2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <linux/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/tick.h>
13 #include <linux/workqueue.h>
16 * Called after updating RLIMIT_CPU to run cpu timer and update
17 * tsk->signal->cputime_expires expiration cache if necessary. Needs
18 * siglock protection since other code may update expiration cache as
21 void update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
23 cputime_t cputime
= secs_to_cputime(rlim_new
);
25 spin_lock_irq(&task
->sighand
->siglock
);
26 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &cputime
, NULL
);
27 spin_unlock_irq(&task
->sighand
->siglock
);
30 static int check_clock(const clockid_t which_clock
)
33 struct task_struct
*p
;
34 const pid_t pid
= CPUCLOCK_PID(which_clock
);
36 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
43 p
= find_task_by_vpid(pid
);
44 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
45 same_thread_group(p
, current
) : has_group_leader_pid(p
))) {
53 static inline unsigned long long
54 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
56 unsigned long long ret
;
58 ret
= 0; /* high half always zero when .cpu used */
59 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
60 ret
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
62 ret
= cputime_to_expires(timespec_to_cputime(tp
));
67 static void sample_to_timespec(const clockid_t which_clock
,
68 unsigned long long expires
,
71 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
72 *tp
= ns_to_timespec(expires
);
74 cputime_to_timespec((__force cputime_t
)expires
, tp
);
78 * Update expiry time from increment, and increase overrun count,
79 * given the current clock sample.
81 static void bump_cpu_timer(struct k_itimer
*timer
,
82 unsigned long long now
)
85 unsigned long long delta
, incr
;
87 if (timer
->it
.cpu
.incr
== 0)
90 if (now
< timer
->it
.cpu
.expires
)
93 incr
= timer
->it
.cpu
.incr
;
94 delta
= now
+ incr
- timer
->it
.cpu
.expires
;
96 /* Don't use (incr*2 < delta), incr*2 might overflow. */
97 for (i
= 0; incr
< delta
- incr
; i
++)
100 for (; i
>= 0; incr
>>= 1, i
--) {
104 timer
->it
.cpu
.expires
+= incr
;
105 timer
->it_overrun
+= 1 << i
;
111 * task_cputime_zero - Check a task_cputime struct for all zero fields.
113 * @cputime: The struct to compare.
115 * Checks @cputime to see if all fields are zero. Returns true if all fields
116 * are zero, false if any field is nonzero.
118 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
120 if (!cputime
->utime
&& !cputime
->stime
&& !cputime
->sum_exec_runtime
)
125 static inline unsigned long long prof_ticks(struct task_struct
*p
)
127 cputime_t utime
, stime
;
129 task_cputime(p
, &utime
, &stime
);
131 return cputime_to_expires(utime
+ stime
);
133 static inline unsigned long long virt_ticks(struct task_struct
*p
)
135 cputime_t utime
, stime
;
137 task_cputime(p
, &utime
, &stime
);
139 return cputime_to_expires(utime
);
143 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
145 int error
= check_clock(which_clock
);
148 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
149 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
151 * If sched_clock is using a cycle counter, we
152 * don't have any idea of its true resolution
153 * exported, but it is much more than 1s/HZ.
162 posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
165 * You can never reset a CPU clock, but we check for other errors
166 * in the call before failing with EPERM.
168 int error
= check_clock(which_clock
);
177 * Sample a per-thread clock for the given task.
179 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
180 unsigned long long *sample
)
182 switch (CPUCLOCK_WHICH(which_clock
)) {
186 *sample
= prof_ticks(p
);
189 *sample
= virt_ticks(p
);
192 *sample
= task_sched_runtime(p
);
199 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
200 * to avoid race conditions with concurrent updates to cputime.
202 static inline void __update_gt_cputime(atomic64_t
*cputime
, u64 sum_cputime
)
206 curr_cputime
= atomic64_read(cputime
);
207 if (sum_cputime
> curr_cputime
) {
208 if (atomic64_cmpxchg(cputime
, curr_cputime
, sum_cputime
) != curr_cputime
)
213 static void update_gt_cputime(struct task_cputime_atomic
*cputime_atomic
, struct task_cputime
*sum
)
215 __update_gt_cputime(&cputime_atomic
->utime
, sum
->utime
);
216 __update_gt_cputime(&cputime_atomic
->stime
, sum
->stime
);
217 __update_gt_cputime(&cputime_atomic
->sum_exec_runtime
, sum
->sum_exec_runtime
);
220 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
221 static inline void sample_cputime_atomic(struct task_cputime
*times
,
222 struct task_cputime_atomic
*atomic_times
)
224 times
->utime
= atomic64_read(&atomic_times
->utime
);
225 times
->stime
= atomic64_read(&atomic_times
->stime
);
226 times
->sum_exec_runtime
= atomic64_read(&atomic_times
->sum_exec_runtime
);
229 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
231 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
232 struct task_cputime sum
;
234 /* Check if cputimer isn't running. This is accessed without locking. */
235 if (!READ_ONCE(cputimer
->running
)) {
237 * The POSIX timer interface allows for absolute time expiry
238 * values through the TIMER_ABSTIME flag, therefore we have
239 * to synchronize the timer to the clock every time we start it.
241 thread_group_cputime(tsk
, &sum
);
242 update_gt_cputime(&cputimer
->cputime_atomic
, &sum
);
245 * We're setting cputimer->running without a lock. Ensure
246 * this only gets written to in one operation. We set
247 * running after update_gt_cputime() as a small optimization,
248 * but barriers are not required because update_gt_cputime()
249 * can handle concurrent updates.
251 WRITE_ONCE(cputimer
->running
, true);
253 sample_cputime_atomic(times
, &cputimer
->cputime_atomic
);
257 * Sample a process (thread group) clock for the given group_leader task.
258 * Must be called with task sighand lock held for safe while_each_thread()
261 static int cpu_clock_sample_group(const clockid_t which_clock
,
262 struct task_struct
*p
,
263 unsigned long long *sample
)
265 struct task_cputime cputime
;
267 switch (CPUCLOCK_WHICH(which_clock
)) {
271 thread_group_cputime(p
, &cputime
);
272 *sample
= cputime_to_expires(cputime
.utime
+ cputime
.stime
);
275 thread_group_cputime(p
, &cputime
);
276 *sample
= cputime_to_expires(cputime
.utime
);
279 thread_group_cputime(p
, &cputime
);
280 *sample
= cputime
.sum_exec_runtime
;
286 static int posix_cpu_clock_get_task(struct task_struct
*tsk
,
287 const clockid_t which_clock
,
291 unsigned long long rtn
;
293 if (CPUCLOCK_PERTHREAD(which_clock
)) {
294 if (same_thread_group(tsk
, current
))
295 err
= cpu_clock_sample(which_clock
, tsk
, &rtn
);
297 if (tsk
== current
|| thread_group_leader(tsk
))
298 err
= cpu_clock_sample_group(which_clock
, tsk
, &rtn
);
302 sample_to_timespec(which_clock
, rtn
, tp
);
308 static int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
310 const pid_t pid
= CPUCLOCK_PID(which_clock
);
315 * Special case constant value for our own clocks.
316 * We don't have to do any lookup to find ourselves.
318 err
= posix_cpu_clock_get_task(current
, which_clock
, tp
);
321 * Find the given PID, and validate that the caller
322 * should be able to see it.
324 struct task_struct
*p
;
326 p
= find_task_by_vpid(pid
);
328 err
= posix_cpu_clock_get_task(p
, which_clock
, tp
);
336 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
337 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
338 * new timer already all-zeros initialized.
340 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
343 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
344 struct task_struct
*p
;
346 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
349 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
352 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
356 p
= find_task_by_vpid(pid
);
357 if (p
&& !same_thread_group(p
, current
))
362 p
= current
->group_leader
;
364 p
= find_task_by_vpid(pid
);
365 if (p
&& !has_group_leader_pid(p
))
369 new_timer
->it
.cpu
.task
= p
;
381 * Clean up a CPU-clock timer that is about to be destroyed.
382 * This is called from timer deletion with the timer already locked.
383 * If we return TIMER_RETRY, it's necessary to release the timer's lock
384 * and try again. (This happens when the timer is in the middle of firing.)
386 static int posix_cpu_timer_del(struct k_itimer
*timer
)
390 struct sighand_struct
*sighand
;
391 struct task_struct
*p
= timer
->it
.cpu
.task
;
393 WARN_ON_ONCE(p
== NULL
);
396 * Protect against sighand release/switch in exit/exec and process/
397 * thread timer list entry concurrent read/writes.
399 sighand
= lock_task_sighand(p
, &flags
);
400 if (unlikely(sighand
== NULL
)) {
402 * We raced with the reaping of the task.
403 * The deletion should have cleared us off the list.
405 WARN_ON_ONCE(!list_empty(&timer
->it
.cpu
.entry
));
407 if (timer
->it
.cpu
.firing
)
410 list_del(&timer
->it
.cpu
.entry
);
412 unlock_task_sighand(p
, &flags
);
421 static void cleanup_timers_list(struct list_head
*head
)
423 struct cpu_timer_list
*timer
, *next
;
425 list_for_each_entry_safe(timer
, next
, head
, entry
)
426 list_del_init(&timer
->entry
);
430 * Clean out CPU timers still ticking when a thread exited. The task
431 * pointer is cleared, and the expiry time is replaced with the residual
432 * time for later timer_gettime calls to return.
433 * This must be called with the siglock held.
435 static void cleanup_timers(struct list_head
*head
)
437 cleanup_timers_list(head
);
438 cleanup_timers_list(++head
);
439 cleanup_timers_list(++head
);
443 * These are both called with the siglock held, when the current thread
444 * is being reaped. When the final (leader) thread in the group is reaped,
445 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
447 void posix_cpu_timers_exit(struct task_struct
*tsk
)
449 cleanup_timers(tsk
->cpu_timers
);
451 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
453 cleanup_timers(tsk
->signal
->cpu_timers
);
456 static inline int expires_gt(cputime_t expires
, cputime_t new_exp
)
458 return expires
== 0 || expires
> new_exp
;
462 * Insert the timer on the appropriate list before any timers that
463 * expire later. This must be called with the sighand lock held.
465 static void arm_timer(struct k_itimer
*timer
)
467 struct task_struct
*p
= timer
->it
.cpu
.task
;
468 struct list_head
*head
, *listpos
;
469 struct task_cputime
*cputime_expires
;
470 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
471 struct cpu_timer_list
*next
;
473 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
474 head
= p
->cpu_timers
;
475 cputime_expires
= &p
->cputime_expires
;
477 head
= p
->signal
->cpu_timers
;
478 cputime_expires
= &p
->signal
->cputime_expires
;
480 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
483 list_for_each_entry(next
, head
, entry
) {
484 if (nt
->expires
< next
->expires
)
486 listpos
= &next
->entry
;
488 list_add(&nt
->entry
, listpos
);
490 if (listpos
== head
) {
491 unsigned long long exp
= nt
->expires
;
494 * We are the new earliest-expiring POSIX 1.b timer, hence
495 * need to update expiration cache. Take into account that
496 * for process timers we share expiration cache with itimers
497 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
500 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
502 if (expires_gt(cputime_expires
->prof_exp
, expires_to_cputime(exp
)))
503 cputime_expires
->prof_exp
= expires_to_cputime(exp
);
506 if (expires_gt(cputime_expires
->virt_exp
, expires_to_cputime(exp
)))
507 cputime_expires
->virt_exp
= expires_to_cputime(exp
);
510 if (cputime_expires
->sched_exp
== 0 ||
511 cputime_expires
->sched_exp
> exp
)
512 cputime_expires
->sched_exp
= exp
;
515 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
516 tick_dep_set_task(p
, TICK_DEP_BIT_POSIX_TIMER
);
518 tick_dep_set_signal(p
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
523 * The timer is locked, fire it and arrange for its reload.
525 static void cpu_timer_fire(struct k_itimer
*timer
)
527 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
529 * User don't want any signal.
531 timer
->it
.cpu
.expires
= 0;
532 } else if (unlikely(timer
->sigq
== NULL
)) {
534 * This a special case for clock_nanosleep,
535 * not a normal timer from sys_timer_create.
537 wake_up_process(timer
->it_process
);
538 timer
->it
.cpu
.expires
= 0;
539 } else if (timer
->it
.cpu
.incr
== 0) {
541 * One-shot timer. Clear it as soon as it's fired.
543 posix_timer_event(timer
, 0);
544 timer
->it
.cpu
.expires
= 0;
545 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
547 * The signal did not get queued because the signal
548 * was ignored, so we won't get any callback to
549 * reload the timer. But we need to keep it
550 * ticking in case the signal is deliverable next time.
552 posix_cpu_timer_schedule(timer
);
557 * Sample a process (thread group) timer for the given group_leader task.
558 * Must be called with task sighand lock held for safe while_each_thread()
561 static int cpu_timer_sample_group(const clockid_t which_clock
,
562 struct task_struct
*p
,
563 unsigned long long *sample
)
565 struct task_cputime cputime
;
567 thread_group_cputimer(p
, &cputime
);
568 switch (CPUCLOCK_WHICH(which_clock
)) {
572 *sample
= cputime_to_expires(cputime
.utime
+ cputime
.stime
);
575 *sample
= cputime_to_expires(cputime
.utime
);
578 *sample
= cputime
.sum_exec_runtime
;
585 * Guts of sys_timer_settime for CPU timers.
586 * This is called with the timer locked and interrupts disabled.
587 * If we return TIMER_RETRY, it's necessary to release the timer's lock
588 * and try again. (This happens when the timer is in the middle of firing.)
590 static int posix_cpu_timer_set(struct k_itimer
*timer
, int timer_flags
,
591 struct itimerspec
*new, struct itimerspec
*old
)
594 struct sighand_struct
*sighand
;
595 struct task_struct
*p
= timer
->it
.cpu
.task
;
596 unsigned long long old_expires
, new_expires
, old_incr
, val
;
599 WARN_ON_ONCE(p
== NULL
);
601 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
604 * Protect against sighand release/switch in exit/exec and p->cpu_timers
605 * and p->signal->cpu_timers read/write in arm_timer()
607 sighand
= lock_task_sighand(p
, &flags
);
609 * If p has just been reaped, we can no
610 * longer get any information about it at all.
612 if (unlikely(sighand
== NULL
)) {
617 * Disarm any old timer after extracting its expiry time.
619 WARN_ON_ONCE(!irqs_disabled());
622 old_incr
= timer
->it
.cpu
.incr
;
623 old_expires
= timer
->it
.cpu
.expires
;
624 if (unlikely(timer
->it
.cpu
.firing
)) {
625 timer
->it
.cpu
.firing
= -1;
628 list_del_init(&timer
->it
.cpu
.entry
);
631 * We need to sample the current value to convert the new
632 * value from to relative and absolute, and to convert the
633 * old value from absolute to relative. To set a process
634 * timer, we need a sample to balance the thread expiry
635 * times (in arm_timer). With an absolute time, we must
636 * check if it's already passed. In short, we need a sample.
638 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
639 cpu_clock_sample(timer
->it_clock
, p
, &val
);
641 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
645 if (old_expires
== 0) {
646 old
->it_value
.tv_sec
= 0;
647 old
->it_value
.tv_nsec
= 0;
650 * Update the timer in case it has
651 * overrun already. If it has,
652 * we'll report it as having overrun
653 * and with the next reloaded timer
654 * already ticking, though we are
655 * swallowing that pending
656 * notification here to install the
659 bump_cpu_timer(timer
, val
);
660 if (val
< timer
->it
.cpu
.expires
) {
661 old_expires
= timer
->it
.cpu
.expires
- val
;
662 sample_to_timespec(timer
->it_clock
,
666 old
->it_value
.tv_nsec
= 1;
667 old
->it_value
.tv_sec
= 0;
674 * We are colliding with the timer actually firing.
675 * Punt after filling in the timer's old value, and
676 * disable this firing since we are already reporting
677 * it as an overrun (thanks to bump_cpu_timer above).
679 unlock_task_sighand(p
, &flags
);
683 if (new_expires
!= 0 && !(timer_flags
& TIMER_ABSTIME
)) {
688 * Install the new expiry time (or zero).
689 * For a timer with no notification action, we don't actually
690 * arm the timer (we'll just fake it for timer_gettime).
692 timer
->it
.cpu
.expires
= new_expires
;
693 if (new_expires
!= 0 && val
< new_expires
) {
697 unlock_task_sighand(p
, &flags
);
699 * Install the new reload setting, and
700 * set up the signal and overrun bookkeeping.
702 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
706 * This acts as a modification timestamp for the timer,
707 * so any automatic reload attempt will punt on seeing
708 * that we have reset the timer manually.
710 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
712 timer
->it_overrun_last
= 0;
713 timer
->it_overrun
= -1;
715 if (new_expires
!= 0 && !(val
< new_expires
)) {
717 * The designated time already passed, so we notify
718 * immediately, even if the thread never runs to
719 * accumulate more time on this clock.
721 cpu_timer_fire(timer
);
727 sample_to_timespec(timer
->it_clock
,
728 old_incr
, &old
->it_interval
);
734 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
736 unsigned long long now
;
737 struct task_struct
*p
= timer
->it
.cpu
.task
;
739 WARN_ON_ONCE(p
== NULL
);
742 * Easy part: convert the reload time.
744 sample_to_timespec(timer
->it_clock
,
745 timer
->it
.cpu
.incr
, &itp
->it_interval
);
747 if (timer
->it
.cpu
.expires
== 0) { /* Timer not armed at all. */
748 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
753 * Sample the clock to take the difference with the expiry time.
755 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
756 cpu_clock_sample(timer
->it_clock
, p
, &now
);
758 struct sighand_struct
*sighand
;
762 * Protect against sighand release/switch in exit/exec and
763 * also make timer sampling safe if it ends up calling
764 * thread_group_cputime().
766 sighand
= lock_task_sighand(p
, &flags
);
767 if (unlikely(sighand
== NULL
)) {
769 * The process has been reaped.
770 * We can't even collect a sample any more.
771 * Call the timer disarmed, nothing else to do.
773 timer
->it
.cpu
.expires
= 0;
774 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
778 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
779 unlock_task_sighand(p
, &flags
);
783 if (now
< timer
->it
.cpu
.expires
) {
784 sample_to_timespec(timer
->it_clock
,
785 timer
->it
.cpu
.expires
- now
,
789 * The timer should have expired already, but the firing
790 * hasn't taken place yet. Say it's just about to expire.
792 itp
->it_value
.tv_nsec
= 1;
793 itp
->it_value
.tv_sec
= 0;
797 static unsigned long long
798 check_timers_list(struct list_head
*timers
,
799 struct list_head
*firing
,
800 unsigned long long curr
)
804 while (!list_empty(timers
)) {
805 struct cpu_timer_list
*t
;
807 t
= list_first_entry(timers
, struct cpu_timer_list
, entry
);
809 if (!--maxfire
|| curr
< t
->expires
)
813 list_move_tail(&t
->entry
, firing
);
820 * Check for any per-thread CPU timers that have fired and move them off
821 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
822 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
824 static void check_thread_timers(struct task_struct
*tsk
,
825 struct list_head
*firing
)
827 struct list_head
*timers
= tsk
->cpu_timers
;
828 struct signal_struct
*const sig
= tsk
->signal
;
829 struct task_cputime
*tsk_expires
= &tsk
->cputime_expires
;
830 unsigned long long expires
;
834 * If cputime_expires is zero, then there are no active
835 * per thread CPU timers.
837 if (task_cputime_zero(&tsk
->cputime_expires
))
840 expires
= check_timers_list(timers
, firing
, prof_ticks(tsk
));
841 tsk_expires
->prof_exp
= expires_to_cputime(expires
);
843 expires
= check_timers_list(++timers
, firing
, virt_ticks(tsk
));
844 tsk_expires
->virt_exp
= expires_to_cputime(expires
);
846 tsk_expires
->sched_exp
= check_timers_list(++timers
, firing
,
847 tsk
->se
.sum_exec_runtime
);
850 * Check for the special case thread timers.
852 soft
= READ_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
);
853 if (soft
!= RLIM_INFINITY
) {
855 READ_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_max
);
857 if (hard
!= RLIM_INFINITY
&&
858 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
860 * At the hard limit, we just die.
861 * No need to calculate anything else now.
863 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
866 if (tsk
->rt
.timeout
> DIV_ROUND_UP(soft
, USEC_PER_SEC
/HZ
)) {
868 * At the soft limit, send a SIGXCPU every second.
871 soft
+= USEC_PER_SEC
;
872 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
875 "RT Watchdog Timeout: %s[%d]\n",
876 tsk
->comm
, task_pid_nr(tsk
));
877 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
880 if (task_cputime_zero(tsk_expires
))
881 tick_dep_clear_task(tsk
, TICK_DEP_BIT_POSIX_TIMER
);
884 static inline void stop_process_timers(struct signal_struct
*sig
)
886 struct thread_group_cputimer
*cputimer
= &sig
->cputimer
;
888 /* Turn off cputimer->running. This is done without locking. */
889 WRITE_ONCE(cputimer
->running
, false);
890 tick_dep_clear_signal(sig
, TICK_DEP_BIT_POSIX_TIMER
);
893 static u32 onecputick
;
895 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
896 unsigned long long *expires
,
897 unsigned long long cur_time
, int signo
)
902 if (cur_time
>= it
->expires
) {
904 it
->expires
+= it
->incr
;
905 it
->error
+= it
->incr_error
;
906 if (it
->error
>= onecputick
) {
907 it
->expires
-= cputime_one_jiffy
;
908 it
->error
-= onecputick
;
914 trace_itimer_expire(signo
== SIGPROF
?
915 ITIMER_PROF
: ITIMER_VIRTUAL
,
916 tsk
->signal
->leader_pid
, cur_time
);
917 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
920 if (it
->expires
&& (!*expires
|| it
->expires
< *expires
)) {
921 *expires
= it
->expires
;
926 * Check for any per-thread CPU timers that have fired and move them
927 * off the tsk->*_timers list onto the firing list. Per-thread timers
928 * have already been taken off.
930 static void check_process_timers(struct task_struct
*tsk
,
931 struct list_head
*firing
)
933 struct signal_struct
*const sig
= tsk
->signal
;
934 unsigned long long utime
, ptime
, virt_expires
, prof_expires
;
935 unsigned long long sum_sched_runtime
, sched_expires
;
936 struct list_head
*timers
= sig
->cpu_timers
;
937 struct task_cputime cputime
;
941 * If cputimer is not running, then there are no active
942 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
944 if (!READ_ONCE(tsk
->signal
->cputimer
.running
))
948 * Signify that a thread is checking for process timers.
949 * Write access to this field is protected by the sighand lock.
951 sig
->cputimer
.checking_timer
= true;
954 * Collect the current process totals.
956 thread_group_cputimer(tsk
, &cputime
);
957 utime
= cputime_to_expires(cputime
.utime
);
958 ptime
= utime
+ cputime_to_expires(cputime
.stime
);
959 sum_sched_runtime
= cputime
.sum_exec_runtime
;
961 prof_expires
= check_timers_list(timers
, firing
, ptime
);
962 virt_expires
= check_timers_list(++timers
, firing
, utime
);
963 sched_expires
= check_timers_list(++timers
, firing
, sum_sched_runtime
);
966 * Check for the special case process timers.
968 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
970 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
972 soft
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
973 if (soft
!= RLIM_INFINITY
) {
974 unsigned long psecs
= cputime_to_secs(ptime
);
976 READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_max
);
980 * At the hard limit, we just die.
981 * No need to calculate anything else now.
983 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
988 * At the soft limit, send a SIGXCPU every second.
990 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
993 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
;
996 x
= secs_to_cputime(soft
);
997 if (!prof_expires
|| x
< prof_expires
) {
1002 sig
->cputime_expires
.prof_exp
= expires_to_cputime(prof_expires
);
1003 sig
->cputime_expires
.virt_exp
= expires_to_cputime(virt_expires
);
1004 sig
->cputime_expires
.sched_exp
= sched_expires
;
1005 if (task_cputime_zero(&sig
->cputime_expires
))
1006 stop_process_timers(sig
);
1008 sig
->cputimer
.checking_timer
= false;
1012 * This is called from the signal code (via do_schedule_next_timer)
1013 * when the last timer signal was delivered and we have to reload the timer.
1015 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1017 struct sighand_struct
*sighand
;
1018 unsigned long flags
;
1019 struct task_struct
*p
= timer
->it
.cpu
.task
;
1020 unsigned long long now
;
1022 WARN_ON_ONCE(p
== NULL
);
1025 * Fetch the current sample and update the timer's expiry time.
1027 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1028 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1029 bump_cpu_timer(timer
, now
);
1030 if (unlikely(p
->exit_state
))
1033 /* Protect timer list r/w in arm_timer() */
1034 sighand
= lock_task_sighand(p
, &flags
);
1039 * Protect arm_timer() and timer sampling in case of call to
1040 * thread_group_cputime().
1042 sighand
= lock_task_sighand(p
, &flags
);
1043 if (unlikely(sighand
== NULL
)) {
1045 * The process has been reaped.
1046 * We can't even collect a sample any more.
1048 timer
->it
.cpu
.expires
= 0;
1050 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1051 unlock_task_sighand(p
, &flags
);
1052 /* Optimizations: if the process is dying, no need to rearm */
1055 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1056 bump_cpu_timer(timer
, now
);
1057 /* Leave the sighand locked for the call below. */
1061 * Now re-arm for the new expiry time.
1063 WARN_ON_ONCE(!irqs_disabled());
1065 unlock_task_sighand(p
, &flags
);
1068 timer
->it_overrun_last
= timer
->it_overrun
;
1069 timer
->it_overrun
= -1;
1070 ++timer
->it_requeue_pending
;
1074 * task_cputime_expired - Compare two task_cputime entities.
1076 * @sample: The task_cputime structure to be checked for expiration.
1077 * @expires: Expiration times, against which @sample will be checked.
1079 * Checks @sample against @expires to see if any field of @sample has expired.
1080 * Returns true if any field of the former is greater than the corresponding
1081 * field of the latter if the latter field is set. Otherwise returns false.
1083 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1084 const struct task_cputime
*expires
)
1086 if (expires
->utime
&& sample
->utime
>= expires
->utime
)
1088 if (expires
->stime
&& sample
->utime
+ sample
->stime
>= expires
->stime
)
1090 if (expires
->sum_exec_runtime
!= 0 &&
1091 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1097 * fastpath_timer_check - POSIX CPU timers fast path.
1099 * @tsk: The task (thread) being checked.
1101 * Check the task and thread group timers. If both are zero (there are no
1102 * timers set) return false. Otherwise snapshot the task and thread group
1103 * timers and compare them with the corresponding expiration times. Return
1104 * true if a timer has expired, else return false.
1106 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1108 struct signal_struct
*sig
;
1110 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1111 struct task_cputime task_sample
;
1113 task_cputime(tsk
, &task_sample
.utime
, &task_sample
.stime
);
1114 task_sample
.sum_exec_runtime
= tsk
->se
.sum_exec_runtime
;
1115 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1121 * Check if thread group timers expired when the cputimer is
1122 * running and no other thread in the group is already checking
1123 * for thread group cputimers. These fields are read without the
1124 * sighand lock. However, this is fine because this is meant to
1125 * be a fastpath heuristic to determine whether we should try to
1126 * acquire the sighand lock to check/handle timers.
1128 * In the worst case scenario, if 'running' or 'checking_timer' gets
1129 * set but the current thread doesn't see the change yet, we'll wait
1130 * until the next thread in the group gets a scheduler interrupt to
1131 * handle the timer. This isn't an issue in practice because these
1132 * types of delays with signals actually getting sent are expected.
1134 if (READ_ONCE(sig
->cputimer
.running
) &&
1135 !READ_ONCE(sig
->cputimer
.checking_timer
)) {
1136 struct task_cputime group_sample
;
1138 sample_cputime_atomic(&group_sample
, &sig
->cputimer
.cputime_atomic
);
1140 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1148 * This is called from the timer interrupt handler. The irq handler has
1149 * already updated our counts. We need to check if any timers fire now.
1150 * Interrupts are disabled.
1152 void run_posix_cpu_timers(struct task_struct
*tsk
)
1155 struct k_itimer
*timer
, *next
;
1156 unsigned long flags
;
1158 WARN_ON_ONCE(!irqs_disabled());
1161 * The fast path checks that there are no expired thread or thread
1162 * group timers. If that's so, just return.
1164 if (!fastpath_timer_check(tsk
))
1167 if (!lock_task_sighand(tsk
, &flags
))
1170 * Here we take off tsk->signal->cpu_timers[N] and
1171 * tsk->cpu_timers[N] all the timers that are firing, and
1172 * put them on the firing list.
1174 check_thread_timers(tsk
, &firing
);
1176 check_process_timers(tsk
, &firing
);
1179 * We must release these locks before taking any timer's lock.
1180 * There is a potential race with timer deletion here, as the
1181 * siglock now protects our private firing list. We have set
1182 * the firing flag in each timer, so that a deletion attempt
1183 * that gets the timer lock before we do will give it up and
1184 * spin until we've taken care of that timer below.
1186 unlock_task_sighand(tsk
, &flags
);
1189 * Now that all the timers on our list have the firing flag,
1190 * no one will touch their list entries but us. We'll take
1191 * each timer's lock before clearing its firing flag, so no
1192 * timer call will interfere.
1194 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1197 spin_lock(&timer
->it_lock
);
1198 list_del_init(&timer
->it
.cpu
.entry
);
1199 cpu_firing
= timer
->it
.cpu
.firing
;
1200 timer
->it
.cpu
.firing
= 0;
1202 * The firing flag is -1 if we collided with a reset
1203 * of the timer, which already reported this
1204 * almost-firing as an overrun. So don't generate an event.
1206 if (likely(cpu_firing
>= 0))
1207 cpu_timer_fire(timer
);
1208 spin_unlock(&timer
->it_lock
);
1213 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1214 * The tsk->sighand->siglock must be held by the caller.
1216 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1217 cputime_t
*newval
, cputime_t
*oldval
)
1219 unsigned long long now
;
1221 WARN_ON_ONCE(clock_idx
== CPUCLOCK_SCHED
);
1222 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1226 * We are setting itimer. The *oldval is absolute and we update
1227 * it to be relative, *newval argument is relative and we update
1228 * it to be absolute.
1231 if (*oldval
<= now
) {
1232 /* Just about to fire. */
1233 *oldval
= cputime_one_jiffy
;
1245 * Update expiration cache if we are the earliest timer, or eventually
1246 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1248 switch (clock_idx
) {
1250 if (expires_gt(tsk
->signal
->cputime_expires
.prof_exp
, *newval
))
1251 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1254 if (expires_gt(tsk
->signal
->cputime_expires
.virt_exp
, *newval
))
1255 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1259 tick_dep_set_signal(tsk
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
1262 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1263 struct timespec
*rqtp
, struct itimerspec
*it
)
1265 struct k_itimer timer
;
1269 * Set up a temporary timer and then wait for it to go off.
1271 memset(&timer
, 0, sizeof timer
);
1272 spin_lock_init(&timer
.it_lock
);
1273 timer
.it_clock
= which_clock
;
1274 timer
.it_overrun
= -1;
1275 error
= posix_cpu_timer_create(&timer
);
1276 timer
.it_process
= current
;
1278 static struct itimerspec zero_it
;
1280 memset(it
, 0, sizeof *it
);
1281 it
->it_value
= *rqtp
;
1283 spin_lock_irq(&timer
.it_lock
);
1284 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1286 spin_unlock_irq(&timer
.it_lock
);
1290 while (!signal_pending(current
)) {
1291 if (timer
.it
.cpu
.expires
== 0) {
1293 * Our timer fired and was reset, below
1294 * deletion can not fail.
1296 posix_cpu_timer_del(&timer
);
1297 spin_unlock_irq(&timer
.it_lock
);
1302 * Block until cpu_timer_fire (or a signal) wakes us.
1304 __set_current_state(TASK_INTERRUPTIBLE
);
1305 spin_unlock_irq(&timer
.it_lock
);
1307 spin_lock_irq(&timer
.it_lock
);
1311 * We were interrupted by a signal.
1313 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1314 error
= posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1317 * Timer is now unarmed, deletion can not fail.
1319 posix_cpu_timer_del(&timer
);
1321 spin_unlock_irq(&timer
.it_lock
);
1323 while (error
== TIMER_RETRY
) {
1325 * We need to handle case when timer was or is in the
1326 * middle of firing. In other cases we already freed
1329 spin_lock_irq(&timer
.it_lock
);
1330 error
= posix_cpu_timer_del(&timer
);
1331 spin_unlock_irq(&timer
.it_lock
);
1334 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1336 * It actually did fire already.
1341 error
= -ERESTART_RESTARTBLOCK
;
1347 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1349 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1350 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1352 struct restart_block
*restart_block
= ¤t
->restart_block
;
1353 struct itimerspec it
;
1357 * Diagnose required errors first.
1359 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1360 (CPUCLOCK_PID(which_clock
) == 0 ||
1361 CPUCLOCK_PID(which_clock
) == current
->pid
))
1364 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1366 if (error
== -ERESTART_RESTARTBLOCK
) {
1368 if (flags
& TIMER_ABSTIME
)
1369 return -ERESTARTNOHAND
;
1371 * Report back to the user the time still remaining.
1373 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1376 restart_block
->fn
= posix_cpu_nsleep_restart
;
1377 restart_block
->nanosleep
.clockid
= which_clock
;
1378 restart_block
->nanosleep
.rmtp
= rmtp
;
1379 restart_block
->nanosleep
.expires
= timespec_to_ns(rqtp
);
1384 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1386 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1388 struct itimerspec it
;
1391 t
= ns_to_timespec(restart_block
->nanosleep
.expires
);
1393 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1395 if (error
== -ERESTART_RESTARTBLOCK
) {
1396 struct timespec __user
*rmtp
= restart_block
->nanosleep
.rmtp
;
1398 * Report back to the user the time still remaining.
1400 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1403 restart_block
->nanosleep
.expires
= timespec_to_ns(&t
);
1409 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1410 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1412 static int process_cpu_clock_getres(const clockid_t which_clock
,
1413 struct timespec
*tp
)
1415 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1417 static int process_cpu_clock_get(const clockid_t which_clock
,
1418 struct timespec
*tp
)
1420 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1422 static int process_cpu_timer_create(struct k_itimer
*timer
)
1424 timer
->it_clock
= PROCESS_CLOCK
;
1425 return posix_cpu_timer_create(timer
);
1427 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1428 struct timespec
*rqtp
,
1429 struct timespec __user
*rmtp
)
1431 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1433 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1437 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1438 struct timespec
*tp
)
1440 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1442 static int thread_cpu_clock_get(const clockid_t which_clock
,
1443 struct timespec
*tp
)
1445 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1447 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1449 timer
->it_clock
= THREAD_CLOCK
;
1450 return posix_cpu_timer_create(timer
);
1453 struct k_clock clock_posix_cpu
= {
1454 .clock_getres
= posix_cpu_clock_getres
,
1455 .clock_set
= posix_cpu_clock_set
,
1456 .clock_get
= posix_cpu_clock_get
,
1457 .timer_create
= posix_cpu_timer_create
,
1458 .nsleep
= posix_cpu_nsleep
,
1459 .nsleep_restart
= posix_cpu_nsleep_restart
,
1460 .timer_set
= posix_cpu_timer_set
,
1461 .timer_del
= posix_cpu_timer_del
,
1462 .timer_get
= posix_cpu_timer_get
,
1465 static __init
int init_posix_cpu_timers(void)
1467 struct k_clock process
= {
1468 .clock_getres
= process_cpu_clock_getres
,
1469 .clock_get
= process_cpu_clock_get
,
1470 .timer_create
= process_cpu_timer_create
,
1471 .nsleep
= process_cpu_nsleep
,
1472 .nsleep_restart
= process_cpu_nsleep_restart
,
1474 struct k_clock thread
= {
1475 .clock_getres
= thread_cpu_clock_getres
,
1476 .clock_get
= thread_cpu_clock_get
,
1477 .timer_create
= thread_cpu_timer_create
,
1481 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1482 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1484 cputime_to_timespec(cputime_one_jiffy
, &ts
);
1485 onecputick
= ts
.tv_nsec
;
1486 WARN_ON(ts
.tv_sec
!= 0);
1490 __initcall(init_posix_cpu_timers
);