2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
53 #include <linux/uaccess.h>
55 #include <trace/events/timer.h>
57 #include "tick-internal.h"
62 * There are more clockids than hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
67 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
69 .lock
= __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases
.lock
),
70 .seq
= SEQCNT_ZERO(hrtimer_bases
.seq
),
74 .index
= HRTIMER_BASE_MONOTONIC
,
75 .clockid
= CLOCK_MONOTONIC
,
76 .get_time
= &ktime_get
,
79 .index
= HRTIMER_BASE_REALTIME
,
80 .clockid
= CLOCK_REALTIME
,
81 .get_time
= &ktime_get_real
,
84 .index
= HRTIMER_BASE_BOOTTIME
,
85 .clockid
= CLOCK_BOOTTIME
,
86 .get_time
= &ktime_get_boottime
,
89 .index
= HRTIMER_BASE_TAI
,
91 .get_time
= &ktime_get_clocktai
,
96 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
97 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
98 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
99 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
100 [CLOCK_TAI
] = HRTIMER_BASE_TAI
,
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
105 return hrtimer_clock_to_base_table
[clock_id
];
109 * Functions and macros which are different for UP/SMP systems are kept in a
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
119 static struct hrtimer_cpu_base migration_cpu_base
= {
120 .seq
= SEQCNT_ZERO(migration_cpu_base
),
121 .clock_base
= { { .cpu_base
= &migration_cpu_base
, }, },
124 #define migration_base migration_cpu_base.clock_base[0]
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
134 * When the timer's base is locked, and the timer removed from list, it is
135 * possible to set timer->base = &migration_base and drop the lock: the timer
139 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
140 unsigned long *flags
)
142 struct hrtimer_clock_base
*base
;
146 if (likely(base
!= &migration_base
)) {
147 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
148 if (likely(base
== timer
->base
))
150 /* The timer has migrated to another CPU: */
151 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
162 * Called with cpu_base->lock of target cpu held.
165 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
167 #ifdef CONFIG_HIGH_RES_TIMERS
170 if (!new_base
->cpu_base
->hres_active
)
173 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
174 return expires
<= new_base
->cpu_base
->expires_next
;
180 #ifdef CONFIG_NO_HZ_COMMON
182 struct hrtimer_cpu_base
*get_target_base(struct hrtimer_cpu_base
*base
,
185 if (pinned
|| !base
->migration_enabled
)
187 return &per_cpu(hrtimer_bases
, get_nohz_timer_target());
191 struct hrtimer_cpu_base
*get_target_base(struct hrtimer_cpu_base
*base
,
199 * We switch the timer base to a power-optimized selected CPU target,
201 * - NO_HZ_COMMON is enabled
202 * - timer migration is enabled
203 * - the timer callback is not running
204 * - the timer is not the first expiring timer on the new target
206 * If one of the above requirements is not fulfilled we move the timer
207 * to the current CPU or leave it on the previously assigned CPU if
208 * the timer callback is currently running.
210 static inline struct hrtimer_clock_base
*
211 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
214 struct hrtimer_cpu_base
*new_cpu_base
, *this_cpu_base
;
215 struct hrtimer_clock_base
*new_base
;
216 int basenum
= base
->index
;
218 this_cpu_base
= this_cpu_ptr(&hrtimer_bases
);
219 new_cpu_base
= get_target_base(this_cpu_base
, pinned
);
221 new_base
= &new_cpu_base
->clock_base
[basenum
];
223 if (base
!= new_base
) {
225 * We are trying to move timer to new_base.
226 * However we can't change timer's base while it is running,
227 * so we keep it on the same CPU. No hassle vs. reprogramming
228 * the event source in the high resolution case. The softirq
229 * code will take care of this when the timer function has
230 * completed. There is no conflict as we hold the lock until
231 * the timer is enqueued.
233 if (unlikely(hrtimer_callback_running(timer
)))
236 /* See the comment in lock_hrtimer_base() */
237 timer
->base
= &migration_base
;
238 raw_spin_unlock(&base
->cpu_base
->lock
);
239 raw_spin_lock(&new_base
->cpu_base
->lock
);
241 if (new_cpu_base
!= this_cpu_base
&&
242 hrtimer_check_target(timer
, new_base
)) {
243 raw_spin_unlock(&new_base
->cpu_base
->lock
);
244 raw_spin_lock(&base
->cpu_base
->lock
);
245 new_cpu_base
= this_cpu_base
;
249 timer
->base
= new_base
;
251 if (new_cpu_base
!= this_cpu_base
&&
252 hrtimer_check_target(timer
, new_base
)) {
253 new_cpu_base
= this_cpu_base
;
260 #else /* CONFIG_SMP */
262 static inline struct hrtimer_clock_base
*
263 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
265 struct hrtimer_clock_base
*base
= timer
->base
;
267 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
272 # define switch_hrtimer_base(t, b, p) (b)
274 #endif /* !CONFIG_SMP */
277 * Functions for the union type storage format of ktime_t which are
278 * too large for inlining:
280 #if BITS_PER_LONG < 64
282 * Divide a ktime value by a nanosecond value
284 s64
__ktime_divns(const ktime_t kt
, s64 div
)
290 dclc
= ktime_to_ns(kt
);
291 tmp
= dclc
< 0 ? -dclc
: dclc
;
293 /* Make sure the divisor is less than 2^32: */
299 do_div(tmp
, (unsigned long) div
);
300 return dclc
< 0 ? -tmp
: tmp
;
302 EXPORT_SYMBOL_GPL(__ktime_divns
);
303 #endif /* BITS_PER_LONG >= 64 */
306 * Add two ktime values and do a safety check for overflow:
308 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
310 ktime_t res
= ktime_add_unsafe(lhs
, rhs
);
313 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 * return to user space in a timespec:
316 if (res
< 0 || res
< lhs
|| res
< rhs
)
317 res
= ktime_set(KTIME_SEC_MAX
, 0);
322 EXPORT_SYMBOL_GPL(ktime_add_safe
);
324 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
326 static struct debug_obj_descr hrtimer_debug_descr
;
328 static void *hrtimer_debug_hint(void *addr
)
330 return ((struct hrtimer
*) addr
)->function
;
334 * fixup_init is called when:
335 * - an active object is initialized
337 static bool hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
339 struct hrtimer
*timer
= addr
;
342 case ODEBUG_STATE_ACTIVE
:
343 hrtimer_cancel(timer
);
344 debug_object_init(timer
, &hrtimer_debug_descr
);
352 * fixup_activate is called when:
353 * - an active object is activated
354 * - an unknown non-static object is activated
356 static bool hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
359 case ODEBUG_STATE_ACTIVE
:
368 * fixup_free is called when:
369 * - an active object is freed
371 static bool hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
373 struct hrtimer
*timer
= addr
;
376 case ODEBUG_STATE_ACTIVE
:
377 hrtimer_cancel(timer
);
378 debug_object_free(timer
, &hrtimer_debug_descr
);
385 static struct debug_obj_descr hrtimer_debug_descr
= {
387 .debug_hint
= hrtimer_debug_hint
,
388 .fixup_init
= hrtimer_fixup_init
,
389 .fixup_activate
= hrtimer_fixup_activate
,
390 .fixup_free
= hrtimer_fixup_free
,
393 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
395 debug_object_init(timer
, &hrtimer_debug_descr
);
398 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
400 debug_object_activate(timer
, &hrtimer_debug_descr
);
403 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
405 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
408 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
410 debug_object_free(timer
, &hrtimer_debug_descr
);
413 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
414 enum hrtimer_mode mode
);
416 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
417 enum hrtimer_mode mode
)
419 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
420 __hrtimer_init(timer
, clock_id
, mode
);
422 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
424 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
426 debug_object_free(timer
, &hrtimer_debug_descr
);
428 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack
);
431 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
432 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
433 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
437 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
438 enum hrtimer_mode mode
)
440 debug_hrtimer_init(timer
);
441 trace_hrtimer_init(timer
, clockid
, mode
);
444 static inline void debug_activate(struct hrtimer
*timer
)
446 debug_hrtimer_activate(timer
);
447 trace_hrtimer_start(timer
);
450 static inline void debug_deactivate(struct hrtimer
*timer
)
452 debug_hrtimer_deactivate(timer
);
453 trace_hrtimer_cancel(timer
);
456 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
457 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base
*cpu_base
,
458 struct hrtimer
*timer
)
460 #ifdef CONFIG_HIGH_RES_TIMERS
461 cpu_base
->next_timer
= timer
;
465 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base
*cpu_base
)
467 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
468 unsigned int active
= cpu_base
->active_bases
;
469 ktime_t expires
, expires_next
= KTIME_MAX
;
471 hrtimer_update_next_timer(cpu_base
, NULL
);
472 for (; active
; base
++, active
>>= 1) {
473 struct timerqueue_node
*next
;
474 struct hrtimer
*timer
;
476 if (!(active
& 0x01))
479 next
= timerqueue_getnext(&base
->active
);
480 timer
= container_of(next
, struct hrtimer
, node
);
481 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
482 if (expires
< expires_next
) {
483 expires_next
= expires
;
484 hrtimer_update_next_timer(cpu_base
, timer
);
488 * clock_was_set() might have changed base->offset of any of
489 * the clock bases so the result might be negative. Fix it up
490 * to prevent a false positive in clockevents_program_event().
492 if (expires_next
< 0)
498 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
500 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
501 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
502 ktime_t
*offs_tai
= &base
->clock_base
[HRTIMER_BASE_TAI
].offset
;
504 return ktime_get_update_offsets_now(&base
->clock_was_set_seq
,
505 offs_real
, offs_boot
, offs_tai
);
508 /* High resolution timer related functions */
509 #ifdef CONFIG_HIGH_RES_TIMERS
512 * High resolution timer enabled ?
514 static bool hrtimer_hres_enabled __read_mostly
= true;
515 unsigned int hrtimer_resolution __read_mostly
= LOW_RES_NSEC
;
516 EXPORT_SYMBOL_GPL(hrtimer_resolution
);
519 * Enable / Disable high resolution mode
521 static int __init
setup_hrtimer_hres(char *str
)
523 return (kstrtobool(str
, &hrtimer_hres_enabled
) == 0);
526 __setup("highres=", setup_hrtimer_hres
);
529 * hrtimer_high_res_enabled - query, if the highres mode is enabled
531 static inline int hrtimer_is_hres_enabled(void)
533 return hrtimer_hres_enabled
;
537 * Is the high resolution mode active ?
539 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base
*cpu_base
)
541 return cpu_base
->hres_active
;
544 static inline int hrtimer_hres_active(void)
546 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases
));
550 * Reprogram the event source with checking both queues for the
552 * Called with interrupts disabled and base->lock held
555 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
557 ktime_t expires_next
;
559 if (!cpu_base
->hres_active
)
562 expires_next
= __hrtimer_get_next_event(cpu_base
);
564 if (skip_equal
&& expires_next
== cpu_base
->expires_next
)
567 cpu_base
->expires_next
= expires_next
;
570 * If a hang was detected in the last timer interrupt then we
571 * leave the hang delay active in the hardware. We want the
572 * system to make progress. That also prevents the following
574 * T1 expires 50ms from now
575 * T2 expires 5s from now
577 * T1 is removed, so this code is called and would reprogram
578 * the hardware to 5s from now. Any hrtimer_start after that
579 * will not reprogram the hardware due to hang_detected being
580 * set. So we'd effectivly block all timers until the T2 event
583 if (cpu_base
->hang_detected
)
586 tick_program_event(cpu_base
->expires_next
, 1);
590 * When a timer is enqueued and expires earlier than the already enqueued
591 * timers, we have to check, whether it expires earlier than the timer for
592 * which the clock event device was armed.
594 * Called with interrupts disabled and base->cpu_base.lock held
596 static void hrtimer_reprogram(struct hrtimer
*timer
,
597 struct hrtimer_clock_base
*base
)
599 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
600 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
602 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
605 * If the timer is not on the current cpu, we cannot reprogram
606 * the other cpus clock event device.
608 if (base
->cpu_base
!= cpu_base
)
612 * If the hrtimer interrupt is running, then it will
613 * reevaluate the clock bases and reprogram the clock event
614 * device. The callbacks are always executed in hard interrupt
615 * context so we don't need an extra check for a running
618 if (cpu_base
->in_hrtirq
)
622 * CLOCK_REALTIME timer might be requested with an absolute
623 * expiry time which is less than base->offset. Set it to 0.
628 if (expires
>= cpu_base
->expires_next
)
631 /* Update the pointer to the next expiring timer */
632 cpu_base
->next_timer
= timer
;
635 * If a hang was detected in the last timer interrupt then we
636 * do not schedule a timer which is earlier than the expiry
637 * which we enforced in the hang detection. We want the system
640 if (cpu_base
->hang_detected
)
644 * Program the timer hardware. We enforce the expiry for
645 * events which are already in the past.
647 cpu_base
->expires_next
= expires
;
648 tick_program_event(expires
, 1);
652 * Initialize the high resolution related parts of cpu_base
654 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
656 base
->expires_next
= KTIME_MAX
;
657 base
->hres_active
= 0;
661 * Retrigger next event is called after clock was set
663 * Called with interrupts disabled via on_each_cpu()
665 static void retrigger_next_event(void *arg
)
667 struct hrtimer_cpu_base
*base
= this_cpu_ptr(&hrtimer_bases
);
669 if (!base
->hres_active
)
672 raw_spin_lock(&base
->lock
);
673 hrtimer_update_base(base
);
674 hrtimer_force_reprogram(base
, 0);
675 raw_spin_unlock(&base
->lock
);
679 * Switch to high resolution mode
681 static void hrtimer_switch_to_hres(void)
683 struct hrtimer_cpu_base
*base
= this_cpu_ptr(&hrtimer_bases
);
685 if (tick_init_highres()) {
686 printk(KERN_WARNING
"Could not switch to high resolution "
687 "mode on CPU %d\n", base
->cpu
);
690 base
->hres_active
= 1;
691 hrtimer_resolution
= HIGH_RES_NSEC
;
693 tick_setup_sched_timer();
694 /* "Retrigger" the interrupt to get things going */
695 retrigger_next_event(NULL
);
698 static void clock_was_set_work(struct work_struct
*work
)
703 static DECLARE_WORK(hrtimer_work
, clock_was_set_work
);
706 * Called from timekeeping and resume code to reprogram the hrtimer
707 * interrupt device on all cpus.
709 void clock_was_set_delayed(void)
711 schedule_work(&hrtimer_work
);
716 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base
*b
) { return 0; }
717 static inline int hrtimer_hres_active(void) { return 0; }
718 static inline int hrtimer_is_hres_enabled(void) { return 0; }
719 static inline void hrtimer_switch_to_hres(void) { }
721 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
722 static inline int hrtimer_reprogram(struct hrtimer
*timer
,
723 struct hrtimer_clock_base
*base
)
727 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
728 static inline void retrigger_next_event(void *arg
) { }
730 #endif /* CONFIG_HIGH_RES_TIMERS */
733 * Clock realtime was set
735 * Change the offset of the realtime clock vs. the monotonic
738 * We might have to reprogram the high resolution timer interrupt. On
739 * SMP we call the architecture specific code to retrigger _all_ high
740 * resolution timer interrupts. On UP we just disable interrupts and
741 * call the high resolution interrupt code.
743 void clock_was_set(void)
745 #ifdef CONFIG_HIGH_RES_TIMERS
746 /* Retrigger the CPU local events everywhere */
747 on_each_cpu(retrigger_next_event
, NULL
, 1);
749 timerfd_clock_was_set();
753 * During resume we might have to reprogram the high resolution timer
754 * interrupt on all online CPUs. However, all other CPUs will be
755 * stopped with IRQs interrupts disabled so the clock_was_set() call
758 void hrtimers_resume(void)
760 WARN_ONCE(!irqs_disabled(),
761 KERN_INFO
"hrtimers_resume() called with IRQs enabled!");
763 /* Retrigger on the local CPU */
764 retrigger_next_event(NULL
);
765 /* And schedule a retrigger for all others */
766 clock_was_set_delayed();
769 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
771 #ifdef CONFIG_TIMER_STATS
772 if (timer
->start_site
)
774 timer
->start_site
= __builtin_return_address(0);
775 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
776 timer
->start_pid
= current
->pid
;
780 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
782 #ifdef CONFIG_TIMER_STATS
783 timer
->start_site
= NULL
;
787 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
789 #ifdef CONFIG_TIMER_STATS
790 if (likely(!timer_stats_active
))
792 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
793 timer
->function
, timer
->start_comm
, 0);
798 * Counterpart to lock_hrtimer_base above:
801 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
803 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
807 * hrtimer_forward - forward the timer expiry
808 * @timer: hrtimer to forward
809 * @now: forward past this time
810 * @interval: the interval to forward
812 * Forward the timer expiry so it will expire in the future.
813 * Returns the number of overruns.
815 * Can be safely called from the callback function of @timer. If
816 * called from other contexts @timer must neither be enqueued nor
817 * running the callback and the caller needs to take care of
820 * Note: This only updates the timer expiry value and does not requeue
823 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
828 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
833 if (WARN_ON(timer
->state
& HRTIMER_STATE_ENQUEUED
))
836 if (interval
< hrtimer_resolution
)
837 interval
= hrtimer_resolution
;
839 if (unlikely(delta
>= interval
)) {
840 s64 incr
= ktime_to_ns(interval
);
842 orun
= ktime_divns(delta
, incr
);
843 hrtimer_add_expires_ns(timer
, incr
* orun
);
844 if (hrtimer_get_expires_tv64(timer
) > now
)
847 * This (and the ktime_add() below) is the
848 * correction for exact:
852 hrtimer_add_expires(timer
, interval
);
856 EXPORT_SYMBOL_GPL(hrtimer_forward
);
859 * enqueue_hrtimer - internal function to (re)start a timer
861 * The timer is inserted in expiry order. Insertion into the
862 * red black tree is O(log(n)). Must hold the base lock.
864 * Returns 1 when the new timer is the leftmost timer in the tree.
866 static int enqueue_hrtimer(struct hrtimer
*timer
,
867 struct hrtimer_clock_base
*base
)
869 debug_activate(timer
);
871 base
->cpu_base
->active_bases
|= 1 << base
->index
;
873 timer
->state
= HRTIMER_STATE_ENQUEUED
;
875 return timerqueue_add(&base
->active
, &timer
->node
);
879 * __remove_hrtimer - internal function to remove a timer
881 * Caller must hold the base lock.
883 * High resolution timer mode reprograms the clock event device when the
884 * timer is the one which expires next. The caller can disable this by setting
885 * reprogram to zero. This is useful, when the context does a reprogramming
886 * anyway (e.g. timer interrupt)
888 static void __remove_hrtimer(struct hrtimer
*timer
,
889 struct hrtimer_clock_base
*base
,
890 u8 newstate
, int reprogram
)
892 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
893 u8 state
= timer
->state
;
895 timer
->state
= newstate
;
896 if (!(state
& HRTIMER_STATE_ENQUEUED
))
899 if (!timerqueue_del(&base
->active
, &timer
->node
))
900 cpu_base
->active_bases
&= ~(1 << base
->index
);
902 #ifdef CONFIG_HIGH_RES_TIMERS
904 * Note: If reprogram is false we do not update
905 * cpu_base->next_timer. This happens when we remove the first
906 * timer on a remote cpu. No harm as we never dereference
907 * cpu_base->next_timer. So the worst thing what can happen is
908 * an superflous call to hrtimer_force_reprogram() on the
909 * remote cpu later on if the same timer gets enqueued again.
911 if (reprogram
&& timer
== cpu_base
->next_timer
)
912 hrtimer_force_reprogram(cpu_base
, 1);
917 * remove hrtimer, called with base lock held
920 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
, bool restart
)
922 if (hrtimer_is_queued(timer
)) {
923 u8 state
= timer
->state
;
927 * Remove the timer and force reprogramming when high
928 * resolution mode is active and the timer is on the current
929 * CPU. If we remove a timer on another CPU, reprogramming is
930 * skipped. The interrupt event on this CPU is fired and
931 * reprogramming happens in the interrupt handler. This is a
932 * rare case and less expensive than a smp call.
934 debug_deactivate(timer
);
935 timer_stats_hrtimer_clear_start_info(timer
);
936 reprogram
= base
->cpu_base
== this_cpu_ptr(&hrtimer_bases
);
939 state
= HRTIMER_STATE_INACTIVE
;
941 __remove_hrtimer(timer
, base
, state
, reprogram
);
947 static inline ktime_t
hrtimer_update_lowres(struct hrtimer
*timer
, ktime_t tim
,
948 const enum hrtimer_mode mode
)
950 #ifdef CONFIG_TIME_LOW_RES
952 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
953 * granular time values. For relative timers we add hrtimer_resolution
954 * (i.e. one jiffie) to prevent short timeouts.
956 timer
->is_rel
= mode
& HRTIMER_MODE_REL
;
958 tim
= ktime_add_safe(tim
, hrtimer_resolution
);
964 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
965 * @timer: the timer to be added
967 * @delta_ns: "slack" range for the timer
968 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
969 * relative (HRTIMER_MODE_REL)
971 void hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
972 u64 delta_ns
, const enum hrtimer_mode mode
)
974 struct hrtimer_clock_base
*base
, *new_base
;
978 base
= lock_hrtimer_base(timer
, &flags
);
980 /* Remove an active timer from the queue: */
981 remove_hrtimer(timer
, base
, true);
983 if (mode
& HRTIMER_MODE_REL
)
984 tim
= ktime_add_safe(tim
, base
->get_time());
986 tim
= hrtimer_update_lowres(timer
, tim
, mode
);
988 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
990 /* Switch the timer base, if necessary: */
991 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
993 timer_stats_hrtimer_set_start_info(timer
);
995 leftmost
= enqueue_hrtimer(timer
, new_base
);
999 if (!hrtimer_is_hres_active(timer
)) {
1001 * Kick to reschedule the next tick to handle the new timer
1002 * on dynticks target.
1004 if (new_base
->cpu_base
->nohz_active
)
1005 wake_up_nohz_cpu(new_base
->cpu_base
->cpu
);
1007 hrtimer_reprogram(timer
, new_base
);
1010 unlock_hrtimer_base(timer
, &flags
);
1012 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1015 * hrtimer_try_to_cancel - try to deactivate a timer
1016 * @timer: hrtimer to stop
1019 * 0 when the timer was not active
1020 * 1 when the timer was active
1021 * -1 when the timer is currently excuting the callback function and
1024 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1026 struct hrtimer_clock_base
*base
;
1027 unsigned long flags
;
1031 * Check lockless first. If the timer is not active (neither
1032 * enqueued nor running the callback, nothing to do here. The
1033 * base lock does not serialize against a concurrent enqueue,
1034 * so we can avoid taking it.
1036 if (!hrtimer_active(timer
))
1039 base
= lock_hrtimer_base(timer
, &flags
);
1041 if (!hrtimer_callback_running(timer
))
1042 ret
= remove_hrtimer(timer
, base
, false);
1044 unlock_hrtimer_base(timer
, &flags
);
1049 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1052 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1053 * @timer: the timer to be cancelled
1056 * 0 when the timer was not active
1057 * 1 when the timer was active
1059 int hrtimer_cancel(struct hrtimer
*timer
)
1062 int ret
= hrtimer_try_to_cancel(timer
);
1069 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1072 * hrtimer_get_remaining - get remaining time for the timer
1073 * @timer: the timer to read
1074 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1076 ktime_t
__hrtimer_get_remaining(const struct hrtimer
*timer
, bool adjust
)
1078 unsigned long flags
;
1081 lock_hrtimer_base(timer
, &flags
);
1082 if (IS_ENABLED(CONFIG_TIME_LOW_RES
) && adjust
)
1083 rem
= hrtimer_expires_remaining_adjusted(timer
);
1085 rem
= hrtimer_expires_remaining(timer
);
1086 unlock_hrtimer_base(timer
, &flags
);
1090 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining
);
1092 #ifdef CONFIG_NO_HZ_COMMON
1094 * hrtimer_get_next_event - get the time until next expiry event
1096 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1098 u64
hrtimer_get_next_event(void)
1100 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1101 u64 expires
= KTIME_MAX
;
1102 unsigned long flags
;
1104 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1106 if (!__hrtimer_hres_active(cpu_base
))
1107 expires
= __hrtimer_get_next_event(cpu_base
);
1109 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1115 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1116 enum hrtimer_mode mode
)
1118 struct hrtimer_cpu_base
*cpu_base
;
1121 memset(timer
, 0, sizeof(struct hrtimer
));
1123 cpu_base
= raw_cpu_ptr(&hrtimer_bases
);
1125 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1126 clock_id
= CLOCK_MONOTONIC
;
1128 base
= hrtimer_clockid_to_base(clock_id
);
1129 timer
->base
= &cpu_base
->clock_base
[base
];
1130 timerqueue_init(&timer
->node
);
1132 #ifdef CONFIG_TIMER_STATS
1133 timer
->start_site
= NULL
;
1134 timer
->start_pid
= -1;
1135 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1140 * hrtimer_init - initialize a timer to the given clock
1141 * @timer: the timer to be initialized
1142 * @clock_id: the clock to be used
1143 * @mode: timer mode abs/rel
1145 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1146 enum hrtimer_mode mode
)
1148 debug_init(timer
, clock_id
, mode
);
1149 __hrtimer_init(timer
, clock_id
, mode
);
1151 EXPORT_SYMBOL_GPL(hrtimer_init
);
1154 * A timer is active, when it is enqueued into the rbtree or the
1155 * callback function is running or it's in the state of being migrated
1158 * It is important for this function to not return a false negative.
1160 bool hrtimer_active(const struct hrtimer
*timer
)
1162 struct hrtimer_cpu_base
*cpu_base
;
1166 cpu_base
= READ_ONCE(timer
->base
->cpu_base
);
1167 seq
= raw_read_seqcount_begin(&cpu_base
->seq
);
1169 if (timer
->state
!= HRTIMER_STATE_INACTIVE
||
1170 cpu_base
->running
== timer
)
1173 } while (read_seqcount_retry(&cpu_base
->seq
, seq
) ||
1174 cpu_base
!= READ_ONCE(timer
->base
->cpu_base
));
1178 EXPORT_SYMBOL_GPL(hrtimer_active
);
1181 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1182 * distinct sections:
1184 * - queued: the timer is queued
1185 * - callback: the timer is being ran
1186 * - post: the timer is inactive or (re)queued
1188 * On the read side we ensure we observe timer->state and cpu_base->running
1189 * from the same section, if anything changed while we looked at it, we retry.
1190 * This includes timer->base changing because sequence numbers alone are
1191 * insufficient for that.
1193 * The sequence numbers are required because otherwise we could still observe
1194 * a false negative if the read side got smeared over multiple consequtive
1195 * __run_hrtimer() invocations.
1198 static void __run_hrtimer(struct hrtimer_cpu_base
*cpu_base
,
1199 struct hrtimer_clock_base
*base
,
1200 struct hrtimer
*timer
, ktime_t
*now
)
1202 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1205 lockdep_assert_held(&cpu_base
->lock
);
1207 debug_deactivate(timer
);
1208 cpu_base
->running
= timer
;
1211 * Separate the ->running assignment from the ->state assignment.
1213 * As with a regular write barrier, this ensures the read side in
1214 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1215 * timer->state == INACTIVE.
1217 raw_write_seqcount_barrier(&cpu_base
->seq
);
1219 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
, 0);
1220 timer_stats_account_hrtimer(timer
);
1221 fn
= timer
->function
;
1224 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1225 * timer is restarted with a period then it becomes an absolute
1226 * timer. If its not restarted it does not matter.
1228 if (IS_ENABLED(CONFIG_TIME_LOW_RES
))
1229 timer
->is_rel
= false;
1232 * Because we run timers from hardirq context, there is no chance
1233 * they get migrated to another cpu, therefore its safe to unlock
1236 raw_spin_unlock(&cpu_base
->lock
);
1237 trace_hrtimer_expire_entry(timer
, now
);
1238 restart
= fn(timer
);
1239 trace_hrtimer_expire_exit(timer
);
1240 raw_spin_lock(&cpu_base
->lock
);
1243 * Note: We clear the running state after enqueue_hrtimer and
1244 * we do not reprogram the event hardware. Happens either in
1245 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1247 * Note: Because we dropped the cpu_base->lock above,
1248 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1251 if (restart
!= HRTIMER_NORESTART
&&
1252 !(timer
->state
& HRTIMER_STATE_ENQUEUED
))
1253 enqueue_hrtimer(timer
, base
);
1256 * Separate the ->running assignment from the ->state assignment.
1258 * As with a regular write barrier, this ensures the read side in
1259 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1260 * timer->state == INACTIVE.
1262 raw_write_seqcount_barrier(&cpu_base
->seq
);
1264 WARN_ON_ONCE(cpu_base
->running
!= timer
);
1265 cpu_base
->running
= NULL
;
1268 static void __hrtimer_run_queues(struct hrtimer_cpu_base
*cpu_base
, ktime_t now
)
1270 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1271 unsigned int active
= cpu_base
->active_bases
;
1273 for (; active
; base
++, active
>>= 1) {
1274 struct timerqueue_node
*node
;
1277 if (!(active
& 0x01))
1280 basenow
= ktime_add(now
, base
->offset
);
1282 while ((node
= timerqueue_getnext(&base
->active
))) {
1283 struct hrtimer
*timer
;
1285 timer
= container_of(node
, struct hrtimer
, node
);
1288 * The immediate goal for using the softexpires is
1289 * minimizing wakeups, not running timers at the
1290 * earliest interrupt after their soft expiration.
1291 * This allows us to avoid using a Priority Search
1292 * Tree, which can answer a stabbing querry for
1293 * overlapping intervals and instead use the simple
1294 * BST we already have.
1295 * We don't add extra wakeups by delaying timers that
1296 * are right-of a not yet expired timer, because that
1297 * timer will have to trigger a wakeup anyway.
1299 if (basenow
< hrtimer_get_softexpires_tv64(timer
))
1302 __run_hrtimer(cpu_base
, base
, timer
, &basenow
);
1307 #ifdef CONFIG_HIGH_RES_TIMERS
1310 * High resolution timer interrupt
1311 * Called with interrupts disabled
1313 void hrtimer_interrupt(struct clock_event_device
*dev
)
1315 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1316 ktime_t expires_next
, now
, entry_time
, delta
;
1319 BUG_ON(!cpu_base
->hres_active
);
1320 cpu_base
->nr_events
++;
1321 dev
->next_event
= KTIME_MAX
;
1323 raw_spin_lock(&cpu_base
->lock
);
1324 entry_time
= now
= hrtimer_update_base(cpu_base
);
1326 cpu_base
->in_hrtirq
= 1;
1328 * We set expires_next to KTIME_MAX here with cpu_base->lock
1329 * held to prevent that a timer is enqueued in our queue via
1330 * the migration code. This does not affect enqueueing of
1331 * timers which run their callback and need to be requeued on
1334 cpu_base
->expires_next
= KTIME_MAX
;
1336 __hrtimer_run_queues(cpu_base
, now
);
1338 /* Reevaluate the clock bases for the next expiry */
1339 expires_next
= __hrtimer_get_next_event(cpu_base
);
1341 * Store the new expiry value so the migration code can verify
1344 cpu_base
->expires_next
= expires_next
;
1345 cpu_base
->in_hrtirq
= 0;
1346 raw_spin_unlock(&cpu_base
->lock
);
1348 /* Reprogramming necessary ? */
1349 if (!tick_program_event(expires_next
, 0)) {
1350 cpu_base
->hang_detected
= 0;
1355 * The next timer was already expired due to:
1357 * - long lasting callbacks
1358 * - being scheduled away when running in a VM
1360 * We need to prevent that we loop forever in the hrtimer
1361 * interrupt routine. We give it 3 attempts to avoid
1362 * overreacting on some spurious event.
1364 * Acquire base lock for updating the offsets and retrieving
1367 raw_spin_lock(&cpu_base
->lock
);
1368 now
= hrtimer_update_base(cpu_base
);
1369 cpu_base
->nr_retries
++;
1373 * Give the system a chance to do something else than looping
1374 * here. We stored the entry time, so we know exactly how long
1375 * we spent here. We schedule the next event this amount of
1378 cpu_base
->nr_hangs
++;
1379 cpu_base
->hang_detected
= 1;
1380 raw_spin_unlock(&cpu_base
->lock
);
1381 delta
= ktime_sub(now
, entry_time
);
1382 if ((unsigned int)delta
> cpu_base
->max_hang_time
)
1383 cpu_base
->max_hang_time
= (unsigned int) delta
;
1385 * Limit it to a sensible value as we enforce a longer
1386 * delay. Give the CPU at least 100ms to catch up.
1388 if (delta
> 100 * NSEC_PER_MSEC
)
1389 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1391 expires_next
= ktime_add(now
, delta
);
1392 tick_program_event(expires_next
, 1);
1393 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1394 ktime_to_ns(delta
));
1398 * local version of hrtimer_peek_ahead_timers() called with interrupts
1401 static inline void __hrtimer_peek_ahead_timers(void)
1403 struct tick_device
*td
;
1405 if (!hrtimer_hres_active())
1408 td
= this_cpu_ptr(&tick_cpu_device
);
1409 if (td
&& td
->evtdev
)
1410 hrtimer_interrupt(td
->evtdev
);
1413 #else /* CONFIG_HIGH_RES_TIMERS */
1415 static inline void __hrtimer_peek_ahead_timers(void) { }
1417 #endif /* !CONFIG_HIGH_RES_TIMERS */
1420 * Called from run_local_timers in hardirq context every jiffy
1422 void hrtimer_run_queues(void)
1424 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1427 if (__hrtimer_hres_active(cpu_base
))
1431 * This _is_ ugly: We have to check periodically, whether we
1432 * can switch to highres and / or nohz mode. The clocksource
1433 * switch happens with xtime_lock held. Notification from
1434 * there only sets the check bit in the tick_oneshot code,
1435 * otherwise we might deadlock vs. xtime_lock.
1437 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1438 hrtimer_switch_to_hres();
1442 raw_spin_lock(&cpu_base
->lock
);
1443 now
= hrtimer_update_base(cpu_base
);
1444 __hrtimer_run_queues(cpu_base
, now
);
1445 raw_spin_unlock(&cpu_base
->lock
);
1449 * Sleep related functions:
1451 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1453 struct hrtimer_sleeper
*t
=
1454 container_of(timer
, struct hrtimer_sleeper
, timer
);
1455 struct task_struct
*task
= t
->task
;
1459 wake_up_process(task
);
1461 return HRTIMER_NORESTART
;
1464 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1466 sl
->timer
.function
= hrtimer_wakeup
;
1469 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1471 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1473 hrtimer_init_sleeper(t
, current
);
1476 set_current_state(TASK_INTERRUPTIBLE
);
1477 hrtimer_start_expires(&t
->timer
, mode
);
1479 if (likely(t
->task
))
1480 freezable_schedule();
1482 hrtimer_cancel(&t
->timer
);
1483 mode
= HRTIMER_MODE_ABS
;
1485 } while (t
->task
&& !signal_pending(current
));
1487 __set_current_state(TASK_RUNNING
);
1489 return t
->task
== NULL
;
1492 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1494 struct timespec rmt
;
1497 rem
= hrtimer_expires_remaining(timer
);
1500 rmt
= ktime_to_timespec(rem
);
1502 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1508 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1510 struct hrtimer_sleeper t
;
1511 struct timespec __user
*rmtp
;
1514 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.clockid
,
1516 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1518 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1521 rmtp
= restart
->nanosleep
.rmtp
;
1523 ret
= update_rmtp(&t
.timer
, rmtp
);
1528 /* The other values in restart are already filled in */
1529 ret
= -ERESTART_RESTARTBLOCK
;
1531 destroy_hrtimer_on_stack(&t
.timer
);
1535 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1536 const enum hrtimer_mode mode
, const clockid_t clockid
)
1538 struct restart_block
*restart
;
1539 struct hrtimer_sleeper t
;
1543 slack
= current
->timer_slack_ns
;
1544 if (dl_task(current
) || rt_task(current
))
1547 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1548 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1549 if (do_nanosleep(&t
, mode
))
1552 /* Absolute timers do not update the rmtp value and restart: */
1553 if (mode
== HRTIMER_MODE_ABS
) {
1554 ret
= -ERESTARTNOHAND
;
1559 ret
= update_rmtp(&t
.timer
, rmtp
);
1564 restart
= ¤t
->restart_block
;
1565 restart
->fn
= hrtimer_nanosleep_restart
;
1566 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
1567 restart
->nanosleep
.rmtp
= rmtp
;
1568 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1570 ret
= -ERESTART_RESTARTBLOCK
;
1572 destroy_hrtimer_on_stack(&t
.timer
);
1576 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1577 struct timespec __user
*, rmtp
)
1581 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1584 if (!timespec_valid(&tu
))
1587 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1591 * Functions related to boot-time initialization:
1593 int hrtimers_prepare_cpu(unsigned int cpu
)
1595 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1598 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1599 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1600 timerqueue_init_head(&cpu_base
->clock_base
[i
].active
);
1603 cpu_base
->cpu
= cpu
;
1604 hrtimer_init_hres(cpu_base
);
1608 #ifdef CONFIG_HOTPLUG_CPU
1610 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1611 struct hrtimer_clock_base
*new_base
)
1613 struct hrtimer
*timer
;
1614 struct timerqueue_node
*node
;
1616 while ((node
= timerqueue_getnext(&old_base
->active
))) {
1617 timer
= container_of(node
, struct hrtimer
, node
);
1618 BUG_ON(hrtimer_callback_running(timer
));
1619 debug_deactivate(timer
);
1622 * Mark it as ENQUEUED not INACTIVE otherwise the
1623 * timer could be seen as !active and just vanish away
1624 * under us on another CPU
1626 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_ENQUEUED
, 0);
1627 timer
->base
= new_base
;
1629 * Enqueue the timers on the new cpu. This does not
1630 * reprogram the event device in case the timer
1631 * expires before the earliest on this CPU, but we run
1632 * hrtimer_interrupt after we migrated everything to
1633 * sort out already expired timers and reprogram the
1636 enqueue_hrtimer(timer
, new_base
);
1640 int hrtimers_dead_cpu(unsigned int scpu
)
1642 struct hrtimer_cpu_base
*old_base
, *new_base
;
1645 BUG_ON(cpu_online(scpu
));
1646 tick_cancel_sched_timer(scpu
);
1648 local_irq_disable();
1649 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1650 new_base
= this_cpu_ptr(&hrtimer_bases
);
1652 * The caller is globally serialized and nobody else
1653 * takes two locks at once, deadlock is not possible.
1655 raw_spin_lock(&new_base
->lock
);
1656 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1658 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1659 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1660 &new_base
->clock_base
[i
]);
1663 raw_spin_unlock(&old_base
->lock
);
1664 raw_spin_unlock(&new_base
->lock
);
1666 /* Check, if we got expired work to do */
1667 __hrtimer_peek_ahead_timers();
1672 #endif /* CONFIG_HOTPLUG_CPU */
1674 void __init
hrtimers_init(void)
1676 hrtimers_prepare_cpu(smp_processor_id());
1680 * schedule_hrtimeout_range_clock - sleep until timeout
1681 * @expires: timeout value (ktime_t)
1682 * @delta: slack in expires timeout (ktime_t)
1683 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1684 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1687 schedule_hrtimeout_range_clock(ktime_t
*expires
, u64 delta
,
1688 const enum hrtimer_mode mode
, int clock
)
1690 struct hrtimer_sleeper t
;
1693 * Optimize when a zero timeout value is given. It does not
1694 * matter whether this is an absolute or a relative time.
1696 if (expires
&& *expires
== 0) {
1697 __set_current_state(TASK_RUNNING
);
1702 * A NULL parameter means "infinite"
1709 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1710 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1712 hrtimer_init_sleeper(&t
, current
);
1714 hrtimer_start_expires(&t
.timer
, mode
);
1719 hrtimer_cancel(&t
.timer
);
1720 destroy_hrtimer_on_stack(&t
.timer
);
1722 __set_current_state(TASK_RUNNING
);
1724 return !t
.task
? 0 : -EINTR
;
1728 * schedule_hrtimeout_range - sleep until timeout
1729 * @expires: timeout value (ktime_t)
1730 * @delta: slack in expires timeout (ktime_t)
1731 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1733 * Make the current task sleep until the given expiry time has
1734 * elapsed. The routine will return immediately unless
1735 * the current task state has been set (see set_current_state()).
1737 * The @delta argument gives the kernel the freedom to schedule the
1738 * actual wakeup to a time that is both power and performance friendly.
1739 * The kernel give the normal best effort behavior for "@expires+@delta",
1740 * but may decide to fire the timer earlier, but no earlier than @expires.
1742 * You can set the task state as follows -
1744 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1745 * pass before the routine returns unless the current task is explicitly
1746 * woken up, (e.g. by wake_up_process()).
1748 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1749 * delivered to the current task or the current task is explicitly woken
1752 * The current task state is guaranteed to be TASK_RUNNING when this
1755 * Returns 0 when the timer has expired. If the task was woken before the
1756 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1757 * by an explicit wakeup, it returns -EINTR.
1759 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, u64 delta
,
1760 const enum hrtimer_mode mode
)
1762 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1765 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1768 * schedule_hrtimeout - sleep until timeout
1769 * @expires: timeout value (ktime_t)
1770 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1772 * Make the current task sleep until the given expiry time has
1773 * elapsed. The routine will return immediately unless
1774 * the current task state has been set (see set_current_state()).
1776 * You can set the task state as follows -
1778 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1779 * pass before the routine returns unless the current task is explicitly
1780 * woken up, (e.g. by wake_up_process()).
1782 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1783 * delivered to the current task or the current task is explicitly woken
1786 * The current task state is guaranteed to be TASK_RUNNING when this
1789 * Returns 0 when the timer has expired. If the task was woken before the
1790 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1791 * by an explicit wakeup, it returns -EINTR.
1793 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1794 const enum hrtimer_mode mode
)
1796 return schedule_hrtimeout_range(expires
, 0, mode
);
1798 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);