 struct mvneta_pcpu_port
*pcpu_port
=
3857 per_cpu_ptr(pp
->ports
, cpu
);
3859 napi_enable(&pcpu_port
->napi
);
3862 netif_tx_start_all_queues(pp
->dev
);
3867 static int mvneta_ethtool_set_rxfh(struct net_device
*dev
, const u32
*indir
,
3868 const u8
*key
, const u8 hfunc
)
3870 struct mvneta_port
*pp
= netdev_priv(dev
);
3872 /* Current code for Armada 3700 doesn't support RSS features yet */
3873 if (pp
->neta_armada3700
)
3876 /* We require at least one supported parameter to be changed
3877 * and no change in any of the unsupported parameters
3880 (hfunc
!= ETH_RSS_HASH_NO_CHANGE
&& hfunc
!= ETH_RSS_HASH_TOP
))
3886 memcpy(pp
->indir
, indir
, MVNETA_RSS_LU_TABLE_SIZE
);
3888 return mvneta_config_rss(pp
);
3891 static int mvneta_ethtool_get_rxfh(struct net_device
*dev
, u32
*indir
, u8
*key
,
3894 struct mvneta_port
*pp
= netdev_priv(dev
);
3896 /* Current code for Armada 3700 doesn't support RSS features yet */
3897 if (pp
->neta_armada3700
)
3901 *hfunc
= ETH_RSS_HASH_TOP
;
3906 memcpy(indir
, pp
->indir
, MVNETA_RSS_LU_TABLE_SIZE
);
3911 static const struct net_device_ops mvneta_netdev_ops
= {
3912 .ndo_open
= mvneta_open
,
3913 .ndo_stop
= mvneta_stop
,
3914 .ndo_start_xmit
= mvneta_tx
,
3915 .ndo_set_rx_mode
= mvneta_set_rx_mode
,
3916 .ndo_set_mac_address
= mvneta_set_mac_addr
,
3917 .ndo_change_mtu
= mvneta_change_mtu
,
3918 .ndo_fix_features
= mvneta_fix_features
,
3919 .ndo_get_stats64
= mvneta_get_stats64
,
3920 .ndo_do_ioctl
= mvneta_ioctl
,
3923 const struct ethtool_ops mvneta_eth_tool_ops
= {
3924 .nway_reset
= phy_ethtool_nway_reset
,
3925 .get_link
= ethtool_op_get_link
,
3926 .set_coalesce
= mvneta_ethtool_set_coalesce
,
3927 .get_coalesce
= mvneta_ethtool_get_coalesce
,
3928 .get_drvinfo
= mvneta_ethtool_get_drvinfo
,
3929 .get_ringparam
= mvneta_ethtool_get_ringparam
,
3930 .set_ringparam
= mvneta_ethtool_set_ringparam
,
3931 .get_strings
= mvneta_ethtool_get_strings
,
3932 .get_ethtool_stats
= mvneta_ethtool_get_stats
,
3933 .get_sset_count
= mvneta_ethtool_get_sset_count
,
3934 .get_rxfh_indir_size
= mvneta_ethtool_get_rxfh_indir_size
,
3935 .get_rxnfc
= mvneta_ethtool_get_rxnfc
,
3936 .get_rxfh
= mvneta_ethtool_get_rxfh
,
3937 .set_rxfh
= mvneta_ethtool_set_rxfh
,
3938 .get_link_ksettings
= phy_ethtool_get_link_ksettings
,
3939 .set_link_ksettings
= mvneta_ethtool_set_link_ksettings
,
3943 static int mvneta_init(struct device
*dev
, struct mvneta_port
*pp
)
3948 mvneta_port_disable(pp
);
3950 /* Set port default values */
3951 mvneta_defaults_set(pp
);
3953 pp
->txqs
= devm_kcalloc(dev
, txq_number
, sizeof(struct mvneta_tx_queue
),
3958 /* Initialize TX descriptor rings */
3959 for (queue
= 0; queue
< txq_number
; queue
++) {
3960 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
3962 txq
->size
= pp
->tx_ring_size
;
3963 txq
->done_pkts_coal
= MVNETA_TXDONE_COAL_PKTS
;
3966 pp
->rxqs
= devm_kcalloc(dev
, rxq_number
, sizeof(struct mvneta_rx_queue
),
3971 /* Create Rx descriptor rings */
3972 for (queue
= 0; queue
< rxq_number
; queue
++) {
3973 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
3975 rxq
->size
= pp
->rx_ring_size
;
3976 rxq
->pkts_coal
= MVNETA_RX_COAL_PKTS
;
3977 rxq
->time_coal
= MVNETA_RX_COAL_USEC
;
3978 rxq
->buf_virt_addr
= devm_kmalloc(pp
->dev
->dev
.parent
,
3979 rxq
->size
* sizeof(void *),
3981 if (!rxq
->buf_virt_addr
)
3988 /* platform glue : initialize decoding windows */
3989 static void mvneta_conf_mbus_windows(struct mvneta_port
*pp
,
3990 const struct mbus_dram_target_info
*dram
)
3996 for (i
= 0; i
< 6; i
++) {
3997 mvreg_write(pp
, MVNETA_WIN_BASE(i
), 0);
3998 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), 0);
4001 mvreg_write(pp
, MVNETA_WIN_REMAP(i
), 0);
4008 for (i
= 0; i
< dram
->num_cs
; i
++) {
4009 const struct mbus_dram_window
*cs
= dram
->cs
+ i
;
4011 mvreg_write(pp
, MVNETA_WIN_BASE(i
),
4012 (cs
->base
& 0xffff0000) |
4013 (cs
->mbus_attr
<< 8) |
4014 dram
->mbus_dram_target_id
);
4016 mvreg_write(pp
, MVNETA_WIN_SIZE(i
),
4017 (cs
->size
- 1) & 0xffff0000);
4019 win_enable
&= ~(1 << i
);
4020 win_protect
|= 3 << (2 * i
);
4023 /* For Armada3700 open default 4GB Mbus window, leaving
4024 * arbitration of target/attribute to a different layer
4027 mvreg_write(pp
, MVNETA_WIN_SIZE(0), 0xffff0000);
4028 win_enable
&= ~BIT(0);
4032 mvreg_write(pp
, MVNETA_BASE_ADDR_ENABLE
, win_enable
);
4033 mvreg_write(pp
, MVNETA_ACCESS_PROTECT_ENABLE
, win_protect
);
4036 /* Power up the port */
4037 static int mvneta_port_power_up(struct mvneta_port
*pp
, int phy_mode
)
4041 /* MAC Cause register should be cleared */
4042 mvreg_write(pp
, MVNETA_UNIT_INTR_CAUSE
, 0);
4044 ctrl
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
4046 /* Even though it might look weird, when we're configured in
4047 * SGMII or QSGMII mode, the RGMII bit needs to be set.
4050 case PHY_INTERFACE_MODE_QSGMII
:
4051 mvreg_write(pp
, MVNETA_SERDES_CFG
, MVNETA_QSGMII_SERDES_PROTO
);
4052 ctrl
|= MVNETA_GMAC2_PCS_ENABLE
| MVNETA_GMAC2_PORT_RGMII
;
4054 case PHY_INTERFACE_MODE_SGMII
:
4055 mvreg_write(pp
, MVNETA_SERDES_CFG
, MVNETA_SGMII_SERDES_PROTO
);
4056 ctrl
|= MVNETA_GMAC2_PCS_ENABLE
| MVNETA_GMAC2_PORT_RGMII
;
4058 case PHY_INTERFACE_MODE_RGMII
:
4059 case PHY_INTERFACE_MODE_RGMII_ID
:
4060 ctrl
|= MVNETA_GMAC2_PORT_RGMII
;
4066 /* Cancel Port Reset */
4067 ctrl
&= ~MVNETA_GMAC2_PORT_RESET
;
4068 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, ctrl
);
4070 while ((mvreg_read(pp
, MVNETA_GMAC_CTRL_2
) &
4071 MVNETA_GMAC2_PORT_RESET
) != 0)
4077 /* Device initialization routine */
4078 static int mvneta_probe(struct platform_device
*pdev
)
4080 const struct mbus_dram_target_info
*dram_target_info
;
4081 struct resource
*res
;
4082 struct device_node
*dn
= pdev
->dev
.of_node
;
4083 struct device_node
*phy_node
;
4084 struct device_node
*bm_node
;
4085 struct mvneta_port
*pp
;
4086 struct net_device
*dev
;
4087 const char *dt_mac_addr
;
4088 char hw_mac_addr
[ETH_ALEN
];
4089 const char *mac_from
;
4090 const char *managed
;
4096 dev
= alloc_etherdev_mqs(sizeof(struct mvneta_port
), txq_number
, rxq_number
);
4100 dev
->irq
= irq_of_parse_and_map(dn
, 0);
4101 if (dev
->irq
== 0) {
4103 goto err_free_netdev
;
4106 phy_node
= of_parse_phandle(dn
, "phy", 0);
4108 if (!of_phy_is_fixed_link(dn
)) {
4109 dev_err(&pdev
->dev
, "no PHY specified\n");
4114 err
= of_phy_register_fixed_link(dn
);
4116 dev_err(&pdev
->dev
, "cannot register fixed PHY\n");
4120 /* In the case of a fixed PHY, the DT node associated
4121 * to the PHY is the Ethernet MAC DT node.
4123 phy_node
= of_node_get(dn
);
4126 phy_mode
= of_get_phy_mode(dn
);
4128 dev_err(&pdev
->dev
, "incorrect phy-mode\n");
4130 goto err_put_phy_node
;
4133 dev
->tx_queue_len
= MVNETA_MAX_TXD
;
4134 dev
->watchdog_timeo
= 5 * HZ
;
4135 dev
->netdev_ops
= &mvneta_netdev_ops
;
4137 dev
->ethtool_ops
= &mvneta_eth_tool_ops
;
4139 pp
= netdev_priv(dev
);
4140 spin_lock_init(&pp
->lock
);
4141 pp
->phy_node
= phy_node
;
4142 pp
->phy_interface
= phy_mode
;
4144 err
= of_property_read_string(dn
, "managed", &managed
);
4145 pp
->use_inband_status
= (err
== 0 &&
4146 strcmp(managed
, "in-band-status") == 0);
4148 pp
->rxq_def
= rxq_def
;
4150 /* Set RX packet offset correction for platforms, whose
4151 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4152 * platforms and 0B for 32-bit ones.
4154 pp
->rx_offset_correction
=
4155 max(0, NET_SKB_PAD
- MVNETA_RX_PKT_OFFSET_CORRECTION
);
4157 pp
->indir
[0] = rxq_def
;
4159 /* Get special SoC configurations */
4160 if (of_device_is_compatible(dn
, "marvell,armada-3700-neta"))
4161 pp
->neta_armada3700
= true;
4163 pp
->clk
= devm_clk_get(&pdev
->dev
, "core");
4164 if (IS_ERR(pp
->clk
))
4165 pp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
4166 if (IS_ERR(pp
->clk
)) {
4167 err
= PTR_ERR(pp
->clk
);
4168 goto err_put_phy_node
;
4171 clk_prepare_enable(pp
->clk
);
4173 pp
->clk_bus
= devm_clk_get(&pdev
->dev
, "bus");
4174 if (!IS_ERR(pp
->clk_bus
))
4175 clk_prepare_enable(pp
->clk_bus
);
4177 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
4178 pp
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
4179 if (IS_ERR(pp
->base
)) {
4180 err
= PTR_ERR(pp
->base
);
4184 /* Alloc per-cpu port structure */
4185 pp
->ports
= alloc_percpu(struct mvneta_pcpu_port
);
4191 /* Alloc per-cpu stats */
4192 pp
->stats
= netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats
);
4195 goto err_free_ports
;
4198 dt_mac_addr
= of_get_mac_address(dn
);
4200 mac_from
= "device tree";
4201 memcpy(dev
->dev_addr
, dt_mac_addr
, ETH_ALEN
);
4203 mvneta_get_mac_addr(pp
, hw_mac_addr
);
4204 if (is_valid_ether_addr(hw_mac_addr
)) {
4205 mac_from
= "hardware";
4206 memcpy(dev
->dev_addr
, hw_mac_addr
, ETH_ALEN
);
4208 mac_from
= "random";
4209 eth_hw_addr_random(dev
);
4213 if (!of_property_read_u32(dn
, "tx-csum-limit", &tx_csum_limit
)) {
4214 if (tx_csum_limit
< 0 ||
4215 tx_csum_limit
> MVNETA_TX_CSUM_MAX_SIZE
) {
4216 tx_csum_limit
= MVNETA_TX_CSUM_DEF_SIZE
;
4217 dev_info(&pdev
->dev
,
4218 "Wrong TX csum limit in DT, set to %dB\n",
4219 MVNETA_TX_CSUM_DEF_SIZE
);
4221 } else if (of_device_is_compatible(dn
, "marvell,armada-370-neta")) {
4222 tx_csum_limit
= MVNETA_TX_CSUM_DEF_SIZE
;
4224 tx_csum_limit
= MVNETA_TX_CSUM_MAX_SIZE
;
4227 pp
->tx_csum_limit
= tx_csum_limit
;
4229 dram_target_info
= mv_mbus_dram_info();
4230 /* Armada3700 requires setting default configuration of Mbus
4231 * windows, however without using filled mbus_dram_target_info
4234 if (dram_target_info
|| pp
->neta_armada3700
)
4235 mvneta_conf_mbus_windows(pp
, dram_target_info
);
4237 pp
->tx_ring_size
= MVNETA_MAX_TXD
;
4238 pp
->rx_ring_size
= MVNETA_MAX_RXD
;
4241 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4243 pp
->id
= global_port_id
++;
4245 /* Obtain access to BM resources if enabled and already initialized */
4246 bm_node
= of_parse_phandle(dn
, "buffer-manager", 0);
4247 if (bm_node
&& bm_node
->data
) {
4248 pp
->bm_priv
= bm_node
->data
;
4249 err
= mvneta_bm_port_init(pdev
, pp
);
4251 dev_info(&pdev
->dev
, "use SW buffer management\n");
4255 of_node_put(bm_node
);
4257 err
= mvneta_init(&pdev
->dev
, pp
);
4261 err
= mvneta_port_power_up(pp
, phy_mode
);
4263 dev_err(&pdev
->dev
, "can't power up port\n");
4267 /* Armada3700 network controller does not support per-cpu
4268 * operation, so only single NAPI should be initialized.
4270 if (pp
->neta_armada3700
) {
4271 netif_napi_add(dev
, &pp
->napi
, mvneta_poll
, NAPI_POLL_WEIGHT
);
4273 for_each_present_cpu(cpu
) {
4274 struct mvneta_pcpu_port
*port
=
4275 per_cpu_ptr(pp
->ports
, cpu
);
4277 netif_napi_add(dev
, &port
->napi
, mvneta_poll
,
4283 dev
->features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_TSO
;
4284 dev
->hw_features
|= dev
->features
;
4285 dev
->vlan_features
|= dev
->features
;
4286 dev
->priv_flags
|= IFF_LIVE_ADDR_CHANGE
;
4287 dev
->gso_max_segs
= MVNETA_MAX_TSO_SEGS
;
4289 /* MTU range: 68 - 9676 */
4290 dev
->min_mtu
= ETH_MIN_MTU
;
4291 /* 9676 == 9700 - 20 and rounding to 8 */
4292 dev
->max_mtu
= 9676;
4294 err
= register_netdev(dev
);
4296 dev_err(&pdev
->dev
, "failed to register\n");
4297 goto err_free_stats
;
4300 netdev_info(dev
, "Using %s mac address %pM\n", mac_from
,
4303 platform_set_drvdata(pdev
, pp
->dev
);
4305 if (pp
->use_inband_status
) {
4306 struct phy_device
*phy
= of_phy_find_device(dn
);
4308 mvneta_fixed_link_update(pp
, phy
);
4310 put_device(&phy
->mdio
.dev
);
4316 unregister_netdev(dev
);
4318 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
4319 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
,
4323 free_percpu(pp
->stats
);
4325 free_percpu(pp
->ports
);
4327 clk_disable_unprepare(pp
->clk_bus
);
4328 clk_disable_unprepare(pp
->clk
);
4330 of_node_put(phy_node
);
4331 if (of_phy_is_fixed_link(dn
))
4332 of_phy_deregister_fixed_link(dn
);
4334 irq_dispose_mapping(dev
->irq
);
4340 /* Device removal routine */
4341 static int mvneta_remove(struct platform_device
*pdev
)
4343 struct net_device
*dev
= platform_get_drvdata(pdev
);
4344 struct device_node
*dn
= pdev
->dev
.of_node
;
4345 struct mvneta_port
*pp
= netdev_priv(dev
);
4347 unregister_netdev(dev
);
4348 clk_disable_unprepare(pp
->clk_bus
);
4349 clk_disable_unprepare(pp
->clk
);
4350 free_percpu(pp
->ports
);
4351 free_percpu(pp
->stats
);
4352 if (of_phy_is_fixed_link(dn
))
4353 of_phy_deregister_fixed_link(dn
);
4354 irq_dispose_mapping(dev
->irq
);
4355 of_node_put(pp
->phy_node
);
4359 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
4360 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
,
4367 static const struct of_device_id mvneta_match
[] = {
4368 { .compatible
= "marvell,armada-370-neta" },
4369 { .compatible
= "marvell,armada-xp-neta" },
4370 { .compatible
= "marvell,armada-3700-neta" },
4373 MODULE_DEVICE_TABLE(of
, mvneta_match
);
4375 static struct platform_driver mvneta_driver
= {
4376 .probe
= mvneta_probe
,
4377 .remove
= mvneta_remove
,
4379 .name
= MVNETA_DRIVER_NAME
,
4380 .of_match_table
= mvneta_match
,
4384 static int __init
mvneta_driver_init(void)
4388 ret
= cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN
, "net/mvmeta:online",
4390 mvneta_cpu_down_prepare
);
4393 online_hpstate
= ret
;
4394 ret
= cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD
, "net/mvneta:dead",
4395 NULL
, mvneta_cpu_dead
);
4399 ret
= platform_driver_register(&mvneta_driver
);
4405 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD
);
4407 cpuhp_remove_multi_state(online_hpstate
);
4411 module_init(mvneta_driver_init
);
4413 static void __exit
mvneta_driver_exit(void)
4415 platform_driver_unregister(&mvneta_driver
);
4416 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD
);
4417 cpuhp_remove_multi_state(online_hpstate
);
4419 module_exit(mvneta_driver_exit
);
4421 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4422 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4423 MODULE_LICENSE("GPL");
4425 module_param(rxq_number
, int, S_IRUGO
);
4426 module_param(txq_number
, int, S_IRUGO
);
4428 module_param(rxq_def
, int, S_IRUGO
);
4429 module_param(rx_copybreak
, int, S_IRUGO
| S_IWUSR
);