powerpc/powernv: Report size of OPAL memcons log
[linux/fpc-iii.git] / drivers / net / ethernet / marvell / mvneta.c
blobe05e22705cf76a6e0a21dddd7d31238e8f4c736a
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
4 * Copyright (C) 2012 Marvell
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/platform_device.h>
32 #include <linux/skbuff.h>
33 #include <net/hwbm.h>
34 #include "mvneta_bm.h"
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/tso.h>
39 /* Registers */
40 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
41 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
42 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
43 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
44 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
45 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
46 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
47 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
48 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
49 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
50 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
51 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
52 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
53 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
54 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
55 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
56 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
57 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
59 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
60 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
61 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
62 #define MVNETA_PORT_RX_RESET 0x1cc0
63 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
64 #define MVNETA_PHY_ADDR 0x2000
65 #define MVNETA_PHY_ADDR_MASK 0x1f
66 #define MVNETA_MBUS_RETRY 0x2010
67 #define MVNETA_UNIT_INTR_CAUSE 0x2080
68 #define MVNETA_UNIT_CONTROL 0x20B0
69 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
70 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
71 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
72 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
73 #define MVNETA_BASE_ADDR_ENABLE 0x2290
74 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
75 #define MVNETA_PORT_CONFIG 0x2400
76 #define MVNETA_UNI_PROMISC_MODE BIT(0)
77 #define MVNETA_DEF_RXQ(q) ((q) << 1)
78 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
79 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
80 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
81 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
82 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
83 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
84 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
85 MVNETA_DEF_RXQ_ARP(q) | \
86 MVNETA_DEF_RXQ_TCP(q) | \
87 MVNETA_DEF_RXQ_UDP(q) | \
88 MVNETA_DEF_RXQ_BPDU(q) | \
89 MVNETA_TX_UNSET_ERR_SUM | \
90 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
91 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
92 #define MVNETA_MAC_ADDR_LOW 0x2414
93 #define MVNETA_MAC_ADDR_HIGH 0x2418
94 #define MVNETA_SDMA_CONFIG 0x241c
95 #define MVNETA_SDMA_BRST_SIZE_16 4
96 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
97 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
98 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
99 #define MVNETA_DESC_SWAP BIT(6)
100 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
101 #define MVNETA_PORT_STATUS 0x2444
102 #define MVNETA_TX_IN_PRGRS BIT(1)
103 #define MVNETA_TX_FIFO_EMPTY BIT(8)
104 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
105 #define MVNETA_SERDES_CFG 0x24A0
106 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
107 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
108 #define MVNETA_TYPE_PRIO 0x24bc
109 #define MVNETA_FORCE_UNI BIT(21)
110 #define MVNETA_TXQ_CMD_1 0x24e4
111 #define MVNETA_TXQ_CMD 0x2448
112 #define MVNETA_TXQ_DISABLE_SHIFT 8
113 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
114 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
115 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
116 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
117 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
118 #define MVNETA_ACC_MODE 0x2500
119 #define MVNETA_BM_ADDRESS 0x2504
120 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
121 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
122 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
123 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
124 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
125 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
127 /* Exception Interrupt Port/Queue Cause register
129 * Their behavior depend of the mapping done using the PCPX2Q
130 * registers. For a given CPU if the bit associated to a queue is not
131 * set, then for the register a read from this CPU will always return
132 * 0 and a write won't do anything
135 #define MVNETA_INTR_NEW_CAUSE 0x25a0
136 #define MVNETA_INTR_NEW_MASK 0x25a4
138 /* bits 0..7 = TXQ SENT, one bit per queue.
139 * bits 8..15 = RXQ OCCUP, one bit per queue.
140 * bits 16..23 = RXQ FREE, one bit per queue.
141 * bit 29 = OLD_REG_SUM, see old reg ?
142 * bit 30 = TX_ERR_SUM, one bit for 4 ports
143 * bit 31 = MISC_SUM, one bit for 4 ports
145 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
146 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
147 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
148 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
149 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
151 #define MVNETA_INTR_OLD_CAUSE 0x25a8
152 #define MVNETA_INTR_OLD_MASK 0x25ac
154 /* Data Path Port/Queue Cause Register */
155 #define MVNETA_INTR_MISC_CAUSE 0x25b0
156 #define MVNETA_INTR_MISC_MASK 0x25b4
158 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
159 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
160 #define MVNETA_CAUSE_PTP BIT(4)
162 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
163 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
164 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
165 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
166 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
167 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
168 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
169 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
171 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
176 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
177 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179 #define MVNETA_INTR_ENABLE 0x25b8
180 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
181 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
183 #define MVNETA_RXQ_CMD 0x2680
184 #define MVNETA_RXQ_DISABLE_SHIFT 8
185 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
186 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
187 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
188 #define MVNETA_GMAC_CTRL_0 0x2c00
189 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
190 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
191 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
192 #define MVNETA_GMAC_CTRL_2 0x2c08
193 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
194 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
195 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
196 #define MVNETA_GMAC2_PORT_RESET BIT(6)
197 #define MVNETA_GMAC_STATUS 0x2c10
198 #define MVNETA_GMAC_LINK_UP BIT(0)
199 #define MVNETA_GMAC_SPEED_1000 BIT(1)
200 #define MVNETA_GMAC_SPEED_100 BIT(2)
201 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
202 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
203 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
204 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
205 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
206 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
207 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
208 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
209 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
210 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
211 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
212 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
213 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
214 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
215 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
216 #define MVNETA_MIB_COUNTERS_BASE 0x3000
217 #define MVNETA_MIB_LATE_COLLISION 0x7c
218 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
219 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
220 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
221 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
222 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
223 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
224 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
225 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
226 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
227 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
228 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
229 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
230 #define MVNETA_PORT_TX_RESET 0x3cf0
231 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
232 #define MVNETA_TX_MTU 0x3e0c
233 #define MVNETA_TX_TOKEN_SIZE 0x3e14
234 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
235 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
236 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
238 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
240 /* Descriptor ring Macros */
241 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
242 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
244 /* Various constants */
246 /* Coalescing */
247 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
248 #define MVNETA_RX_COAL_PKTS 32
249 #define MVNETA_RX_COAL_USEC 100
251 /* The two bytes Marvell header. Either contains a special value used
252 * by Marvell switches when a specific hardware mode is enabled (not
253 * supported by this driver) or is filled automatically by zeroes on
254 * the RX side. Those two bytes being at the front of the Ethernet
255 * header, they allow to have the IP header aligned on a 4 bytes
256 * boundary automatically: the hardware skips those two bytes on its
257 * own.
259 #define MVNETA_MH_SIZE 2
261 #define MVNETA_VLAN_TAG_LEN 4
263 #define MVNETA_TX_CSUM_DEF_SIZE 1600
264 #define MVNETA_TX_CSUM_MAX_SIZE 9800
265 #define MVNETA_ACC_MODE_EXT1 1
266 #define MVNETA_ACC_MODE_EXT2 2
268 #define MVNETA_MAX_DECODE_WIN 6
270 /* Timeout constants */
271 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
272 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
273 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
275 #define MVNETA_TX_MTU_MAX 0x3ffff
277 /* The RSS lookup table actually has 256 entries but we do not use
278 * them yet
280 #define MVNETA_RSS_LU_TABLE_SIZE 1
282 /* TSO header size */
283 #define TSO_HEADER_SIZE 128
285 /* Max number of Rx descriptors */
286 #define MVNETA_MAX_RXD 128
288 /* Max number of Tx descriptors */
289 #define MVNETA_MAX_TXD 532
291 /* Max number of allowed TCP segments for software TSO */
292 #define MVNETA_MAX_TSO_SEGS 100
294 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
296 /* descriptor aligned size */
297 #define MVNETA_DESC_ALIGNED_SIZE 32
299 /* Number of bytes to be taken into account by HW when putting incoming data
300 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
301 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
303 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
305 #define MVNETA_RX_PKT_SIZE(mtu) \
306 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
307 ETH_HLEN + ETH_FCS_LEN, \
308 cache_line_size())
310 #define IS_TSO_HEADER(txq, addr) \
311 ((addr >= txq->tso_hdrs_phys) && \
312 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
314 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
315 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
317 struct mvneta_statistic {
318 unsigned short offset;
319 unsigned short type;
320 const char name[ETH_GSTRING_LEN];
323 #define T_REG_32 32
324 #define T_REG_64 64
326 static const struct mvneta_statistic mvneta_statistics[] = {
327 { 0x3000, T_REG_64, "good_octets_received", },
328 { 0x3010, T_REG_32, "good_frames_received", },
329 { 0x3008, T_REG_32, "bad_octets_received", },
330 { 0x3014, T_REG_32, "bad_frames_received", },
331 { 0x3018, T_REG_32, "broadcast_frames_received", },
332 { 0x301c, T_REG_32, "multicast_frames_received", },
333 { 0x3050, T_REG_32, "unrec_mac_control_received", },
334 { 0x3058, T_REG_32, "good_fc_received", },
335 { 0x305c, T_REG_32, "bad_fc_received", },
336 { 0x3060, T_REG_32, "undersize_received", },
337 { 0x3064, T_REG_32, "fragments_received", },
338 { 0x3068, T_REG_32, "oversize_received", },
339 { 0x306c, T_REG_32, "jabber_received", },
340 { 0x3070, T_REG_32, "mac_receive_error", },
341 { 0x3074, T_REG_32, "bad_crc_event", },
342 { 0x3078, T_REG_32, "collision", },
343 { 0x307c, T_REG_32, "late_collision", },
344 { 0x2484, T_REG_32, "rx_discard", },
345 { 0x2488, T_REG_32, "rx_overrun", },
346 { 0x3020, T_REG_32, "frames_64_octets", },
347 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
348 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
349 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
350 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
351 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
352 { 0x3038, T_REG_64, "good_octets_sent", },
353 { 0x3040, T_REG_32, "good_frames_sent", },
354 { 0x3044, T_REG_32, "excessive_collision", },
355 { 0x3048, T_REG_32, "multicast_frames_sent", },
356 { 0x304c, T_REG_32, "broadcast_frames_sent", },
357 { 0x3054, T_REG_32, "fc_sent", },
358 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
361 struct mvneta_pcpu_stats {
362 struct u64_stats_sync syncp;
363 u64 rx_packets;
364 u64 rx_bytes;
365 u64 tx_packets;
366 u64 tx_bytes;
369 struct mvneta_pcpu_port {
370 /* Pointer to the shared port */
371 struct mvneta_port *pp;
373 /* Pointer to the CPU-local NAPI struct */
374 struct napi_struct napi;
376 /* Cause of the previous interrupt */
377 u32 cause_rx_tx;
380 struct mvneta_port {
381 u8 id;
382 struct mvneta_pcpu_port __percpu *ports;
383 struct mvneta_pcpu_stats __percpu *stats;
385 int pkt_size;
386 unsigned int frag_size;
387 void __iomem *base;
388 struct mvneta_rx_queue *rxqs;
389 struct mvneta_tx_queue *txqs;
390 struct net_device *dev;
391 struct hlist_node node_online;
392 struct hlist_node node_dead;
393 int rxq_def;
394 /* Protect the access to the percpu interrupt registers,
395 * ensuring that the configuration remains coherent.
397 spinlock_t lock;
398 bool is_stopped;
400 u32 cause_rx_tx;
401 struct napi_struct napi;
403 /* Core clock */
404 struct clk *clk;
405 /* AXI clock */
406 struct clk *clk_bus;
407 u8 mcast_count[256];
408 u16 tx_ring_size;
409 u16 rx_ring_size;
411 struct mii_bus *mii_bus;
412 phy_interface_t phy_interface;
413 struct device_node *phy_node;
414 unsigned int link;
415 unsigned int duplex;
416 unsigned int speed;
417 unsigned int tx_csum_limit;
418 unsigned int use_inband_status:1;
420 struct mvneta_bm *bm_priv;
421 struct mvneta_bm_pool *pool_long;
422 struct mvneta_bm_pool *pool_short;
423 int bm_win_id;
425 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
427 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
429 /* Flags for special SoC configurations */
430 bool neta_armada3700;
431 u16 rx_offset_correction;
434 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
435 * layout of the transmit and reception DMA descriptors, and their
436 * layout is therefore defined by the hardware design
439 #define MVNETA_TX_L3_OFF_SHIFT 0
440 #define MVNETA_TX_IP_HLEN_SHIFT 8
441 #define MVNETA_TX_L4_UDP BIT(16)
442 #define MVNETA_TX_L3_IP6 BIT(17)
443 #define MVNETA_TXD_IP_CSUM BIT(18)
444 #define MVNETA_TXD_Z_PAD BIT(19)
445 #define MVNETA_TXD_L_DESC BIT(20)
446 #define MVNETA_TXD_F_DESC BIT(21)
447 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
448 MVNETA_TXD_L_DESC | \
449 MVNETA_TXD_F_DESC)
450 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
451 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
453 #define MVNETA_RXD_ERR_CRC 0x0
454 #define MVNETA_RXD_BM_POOL_SHIFT 13
455 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
456 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
457 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
458 #define MVNETA_RXD_ERR_LEN BIT(18)
459 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
460 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
461 #define MVNETA_RXD_L3_IP4 BIT(25)
462 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
463 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
465 #if defined(__LITTLE_ENDIAN)
466 struct mvneta_tx_desc {
467 u32 command; /* Options used by HW for packet transmitting.*/
468 u16 reserverd1; /* csum_l4 (for future use) */
469 u16 data_size; /* Data size of transmitted packet in bytes */
470 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
471 u32 reserved2; /* hw_cmd - (for future use, PMT) */
472 u32 reserved3[4]; /* Reserved - (for future use) */
475 struct mvneta_rx_desc {
476 u32 status; /* Info about received packet */
477 u16 reserved1; /* pnc_info - (for future use, PnC) */
478 u16 data_size; /* Size of received packet in bytes */
480 u32 buf_phys_addr; /* Physical address of the buffer */
481 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
483 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
484 u16 reserved3; /* prefetch_cmd, for future use */
485 u16 reserved4; /* csum_l4 - (for future use, PnC) */
487 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
488 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
490 #else
491 struct mvneta_tx_desc {
492 u16 data_size; /* Data size of transmitted packet in bytes */
493 u16 reserverd1; /* csum_l4 (for future use) */
494 u32 command; /* Options used by HW for packet transmitting.*/
495 u32 reserved2; /* hw_cmd - (for future use, PMT) */
496 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
497 u32 reserved3[4]; /* Reserved - (for future use) */
500 struct mvneta_rx_desc {
501 u16 data_size; /* Size of received packet in bytes */
502 u16 reserved1; /* pnc_info - (for future use, PnC) */
503 u32 status; /* Info about received packet */
505 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
506 u32 buf_phys_addr; /* Physical address of the buffer */
508 u16 reserved4; /* csum_l4 - (for future use, PnC) */
509 u16 reserved3; /* prefetch_cmd, for future use */
510 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
512 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
513 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
515 #endif
517 struct mvneta_tx_queue {
518 /* Number of this TX queue, in the range 0-7 */
519 u8 id;
521 /* Number of TX DMA descriptors in the descriptor ring */
522 int size;
524 /* Number of currently used TX DMA descriptor in the
525 * descriptor ring
527 int count;
528 int tx_stop_threshold;
529 int tx_wake_threshold;
531 /* Array of transmitted skb */
532 struct sk_buff **tx_skb;
534 /* Index of last TX DMA descriptor that was inserted */
535 int txq_put_index;
537 /* Index of the TX DMA descriptor to be cleaned up */
538 int txq_get_index;
540 u32 done_pkts_coal;
542 /* Virtual address of the TX DMA descriptors array */
543 struct mvneta_tx_desc *descs;
545 /* DMA address of the TX DMA descriptors array */
546 dma_addr_t descs_phys;
548 /* Index of the last TX DMA descriptor */
549 int last_desc;
551 /* Index of the next TX DMA descriptor to process */
552 int next_desc_to_proc;
554 /* DMA buffers for TSO headers */
555 char *tso_hdrs;
557 /* DMA address of TSO headers */
558 dma_addr_t tso_hdrs_phys;
560 /* Affinity mask for CPUs*/
561 cpumask_t affinity_mask;
564 struct mvneta_rx_queue {
565 /* rx queue number, in the range 0-7 */
566 u8 id;
568 /* num of rx descriptors in the rx descriptor ring */
569 int size;
571 /* counter of times when mvneta_refill() failed */
572 int missed;
574 u32 pkts_coal;
575 u32 time_coal;
577 /* Virtual address of the RX buffer */
578 void **buf_virt_addr;
580 /* Virtual address of the RX DMA descriptors array */
581 struct mvneta_rx_desc *descs;
583 /* DMA address of the RX DMA descriptors array */
584 dma_addr_t descs_phys;
586 /* Index of the last RX DMA descriptor */
587 int last_desc;
589 /* Index of the next RX DMA descriptor to process */
590 int next_desc_to_proc;
593 static enum cpuhp_state online_hpstate;
594 /* The hardware supports eight (8) rx queues, but we are only allowing
595 * the first one to be used. Therefore, let's just allocate one queue.
597 static int rxq_number = 8;
598 static int txq_number = 8;
600 static int rxq_def;
602 static int rx_copybreak __read_mostly = 256;
604 /* HW BM need that each port be identify by a unique ID */
605 static int global_port_id;
607 #define MVNETA_DRIVER_NAME "mvneta"
608 #define MVNETA_DRIVER_VERSION "1.0"
610 /* Utility/helper methods */
612 /* Write helper method */
613 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
615 writel(data, pp->base + offset);
618 /* Read helper method */
619 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
621 return readl(pp->base + offset);
624 /* Increment txq get counter */
625 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
627 txq->txq_get_index++;
628 if (txq->txq_get_index == txq->size)
629 txq->txq_get_index = 0;
632 /* Increment txq put counter */
633 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
635 txq->txq_put_index++;
636 if (txq->txq_put_index == txq->size)
637 txq->txq_put_index = 0;
641 /* Clear all MIB counters */
642 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
644 int i;
645 u32 dummy;
647 /* Perform dummy reads from MIB counters */
648 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
649 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
650 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
651 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
654 /* Get System Network Statistics */
655 static struct rtnl_link_stats64 *
656 mvneta_get_stats64(struct net_device *dev,
657 struct rtnl_link_stats64 *stats)
659 struct mvneta_port *pp = netdev_priv(dev);
660 unsigned int start;
661 int cpu;
663 for_each_possible_cpu(cpu) {
664 struct mvneta_pcpu_stats *cpu_stats;
665 u64 rx_packets;
666 u64 rx_bytes;
667 u64 tx_packets;
668 u64 tx_bytes;
670 cpu_stats = per_cpu_ptr(pp->stats, cpu);
671 do {
672 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
673 rx_packets = cpu_stats->rx_packets;
674 rx_bytes = cpu_stats->rx_bytes;
675 tx_packets = cpu_stats->tx_packets;
676 tx_bytes = cpu_stats->tx_bytes;
677 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
679 stats->rx_packets += rx_packets;
680 stats->rx_bytes += rx_bytes;
681 stats->tx_packets += tx_packets;
682 stats->tx_bytes += tx_bytes;
685 stats->rx_errors = dev->stats.rx_errors;
686 stats->rx_dropped = dev->stats.rx_dropped;
688 stats->tx_dropped = dev->stats.tx_dropped;
690 return stats;
693 /* Rx descriptors helper methods */
695 /* Checks whether the RX descriptor having this status is both the first
696 * and the last descriptor for the RX packet. Each RX packet is currently
697 * received through a single RX descriptor, so not having each RX
698 * descriptor with its first and last bits set is an error
700 static int mvneta_rxq_desc_is_first_last(u32 status)
702 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
703 MVNETA_RXD_FIRST_LAST_DESC;
706 /* Add number of descriptors ready to receive new packets */
707 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
708 struct mvneta_rx_queue *rxq,
709 int ndescs)
711 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
712 * be added at once
714 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
715 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
716 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
717 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
718 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
721 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
722 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
725 /* Get number of RX descriptors occupied by received packets */
726 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
727 struct mvneta_rx_queue *rxq)
729 u32 val;
731 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
732 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
735 /* Update num of rx desc called upon return from rx path or
736 * from mvneta_rxq_drop_pkts().
738 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
739 struct mvneta_rx_queue *rxq,
740 int rx_done, int rx_filled)
742 u32 val;
744 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
745 val = rx_done |
746 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
747 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
748 return;
751 /* Only 255 descriptors can be added at once */
752 while ((rx_done > 0) || (rx_filled > 0)) {
753 if (rx_done <= 0xff) {
754 val = rx_done;
755 rx_done = 0;
756 } else {
757 val = 0xff;
758 rx_done -= 0xff;
760 if (rx_filled <= 0xff) {
761 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
762 rx_filled = 0;
763 } else {
764 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
765 rx_filled -= 0xff;
767 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
771 /* Get pointer to next RX descriptor to be processed by SW */
772 static struct mvneta_rx_desc *
773 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
775 int rx_desc = rxq->next_desc_to_proc;
777 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
778 prefetch(rxq->descs + rxq->next_desc_to_proc);
779 return rxq->descs + rx_desc;
782 /* Change maximum receive size of the port. */
783 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
785 u32 val;
787 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
788 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
789 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
790 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
791 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
795 /* Set rx queue offset */
796 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
797 struct mvneta_rx_queue *rxq,
798 int offset)
800 u32 val;
802 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
803 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
805 /* Offset is in */
806 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
807 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
811 /* Tx descriptors helper methods */
813 /* Update HW with number of TX descriptors to be sent */
814 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
815 struct mvneta_tx_queue *txq,
816 int pend_desc)
818 u32 val;
820 /* Only 255 descriptors can be added at once ; Assume caller
821 * process TX desriptors in quanta less than 256
823 val = pend_desc;
824 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
827 /* Get pointer to next TX descriptor to be processed (send) by HW */
828 static struct mvneta_tx_desc *
829 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
831 int tx_desc = txq->next_desc_to_proc;
833 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
834 return txq->descs + tx_desc;
837 /* Release the last allocated TX descriptor. Useful to handle DMA
838 * mapping failures in the TX path.
840 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
842 if (txq->next_desc_to_proc == 0)
843 txq->next_desc_to_proc = txq->last_desc - 1;
844 else
845 txq->next_desc_to_proc--;
848 /* Set rxq buf size */
849 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
850 struct mvneta_rx_queue *rxq,
851 int buf_size)
853 u32 val;
855 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
857 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
858 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
860 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
863 /* Disable buffer management (BM) */
864 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
865 struct mvneta_rx_queue *rxq)
867 u32 val;
869 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
870 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
871 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
874 /* Enable buffer management (BM) */
875 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
876 struct mvneta_rx_queue *rxq)
878 u32 val;
880 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
881 val |= MVNETA_RXQ_HW_BUF_ALLOC;
882 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
885 /* Notify HW about port's assignment of pool for bigger packets */
886 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
887 struct mvneta_rx_queue *rxq)
889 u32 val;
891 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
892 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
893 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
895 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
898 /* Notify HW about port's assignment of pool for smaller packets */
899 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
900 struct mvneta_rx_queue *rxq)
902 u32 val;
904 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
905 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
906 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
908 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
911 /* Set port's receive buffer size for assigned BM pool */
912 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
913 int buf_size,
914 u8 pool_id)
916 u32 val;
918 if (!IS_ALIGNED(buf_size, 8)) {
919 dev_warn(pp->dev->dev.parent,
920 "illegal buf_size value %d, round to %d\n",
921 buf_size, ALIGN(buf_size, 8));
922 buf_size = ALIGN(buf_size, 8);
925 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
926 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
927 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
930 /* Configure MBUS window in order to enable access BM internal SRAM */
931 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
932 u8 target, u8 attr)
934 u32 win_enable, win_protect;
935 int i;
937 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
939 if (pp->bm_win_id < 0) {
940 /* Find first not occupied window */
941 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
942 if (win_enable & (1 << i)) {
943 pp->bm_win_id = i;
944 break;
947 if (i == MVNETA_MAX_DECODE_WIN)
948 return -ENOMEM;
949 } else {
950 i = pp->bm_win_id;
953 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
954 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
956 if (i < 4)
957 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
959 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
960 (attr << 8) | target);
962 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
964 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
965 win_protect |= 3 << (2 * i);
966 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
968 win_enable &= ~(1 << i);
969 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
971 return 0;
974 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
976 u32 wsize;
977 u8 target, attr;
978 int err;
980 /* Get BM window information */
981 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
982 &target, &attr);
983 if (err < 0)
984 return err;
986 pp->bm_win_id = -1;
988 /* Open NETA -> BM window */
989 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
990 target, attr);
991 if (err < 0) {
992 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
993 return err;
995 return 0;
998 /* Assign and initialize pools for port. In case of fail
999 * buffer manager will remain disabled for current port.
1001 static int mvneta_bm_port_init(struct platform_device *pdev,
1002 struct mvneta_port *pp)
1004 struct device_node *dn = pdev->dev.of_node;
1005 u32 long_pool_id, short_pool_id;
1007 if (!pp->neta_armada3700) {
1008 int ret;
1010 ret = mvneta_bm_port_mbus_init(pp);
1011 if (ret)
1012 return ret;
1015 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1016 netdev_info(pp->dev, "missing long pool id\n");
1017 return -EINVAL;
1020 /* Create port's long pool depending on mtu */
1021 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1022 MVNETA_BM_LONG, pp->id,
1023 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1024 if (!pp->pool_long) {
1025 netdev_info(pp->dev, "fail to obtain long pool for port\n");
1026 return -ENOMEM;
1029 pp->pool_long->port_map |= 1 << pp->id;
1031 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1032 pp->pool_long->id);
1034 /* If short pool id is not defined, assume using single pool */
1035 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1036 short_pool_id = long_pool_id;
1038 /* Create port's short pool */
1039 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1040 MVNETA_BM_SHORT, pp->id,
1041 MVNETA_BM_SHORT_PKT_SIZE);
1042 if (!pp->pool_short) {
1043 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1044 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1045 return -ENOMEM;
1048 if (short_pool_id != long_pool_id) {
1049 pp->pool_short->port_map |= 1 << pp->id;
1050 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1051 pp->pool_short->id);
1054 return 0;
1057 /* Update settings of a pool for bigger packets */
1058 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1060 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1061 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1062 int num;
1064 /* Release all buffers from long pool */
1065 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1066 if (hwbm_pool->buf_num) {
1067 WARN(1, "cannot free all buffers in pool %d\n",
1068 bm_pool->id);
1069 goto bm_mtu_err;
1072 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1073 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1074 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1075 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1077 /* Fill entire long pool */
1078 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1079 if (num != hwbm_pool->size) {
1080 WARN(1, "pool %d: %d of %d allocated\n",
1081 bm_pool->id, num, hwbm_pool->size);
1082 goto bm_mtu_err;
1084 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1086 return;
1088 bm_mtu_err:
1089 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1090 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1092 pp->bm_priv = NULL;
1093 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1094 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1097 /* Start the Ethernet port RX and TX activity */
1098 static void mvneta_port_up(struct mvneta_port *pp)
1100 int queue;
1101 u32 q_map;
1103 /* Enable all initialized TXs. */
1104 q_map = 0;
1105 for (queue = 0; queue < txq_number; queue++) {
1106 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1107 if (txq->descs != NULL)
1108 q_map |= (1 << queue);
1110 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1112 /* Enable all initialized RXQs. */
1113 for (queue = 0; queue < rxq_number; queue++) {
1114 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1116 if (rxq->descs != NULL)
1117 q_map |= (1 << queue);
1119 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1122 /* Stop the Ethernet port activity */
1123 static void mvneta_port_down(struct mvneta_port *pp)
1125 u32 val;
1126 int count;
1128 /* Stop Rx port activity. Check port Rx activity. */
1129 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1131 /* Issue stop command for active channels only */
1132 if (val != 0)
1133 mvreg_write(pp, MVNETA_RXQ_CMD,
1134 val << MVNETA_RXQ_DISABLE_SHIFT);
1136 /* Wait for all Rx activity to terminate. */
1137 count = 0;
1138 do {
1139 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1140 netdev_warn(pp->dev,
1141 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1142 val);
1143 break;
1145 mdelay(1);
1147 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1148 } while (val & MVNETA_RXQ_ENABLE_MASK);
1150 /* Stop Tx port activity. Check port Tx activity. Issue stop
1151 * command for active channels only
1153 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1155 if (val != 0)
1156 mvreg_write(pp, MVNETA_TXQ_CMD,
1157 (val << MVNETA_TXQ_DISABLE_SHIFT));
1159 /* Wait for all Tx activity to terminate. */
1160 count = 0;
1161 do {
1162 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1163 netdev_warn(pp->dev,
1164 "TIMEOUT for TX stopped status=0x%08x\n",
1165 val);
1166 break;
1168 mdelay(1);
1170 /* Check TX Command reg that all Txqs are stopped */
1171 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1173 } while (val & MVNETA_TXQ_ENABLE_MASK);
1175 /* Double check to verify that TX FIFO is empty */
1176 count = 0;
1177 do {
1178 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1179 netdev_warn(pp->dev,
1180 "TX FIFO empty timeout status=0x%08x\n",
1181 val);
1182 break;
1184 mdelay(1);
1186 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1187 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1188 (val & MVNETA_TX_IN_PRGRS));
1190 udelay(200);
1193 /* Enable the port by setting the port enable bit of the MAC control register */
1194 static void mvneta_port_enable(struct mvneta_port *pp)
1196 u32 val;
1198 /* Enable port */
1199 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1200 val |= MVNETA_GMAC0_PORT_ENABLE;
1201 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1204 /* Disable the port and wait for about 200 usec before retuning */
1205 static void mvneta_port_disable(struct mvneta_port *pp)
1207 u32 val;
1209 /* Reset the Enable bit in the Serial Control Register */
1210 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1211 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1212 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1214 udelay(200);
1217 /* Multicast tables methods */
1219 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1220 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1222 int offset;
1223 u32 val;
1225 if (queue == -1) {
1226 val = 0;
1227 } else {
1228 val = 0x1 | (queue << 1);
1229 val |= (val << 24) | (val << 16) | (val << 8);
1232 for (offset = 0; offset <= 0xc; offset += 4)
1233 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1236 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1237 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1239 int offset;
1240 u32 val;
1242 if (queue == -1) {
1243 val = 0;
1244 } else {
1245 val = 0x1 | (queue << 1);
1246 val |= (val << 24) | (val << 16) | (val << 8);
1249 for (offset = 0; offset <= 0xfc; offset += 4)
1250 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1254 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1255 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1257 int offset;
1258 u32 val;
1260 if (queue == -1) {
1261 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1262 val = 0;
1263 } else {
1264 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1265 val = 0x1 | (queue << 1);
1266 val |= (val << 24) | (val << 16) | (val << 8);
1269 for (offset = 0; offset <= 0xfc; offset += 4)
1270 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1273 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1275 u32 val;
1277 if (enable) {
1278 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1279 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1280 MVNETA_GMAC_FORCE_LINK_DOWN |
1281 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1282 val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1283 MVNETA_GMAC_AN_SPEED_EN |
1284 MVNETA_GMAC_AN_DUPLEX_EN;
1285 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1287 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1288 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1289 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1291 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1292 val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1293 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1294 } else {
1295 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1296 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1297 MVNETA_GMAC_AN_SPEED_EN |
1298 MVNETA_GMAC_AN_DUPLEX_EN);
1299 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1301 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1302 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1303 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1305 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1306 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1307 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1311 static void mvneta_percpu_unmask_interrupt(void *arg)
1313 struct mvneta_port *pp = arg;
1315 /* All the queue are unmasked, but actually only the ones
1316 * mapped to this CPU will be unmasked
1318 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1319 MVNETA_RX_INTR_MASK_ALL |
1320 MVNETA_TX_INTR_MASK_ALL |
1321 MVNETA_MISCINTR_INTR_MASK);
1324 static void mvneta_percpu_mask_interrupt(void *arg)
1326 struct mvneta_port *pp = arg;
1328 /* All the queue are masked, but actually only the ones
1329 * mapped to this CPU will be masked
1331 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1332 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1333 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1336 static void mvneta_percpu_clear_intr_cause(void *arg)
1338 struct mvneta_port *pp = arg;
1340 /* All the queue are cleared, but actually only the ones
1341 * mapped to this CPU will be cleared
1343 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1344 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1345 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1348 /* This method sets defaults to the NETA port:
1349 * Clears interrupt Cause and Mask registers.
1350 * Clears all MAC tables.
1351 * Sets defaults to all registers.
1352 * Resets RX and TX descriptor rings.
1353 * Resets PHY.
1354 * This method can be called after mvneta_port_down() to return the port
1355 * settings to defaults.
1357 static void mvneta_defaults_set(struct mvneta_port *pp)
1359 int cpu;
1360 int queue;
1361 u32 val;
1362 int max_cpu = num_present_cpus();
1364 /* Clear all Cause registers */
1365 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1367 /* Mask all interrupts */
1368 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1369 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1371 /* Enable MBUS Retry bit16 */
1372 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1374 /* Set CPU queue access map. CPUs are assigned to the RX and
1375 * TX queues modulo their number. If there is only one TX
1376 * queue then it is assigned to the CPU associated to the
1377 * default RX queue.
1379 for_each_present_cpu(cpu) {
1380 int rxq_map = 0, txq_map = 0;
1381 int rxq, txq;
1382 if (!pp->neta_armada3700) {
1383 for (rxq = 0; rxq < rxq_number; rxq++)
1384 if ((rxq % max_cpu) == cpu)
1385 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1387 for (txq = 0; txq < txq_number; txq++)
1388 if ((txq % max_cpu) == cpu)
1389 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1391 /* With only one TX queue we configure a special case
1392 * which will allow to get all the irq on a single
1393 * CPU
1395 if (txq_number == 1)
1396 txq_map = (cpu == pp->rxq_def) ?
1397 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1399 } else {
1400 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1401 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1404 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1407 /* Reset RX and TX DMAs */
1408 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1409 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1411 /* Disable Legacy WRR, Disable EJP, Release from reset */
1412 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1413 for (queue = 0; queue < txq_number; queue++) {
1414 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1415 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1418 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1419 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1421 /* Set Port Acceleration Mode */
1422 if (pp->bm_priv)
1423 /* HW buffer management + legacy parser */
1424 val = MVNETA_ACC_MODE_EXT2;
1425 else
1426 /* SW buffer management + legacy parser */
1427 val = MVNETA_ACC_MODE_EXT1;
1428 mvreg_write(pp, MVNETA_ACC_MODE, val);
1430 if (pp->bm_priv)
1431 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1433 /* Update val of portCfg register accordingly with all RxQueue types */
1434 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1435 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1437 val = 0;
1438 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1439 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1441 /* Build PORT_SDMA_CONFIG_REG */
1442 val = 0;
1444 /* Default burst size */
1445 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1446 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1447 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1449 #if defined(__BIG_ENDIAN)
1450 val |= MVNETA_DESC_SWAP;
1451 #endif
1453 /* Assign port SDMA configuration */
1454 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1456 /* Disable PHY polling in hardware, since we're using the
1457 * kernel phylib to do this.
1459 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1460 val &= ~MVNETA_PHY_POLLING_ENABLE;
1461 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1463 mvneta_set_autoneg(pp, pp->use_inband_status);
1464 mvneta_set_ucast_table(pp, -1);
1465 mvneta_set_special_mcast_table(pp, -1);
1466 mvneta_set_other_mcast_table(pp, -1);
1468 /* Set port interrupt enable register - default enable all */
1469 mvreg_write(pp, MVNETA_INTR_ENABLE,
1470 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1471 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1473 mvneta_mib_counters_clear(pp);
1476 /* Set max sizes for tx queues */
1477 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1480 u32 val, size, mtu;
1481 int queue;
1483 mtu = max_tx_size * 8;
1484 if (mtu > MVNETA_TX_MTU_MAX)
1485 mtu = MVNETA_TX_MTU_MAX;
1487 /* Set MTU */
1488 val = mvreg_read(pp, MVNETA_TX_MTU);
1489 val &= ~MVNETA_TX_MTU_MAX;
1490 val |= mtu;
1491 mvreg_write(pp, MVNETA_TX_MTU, val);
1493 /* TX token size and all TXQs token size must be larger that MTU */
1494 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1496 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1497 if (size < mtu) {
1498 size = mtu;
1499 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1500 val |= size;
1501 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1503 for (queue = 0; queue < txq_number; queue++) {
1504 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1506 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1507 if (size < mtu) {
1508 size = mtu;
1509 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1510 val |= size;
1511 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1516 /* Set unicast address */
1517 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1518 int queue)
1520 unsigned int unicast_reg;
1521 unsigned int tbl_offset;
1522 unsigned int reg_offset;
1524 /* Locate the Unicast table entry */
1525 last_nibble = (0xf & last_nibble);
1527 /* offset from unicast tbl base */
1528 tbl_offset = (last_nibble / 4) * 4;
1530 /* offset within the above reg */
1531 reg_offset = last_nibble % 4;
1533 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1535 if (queue == -1) {
1536 /* Clear accepts frame bit at specified unicast DA tbl entry */
1537 unicast_reg &= ~(0xff << (8 * reg_offset));
1538 } else {
1539 unicast_reg &= ~(0xff << (8 * reg_offset));
1540 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1543 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1546 /* Set mac address */
1547 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1548 int queue)
1550 unsigned int mac_h;
1551 unsigned int mac_l;
1553 if (queue != -1) {
1554 mac_l = (addr[4] << 8) | (addr[5]);
1555 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1556 (addr[2] << 8) | (addr[3] << 0);
1558 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1559 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1562 /* Accept frames of this address */
1563 mvneta_set_ucast_addr(pp, addr[5], queue);
1566 /* Set the number of packets that will be received before RX interrupt
1567 * will be generated by HW.
1569 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1570 struct mvneta_rx_queue *rxq, u32 value)
1572 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1573 value | MVNETA_RXQ_NON_OCCUPIED(0));
1574 rxq->pkts_coal = value;
1577 /* Set the time delay in usec before RX interrupt will be generated by
1578 * HW.
1580 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1581 struct mvneta_rx_queue *rxq, u32 value)
1583 u32 val;
1584 unsigned long clk_rate;
1586 clk_rate = clk_get_rate(pp->clk);
1587 val = (clk_rate / 1000000) * value;
1589 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1590 rxq->time_coal = value;
1593 /* Set threshold for TX_DONE pkts coalescing */
1594 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1595 struct mvneta_tx_queue *txq, u32 value)
1597 u32 val;
1599 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1601 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1602 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1604 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1606 txq->done_pkts_coal = value;
1609 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1610 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1611 u32 phys_addr, void *virt_addr,
1612 struct mvneta_rx_queue *rxq)
1614 int i;
1616 rx_desc->buf_phys_addr = phys_addr;
1617 i = rx_desc - rxq->descs;
1618 rxq->buf_virt_addr[i] = virt_addr;
1621 /* Decrement sent descriptors counter */
1622 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1623 struct mvneta_tx_queue *txq,
1624 int sent_desc)
1626 u32 val;
1628 /* Only 255 TX descriptors can be updated at once */
1629 while (sent_desc > 0xff) {
1630 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1631 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1632 sent_desc = sent_desc - 0xff;
1635 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1636 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1639 /* Get number of TX descriptors already sent by HW */
1640 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1641 struct mvneta_tx_queue *txq)
1643 u32 val;
1644 int sent_desc;
1646 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1647 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1648 MVNETA_TXQ_SENT_DESC_SHIFT;
1650 return sent_desc;
1653 /* Get number of sent descriptors and decrement counter.
1654 * The number of sent descriptors is returned.
1656 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1657 struct mvneta_tx_queue *txq)
1659 int sent_desc;
1661 /* Get number of sent descriptors */
1662 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1664 /* Decrement sent descriptors counter */
1665 if (sent_desc)
1666 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1668 return sent_desc;
1671 /* Set TXQ descriptors fields relevant for CSUM calculation */
1672 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1673 int ip_hdr_len, int l4_proto)
1675 u32 command;
1677 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1678 * G_L4_chk, L4_type; required only for checksum
1679 * calculation
1681 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1682 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1684 if (l3_proto == htons(ETH_P_IP))
1685 command |= MVNETA_TXD_IP_CSUM;
1686 else
1687 command |= MVNETA_TX_L3_IP6;
1689 if (l4_proto == IPPROTO_TCP)
1690 command |= MVNETA_TX_L4_CSUM_FULL;
1691 else if (l4_proto == IPPROTO_UDP)
1692 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1693 else
1694 command |= MVNETA_TX_L4_CSUM_NOT;
1696 return command;
1700 /* Display more error info */
1701 static void mvneta_rx_error(struct mvneta_port *pp,
1702 struct mvneta_rx_desc *rx_desc)
1704 u32 status = rx_desc->status;
1706 if (!mvneta_rxq_desc_is_first_last(status)) {
1707 netdev_err(pp->dev,
1708 "bad rx status %08x (buffer oversize), size=%d\n",
1709 status, rx_desc->data_size);
1710 return;
1713 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1714 case MVNETA_RXD_ERR_CRC:
1715 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1716 status, rx_desc->data_size);
1717 break;
1718 case MVNETA_RXD_ERR_OVERRUN:
1719 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1720 status, rx_desc->data_size);
1721 break;
1722 case MVNETA_RXD_ERR_LEN:
1723 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1724 status, rx_desc->data_size);
1725 break;
1726 case MVNETA_RXD_ERR_RESOURCE:
1727 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1728 status, rx_desc->data_size);
1729 break;
1733 /* Handle RX checksum offload based on the descriptor's status */
1734 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1735 struct sk_buff *skb)
1737 if ((status & MVNETA_RXD_L3_IP4) &&
1738 (status & MVNETA_RXD_L4_CSUM_OK)) {
1739 skb->csum = 0;
1740 skb->ip_summed = CHECKSUM_UNNECESSARY;
1741 return;
1744 skb->ip_summed = CHECKSUM_NONE;
1747 /* Return tx queue pointer (find last set bit) according to <cause> returned
1748 * form tx_done reg. <cause> must not be null. The return value is always a
1749 * valid queue for matching the first one found in <cause>.
1751 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1752 u32 cause)
1754 int queue = fls(cause) - 1;
1756 return &pp->txqs[queue];
1759 /* Free tx queue skbuffs */
1760 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1761 struct mvneta_tx_queue *txq, int num)
1763 int i;
1765 for (i = 0; i < num; i++) {
1766 struct mvneta_tx_desc *tx_desc = txq->descs +
1767 txq->txq_get_index;
1768 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1770 mvneta_txq_inc_get(txq);
1772 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1773 dma_unmap_single(pp->dev->dev.parent,
1774 tx_desc->buf_phys_addr,
1775 tx_desc->data_size, DMA_TO_DEVICE);
1776 if (!skb)
1777 continue;
1778 dev_kfree_skb_any(skb);
1782 /* Handle end of transmission */
1783 static void mvneta_txq_done(struct mvneta_port *pp,
1784 struct mvneta_tx_queue *txq)
1786 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1787 int tx_done;
1789 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1790 if (!tx_done)
1791 return;
1793 mvneta_txq_bufs_free(pp, txq, tx_done);
1795 txq->count -= tx_done;
1797 if (netif_tx_queue_stopped(nq)) {
1798 if (txq->count <= txq->tx_wake_threshold)
1799 netif_tx_wake_queue(nq);
1803 void *mvneta_frag_alloc(unsigned int frag_size)
1805 if (likely(frag_size <= PAGE_SIZE))
1806 return netdev_alloc_frag(frag_size);
1807 else
1808 return kmalloc(frag_size, GFP_ATOMIC);
1810 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1812 void mvneta_frag_free(unsigned int frag_size, void *data)
1814 if (likely(frag_size <= PAGE_SIZE))
1815 skb_free_frag(data);
1816 else
1817 kfree(data);
1819 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1821 /* Refill processing for SW buffer management */
1822 static int mvneta_rx_refill(struct mvneta_port *pp,
1823 struct mvneta_rx_desc *rx_desc,
1824 struct mvneta_rx_queue *rxq)
1827 dma_addr_t phys_addr;
1828 void *data;
1830 data = mvneta_frag_alloc(pp->frag_size);
1831 if (!data)
1832 return -ENOMEM;
1834 phys_addr = dma_map_single(pp->dev->dev.parent, data,
1835 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1836 DMA_FROM_DEVICE);
1837 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1838 mvneta_frag_free(pp->frag_size, data);
1839 return -ENOMEM;
1842 phys_addr += pp->rx_offset_correction;
1843 mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq);
1844 return 0;
1847 /* Handle tx checksum */
1848 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1850 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1851 int ip_hdr_len = 0;
1852 __be16 l3_proto = vlan_get_protocol(skb);
1853 u8 l4_proto;
1855 if (l3_proto == htons(ETH_P_IP)) {
1856 struct iphdr *ip4h = ip_hdr(skb);
1858 /* Calculate IPv4 checksum and L4 checksum */
1859 ip_hdr_len = ip4h->ihl;
1860 l4_proto = ip4h->protocol;
1861 } else if (l3_proto == htons(ETH_P_IPV6)) {
1862 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1864 /* Read l4_protocol from one of IPv6 extra headers */
1865 if (skb_network_header_len(skb) > 0)
1866 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1867 l4_proto = ip6h->nexthdr;
1868 } else
1869 return MVNETA_TX_L4_CSUM_NOT;
1871 return mvneta_txq_desc_csum(skb_network_offset(skb),
1872 l3_proto, ip_hdr_len, l4_proto);
1875 return MVNETA_TX_L4_CSUM_NOT;
1878 /* Drop packets received by the RXQ and free buffers */
1879 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1880 struct mvneta_rx_queue *rxq)
1882 int rx_done, i;
1884 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1885 if (rx_done)
1886 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1888 if (pp->bm_priv) {
1889 for (i = 0; i < rx_done; i++) {
1890 struct mvneta_rx_desc *rx_desc =
1891 mvneta_rxq_next_desc_get(rxq);
1892 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1893 struct mvneta_bm_pool *bm_pool;
1895 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1896 /* Return dropped buffer to the pool */
1897 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1898 rx_desc->buf_phys_addr);
1900 return;
1903 for (i = 0; i < rxq->size; i++) {
1904 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1905 void *data = rxq->buf_virt_addr[i];
1907 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1908 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1909 mvneta_frag_free(pp->frag_size, data);
1913 /* Main rx processing when using software buffer management */
1914 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1915 struct mvneta_rx_queue *rxq)
1917 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1918 struct net_device *dev = pp->dev;
1919 int rx_done;
1920 u32 rcvd_pkts = 0;
1921 u32 rcvd_bytes = 0;
1923 /* Get number of received packets */
1924 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1926 if (rx_todo > rx_done)
1927 rx_todo = rx_done;
1929 rx_done = 0;
1931 /* Fairness NAPI loop */
1932 while (rx_done < rx_todo) {
1933 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1934 struct sk_buff *skb;
1935 unsigned char *data;
1936 dma_addr_t phys_addr;
1937 u32 rx_status, frag_size;
1938 int rx_bytes, err, index;
1940 rx_done++;
1941 rx_status = rx_desc->status;
1942 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1943 index = rx_desc - rxq->descs;
1944 data = rxq->buf_virt_addr[index];
1945 phys_addr = rx_desc->buf_phys_addr;
1947 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1948 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1949 err_drop_frame:
1950 dev->stats.rx_errors++;
1951 mvneta_rx_error(pp, rx_desc);
1952 /* leave the descriptor untouched */
1953 continue;
1956 if (rx_bytes <= rx_copybreak) {
1957 /* better copy a small frame and not unmap the DMA region */
1958 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1959 if (unlikely(!skb))
1960 goto err_drop_frame;
1962 dma_sync_single_range_for_cpu(dev->dev.parent,
1963 phys_addr,
1964 MVNETA_MH_SIZE + NET_SKB_PAD,
1965 rx_bytes,
1966 DMA_FROM_DEVICE);
1967 memcpy(skb_put(skb, rx_bytes),
1968 data + MVNETA_MH_SIZE + NET_SKB_PAD,
1969 rx_bytes);
1971 skb->protocol = eth_type_trans(skb, dev);
1972 mvneta_rx_csum(pp, rx_status, skb);
1973 napi_gro_receive(&port->napi, skb);
1975 rcvd_pkts++;
1976 rcvd_bytes += rx_bytes;
1978 /* leave the descriptor and buffer untouched */
1979 continue;
1982 /* Refill processing */
1983 err = mvneta_rx_refill(pp, rx_desc, rxq);
1984 if (err) {
1985 netdev_err(dev, "Linux processing - Can't refill\n");
1986 rxq->missed++;
1987 goto err_drop_frame;
1990 frag_size = pp->frag_size;
1992 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1994 /* After refill old buffer has to be unmapped regardless
1995 * the skb is successfully built or not.
1997 dma_unmap_single(dev->dev.parent, phys_addr,
1998 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1999 DMA_FROM_DEVICE);
2001 if (!skb)
2002 goto err_drop_frame;
2004 rcvd_pkts++;
2005 rcvd_bytes += rx_bytes;
2007 /* Linux processing */
2008 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2009 skb_put(skb, rx_bytes);
2011 skb->protocol = eth_type_trans(skb, dev);
2013 mvneta_rx_csum(pp, rx_status, skb);
2015 napi_gro_receive(&port->napi, skb);
2018 if (rcvd_pkts) {
2019 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2021 u64_stats_update_begin(&stats->syncp);
2022 stats->rx_packets += rcvd_pkts;
2023 stats->rx_bytes += rcvd_bytes;
2024 u64_stats_update_end(&stats->syncp);
2027 /* Update rxq management counters */
2028 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2030 return rx_done;
2033 /* Main rx processing when using hardware buffer management */
2034 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
2035 struct mvneta_rx_queue *rxq)
2037 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2038 struct net_device *dev = pp->dev;
2039 int rx_done;
2040 u32 rcvd_pkts = 0;
2041 u32 rcvd_bytes = 0;
2043 /* Get number of received packets */
2044 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2046 if (rx_todo > rx_done)
2047 rx_todo = rx_done;
2049 rx_done = 0;
2051 /* Fairness NAPI loop */
2052 while (rx_done < rx_todo) {
2053 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2054 struct mvneta_bm_pool *bm_pool = NULL;
2055 struct sk_buff *skb;
2056 unsigned char *data;
2057 dma_addr_t phys_addr;
2058 u32 rx_status, frag_size;
2059 int rx_bytes, err;
2060 u8 pool_id;
2062 rx_done++;
2063 rx_status = rx_desc->status;
2064 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2065 data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2066 phys_addr = rx_desc->buf_phys_addr;
2067 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2068 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2070 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2071 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2072 err_drop_frame_ret_pool:
2073 /* Return the buffer to the pool */
2074 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2075 rx_desc->buf_phys_addr);
2076 err_drop_frame:
2077 dev->stats.rx_errors++;
2078 mvneta_rx_error(pp, rx_desc);
2079 /* leave the descriptor untouched */
2080 continue;
2083 if (rx_bytes <= rx_copybreak) {
2084 /* better copy a small frame and not unmap the DMA region */
2085 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2086 if (unlikely(!skb))
2087 goto err_drop_frame_ret_pool;
2089 dma_sync_single_range_for_cpu(dev->dev.parent,
2090 rx_desc->buf_phys_addr,
2091 MVNETA_MH_SIZE + NET_SKB_PAD,
2092 rx_bytes,
2093 DMA_FROM_DEVICE);
2094 memcpy(skb_put(skb, rx_bytes),
2095 data + MVNETA_MH_SIZE + NET_SKB_PAD,
2096 rx_bytes);
2098 skb->protocol = eth_type_trans(skb, dev);
2099 mvneta_rx_csum(pp, rx_status, skb);
2100 napi_gro_receive(&port->napi, skb);
2102 rcvd_pkts++;
2103 rcvd_bytes += rx_bytes;
2105 /* Return the buffer to the pool */
2106 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2107 rx_desc->buf_phys_addr);
2109 /* leave the descriptor and buffer untouched */
2110 continue;
2113 /* Refill processing */
2114 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2115 if (err) {
2116 netdev_err(dev, "Linux processing - Can't refill\n");
2117 rxq->missed++;
2118 goto err_drop_frame_ret_pool;
2121 frag_size = bm_pool->hwbm_pool.frag_size;
2123 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2125 /* After refill old buffer has to be unmapped regardless
2126 * the skb is successfully built or not.
2128 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2129 bm_pool->buf_size, DMA_FROM_DEVICE);
2130 if (!skb)
2131 goto err_drop_frame;
2133 rcvd_pkts++;
2134 rcvd_bytes += rx_bytes;
2136 /* Linux processing */
2137 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2138 skb_put(skb, rx_bytes);
2140 skb->protocol = eth_type_trans(skb, dev);
2142 mvneta_rx_csum(pp, rx_status, skb);
2144 napi_gro_receive(&port->napi, skb);
2147 if (rcvd_pkts) {
2148 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2150 u64_stats_update_begin(&stats->syncp);
2151 stats->rx_packets += rcvd_pkts;
2152 stats->rx_bytes += rcvd_bytes;
2153 u64_stats_update_end(&stats->syncp);
2156 /* Update rxq management counters */
2157 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2159 return rx_done;
2162 static inline void
2163 mvneta_tso_put_hdr(struct sk_buff *skb,
2164 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2166 struct mvneta_tx_desc *tx_desc;
2167 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2169 txq->tx_skb[txq->txq_put_index] = NULL;
2170 tx_desc = mvneta_txq_next_desc_get(txq);
2171 tx_desc->data_size = hdr_len;
2172 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2173 tx_desc->command |= MVNETA_TXD_F_DESC;
2174 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2175 txq->txq_put_index * TSO_HEADER_SIZE;
2176 mvneta_txq_inc_put(txq);
2179 static inline int
2180 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2181 struct sk_buff *skb, char *data, int size,
2182 bool last_tcp, bool is_last)
2184 struct mvneta_tx_desc *tx_desc;
2186 tx_desc = mvneta_txq_next_desc_get(txq);
2187 tx_desc->data_size = size;
2188 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2189 size, DMA_TO_DEVICE);
2190 if (unlikely(dma_mapping_error(dev->dev.parent,
2191 tx_desc->buf_phys_addr))) {
2192 mvneta_txq_desc_put(txq);
2193 return -ENOMEM;
2196 tx_desc->command = 0;
2197 txq->tx_skb[txq->txq_put_index] = NULL;
2199 if (last_tcp) {
2200 /* last descriptor in the TCP packet */
2201 tx_desc->command = MVNETA_TXD_L_DESC;
2203 /* last descriptor in SKB */
2204 if (is_last)
2205 txq->tx_skb[txq->txq_put_index] = skb;
2207 mvneta_txq_inc_put(txq);
2208 return 0;
2211 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2212 struct mvneta_tx_queue *txq)
2214 int total_len, data_left;
2215 int desc_count = 0;
2216 struct mvneta_port *pp = netdev_priv(dev);
2217 struct tso_t tso;
2218 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2219 int i;
2221 /* Count needed descriptors */
2222 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2223 return 0;
2225 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2226 pr_info("*** Is this even possible???!?!?\n");
2227 return 0;
2230 /* Initialize the TSO handler, and prepare the first payload */
2231 tso_start(skb, &tso);
2233 total_len = skb->len - hdr_len;
2234 while (total_len > 0) {
2235 char *hdr;
2237 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2238 total_len -= data_left;
2239 desc_count++;
2241 /* prepare packet headers: MAC + IP + TCP */
2242 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2243 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2245 mvneta_tso_put_hdr(skb, pp, txq);
2247 while (data_left > 0) {
2248 int size;
2249 desc_count++;
2251 size = min_t(int, tso.size, data_left);
2253 if (mvneta_tso_put_data(dev, txq, skb,
2254 tso.data, size,
2255 size == data_left,
2256 total_len == 0))
2257 goto err_release;
2258 data_left -= size;
2260 tso_build_data(skb, &tso, size);
2264 return desc_count;
2266 err_release:
2267 /* Release all used data descriptors; header descriptors must not
2268 * be DMA-unmapped.
2270 for (i = desc_count - 1; i >= 0; i--) {
2271 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2272 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2273 dma_unmap_single(pp->dev->dev.parent,
2274 tx_desc->buf_phys_addr,
2275 tx_desc->data_size,
2276 DMA_TO_DEVICE);
2277 mvneta_txq_desc_put(txq);
2279 return 0;
2282 /* Handle tx fragmentation processing */
2283 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2284 struct mvneta_tx_queue *txq)
2286 struct mvneta_tx_desc *tx_desc;
2287 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2289 for (i = 0; i < nr_frags; i++) {
2290 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2291 void *addr = page_address(frag->page.p) + frag->page_offset;
2293 tx_desc = mvneta_txq_next_desc_get(txq);
2294 tx_desc->data_size = frag->size;
2296 tx_desc->buf_phys_addr =
2297 dma_map_single(pp->dev->dev.parent, addr,
2298 tx_desc->data_size, DMA_TO_DEVICE);
2300 if (dma_mapping_error(pp->dev->dev.parent,
2301 tx_desc->buf_phys_addr)) {
2302 mvneta_txq_desc_put(txq);
2303 goto error;
2306 if (i == nr_frags - 1) {
2307 /* Last descriptor */
2308 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2309 txq->tx_skb[txq->txq_put_index] = skb;
2310 } else {
2311 /* Descriptor in the middle: Not First, Not Last */
2312 tx_desc->command = 0;
2313 txq->tx_skb[txq->txq_put_index] = NULL;
2315 mvneta_txq_inc_put(txq);
2318 return 0;
2320 error:
2321 /* Release all descriptors that were used to map fragments of
2322 * this packet, as well as the corresponding DMA mappings
2324 for (i = i - 1; i >= 0; i--) {
2325 tx_desc = txq->descs + i;
2326 dma_unmap_single(pp->dev->dev.parent,
2327 tx_desc->buf_phys_addr,
2328 tx_desc->data_size,
2329 DMA_TO_DEVICE);
2330 mvneta_txq_desc_put(txq);
2333 return -ENOMEM;
2336 /* Main tx processing */
2337 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2339 struct mvneta_port *pp = netdev_priv(dev);
2340 u16 txq_id = skb_get_queue_mapping(skb);
2341 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2342 struct mvneta_tx_desc *tx_desc;
2343 int len = skb->len;
2344 int frags = 0;
2345 u32 tx_cmd;
2347 if (!netif_running(dev))
2348 goto out;
2350 if (skb_is_gso(skb)) {
2351 frags = mvneta_tx_tso(skb, dev, txq);
2352 goto out;
2355 frags = skb_shinfo(skb)->nr_frags + 1;
2357 /* Get a descriptor for the first part of the packet */
2358 tx_desc = mvneta_txq_next_desc_get(txq);
2360 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2362 tx_desc->data_size = skb_headlen(skb);
2364 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2365 tx_desc->data_size,
2366 DMA_TO_DEVICE);
2367 if (unlikely(dma_mapping_error(dev->dev.parent,
2368 tx_desc->buf_phys_addr))) {
2369 mvneta_txq_desc_put(txq);
2370 frags = 0;
2371 goto out;
2374 if (frags == 1) {
2375 /* First and Last descriptor */
2376 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2377 tx_desc->command = tx_cmd;
2378 txq->tx_skb[txq->txq_put_index] = skb;
2379 mvneta_txq_inc_put(txq);
2380 } else {
2381 /* First but not Last */
2382 tx_cmd |= MVNETA_TXD_F_DESC;
2383 txq->tx_skb[txq->txq_put_index] = NULL;
2384 mvneta_txq_inc_put(txq);
2385 tx_desc->command = tx_cmd;
2386 /* Continue with other skb fragments */
2387 if (mvneta_tx_frag_process(pp, skb, txq)) {
2388 dma_unmap_single(dev->dev.parent,
2389 tx_desc->buf_phys_addr,
2390 tx_desc->data_size,
2391 DMA_TO_DEVICE);
2392 mvneta_txq_desc_put(txq);
2393 frags = 0;
2394 goto out;
2398 out:
2399 if (frags > 0) {
2400 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2401 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2403 txq->count += frags;
2404 mvneta_txq_pend_desc_add(pp, txq, frags);
2406 if (txq->count >= txq->tx_stop_threshold)
2407 netif_tx_stop_queue(nq);
2409 u64_stats_update_begin(&stats->syncp);
2410 stats->tx_packets++;
2411 stats->tx_bytes += len;
2412 u64_stats_update_end(&stats->syncp);
2413 } else {
2414 dev->stats.tx_dropped++;
2415 dev_kfree_skb_any(skb);
2418 return NETDEV_TX_OK;
2422 /* Free tx resources, when resetting a port */
2423 static void mvneta_txq_done_force(struct mvneta_port *pp,
2424 struct mvneta_tx_queue *txq)
2427 int tx_done = txq->count;
2429 mvneta_txq_bufs_free(pp, txq, tx_done);
2431 /* reset txq */
2432 txq->count = 0;
2433 txq->txq_put_index = 0;
2434 txq->txq_get_index = 0;
2437 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2438 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2440 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2442 struct mvneta_tx_queue *txq;
2443 struct netdev_queue *nq;
2445 while (cause_tx_done) {
2446 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2448 nq = netdev_get_tx_queue(pp->dev, txq->id);
2449 __netif_tx_lock(nq, smp_processor_id());
2451 if (txq->count)
2452 mvneta_txq_done(pp, txq);
2454 __netif_tx_unlock(nq);
2455 cause_tx_done &= ~((1 << txq->id));
2459 /* Compute crc8 of the specified address, using a unique algorithm ,
2460 * according to hw spec, different than generic crc8 algorithm
2462 static int mvneta_addr_crc(unsigned char *addr)
2464 int crc = 0;
2465 int i;
2467 for (i = 0; i < ETH_ALEN; i++) {
2468 int j;
2470 crc = (crc ^ addr[i]) << 8;
2471 for (j = 7; j >= 0; j--) {
2472 if (crc & (0x100 << j))
2473 crc ^= 0x107 << j;
2477 return crc;
2480 /* This method controls the net device special MAC multicast support.
2481 * The Special Multicast Table for MAC addresses supports MAC of the form
2482 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2483 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2484 * Table entries in the DA-Filter table. This method set the Special
2485 * Multicast Table appropriate entry.
2487 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2488 unsigned char last_byte,
2489 int queue)
2491 unsigned int smc_table_reg;
2492 unsigned int tbl_offset;
2493 unsigned int reg_offset;
2495 /* Register offset from SMC table base */
2496 tbl_offset = (last_byte / 4);
2497 /* Entry offset within the above reg */
2498 reg_offset = last_byte % 4;
2500 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2501 + tbl_offset * 4));
2503 if (queue == -1)
2504 smc_table_reg &= ~(0xff << (8 * reg_offset));
2505 else {
2506 smc_table_reg &= ~(0xff << (8 * reg_offset));
2507 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2510 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2511 smc_table_reg);
2514 /* This method controls the network device Other MAC multicast support.
2515 * The Other Multicast Table is used for multicast of another type.
2516 * A CRC-8 is used as an index to the Other Multicast Table entries
2517 * in the DA-Filter table.
2518 * The method gets the CRC-8 value from the calling routine and
2519 * sets the Other Multicast Table appropriate entry according to the
2520 * specified CRC-8 .
2522 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2523 unsigned char crc8,
2524 int queue)
2526 unsigned int omc_table_reg;
2527 unsigned int tbl_offset;
2528 unsigned int reg_offset;
2530 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2531 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2533 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2535 if (queue == -1) {
2536 /* Clear accepts frame bit at specified Other DA table entry */
2537 omc_table_reg &= ~(0xff << (8 * reg_offset));
2538 } else {
2539 omc_table_reg &= ~(0xff << (8 * reg_offset));
2540 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2543 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2546 /* The network device supports multicast using two tables:
2547 * 1) Special Multicast Table for MAC addresses of the form
2548 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2549 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2550 * Table entries in the DA-Filter table.
2551 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2552 * is used as an index to the Other Multicast Table entries in the
2553 * DA-Filter table.
2555 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2556 int queue)
2558 unsigned char crc_result = 0;
2560 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2561 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2562 return 0;
2565 crc_result = mvneta_addr_crc(p_addr);
2566 if (queue == -1) {
2567 if (pp->mcast_count[crc_result] == 0) {
2568 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2569 crc_result);
2570 return -EINVAL;
2573 pp->mcast_count[crc_result]--;
2574 if (pp->mcast_count[crc_result] != 0) {
2575 netdev_info(pp->dev,
2576 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2577 pp->mcast_count[crc_result], crc_result);
2578 return -EINVAL;
2580 } else
2581 pp->mcast_count[crc_result]++;
2583 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2585 return 0;
2588 /* Configure Fitering mode of Ethernet port */
2589 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2590 int is_promisc)
2592 u32 port_cfg_reg, val;
2594 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2596 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2598 /* Set / Clear UPM bit in port configuration register */
2599 if (is_promisc) {
2600 /* Accept all Unicast addresses */
2601 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2602 val |= MVNETA_FORCE_UNI;
2603 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2604 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2605 } else {
2606 /* Reject all Unicast addresses */
2607 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2608 val &= ~MVNETA_FORCE_UNI;
2611 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2612 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2615 /* register unicast and multicast addresses */
2616 static void mvneta_set_rx_mode(struct net_device *dev)
2618 struct mvneta_port *pp = netdev_priv(dev);
2619 struct netdev_hw_addr *ha;
2621 if (dev->flags & IFF_PROMISC) {
2622 /* Accept all: Multicast + Unicast */
2623 mvneta_rx_unicast_promisc_set(pp, 1);
2624 mvneta_set_ucast_table(pp, pp->rxq_def);
2625 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2626 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2627 } else {
2628 /* Accept single Unicast */
2629 mvneta_rx_unicast_promisc_set(pp, 0);
2630 mvneta_set_ucast_table(pp, -1);
2631 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2633 if (dev->flags & IFF_ALLMULTI) {
2634 /* Accept all multicast */
2635 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2636 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2637 } else {
2638 /* Accept only initialized multicast */
2639 mvneta_set_special_mcast_table(pp, -1);
2640 mvneta_set_other_mcast_table(pp, -1);
2642 if (!netdev_mc_empty(dev)) {
2643 netdev_for_each_mc_addr(ha, dev) {
2644 mvneta_mcast_addr_set(pp, ha->addr,
2645 pp->rxq_def);
2652 /* Interrupt handling - the callback for request_irq() */
2653 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2655 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2657 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2658 napi_schedule(&pp->napi);
2660 return IRQ_HANDLED;
2663 /* Interrupt handling - the callback for request_percpu_irq() */
2664 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2666 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2668 disable_percpu_irq(port->pp->dev->irq);
2669 napi_schedule(&port->napi);
2671 return IRQ_HANDLED;
2674 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2675 struct phy_device *phy)
2677 struct fixed_phy_status status;
2678 struct fixed_phy_status changed = {};
2679 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2681 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2682 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2683 status.speed = SPEED_1000;
2684 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2685 status.speed = SPEED_100;
2686 else
2687 status.speed = SPEED_10;
2688 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2689 changed.link = 1;
2690 changed.speed = 1;
2691 changed.duplex = 1;
2692 fixed_phy_update_state(phy, &status, &changed);
2693 return 0;
2696 /* NAPI handler
2697 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2698 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2699 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2700 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2701 * Each CPU has its own causeRxTx register
2703 static int mvneta_poll(struct napi_struct *napi, int budget)
2705 int rx_done = 0;
2706 u32 cause_rx_tx;
2707 int rx_queue;
2708 struct mvneta_port *pp = netdev_priv(napi->dev);
2709 struct net_device *ndev = pp->dev;
2710 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2712 if (!netif_running(pp->dev)) {
2713 napi_complete(napi);
2714 return rx_done;
2717 /* Read cause register */
2718 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2719 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2720 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2722 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2723 if (pp->use_inband_status && (cause_misc &
2724 (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2725 MVNETA_CAUSE_LINK_CHANGE |
2726 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2727 mvneta_fixed_link_update(pp, ndev->phydev);
2731 /* Release Tx descriptors */
2732 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2733 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2734 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2737 /* For the case where the last mvneta_poll did not process all
2738 * RX packets
2740 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2742 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2743 port->cause_rx_tx;
2745 if (rx_queue) {
2746 rx_queue = rx_queue - 1;
2747 if (pp->bm_priv)
2748 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2749 else
2750 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2753 budget -= rx_done;
2755 if (budget > 0) {
2756 cause_rx_tx = 0;
2757 napi_complete(napi);
2759 if (pp->neta_armada3700) {
2760 unsigned long flags;
2762 local_irq_save(flags);
2763 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2764 MVNETA_RX_INTR_MASK(rxq_number) |
2765 MVNETA_TX_INTR_MASK(txq_number) |
2766 MVNETA_MISCINTR_INTR_MASK);
2767 local_irq_restore(flags);
2768 } else {
2769 enable_percpu_irq(pp->dev->irq, 0);
2773 if (pp->neta_armada3700)
2774 pp->cause_rx_tx = cause_rx_tx;
2775 else
2776 port->cause_rx_tx = cause_rx_tx;
2778 return rx_done;
2781 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2782 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2783 int num)
2785 int i;
2787 for (i = 0; i < num; i++) {
2788 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2789 if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) {
2790 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
2791 __func__, rxq->id, i, num);
2792 break;
2796 /* Add this number of RX descriptors as non occupied (ready to
2797 * get packets)
2799 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2801 return i;
2804 /* Free all packets pending transmit from all TXQs and reset TX port */
2805 static void mvneta_tx_reset(struct mvneta_port *pp)
2807 int queue;
2809 /* free the skb's in the tx ring */
2810 for (queue = 0; queue < txq_number; queue++)
2811 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2813 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2814 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2817 static void mvneta_rx_reset(struct mvneta_port *pp)
2819 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2820 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2823 /* Rx/Tx queue initialization/cleanup methods */
2825 /* Create a specified RX queue */
2826 static int mvneta_rxq_init(struct mvneta_port *pp,
2827 struct mvneta_rx_queue *rxq)
2830 rxq->size = pp->rx_ring_size;
2832 /* Allocate memory for RX descriptors */
2833 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2834 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2835 &rxq->descs_phys, GFP_KERNEL);
2836 if (rxq->descs == NULL)
2837 return -ENOMEM;
2839 rxq->last_desc = rxq->size - 1;
2841 /* Set Rx descriptors queue starting address */
2842 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2843 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2845 /* Set Offset */
2846 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction);
2848 /* Set coalescing pkts and time */
2849 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2850 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2852 if (!pp->bm_priv) {
2853 /* Fill RXQ with buffers from RX pool */
2854 mvneta_rxq_buf_size_set(pp, rxq,
2855 MVNETA_RX_BUF_SIZE(pp->pkt_size));
2856 mvneta_rxq_bm_disable(pp, rxq);
2857 mvneta_rxq_fill(pp, rxq, rxq->size);
2858 } else {
2859 mvneta_rxq_bm_enable(pp, rxq);
2860 mvneta_rxq_long_pool_set(pp, rxq);
2861 mvneta_rxq_short_pool_set(pp, rxq);
2862 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2865 return 0;
2868 /* Cleanup Rx queue */
2869 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2870 struct mvneta_rx_queue *rxq)
2872 mvneta_rxq_drop_pkts(pp, rxq);
2874 if (rxq->descs)
2875 dma_free_coherent(pp->dev->dev.parent,
2876 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2877 rxq->descs,
2878 rxq->descs_phys);
2880 rxq->descs = NULL;
2881 rxq->last_desc = 0;
2882 rxq->next_desc_to_proc = 0;
2883 rxq->descs_phys = 0;
2886 /* Create and initialize a tx queue */
2887 static int mvneta_txq_init(struct mvneta_port *pp,
2888 struct mvneta_tx_queue *txq)
2890 int cpu;
2892 txq->size = pp->tx_ring_size;
2894 /* A queue must always have room for at least one skb.
2895 * Therefore, stop the queue when the free entries reaches
2896 * the maximum number of descriptors per skb.
2898 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2899 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2902 /* Allocate memory for TX descriptors */
2903 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2904 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2905 &txq->descs_phys, GFP_KERNEL);
2906 if (txq->descs == NULL)
2907 return -ENOMEM;
2909 txq->last_desc = txq->size - 1;
2911 /* Set maximum bandwidth for enabled TXQs */
2912 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2913 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2915 /* Set Tx descriptors queue starting address */
2916 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2917 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2919 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2920 if (txq->tx_skb == NULL) {
2921 dma_free_coherent(pp->dev->dev.parent,
2922 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2923 txq->descs, txq->descs_phys);
2924 return -ENOMEM;
2927 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2928 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2929 txq->size * TSO_HEADER_SIZE,
2930 &txq->tso_hdrs_phys, GFP_KERNEL);
2931 if (txq->tso_hdrs == NULL) {
2932 kfree(txq->tx_skb);
2933 dma_free_coherent(pp->dev->dev.parent,
2934 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2935 txq->descs, txq->descs_phys);
2936 return -ENOMEM;
2938 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2940 /* Setup XPS mapping */
2941 if (txq_number > 1)
2942 cpu = txq->id % num_present_cpus();
2943 else
2944 cpu = pp->rxq_def % num_present_cpus();
2945 cpumask_set_cpu(cpu, &txq->affinity_mask);
2946 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2948 return 0;
2951 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2952 static void mvneta_txq_deinit(struct mvneta_port *pp,
2953 struct mvneta_tx_queue *txq)
2955 kfree(txq->tx_skb);
2957 if (txq->tso_hdrs)
2958 dma_free_coherent(pp->dev->dev.parent,
2959 txq->size * TSO_HEADER_SIZE,
2960 txq->tso_hdrs, txq->tso_hdrs_phys);
2961 if (txq->descs)
2962 dma_free_coherent(pp->dev->dev.parent,
2963 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2964 txq->descs, txq->descs_phys);
2966 txq->descs = NULL;
2967 txq->last_desc = 0;
2968 txq->next_desc_to_proc = 0;
2969 txq->descs_phys = 0;
2971 /* Set minimum bandwidth for disabled TXQs */
2972 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2973 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2975 /* Set Tx descriptors queue starting address and size */
2976 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2977 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2980 /* Cleanup all Tx queues */
2981 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2983 int queue;
2985 for (queue = 0; queue < txq_number; queue++)
2986 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2989 /* Cleanup all Rx queues */
2990 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2992 int queue;
2994 for (queue = 0; queue < txq_number; queue++)
2995 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2999 /* Init all Rx queues */
3000 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3002 int queue;
3004 for (queue = 0; queue < rxq_number; queue++) {
3005 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3007 if (err) {
3008 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3009 __func__, queue);
3010 mvneta_cleanup_rxqs(pp);
3011 return err;
3015 return 0;
3018 /* Init all tx queues */
3019 static int mvneta_setup_txqs(struct mvneta_port *pp)
3021 int queue;
3023 for (queue = 0; queue < txq_number; queue++) {
3024 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3025 if (err) {
3026 netdev_err(pp->dev, "%s: can't create txq=%d\n",
3027 __func__, queue);
3028 mvneta_cleanup_txqs(pp);
3029 return err;
3033 return 0;
3036 static void mvneta_start_dev(struct mvneta_port *pp)
3038 int cpu;
3039 struct net_device *ndev = pp->dev;
3041 mvneta_max_rx_size_set(pp, pp->pkt_size);
3042 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3044 /* start the Rx/Tx activity */
3045 mvneta_port_enable(pp);
3047 if (!pp->neta_armada3700) {
3048 /* Enable polling on the port */
3049 for_each_online_cpu(cpu) {
3050 struct mvneta_pcpu_port *port =
3051 per_cpu_ptr(pp->ports, cpu);
3053 napi_enable(&port->napi);
3055 } else {
3056 napi_enable(&pp->napi);
3059 /* Unmask interrupts. It has to be done from each CPU */
3060 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3062 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3063 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3064 MVNETA_CAUSE_LINK_CHANGE |
3065 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3067 phy_start(ndev->phydev);
3068 netif_tx_start_all_queues(pp->dev);
3071 static void mvneta_stop_dev(struct mvneta_port *pp)
3073 unsigned int cpu;
3074 struct net_device *ndev = pp->dev;
3076 phy_stop(ndev->phydev);
3078 if (!pp->neta_armada3700) {
3079 for_each_online_cpu(cpu) {
3080 struct mvneta_pcpu_port *port =
3081 per_cpu_ptr(pp->ports, cpu);
3083 napi_disable(&port->napi);
3085 } else {
3086 napi_disable(&pp->napi);
3089 netif_carrier_off(pp->dev);
3091 mvneta_port_down(pp);
3092 netif_tx_stop_all_queues(pp->dev);
3094 /* Stop the port activity */
3095 mvneta_port_disable(pp);
3097 /* Clear all ethernet port interrupts */
3098 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3100 /* Mask all ethernet port interrupts */
3101 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3103 mvneta_tx_reset(pp);
3104 mvneta_rx_reset(pp);
3107 static void mvneta_percpu_enable(void *arg)
3109 struct mvneta_port *pp = arg;
3111 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3114 static void mvneta_percpu_disable(void *arg)
3116 struct mvneta_port *pp = arg;
3118 disable_percpu_irq(pp->dev->irq);
3121 /* Change the device mtu */
3122 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3124 struct mvneta_port *pp = netdev_priv(dev);
3125 int ret;
3127 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3128 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3129 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3130 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3133 dev->mtu = mtu;
3135 if (!netif_running(dev)) {
3136 if (pp->bm_priv)
3137 mvneta_bm_update_mtu(pp, mtu);
3139 netdev_update_features(dev);
3140 return 0;
3143 /* The interface is running, so we have to force a
3144 * reallocation of the queues
3146 mvneta_stop_dev(pp);
3147 on_each_cpu(mvneta_percpu_disable, pp, true);
3149 mvneta_cleanup_txqs(pp);
3150 mvneta_cleanup_rxqs(pp);
3152 if (pp->bm_priv)
3153 mvneta_bm_update_mtu(pp, mtu);
3155 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3156 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3157 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3159 ret = mvneta_setup_rxqs(pp);
3160 if (ret) {
3161 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3162 return ret;
3165 ret = mvneta_setup_txqs(pp);
3166 if (ret) {
3167 netdev_err(dev, "unable to setup txqs after MTU change\n");
3168 return ret;
3171 on_each_cpu(mvneta_percpu_enable, pp, true);
3172 mvneta_start_dev(pp);
3173 mvneta_port_up(pp);
3175 netdev_update_features(dev);
3177 return 0;
3180 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3181 netdev_features_t features)
3183 struct mvneta_port *pp = netdev_priv(dev);
3185 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3186 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3187 netdev_info(dev,
3188 "Disable IP checksum for MTU greater than %dB\n",
3189 pp->tx_csum_limit);
3192 return features;
3195 /* Get mac address */
3196 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3198 u32 mac_addr_l, mac_addr_h;
3200 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3201 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3202 addr[0] = (mac_addr_h >> 24) & 0xFF;
3203 addr[1] = (mac_addr_h >> 16) & 0xFF;
3204 addr[2] = (mac_addr_h >> 8) & 0xFF;
3205 addr[3] = mac_addr_h & 0xFF;
3206 addr[4] = (mac_addr_l >> 8) & 0xFF;
3207 addr[5] = mac_addr_l & 0xFF;
3210 /* Handle setting mac address */
3211 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3213 struct mvneta_port *pp = netdev_priv(dev);
3214 struct sockaddr *sockaddr = addr;
3215 int ret;
3217 ret = eth_prepare_mac_addr_change(dev, addr);
3218 if (ret < 0)
3219 return ret;
3220 /* Remove previous address table entry */
3221 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3223 /* Set new addr in hw */
3224 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3226 eth_commit_mac_addr_change(dev, addr);
3227 return 0;
3230 static void mvneta_adjust_link(struct net_device *ndev)
3232 struct mvneta_port *pp = netdev_priv(ndev);
3233 struct phy_device *phydev = ndev->phydev;
3234 int status_change = 0;
3236 if (phydev->link) {
3237 if ((pp->speed != phydev->speed) ||
3238 (pp->duplex != phydev->duplex)) {
3239 u32 val;
3241 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3242 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3243 MVNETA_GMAC_CONFIG_GMII_SPEED |
3244 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3246 if (phydev->duplex)
3247 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3249 if (phydev->speed == SPEED_1000)
3250 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3251 else if (phydev->speed == SPEED_100)
3252 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3254 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3256 pp->duplex = phydev->duplex;
3257 pp->speed = phydev->speed;
3261 if (phydev->link != pp->link) {
3262 if (!phydev->link) {
3263 pp->duplex = -1;
3264 pp->speed = 0;
3267 pp->link = phydev->link;
3268 status_change = 1;
3271 if (status_change) {
3272 if (phydev->link) {
3273 if (!pp->use_inband_status) {
3274 u32 val = mvreg_read(pp,
3275 MVNETA_GMAC_AUTONEG_CONFIG);
3276 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3277 val |= MVNETA_GMAC_FORCE_LINK_PASS;
3278 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3279 val);
3281 mvneta_port_up(pp);
3282 } else {
3283 if (!pp->use_inband_status) {
3284 u32 val = mvreg_read(pp,
3285 MVNETA_GMAC_AUTONEG_CONFIG);
3286 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3287 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3288 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3289 val);
3291 mvneta_port_down(pp);
3293 phy_print_status(phydev);
3297 static int mvneta_mdio_probe(struct mvneta_port *pp)
3299 struct phy_device *phy_dev;
3301 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3302 pp->phy_interface);
3303 if (!phy_dev) {
3304 netdev_err(pp->dev, "could not find the PHY\n");
3305 return -ENODEV;
3308 phy_dev->supported &= PHY_GBIT_FEATURES;
3309 phy_dev->advertising = phy_dev->supported;
3311 pp->link = 0;
3312 pp->duplex = 0;
3313 pp->speed = 0;
3315 return 0;
3318 static void mvneta_mdio_remove(struct mvneta_port *pp)
3320 struct net_device *ndev = pp->dev;
3322 phy_disconnect(ndev->phydev);
3325 /* Electing a CPU must be done in an atomic way: it should be done
3326 * after or before the removal/insertion of a CPU and this function is
3327 * not reentrant.
3329 static void mvneta_percpu_elect(struct mvneta_port *pp)
3331 int elected_cpu = 0, max_cpu, cpu, i = 0;
3333 /* Use the cpu associated to the rxq when it is online, in all
3334 * the other cases, use the cpu 0 which can't be offline.
3336 if (cpu_online(pp->rxq_def))
3337 elected_cpu = pp->rxq_def;
3339 max_cpu = num_present_cpus();
3341 for_each_online_cpu(cpu) {
3342 int rxq_map = 0, txq_map = 0;
3343 int rxq;
3345 for (rxq = 0; rxq < rxq_number; rxq++)
3346 if ((rxq % max_cpu) == cpu)
3347 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3349 if (cpu == elected_cpu)
3350 /* Map the default receive queue queue to the
3351 * elected CPU
3353 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3355 /* We update the TX queue map only if we have one
3356 * queue. In this case we associate the TX queue to
3357 * the CPU bound to the default RX queue
3359 if (txq_number == 1)
3360 txq_map = (cpu == elected_cpu) ?
3361 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3362 else
3363 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3364 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3366 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3368 /* Update the interrupt mask on each CPU according the
3369 * new mapping
3371 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3372 pp, true);
3373 i++;
3378 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3380 int other_cpu;
3381 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3382 node_online);
3383 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3386 spin_lock(&pp->lock);
3388 * Configuring the driver for a new CPU while the driver is
3389 * stopping is racy, so just avoid it.
3391 if (pp->is_stopped) {
3392 spin_unlock(&pp->lock);
3393 return 0;
3395 netif_tx_stop_all_queues(pp->dev);
3398 * We have to synchronise on tha napi of each CPU except the one
3399 * just being woken up
3401 for_each_online_cpu(other_cpu) {
3402 if (other_cpu != cpu) {
3403 struct mvneta_pcpu_port *other_port =
3404 per_cpu_ptr(pp->ports, other_cpu);
3406 napi_synchronize(&other_port->napi);
3410 /* Mask all ethernet port interrupts */
3411 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3412 napi_enable(&port->napi);
3415 * Enable per-CPU interrupts on the CPU that is
3416 * brought up.
3418 mvneta_percpu_enable(pp);
3421 * Enable per-CPU interrupt on the one CPU we care
3422 * about.
3424 mvneta_percpu_elect(pp);
3426 /* Unmask all ethernet port interrupts */
3427 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3428 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3429 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3430 MVNETA_CAUSE_LINK_CHANGE |
3431 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3432 netif_tx_start_all_queues(pp->dev);
3433 spin_unlock(&pp->lock);
3434 return 0;
3437 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3439 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3440 node_online);
3441 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3444 * Thanks to this lock we are sure that any pending cpu election is
3445 * done.
3447 spin_lock(&pp->lock);
3448 /* Mask all ethernet port interrupts */
3449 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3450 spin_unlock(&pp->lock);
3452 napi_synchronize(&port->napi);
3453 napi_disable(&port->napi);
3454 /* Disable per-CPU interrupts on the CPU that is brought down. */
3455 mvneta_percpu_disable(pp);
3456 return 0;
3459 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3461 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3462 node_dead);
3464 /* Check if a new CPU must be elected now this on is down */
3465 spin_lock(&pp->lock);
3466 mvneta_percpu_elect(pp);
3467 spin_unlock(&pp->lock);
3468 /* Unmask all ethernet port interrupts */
3469 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3470 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3471 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3472 MVNETA_CAUSE_LINK_CHANGE |
3473 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3474 netif_tx_start_all_queues(pp->dev);
3475 return 0;
3478 static int mvneta_open(struct net_device *dev)
3480 struct mvneta_port *pp = netdev_priv(dev);
3481 int ret;
3483 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3484 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3485 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3487 ret = mvneta_setup_rxqs(pp);
3488 if (ret)
3489 return ret;
3491 ret = mvneta_setup_txqs(pp);
3492 if (ret)
3493 goto err_cleanup_rxqs;
3495 /* Connect to port interrupt line */
3496 if (pp->neta_armada3700)
3497 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3498 dev->name, pp);
3499 else
3500 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3501 dev->name, pp->ports);
3502 if (ret) {
3503 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3504 goto err_cleanup_txqs;
3507 if (!pp->neta_armada3700) {
3508 /* Enable per-CPU interrupt on all the CPU to handle our RX
3509 * queue interrupts
3511 on_each_cpu(mvneta_percpu_enable, pp, true);
3513 pp->is_stopped = false;
3514 /* Register a CPU notifier to handle the case where our CPU
3515 * might be taken offline.
3517 ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3518 &pp->node_online);
3519 if (ret)
3520 goto err_free_irq;
3522 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3523 &pp->node_dead);
3524 if (ret)
3525 goto err_free_online_hp;
3528 /* In default link is down */
3529 netif_carrier_off(pp->dev);
3531 ret = mvneta_mdio_probe(pp);
3532 if (ret < 0) {
3533 netdev_err(dev, "cannot probe MDIO bus\n");
3534 goto err_free_dead_hp;
3537 mvneta_start_dev(pp);
3539 return 0;
3541 err_free_dead_hp:
3542 if (!pp->neta_armada3700)
3543 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3544 &pp->node_dead);
3545 err_free_online_hp:
3546 if (!pp->neta_armada3700)
3547 cpuhp_state_remove_instance_nocalls(online_hpstate,
3548 &pp->node_online);
3549 err_free_irq:
3550 if (pp->neta_armada3700) {
3551 free_irq(pp->dev->irq, pp);
3552 } else {
3553 on_each_cpu(mvneta_percpu_disable, pp, true);
3554 free_percpu_irq(pp->dev->irq, pp->ports);
3556 err_cleanup_txqs:
3557 mvneta_cleanup_txqs(pp);
3558 err_cleanup_rxqs:
3559 mvneta_cleanup_rxqs(pp);
3560 return ret;
3563 /* Stop the port, free port interrupt line */
3564 static int mvneta_stop(struct net_device *dev)
3566 struct mvneta_port *pp = netdev_priv(dev);
3568 if (!pp->neta_armada3700) {
3569 /* Inform that we are stopping so we don't want to setup the
3570 * driver for new CPUs in the notifiers. The code of the
3571 * notifier for CPU online is protected by the same spinlock,
3572 * so when we get the lock, the notifer work is done.
3574 spin_lock(&pp->lock);
3575 pp->is_stopped = true;
3576 spin_unlock(&pp->lock);
3578 mvneta_stop_dev(pp);
3579 mvneta_mdio_remove(pp);
3581 cpuhp_state_remove_instance_nocalls(online_hpstate,
3582 &pp->node_online);
3583 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3584 &pp->node_dead);
3585 on_each_cpu(mvneta_percpu_disable, pp, true);
3586 free_percpu_irq(dev->irq, pp->ports);
3587 } else {
3588 mvneta_stop_dev(pp);
3589 mvneta_mdio_remove(pp);
3590 free_irq(dev->irq, pp);
3593 mvneta_cleanup_rxqs(pp);
3594 mvneta_cleanup_txqs(pp);
3596 return 0;
3599 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3601 if (!dev->phydev)
3602 return -ENOTSUPP;
3604 return phy_mii_ioctl(dev->phydev, ifr, cmd);
3607 /* Ethtool methods */
3609 /* Set link ksettings (phy address, speed) for ethtools */
3610 static int
3611 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3612 const struct ethtool_link_ksettings *cmd)
3614 struct mvneta_port *pp = netdev_priv(ndev);
3615 struct phy_device *phydev = ndev->phydev;
3617 if (!phydev)
3618 return -ENODEV;
3620 if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3621 u32 val;
3623 mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE);
3625 if (cmd->base.autoneg == AUTONEG_DISABLE) {
3626 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3627 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3628 MVNETA_GMAC_CONFIG_GMII_SPEED |
3629 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3631 if (phydev->duplex)
3632 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3634 if (phydev->speed == SPEED_1000)
3635 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3636 else if (phydev->speed == SPEED_100)
3637 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3639 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3642 pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE);
3643 netdev_info(pp->dev, "autoneg status set to %i\n",
3644 pp->use_inband_status);
3646 if (netif_running(ndev)) {
3647 mvneta_port_down(pp);
3648 mvneta_port_up(pp);
3652 return phy_ethtool_ksettings_set(ndev->phydev, cmd);
3655 /* Set interrupt coalescing for ethtools */
3656 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3657 struct ethtool_coalesce *c)
3659 struct mvneta_port *pp = netdev_priv(dev);
3660 int queue;
3662 for (queue = 0; queue < rxq_number; queue++) {
3663 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3664 rxq->time_coal = c->rx_coalesce_usecs;
3665 rxq->pkts_coal = c->rx_max_coalesced_frames;
3666 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3667 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3670 for (queue = 0; queue < txq_number; queue++) {
3671 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3672 txq->done_pkts_coal = c->tx_max_coalesced_frames;
3673 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3676 return 0;
3679 /* get coalescing for ethtools */
3680 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3681 struct ethtool_coalesce *c)
3683 struct mvneta_port *pp = netdev_priv(dev);
3685 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
3686 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
3688 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
3689 return 0;
3693 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3694 struct ethtool_drvinfo *drvinfo)
3696 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3697 sizeof(drvinfo->driver));
3698 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3699 sizeof(drvinfo->version));
3700 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3701 sizeof(drvinfo->bus_info));
3705 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3706 struct ethtool_ringparam *ring)
3708 struct mvneta_port *pp = netdev_priv(netdev);
3710 ring->rx_max_pending = MVNETA_MAX_RXD;
3711 ring->tx_max_pending = MVNETA_MAX_TXD;
3712 ring->rx_pending = pp->rx_ring_size;
3713 ring->tx_pending = pp->tx_ring_size;
3716 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3717 struct ethtool_ringparam *ring)
3719 struct mvneta_port *pp = netdev_priv(dev);
3721 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3722 return -EINVAL;
3723 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3724 ring->rx_pending : MVNETA_MAX_RXD;
3726 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3727 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3728 if (pp->tx_ring_size != ring->tx_pending)
3729 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3730 pp->tx_ring_size, ring->tx_pending);
3732 if (netif_running(dev)) {
3733 mvneta_stop(dev);
3734 if (mvneta_open(dev)) {
3735 netdev_err(dev,
3736 "error on opening device after ring param change\n");
3737 return -ENOMEM;
3741 return 0;
3744 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3745 u8 *data)
3747 if (sset == ETH_SS_STATS) {
3748 int i;
3750 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3751 memcpy(data + i * ETH_GSTRING_LEN,
3752 mvneta_statistics[i].name, ETH_GSTRING_LEN);
3756 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3758 const struct mvneta_statistic *s;
3759 void __iomem *base = pp->base;
3760 u32 high, low, val;
3761 u64 val64;
3762 int i;
3764 for (i = 0, s = mvneta_statistics;
3765 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3766 s++, i++) {
3767 switch (s->type) {
3768 case T_REG_32:
3769 val = readl_relaxed(base + s->offset);
3770 pp->ethtool_stats[i] += val;
3771 break;
3772 case T_REG_64:
3773 /* Docs say to read low 32-bit then high */
3774 low = readl_relaxed(base + s->offset);
3775 high = readl_relaxed(base + s->offset + 4);
3776 val64 = (u64)high << 32 | low;
3777 pp->ethtool_stats[i] += val64;
3778 break;
3783 static void mvneta_ethtool_get_stats(struct net_device *dev,
3784 struct ethtool_stats *stats, u64 *data)
3786 struct mvneta_port *pp = netdev_priv(dev);
3787 int i;
3789 mvneta_ethtool_update_stats(pp);
3791 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3792 *data++ = pp->ethtool_stats[i];
3795 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3797 if (sset == ETH_SS_STATS)
3798 return ARRAY_SIZE(mvneta_statistics);
3799 return -EOPNOTSUPP;
3802 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3804 return MVNETA_RSS_LU_TABLE_SIZE;
3807 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3808 struct ethtool_rxnfc *info,
3809 u32 *rules __always_unused)
3811 switch (info->cmd) {
3812 case ETHTOOL_GRXRINGS:
3813 info->data = rxq_number;
3814 return 0;
3815 case ETHTOOL_GRXFH:
3816 return -EOPNOTSUPP;
3817 default:
3818 return -EOPNOTSUPP;
3822 static int mvneta_config_rss(struct mvneta_port *pp)
3824 int cpu;
3825 u32 val;
3827 netif_tx_stop_all_queues(pp->dev);
3829 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3831 /* We have to synchronise on the napi of each CPU */
3832 for_each_online_cpu(cpu) {
3833 struct mvneta_pcpu_port *pcpu_port =
3834 per_cpu_ptr(pp->ports, cpu);
3836 napi_synchronize(&pcpu_port->napi);
3837 napi_disable(&pcpu_port->napi);
3840 pp->rxq_def = pp->indir[0];
3842 /* Update unicast mapping */
3843 mvneta_set_rx_mode(pp->dev);
3845 /* Update val of portCfg register accordingly with all RxQueue types */
3846 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3847 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3849 /* Update the elected CPU matching the new rxq_def */
3850 spin_lock(&pp->lock);
3851 mvneta_percpu_elect(pp);
3852 spin_unlock(&pp->lock);
3854 /* We have to synchronise on the napi of each CPU */
3855 for_each_online_cpu(cpu) {
3856 struct mvneta_pcpu_port *pcpu_port =
3857 per_cpu_ptr(pp->ports, cpu);
3859 napi_enable(&pcpu_port->napi);
3862 netif_tx_start_all_queues(pp->dev);
3864 return 0;
3867 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3868 const u8 *key, const u8 hfunc)
3870 struct mvneta_port *pp = netdev_priv(dev);
3872 /* Current code for Armada 3700 doesn't support RSS features yet */
3873 if (pp->neta_armada3700)
3874 return -EOPNOTSUPP;
3876 /* We require at least one supported parameter to be changed
3877 * and no change in any of the unsupported parameters
3879 if (key ||
3880 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3881 return -EOPNOTSUPP;
3883 if (!indir)
3884 return 0;
3886 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3888 return mvneta_config_rss(pp);
3891 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3892 u8 *hfunc)
3894 struct mvneta_port *pp = netdev_priv(dev);
3896 /* Current code for Armada 3700 doesn't support RSS features yet */
3897 if (pp->neta_armada3700)
3898 return -EOPNOTSUPP;
3900 if (hfunc)
3901 *hfunc = ETH_RSS_HASH_TOP;
3903 if (!indir)
3904 return 0;
3906 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3908 return 0;
3911 static const struct net_device_ops mvneta_netdev_ops = {
3912 .ndo_open = mvneta_open,
3913 .ndo_stop = mvneta_stop,
3914 .ndo_start_xmit = mvneta_tx,
3915 .ndo_set_rx_mode = mvneta_set_rx_mode,
3916 .ndo_set_mac_address = mvneta_set_mac_addr,
3917 .ndo_change_mtu = mvneta_change_mtu,
3918 .ndo_fix_features = mvneta_fix_features,
3919 .ndo_get_stats64 = mvneta_get_stats64,
3920 .ndo_do_ioctl = mvneta_ioctl,
3923 const struct ethtool_ops mvneta_eth_tool_ops = {
3924 .nway_reset = phy_ethtool_nway_reset,
3925 .get_link = ethtool_op_get_link,
3926 .set_coalesce = mvneta_ethtool_set_coalesce,
3927 .get_coalesce = mvneta_ethtool_get_coalesce,
3928 .get_drvinfo = mvneta_ethtool_get_drvinfo,
3929 .get_ringparam = mvneta_ethtool_get_ringparam,
3930 .set_ringparam = mvneta_ethtool_set_ringparam,
3931 .get_strings = mvneta_ethtool_get_strings,
3932 .get_ethtool_stats = mvneta_ethtool_get_stats,
3933 .get_sset_count = mvneta_ethtool_get_sset_count,
3934 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3935 .get_rxnfc = mvneta_ethtool_get_rxnfc,
3936 .get_rxfh = mvneta_ethtool_get_rxfh,
3937 .set_rxfh = mvneta_ethtool_set_rxfh,
3938 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3939 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
3942 /* Initialize hw */
3943 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3945 int queue;
3947 /* Disable port */
3948 mvneta_port_disable(pp);
3950 /* Set port default values */
3951 mvneta_defaults_set(pp);
3953 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3954 GFP_KERNEL);
3955 if (!pp->txqs)
3956 return -ENOMEM;
3958 /* Initialize TX descriptor rings */
3959 for (queue = 0; queue < txq_number; queue++) {
3960 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3961 txq->id = queue;
3962 txq->size = pp->tx_ring_size;
3963 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3966 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3967 GFP_KERNEL);
3968 if (!pp->rxqs)
3969 return -ENOMEM;
3971 /* Create Rx descriptor rings */
3972 for (queue = 0; queue < rxq_number; queue++) {
3973 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3974 rxq->id = queue;
3975 rxq->size = pp->rx_ring_size;
3976 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3977 rxq->time_coal = MVNETA_RX_COAL_USEC;
3978 rxq->buf_virt_addr = devm_kmalloc(pp->dev->dev.parent,
3979 rxq->size * sizeof(void *),
3980 GFP_KERNEL);
3981 if (!rxq->buf_virt_addr)
3982 return -ENOMEM;
3985 return 0;
3988 /* platform glue : initialize decoding windows */
3989 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3990 const struct mbus_dram_target_info *dram)
3992 u32 win_enable;
3993 u32 win_protect;
3994 int i;
3996 for (i = 0; i < 6; i++) {
3997 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3998 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4000 if (i < 4)
4001 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4004 win_enable = 0x3f;
4005 win_protect = 0;
4007 if (dram) {
4008 for (i = 0; i < dram->num_cs; i++) {
4009 const struct mbus_dram_window *cs = dram->cs + i;
4011 mvreg_write(pp, MVNETA_WIN_BASE(i),
4012 (cs->base & 0xffff0000) |
4013 (cs->mbus_attr << 8) |
4014 dram->mbus_dram_target_id);
4016 mvreg_write(pp, MVNETA_WIN_SIZE(i),
4017 (cs->size - 1) & 0xffff0000);
4019 win_enable &= ~(1 << i);
4020 win_protect |= 3 << (2 * i);
4022 } else {
4023 /* For Armada3700 open default 4GB Mbus window, leaving
4024 * arbitration of target/attribute to a different layer
4025 * of configuration.
4027 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4028 win_enable &= ~BIT(0);
4029 win_protect = 3;
4032 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4033 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4036 /* Power up the port */
4037 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4039 u32 ctrl;
4041 /* MAC Cause register should be cleared */
4042 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4044 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
4046 /* Even though it might look weird, when we're configured in
4047 * SGMII or QSGMII mode, the RGMII bit needs to be set.
4049 switch(phy_mode) {
4050 case PHY_INTERFACE_MODE_QSGMII:
4051 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4052 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
4053 break;
4054 case PHY_INTERFACE_MODE_SGMII:
4055 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4056 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
4057 break;
4058 case PHY_INTERFACE_MODE_RGMII:
4059 case PHY_INTERFACE_MODE_RGMII_ID:
4060 ctrl |= MVNETA_GMAC2_PORT_RGMII;
4061 break;
4062 default:
4063 return -EINVAL;
4066 /* Cancel Port Reset */
4067 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
4068 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
4070 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4071 MVNETA_GMAC2_PORT_RESET) != 0)
4072 continue;
4074 return 0;
4077 /* Device initialization routine */
4078 static int mvneta_probe(struct platform_device *pdev)
4080 const struct mbus_dram_target_info *dram_target_info;
4081 struct resource *res;
4082 struct device_node *dn = pdev->dev.of_node;
4083 struct device_node *phy_node;
4084 struct device_node *bm_node;
4085 struct mvneta_port *pp;
4086 struct net_device *dev;
4087 const char *dt_mac_addr;
4088 char hw_mac_addr[ETH_ALEN];
4089 const char *mac_from;
4090 const char *managed;
4091 int tx_csum_limit;
4092 int phy_mode;
4093 int err;
4094 int cpu;
4096 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4097 if (!dev)
4098 return -ENOMEM;
4100 dev->irq = irq_of_parse_and_map(dn, 0);
4101 if (dev->irq == 0) {
4102 err = -EINVAL;
4103 goto err_free_netdev;
4106 phy_node = of_parse_phandle(dn, "phy", 0);
4107 if (!phy_node) {
4108 if (!of_phy_is_fixed_link(dn)) {
4109 dev_err(&pdev->dev, "no PHY specified\n");
4110 err = -ENODEV;
4111 goto err_free_irq;
4114 err = of_phy_register_fixed_link(dn);
4115 if (err < 0) {
4116 dev_err(&pdev->dev, "cannot register fixed PHY\n");
4117 goto err_free_irq;
4120 /* In the case of a fixed PHY, the DT node associated
4121 * to the PHY is the Ethernet MAC DT node.
4123 phy_node = of_node_get(dn);
4126 phy_mode = of_get_phy_mode(dn);
4127 if (phy_mode < 0) {
4128 dev_err(&pdev->dev, "incorrect phy-mode\n");
4129 err = -EINVAL;
4130 goto err_put_phy_node;
4133 dev->tx_queue_len = MVNETA_MAX_TXD;
4134 dev->watchdog_timeo = 5 * HZ;
4135 dev->netdev_ops = &mvneta_netdev_ops;
4137 dev->ethtool_ops = &mvneta_eth_tool_ops;
4139 pp = netdev_priv(dev);
4140 spin_lock_init(&pp->lock);
4141 pp->phy_node = phy_node;
4142 pp->phy_interface = phy_mode;
4144 err = of_property_read_string(dn, "managed", &managed);
4145 pp->use_inband_status = (err == 0 &&
4146 strcmp(managed, "in-band-status") == 0);
4148 pp->rxq_def = rxq_def;
4150 /* Set RX packet offset correction for platforms, whose
4151 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4152 * platforms and 0B for 32-bit ones.
4154 pp->rx_offset_correction =
4155 max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION);
4157 pp->indir[0] = rxq_def;
4159 /* Get special SoC configurations */
4160 if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4161 pp->neta_armada3700 = true;
4163 pp->clk = devm_clk_get(&pdev->dev, "core");
4164 if (IS_ERR(pp->clk))
4165 pp->clk = devm_clk_get(&pdev->dev, NULL);
4166 if (IS_ERR(pp->clk)) {
4167 err = PTR_ERR(pp->clk);
4168 goto err_put_phy_node;
4171 clk_prepare_enable(pp->clk);
4173 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4174 if (!IS_ERR(pp->clk_bus))
4175 clk_prepare_enable(pp->clk_bus);
4177 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4178 pp->base = devm_ioremap_resource(&pdev->dev, res);
4179 if (IS_ERR(pp->base)) {
4180 err = PTR_ERR(pp->base);
4181 goto err_clk;
4184 /* Alloc per-cpu port structure */
4185 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4186 if (!pp->ports) {
4187 err = -ENOMEM;
4188 goto err_clk;
4191 /* Alloc per-cpu stats */
4192 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4193 if (!pp->stats) {
4194 err = -ENOMEM;
4195 goto err_free_ports;
4198 dt_mac_addr = of_get_mac_address(dn);
4199 if (dt_mac_addr) {
4200 mac_from = "device tree";
4201 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4202 } else {
4203 mvneta_get_mac_addr(pp, hw_mac_addr);
4204 if (is_valid_ether_addr(hw_mac_addr)) {
4205 mac_from = "hardware";
4206 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4207 } else {
4208 mac_from = "random";
4209 eth_hw_addr_random(dev);
4213 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4214 if (tx_csum_limit < 0 ||
4215 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4216 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4217 dev_info(&pdev->dev,
4218 "Wrong TX csum limit in DT, set to %dB\n",
4219 MVNETA_TX_CSUM_DEF_SIZE);
4221 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4222 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4223 } else {
4224 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4227 pp->tx_csum_limit = tx_csum_limit;
4229 dram_target_info = mv_mbus_dram_info();
4230 /* Armada3700 requires setting default configuration of Mbus
4231 * windows, however without using filled mbus_dram_target_info
4232 * structure.
4234 if (dram_target_info || pp->neta_armada3700)
4235 mvneta_conf_mbus_windows(pp, dram_target_info);
4237 pp->tx_ring_size = MVNETA_MAX_TXD;
4238 pp->rx_ring_size = MVNETA_MAX_RXD;
4240 pp->dev = dev;
4241 SET_NETDEV_DEV(dev, &pdev->dev);
4243 pp->id = global_port_id++;
4245 /* Obtain access to BM resources if enabled and already initialized */
4246 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4247 if (bm_node && bm_node->data) {
4248 pp->bm_priv = bm_node->data;
4249 err = mvneta_bm_port_init(pdev, pp);
4250 if (err < 0) {
4251 dev_info(&pdev->dev, "use SW buffer management\n");
4252 pp->bm_priv = NULL;
4255 of_node_put(bm_node);
4257 err = mvneta_init(&pdev->dev, pp);
4258 if (err < 0)
4259 goto err_netdev;
4261 err = mvneta_port_power_up(pp, phy_mode);
4262 if (err < 0) {
4263 dev_err(&pdev->dev, "can't power up port\n");
4264 goto err_netdev;
4267 /* Armada3700 network controller does not support per-cpu
4268 * operation, so only single NAPI should be initialized.
4270 if (pp->neta_armada3700) {
4271 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4272 } else {
4273 for_each_present_cpu(cpu) {
4274 struct mvneta_pcpu_port *port =
4275 per_cpu_ptr(pp->ports, cpu);
4277 netif_napi_add(dev, &port->napi, mvneta_poll,
4278 NAPI_POLL_WEIGHT);
4279 port->pp = pp;
4283 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4284 dev->hw_features |= dev->features;
4285 dev->vlan_features |= dev->features;
4286 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4287 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4289 /* MTU range: 68 - 9676 */
4290 dev->min_mtu = ETH_MIN_MTU;
4291 /* 9676 == 9700 - 20 and rounding to 8 */
4292 dev->max_mtu = 9676;
4294 err = register_netdev(dev);
4295 if (err < 0) {
4296 dev_err(&pdev->dev, "failed to register\n");
4297 goto err_free_stats;
4300 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4301 dev->dev_addr);
4303 platform_set_drvdata(pdev, pp->dev);
4305 if (pp->use_inband_status) {
4306 struct phy_device *phy = of_phy_find_device(dn);
4308 mvneta_fixed_link_update(pp, phy);
4310 put_device(&phy->mdio.dev);
4313 return 0;
4315 err_netdev:
4316 unregister_netdev(dev);
4317 if (pp->bm_priv) {
4318 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4319 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4320 1 << pp->id);
4322 err_free_stats:
4323 free_percpu(pp->stats);
4324 err_free_ports:
4325 free_percpu(pp->ports);
4326 err_clk:
4327 clk_disable_unprepare(pp->clk_bus);
4328 clk_disable_unprepare(pp->clk);
4329 err_put_phy_node:
4330 of_node_put(phy_node);
4331 if (of_phy_is_fixed_link(dn))
4332 of_phy_deregister_fixed_link(dn);
4333 err_free_irq:
4334 irq_dispose_mapping(dev->irq);
4335 err_free_netdev:
4336 free_netdev(dev);
4337 return err;
4340 /* Device removal routine */
4341 static int mvneta_remove(struct platform_device *pdev)
4343 struct net_device *dev = platform_get_drvdata(pdev);
4344 struct device_node *dn = pdev->dev.of_node;
4345 struct mvneta_port *pp = netdev_priv(dev);
4347 unregister_netdev(dev);
4348 clk_disable_unprepare(pp->clk_bus);
4349 clk_disable_unprepare(pp->clk);
4350 free_percpu(pp->ports);
4351 free_percpu(pp->stats);
4352 if (of_phy_is_fixed_link(dn))
4353 of_phy_deregister_fixed_link(dn);
4354 irq_dispose_mapping(dev->irq);
4355 of_node_put(pp->phy_node);
4356 free_netdev(dev);
4358 if (pp->bm_priv) {
4359 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4360 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4361 1 << pp->id);
4364 return 0;
4367 static const struct of_device_id mvneta_match[] = {
4368 { .compatible = "marvell,armada-370-neta" },
4369 { .compatible = "marvell,armada-xp-neta" },
4370 { .compatible = "marvell,armada-3700-neta" },
4373 MODULE_DEVICE_TABLE(of, mvneta_match);
4375 static struct platform_driver mvneta_driver = {
4376 .probe = mvneta_probe,
4377 .remove = mvneta_remove,
4378 .driver = {
4379 .name = MVNETA_DRIVER_NAME,
4380 .of_match_table = mvneta_match,
4384 static int __init mvneta_driver_init(void)
4386 int ret;
4388 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4389 mvneta_cpu_online,
4390 mvneta_cpu_down_prepare);
4391 if (ret < 0)
4392 goto out;
4393 online_hpstate = ret;
4394 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4395 NULL, mvneta_cpu_dead);
4396 if (ret)
4397 goto err_dead;
4399 ret = platform_driver_register(&mvneta_driver);
4400 if (ret)
4401 goto err;
4402 return 0;
4404 err:
4405 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4406 err_dead:
4407 cpuhp_remove_multi_state(online_hpstate);
4408 out:
4409 return ret;
4411 module_init(mvneta_driver_init);
4413 static void __exit mvneta_driver_exit(void)
4415 platform_driver_unregister(&mvneta_driver);
4416 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4417 cpuhp_remove_multi_state(online_hpstate);
4419 module_exit(mvneta_driver_exit);
4421 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4422 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4423 MODULE_LICENSE("GPL");
4425 module_param(rxq_number, int, S_IRUGO);
4426 module_param(txq_number, int, S_IRUGO);
4428 module_param(rxq_def, int, S_IRUGO);
4429 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);