2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
36 * The most important data for readout fits into a single 64 byte
41 struct timekeeper timekeeper
;
42 } tk_core ____cacheline_aligned
;
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock
);
45 static struct timekeeper shadow_timekeeper
;
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
54 * See @update_fast_timekeeper() below.
58 struct tk_read_base base
[2];
61 static struct tk_fast tk_fast_mono ____cacheline_aligned
;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned
;
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended
;
67 static inline void tk_normalize_xtime(struct timekeeper
*tk
)
69 while (tk
->tkr_mono
.xtime_nsec
>= ((u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
)) {
70 tk
->tkr_mono
.xtime_nsec
-= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
75 static inline struct timespec64
tk_xtime(struct timekeeper
*tk
)
79 ts
.tv_sec
= tk
->xtime_sec
;
80 ts
.tv_nsec
= (long)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
84 static void tk_set_xtime(struct timekeeper
*tk
, const struct timespec64
*ts
)
86 tk
->xtime_sec
= ts
->tv_sec
;
87 tk
->tkr_mono
.xtime_nsec
= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
90 static void tk_xtime_add(struct timekeeper
*tk
, const struct timespec64
*ts
)
92 tk
->xtime_sec
+= ts
->tv_sec
;
93 tk
->tkr_mono
.xtime_nsec
+= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
94 tk_normalize_xtime(tk
);
97 static void tk_set_wall_to_mono(struct timekeeper
*tk
, struct timespec64 wtm
)
99 struct timespec64 tmp
;
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
105 set_normalized_timespec64(&tmp
, -tk
->wall_to_monotonic
.tv_sec
,
106 -tk
->wall_to_monotonic
.tv_nsec
);
107 WARN_ON_ONCE(tk
->offs_real
!= timespec64_to_ktime(tmp
));
108 tk
->wall_to_monotonic
= wtm
;
109 set_normalized_timespec64(&tmp
, -wtm
.tv_sec
, -wtm
.tv_nsec
);
110 tk
->offs_real
= timespec64_to_ktime(tmp
);
111 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tk
->tai_offset
, 0));
114 static inline void tk_update_sleep_time(struct timekeeper
*tk
, ktime_t delta
)
116 tk
->offs_boot
= ktime_add(tk
->offs_boot
, delta
);
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
122 static void timekeeping_check_update(struct timekeeper
*tk
, u64 offset
)
125 u64 max_cycles
= tk
->tkr_mono
.clock
->max_cycles
;
126 const char *name
= tk
->tkr_mono
.clock
->name
;
128 if (offset
> max_cycles
) {
129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 offset
, name
, max_cycles
);
131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
133 if (offset
> (max_cycles
>> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 offset
, name
, max_cycles
>> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
140 if (tk
->underflow_seen
) {
141 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name
);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
145 tk
->last_warning
= jiffies
;
147 tk
->underflow_seen
= 0;
150 if (tk
->overflow_seen
) {
151 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name
);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
155 tk
->last_warning
= jiffies
;
157 tk
->overflow_seen
= 0;
161 static inline u64
timekeeping_get_delta(struct tk_read_base
*tkr
)
163 struct timekeeper
*tk
= &tk_core
.timekeeper
;
164 u64 now
, last
, mask
, max
, delta
;
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
175 seq
= read_seqcount_begin(&tk_core
.seq
);
176 now
= tkr
->read(tkr
->clock
);
177 last
= tkr
->cycle_last
;
179 max
= tkr
->clock
->max_cycles
;
180 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
182 delta
= clocksource_delta(now
, last
, mask
);
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
188 if (unlikely((~delta
& mask
) < (mask
>> 3))) {
189 tk
->underflow_seen
= 1;
193 /* Cap delta value to the max_cycles values to avoid mult overflows */
194 if (unlikely(delta
> max
)) {
195 tk
->overflow_seen
= 1;
196 delta
= tkr
->clock
->max_cycles
;
202 static inline void timekeeping_check_update(struct timekeeper
*tk
, u64 offset
)
205 static inline u64
timekeeping_get_delta(struct tk_read_base
*tkr
)
207 u64 cycle_now
, delta
;
209 /* read clocksource */
210 cycle_now
= tkr
->read(tkr
->clock
);
212 /* calculate the delta since the last update_wall_time */
213 delta
= clocksource_delta(cycle_now
, tkr
->cycle_last
, tkr
->mask
);
220 * tk_setup_internals - Set up internals to use clocksource clock.
222 * @tk: The target timekeeper to setup.
223 * @clock: Pointer to clocksource.
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
228 * Unless you're the timekeeping code, you should not be using this!
230 static void tk_setup_internals(struct timekeeper
*tk
, struct clocksource
*clock
)
233 u64 tmp
, ntpinterval
;
234 struct clocksource
*old_clock
;
236 ++tk
->cs_was_changed_seq
;
237 old_clock
= tk
->tkr_mono
.clock
;
238 tk
->tkr_mono
.clock
= clock
;
239 tk
->tkr_mono
.read
= clock
->read
;
240 tk
->tkr_mono
.mask
= clock
->mask
;
241 tk
->tkr_mono
.cycle_last
= tk
->tkr_mono
.read(clock
);
243 tk
->tkr_raw
.clock
= clock
;
244 tk
->tkr_raw
.read
= clock
->read
;
245 tk
->tkr_raw
.mask
= clock
->mask
;
246 tk
->tkr_raw
.cycle_last
= tk
->tkr_mono
.cycle_last
;
248 /* Do the ns -> cycle conversion first, using original mult */
249 tmp
= NTP_INTERVAL_LENGTH
;
250 tmp
<<= clock
->shift
;
252 tmp
+= clock
->mult
/2;
253 do_div(tmp
, clock
->mult
);
257 interval
= (u64
) tmp
;
258 tk
->cycle_interval
= interval
;
260 /* Go back from cycles -> shifted ns */
261 tk
->xtime_interval
= interval
* clock
->mult
;
262 tk
->xtime_remainder
= ntpinterval
- tk
->xtime_interval
;
263 tk
->raw_interval
= (interval
* clock
->mult
) >> clock
->shift
;
265 /* if changing clocks, convert xtime_nsec shift units */
267 int shift_change
= clock
->shift
- old_clock
->shift
;
268 if (shift_change
< 0)
269 tk
->tkr_mono
.xtime_nsec
>>= -shift_change
;
271 tk
->tkr_mono
.xtime_nsec
<<= shift_change
;
273 tk
->tkr_raw
.xtime_nsec
= 0;
275 tk
->tkr_mono
.shift
= clock
->shift
;
276 tk
->tkr_raw
.shift
= clock
->shift
;
279 tk
->ntp_error_shift
= NTP_SCALE_SHIFT
- clock
->shift
;
280 tk
->ntp_tick
= ntpinterval
<< tk
->ntp_error_shift
;
283 * The timekeeper keeps its own mult values for the currently
284 * active clocksource. These value will be adjusted via NTP
285 * to counteract clock drifting.
287 tk
->tkr_mono
.mult
= clock
->mult
;
288 tk
->tkr_raw
.mult
= clock
->mult
;
289 tk
->ntp_err_mult
= 0;
292 /* Timekeeper helper functions. */
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32
default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset
)(void) = default_arch_gettimeoffset
;
298 static inline u32
arch_gettimeoffset(void) { return 0; }
301 static inline u64
timekeeping_delta_to_ns(struct tk_read_base
*tkr
, u64 delta
)
305 nsec
= delta
* tkr
->mult
+ tkr
->xtime_nsec
;
308 /* If arch requires, add in get_arch_timeoffset() */
309 return nsec
+ arch_gettimeoffset();
312 static inline u64
timekeeping_get_ns(struct tk_read_base
*tkr
)
316 delta
= timekeeping_get_delta(tkr
);
317 return timekeeping_delta_to_ns(tkr
, delta
);
320 static inline u64
timekeeping_cycles_to_ns(struct tk_read_base
*tkr
, u64 cycles
)
324 /* calculate the delta since the last update_wall_time */
325 delta
= clocksource_delta(cycles
, tkr
->cycle_last
, tkr
->mask
);
326 return timekeeping_delta_to_ns(tkr
, delta
);
330 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
331 * @tkr: Timekeeping readout base from which we take the update
333 * We want to use this from any context including NMI and tracing /
334 * instrumenting the timekeeping code itself.
336 * Employ the latch technique; see @raw_write_seqcount_latch.
338 * So if a NMI hits the update of base[0] then it will use base[1]
339 * which is still consistent. In the worst case this can result is a
340 * slightly wrong timestamp (a few nanoseconds). See
341 * @ktime_get_mono_fast_ns.
343 static void update_fast_timekeeper(struct tk_read_base
*tkr
, struct tk_fast
*tkf
)
345 struct tk_read_base
*base
= tkf
->base
;
347 /* Force readers off to base[1] */
348 raw_write_seqcount_latch(&tkf
->seq
);
351 memcpy(base
, tkr
, sizeof(*base
));
353 /* Force readers back to base[0] */
354 raw_write_seqcount_latch(&tkf
->seq
);
357 memcpy(base
+ 1, base
, sizeof(*base
));
361 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
363 * This timestamp is not guaranteed to be monotonic across an update.
364 * The timestamp is calculated by:
366 * now = base_mono + clock_delta * slope
368 * So if the update lowers the slope, readers who are forced to the
369 * not yet updated second array are still using the old steeper slope.
378 * |12345678---> reader order
384 * So reader 6 will observe time going backwards versus reader 5.
386 * While other CPUs are likely to be able observe that, the only way
387 * for a CPU local observation is when an NMI hits in the middle of
388 * the update. Timestamps taken from that NMI context might be ahead
389 * of the following timestamps. Callers need to be aware of that and
392 static __always_inline u64
__ktime_get_fast_ns(struct tk_fast
*tkf
)
394 struct tk_read_base
*tkr
;
399 seq
= raw_read_seqcount_latch(&tkf
->seq
);
400 tkr
= tkf
->base
+ (seq
& 0x01);
401 now
= ktime_to_ns(tkr
->base
);
403 now
+= timekeeping_delta_to_ns(tkr
,
405 tkr
->read(tkr
->clock
),
408 } while (read_seqcount_retry(&tkf
->seq
, seq
));
413 u64
ktime_get_mono_fast_ns(void)
415 return __ktime_get_fast_ns(&tk_fast_mono
);
417 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns
);
419 u64
ktime_get_raw_fast_ns(void)
421 return __ktime_get_fast_ns(&tk_fast_raw
);
423 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns
);
426 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
428 * To keep it NMI safe since we're accessing from tracing, we're not using a
429 * separate timekeeper with updates to monotonic clock and boot offset
430 * protected with seqlocks. This has the following minor side effects:
432 * (1) Its possible that a timestamp be taken after the boot offset is updated
433 * but before the timekeeper is updated. If this happens, the new boot offset
434 * is added to the old timekeeping making the clock appear to update slightly
437 * timekeeping_inject_sleeptime64()
438 * __timekeeping_inject_sleeptime(tk, delta);
440 * timekeeping_update(tk, TK_CLEAR_NTP...);
442 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
443 * partially updated. Since the tk->offs_boot update is a rare event, this
444 * should be a rare occurrence which postprocessing should be able to handle.
446 u64 notrace
ktime_get_boot_fast_ns(void)
448 struct timekeeper
*tk
= &tk_core
.timekeeper
;
450 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk
->offs_boot
));
452 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns
);
454 /* Suspend-time cycles value for halted fast timekeeper. */
455 static u64 cycles_at_suspend
;
457 static u64
dummy_clock_read(struct clocksource
*cs
)
459 return cycles_at_suspend
;
463 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
464 * @tk: Timekeeper to snapshot.
466 * It generally is unsafe to access the clocksource after timekeeping has been
467 * suspended, so take a snapshot of the readout base of @tk and use it as the
468 * fast timekeeper's readout base while suspended. It will return the same
469 * number of cycles every time until timekeeping is resumed at which time the
470 * proper readout base for the fast timekeeper will be restored automatically.
472 static void halt_fast_timekeeper(struct timekeeper
*tk
)
474 static struct tk_read_base tkr_dummy
;
475 struct tk_read_base
*tkr
= &tk
->tkr_mono
;
477 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
478 cycles_at_suspend
= tkr
->read(tkr
->clock
);
479 tkr_dummy
.read
= dummy_clock_read
;
480 update_fast_timekeeper(&tkr_dummy
, &tk_fast_mono
);
483 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
484 tkr_dummy
.read
= dummy_clock_read
;
485 update_fast_timekeeper(&tkr_dummy
, &tk_fast_raw
);
488 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
490 static inline void update_vsyscall(struct timekeeper
*tk
)
492 struct timespec xt
, wm
;
494 xt
= timespec64_to_timespec(tk_xtime(tk
));
495 wm
= timespec64_to_timespec(tk
->wall_to_monotonic
);
496 update_vsyscall_old(&xt
, &wm
, tk
->tkr_mono
.clock
, tk
->tkr_mono
.mult
,
497 tk
->tkr_mono
.cycle_last
);
500 static inline void old_vsyscall_fixup(struct timekeeper
*tk
)
505 * Store only full nanoseconds into xtime_nsec after rounding
506 * it up and add the remainder to the error difference.
507 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
508 * by truncating the remainder in vsyscalls. However, it causes
509 * additional work to be done in timekeeping_adjust(). Once
510 * the vsyscall implementations are converted to use xtime_nsec
511 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
512 * users are removed, this can be killed.
514 remainder
= tk
->tkr_mono
.xtime_nsec
& ((1ULL << tk
->tkr_mono
.shift
) - 1);
515 if (remainder
!= 0) {
516 tk
->tkr_mono
.xtime_nsec
-= remainder
;
517 tk
->tkr_mono
.xtime_nsec
+= 1ULL << tk
->tkr_mono
.shift
;
518 tk
->ntp_error
+= remainder
<< tk
->ntp_error_shift
;
519 tk
->ntp_error
-= (1ULL << tk
->tkr_mono
.shift
) << tk
->ntp_error_shift
;
523 #define old_vsyscall_fixup(tk)
526 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain
);
528 static void update_pvclock_gtod(struct timekeeper
*tk
, bool was_set
)
530 raw_notifier_call_chain(&pvclock_gtod_chain
, was_set
, tk
);
534 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
536 int pvclock_gtod_register_notifier(struct notifier_block
*nb
)
538 struct timekeeper
*tk
= &tk_core
.timekeeper
;
542 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
543 ret
= raw_notifier_chain_register(&pvclock_gtod_chain
, nb
);
544 update_pvclock_gtod(tk
, true);
545 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
549 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier
);
552 * pvclock_gtod_unregister_notifier - unregister a pvclock
553 * timedata update listener
555 int pvclock_gtod_unregister_notifier(struct notifier_block
*nb
)
560 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
561 ret
= raw_notifier_chain_unregister(&pvclock_gtod_chain
, nb
);
562 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
566 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier
);
569 * tk_update_leap_state - helper to update the next_leap_ktime
571 static inline void tk_update_leap_state(struct timekeeper
*tk
)
573 tk
->next_leap_ktime
= ntp_get_next_leap();
574 if (tk
->next_leap_ktime
!= KTIME_MAX
)
575 /* Convert to monotonic time */
576 tk
->next_leap_ktime
= ktime_sub(tk
->next_leap_ktime
, tk
->offs_real
);
580 * Update the ktime_t based scalar nsec members of the timekeeper
582 static inline void tk_update_ktime_data(struct timekeeper
*tk
)
588 * The xtime based monotonic readout is:
589 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
590 * The ktime based monotonic readout is:
591 * nsec = base_mono + now();
592 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
594 seconds
= (u64
)(tk
->xtime_sec
+ tk
->wall_to_monotonic
.tv_sec
);
595 nsec
= (u32
) tk
->wall_to_monotonic
.tv_nsec
;
596 tk
->tkr_mono
.base
= ns_to_ktime(seconds
* NSEC_PER_SEC
+ nsec
);
598 /* Update the monotonic raw base */
599 tk
->tkr_raw
.base
= timespec64_to_ktime(tk
->raw_time
);
602 * The sum of the nanoseconds portions of xtime and
603 * wall_to_monotonic can be greater/equal one second. Take
604 * this into account before updating tk->ktime_sec.
606 nsec
+= (u32
)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
607 if (nsec
>= NSEC_PER_SEC
)
609 tk
->ktime_sec
= seconds
;
612 /* must hold timekeeper_lock */
613 static void timekeeping_update(struct timekeeper
*tk
, unsigned int action
)
615 if (action
& TK_CLEAR_NTP
) {
620 tk_update_leap_state(tk
);
621 tk_update_ktime_data(tk
);
624 update_pvclock_gtod(tk
, action
& TK_CLOCK_WAS_SET
);
626 update_fast_timekeeper(&tk
->tkr_mono
, &tk_fast_mono
);
627 update_fast_timekeeper(&tk
->tkr_raw
, &tk_fast_raw
);
629 if (action
& TK_CLOCK_WAS_SET
)
630 tk
->clock_was_set_seq
++;
632 * The mirroring of the data to the shadow-timekeeper needs
633 * to happen last here to ensure we don't over-write the
634 * timekeeper structure on the next update with stale data
636 if (action
& TK_MIRROR
)
637 memcpy(&shadow_timekeeper
, &tk_core
.timekeeper
,
638 sizeof(tk_core
.timekeeper
));
642 * timekeeping_forward_now - update clock to the current time
644 * Forward the current clock to update its state since the last call to
645 * update_wall_time(). This is useful before significant clock changes,
646 * as it avoids having to deal with this time offset explicitly.
648 static void timekeeping_forward_now(struct timekeeper
*tk
)
650 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
651 u64 cycle_now
, delta
;
654 cycle_now
= tk
->tkr_mono
.read(clock
);
655 delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
656 tk
->tkr_mono
.cycle_last
= cycle_now
;
657 tk
->tkr_raw
.cycle_last
= cycle_now
;
659 tk
->tkr_mono
.xtime_nsec
+= delta
* tk
->tkr_mono
.mult
;
661 /* If arch requires, add in get_arch_timeoffset() */
662 tk
->tkr_mono
.xtime_nsec
+= (u64
)arch_gettimeoffset() << tk
->tkr_mono
.shift
;
664 tk_normalize_xtime(tk
);
666 nsec
= clocksource_cyc2ns(delta
, tk
->tkr_raw
.mult
, tk
->tkr_raw
.shift
);
667 timespec64_add_ns(&tk
->raw_time
, nsec
);
671 * __getnstimeofday64 - Returns the time of day in a timespec64.
672 * @ts: pointer to the timespec to be set
674 * Updates the time of day in the timespec.
675 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
677 int __getnstimeofday64(struct timespec64
*ts
)
679 struct timekeeper
*tk
= &tk_core
.timekeeper
;
684 seq
= read_seqcount_begin(&tk_core
.seq
);
686 ts
->tv_sec
= tk
->xtime_sec
;
687 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
689 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
692 timespec64_add_ns(ts
, nsecs
);
695 * Do not bail out early, in case there were callers still using
696 * the value, even in the face of the WARN_ON.
698 if (unlikely(timekeeping_suspended
))
702 EXPORT_SYMBOL(__getnstimeofday64
);
705 * getnstimeofday64 - Returns the time of day in a timespec64.
706 * @ts: pointer to the timespec64 to be set
708 * Returns the time of day in a timespec64 (WARN if suspended).
710 void getnstimeofday64(struct timespec64
*ts
)
712 WARN_ON(__getnstimeofday64(ts
));
714 EXPORT_SYMBOL(getnstimeofday64
);
716 ktime_t
ktime_get(void)
718 struct timekeeper
*tk
= &tk_core
.timekeeper
;
723 WARN_ON(timekeeping_suspended
);
726 seq
= read_seqcount_begin(&tk_core
.seq
);
727 base
= tk
->tkr_mono
.base
;
728 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
730 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
732 return ktime_add_ns(base
, nsecs
);
734 EXPORT_SYMBOL_GPL(ktime_get
);
736 u32
ktime_get_resolution_ns(void)
738 struct timekeeper
*tk
= &tk_core
.timekeeper
;
742 WARN_ON(timekeeping_suspended
);
745 seq
= read_seqcount_begin(&tk_core
.seq
);
746 nsecs
= tk
->tkr_mono
.mult
>> tk
->tkr_mono
.shift
;
747 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
751 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns
);
753 static ktime_t
*offsets
[TK_OFFS_MAX
] = {
754 [TK_OFFS_REAL
] = &tk_core
.timekeeper
.offs_real
,
755 [TK_OFFS_BOOT
] = &tk_core
.timekeeper
.offs_boot
,
756 [TK_OFFS_TAI
] = &tk_core
.timekeeper
.offs_tai
,
759 ktime_t
ktime_get_with_offset(enum tk_offsets offs
)
761 struct timekeeper
*tk
= &tk_core
.timekeeper
;
763 ktime_t base
, *offset
= offsets
[offs
];
766 WARN_ON(timekeeping_suspended
);
769 seq
= read_seqcount_begin(&tk_core
.seq
);
770 base
= ktime_add(tk
->tkr_mono
.base
, *offset
);
771 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
773 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
775 return ktime_add_ns(base
, nsecs
);
778 EXPORT_SYMBOL_GPL(ktime_get_with_offset
);
781 * ktime_mono_to_any() - convert mononotic time to any other time
782 * @tmono: time to convert.
783 * @offs: which offset to use
785 ktime_t
ktime_mono_to_any(ktime_t tmono
, enum tk_offsets offs
)
787 ktime_t
*offset
= offsets
[offs
];
792 seq
= read_seqcount_begin(&tk_core
.seq
);
793 tconv
= ktime_add(tmono
, *offset
);
794 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
798 EXPORT_SYMBOL_GPL(ktime_mono_to_any
);
801 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
803 ktime_t
ktime_get_raw(void)
805 struct timekeeper
*tk
= &tk_core
.timekeeper
;
811 seq
= read_seqcount_begin(&tk_core
.seq
);
812 base
= tk
->tkr_raw
.base
;
813 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
815 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
817 return ktime_add_ns(base
, nsecs
);
819 EXPORT_SYMBOL_GPL(ktime_get_raw
);
822 * ktime_get_ts64 - get the monotonic clock in timespec64 format
823 * @ts: pointer to timespec variable
825 * The function calculates the monotonic clock from the realtime
826 * clock and the wall_to_monotonic offset and stores the result
827 * in normalized timespec64 format in the variable pointed to by @ts.
829 void ktime_get_ts64(struct timespec64
*ts
)
831 struct timekeeper
*tk
= &tk_core
.timekeeper
;
832 struct timespec64 tomono
;
836 WARN_ON(timekeeping_suspended
);
839 seq
= read_seqcount_begin(&tk_core
.seq
);
840 ts
->tv_sec
= tk
->xtime_sec
;
841 nsec
= timekeeping_get_ns(&tk
->tkr_mono
);
842 tomono
= tk
->wall_to_monotonic
;
844 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
846 ts
->tv_sec
+= tomono
.tv_sec
;
848 timespec64_add_ns(ts
, nsec
+ tomono
.tv_nsec
);
850 EXPORT_SYMBOL_GPL(ktime_get_ts64
);
853 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
855 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
856 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
857 * works on both 32 and 64 bit systems. On 32 bit systems the readout
858 * covers ~136 years of uptime which should be enough to prevent
859 * premature wrap arounds.
861 time64_t
ktime_get_seconds(void)
863 struct timekeeper
*tk
= &tk_core
.timekeeper
;
865 WARN_ON(timekeeping_suspended
);
866 return tk
->ktime_sec
;
868 EXPORT_SYMBOL_GPL(ktime_get_seconds
);
871 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
873 * Returns the wall clock seconds since 1970. This replaces the
874 * get_seconds() interface which is not y2038 safe on 32bit systems.
876 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
877 * 32bit systems the access must be protected with the sequence
878 * counter to provide "atomic" access to the 64bit tk->xtime_sec
881 time64_t
ktime_get_real_seconds(void)
883 struct timekeeper
*tk
= &tk_core
.timekeeper
;
887 if (IS_ENABLED(CONFIG_64BIT
))
888 return tk
->xtime_sec
;
891 seq
= read_seqcount_begin(&tk_core
.seq
);
892 seconds
= tk
->xtime_sec
;
894 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
898 EXPORT_SYMBOL_GPL(ktime_get_real_seconds
);
901 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
902 * but without the sequence counter protect. This internal function
903 * is called just when timekeeping lock is already held.
905 time64_t
__ktime_get_real_seconds(void)
907 struct timekeeper
*tk
= &tk_core
.timekeeper
;
909 return tk
->xtime_sec
;
913 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
914 * @systime_snapshot: pointer to struct receiving the system time snapshot
916 void ktime_get_snapshot(struct system_time_snapshot
*systime_snapshot
)
918 struct timekeeper
*tk
= &tk_core
.timekeeper
;
926 WARN_ON_ONCE(timekeeping_suspended
);
929 seq
= read_seqcount_begin(&tk_core
.seq
);
931 now
= tk
->tkr_mono
.read(tk
->tkr_mono
.clock
);
932 systime_snapshot
->cs_was_changed_seq
= tk
->cs_was_changed_seq
;
933 systime_snapshot
->clock_was_set_seq
= tk
->clock_was_set_seq
;
934 base_real
= ktime_add(tk
->tkr_mono
.base
,
935 tk_core
.timekeeper
.offs_real
);
936 base_raw
= tk
->tkr_raw
.base
;
937 nsec_real
= timekeeping_cycles_to_ns(&tk
->tkr_mono
, now
);
938 nsec_raw
= timekeeping_cycles_to_ns(&tk
->tkr_raw
, now
);
939 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
941 systime_snapshot
->cycles
= now
;
942 systime_snapshot
->real
= ktime_add_ns(base_real
, nsec_real
);
943 systime_snapshot
->raw
= ktime_add_ns(base_raw
, nsec_raw
);
945 EXPORT_SYMBOL_GPL(ktime_get_snapshot
);
947 /* Scale base by mult/div checking for overflow */
948 static int scale64_check_overflow(u64 mult
, u64 div
, u64
*base
)
952 tmp
= div64_u64_rem(*base
, div
, &rem
);
954 if (((int)sizeof(u64
)*8 - fls64(mult
) < fls64(tmp
)) ||
955 ((int)sizeof(u64
)*8 - fls64(mult
) < fls64(rem
)))
966 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
967 * @history: Snapshot representing start of history
968 * @partial_history_cycles: Cycle offset into history (fractional part)
969 * @total_history_cycles: Total history length in cycles
970 * @discontinuity: True indicates clock was set on history period
971 * @ts: Cross timestamp that should be adjusted using
972 * partial/total ratio
974 * Helper function used by get_device_system_crosststamp() to correct the
975 * crosstimestamp corresponding to the start of the current interval to the
976 * system counter value (timestamp point) provided by the driver. The
977 * total_history_* quantities are the total history starting at the provided
978 * reference point and ending at the start of the current interval. The cycle
979 * count between the driver timestamp point and the start of the current
980 * interval is partial_history_cycles.
982 static int adjust_historical_crosststamp(struct system_time_snapshot
*history
,
983 u64 partial_history_cycles
,
984 u64 total_history_cycles
,
986 struct system_device_crosststamp
*ts
)
988 struct timekeeper
*tk
= &tk_core
.timekeeper
;
989 u64 corr_raw
, corr_real
;
993 if (total_history_cycles
== 0 || partial_history_cycles
== 0)
996 /* Interpolate shortest distance from beginning or end of history */
997 interp_forward
= partial_history_cycles
> total_history_cycles
/2 ?
999 partial_history_cycles
= interp_forward
?
1000 total_history_cycles
- partial_history_cycles
:
1001 partial_history_cycles
;
1004 * Scale the monotonic raw time delta by:
1005 * partial_history_cycles / total_history_cycles
1007 corr_raw
= (u64
)ktime_to_ns(
1008 ktime_sub(ts
->sys_monoraw
, history
->raw
));
1009 ret
= scale64_check_overflow(partial_history_cycles
,
1010 total_history_cycles
, &corr_raw
);
1015 * If there is a discontinuity in the history, scale monotonic raw
1017 * mult(real)/mult(raw) yielding the realtime correction
1018 * Otherwise, calculate the realtime correction similar to monotonic
1021 if (discontinuity
) {
1022 corr_real
= mul_u64_u32_div
1023 (corr_raw
, tk
->tkr_mono
.mult
, tk
->tkr_raw
.mult
);
1025 corr_real
= (u64
)ktime_to_ns(
1026 ktime_sub(ts
->sys_realtime
, history
->real
));
1027 ret
= scale64_check_overflow(partial_history_cycles
,
1028 total_history_cycles
, &corr_real
);
1033 /* Fixup monotonic raw and real time time values */
1034 if (interp_forward
) {
1035 ts
->sys_monoraw
= ktime_add_ns(history
->raw
, corr_raw
);
1036 ts
->sys_realtime
= ktime_add_ns(history
->real
, corr_real
);
1038 ts
->sys_monoraw
= ktime_sub_ns(ts
->sys_monoraw
, corr_raw
);
1039 ts
->sys_realtime
= ktime_sub_ns(ts
->sys_realtime
, corr_real
);
1046 * cycle_between - true if test occurs chronologically between before and after
1048 static bool cycle_between(u64 before
, u64 test
, u64 after
)
1050 if (test
> before
&& test
< after
)
1052 if (test
< before
&& before
> after
)
1058 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1059 * @get_time_fn: Callback to get simultaneous device time and
1060 * system counter from the device driver
1061 * @ctx: Context passed to get_time_fn()
1062 * @history_begin: Historical reference point used to interpolate system
1063 * time when counter provided by the driver is before the current interval
1064 * @xtstamp: Receives simultaneously captured system and device time
1066 * Reads a timestamp from a device and correlates it to system time
1068 int get_device_system_crosststamp(int (*get_time_fn
)
1069 (ktime_t
*device_time
,
1070 struct system_counterval_t
*sys_counterval
,
1073 struct system_time_snapshot
*history_begin
,
1074 struct system_device_crosststamp
*xtstamp
)
1076 struct system_counterval_t system_counterval
;
1077 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1078 u64 cycles
, now
, interval_start
;
1079 unsigned int clock_was_set_seq
= 0;
1080 ktime_t base_real
, base_raw
;
1081 u64 nsec_real
, nsec_raw
;
1082 u8 cs_was_changed_seq
;
1088 seq
= read_seqcount_begin(&tk_core
.seq
);
1090 * Try to synchronously capture device time and a system
1091 * counter value calling back into the device driver
1093 ret
= get_time_fn(&xtstamp
->device
, &system_counterval
, ctx
);
1098 * Verify that the clocksource associated with the captured
1099 * system counter value is the same as the currently installed
1100 * timekeeper clocksource
1102 if (tk
->tkr_mono
.clock
!= system_counterval
.cs
)
1104 cycles
= system_counterval
.cycles
;
1107 * Check whether the system counter value provided by the
1108 * device driver is on the current timekeeping interval.
1110 now
= tk
->tkr_mono
.read(tk
->tkr_mono
.clock
);
1111 interval_start
= tk
->tkr_mono
.cycle_last
;
1112 if (!cycle_between(interval_start
, cycles
, now
)) {
1113 clock_was_set_seq
= tk
->clock_was_set_seq
;
1114 cs_was_changed_seq
= tk
->cs_was_changed_seq
;
1115 cycles
= interval_start
;
1121 base_real
= ktime_add(tk
->tkr_mono
.base
,
1122 tk_core
.timekeeper
.offs_real
);
1123 base_raw
= tk
->tkr_raw
.base
;
1125 nsec_real
= timekeeping_cycles_to_ns(&tk
->tkr_mono
,
1126 system_counterval
.cycles
);
1127 nsec_raw
= timekeeping_cycles_to_ns(&tk
->tkr_raw
,
1128 system_counterval
.cycles
);
1129 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1131 xtstamp
->sys_realtime
= ktime_add_ns(base_real
, nsec_real
);
1132 xtstamp
->sys_monoraw
= ktime_add_ns(base_raw
, nsec_raw
);
1135 * Interpolate if necessary, adjusting back from the start of the
1139 u64 partial_history_cycles
, total_history_cycles
;
1143 * Check that the counter value occurs after the provided
1144 * history reference and that the history doesn't cross a
1145 * clocksource change
1147 if (!history_begin
||
1148 !cycle_between(history_begin
->cycles
,
1149 system_counterval
.cycles
, cycles
) ||
1150 history_begin
->cs_was_changed_seq
!= cs_was_changed_seq
)
1152 partial_history_cycles
= cycles
- system_counterval
.cycles
;
1153 total_history_cycles
= cycles
- history_begin
->cycles
;
1155 history_begin
->clock_was_set_seq
!= clock_was_set_seq
;
1157 ret
= adjust_historical_crosststamp(history_begin
,
1158 partial_history_cycles
,
1159 total_history_cycles
,
1160 discontinuity
, xtstamp
);
1167 EXPORT_SYMBOL_GPL(get_device_system_crosststamp
);
1170 * do_gettimeofday - Returns the time of day in a timeval
1171 * @tv: pointer to the timeval to be set
1173 * NOTE: Users should be converted to using getnstimeofday()
1175 void do_gettimeofday(struct timeval
*tv
)
1177 struct timespec64 now
;
1179 getnstimeofday64(&now
);
1180 tv
->tv_sec
= now
.tv_sec
;
1181 tv
->tv_usec
= now
.tv_nsec
/1000;
1183 EXPORT_SYMBOL(do_gettimeofday
);
1186 * do_settimeofday64 - Sets the time of day.
1187 * @ts: pointer to the timespec64 variable containing the new time
1189 * Sets the time of day to the new time and update NTP and notify hrtimers
1191 int do_settimeofday64(const struct timespec64
*ts
)
1193 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1194 struct timespec64 ts_delta
, xt
;
1195 unsigned long flags
;
1198 if (!timespec64_valid_strict(ts
))
1201 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1202 write_seqcount_begin(&tk_core
.seq
);
1204 timekeeping_forward_now(tk
);
1207 ts_delta
.tv_sec
= ts
->tv_sec
- xt
.tv_sec
;
1208 ts_delta
.tv_nsec
= ts
->tv_nsec
- xt
.tv_nsec
;
1210 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts_delta
) > 0) {
1215 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts_delta
));
1217 tk_set_xtime(tk
, ts
);
1219 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1221 write_seqcount_end(&tk_core
.seq
);
1222 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1224 /* signal hrtimers about time change */
1229 EXPORT_SYMBOL(do_settimeofday64
);
1232 * timekeeping_inject_offset - Adds or subtracts from the current time.
1233 * @tv: pointer to the timespec variable containing the offset
1235 * Adds or subtracts an offset value from the current time.
1237 int timekeeping_inject_offset(struct timespec
*ts
)
1239 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1240 unsigned long flags
;
1241 struct timespec64 ts64
, tmp
;
1244 if (!timespec_inject_offset_valid(ts
))
1247 ts64
= timespec_to_timespec64(*ts
);
1249 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1250 write_seqcount_begin(&tk_core
.seq
);
1252 timekeeping_forward_now(tk
);
1254 /* Make sure the proposed value is valid */
1255 tmp
= timespec64_add(tk_xtime(tk
), ts64
);
1256 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts64
) > 0 ||
1257 !timespec64_valid_strict(&tmp
)) {
1262 tk_xtime_add(tk
, &ts64
);
1263 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts64
));
1265 error
: /* even if we error out, we forwarded the time, so call update */
1266 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1268 write_seqcount_end(&tk_core
.seq
);
1269 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1271 /* signal hrtimers about time change */
1276 EXPORT_SYMBOL(timekeeping_inject_offset
);
1280 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1283 s32
timekeeping_get_tai_offset(void)
1285 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1290 seq
= read_seqcount_begin(&tk_core
.seq
);
1291 ret
= tk
->tai_offset
;
1292 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1298 * __timekeeping_set_tai_offset - Lock free worker function
1301 static void __timekeeping_set_tai_offset(struct timekeeper
*tk
, s32 tai_offset
)
1303 tk
->tai_offset
= tai_offset
;
1304 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tai_offset
, 0));
1308 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1311 void timekeeping_set_tai_offset(s32 tai_offset
)
1313 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1314 unsigned long flags
;
1316 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1317 write_seqcount_begin(&tk_core
.seq
);
1318 __timekeeping_set_tai_offset(tk
, tai_offset
);
1319 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1320 write_seqcount_end(&tk_core
.seq
);
1321 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1326 * change_clocksource - Swaps clocksources if a new one is available
1328 * Accumulates current time interval and initializes new clocksource
1330 static int change_clocksource(void *data
)
1332 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1333 struct clocksource
*new, *old
;
1334 unsigned long flags
;
1336 new = (struct clocksource
*) data
;
1338 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1339 write_seqcount_begin(&tk_core
.seq
);
1341 timekeeping_forward_now(tk
);
1343 * If the cs is in module, get a module reference. Succeeds
1344 * for built-in code (owner == NULL) as well.
1346 if (try_module_get(new->owner
)) {
1347 if (!new->enable
|| new->enable(new) == 0) {
1348 old
= tk
->tkr_mono
.clock
;
1349 tk_setup_internals(tk
, new);
1352 module_put(old
->owner
);
1354 module_put(new->owner
);
1357 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1359 write_seqcount_end(&tk_core
.seq
);
1360 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1366 * timekeeping_notify - Install a new clock source
1367 * @clock: pointer to the clock source
1369 * This function is called from clocksource.c after a new, better clock
1370 * source has been registered. The caller holds the clocksource_mutex.
1372 int timekeeping_notify(struct clocksource
*clock
)
1374 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1376 if (tk
->tkr_mono
.clock
== clock
)
1378 stop_machine(change_clocksource
, clock
, NULL
);
1379 tick_clock_notify();
1380 return tk
->tkr_mono
.clock
== clock
? 0 : -1;
1384 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1385 * @ts: pointer to the timespec64 to be set
1387 * Returns the raw monotonic time (completely un-modified by ntp)
1389 void getrawmonotonic64(struct timespec64
*ts
)
1391 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1392 struct timespec64 ts64
;
1397 seq
= read_seqcount_begin(&tk_core
.seq
);
1398 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
1399 ts64
= tk
->raw_time
;
1401 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1403 timespec64_add_ns(&ts64
, nsecs
);
1406 EXPORT_SYMBOL(getrawmonotonic64
);
1410 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1412 int timekeeping_valid_for_hres(void)
1414 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1419 seq
= read_seqcount_begin(&tk_core
.seq
);
1421 ret
= tk
->tkr_mono
.clock
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
;
1423 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1429 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1431 u64
timekeeping_max_deferment(void)
1433 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1438 seq
= read_seqcount_begin(&tk_core
.seq
);
1440 ret
= tk
->tkr_mono
.clock
->max_idle_ns
;
1442 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1448 * read_persistent_clock - Return time from the persistent clock.
1450 * Weak dummy function for arches that do not yet support it.
1451 * Reads the time from the battery backed persistent clock.
1452 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1454 * XXX - Do be sure to remove it once all arches implement it.
1456 void __weak
read_persistent_clock(struct timespec
*ts
)
1462 void __weak
read_persistent_clock64(struct timespec64
*ts64
)
1466 read_persistent_clock(&ts
);
1467 *ts64
= timespec_to_timespec64(ts
);
1471 * read_boot_clock64 - Return time of the system start.
1473 * Weak dummy function for arches that do not yet support it.
1474 * Function to read the exact time the system has been started.
1475 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1477 * XXX - Do be sure to remove it once all arches implement it.
1479 void __weak
read_boot_clock64(struct timespec64
*ts
)
1485 /* Flag for if timekeeping_resume() has injected sleeptime */
1486 static bool sleeptime_injected
;
1488 /* Flag for if there is a persistent clock on this platform */
1489 static bool persistent_clock_exists
;
1492 * timekeeping_init - Initializes the clocksource and common timekeeping values
1494 void __init
timekeeping_init(void)
1496 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1497 struct clocksource
*clock
;
1498 unsigned long flags
;
1499 struct timespec64 now
, boot
, tmp
;
1501 read_persistent_clock64(&now
);
1502 if (!timespec64_valid_strict(&now
)) {
1503 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1504 " Check your CMOS/BIOS settings.\n");
1507 } else if (now
.tv_sec
|| now
.tv_nsec
)
1508 persistent_clock_exists
= true;
1510 read_boot_clock64(&boot
);
1511 if (!timespec64_valid_strict(&boot
)) {
1512 pr_warn("WARNING: Boot clock returned invalid value!\n"
1513 " Check your CMOS/BIOS settings.\n");
1518 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1519 write_seqcount_begin(&tk_core
.seq
);
1522 clock
= clocksource_default_clock();
1524 clock
->enable(clock
);
1525 tk_setup_internals(tk
, clock
);
1527 tk_set_xtime(tk
, &now
);
1528 tk
->raw_time
.tv_sec
= 0;
1529 tk
->raw_time
.tv_nsec
= 0;
1530 if (boot
.tv_sec
== 0 && boot
.tv_nsec
== 0)
1531 boot
= tk_xtime(tk
);
1533 set_normalized_timespec64(&tmp
, -boot
.tv_sec
, -boot
.tv_nsec
);
1534 tk_set_wall_to_mono(tk
, tmp
);
1536 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1538 write_seqcount_end(&tk_core
.seq
);
1539 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1542 /* time in seconds when suspend began for persistent clock */
1543 static struct timespec64 timekeeping_suspend_time
;
1546 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1547 * @delta: pointer to a timespec delta value
1549 * Takes a timespec offset measuring a suspend interval and properly
1550 * adds the sleep offset to the timekeeping variables.
1552 static void __timekeeping_inject_sleeptime(struct timekeeper
*tk
,
1553 struct timespec64
*delta
)
1555 if (!timespec64_valid_strict(delta
)) {
1556 printk_deferred(KERN_WARNING
1557 "__timekeeping_inject_sleeptime: Invalid "
1558 "sleep delta value!\n");
1561 tk_xtime_add(tk
, delta
);
1562 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, *delta
));
1563 tk_update_sleep_time(tk
, timespec64_to_ktime(*delta
));
1564 tk_debug_account_sleep_time(delta
);
1567 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1569 * We have three kinds of time sources to use for sleep time
1570 * injection, the preference order is:
1571 * 1) non-stop clocksource
1572 * 2) persistent clock (ie: RTC accessible when irqs are off)
1575 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1576 * If system has neither 1) nor 2), 3) will be used finally.
1579 * If timekeeping has injected sleeptime via either 1) or 2),
1580 * 3) becomes needless, so in this case we don't need to call
1581 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1584 bool timekeeping_rtc_skipresume(void)
1586 return sleeptime_injected
;
1590 * 1) can be determined whether to use or not only when doing
1591 * timekeeping_resume() which is invoked after rtc_suspend(),
1592 * so we can't skip rtc_suspend() surely if system has 1).
1594 * But if system has 2), 2) will definitely be used, so in this
1595 * case we don't need to call rtc_suspend(), and this is what
1596 * timekeeping_rtc_skipsuspend() means.
1598 bool timekeeping_rtc_skipsuspend(void)
1600 return persistent_clock_exists
;
1604 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1605 * @delta: pointer to a timespec64 delta value
1607 * This hook is for architectures that cannot support read_persistent_clock64
1608 * because their RTC/persistent clock is only accessible when irqs are enabled.
1609 * and also don't have an effective nonstop clocksource.
1611 * This function should only be called by rtc_resume(), and allows
1612 * a suspend offset to be injected into the timekeeping values.
1614 void timekeeping_inject_sleeptime64(struct timespec64
*delta
)
1616 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1617 unsigned long flags
;
1619 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1620 write_seqcount_begin(&tk_core
.seq
);
1622 timekeeping_forward_now(tk
);
1624 __timekeeping_inject_sleeptime(tk
, delta
);
1626 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1628 write_seqcount_end(&tk_core
.seq
);
1629 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1631 /* signal hrtimers about time change */
1637 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1639 void timekeeping_resume(void)
1641 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1642 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
1643 unsigned long flags
;
1644 struct timespec64 ts_new
, ts_delta
;
1647 sleeptime_injected
= false;
1648 read_persistent_clock64(&ts_new
);
1650 clockevents_resume();
1651 clocksource_resume();
1653 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1654 write_seqcount_begin(&tk_core
.seq
);
1657 * After system resumes, we need to calculate the suspended time and
1658 * compensate it for the OS time. There are 3 sources that could be
1659 * used: Nonstop clocksource during suspend, persistent clock and rtc
1662 * One specific platform may have 1 or 2 or all of them, and the
1663 * preference will be:
1664 * suspend-nonstop clocksource -> persistent clock -> rtc
1665 * The less preferred source will only be tried if there is no better
1666 * usable source. The rtc part is handled separately in rtc core code.
1668 cycle_now
= tk
->tkr_mono
.read(clock
);
1669 if ((clock
->flags
& CLOCK_SOURCE_SUSPEND_NONSTOP
) &&
1670 cycle_now
> tk
->tkr_mono
.cycle_last
) {
1671 u64 nsec
, cyc_delta
;
1673 cyc_delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
,
1675 nsec
= mul_u64_u32_shr(cyc_delta
, clock
->mult
, clock
->shift
);
1676 ts_delta
= ns_to_timespec64(nsec
);
1677 sleeptime_injected
= true;
1678 } else if (timespec64_compare(&ts_new
, &timekeeping_suspend_time
) > 0) {
1679 ts_delta
= timespec64_sub(ts_new
, timekeeping_suspend_time
);
1680 sleeptime_injected
= true;
1683 if (sleeptime_injected
)
1684 __timekeeping_inject_sleeptime(tk
, &ts_delta
);
1686 /* Re-base the last cycle value */
1687 tk
->tkr_mono
.cycle_last
= cycle_now
;
1688 tk
->tkr_raw
.cycle_last
= cycle_now
;
1691 timekeeping_suspended
= 0;
1692 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1693 write_seqcount_end(&tk_core
.seq
);
1694 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1696 touch_softlockup_watchdog();
1702 int timekeeping_suspend(void)
1704 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1705 unsigned long flags
;
1706 struct timespec64 delta
, delta_delta
;
1707 static struct timespec64 old_delta
;
1709 read_persistent_clock64(&timekeeping_suspend_time
);
1712 * On some systems the persistent_clock can not be detected at
1713 * timekeeping_init by its return value, so if we see a valid
1714 * value returned, update the persistent_clock_exists flag.
1716 if (timekeeping_suspend_time
.tv_sec
|| timekeeping_suspend_time
.tv_nsec
)
1717 persistent_clock_exists
= true;
1719 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1720 write_seqcount_begin(&tk_core
.seq
);
1721 timekeeping_forward_now(tk
);
1722 timekeeping_suspended
= 1;
1724 if (persistent_clock_exists
) {
1726 * To avoid drift caused by repeated suspend/resumes,
1727 * which each can add ~1 second drift error,
1728 * try to compensate so the difference in system time
1729 * and persistent_clock time stays close to constant.
1731 delta
= timespec64_sub(tk_xtime(tk
), timekeeping_suspend_time
);
1732 delta_delta
= timespec64_sub(delta
, old_delta
);
1733 if (abs(delta_delta
.tv_sec
) >= 2) {
1735 * if delta_delta is too large, assume time correction
1736 * has occurred and set old_delta to the current delta.
1740 /* Otherwise try to adjust old_system to compensate */
1741 timekeeping_suspend_time
=
1742 timespec64_add(timekeeping_suspend_time
, delta_delta
);
1746 timekeeping_update(tk
, TK_MIRROR
);
1747 halt_fast_timekeeper(tk
);
1748 write_seqcount_end(&tk_core
.seq
);
1749 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1752 clocksource_suspend();
1753 clockevents_suspend();
1758 /* sysfs resume/suspend bits for timekeeping */
1759 static struct syscore_ops timekeeping_syscore_ops
= {
1760 .resume
= timekeeping_resume
,
1761 .suspend
= timekeeping_suspend
,
1764 static int __init
timekeeping_init_ops(void)
1766 register_syscore_ops(&timekeeping_syscore_ops
);
1769 device_initcall(timekeeping_init_ops
);
1772 * Apply a multiplier adjustment to the timekeeper
1774 static __always_inline
void timekeeping_apply_adjustment(struct timekeeper
*tk
,
1779 s64 interval
= tk
->cycle_interval
;
1783 mult_adj
= -mult_adj
;
1784 interval
= -interval
;
1787 mult_adj
<<= adj_scale
;
1788 interval
<<= adj_scale
;
1789 offset
<<= adj_scale
;
1792 * So the following can be confusing.
1794 * To keep things simple, lets assume mult_adj == 1 for now.
1796 * When mult_adj != 1, remember that the interval and offset values
1797 * have been appropriately scaled so the math is the same.
1799 * The basic idea here is that we're increasing the multiplier
1800 * by one, this causes the xtime_interval to be incremented by
1801 * one cycle_interval. This is because:
1802 * xtime_interval = cycle_interval * mult
1803 * So if mult is being incremented by one:
1804 * xtime_interval = cycle_interval * (mult + 1)
1806 * xtime_interval = (cycle_interval * mult) + cycle_interval
1807 * Which can be shortened to:
1808 * xtime_interval += cycle_interval
1810 * So offset stores the non-accumulated cycles. Thus the current
1811 * time (in shifted nanoseconds) is:
1812 * now = (offset * adj) + xtime_nsec
1813 * Now, even though we're adjusting the clock frequency, we have
1814 * to keep time consistent. In other words, we can't jump back
1815 * in time, and we also want to avoid jumping forward in time.
1817 * So given the same offset value, we need the time to be the same
1818 * both before and after the freq adjustment.
1819 * now = (offset * adj_1) + xtime_nsec_1
1820 * now = (offset * adj_2) + xtime_nsec_2
1822 * (offset * adj_1) + xtime_nsec_1 =
1823 * (offset * adj_2) + xtime_nsec_2
1827 * (offset * adj_1) + xtime_nsec_1 =
1828 * (offset * (adj_1+1)) + xtime_nsec_2
1829 * (offset * adj_1) + xtime_nsec_1 =
1830 * (offset * adj_1) + offset + xtime_nsec_2
1831 * Canceling the sides:
1832 * xtime_nsec_1 = offset + xtime_nsec_2
1834 * xtime_nsec_2 = xtime_nsec_1 - offset
1835 * Which simplfies to:
1836 * xtime_nsec -= offset
1838 * XXX - TODO: Doc ntp_error calculation.
1840 if ((mult_adj
> 0) && (tk
->tkr_mono
.mult
+ mult_adj
< mult_adj
)) {
1841 /* NTP adjustment caused clocksource mult overflow */
1846 tk
->tkr_mono
.mult
+= mult_adj
;
1847 tk
->xtime_interval
+= interval
;
1848 tk
->tkr_mono
.xtime_nsec
-= offset
;
1849 tk
->ntp_error
-= (interval
- offset
) << tk
->ntp_error_shift
;
1853 * Calculate the multiplier adjustment needed to match the frequency
1856 static __always_inline
void timekeeping_freqadjust(struct timekeeper
*tk
,
1859 s64 interval
= tk
->cycle_interval
;
1860 s64 xinterval
= tk
->xtime_interval
;
1861 u32 base
= tk
->tkr_mono
.clock
->mult
;
1862 u32 max
= tk
->tkr_mono
.clock
->maxadj
;
1863 u32 cur_adj
= tk
->tkr_mono
.mult
;
1868 /* Remove any current error adj from freq calculation */
1869 if (tk
->ntp_err_mult
)
1870 xinterval
-= tk
->cycle_interval
;
1872 tk
->ntp_tick
= ntp_tick_length();
1874 /* Calculate current error per tick */
1875 tick_error
= ntp_tick_length() >> tk
->ntp_error_shift
;
1876 tick_error
-= (xinterval
+ tk
->xtime_remainder
);
1878 /* Don't worry about correcting it if its small */
1879 if (likely((tick_error
>= 0) && (tick_error
<= interval
)))
1882 /* preserve the direction of correction */
1883 negative
= (tick_error
< 0);
1885 /* If any adjustment would pass the max, just return */
1886 if (negative
&& (cur_adj
- 1) <= (base
- max
))
1888 if (!negative
&& (cur_adj
+ 1) >= (base
+ max
))
1891 * Sort out the magnitude of the correction, but
1892 * avoid making so large a correction that we go
1893 * over the max adjustment.
1896 tick_error
= abs(tick_error
);
1897 while (tick_error
> interval
) {
1898 u32 adj
= 1 << (adj_scale
+ 1);
1900 /* Check if adjustment gets us within 1 unit from the max */
1901 if (negative
&& (cur_adj
- adj
) <= (base
- max
))
1903 if (!negative
&& (cur_adj
+ adj
) >= (base
+ max
))
1910 /* scale the corrections */
1911 timekeeping_apply_adjustment(tk
, offset
, negative
, adj_scale
);
1915 * Adjust the timekeeper's multiplier to the correct frequency
1916 * and also to reduce the accumulated error value.
1918 static void timekeeping_adjust(struct timekeeper
*tk
, s64 offset
)
1920 /* Correct for the current frequency error */
1921 timekeeping_freqadjust(tk
, offset
);
1923 /* Next make a small adjustment to fix any cumulative error */
1924 if (!tk
->ntp_err_mult
&& (tk
->ntp_error
> 0)) {
1925 tk
->ntp_err_mult
= 1;
1926 timekeeping_apply_adjustment(tk
, offset
, 0, 0);
1927 } else if (tk
->ntp_err_mult
&& (tk
->ntp_error
<= 0)) {
1928 /* Undo any existing error adjustment */
1929 timekeeping_apply_adjustment(tk
, offset
, 1, 0);
1930 tk
->ntp_err_mult
= 0;
1933 if (unlikely(tk
->tkr_mono
.clock
->maxadj
&&
1934 (abs(tk
->tkr_mono
.mult
- tk
->tkr_mono
.clock
->mult
)
1935 > tk
->tkr_mono
.clock
->maxadj
))) {
1936 printk_once(KERN_WARNING
1937 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1938 tk
->tkr_mono
.clock
->name
, (long)tk
->tkr_mono
.mult
,
1939 (long)tk
->tkr_mono
.clock
->mult
+ tk
->tkr_mono
.clock
->maxadj
);
1943 * It may be possible that when we entered this function, xtime_nsec
1944 * was very small. Further, if we're slightly speeding the clocksource
1945 * in the code above, its possible the required corrective factor to
1946 * xtime_nsec could cause it to underflow.
1948 * Now, since we already accumulated the second, cannot simply roll
1949 * the accumulated second back, since the NTP subsystem has been
1950 * notified via second_overflow. So instead we push xtime_nsec forward
1951 * by the amount we underflowed, and add that amount into the error.
1953 * We'll correct this error next time through this function, when
1954 * xtime_nsec is not as small.
1956 if (unlikely((s64
)tk
->tkr_mono
.xtime_nsec
< 0)) {
1957 s64 neg
= -(s64
)tk
->tkr_mono
.xtime_nsec
;
1958 tk
->tkr_mono
.xtime_nsec
= 0;
1959 tk
->ntp_error
+= neg
<< tk
->ntp_error_shift
;
1964 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1966 * Helper function that accumulates the nsecs greater than a second
1967 * from the xtime_nsec field to the xtime_secs field.
1968 * It also calls into the NTP code to handle leapsecond processing.
1971 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper
*tk
)
1973 u64 nsecps
= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
1974 unsigned int clock_set
= 0;
1976 while (tk
->tkr_mono
.xtime_nsec
>= nsecps
) {
1979 tk
->tkr_mono
.xtime_nsec
-= nsecps
;
1982 /* Figure out if its a leap sec and apply if needed */
1983 leap
= second_overflow(tk
->xtime_sec
);
1984 if (unlikely(leap
)) {
1985 struct timespec64 ts
;
1987 tk
->xtime_sec
+= leap
;
1991 tk_set_wall_to_mono(tk
,
1992 timespec64_sub(tk
->wall_to_monotonic
, ts
));
1994 __timekeeping_set_tai_offset(tk
, tk
->tai_offset
- leap
);
1996 clock_set
= TK_CLOCK_WAS_SET
;
2003 * logarithmic_accumulation - shifted accumulation of cycles
2005 * This functions accumulates a shifted interval of cycles into
2006 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2009 * Returns the unconsumed cycles.
2011 static u64
logarithmic_accumulation(struct timekeeper
*tk
, u64 offset
,
2012 u32 shift
, unsigned int *clock_set
)
2014 u64 interval
= tk
->cycle_interval
<< shift
;
2017 /* If the offset is smaller than a shifted interval, do nothing */
2018 if (offset
< interval
)
2021 /* Accumulate one shifted interval */
2023 tk
->tkr_mono
.cycle_last
+= interval
;
2024 tk
->tkr_raw
.cycle_last
+= interval
;
2026 tk
->tkr_mono
.xtime_nsec
+= tk
->xtime_interval
<< shift
;
2027 *clock_set
|= accumulate_nsecs_to_secs(tk
);
2029 /* Accumulate raw time */
2030 raw_nsecs
= (u64
)tk
->raw_interval
<< shift
;
2031 raw_nsecs
+= tk
->raw_time
.tv_nsec
;
2032 if (raw_nsecs
>= NSEC_PER_SEC
) {
2033 u64 raw_secs
= raw_nsecs
;
2034 raw_nsecs
= do_div(raw_secs
, NSEC_PER_SEC
);
2035 tk
->raw_time
.tv_sec
+= raw_secs
;
2037 tk
->raw_time
.tv_nsec
= raw_nsecs
;
2039 /* Accumulate error between NTP and clock interval */
2040 tk
->ntp_error
+= tk
->ntp_tick
<< shift
;
2041 tk
->ntp_error
-= (tk
->xtime_interval
+ tk
->xtime_remainder
) <<
2042 (tk
->ntp_error_shift
+ shift
);
2048 * update_wall_time - Uses the current clocksource to increment the wall time
2051 void update_wall_time(void)
2053 struct timekeeper
*real_tk
= &tk_core
.timekeeper
;
2054 struct timekeeper
*tk
= &shadow_timekeeper
;
2056 int shift
= 0, maxshift
;
2057 unsigned int clock_set
= 0;
2058 unsigned long flags
;
2060 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2062 /* Make sure we're fully resumed: */
2063 if (unlikely(timekeeping_suspended
))
2066 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2067 offset
= real_tk
->cycle_interval
;
2069 offset
= clocksource_delta(tk
->tkr_mono
.read(tk
->tkr_mono
.clock
),
2070 tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
2073 /* Check if there's really nothing to do */
2074 if (offset
< real_tk
->cycle_interval
)
2077 /* Do some additional sanity checking */
2078 timekeeping_check_update(real_tk
, offset
);
2081 * With NO_HZ we may have to accumulate many cycle_intervals
2082 * (think "ticks") worth of time at once. To do this efficiently,
2083 * we calculate the largest doubling multiple of cycle_intervals
2084 * that is smaller than the offset. We then accumulate that
2085 * chunk in one go, and then try to consume the next smaller
2088 shift
= ilog2(offset
) - ilog2(tk
->cycle_interval
);
2089 shift
= max(0, shift
);
2090 /* Bound shift to one less than what overflows tick_length */
2091 maxshift
= (64 - (ilog2(ntp_tick_length())+1)) - 1;
2092 shift
= min(shift
, maxshift
);
2093 while (offset
>= tk
->cycle_interval
) {
2094 offset
= logarithmic_accumulation(tk
, offset
, shift
,
2096 if (offset
< tk
->cycle_interval
<<shift
)
2100 /* correct the clock when NTP error is too big */
2101 timekeeping_adjust(tk
, offset
);
2104 * XXX This can be killed once everyone converts
2105 * to the new update_vsyscall.
2107 old_vsyscall_fixup(tk
);
2110 * Finally, make sure that after the rounding
2111 * xtime_nsec isn't larger than NSEC_PER_SEC
2113 clock_set
|= accumulate_nsecs_to_secs(tk
);
2115 write_seqcount_begin(&tk_core
.seq
);
2117 * Update the real timekeeper.
2119 * We could avoid this memcpy by switching pointers, but that
2120 * requires changes to all other timekeeper usage sites as
2121 * well, i.e. move the timekeeper pointer getter into the
2122 * spinlocked/seqcount protected sections. And we trade this
2123 * memcpy under the tk_core.seq against one before we start
2126 timekeeping_update(tk
, clock_set
);
2127 memcpy(real_tk
, tk
, sizeof(*tk
));
2128 /* The memcpy must come last. Do not put anything here! */
2129 write_seqcount_end(&tk_core
.seq
);
2131 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2133 /* Have to call _delayed version, since in irq context*/
2134 clock_was_set_delayed();
2138 * getboottime64 - Return the real time of system boot.
2139 * @ts: pointer to the timespec64 to be set
2141 * Returns the wall-time of boot in a timespec64.
2143 * This is based on the wall_to_monotonic offset and the total suspend
2144 * time. Calls to settimeofday will affect the value returned (which
2145 * basically means that however wrong your real time clock is at boot time,
2146 * you get the right time here).
2148 void getboottime64(struct timespec64
*ts
)
2150 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2151 ktime_t t
= ktime_sub(tk
->offs_real
, tk
->offs_boot
);
2153 *ts
= ktime_to_timespec64(t
);
2155 EXPORT_SYMBOL_GPL(getboottime64
);
2157 unsigned long get_seconds(void)
2159 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2161 return tk
->xtime_sec
;
2163 EXPORT_SYMBOL(get_seconds
);
2165 struct timespec
__current_kernel_time(void)
2167 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2169 return timespec64_to_timespec(tk_xtime(tk
));
2172 struct timespec64
current_kernel_time64(void)
2174 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2175 struct timespec64 now
;
2179 seq
= read_seqcount_begin(&tk_core
.seq
);
2182 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2186 EXPORT_SYMBOL(current_kernel_time64
);
2188 struct timespec64
get_monotonic_coarse64(void)
2190 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2191 struct timespec64 now
, mono
;
2195 seq
= read_seqcount_begin(&tk_core
.seq
);
2198 mono
= tk
->wall_to_monotonic
;
2199 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2201 set_normalized_timespec64(&now
, now
.tv_sec
+ mono
.tv_sec
,
2202 now
.tv_nsec
+ mono
.tv_nsec
);
2206 EXPORT_SYMBOL(get_monotonic_coarse64
);
2209 * Must hold jiffies_lock
2211 void do_timer(unsigned long ticks
)
2213 jiffies_64
+= ticks
;
2214 calc_global_load(ticks
);
2218 * ktime_get_update_offsets_now - hrtimer helper
2219 * @cwsseq: pointer to check and store the clock was set sequence number
2220 * @offs_real: pointer to storage for monotonic -> realtime offset
2221 * @offs_boot: pointer to storage for monotonic -> boottime offset
2222 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2224 * Returns current monotonic time and updates the offsets if the
2225 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2228 * Called from hrtimer_interrupt() or retrigger_next_event()
2230 ktime_t
ktime_get_update_offsets_now(unsigned int *cwsseq
, ktime_t
*offs_real
,
2231 ktime_t
*offs_boot
, ktime_t
*offs_tai
)
2233 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2239 seq
= read_seqcount_begin(&tk_core
.seq
);
2241 base
= tk
->tkr_mono
.base
;
2242 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
2243 base
= ktime_add_ns(base
, nsecs
);
2245 if (*cwsseq
!= tk
->clock_was_set_seq
) {
2246 *cwsseq
= tk
->clock_was_set_seq
;
2247 *offs_real
= tk
->offs_real
;
2248 *offs_boot
= tk
->offs_boot
;
2249 *offs_tai
= tk
->offs_tai
;
2252 /* Handle leapsecond insertion adjustments */
2253 if (unlikely(base
>= tk
->next_leap_ktime
))
2254 *offs_real
= ktime_sub(tk
->offs_real
, ktime_set(1, 0));
2256 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2262 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2264 int do_adjtimex(struct timex
*txc
)
2266 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2267 unsigned long flags
;
2268 struct timespec64 ts
;
2272 /* Validate the data before disabling interrupts */
2273 ret
= ntp_validate_timex(txc
);
2277 if (txc
->modes
& ADJ_SETOFFSET
) {
2278 struct timespec delta
;
2279 delta
.tv_sec
= txc
->time
.tv_sec
;
2280 delta
.tv_nsec
= txc
->time
.tv_usec
;
2281 if (!(txc
->modes
& ADJ_NANO
))
2282 delta
.tv_nsec
*= 1000;
2283 ret
= timekeeping_inject_offset(&delta
);
2288 getnstimeofday64(&ts
);
2290 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2291 write_seqcount_begin(&tk_core
.seq
);
2293 orig_tai
= tai
= tk
->tai_offset
;
2294 ret
= __do_adjtimex(txc
, &ts
, &tai
);
2296 if (tai
!= orig_tai
) {
2297 __timekeeping_set_tai_offset(tk
, tai
);
2298 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
2300 tk_update_leap_state(tk
);
2302 write_seqcount_end(&tk_core
.seq
);
2303 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2305 if (tai
!= orig_tai
)
2308 ntp_notify_cmos_timer();
2313 #ifdef CONFIG_NTP_PPS
2315 * hardpps() - Accessor function to NTP __hardpps function
2317 void hardpps(const struct timespec64
*phase_ts
, const struct timespec64
*raw_ts
)
2319 unsigned long flags
;
2321 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2322 write_seqcount_begin(&tk_core
.seq
);
2324 __hardpps(phase_ts
, raw_ts
);
2326 write_seqcount_end(&tk_core
.seq
);
2327 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2329 EXPORT_SYMBOL(hardpps
);
2333 * xtime_update() - advances the timekeeping infrastructure
2334 * @ticks: number of ticks, that have elapsed since the last call.
2336 * Must be called with interrupts disabled.
2338 void xtime_update(unsigned long ticks
)
2340 write_seqlock(&jiffies_lock
);
2342 write_sequnlock(&jiffies_lock
);