2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56 #include <linux/trace_events.h>
57 #include <linux/suspend.h>
62 #ifdef MODULE_PARAM_PREFIX
63 #undef MODULE_PARAM_PREFIX
65 #define MODULE_PARAM_PREFIX "rcutree."
67 /* Data structures. */
70 * In order to export the rcu_state name to the tracing tools, it
71 * needs to be added in the __tracepoint_string section.
72 * This requires defining a separate variable tp_<sname>_varname
73 * that points to the string being used, and this will allow
74 * the tracing userspace tools to be able to decipher the string
75 * address to the matching string.
78 # define DEFINE_RCU_TPS(sname) \
79 static char sname##_varname[] = #sname; \
80 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
81 # define RCU_STATE_NAME(sname) sname##_varname
83 # define DEFINE_RCU_TPS(sname)
84 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
88 DEFINE_RCU_TPS(sname) \
89 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
90 struct rcu_state sname##_state = { \
91 .level = { &sname##_state.node[0] }, \
92 .rda = &sname##_data, \
94 .gp_state = RCU_GP_IDLE, \
95 .gpnum = 0UL - 300UL, \
96 .completed = 0UL - 300UL, \
97 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
98 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
99 .orphan_donetail = &sname##_state.orphan_donelist, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 RCU_STATE_INITIALIZER(rcu_sched
, 's', call_rcu_sched
);
108 RCU_STATE_INITIALIZER(rcu_bh
, 'b', call_rcu_bh
);
110 static struct rcu_state
*const rcu_state_p
;
111 LIST_HEAD(rcu_struct_flavors
);
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree
;
115 module_param(dump_tree
, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact
;
118 module_param(rcu_fanout_exact
, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
121 module_param(rcu_fanout_leaf
, int, 0444);
122 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
123 /* Number of rcu_nodes at specified level. */
124 static int num_rcu_lvl
[] = NUM_RCU_LVL_INIT
;
125 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly
;
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
141 int rcu_scheduler_active __read_mostly
;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
156 static int rcu_scheduler_fully_active __read_mostly
;
158 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
);
159 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
163 static void rcu_report_exp_rdp(struct rcu_state
*rsp
,
164 struct rcu_data
*rdp
, bool wake
);
165 static void sync_sched_exp_online_cleanup(int cpu
);
167 /* rcuc/rcub kthread realtime priority */
168 #ifdef CONFIG_RCU_KTHREAD_PRIO
169 static int kthread_prio
= CONFIG_RCU_KTHREAD_PRIO
;
170 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
171 static int kthread_prio
= IS_ENABLED(CONFIG_RCU_BOOST
) ? 1 : 0;
172 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
173 module_param(kthread_prio
, int, 0644);
175 /* Delay in jiffies for grace-period initialization delays, debug only. */
177 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
178 static int gp_preinit_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY
;
179 module_param(gp_preinit_delay
, int, 0644);
180 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
181 static const int gp_preinit_delay
;
182 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
184 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
185 static int gp_init_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY
;
186 module_param(gp_init_delay
, int, 0644);
187 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
188 static const int gp_init_delay
;
189 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
191 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
192 static int gp_cleanup_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY
;
193 module_param(gp_cleanup_delay
, int, 0644);
194 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
195 static const int gp_cleanup_delay
;
196 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
199 * Number of grace periods between delays, normalized by the duration of
200 * the delay. The longer the the delay, the more the grace periods between
201 * each delay. The reason for this normalization is that it means that,
202 * for non-zero delays, the overall slowdown of grace periods is constant
203 * regardless of the duration of the delay. This arrangement balances
204 * the need for long delays to increase some race probabilities with the
205 * need for fast grace periods to increase other race probabilities.
207 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
210 * Track the rcutorture test sequence number and the update version
211 * number within a given test. The rcutorture_testseq is incremented
212 * on every rcutorture module load and unload, so has an odd value
213 * when a test is running. The rcutorture_vernum is set to zero
214 * when rcutorture starts and is incremented on each rcutorture update.
215 * These variables enable correlating rcutorture output with the
216 * RCU tracing information.
218 unsigned long rcutorture_testseq
;
219 unsigned long rcutorture_vernum
;
222 * Compute the mask of online CPUs for the specified rcu_node structure.
223 * This will not be stable unless the rcu_node structure's ->lock is
224 * held, but the bit corresponding to the current CPU will be stable
227 unsigned long rcu_rnp_online_cpus(struct rcu_node
*rnp
)
229 return READ_ONCE(rnp
->qsmaskinitnext
);
233 * Return true if an RCU grace period is in progress. The READ_ONCE()s
234 * permit this function to be invoked without holding the root rcu_node
235 * structure's ->lock, but of course results can be subject to change.
237 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
239 return READ_ONCE(rsp
->completed
) != READ_ONCE(rsp
->gpnum
);
243 * Note a quiescent state. Because we do not need to know
244 * how many quiescent states passed, just if there was at least
245 * one since the start of the grace period, this just sets a flag.
246 * The caller must have disabled preemption.
248 void rcu_sched_qs(void)
250 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.s
))
252 trace_rcu_grace_period(TPS("rcu_sched"),
253 __this_cpu_read(rcu_sched_data
.gpnum
),
255 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.norm
, false);
256 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))
258 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.exp
, false);
259 rcu_report_exp_rdp(&rcu_sched_state
,
260 this_cpu_ptr(&rcu_sched_data
), true);
265 if (__this_cpu_read(rcu_bh_data
.cpu_no_qs
.s
)) {
266 trace_rcu_grace_period(TPS("rcu_bh"),
267 __this_cpu_read(rcu_bh_data
.gpnum
),
269 __this_cpu_write(rcu_bh_data
.cpu_no_qs
.b
.norm
, false);
273 static DEFINE_PER_CPU(int, rcu_sched_qs_mask
);
275 static DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
276 .dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
,
277 .dynticks
= ATOMIC_INIT(1),
278 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
279 .dynticks_idle_nesting
= DYNTICK_TASK_NEST_VALUE
,
280 .dynticks_idle
= ATOMIC_INIT(1),
281 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
284 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr
);
285 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr
);
288 * Let the RCU core know that this CPU has gone through the scheduler,
289 * which is a quiescent state. This is called when the need for a
290 * quiescent state is urgent, so we burn an atomic operation and full
291 * memory barriers to let the RCU core know about it, regardless of what
292 * this CPU might (or might not) do in the near future.
294 * We inform the RCU core by emulating a zero-duration dyntick-idle
295 * period, which we in turn do by incrementing the ->dynticks counter
298 * The caller must have disabled interrupts.
300 static void rcu_momentary_dyntick_idle(void)
302 struct rcu_data
*rdp
;
303 struct rcu_dynticks
*rdtp
;
305 struct rcu_state
*rsp
;
308 * Yes, we can lose flag-setting operations. This is OK, because
309 * the flag will be set again after some delay.
311 resched_mask
= raw_cpu_read(rcu_sched_qs_mask
);
312 raw_cpu_write(rcu_sched_qs_mask
, 0);
314 /* Find the flavor that needs a quiescent state. */
315 for_each_rcu_flavor(rsp
) {
316 rdp
= raw_cpu_ptr(rsp
->rda
);
317 if (!(resched_mask
& rsp
->flavor_mask
))
319 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
320 if (READ_ONCE(rdp
->mynode
->completed
) !=
321 READ_ONCE(rdp
->cond_resched_completed
))
325 * Pretend to be momentarily idle for the quiescent state.
326 * This allows the grace-period kthread to record the
327 * quiescent state, with no need for this CPU to do anything
330 rdtp
= this_cpu_ptr(&rcu_dynticks
);
331 smp_mb__before_atomic(); /* Earlier stuff before QS. */
332 atomic_add(2, &rdtp
->dynticks
); /* QS. */
333 smp_mb__after_atomic(); /* Later stuff after QS. */
339 * Note a context switch. This is a quiescent state for RCU-sched,
340 * and requires special handling for preemptible RCU.
341 * The caller must have disabled interrupts.
343 void rcu_note_context_switch(void)
345 barrier(); /* Avoid RCU read-side critical sections leaking down. */
346 trace_rcu_utilization(TPS("Start context switch"));
348 rcu_preempt_note_context_switch();
349 if (unlikely(raw_cpu_read(rcu_sched_qs_mask
)))
350 rcu_momentary_dyntick_idle();
351 trace_rcu_utilization(TPS("End context switch"));
352 barrier(); /* Avoid RCU read-side critical sections leaking up. */
354 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
357 * Register a quiescent state for all RCU flavors. If there is an
358 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
359 * dyntick-idle quiescent state visible to other CPUs (but only for those
360 * RCU flavors in desperate need of a quiescent state, which will normally
361 * be none of them). Either way, do a lightweight quiescent state for
364 * The barrier() calls are redundant in the common case when this is
365 * called externally, but just in case this is called from within this
369 void rcu_all_qs(void)
373 barrier(); /* Avoid RCU read-side critical sections leaking down. */
374 if (unlikely(raw_cpu_read(rcu_sched_qs_mask
))) {
375 local_irq_save(flags
);
376 rcu_momentary_dyntick_idle();
377 local_irq_restore(flags
);
379 if (unlikely(raw_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))) {
381 * Yes, we just checked a per-CPU variable with preemption
382 * enabled, so we might be migrated to some other CPU at
383 * this point. That is OK because in that case, the
384 * migration will supply the needed quiescent state.
385 * We might end up needlessly disabling preemption and
386 * invoking rcu_sched_qs() on the destination CPU, but
387 * the probability and cost are both quite low, so this
388 * should not be a problem in practice.
394 this_cpu_inc(rcu_qs_ctr
);
395 barrier(); /* Avoid RCU read-side critical sections leaking up. */
397 EXPORT_SYMBOL_GPL(rcu_all_qs
);
399 static long blimit
= 10; /* Maximum callbacks per rcu_do_batch. */
400 static long qhimark
= 10000; /* If this many pending, ignore blimit. */
401 static long qlowmark
= 100; /* Once only this many pending, use blimit. */
403 module_param(blimit
, long, 0444);
404 module_param(qhimark
, long, 0444);
405 module_param(qlowmark
, long, 0444);
407 static ulong jiffies_till_first_fqs
= ULONG_MAX
;
408 static ulong jiffies_till_next_fqs
= ULONG_MAX
;
409 static bool rcu_kick_kthreads
;
411 module_param(jiffies_till_first_fqs
, ulong
, 0644);
412 module_param(jiffies_till_next_fqs
, ulong
, 0644);
413 module_param(rcu_kick_kthreads
, bool, 0644);
416 * How long the grace period must be before we start recruiting
417 * quiescent-state help from rcu_note_context_switch().
419 static ulong jiffies_till_sched_qs
= HZ
/ 20;
420 module_param(jiffies_till_sched_qs
, ulong
, 0644);
422 static bool rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
423 struct rcu_data
*rdp
);
424 static void force_qs_rnp(struct rcu_state
*rsp
,
425 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
426 unsigned long *maxj
),
427 bool *isidle
, unsigned long *maxj
);
428 static void force_quiescent_state(struct rcu_state
*rsp
);
429 static int rcu_pending(void);
432 * Return the number of RCU batches started thus far for debug & stats.
434 unsigned long rcu_batches_started(void)
436 return rcu_state_p
->gpnum
;
438 EXPORT_SYMBOL_GPL(rcu_batches_started
);
441 * Return the number of RCU-sched batches started thus far for debug & stats.
443 unsigned long rcu_batches_started_sched(void)
445 return rcu_sched_state
.gpnum
;
447 EXPORT_SYMBOL_GPL(rcu_batches_started_sched
);
450 * Return the number of RCU BH batches started thus far for debug & stats.
452 unsigned long rcu_batches_started_bh(void)
454 return rcu_bh_state
.gpnum
;
456 EXPORT_SYMBOL_GPL(rcu_batches_started_bh
);
459 * Return the number of RCU batches completed thus far for debug & stats.
461 unsigned long rcu_batches_completed(void)
463 return rcu_state_p
->completed
;
465 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
468 * Return the number of RCU-sched batches completed thus far for debug & stats.
470 unsigned long rcu_batches_completed_sched(void)
472 return rcu_sched_state
.completed
;
474 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
477 * Return the number of RCU BH batches completed thus far for debug & stats.
479 unsigned long rcu_batches_completed_bh(void)
481 return rcu_bh_state
.completed
;
483 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
486 * Return the number of RCU expedited batches completed thus far for
487 * debug & stats. Odd numbers mean that a batch is in progress, even
488 * numbers mean idle. The value returned will thus be roughly double
489 * the cumulative batches since boot.
491 unsigned long rcu_exp_batches_completed(void)
493 return rcu_state_p
->expedited_sequence
;
495 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed
);
498 * Return the number of RCU-sched expedited batches completed thus far
499 * for debug & stats. Similar to rcu_exp_batches_completed().
501 unsigned long rcu_exp_batches_completed_sched(void)
503 return rcu_sched_state
.expedited_sequence
;
505 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched
);
508 * Force a quiescent state.
510 void rcu_force_quiescent_state(void)
512 force_quiescent_state(rcu_state_p
);
514 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
517 * Force a quiescent state for RCU BH.
519 void rcu_bh_force_quiescent_state(void)
521 force_quiescent_state(&rcu_bh_state
);
523 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
526 * Force a quiescent state for RCU-sched.
528 void rcu_sched_force_quiescent_state(void)
530 force_quiescent_state(&rcu_sched_state
);
532 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
535 * Show the state of the grace-period kthreads.
537 void show_rcu_gp_kthreads(void)
539 struct rcu_state
*rsp
;
541 for_each_rcu_flavor(rsp
) {
542 pr_info("%s: wait state: %d ->state: %#lx\n",
543 rsp
->name
, rsp
->gp_state
, rsp
->gp_kthread
->state
);
544 /* sched_show_task(rsp->gp_kthread); */
547 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads
);
550 * Record the number of times rcutorture tests have been initiated and
551 * terminated. This information allows the debugfs tracing stats to be
552 * correlated to the rcutorture messages, even when the rcutorture module
553 * is being repeatedly loaded and unloaded. In other words, we cannot
554 * store this state in rcutorture itself.
556 void rcutorture_record_test_transition(void)
558 rcutorture_testseq
++;
559 rcutorture_vernum
= 0;
561 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
564 * Send along grace-period-related data for rcutorture diagnostics.
566 void rcutorture_get_gp_data(enum rcutorture_type test_type
, int *flags
,
567 unsigned long *gpnum
, unsigned long *completed
)
569 struct rcu_state
*rsp
= NULL
;
578 case RCU_SCHED_FLAVOR
:
579 rsp
= &rcu_sched_state
;
585 *flags
= READ_ONCE(rsp
->gp_flags
);
586 *gpnum
= READ_ONCE(rsp
->gpnum
);
587 *completed
= READ_ONCE(rsp
->completed
);
594 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data
);
597 * Record the number of writer passes through the current rcutorture test.
598 * This is also used to correlate debugfs tracing stats with the rcutorture
601 void rcutorture_record_progress(unsigned long vernum
)
605 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
608 * Does the CPU have callbacks ready to be invoked?
611 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
613 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
] &&
614 rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
;
618 * Return the root node of the specified rcu_state structure.
620 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
622 return &rsp
->node
[0];
626 * Is there any need for future grace periods?
627 * Interrupts must be disabled. If the caller does not hold the root
628 * rnp_node structure's ->lock, the results are advisory only.
630 static int rcu_future_needs_gp(struct rcu_state
*rsp
)
632 struct rcu_node
*rnp
= rcu_get_root(rsp
);
633 int idx
= (READ_ONCE(rnp
->completed
) + 1) & 0x1;
634 int *fp
= &rnp
->need_future_gp
[idx
];
636 return READ_ONCE(*fp
);
640 * Does the current CPU require a not-yet-started grace period?
641 * The caller must have disabled interrupts to prevent races with
642 * normal callback registry.
645 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
649 if (rcu_gp_in_progress(rsp
))
650 return false; /* No, a grace period is already in progress. */
651 if (rcu_future_needs_gp(rsp
))
652 return true; /* Yes, a no-CBs CPU needs one. */
653 if (!rdp
->nxttail
[RCU_NEXT_TAIL
])
654 return false; /* No, this is a no-CBs (or offline) CPU. */
655 if (*rdp
->nxttail
[RCU_NEXT_READY_TAIL
])
656 return true; /* Yes, CPU has newly registered callbacks. */
657 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
658 if (rdp
->nxttail
[i
- 1] != rdp
->nxttail
[i
] &&
659 ULONG_CMP_LT(READ_ONCE(rsp
->completed
),
660 rdp
->nxtcompleted
[i
]))
661 return true; /* Yes, CBs for future grace period. */
662 return false; /* No grace period needed. */
666 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
668 * If the new value of the ->dynticks_nesting counter now is zero,
669 * we really have entered idle, and must do the appropriate accounting.
670 * The caller must have disabled interrupts.
672 static void rcu_eqs_enter_common(long long oldval
, bool user
)
674 struct rcu_state
*rsp
;
675 struct rcu_data
*rdp
;
676 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
678 trace_rcu_dyntick(TPS("Start"), oldval
, rdtp
->dynticks_nesting
);
679 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
680 !user
&& !is_idle_task(current
)) {
681 struct task_struct
*idle __maybe_unused
=
682 idle_task(smp_processor_id());
684 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval
, 0);
685 rcu_ftrace_dump(DUMP_ORIG
);
686 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
687 current
->pid
, current
->comm
,
688 idle
->pid
, idle
->comm
); /* must be idle task! */
690 for_each_rcu_flavor(rsp
) {
691 rdp
= this_cpu_ptr(rsp
->rda
);
692 do_nocb_deferred_wakeup(rdp
);
694 rcu_prepare_for_idle();
695 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
696 smp_mb__before_atomic(); /* See above. */
697 atomic_inc(&rdtp
->dynticks
);
698 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
699 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
700 atomic_read(&rdtp
->dynticks
) & 0x1);
701 rcu_dynticks_task_enter();
704 * It is illegal to enter an extended quiescent state while
705 * in an RCU read-side critical section.
707 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map
),
708 "Illegal idle entry in RCU read-side critical section.");
709 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
),
710 "Illegal idle entry in RCU-bh read-side critical section.");
711 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map
),
712 "Illegal idle entry in RCU-sched read-side critical section.");
716 * Enter an RCU extended quiescent state, which can be either the
717 * idle loop or adaptive-tickless usermode execution.
719 static void rcu_eqs_enter(bool user
)
722 struct rcu_dynticks
*rdtp
;
724 rdtp
= this_cpu_ptr(&rcu_dynticks
);
725 oldval
= rdtp
->dynticks_nesting
;
726 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
727 (oldval
& DYNTICK_TASK_NEST_MASK
) == 0);
728 if ((oldval
& DYNTICK_TASK_NEST_MASK
) == DYNTICK_TASK_NEST_VALUE
) {
729 rdtp
->dynticks_nesting
= 0;
730 rcu_eqs_enter_common(oldval
, user
);
732 rdtp
->dynticks_nesting
-= DYNTICK_TASK_NEST_VALUE
;
737 * rcu_idle_enter - inform RCU that current CPU is entering idle
739 * Enter idle mode, in other words, -leave- the mode in which RCU
740 * read-side critical sections can occur. (Though RCU read-side
741 * critical sections can occur in irq handlers in idle, a possibility
742 * handled by irq_enter() and irq_exit().)
744 * We crowbar the ->dynticks_nesting field to zero to allow for
745 * the possibility of usermode upcalls having messed up our count
746 * of interrupt nesting level during the prior busy period.
748 void rcu_idle_enter(void)
752 local_irq_save(flags
);
753 rcu_eqs_enter(false);
754 rcu_sysidle_enter(0);
755 local_irq_restore(flags
);
757 EXPORT_SYMBOL_GPL(rcu_idle_enter
);
759 #ifdef CONFIG_NO_HZ_FULL
761 * rcu_user_enter - inform RCU that we are resuming userspace.
763 * Enter RCU idle mode right before resuming userspace. No use of RCU
764 * is permitted between this call and rcu_user_exit(). This way the
765 * CPU doesn't need to maintain the tick for RCU maintenance purposes
766 * when the CPU runs in userspace.
768 void rcu_user_enter(void)
772 #endif /* CONFIG_NO_HZ_FULL */
775 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
777 * Exit from an interrupt handler, which might possibly result in entering
778 * idle mode, in other words, leaving the mode in which read-side critical
779 * sections can occur. The caller must have disabled interrupts.
781 * This code assumes that the idle loop never does anything that might
782 * result in unbalanced calls to irq_enter() and irq_exit(). If your
783 * architecture violates this assumption, RCU will give you what you
784 * deserve, good and hard. But very infrequently and irreproducibly.
786 * Use things like work queues to work around this limitation.
788 * You have been warned.
790 void rcu_irq_exit(void)
793 struct rcu_dynticks
*rdtp
;
795 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
796 rdtp
= this_cpu_ptr(&rcu_dynticks
);
797 oldval
= rdtp
->dynticks_nesting
;
798 rdtp
->dynticks_nesting
--;
799 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
800 rdtp
->dynticks_nesting
< 0);
801 if (rdtp
->dynticks_nesting
)
802 trace_rcu_dyntick(TPS("--="), oldval
, rdtp
->dynticks_nesting
);
804 rcu_eqs_enter_common(oldval
, true);
805 rcu_sysidle_enter(1);
809 * Wrapper for rcu_irq_exit() where interrupts are enabled.
811 void rcu_irq_exit_irqson(void)
815 local_irq_save(flags
);
817 local_irq_restore(flags
);
821 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
823 * If the new value of the ->dynticks_nesting counter was previously zero,
824 * we really have exited idle, and must do the appropriate accounting.
825 * The caller must have disabled interrupts.
827 static void rcu_eqs_exit_common(long long oldval
, int user
)
829 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
831 rcu_dynticks_task_exit();
832 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
833 atomic_inc(&rdtp
->dynticks
);
834 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
835 smp_mb__after_atomic(); /* See above. */
836 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
837 !(atomic_read(&rdtp
->dynticks
) & 0x1));
838 rcu_cleanup_after_idle();
839 trace_rcu_dyntick(TPS("End"), oldval
, rdtp
->dynticks_nesting
);
840 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
841 !user
&& !is_idle_task(current
)) {
842 struct task_struct
*idle __maybe_unused
=
843 idle_task(smp_processor_id());
845 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
846 oldval
, rdtp
->dynticks_nesting
);
847 rcu_ftrace_dump(DUMP_ORIG
);
848 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
849 current
->pid
, current
->comm
,
850 idle
->pid
, idle
->comm
); /* must be idle task! */
855 * Exit an RCU extended quiescent state, which can be either the
856 * idle loop or adaptive-tickless usermode execution.
858 static void rcu_eqs_exit(bool user
)
860 struct rcu_dynticks
*rdtp
;
863 rdtp
= this_cpu_ptr(&rcu_dynticks
);
864 oldval
= rdtp
->dynticks_nesting
;
865 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && oldval
< 0);
866 if (oldval
& DYNTICK_TASK_NEST_MASK
) {
867 rdtp
->dynticks_nesting
+= DYNTICK_TASK_NEST_VALUE
;
869 rdtp
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
870 rcu_eqs_exit_common(oldval
, user
);
875 * rcu_idle_exit - inform RCU that current CPU is leaving idle
877 * Exit idle mode, in other words, -enter- the mode in which RCU
878 * read-side critical sections can occur.
880 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
881 * allow for the possibility of usermode upcalls messing up our count
882 * of interrupt nesting level during the busy period that is just
885 void rcu_idle_exit(void)
889 local_irq_save(flags
);
892 local_irq_restore(flags
);
894 EXPORT_SYMBOL_GPL(rcu_idle_exit
);
896 #ifdef CONFIG_NO_HZ_FULL
898 * rcu_user_exit - inform RCU that we are exiting userspace.
900 * Exit RCU idle mode while entering the kernel because it can
901 * run a RCU read side critical section anytime.
903 void rcu_user_exit(void)
907 #endif /* CONFIG_NO_HZ_FULL */
910 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
912 * Enter an interrupt handler, which might possibly result in exiting
913 * idle mode, in other words, entering the mode in which read-side critical
914 * sections can occur. The caller must have disabled interrupts.
916 * Note that the Linux kernel is fully capable of entering an interrupt
917 * handler that it never exits, for example when doing upcalls to
918 * user mode! This code assumes that the idle loop never does upcalls to
919 * user mode. If your architecture does do upcalls from the idle loop (or
920 * does anything else that results in unbalanced calls to the irq_enter()
921 * and irq_exit() functions), RCU will give you what you deserve, good
922 * and hard. But very infrequently and irreproducibly.
924 * Use things like work queues to work around this limitation.
926 * You have been warned.
928 void rcu_irq_enter(void)
930 struct rcu_dynticks
*rdtp
;
933 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
934 rdtp
= this_cpu_ptr(&rcu_dynticks
);
935 oldval
= rdtp
->dynticks_nesting
;
936 rdtp
->dynticks_nesting
++;
937 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
938 rdtp
->dynticks_nesting
== 0);
940 trace_rcu_dyntick(TPS("++="), oldval
, rdtp
->dynticks_nesting
);
942 rcu_eqs_exit_common(oldval
, true);
947 * Wrapper for rcu_irq_enter() where interrupts are enabled.
949 void rcu_irq_enter_irqson(void)
953 local_irq_save(flags
);
955 local_irq_restore(flags
);
959 * rcu_nmi_enter - inform RCU of entry to NMI context
961 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
962 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
963 * that the CPU is active. This implementation permits nested NMIs, as
964 * long as the nesting level does not overflow an int. (You will probably
965 * run out of stack space first.)
967 void rcu_nmi_enter(void)
969 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
972 /* Complain about underflow. */
973 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
< 0);
976 * If idle from RCU viewpoint, atomically increment ->dynticks
977 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
978 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
979 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
980 * to be in the outermost NMI handler that interrupted an RCU-idle
981 * period (observation due to Andy Lutomirski).
983 if (!(atomic_read(&rdtp
->dynticks
) & 0x1)) {
984 smp_mb__before_atomic(); /* Force delay from prior write. */
985 atomic_inc(&rdtp
->dynticks
);
986 /* atomic_inc() before later RCU read-side crit sects */
987 smp_mb__after_atomic(); /* See above. */
988 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
991 rdtp
->dynticks_nmi_nesting
+= incby
;
996 * rcu_nmi_exit - inform RCU of exit from NMI context
998 * If we are returning from the outermost NMI handler that interrupted an
999 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1000 * to let the RCU grace-period handling know that the CPU is back to
1003 void rcu_nmi_exit(void)
1005 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1008 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1009 * (We are exiting an NMI handler, so RCU better be paying attention
1012 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
<= 0);
1013 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
1016 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1017 * leave it in non-RCU-idle state.
1019 if (rdtp
->dynticks_nmi_nesting
!= 1) {
1020 rdtp
->dynticks_nmi_nesting
-= 2;
1024 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1025 rdtp
->dynticks_nmi_nesting
= 0;
1026 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1027 smp_mb__before_atomic(); /* See above. */
1028 atomic_inc(&rdtp
->dynticks
);
1029 smp_mb__after_atomic(); /* Force delay to next write. */
1030 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
1034 * __rcu_is_watching - are RCU read-side critical sections safe?
1036 * Return true if RCU is watching the running CPU, which means that
1037 * this CPU can safely enter RCU read-side critical sections. Unlike
1038 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1039 * least disabled preemption.
1041 bool notrace
__rcu_is_watching(void)
1043 return atomic_read(this_cpu_ptr(&rcu_dynticks
.dynticks
)) & 0x1;
1047 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1049 * If the current CPU is in its idle loop and is neither in an interrupt
1050 * or NMI handler, return true.
1052 bool notrace
rcu_is_watching(void)
1056 preempt_disable_notrace();
1057 ret
= __rcu_is_watching();
1058 preempt_enable_notrace();
1061 EXPORT_SYMBOL_GPL(rcu_is_watching
);
1063 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1066 * Is the current CPU online? Disable preemption to avoid false positives
1067 * that could otherwise happen due to the current CPU number being sampled,
1068 * this task being preempted, its old CPU being taken offline, resuming
1069 * on some other CPU, then determining that its old CPU is now offline.
1070 * It is OK to use RCU on an offline processor during initial boot, hence
1071 * the check for rcu_scheduler_fully_active. Note also that it is OK
1072 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1073 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1074 * offline to continue to use RCU for one jiffy after marking itself
1075 * offline in the cpu_online_mask. This leniency is necessary given the
1076 * non-atomic nature of the online and offline processing, for example,
1077 * the fact that a CPU enters the scheduler after completing the teardown
1080 * This is also why RCU internally marks CPUs online during in the
1081 * preparation phase and offline after the CPU has been taken down.
1083 * Disable checking if in an NMI handler because we cannot safely report
1084 * errors from NMI handlers anyway.
1086 bool rcu_lockdep_current_cpu_online(void)
1088 struct rcu_data
*rdp
;
1089 struct rcu_node
*rnp
;
1095 rdp
= this_cpu_ptr(&rcu_sched_data
);
1097 ret
= (rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) ||
1098 !rcu_scheduler_fully_active
;
1102 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
1104 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1107 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1109 * If the current CPU is idle or running at a first-level (not nested)
1110 * interrupt from idle, return true. The caller must have at least
1111 * disabled preemption.
1113 static int rcu_is_cpu_rrupt_from_idle(void)
1115 return __this_cpu_read(rcu_dynticks
.dynticks_nesting
) <= 1;
1119 * Snapshot the specified CPU's dynticks counter so that we can later
1120 * credit them with an implicit quiescent state. Return 1 if this CPU
1121 * is in dynticks idle mode, which is an extended quiescent state.
1123 static int dyntick_save_progress_counter(struct rcu_data
*rdp
,
1124 bool *isidle
, unsigned long *maxj
)
1126 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
1127 rcu_sysidle_check_cpu(rdp
, isidle
, maxj
);
1128 if ((rdp
->dynticks_snap
& 0x1) == 0) {
1129 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1130 if (ULONG_CMP_LT(READ_ONCE(rdp
->gpnum
) + ULONG_MAX
/ 4,
1131 rdp
->mynode
->gpnum
))
1132 WRITE_ONCE(rdp
->gpwrap
, true);
1139 * Return true if the specified CPU has passed through a quiescent
1140 * state by virtue of being in or having passed through an dynticks
1141 * idle state since the last call to dyntick_save_progress_counter()
1142 * for this same CPU, or by virtue of having been offline.
1144 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
,
1145 bool *isidle
, unsigned long *maxj
)
1151 curr
= (unsigned int)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
1152 snap
= (unsigned int)rdp
->dynticks_snap
;
1155 * If the CPU passed through or entered a dynticks idle phase with
1156 * no active irq/NMI handlers, then we can safely pretend that the CPU
1157 * already acknowledged the request to pass through a quiescent
1158 * state. Either way, that CPU cannot possibly be in an RCU
1159 * read-side critical section that started before the beginning
1160 * of the current RCU grace period.
1162 if ((curr
& 0x1) == 0 || UINT_CMP_GE(curr
, snap
+ 2)) {
1163 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1164 rdp
->dynticks_fqs
++;
1169 * Check for the CPU being offline, but only if the grace period
1170 * is old enough. We don't need to worry about the CPU changing
1171 * state: If we see it offline even once, it has been through a
1174 * The reason for insisting that the grace period be at least
1175 * one jiffy old is that CPUs that are not quite online and that
1176 * have just gone offline can still execute RCU read-side critical
1179 if (ULONG_CMP_GE(rdp
->rsp
->gp_start
+ 2, jiffies
))
1180 return 0; /* Grace period is not old enough. */
1182 if (cpu_is_offline(rdp
->cpu
)) {
1183 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("ofl"));
1189 * A CPU running for an extended time within the kernel can
1190 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1191 * even context-switching back and forth between a pair of
1192 * in-kernel CPU-bound tasks cannot advance grace periods.
1193 * So if the grace period is old enough, make the CPU pay attention.
1194 * Note that the unsynchronized assignments to the per-CPU
1195 * rcu_sched_qs_mask variable are safe. Yes, setting of
1196 * bits can be lost, but they will be set again on the next
1197 * force-quiescent-state pass. So lost bit sets do not result
1198 * in incorrect behavior, merely in a grace period lasting
1199 * a few jiffies longer than it might otherwise. Because
1200 * there are at most four threads involved, and because the
1201 * updates are only once every few jiffies, the probability of
1202 * lossage (and thus of slight grace-period extension) is
1205 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1206 * is set too high, we override with half of the RCU CPU stall
1209 rcrmp
= &per_cpu(rcu_sched_qs_mask
, rdp
->cpu
);
1210 if (ULONG_CMP_GE(jiffies
,
1211 rdp
->rsp
->gp_start
+ jiffies_till_sched_qs
) ||
1212 ULONG_CMP_GE(jiffies
, rdp
->rsp
->jiffies_resched
)) {
1213 if (!(READ_ONCE(*rcrmp
) & rdp
->rsp
->flavor_mask
)) {
1214 WRITE_ONCE(rdp
->cond_resched_completed
,
1215 READ_ONCE(rdp
->mynode
->completed
));
1216 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1218 READ_ONCE(*rcrmp
) + rdp
->rsp
->flavor_mask
);
1220 rdp
->rsp
->jiffies_resched
+= 5; /* Re-enable beating. */
1223 /* And if it has been a really long time, kick the CPU as well. */
1224 if (ULONG_CMP_GE(jiffies
,
1225 rdp
->rsp
->gp_start
+ 2 * jiffies_till_sched_qs
) ||
1226 ULONG_CMP_GE(jiffies
, rdp
->rsp
->gp_start
+ jiffies_till_sched_qs
))
1227 resched_cpu(rdp
->cpu
); /* Force CPU into scheduler. */
1232 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
1234 unsigned long j
= jiffies
;
1238 smp_wmb(); /* Record start time before stall time. */
1239 j1
= rcu_jiffies_till_stall_check();
1240 WRITE_ONCE(rsp
->jiffies_stall
, j
+ j1
);
1241 rsp
->jiffies_resched
= j
+ j1
/ 2;
1242 rsp
->n_force_qs_gpstart
= READ_ONCE(rsp
->n_force_qs
);
1246 * Convert a ->gp_state value to a character string.
1248 static const char *gp_state_getname(short gs
)
1250 if (gs
< 0 || gs
>= ARRAY_SIZE(gp_state_names
))
1252 return gp_state_names
[gs
];
1256 * Complain about starvation of grace-period kthread.
1258 static void rcu_check_gp_kthread_starvation(struct rcu_state
*rsp
)
1264 gpa
= READ_ONCE(rsp
->gp_activity
);
1265 if (j
- gpa
> 2 * HZ
) {
1266 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1268 rsp
->gpnum
, rsp
->completed
,
1270 gp_state_getname(rsp
->gp_state
), rsp
->gp_state
,
1271 rsp
->gp_kthread
? rsp
->gp_kthread
->state
: ~0);
1272 if (rsp
->gp_kthread
) {
1273 sched_show_task(rsp
->gp_kthread
);
1274 wake_up_process(rsp
->gp_kthread
);
1280 * Dump stacks of all tasks running on stalled CPUs.
1282 static void rcu_dump_cpu_stacks(struct rcu_state
*rsp
)
1285 unsigned long flags
;
1286 struct rcu_node
*rnp
;
1288 rcu_for_each_leaf_node(rsp
, rnp
) {
1289 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1290 if (rnp
->qsmask
!= 0) {
1291 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1292 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
))
1295 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1300 * If too much time has passed in the current grace period, and if
1301 * so configured, go kick the relevant kthreads.
1303 static void rcu_stall_kick_kthreads(struct rcu_state
*rsp
)
1307 if (!rcu_kick_kthreads
)
1309 j
= READ_ONCE(rsp
->jiffies_kick_kthreads
);
1310 if (time_after(jiffies
, j
) && rsp
->gp_kthread
&&
1311 (rcu_gp_in_progress(rsp
) || READ_ONCE(rsp
->gp_flags
))) {
1312 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp
->name
);
1313 rcu_ftrace_dump(DUMP_ALL
);
1314 wake_up_process(rsp
->gp_kthread
);
1315 WRITE_ONCE(rsp
->jiffies_kick_kthreads
, j
+ HZ
);
1319 static inline void panic_on_rcu_stall(void)
1321 if (sysctl_panic_on_rcu_stall
)
1322 panic("RCU Stall\n");
1325 static void print_other_cpu_stall(struct rcu_state
*rsp
, unsigned long gpnum
)
1329 unsigned long flags
;
1333 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1336 /* Kick and suppress, if so configured. */
1337 rcu_stall_kick_kthreads(rsp
);
1338 if (rcu_cpu_stall_suppress
)
1341 /* Only let one CPU complain about others per time interval. */
1343 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1344 delta
= jiffies
- READ_ONCE(rsp
->jiffies_stall
);
1345 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
1346 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1349 WRITE_ONCE(rsp
->jiffies_stall
,
1350 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1351 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1354 * OK, time to rat on our buddy...
1355 * See Documentation/RCU/stallwarn.txt for info on how to debug
1356 * RCU CPU stall warnings.
1358 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1360 print_cpu_stall_info_begin();
1361 rcu_for_each_leaf_node(rsp
, rnp
) {
1362 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1363 ndetected
+= rcu_print_task_stall(rnp
);
1364 if (rnp
->qsmask
!= 0) {
1365 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1366 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
)) {
1367 print_cpu_stall_info(rsp
, cpu
);
1371 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1374 print_cpu_stall_info_end();
1375 for_each_possible_cpu(cpu
)
1376 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
1377 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1378 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
),
1379 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1381 rcu_dump_cpu_stacks(rsp
);
1383 if (READ_ONCE(rsp
->gpnum
) != gpnum
||
1384 READ_ONCE(rsp
->completed
) == gpnum
) {
1385 pr_err("INFO: Stall ended before state dump start\n");
1388 gpa
= READ_ONCE(rsp
->gp_activity
);
1389 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1390 rsp
->name
, j
- gpa
, j
, gpa
,
1391 jiffies_till_next_fqs
,
1392 rcu_get_root(rsp
)->qsmask
);
1393 /* In this case, the current CPU might be at fault. */
1394 sched_show_task(current
);
1398 /* Complain about tasks blocking the grace period. */
1399 rcu_print_detail_task_stall(rsp
);
1401 rcu_check_gp_kthread_starvation(rsp
);
1403 panic_on_rcu_stall();
1405 force_quiescent_state(rsp
); /* Kick them all. */
1408 static void print_cpu_stall(struct rcu_state
*rsp
)
1411 unsigned long flags
;
1412 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1415 /* Kick and suppress, if so configured. */
1416 rcu_stall_kick_kthreads(rsp
);
1417 if (rcu_cpu_stall_suppress
)
1421 * OK, time to rat on ourselves...
1422 * See Documentation/RCU/stallwarn.txt for info on how to debug
1423 * RCU CPU stall warnings.
1425 pr_err("INFO: %s self-detected stall on CPU", rsp
->name
);
1426 print_cpu_stall_info_begin();
1427 print_cpu_stall_info(rsp
, smp_processor_id());
1428 print_cpu_stall_info_end();
1429 for_each_possible_cpu(cpu
)
1430 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
1431 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1432 jiffies
- rsp
->gp_start
,
1433 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1435 rcu_check_gp_kthread_starvation(rsp
);
1437 rcu_dump_cpu_stacks(rsp
);
1439 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1440 if (ULONG_CMP_GE(jiffies
, READ_ONCE(rsp
->jiffies_stall
)))
1441 WRITE_ONCE(rsp
->jiffies_stall
,
1442 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1443 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1445 panic_on_rcu_stall();
1448 * Attempt to revive the RCU machinery by forcing a context switch.
1450 * A context switch would normally allow the RCU state machine to make
1451 * progress and it could be we're stuck in kernel space without context
1452 * switches for an entirely unreasonable amount of time.
1454 resched_cpu(smp_processor_id());
1457 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1459 unsigned long completed
;
1460 unsigned long gpnum
;
1464 struct rcu_node
*rnp
;
1466 if ((rcu_cpu_stall_suppress
&& !rcu_kick_kthreads
) ||
1467 !rcu_gp_in_progress(rsp
))
1469 rcu_stall_kick_kthreads(rsp
);
1473 * Lots of memory barriers to reject false positives.
1475 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1476 * then rsp->gp_start, and finally rsp->completed. These values
1477 * are updated in the opposite order with memory barriers (or
1478 * equivalent) during grace-period initialization and cleanup.
1479 * Now, a false positive can occur if we get an new value of
1480 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1481 * the memory barriers, the only way that this can happen is if one
1482 * grace period ends and another starts between these two fetches.
1483 * Detect this by comparing rsp->completed with the previous fetch
1486 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1487 * and rsp->gp_start suffice to forestall false positives.
1489 gpnum
= READ_ONCE(rsp
->gpnum
);
1490 smp_rmb(); /* Pick up ->gpnum first... */
1491 js
= READ_ONCE(rsp
->jiffies_stall
);
1492 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1493 gps
= READ_ONCE(rsp
->gp_start
);
1494 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1495 completed
= READ_ONCE(rsp
->completed
);
1496 if (ULONG_CMP_GE(completed
, gpnum
) ||
1497 ULONG_CMP_LT(j
, js
) ||
1498 ULONG_CMP_GE(gps
, js
))
1499 return; /* No stall or GP completed since entering function. */
1501 if (rcu_gp_in_progress(rsp
) &&
1502 (READ_ONCE(rnp
->qsmask
) & rdp
->grpmask
)) {
1504 /* We haven't checked in, so go dump stack. */
1505 print_cpu_stall(rsp
);
1507 } else if (rcu_gp_in_progress(rsp
) &&
1508 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
1510 /* They had a few time units to dump stack, so complain. */
1511 print_other_cpu_stall(rsp
, gpnum
);
1516 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1518 * Set the stall-warning timeout way off into the future, thus preventing
1519 * any RCU CPU stall-warning messages from appearing in the current set of
1520 * RCU grace periods.
1522 * The caller must disable hard irqs.
1524 void rcu_cpu_stall_reset(void)
1526 struct rcu_state
*rsp
;
1528 for_each_rcu_flavor(rsp
)
1529 WRITE_ONCE(rsp
->jiffies_stall
, jiffies
+ ULONG_MAX
/ 2);
1533 * Initialize the specified rcu_data structure's default callback list
1534 * to empty. The default callback list is the one that is not used by
1535 * no-callbacks CPUs.
1537 static void init_default_callback_list(struct rcu_data
*rdp
)
1541 rdp
->nxtlist
= NULL
;
1542 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1543 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1547 * Initialize the specified rcu_data structure's callback list to empty.
1549 static void init_callback_list(struct rcu_data
*rdp
)
1551 if (init_nocb_callback_list(rdp
))
1553 init_default_callback_list(rdp
);
1557 * Determine the value that ->completed will have at the end of the
1558 * next subsequent grace period. This is used to tag callbacks so that
1559 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1560 * been dyntick-idle for an extended period with callbacks under the
1561 * influence of RCU_FAST_NO_HZ.
1563 * The caller must hold rnp->lock with interrupts disabled.
1565 static unsigned long rcu_cbs_completed(struct rcu_state
*rsp
,
1566 struct rcu_node
*rnp
)
1569 * If RCU is idle, we just wait for the next grace period.
1570 * But we can only be sure that RCU is idle if we are looking
1571 * at the root rcu_node structure -- otherwise, a new grace
1572 * period might have started, but just not yet gotten around
1573 * to initializing the current non-root rcu_node structure.
1575 if (rcu_get_root(rsp
) == rnp
&& rnp
->gpnum
== rnp
->completed
)
1576 return rnp
->completed
+ 1;
1579 * Otherwise, wait for a possible partial grace period and
1580 * then the subsequent full grace period.
1582 return rnp
->completed
+ 2;
1586 * Trace-event helper function for rcu_start_future_gp() and
1587 * rcu_nocb_wait_gp().
1589 static void trace_rcu_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1590 unsigned long c
, const char *s
)
1592 trace_rcu_future_grace_period(rdp
->rsp
->name
, rnp
->gpnum
,
1593 rnp
->completed
, c
, rnp
->level
,
1594 rnp
->grplo
, rnp
->grphi
, s
);
1598 * Start some future grace period, as needed to handle newly arrived
1599 * callbacks. The required future grace periods are recorded in each
1600 * rcu_node structure's ->need_future_gp field. Returns true if there
1601 * is reason to awaken the grace-period kthread.
1603 * The caller must hold the specified rcu_node structure's ->lock.
1605 static bool __maybe_unused
1606 rcu_start_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1607 unsigned long *c_out
)
1612 struct rcu_node
*rnp_root
= rcu_get_root(rdp
->rsp
);
1615 * Pick up grace-period number for new callbacks. If this
1616 * grace period is already marked as needed, return to the caller.
1618 c
= rcu_cbs_completed(rdp
->rsp
, rnp
);
1619 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startleaf"));
1620 if (rnp
->need_future_gp
[c
& 0x1]) {
1621 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartleaf"));
1626 * If either this rcu_node structure or the root rcu_node structure
1627 * believe that a grace period is in progress, then we must wait
1628 * for the one following, which is in "c". Because our request
1629 * will be noticed at the end of the current grace period, we don't
1630 * need to explicitly start one. We only do the lockless check
1631 * of rnp_root's fields if the current rcu_node structure thinks
1632 * there is no grace period in flight, and because we hold rnp->lock,
1633 * the only possible change is when rnp_root's two fields are
1634 * equal, in which case rnp_root->gpnum might be concurrently
1635 * incremented. But that is OK, as it will just result in our
1636 * doing some extra useless work.
1638 if (rnp
->gpnum
!= rnp
->completed
||
1639 READ_ONCE(rnp_root
->gpnum
) != READ_ONCE(rnp_root
->completed
)) {
1640 rnp
->need_future_gp
[c
& 0x1]++;
1641 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleaf"));
1646 * There might be no grace period in progress. If we don't already
1647 * hold it, acquire the root rcu_node structure's lock in order to
1648 * start one (if needed).
1650 if (rnp
!= rnp_root
)
1651 raw_spin_lock_rcu_node(rnp_root
);
1654 * Get a new grace-period number. If there really is no grace
1655 * period in progress, it will be smaller than the one we obtained
1656 * earlier. Adjust callbacks as needed. Note that even no-CBs
1657 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1659 c
= rcu_cbs_completed(rdp
->rsp
, rnp_root
);
1660 for (i
= RCU_DONE_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
1661 if (ULONG_CMP_LT(c
, rdp
->nxtcompleted
[i
]))
1662 rdp
->nxtcompleted
[i
] = c
;
1665 * If the needed for the required grace period is already
1666 * recorded, trace and leave.
1668 if (rnp_root
->need_future_gp
[c
& 0x1]) {
1669 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartedroot"));
1673 /* Record the need for the future grace period. */
1674 rnp_root
->need_future_gp
[c
& 0x1]++;
1676 /* If a grace period is not already in progress, start one. */
1677 if (rnp_root
->gpnum
!= rnp_root
->completed
) {
1678 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleafroot"));
1680 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedroot"));
1681 ret
= rcu_start_gp_advanced(rdp
->rsp
, rnp_root
, rdp
);
1684 if (rnp
!= rnp_root
)
1685 raw_spin_unlock_rcu_node(rnp_root
);
1693 * Clean up any old requests for the just-ended grace period. Also return
1694 * whether any additional grace periods have been requested. Also invoke
1695 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1696 * waiting for this grace period to complete.
1698 static int rcu_future_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
1700 int c
= rnp
->completed
;
1702 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1704 rnp
->need_future_gp
[c
& 0x1] = 0;
1705 needmore
= rnp
->need_future_gp
[(c
+ 1) & 0x1];
1706 trace_rcu_future_gp(rnp
, rdp
, c
,
1707 needmore
? TPS("CleanupMore") : TPS("Cleanup"));
1712 * Awaken the grace-period kthread for the specified flavor of RCU.
1713 * Don't do a self-awaken, and don't bother awakening when there is
1714 * nothing for the grace-period kthread to do (as in several CPUs
1715 * raced to awaken, and we lost), and finally don't try to awaken
1716 * a kthread that has not yet been created.
1718 static void rcu_gp_kthread_wake(struct rcu_state
*rsp
)
1720 if (current
== rsp
->gp_kthread
||
1721 !READ_ONCE(rsp
->gp_flags
) ||
1724 swake_up(&rsp
->gp_wq
);
1728 * If there is room, assign a ->completed number to any callbacks on
1729 * this CPU that have not already been assigned. Also accelerate any
1730 * callbacks that were previously assigned a ->completed number that has
1731 * since proven to be too conservative, which can happen if callbacks get
1732 * assigned a ->completed number while RCU is idle, but with reference to
1733 * a non-root rcu_node structure. This function is idempotent, so it does
1734 * not hurt to call it repeatedly. Returns an flag saying that we should
1735 * awaken the RCU grace-period kthread.
1737 * The caller must hold rnp->lock with interrupts disabled.
1739 static bool rcu_accelerate_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1740 struct rcu_data
*rdp
)
1746 /* If the CPU has no callbacks, nothing to do. */
1747 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1751 * Starting from the sublist containing the callbacks most
1752 * recently assigned a ->completed number and working down, find the
1753 * first sublist that is not assignable to an upcoming grace period.
1754 * Such a sublist has something in it (first two tests) and has
1755 * a ->completed number assigned that will complete sooner than
1756 * the ->completed number for newly arrived callbacks (last test).
1758 * The key point is that any later sublist can be assigned the
1759 * same ->completed number as the newly arrived callbacks, which
1760 * means that the callbacks in any of these later sublist can be
1761 * grouped into a single sublist, whether or not they have already
1762 * been assigned a ->completed number.
1764 c
= rcu_cbs_completed(rsp
, rnp
);
1765 for (i
= RCU_NEXT_TAIL
- 1; i
> RCU_DONE_TAIL
; i
--)
1766 if (rdp
->nxttail
[i
] != rdp
->nxttail
[i
- 1] &&
1767 !ULONG_CMP_GE(rdp
->nxtcompleted
[i
], c
))
1771 * If there are no sublist for unassigned callbacks, leave.
1772 * At the same time, advance "i" one sublist, so that "i" will
1773 * index into the sublist where all the remaining callbacks should
1776 if (++i
>= RCU_NEXT_TAIL
)
1780 * Assign all subsequent callbacks' ->completed number to the next
1781 * full grace period and group them all in the sublist initially
1784 for (; i
<= RCU_NEXT_TAIL
; i
++) {
1785 rdp
->nxttail
[i
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1786 rdp
->nxtcompleted
[i
] = c
;
1788 /* Record any needed additional grace periods. */
1789 ret
= rcu_start_future_gp(rnp
, rdp
, NULL
);
1791 /* Trace depending on how much we were able to accelerate. */
1792 if (!*rdp
->nxttail
[RCU_WAIT_TAIL
])
1793 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccWaitCB"));
1795 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccReadyCB"));
1800 * Move any callbacks whose grace period has completed to the
1801 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1802 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1803 * sublist. This function is idempotent, so it does not hurt to
1804 * invoke it repeatedly. As long as it is not invoked -too- often...
1805 * Returns true if the RCU grace-period kthread needs to be awakened.
1807 * The caller must hold rnp->lock with interrupts disabled.
1809 static bool rcu_advance_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1810 struct rcu_data
*rdp
)
1814 /* If the CPU has no callbacks, nothing to do. */
1815 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1819 * Find all callbacks whose ->completed numbers indicate that they
1820 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1822 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++) {
1823 if (ULONG_CMP_LT(rnp
->completed
, rdp
->nxtcompleted
[i
]))
1825 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[i
];
1827 /* Clean up any sublist tail pointers that were misordered above. */
1828 for (j
= RCU_WAIT_TAIL
; j
< i
; j
++)
1829 rdp
->nxttail
[j
] = rdp
->nxttail
[RCU_DONE_TAIL
];
1831 /* Copy down callbacks to fill in empty sublists. */
1832 for (j
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++, j
++) {
1833 if (rdp
->nxttail
[j
] == rdp
->nxttail
[RCU_NEXT_TAIL
])
1835 rdp
->nxttail
[j
] = rdp
->nxttail
[i
];
1836 rdp
->nxtcompleted
[j
] = rdp
->nxtcompleted
[i
];
1839 /* Classify any remaining callbacks. */
1840 return rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1844 * Update CPU-local rcu_data state to record the beginnings and ends of
1845 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1846 * structure corresponding to the current CPU, and must have irqs disabled.
1847 * Returns true if the grace-period kthread needs to be awakened.
1849 static bool __note_gp_changes(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1850 struct rcu_data
*rdp
)
1855 /* Handle the ends of any preceding grace periods first. */
1856 if (rdp
->completed
== rnp
->completed
&&
1857 !unlikely(READ_ONCE(rdp
->gpwrap
))) {
1859 /* No grace period end, so just accelerate recent callbacks. */
1860 ret
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1864 /* Advance callbacks. */
1865 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
);
1867 /* Remember that we saw this grace-period completion. */
1868 rdp
->completed
= rnp
->completed
;
1869 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuend"));
1872 if (rdp
->gpnum
!= rnp
->gpnum
|| unlikely(READ_ONCE(rdp
->gpwrap
))) {
1874 * If the current grace period is waiting for this CPU,
1875 * set up to detect a quiescent state, otherwise don't
1876 * go looking for one.
1878 rdp
->gpnum
= rnp
->gpnum
;
1879 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpustart"));
1880 need_gp
= !!(rnp
->qsmask
& rdp
->grpmask
);
1881 rdp
->cpu_no_qs
.b
.norm
= need_gp
;
1882 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_qs_ctr
);
1883 rdp
->core_needs_qs
= need_gp
;
1884 zero_cpu_stall_ticks(rdp
);
1885 WRITE_ONCE(rdp
->gpwrap
, false);
1890 static void note_gp_changes(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1892 unsigned long flags
;
1894 struct rcu_node
*rnp
;
1896 local_irq_save(flags
);
1898 if ((rdp
->gpnum
== READ_ONCE(rnp
->gpnum
) &&
1899 rdp
->completed
== READ_ONCE(rnp
->completed
) &&
1900 !unlikely(READ_ONCE(rdp
->gpwrap
))) || /* w/out lock. */
1901 !raw_spin_trylock_rcu_node(rnp
)) { /* irqs already off, so later. */
1902 local_irq_restore(flags
);
1905 needwake
= __note_gp_changes(rsp
, rnp
, rdp
);
1906 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1908 rcu_gp_kthread_wake(rsp
);
1911 static void rcu_gp_slow(struct rcu_state
*rsp
, int delay
)
1914 !(rsp
->gpnum
% (rcu_num_nodes
* PER_RCU_NODE_PERIOD
* delay
)))
1915 schedule_timeout_uninterruptible(delay
);
1919 * Initialize a new grace period. Return false if no grace period required.
1921 static bool rcu_gp_init(struct rcu_state
*rsp
)
1923 unsigned long oldmask
;
1924 struct rcu_data
*rdp
;
1925 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1927 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1928 raw_spin_lock_irq_rcu_node(rnp
);
1929 if (!READ_ONCE(rsp
->gp_flags
)) {
1930 /* Spurious wakeup, tell caller to go back to sleep. */
1931 raw_spin_unlock_irq_rcu_node(rnp
);
1934 WRITE_ONCE(rsp
->gp_flags
, 0); /* Clear all flags: New grace period. */
1936 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp
))) {
1938 * Grace period already in progress, don't start another.
1939 * Not supposed to be able to happen.
1941 raw_spin_unlock_irq_rcu_node(rnp
);
1945 /* Advance to a new grace period and initialize state. */
1946 record_gp_stall_check_time(rsp
);
1947 /* Record GP times before starting GP, hence smp_store_release(). */
1948 smp_store_release(&rsp
->gpnum
, rsp
->gpnum
+ 1);
1949 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, TPS("start"));
1950 raw_spin_unlock_irq_rcu_node(rnp
);
1953 * Apply per-leaf buffered online and offline operations to the
1954 * rcu_node tree. Note that this new grace period need not wait
1955 * for subsequent online CPUs, and that quiescent-state forcing
1956 * will handle subsequent offline CPUs.
1958 rcu_for_each_leaf_node(rsp
, rnp
) {
1959 rcu_gp_slow(rsp
, gp_preinit_delay
);
1960 raw_spin_lock_irq_rcu_node(rnp
);
1961 if (rnp
->qsmaskinit
== rnp
->qsmaskinitnext
&&
1962 !rnp
->wait_blkd_tasks
) {
1963 /* Nothing to do on this leaf rcu_node structure. */
1964 raw_spin_unlock_irq_rcu_node(rnp
);
1968 /* Record old state, apply changes to ->qsmaskinit field. */
1969 oldmask
= rnp
->qsmaskinit
;
1970 rnp
->qsmaskinit
= rnp
->qsmaskinitnext
;
1972 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1973 if (!oldmask
!= !rnp
->qsmaskinit
) {
1974 if (!oldmask
) /* First online CPU for this rcu_node. */
1975 rcu_init_new_rnp(rnp
);
1976 else if (rcu_preempt_has_tasks(rnp
)) /* blocked tasks */
1977 rnp
->wait_blkd_tasks
= true;
1978 else /* Last offline CPU and can propagate. */
1979 rcu_cleanup_dead_rnp(rnp
);
1983 * If all waited-on tasks from prior grace period are
1984 * done, and if all this rcu_node structure's CPUs are
1985 * still offline, propagate up the rcu_node tree and
1986 * clear ->wait_blkd_tasks. Otherwise, if one of this
1987 * rcu_node structure's CPUs has since come back online,
1988 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1989 * checks for this, so just call it unconditionally).
1991 if (rnp
->wait_blkd_tasks
&&
1992 (!rcu_preempt_has_tasks(rnp
) ||
1994 rnp
->wait_blkd_tasks
= false;
1995 rcu_cleanup_dead_rnp(rnp
);
1998 raw_spin_unlock_irq_rcu_node(rnp
);
2002 * Set the quiescent-state-needed bits in all the rcu_node
2003 * structures for all currently online CPUs in breadth-first order,
2004 * starting from the root rcu_node structure, relying on the layout
2005 * of the tree within the rsp->node[] array. Note that other CPUs
2006 * will access only the leaves of the hierarchy, thus seeing that no
2007 * grace period is in progress, at least until the corresponding
2008 * leaf node has been initialized.
2010 * The grace period cannot complete until the initialization
2011 * process finishes, because this kthread handles both.
2013 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2014 rcu_gp_slow(rsp
, gp_init_delay
);
2015 raw_spin_lock_irq_rcu_node(rnp
);
2016 rdp
= this_cpu_ptr(rsp
->rda
);
2017 rcu_preempt_check_blocked_tasks(rnp
);
2018 rnp
->qsmask
= rnp
->qsmaskinit
;
2019 WRITE_ONCE(rnp
->gpnum
, rsp
->gpnum
);
2020 if (WARN_ON_ONCE(rnp
->completed
!= rsp
->completed
))
2021 WRITE_ONCE(rnp
->completed
, rsp
->completed
);
2022 if (rnp
== rdp
->mynode
)
2023 (void)__note_gp_changes(rsp
, rnp
, rdp
);
2024 rcu_preempt_boost_start_gp(rnp
);
2025 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
2026 rnp
->level
, rnp
->grplo
,
2027 rnp
->grphi
, rnp
->qsmask
);
2028 raw_spin_unlock_irq_rcu_node(rnp
);
2029 cond_resched_rcu_qs();
2030 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2037 * Helper function for wait_event_interruptible_timeout() wakeup
2038 * at force-quiescent-state time.
2040 static bool rcu_gp_fqs_check_wake(struct rcu_state
*rsp
, int *gfp
)
2042 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2044 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2045 *gfp
= READ_ONCE(rsp
->gp_flags
);
2046 if (*gfp
& RCU_GP_FLAG_FQS
)
2049 /* The current grace period has completed. */
2050 if (!READ_ONCE(rnp
->qsmask
) && !rcu_preempt_blocked_readers_cgp(rnp
))
2057 * Do one round of quiescent-state forcing.
2059 static void rcu_gp_fqs(struct rcu_state
*rsp
, bool first_time
)
2061 bool isidle
= false;
2063 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2065 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2068 /* Collect dyntick-idle snapshots. */
2069 if (is_sysidle_rcu_state(rsp
)) {
2071 maxj
= jiffies
- ULONG_MAX
/ 4;
2073 force_qs_rnp(rsp
, dyntick_save_progress_counter
,
2075 rcu_sysidle_report_gp(rsp
, isidle
, maxj
);
2077 /* Handle dyntick-idle and offline CPUs. */
2079 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
, &isidle
, &maxj
);
2081 /* Clear flag to prevent immediate re-entry. */
2082 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2083 raw_spin_lock_irq_rcu_node(rnp
);
2084 WRITE_ONCE(rsp
->gp_flags
,
2085 READ_ONCE(rsp
->gp_flags
) & ~RCU_GP_FLAG_FQS
);
2086 raw_spin_unlock_irq_rcu_node(rnp
);
2091 * Clean up after the old grace period.
2093 static void rcu_gp_cleanup(struct rcu_state
*rsp
)
2095 unsigned long gp_duration
;
2096 bool needgp
= false;
2098 struct rcu_data
*rdp
;
2099 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2100 struct swait_queue_head
*sq
;
2102 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2103 raw_spin_lock_irq_rcu_node(rnp
);
2104 gp_duration
= jiffies
- rsp
->gp_start
;
2105 if (gp_duration
> rsp
->gp_max
)
2106 rsp
->gp_max
= gp_duration
;
2109 * We know the grace period is complete, but to everyone else
2110 * it appears to still be ongoing. But it is also the case
2111 * that to everyone else it looks like there is nothing that
2112 * they can do to advance the grace period. It is therefore
2113 * safe for us to drop the lock in order to mark the grace
2114 * period as completed in all of the rcu_node structures.
2116 raw_spin_unlock_irq_rcu_node(rnp
);
2119 * Propagate new ->completed value to rcu_node structures so
2120 * that other CPUs don't have to wait until the start of the next
2121 * grace period to process their callbacks. This also avoids
2122 * some nasty RCU grace-period initialization races by forcing
2123 * the end of the current grace period to be completely recorded in
2124 * all of the rcu_node structures before the beginning of the next
2125 * grace period is recorded in any of the rcu_node structures.
2127 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2128 raw_spin_lock_irq_rcu_node(rnp
);
2129 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
2130 WARN_ON_ONCE(rnp
->qsmask
);
2131 WRITE_ONCE(rnp
->completed
, rsp
->gpnum
);
2132 rdp
= this_cpu_ptr(rsp
->rda
);
2133 if (rnp
== rdp
->mynode
)
2134 needgp
= __note_gp_changes(rsp
, rnp
, rdp
) || needgp
;
2135 /* smp_mb() provided by prior unlock-lock pair. */
2136 nocb
+= rcu_future_gp_cleanup(rsp
, rnp
);
2137 sq
= rcu_nocb_gp_get(rnp
);
2138 raw_spin_unlock_irq_rcu_node(rnp
);
2139 rcu_nocb_gp_cleanup(sq
);
2140 cond_resched_rcu_qs();
2141 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2142 rcu_gp_slow(rsp
, gp_cleanup_delay
);
2144 rnp
= rcu_get_root(rsp
);
2145 raw_spin_lock_irq_rcu_node(rnp
); /* Order GP before ->completed update. */
2146 rcu_nocb_gp_set(rnp
, nocb
);
2148 /* Declare grace period done. */
2149 WRITE_ONCE(rsp
->completed
, rsp
->gpnum
);
2150 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, TPS("end"));
2151 rsp
->gp_state
= RCU_GP_IDLE
;
2152 rdp
= this_cpu_ptr(rsp
->rda
);
2153 /* Advance CBs to reduce false positives below. */
2154 needgp
= rcu_advance_cbs(rsp
, rnp
, rdp
) || needgp
;
2155 if (needgp
|| cpu_needs_another_gp(rsp
, rdp
)) {
2156 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2157 trace_rcu_grace_period(rsp
->name
,
2158 READ_ONCE(rsp
->gpnum
),
2161 raw_spin_unlock_irq_rcu_node(rnp
);
2165 * Body of kthread that handles grace periods.
2167 static int __noreturn
rcu_gp_kthread(void *arg
)
2173 struct rcu_state
*rsp
= arg
;
2174 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2176 rcu_bind_gp_kthread();
2179 /* Handle grace-period start. */
2181 trace_rcu_grace_period(rsp
->name
,
2182 READ_ONCE(rsp
->gpnum
),
2184 rsp
->gp_state
= RCU_GP_WAIT_GPS
;
2185 swait_event_interruptible(rsp
->gp_wq
,
2186 READ_ONCE(rsp
->gp_flags
) &
2188 rsp
->gp_state
= RCU_GP_DONE_GPS
;
2189 /* Locking provides needed memory barrier. */
2190 if (rcu_gp_init(rsp
))
2192 cond_resched_rcu_qs();
2193 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2194 WARN_ON(signal_pending(current
));
2195 trace_rcu_grace_period(rsp
->name
,
2196 READ_ONCE(rsp
->gpnum
),
2200 /* Handle quiescent-state forcing. */
2201 first_gp_fqs
= true;
2202 j
= jiffies_till_first_fqs
;
2205 jiffies_till_first_fqs
= HZ
;
2210 rsp
->jiffies_force_qs
= jiffies
+ j
;
2211 WRITE_ONCE(rsp
->jiffies_kick_kthreads
,
2214 trace_rcu_grace_period(rsp
->name
,
2215 READ_ONCE(rsp
->gpnum
),
2217 rsp
->gp_state
= RCU_GP_WAIT_FQS
;
2218 ret
= swait_event_interruptible_timeout(rsp
->gp_wq
,
2219 rcu_gp_fqs_check_wake(rsp
, &gf
), j
);
2220 rsp
->gp_state
= RCU_GP_DOING_FQS
;
2221 /* Locking provides needed memory barriers. */
2222 /* If grace period done, leave loop. */
2223 if (!READ_ONCE(rnp
->qsmask
) &&
2224 !rcu_preempt_blocked_readers_cgp(rnp
))
2226 /* If time for quiescent-state forcing, do it. */
2227 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_force_qs
) ||
2228 (gf
& RCU_GP_FLAG_FQS
)) {
2229 trace_rcu_grace_period(rsp
->name
,
2230 READ_ONCE(rsp
->gpnum
),
2232 rcu_gp_fqs(rsp
, first_gp_fqs
);
2233 first_gp_fqs
= false;
2234 trace_rcu_grace_period(rsp
->name
,
2235 READ_ONCE(rsp
->gpnum
),
2237 cond_resched_rcu_qs();
2238 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2239 ret
= 0; /* Force full wait till next FQS. */
2240 j
= jiffies_till_next_fqs
;
2243 jiffies_till_next_fqs
= HZ
;
2246 jiffies_till_next_fqs
= 1;
2249 /* Deal with stray signal. */
2250 cond_resched_rcu_qs();
2251 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2252 WARN_ON(signal_pending(current
));
2253 trace_rcu_grace_period(rsp
->name
,
2254 READ_ONCE(rsp
->gpnum
),
2256 ret
= 1; /* Keep old FQS timing. */
2258 if (time_after(jiffies
, rsp
->jiffies_force_qs
))
2261 j
= rsp
->jiffies_force_qs
- j
;
2265 /* Handle grace-period end. */
2266 rsp
->gp_state
= RCU_GP_CLEANUP
;
2267 rcu_gp_cleanup(rsp
);
2268 rsp
->gp_state
= RCU_GP_CLEANED
;
2273 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2274 * in preparation for detecting the next grace period. The caller must hold
2275 * the root node's ->lock and hard irqs must be disabled.
2277 * Note that it is legal for a dying CPU (which is marked as offline) to
2278 * invoke this function. This can happen when the dying CPU reports its
2281 * Returns true if the grace-period kthread must be awakened.
2284 rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
2285 struct rcu_data
*rdp
)
2287 if (!rsp
->gp_kthread
|| !cpu_needs_another_gp(rsp
, rdp
)) {
2289 * Either we have not yet spawned the grace-period
2290 * task, this CPU does not need another grace period,
2291 * or a grace period is already in progress.
2292 * Either way, don't start a new grace period.
2296 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2297 trace_rcu_grace_period(rsp
->name
, READ_ONCE(rsp
->gpnum
),
2301 * We can't do wakeups while holding the rnp->lock, as that
2302 * could cause possible deadlocks with the rq->lock. Defer
2303 * the wakeup to our caller.
2309 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2310 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2311 * is invoked indirectly from rcu_advance_cbs(), which would result in
2312 * endless recursion -- or would do so if it wasn't for the self-deadlock
2313 * that is encountered beforehand.
2315 * Returns true if the grace-period kthread needs to be awakened.
2317 static bool rcu_start_gp(struct rcu_state
*rsp
)
2319 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
2320 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2324 * If there is no grace period in progress right now, any
2325 * callbacks we have up to this point will be satisfied by the
2326 * next grace period. Also, advancing the callbacks reduces the
2327 * probability of false positives from cpu_needs_another_gp()
2328 * resulting in pointless grace periods. So, advance callbacks
2329 * then start the grace period!
2331 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
) || ret
;
2332 ret
= rcu_start_gp_advanced(rsp
, rnp
, rdp
) || ret
;
2337 * Report a full set of quiescent states to the specified rcu_state data
2338 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2339 * kthread if another grace period is required. Whether we wake
2340 * the grace-period kthread or it awakens itself for the next round
2341 * of quiescent-state forcing, that kthread will clean up after the
2342 * just-completed grace period. Note that the caller must hold rnp->lock,
2343 * which is released before return.
2345 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
2346 __releases(rcu_get_root(rsp
)->lock
)
2348 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
2349 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2350 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
2351 rcu_gp_kthread_wake(rsp
);
2355 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2356 * Allows quiescent states for a group of CPUs to be reported at one go
2357 * to the specified rcu_node structure, though all the CPUs in the group
2358 * must be represented by the same rcu_node structure (which need not be a
2359 * leaf rcu_node structure, though it often will be). The gps parameter
2360 * is the grace-period snapshot, which means that the quiescent states
2361 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2362 * must be held upon entry, and it is released before return.
2365 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
2366 struct rcu_node
*rnp
, unsigned long gps
, unsigned long flags
)
2367 __releases(rnp
->lock
)
2369 unsigned long oldmask
= 0;
2370 struct rcu_node
*rnp_c
;
2372 /* Walk up the rcu_node hierarchy. */
2374 if (!(rnp
->qsmask
& mask
) || rnp
->gpnum
!= gps
) {
2377 * Our bit has already been cleared, or the
2378 * relevant grace period is already over, so done.
2380 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2383 WARN_ON_ONCE(oldmask
); /* Any child must be all zeroed! */
2384 rnp
->qsmask
&= ~mask
;
2385 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
2386 mask
, rnp
->qsmask
, rnp
->level
,
2387 rnp
->grplo
, rnp
->grphi
,
2389 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2391 /* Other bits still set at this level, so done. */
2392 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2395 mask
= rnp
->grpmask
;
2396 if (rnp
->parent
== NULL
) {
2398 /* No more levels. Exit loop holding root lock. */
2402 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2405 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2406 oldmask
= rnp_c
->qsmask
;
2410 * Get here if we are the last CPU to pass through a quiescent
2411 * state for this grace period. Invoke rcu_report_qs_rsp()
2412 * to clean up and start the next grace period if one is needed.
2414 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
2418 * Record a quiescent state for all tasks that were previously queued
2419 * on the specified rcu_node structure and that were blocking the current
2420 * RCU grace period. The caller must hold the specified rnp->lock with
2421 * irqs disabled, and this lock is released upon return, but irqs remain
2424 static void rcu_report_unblock_qs_rnp(struct rcu_state
*rsp
,
2425 struct rcu_node
*rnp
, unsigned long flags
)
2426 __releases(rnp
->lock
)
2430 struct rcu_node
*rnp_p
;
2432 if (rcu_state_p
== &rcu_sched_state
|| rsp
!= rcu_state_p
||
2433 rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2434 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2435 return; /* Still need more quiescent states! */
2438 rnp_p
= rnp
->parent
;
2439 if (rnp_p
== NULL
) {
2441 * Only one rcu_node structure in the tree, so don't
2442 * try to report up to its nonexistent parent!
2444 rcu_report_qs_rsp(rsp
, flags
);
2448 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2450 mask
= rnp
->grpmask
;
2451 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2452 raw_spin_lock_rcu_node(rnp_p
); /* irqs already disabled. */
2453 rcu_report_qs_rnp(mask
, rsp
, rnp_p
, gps
, flags
);
2457 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2458 * structure. This must be called from the specified CPU.
2461 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2463 unsigned long flags
;
2466 struct rcu_node
*rnp
;
2469 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2470 if ((rdp
->cpu_no_qs
.b
.norm
&&
2471 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
)) ||
2472 rdp
->gpnum
!= rnp
->gpnum
|| rnp
->completed
== rnp
->gpnum
||
2476 * The grace period in which this quiescent state was
2477 * recorded has ended, so don't report it upwards.
2478 * We will instead need a new quiescent state that lies
2479 * within the current grace period.
2481 rdp
->cpu_no_qs
.b
.norm
= true; /* need qs for new gp. */
2482 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_qs_ctr
);
2483 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2486 mask
= rdp
->grpmask
;
2487 if ((rnp
->qsmask
& mask
) == 0) {
2488 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2490 rdp
->core_needs_qs
= false;
2493 * This GP can't end until cpu checks in, so all of our
2494 * callbacks can be processed during the next GP.
2496 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
2498 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2499 /* ^^^ Released rnp->lock */
2501 rcu_gp_kthread_wake(rsp
);
2506 * Check to see if there is a new grace period of which this CPU
2507 * is not yet aware, and if so, set up local rcu_data state for it.
2508 * Otherwise, see if this CPU has just passed through its first
2509 * quiescent state for this grace period, and record that fact if so.
2512 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2514 /* Check for grace-period ends and beginnings. */
2515 note_gp_changes(rsp
, rdp
);
2518 * Does this CPU still need to do its part for current grace period?
2519 * If no, return and let the other CPUs do their part as well.
2521 if (!rdp
->core_needs_qs
)
2525 * Was there a quiescent state since the beginning of the grace
2526 * period? If no, then exit and wait for the next call.
2528 if (rdp
->cpu_no_qs
.b
.norm
&&
2529 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
))
2533 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2536 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
);
2540 * Send the specified CPU's RCU callbacks to the orphanage. The
2541 * specified CPU must be offline, and the caller must hold the
2545 rcu_send_cbs_to_orphanage(int cpu
, struct rcu_state
*rsp
,
2546 struct rcu_node
*rnp
, struct rcu_data
*rdp
)
2548 /* No-CBs CPUs do not have orphanable callbacks. */
2549 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) || rcu_is_nocb_cpu(rdp
->cpu
))
2553 * Orphan the callbacks. First adjust the counts. This is safe
2554 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2555 * cannot be running now. Thus no memory barrier is required.
2557 if (rdp
->nxtlist
!= NULL
) {
2558 rsp
->qlen_lazy
+= rdp
->qlen_lazy
;
2559 rsp
->qlen
+= rdp
->qlen
;
2560 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
2562 WRITE_ONCE(rdp
->qlen
, 0);
2566 * Next, move those callbacks still needing a grace period to
2567 * the orphanage, where some other CPU will pick them up.
2568 * Some of the callbacks might have gone partway through a grace
2569 * period, but that is too bad. They get to start over because we
2570 * cannot assume that grace periods are synchronized across CPUs.
2571 * We don't bother updating the ->nxttail[] array yet, instead
2572 * we just reset the whole thing later on.
2574 if (*rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
) {
2575 *rsp
->orphan_nxttail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2576 rsp
->orphan_nxttail
= rdp
->nxttail
[RCU_NEXT_TAIL
];
2577 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2581 * Then move the ready-to-invoke callbacks to the orphanage,
2582 * where some other CPU will pick them up. These will not be
2583 * required to pass though another grace period: They are done.
2585 if (rdp
->nxtlist
!= NULL
) {
2586 *rsp
->orphan_donetail
= rdp
->nxtlist
;
2587 rsp
->orphan_donetail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2591 * Finally, initialize the rcu_data structure's list to empty and
2592 * disallow further callbacks on this CPU.
2594 init_callback_list(rdp
);
2595 rdp
->nxttail
[RCU_NEXT_TAIL
] = NULL
;
2599 * Adopt the RCU callbacks from the specified rcu_state structure's
2600 * orphanage. The caller must hold the ->orphan_lock.
2602 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
, unsigned long flags
)
2605 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2607 /* No-CBs CPUs are handled specially. */
2608 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2609 rcu_nocb_adopt_orphan_cbs(rsp
, rdp
, flags
))
2612 /* Do the accounting first. */
2613 rdp
->qlen_lazy
+= rsp
->qlen_lazy
;
2614 rdp
->qlen
+= rsp
->qlen
;
2615 rdp
->n_cbs_adopted
+= rsp
->qlen
;
2616 if (rsp
->qlen_lazy
!= rsp
->qlen
)
2617 rcu_idle_count_callbacks_posted();
2622 * We do not need a memory barrier here because the only way we
2623 * can get here if there is an rcu_barrier() in flight is if
2624 * we are the task doing the rcu_barrier().
2627 /* First adopt the ready-to-invoke callbacks. */
2628 if (rsp
->orphan_donelist
!= NULL
) {
2629 *rsp
->orphan_donetail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2630 *rdp
->nxttail
[RCU_DONE_TAIL
] = rsp
->orphan_donelist
;
2631 for (i
= RCU_NEXT_SIZE
- 1; i
>= RCU_DONE_TAIL
; i
--)
2632 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2633 rdp
->nxttail
[i
] = rsp
->orphan_donetail
;
2634 rsp
->orphan_donelist
= NULL
;
2635 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
2638 /* And then adopt the callbacks that still need a grace period. */
2639 if (rsp
->orphan_nxtlist
!= NULL
) {
2640 *rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxtlist
;
2641 rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxttail
;
2642 rsp
->orphan_nxtlist
= NULL
;
2643 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
2648 * Trace the fact that this CPU is going offline.
2650 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
2652 RCU_TRACE(unsigned long mask
);
2653 RCU_TRACE(struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
));
2654 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
);
2656 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2659 RCU_TRACE(mask
= rdp
->grpmask
);
2660 trace_rcu_grace_period(rsp
->name
,
2661 rnp
->gpnum
+ 1 - !!(rnp
->qsmask
& mask
),
2666 * All CPUs for the specified rcu_node structure have gone offline,
2667 * and all tasks that were preempted within an RCU read-side critical
2668 * section while running on one of those CPUs have since exited their RCU
2669 * read-side critical section. Some other CPU is reporting this fact with
2670 * the specified rcu_node structure's ->lock held and interrupts disabled.
2671 * This function therefore goes up the tree of rcu_node structures,
2672 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2673 * the leaf rcu_node structure's ->qsmaskinit field has already been
2676 * This function does check that the specified rcu_node structure has
2677 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2678 * prematurely. That said, invoking it after the fact will cost you
2679 * a needless lock acquisition. So once it has done its work, don't
2682 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
)
2685 struct rcu_node
*rnp
= rnp_leaf
;
2687 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2688 rnp
->qsmaskinit
|| rcu_preempt_has_tasks(rnp
))
2691 mask
= rnp
->grpmask
;
2695 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2696 rnp
->qsmaskinit
&= ~mask
;
2697 rnp
->qsmask
&= ~mask
;
2698 if (rnp
->qsmaskinit
) {
2699 raw_spin_unlock_rcu_node(rnp
);
2700 /* irqs remain disabled. */
2703 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2708 * The CPU has been completely removed, and some other CPU is reporting
2709 * this fact from process context. Do the remainder of the cleanup,
2710 * including orphaning the outgoing CPU's RCU callbacks, and also
2711 * adopting them. There can only be one CPU hotplug operation at a time,
2712 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2714 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
2716 unsigned long flags
;
2717 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2718 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2720 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2723 /* Adjust any no-longer-needed kthreads. */
2724 rcu_boost_kthread_setaffinity(rnp
, -1);
2726 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2727 raw_spin_lock_irqsave(&rsp
->orphan_lock
, flags
);
2728 rcu_send_cbs_to_orphanage(cpu
, rsp
, rnp
, rdp
);
2729 rcu_adopt_orphan_cbs(rsp
, flags
);
2730 raw_spin_unlock_irqrestore(&rsp
->orphan_lock
, flags
);
2732 WARN_ONCE(rdp
->qlen
!= 0 || rdp
->nxtlist
!= NULL
,
2733 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2734 cpu
, rdp
->qlen
, rdp
->nxtlist
);
2738 * Invoke any RCU callbacks that have made it to the end of their grace
2739 * period. Thottle as specified by rdp->blimit.
2741 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2743 unsigned long flags
;
2744 struct rcu_head
*next
, *list
, **tail
;
2745 long bl
, count
, count_lazy
;
2748 /* If no callbacks are ready, just return. */
2749 if (!cpu_has_callbacks_ready_to_invoke(rdp
)) {
2750 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, 0);
2751 trace_rcu_batch_end(rsp
->name
, 0, !!READ_ONCE(rdp
->nxtlist
),
2752 need_resched(), is_idle_task(current
),
2753 rcu_is_callbacks_kthread());
2758 * Extract the list of ready callbacks, disabling to prevent
2759 * races with call_rcu() from interrupt handlers.
2761 local_irq_save(flags
);
2762 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2764 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, bl
);
2765 list
= rdp
->nxtlist
;
2766 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2767 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2768 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2769 for (i
= RCU_NEXT_SIZE
- 1; i
>= 0; i
--)
2770 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2771 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
2772 local_irq_restore(flags
);
2774 /* Invoke callbacks. */
2775 count
= count_lazy
= 0;
2779 debug_rcu_head_unqueue(list
);
2780 if (__rcu_reclaim(rsp
->name
, list
))
2783 /* Stop only if limit reached and CPU has something to do. */
2784 if (++count
>= bl
&&
2786 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2790 local_irq_save(flags
);
2791 trace_rcu_batch_end(rsp
->name
, count
, !!list
, need_resched(),
2792 is_idle_task(current
),
2793 rcu_is_callbacks_kthread());
2795 /* Update count, and requeue any remaining callbacks. */
2797 *tail
= rdp
->nxtlist
;
2798 rdp
->nxtlist
= list
;
2799 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
2800 if (&rdp
->nxtlist
== rdp
->nxttail
[i
])
2801 rdp
->nxttail
[i
] = tail
;
2805 smp_mb(); /* List handling before counting for rcu_barrier(). */
2806 rdp
->qlen_lazy
-= count_lazy
;
2807 WRITE_ONCE(rdp
->qlen
, rdp
->qlen
- count
);
2808 rdp
->n_cbs_invoked
+= count
;
2810 /* Reinstate batch limit if we have worked down the excess. */
2811 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
2812 rdp
->blimit
= blimit
;
2814 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2815 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2816 rdp
->qlen_last_fqs_check
= 0;
2817 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2818 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
2819 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
2820 WARN_ON_ONCE((rdp
->nxtlist
== NULL
) != (rdp
->qlen
== 0));
2822 local_irq_restore(flags
);
2824 /* Re-invoke RCU core processing if there are callbacks remaining. */
2825 if (cpu_has_callbacks_ready_to_invoke(rdp
))
2830 * Check to see if this CPU is in a non-context-switch quiescent state
2831 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2832 * Also schedule RCU core processing.
2834 * This function must be called from hardirq context. It is normally
2835 * invoked from the scheduling-clock interrupt.
2837 void rcu_check_callbacks(int user
)
2839 trace_rcu_utilization(TPS("Start scheduler-tick"));
2840 increment_cpu_stall_ticks();
2841 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
2844 * Get here if this CPU took its interrupt from user
2845 * mode or from the idle loop, and if this is not a
2846 * nested interrupt. In this case, the CPU is in
2847 * a quiescent state, so note it.
2849 * No memory barrier is required here because both
2850 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2851 * variables that other CPUs neither access nor modify,
2852 * at least not while the corresponding CPU is online.
2858 } else if (!in_softirq()) {
2861 * Get here if this CPU did not take its interrupt from
2862 * softirq, in other words, if it is not interrupting
2863 * a rcu_bh read-side critical section. This is an _bh
2864 * critical section, so note it.
2869 rcu_preempt_check_callbacks();
2873 rcu_note_voluntary_context_switch(current
);
2874 trace_rcu_utilization(TPS("End scheduler-tick"));
2878 * Scan the leaf rcu_node structures, processing dyntick state for any that
2879 * have not yet encountered a quiescent state, using the function specified.
2880 * Also initiate boosting for any threads blocked on the root rcu_node.
2882 * The caller must have suppressed start of new grace periods.
2884 static void force_qs_rnp(struct rcu_state
*rsp
,
2885 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
2886 unsigned long *maxj
),
2887 bool *isidle
, unsigned long *maxj
)
2890 unsigned long flags
;
2892 struct rcu_node
*rnp
;
2894 rcu_for_each_leaf_node(rsp
, rnp
) {
2895 cond_resched_rcu_qs();
2897 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2898 if (rnp
->qsmask
== 0) {
2899 if (rcu_state_p
== &rcu_sched_state
||
2900 rsp
!= rcu_state_p
||
2901 rcu_preempt_blocked_readers_cgp(rnp
)) {
2903 * No point in scanning bits because they
2904 * are all zero. But we might need to
2905 * priority-boost blocked readers.
2907 rcu_initiate_boost(rnp
, flags
);
2908 /* rcu_initiate_boost() releases rnp->lock */
2912 (rnp
->parent
->qsmask
& rnp
->grpmask
)) {
2914 * Race between grace-period
2915 * initialization and task exiting RCU
2916 * read-side critical section: Report.
2918 rcu_report_unblock_qs_rnp(rsp
, rnp
, flags
);
2919 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2923 for_each_leaf_node_possible_cpu(rnp
, cpu
) {
2924 unsigned long bit
= leaf_node_cpu_bit(rnp
, cpu
);
2925 if ((rnp
->qsmask
& bit
) != 0) {
2926 if (f(per_cpu_ptr(rsp
->rda
, cpu
), isidle
, maxj
))
2931 /* Idle/offline CPUs, report (releases rnp->lock. */
2932 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2934 /* Nothing to do here, so just drop the lock. */
2935 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2941 * Force quiescent states on reluctant CPUs, and also detect which
2942 * CPUs are in dyntick-idle mode.
2944 static void force_quiescent_state(struct rcu_state
*rsp
)
2946 unsigned long flags
;
2948 struct rcu_node
*rnp
;
2949 struct rcu_node
*rnp_old
= NULL
;
2951 /* Funnel through hierarchy to reduce memory contention. */
2952 rnp
= __this_cpu_read(rsp
->rda
->mynode
);
2953 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2954 ret
= (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) ||
2955 !raw_spin_trylock(&rnp
->fqslock
);
2956 if (rnp_old
!= NULL
)
2957 raw_spin_unlock(&rnp_old
->fqslock
);
2959 rsp
->n_force_qs_lh
++;
2964 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2966 /* Reached the root of the rcu_node tree, acquire lock. */
2967 raw_spin_lock_irqsave_rcu_node(rnp_old
, flags
);
2968 raw_spin_unlock(&rnp_old
->fqslock
);
2969 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2970 rsp
->n_force_qs_lh
++;
2971 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2972 return; /* Someone beat us to it. */
2974 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2975 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2976 rcu_gp_kthread_wake(rsp
);
2980 * This does the RCU core processing work for the specified rcu_state
2981 * and rcu_data structures. This may be called only from the CPU to
2982 * whom the rdp belongs.
2985 __rcu_process_callbacks(struct rcu_state
*rsp
)
2987 unsigned long flags
;
2989 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2991 WARN_ON_ONCE(rdp
->beenonline
== 0);
2993 /* Update RCU state based on any recent quiescent states. */
2994 rcu_check_quiescent_state(rsp
, rdp
);
2996 /* Does this CPU require a not-yet-started grace period? */
2997 local_irq_save(flags
);
2998 if (cpu_needs_another_gp(rsp
, rdp
)) {
2999 raw_spin_lock_rcu_node(rcu_get_root(rsp
)); /* irqs disabled. */
3000 needwake
= rcu_start_gp(rsp
);
3001 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
3003 rcu_gp_kthread_wake(rsp
);
3005 local_irq_restore(flags
);
3008 /* If there are callbacks ready, invoke them. */
3009 if (cpu_has_callbacks_ready_to_invoke(rdp
))
3010 invoke_rcu_callbacks(rsp
, rdp
);
3012 /* Do any needed deferred wakeups of rcuo kthreads. */
3013 do_nocb_deferred_wakeup(rdp
);
3017 * Do RCU core processing for the current CPU.
3019 static __latent_entropy
void rcu_process_callbacks(struct softirq_action
*unused
)
3021 struct rcu_state
*rsp
;
3023 if (cpu_is_offline(smp_processor_id()))
3025 trace_rcu_utilization(TPS("Start RCU core"));
3026 for_each_rcu_flavor(rsp
)
3027 __rcu_process_callbacks(rsp
);
3028 trace_rcu_utilization(TPS("End RCU core"));
3032 * Schedule RCU callback invocation. If the specified type of RCU
3033 * does not support RCU priority boosting, just do a direct call,
3034 * otherwise wake up the per-CPU kernel kthread. Note that because we
3035 * are running on the current CPU with softirqs disabled, the
3036 * rcu_cpu_kthread_task cannot disappear out from under us.
3038 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3040 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active
)))
3042 if (likely(!rsp
->boost
)) {
3043 rcu_do_batch(rsp
, rdp
);
3046 invoke_rcu_callbacks_kthread();
3049 static void invoke_rcu_core(void)
3051 if (cpu_online(smp_processor_id()))
3052 raise_softirq(RCU_SOFTIRQ
);
3056 * Handle any core-RCU processing required by a call_rcu() invocation.
3058 static void __call_rcu_core(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
3059 struct rcu_head
*head
, unsigned long flags
)
3064 * If called from an extended quiescent state, invoke the RCU
3065 * core in order to force a re-evaluation of RCU's idleness.
3067 if (!rcu_is_watching())
3070 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3071 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
3075 * Force the grace period if too many callbacks or too long waiting.
3076 * Enforce hysteresis, and don't invoke force_quiescent_state()
3077 * if some other CPU has recently done so. Also, don't bother
3078 * invoking force_quiescent_state() if the newly enqueued callback
3079 * is the only one waiting for a grace period to complete.
3081 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
3083 /* Are we ignoring a completed grace period? */
3084 note_gp_changes(rsp
, rdp
);
3086 /* Start a new grace period if one not already started. */
3087 if (!rcu_gp_in_progress(rsp
)) {
3088 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
3090 raw_spin_lock_rcu_node(rnp_root
);
3091 needwake
= rcu_start_gp(rsp
);
3092 raw_spin_unlock_rcu_node(rnp_root
);
3094 rcu_gp_kthread_wake(rsp
);
3096 /* Give the grace period a kick. */
3097 rdp
->blimit
= LONG_MAX
;
3098 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
3099 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
3100 force_quiescent_state(rsp
);
3101 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3102 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
3108 * RCU callback function to leak a callback.
3110 static void rcu_leak_callback(struct rcu_head
*rhp
)
3115 * Helper function for call_rcu() and friends. The cpu argument will
3116 * normally be -1, indicating "currently running CPU". It may specify
3117 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3118 * is expected to specify a CPU.
3121 __call_rcu(struct rcu_head
*head
, rcu_callback_t func
,
3122 struct rcu_state
*rsp
, int cpu
, bool lazy
)
3124 unsigned long flags
;
3125 struct rcu_data
*rdp
;
3127 /* Misaligned rcu_head! */
3128 WARN_ON_ONCE((unsigned long)head
& (sizeof(void *) - 1));
3130 if (debug_rcu_head_queue(head
)) {
3131 /* Probable double call_rcu(), so leak the callback. */
3132 WRITE_ONCE(head
->func
, rcu_leak_callback
);
3133 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3138 local_irq_save(flags
);
3139 rdp
= this_cpu_ptr(rsp
->rda
);
3141 /* Add the callback to our list. */
3142 if (unlikely(rdp
->nxttail
[RCU_NEXT_TAIL
] == NULL
) || cpu
!= -1) {
3146 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3147 if (likely(rdp
->mynode
)) {
3148 /* Post-boot, so this should be for a no-CBs CPU. */
3149 offline
= !__call_rcu_nocb(rdp
, head
, lazy
, flags
);
3150 WARN_ON_ONCE(offline
);
3151 /* Offline CPU, _call_rcu() illegal, leak callback. */
3152 local_irq_restore(flags
);
3156 * Very early boot, before rcu_init(). Initialize if needed
3157 * and then drop through to queue the callback.
3160 WARN_ON_ONCE(!rcu_is_watching());
3161 if (!likely(rdp
->nxtlist
))
3162 init_default_callback_list(rdp
);
3164 WRITE_ONCE(rdp
->qlen
, rdp
->qlen
+ 1);
3168 rcu_idle_count_callbacks_posted();
3169 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3170 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
3171 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
3173 if (__is_kfree_rcu_offset((unsigned long)func
))
3174 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
3175 rdp
->qlen_lazy
, rdp
->qlen
);
3177 trace_rcu_callback(rsp
->name
, head
, rdp
->qlen_lazy
, rdp
->qlen
);
3179 /* Go handle any RCU core processing required. */
3180 __call_rcu_core(rsp
, rdp
, head
, flags
);
3181 local_irq_restore(flags
);
3185 * Queue an RCU-sched callback for invocation after a grace period.
3187 void call_rcu_sched(struct rcu_head
*head
, rcu_callback_t func
)
3189 __call_rcu(head
, func
, &rcu_sched_state
, -1, 0);
3191 EXPORT_SYMBOL_GPL(call_rcu_sched
);
3194 * Queue an RCU callback for invocation after a quicker grace period.
3196 void call_rcu_bh(struct rcu_head
*head
, rcu_callback_t func
)
3198 __call_rcu(head
, func
, &rcu_bh_state
, -1, 0);
3200 EXPORT_SYMBOL_GPL(call_rcu_bh
);
3203 * Queue an RCU callback for lazy invocation after a grace period.
3204 * This will likely be later named something like "call_rcu_lazy()",
3205 * but this change will require some way of tagging the lazy RCU
3206 * callbacks in the list of pending callbacks. Until then, this
3207 * function may only be called from __kfree_rcu().
3209 void kfree_call_rcu(struct rcu_head
*head
,
3210 rcu_callback_t func
)
3212 __call_rcu(head
, func
, rcu_state_p
, -1, 1);
3214 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
3217 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3218 * any blocking grace-period wait automatically implies a grace period
3219 * if there is only one CPU online at any point time during execution
3220 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3221 * occasionally incorrectly indicate that there are multiple CPUs online
3222 * when there was in fact only one the whole time, as this just adds
3223 * some overhead: RCU still operates correctly.
3225 static inline int rcu_blocking_is_gp(void)
3229 might_sleep(); /* Check for RCU read-side critical section. */
3231 ret
= num_online_cpus() <= 1;
3237 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3239 * Control will return to the caller some time after a full rcu-sched
3240 * grace period has elapsed, in other words after all currently executing
3241 * rcu-sched read-side critical sections have completed. These read-side
3242 * critical sections are delimited by rcu_read_lock_sched() and
3243 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3244 * local_irq_disable(), and so on may be used in place of
3245 * rcu_read_lock_sched().
3247 * This means that all preempt_disable code sequences, including NMI and
3248 * non-threaded hardware-interrupt handlers, in progress on entry will
3249 * have completed before this primitive returns. However, this does not
3250 * guarantee that softirq handlers will have completed, since in some
3251 * kernels, these handlers can run in process context, and can block.
3253 * Note that this guarantee implies further memory-ordering guarantees.
3254 * On systems with more than one CPU, when synchronize_sched() returns,
3255 * each CPU is guaranteed to have executed a full memory barrier since the
3256 * end of its last RCU-sched read-side critical section whose beginning
3257 * preceded the call to synchronize_sched(). In addition, each CPU having
3258 * an RCU read-side critical section that extends beyond the return from
3259 * synchronize_sched() is guaranteed to have executed a full memory barrier
3260 * after the beginning of synchronize_sched() and before the beginning of
3261 * that RCU read-side critical section. Note that these guarantees include
3262 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3263 * that are executing in the kernel.
3265 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3266 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3267 * to have executed a full memory barrier during the execution of
3268 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3269 * again only if the system has more than one CPU).
3271 * This primitive provides the guarantees made by the (now removed)
3272 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3273 * guarantees that rcu_read_lock() sections will have completed.
3274 * In "classic RCU", these two guarantees happen to be one and
3275 * the same, but can differ in realtime RCU implementations.
3277 void synchronize_sched(void)
3279 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3280 lock_is_held(&rcu_lock_map
) ||
3281 lock_is_held(&rcu_sched_lock_map
),
3282 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3283 if (rcu_blocking_is_gp())
3285 if (rcu_gp_is_expedited())
3286 synchronize_sched_expedited();
3288 wait_rcu_gp(call_rcu_sched
);
3290 EXPORT_SYMBOL_GPL(synchronize_sched
);
3293 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3295 * Control will return to the caller some time after a full rcu_bh grace
3296 * period has elapsed, in other words after all currently executing rcu_bh
3297 * read-side critical sections have completed. RCU read-side critical
3298 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3299 * and may be nested.
3301 * See the description of synchronize_sched() for more detailed information
3302 * on memory ordering guarantees.
3304 void synchronize_rcu_bh(void)
3306 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3307 lock_is_held(&rcu_lock_map
) ||
3308 lock_is_held(&rcu_sched_lock_map
),
3309 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3310 if (rcu_blocking_is_gp())
3312 if (rcu_gp_is_expedited())
3313 synchronize_rcu_bh_expedited();
3315 wait_rcu_gp(call_rcu_bh
);
3317 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
3320 * get_state_synchronize_rcu - Snapshot current RCU state
3322 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3323 * to determine whether or not a full grace period has elapsed in the
3326 unsigned long get_state_synchronize_rcu(void)
3329 * Any prior manipulation of RCU-protected data must happen
3330 * before the load from ->gpnum.
3335 * Make sure this load happens before the purportedly
3336 * time-consuming work between get_state_synchronize_rcu()
3337 * and cond_synchronize_rcu().
3339 return smp_load_acquire(&rcu_state_p
->gpnum
);
3341 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu
);
3344 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3346 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3348 * If a full RCU grace period has elapsed since the earlier call to
3349 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3350 * synchronize_rcu() to wait for a full grace period.
3352 * Yes, this function does not take counter wrap into account. But
3353 * counter wrap is harmless. If the counter wraps, we have waited for
3354 * more than 2 billion grace periods (and way more on a 64-bit system!),
3355 * so waiting for one additional grace period should be just fine.
3357 void cond_synchronize_rcu(unsigned long oldstate
)
3359 unsigned long newstate
;
3362 * Ensure that this load happens before any RCU-destructive
3363 * actions the caller might carry out after we return.
3365 newstate
= smp_load_acquire(&rcu_state_p
->completed
);
3366 if (ULONG_CMP_GE(oldstate
, newstate
))
3369 EXPORT_SYMBOL_GPL(cond_synchronize_rcu
);
3372 * get_state_synchronize_sched - Snapshot current RCU-sched state
3374 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3375 * to determine whether or not a full grace period has elapsed in the
3378 unsigned long get_state_synchronize_sched(void)
3381 * Any prior manipulation of RCU-protected data must happen
3382 * before the load from ->gpnum.
3387 * Make sure this load happens before the purportedly
3388 * time-consuming work between get_state_synchronize_sched()
3389 * and cond_synchronize_sched().
3391 return smp_load_acquire(&rcu_sched_state
.gpnum
);
3393 EXPORT_SYMBOL_GPL(get_state_synchronize_sched
);
3396 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3398 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3400 * If a full RCU-sched grace period has elapsed since the earlier call to
3401 * get_state_synchronize_sched(), just return. Otherwise, invoke
3402 * synchronize_sched() to wait for a full grace period.
3404 * Yes, this function does not take counter wrap into account. But
3405 * counter wrap is harmless. If the counter wraps, we have waited for
3406 * more than 2 billion grace periods (and way more on a 64-bit system!),
3407 * so waiting for one additional grace period should be just fine.
3409 void cond_synchronize_sched(unsigned long oldstate
)
3411 unsigned long newstate
;
3414 * Ensure that this load happens before any RCU-destructive
3415 * actions the caller might carry out after we return.
3417 newstate
= smp_load_acquire(&rcu_sched_state
.completed
);
3418 if (ULONG_CMP_GE(oldstate
, newstate
))
3419 synchronize_sched();
3421 EXPORT_SYMBOL_GPL(cond_synchronize_sched
);
3423 /* Adjust sequence number for start of update-side operation. */
3424 static void rcu_seq_start(unsigned long *sp
)
3426 WRITE_ONCE(*sp
, *sp
+ 1);
3427 smp_mb(); /* Ensure update-side operation after counter increment. */
3428 WARN_ON_ONCE(!(*sp
& 0x1));
3431 /* Adjust sequence number for end of update-side operation. */
3432 static void rcu_seq_end(unsigned long *sp
)
3434 smp_mb(); /* Ensure update-side operation before counter increment. */
3435 WRITE_ONCE(*sp
, *sp
+ 1);
3436 WARN_ON_ONCE(*sp
& 0x1);
3439 /* Take a snapshot of the update side's sequence number. */
3440 static unsigned long rcu_seq_snap(unsigned long *sp
)
3444 s
= (READ_ONCE(*sp
) + 3) & ~0x1;
3445 smp_mb(); /* Above access must not bleed into critical section. */
3450 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3451 * full update-side operation has occurred.
3453 static bool rcu_seq_done(unsigned long *sp
, unsigned long s
)
3455 return ULONG_CMP_GE(READ_ONCE(*sp
), s
);
3459 * Check to see if there is any immediate RCU-related work to be done
3460 * by the current CPU, for the specified type of RCU, returning 1 if so.
3461 * The checks are in order of increasing expense: checks that can be
3462 * carried out against CPU-local state are performed first. However,
3463 * we must check for CPU stalls first, else we might not get a chance.
3465 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3467 struct rcu_node
*rnp
= rdp
->mynode
;
3469 rdp
->n_rcu_pending
++;
3471 /* Check for CPU stalls, if enabled. */
3472 check_cpu_stall(rsp
, rdp
);
3474 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3475 if (rcu_nohz_full_cpu(rsp
))
3478 /* Is the RCU core waiting for a quiescent state from this CPU? */
3479 if (rcu_scheduler_fully_active
&&
3480 rdp
->core_needs_qs
&& rdp
->cpu_no_qs
.b
.norm
&&
3481 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
)) {
3482 rdp
->n_rp_core_needs_qs
++;
3483 } else if (rdp
->core_needs_qs
&&
3484 (!rdp
->cpu_no_qs
.b
.norm
||
3485 rdp
->rcu_qs_ctr_snap
!= __this_cpu_read(rcu_qs_ctr
))) {
3486 rdp
->n_rp_report_qs
++;
3490 /* Does this CPU have callbacks ready to invoke? */
3491 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
3492 rdp
->n_rp_cb_ready
++;
3496 /* Has RCU gone idle with this CPU needing another grace period? */
3497 if (cpu_needs_another_gp(rsp
, rdp
)) {
3498 rdp
->n_rp_cpu_needs_gp
++;
3502 /* Has another RCU grace period completed? */
3503 if (READ_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
3504 rdp
->n_rp_gp_completed
++;
3508 /* Has a new RCU grace period started? */
3509 if (READ_ONCE(rnp
->gpnum
) != rdp
->gpnum
||
3510 unlikely(READ_ONCE(rdp
->gpwrap
))) { /* outside lock */
3511 rdp
->n_rp_gp_started
++;
3515 /* Does this CPU need a deferred NOCB wakeup? */
3516 if (rcu_nocb_need_deferred_wakeup(rdp
)) {
3517 rdp
->n_rp_nocb_defer_wakeup
++;
3522 rdp
->n_rp_need_nothing
++;
3527 * Check to see if there is any immediate RCU-related work to be done
3528 * by the current CPU, returning 1 if so. This function is part of the
3529 * RCU implementation; it is -not- an exported member of the RCU API.
3531 static int rcu_pending(void)
3533 struct rcu_state
*rsp
;
3535 for_each_rcu_flavor(rsp
)
3536 if (__rcu_pending(rsp
, this_cpu_ptr(rsp
->rda
)))
3542 * Return true if the specified CPU has any callback. If all_lazy is
3543 * non-NULL, store an indication of whether all callbacks are lazy.
3544 * (If there are no callbacks, all of them are deemed to be lazy.)
3546 static bool __maybe_unused
rcu_cpu_has_callbacks(bool *all_lazy
)
3550 struct rcu_data
*rdp
;
3551 struct rcu_state
*rsp
;
3553 for_each_rcu_flavor(rsp
) {
3554 rdp
= this_cpu_ptr(rsp
->rda
);
3558 if (rdp
->qlen
!= rdp
->qlen_lazy
|| !all_lazy
) {
3569 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3570 * the compiler is expected to optimize this away.
3572 static void _rcu_barrier_trace(struct rcu_state
*rsp
, const char *s
,
3573 int cpu
, unsigned long done
)
3575 trace_rcu_barrier(rsp
->name
, s
, cpu
,
3576 atomic_read(&rsp
->barrier_cpu_count
), done
);
3580 * RCU callback function for _rcu_barrier(). If we are last, wake
3581 * up the task executing _rcu_barrier().
3583 static void rcu_barrier_callback(struct rcu_head
*rhp
)
3585 struct rcu_data
*rdp
= container_of(rhp
, struct rcu_data
, barrier_head
);
3586 struct rcu_state
*rsp
= rdp
->rsp
;
3588 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
)) {
3589 _rcu_barrier_trace(rsp
, "LastCB", -1, rsp
->barrier_sequence
);
3590 complete(&rsp
->barrier_completion
);
3592 _rcu_barrier_trace(rsp
, "CB", -1, rsp
->barrier_sequence
);
3597 * Called with preemption disabled, and from cross-cpu IRQ context.
3599 static void rcu_barrier_func(void *type
)
3601 struct rcu_state
*rsp
= type
;
3602 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
3604 _rcu_barrier_trace(rsp
, "IRQ", -1, rsp
->barrier_sequence
);
3605 atomic_inc(&rsp
->barrier_cpu_count
);
3606 rsp
->call(&rdp
->barrier_head
, rcu_barrier_callback
);
3610 * Orchestrate the specified type of RCU barrier, waiting for all
3611 * RCU callbacks of the specified type to complete.
3613 static void _rcu_barrier(struct rcu_state
*rsp
)
3616 struct rcu_data
*rdp
;
3617 unsigned long s
= rcu_seq_snap(&rsp
->barrier_sequence
);
3619 _rcu_barrier_trace(rsp
, "Begin", -1, s
);
3621 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3622 mutex_lock(&rsp
->barrier_mutex
);
3624 /* Did someone else do our work for us? */
3625 if (rcu_seq_done(&rsp
->barrier_sequence
, s
)) {
3626 _rcu_barrier_trace(rsp
, "EarlyExit", -1, rsp
->barrier_sequence
);
3627 smp_mb(); /* caller's subsequent code after above check. */
3628 mutex_unlock(&rsp
->barrier_mutex
);
3632 /* Mark the start of the barrier operation. */
3633 rcu_seq_start(&rsp
->barrier_sequence
);
3634 _rcu_barrier_trace(rsp
, "Inc1", -1, rsp
->barrier_sequence
);
3637 * Initialize the count to one rather than to zero in order to
3638 * avoid a too-soon return to zero in case of a short grace period
3639 * (or preemption of this task). Exclude CPU-hotplug operations
3640 * to ensure that no offline CPU has callbacks queued.
3642 init_completion(&rsp
->barrier_completion
);
3643 atomic_set(&rsp
->barrier_cpu_count
, 1);
3647 * Force each CPU with callbacks to register a new callback.
3648 * When that callback is invoked, we will know that all of the
3649 * corresponding CPU's preceding callbacks have been invoked.
3651 for_each_possible_cpu(cpu
) {
3652 if (!cpu_online(cpu
) && !rcu_is_nocb_cpu(cpu
))
3654 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3655 if (rcu_is_nocb_cpu(cpu
)) {
3656 if (!rcu_nocb_cpu_needs_barrier(rsp
, cpu
)) {
3657 _rcu_barrier_trace(rsp
, "OfflineNoCB", cpu
,
3658 rsp
->barrier_sequence
);
3660 _rcu_barrier_trace(rsp
, "OnlineNoCB", cpu
,
3661 rsp
->barrier_sequence
);
3662 smp_mb__before_atomic();
3663 atomic_inc(&rsp
->barrier_cpu_count
);
3664 __call_rcu(&rdp
->barrier_head
,
3665 rcu_barrier_callback
, rsp
, cpu
, 0);
3667 } else if (READ_ONCE(rdp
->qlen
)) {
3668 _rcu_barrier_trace(rsp
, "OnlineQ", cpu
,
3669 rsp
->barrier_sequence
);
3670 smp_call_function_single(cpu
, rcu_barrier_func
, rsp
, 1);
3672 _rcu_barrier_trace(rsp
, "OnlineNQ", cpu
,
3673 rsp
->barrier_sequence
);
3679 * Now that we have an rcu_barrier_callback() callback on each
3680 * CPU, and thus each counted, remove the initial count.
3682 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
))
3683 complete(&rsp
->barrier_completion
);
3685 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3686 wait_for_completion(&rsp
->barrier_completion
);
3688 /* Mark the end of the barrier operation. */
3689 _rcu_barrier_trace(rsp
, "Inc2", -1, rsp
->barrier_sequence
);
3690 rcu_seq_end(&rsp
->barrier_sequence
);
3692 /* Other rcu_barrier() invocations can now safely proceed. */
3693 mutex_unlock(&rsp
->barrier_mutex
);
3697 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3699 void rcu_barrier_bh(void)
3701 _rcu_barrier(&rcu_bh_state
);
3703 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
3706 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3708 void rcu_barrier_sched(void)
3710 _rcu_barrier(&rcu_sched_state
);
3712 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
3715 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3716 * first CPU in a given leaf rcu_node structure coming online. The caller
3717 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3720 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
)
3723 struct rcu_node
*rnp
= rnp_leaf
;
3726 mask
= rnp
->grpmask
;
3730 raw_spin_lock_rcu_node(rnp
); /* Interrupts already disabled. */
3731 rnp
->qsmaskinit
|= mask
;
3732 raw_spin_unlock_rcu_node(rnp
); /* Interrupts remain disabled. */
3737 * Do boot-time initialization of a CPU's per-CPU RCU data.
3740 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
3742 unsigned long flags
;
3743 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3744 struct rcu_node
*rnp
= rcu_get_root(rsp
);
3746 /* Set up local state, ensuring consistent view of global state. */
3747 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3748 rdp
->grpmask
= leaf_node_cpu_bit(rdp
->mynode
, cpu
);
3749 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
3750 WARN_ON_ONCE(rdp
->dynticks
->dynticks_nesting
!= DYNTICK_TASK_EXIT_IDLE
);
3751 WARN_ON_ONCE(atomic_read(&rdp
->dynticks
->dynticks
) != 1);
3754 rcu_boot_init_nocb_percpu_data(rdp
);
3755 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3759 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3760 * offline event can be happening at a given time. Note also that we
3761 * can accept some slop in the rsp->completed access due to the fact
3762 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3765 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
3767 unsigned long flags
;
3769 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3770 struct rcu_node
*rnp
= rcu_get_root(rsp
);
3772 /* Set up local state, ensuring consistent view of global state. */
3773 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3774 rdp
->qlen_last_fqs_check
= 0;
3775 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3776 rdp
->blimit
= blimit
;
3778 init_callback_list(rdp
); /* Re-enable callbacks on this CPU. */
3779 rdp
->dynticks
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
3780 rcu_sysidle_init_percpu_data(rdp
->dynticks
);
3781 atomic_set(&rdp
->dynticks
->dynticks
,
3782 (atomic_read(&rdp
->dynticks
->dynticks
) & ~0x1) + 1);
3783 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
3786 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3787 * propagation up the rcu_node tree will happen at the beginning
3788 * of the next grace period.
3791 mask
= rdp
->grpmask
;
3792 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
3793 if (!rdp
->beenonline
)
3794 WRITE_ONCE(rsp
->ncpus
, READ_ONCE(rsp
->ncpus
) + 1);
3795 rdp
->beenonline
= true; /* We have now been online. */
3796 rdp
->gpnum
= rnp
->completed
; /* Make CPU later note any new GP. */
3797 rdp
->completed
= rnp
->completed
;
3798 rdp
->cpu_no_qs
.b
.norm
= true;
3799 rdp
->rcu_qs_ctr_snap
= per_cpu(rcu_qs_ctr
, cpu
);
3800 rdp
->core_needs_qs
= false;
3801 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuonl"));
3802 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3805 int rcutree_prepare_cpu(unsigned int cpu
)
3807 struct rcu_state
*rsp
;
3809 for_each_rcu_flavor(rsp
)
3810 rcu_init_percpu_data(cpu
, rsp
);
3812 rcu_prepare_kthreads(cpu
);
3813 rcu_spawn_all_nocb_kthreads(cpu
);
3818 static void rcutree_affinity_setting(unsigned int cpu
, int outgoing
)
3820 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
3822 rcu_boost_kthread_setaffinity(rdp
->mynode
, outgoing
);
3825 int rcutree_online_cpu(unsigned int cpu
)
3827 sync_sched_exp_online_cleanup(cpu
);
3828 rcutree_affinity_setting(cpu
, -1);
3832 int rcutree_offline_cpu(unsigned int cpu
)
3834 rcutree_affinity_setting(cpu
, cpu
);
3839 int rcutree_dying_cpu(unsigned int cpu
)
3841 struct rcu_state
*rsp
;
3843 for_each_rcu_flavor(rsp
)
3844 rcu_cleanup_dying_cpu(rsp
);
3848 int rcutree_dead_cpu(unsigned int cpu
)
3850 struct rcu_state
*rsp
;
3852 for_each_rcu_flavor(rsp
) {
3853 rcu_cleanup_dead_cpu(cpu
, rsp
);
3854 do_nocb_deferred_wakeup(per_cpu_ptr(rsp
->rda
, cpu
));
3860 * Mark the specified CPU as being online so that subsequent grace periods
3861 * (both expedited and normal) will wait on it. Note that this means that
3862 * incoming CPUs are not allowed to use RCU read-side critical sections
3863 * until this function is called. Failing to observe this restriction
3864 * will result in lockdep splats.
3866 void rcu_cpu_starting(unsigned int cpu
)
3868 unsigned long flags
;
3870 struct rcu_data
*rdp
;
3871 struct rcu_node
*rnp
;
3872 struct rcu_state
*rsp
;
3874 for_each_rcu_flavor(rsp
) {
3875 rdp
= this_cpu_ptr(rsp
->rda
);
3877 mask
= rdp
->grpmask
;
3878 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3879 rnp
->qsmaskinitnext
|= mask
;
3880 rnp
->expmaskinitnext
|= mask
;
3881 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3885 #ifdef CONFIG_HOTPLUG_CPU
3887 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3888 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3890 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3891 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3894 static void rcu_cleanup_dying_idle_cpu(int cpu
, struct rcu_state
*rsp
)
3896 unsigned long flags
;
3898 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3899 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
3901 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3902 mask
= rdp
->grpmask
;
3903 raw_spin_lock_irqsave_rcu_node(rnp
, flags
); /* Enforce GP memory-order guarantee. */
3904 rnp
->qsmaskinitnext
&= ~mask
;
3905 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3908 void rcu_report_dead(unsigned int cpu
)
3910 struct rcu_state
*rsp
;
3912 /* QS for any half-done expedited RCU-sched GP. */
3914 rcu_report_exp_rdp(&rcu_sched_state
,
3915 this_cpu_ptr(rcu_sched_state
.rda
), true);
3917 for_each_rcu_flavor(rsp
)
3918 rcu_cleanup_dying_idle_cpu(cpu
, rsp
);
3922 static int rcu_pm_notify(struct notifier_block
*self
,
3923 unsigned long action
, void *hcpu
)
3926 case PM_HIBERNATION_PREPARE
:
3927 case PM_SUSPEND_PREPARE
:
3928 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3931 case PM_POST_HIBERNATION
:
3932 case PM_POST_SUSPEND
:
3933 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3934 rcu_unexpedite_gp();
3943 * Spawn the kthreads that handle each RCU flavor's grace periods.
3945 static int __init
rcu_spawn_gp_kthread(void)
3947 unsigned long flags
;
3948 int kthread_prio_in
= kthread_prio
;
3949 struct rcu_node
*rnp
;
3950 struct rcu_state
*rsp
;
3951 struct sched_param sp
;
3952 struct task_struct
*t
;
3954 /* Force priority into range. */
3955 if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 1)
3957 else if (kthread_prio
< 0)
3959 else if (kthread_prio
> 99)
3961 if (kthread_prio
!= kthread_prio_in
)
3962 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3963 kthread_prio
, kthread_prio_in
);
3965 rcu_scheduler_fully_active
= 1;
3966 for_each_rcu_flavor(rsp
) {
3967 t
= kthread_create(rcu_gp_kthread
, rsp
, "%s", rsp
->name
);
3969 rnp
= rcu_get_root(rsp
);
3970 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3971 rsp
->gp_kthread
= t
;
3973 sp
.sched_priority
= kthread_prio
;
3974 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
3976 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3979 rcu_spawn_nocb_kthreads();
3980 rcu_spawn_boost_kthreads();
3983 early_initcall(rcu_spawn_gp_kthread
);
3986 * This function is invoked towards the end of the scheduler's
3987 * initialization process. Before this is called, the idle task might
3988 * contain synchronous grace-period primitives (during which time, this idle
3989 * task is booting the system, and such primitives are no-ops). After this
3990 * function is called, any synchronous grace-period primitives are run as
3991 * expedited, with the requesting task driving the grace period forward.
3992 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
3993 * runtime RCU functionality.
3995 void rcu_scheduler_starting(void)
3997 WARN_ON(num_online_cpus() != 1);
3998 WARN_ON(nr_context_switches() > 0);
3999 rcu_test_sync_prims();
4000 rcu_scheduler_active
= RCU_SCHEDULER_INIT
;
4001 rcu_test_sync_prims();
4005 * Compute the per-level fanout, either using the exact fanout specified
4006 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4008 static void __init
rcu_init_levelspread(int *levelspread
, const int *levelcnt
)
4012 if (rcu_fanout_exact
) {
4013 levelspread
[rcu_num_lvls
- 1] = rcu_fanout_leaf
;
4014 for (i
= rcu_num_lvls
- 2; i
>= 0; i
--)
4015 levelspread
[i
] = RCU_FANOUT
;
4021 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4023 levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
4030 * Helper function for rcu_init() that initializes one rcu_state structure.
4032 static void __init
rcu_init_one(struct rcu_state
*rsp
)
4034 static const char * const buf
[] = RCU_NODE_NAME_INIT
;
4035 static const char * const fqs
[] = RCU_FQS_NAME_INIT
;
4036 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
4037 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
4038 static u8 fl_mask
= 0x1;
4040 int levelcnt
[RCU_NUM_LVLS
]; /* # nodes in each level. */
4041 int levelspread
[RCU_NUM_LVLS
]; /* kids/node in each level. */
4045 struct rcu_node
*rnp
;
4047 BUILD_BUG_ON(RCU_NUM_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
4049 /* Silence gcc 4.8 false positive about array index out of range. */
4050 if (rcu_num_lvls
<= 0 || rcu_num_lvls
> RCU_NUM_LVLS
)
4051 panic("rcu_init_one: rcu_num_lvls out of range");
4053 /* Initialize the level-tracking arrays. */
4055 for (i
= 0; i
< rcu_num_lvls
; i
++)
4056 levelcnt
[i
] = num_rcu_lvl
[i
];
4057 for (i
= 1; i
< rcu_num_lvls
; i
++)
4058 rsp
->level
[i
] = rsp
->level
[i
- 1] + levelcnt
[i
- 1];
4059 rcu_init_levelspread(levelspread
, levelcnt
);
4060 rsp
->flavor_mask
= fl_mask
;
4063 /* Initialize the elements themselves, starting from the leaves. */
4065 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4066 cpustride
*= levelspread
[i
];
4067 rnp
= rsp
->level
[i
];
4068 for (j
= 0; j
< levelcnt
[i
]; j
++, rnp
++) {
4069 raw_spin_lock_init(&ACCESS_PRIVATE(rnp
, lock
));
4070 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp
, lock
),
4071 &rcu_node_class
[i
], buf
[i
]);
4072 raw_spin_lock_init(&rnp
->fqslock
);
4073 lockdep_set_class_and_name(&rnp
->fqslock
,
4074 &rcu_fqs_class
[i
], fqs
[i
]);
4075 rnp
->gpnum
= rsp
->gpnum
;
4076 rnp
->completed
= rsp
->completed
;
4078 rnp
->qsmaskinit
= 0;
4079 rnp
->grplo
= j
* cpustride
;
4080 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
4081 if (rnp
->grphi
>= nr_cpu_ids
)
4082 rnp
->grphi
= nr_cpu_ids
- 1;
4088 rnp
->grpnum
= j
% levelspread
[i
- 1];
4089 rnp
->grpmask
= 1UL << rnp
->grpnum
;
4090 rnp
->parent
= rsp
->level
[i
- 1] +
4091 j
/ levelspread
[i
- 1];
4094 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
4095 rcu_init_one_nocb(rnp
);
4096 init_waitqueue_head(&rnp
->exp_wq
[0]);
4097 init_waitqueue_head(&rnp
->exp_wq
[1]);
4098 init_waitqueue_head(&rnp
->exp_wq
[2]);
4099 init_waitqueue_head(&rnp
->exp_wq
[3]);
4100 spin_lock_init(&rnp
->exp_lock
);
4104 init_swait_queue_head(&rsp
->gp_wq
);
4105 init_swait_queue_head(&rsp
->expedited_wq
);
4106 rnp
= rsp
->level
[rcu_num_lvls
- 1];
4107 for_each_possible_cpu(i
) {
4108 while (i
> rnp
->grphi
)
4110 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
4111 rcu_boot_init_percpu_data(i
, rsp
);
4113 list_add(&rsp
->flavors
, &rcu_struct_flavors
);
4117 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4118 * replace the definitions in tree.h because those are needed to size
4119 * the ->node array in the rcu_state structure.
4121 static void __init
rcu_init_geometry(void)
4125 int rcu_capacity
[RCU_NUM_LVLS
];
4128 * Initialize any unspecified boot parameters.
4129 * The default values of jiffies_till_first_fqs and
4130 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4131 * value, which is a function of HZ, then adding one for each
4132 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4134 d
= RCU_JIFFIES_TILL_FORCE_QS
+ nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
4135 if (jiffies_till_first_fqs
== ULONG_MAX
)
4136 jiffies_till_first_fqs
= d
;
4137 if (jiffies_till_next_fqs
== ULONG_MAX
)
4138 jiffies_till_next_fqs
= d
;
4140 /* If the compile-time values are accurate, just leave. */
4141 if (rcu_fanout_leaf
== RCU_FANOUT_LEAF
&&
4142 nr_cpu_ids
== NR_CPUS
)
4144 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4145 rcu_fanout_leaf
, nr_cpu_ids
);
4148 * The boot-time rcu_fanout_leaf parameter must be at least two
4149 * and cannot exceed the number of bits in the rcu_node masks.
4150 * Complain and fall back to the compile-time values if this
4151 * limit is exceeded.
4153 if (rcu_fanout_leaf
< 2 ||
4154 rcu_fanout_leaf
> sizeof(unsigned long) * 8) {
4155 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4161 * Compute number of nodes that can be handled an rcu_node tree
4162 * with the given number of levels.
4164 rcu_capacity
[0] = rcu_fanout_leaf
;
4165 for (i
= 1; i
< RCU_NUM_LVLS
; i
++)
4166 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * RCU_FANOUT
;
4169 * The tree must be able to accommodate the configured number of CPUs.
4170 * If this limit is exceeded, fall back to the compile-time values.
4172 if (nr_cpu_ids
> rcu_capacity
[RCU_NUM_LVLS
- 1]) {
4173 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4178 /* Calculate the number of levels in the tree. */
4179 for (i
= 0; nr_cpu_ids
> rcu_capacity
[i
]; i
++) {
4181 rcu_num_lvls
= i
+ 1;
4183 /* Calculate the number of rcu_nodes at each level of the tree. */
4184 for (i
= 0; i
< rcu_num_lvls
; i
++) {
4185 int cap
= rcu_capacity
[(rcu_num_lvls
- 1) - i
];
4186 num_rcu_lvl
[i
] = DIV_ROUND_UP(nr_cpu_ids
, cap
);
4189 /* Calculate the total number of rcu_node structures. */
4191 for (i
= 0; i
< rcu_num_lvls
; i
++)
4192 rcu_num_nodes
+= num_rcu_lvl
[i
];
4196 * Dump out the structure of the rcu_node combining tree associated
4197 * with the rcu_state structure referenced by rsp.
4199 static void __init
rcu_dump_rcu_node_tree(struct rcu_state
*rsp
)
4202 struct rcu_node
*rnp
;
4204 pr_info("rcu_node tree layout dump\n");
4206 rcu_for_each_node_breadth_first(rsp
, rnp
) {
4207 if (rnp
->level
!= level
) {
4212 pr_cont("%d:%d ^%d ", rnp
->grplo
, rnp
->grphi
, rnp
->grpnum
);
4217 void __init
rcu_init(void)
4221 rcu_early_boot_tests();
4223 rcu_bootup_announce();
4224 rcu_init_geometry();
4225 rcu_init_one(&rcu_bh_state
);
4226 rcu_init_one(&rcu_sched_state
);
4228 rcu_dump_rcu_node_tree(&rcu_sched_state
);
4229 __rcu_init_preempt();
4230 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
4233 * We don't need protection against CPU-hotplug here because
4234 * this is called early in boot, before either interrupts
4235 * or the scheduler are operational.
4237 pm_notifier(rcu_pm_notify
, 0);
4238 for_each_online_cpu(cpu
) {
4239 rcutree_prepare_cpu(cpu
);
4240 rcu_cpu_starting(cpu
);
4244 #include "tree_exp.h"
4245 #include "tree_plugin.h"