4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h> /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
26 #include <asm/local.h>
28 static void update_pages_handler(struct work_struct
*work
);
31 * The ring buffer header is special. We must manually up keep it.
33 int ring_buffer_print_entry_header(struct trace_seq
*s
)
35 trace_seq_puts(s
, "# compressed entry header\n");
36 trace_seq_puts(s
, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s
, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s
, "\tarray : 32 bits\n");
39 trace_seq_putc(s
, '\n');
40 trace_seq_printf(s
, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING
);
42 trace_seq_printf(s
, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND
);
44 trace_seq_printf(s
, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
47 return !trace_seq_has_overflowed(s
);
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
64 * Here's some silly ASCII art.
67 * |reader| RING BUFFER
69 * +------+ +---+ +---+ +---+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
96 * +------------------------------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
104 * | New +---+ +---+ +---+
107 * +------------------------------+
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
114 * We will be using cmpxchg soon to make all this lockless.
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
142 RB_LEN_TIME_EXTEND
= 8,
143 RB_LEN_TIME_STAMP
= 16,
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
149 static inline int rb_null_event(struct ring_buffer_event
*event
)
151 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
154 static void rb_event_set_padding(struct ring_buffer_event
*event
)
156 /* padding has a NULL time_delta */
157 event
->type_len
= RINGBUF_TYPE_PADDING
;
158 event
->time_delta
= 0;
162 rb_event_data_length(struct ring_buffer_event
*event
)
167 length
= event
->type_len
* RB_ALIGNMENT
;
169 length
= event
->array
[0];
170 return length
+ RB_EVNT_HDR_SIZE
;
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event
*event
)
181 switch (event
->type_len
) {
182 case RINGBUF_TYPE_PADDING
:
183 if (rb_null_event(event
))
186 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
188 case RINGBUF_TYPE_TIME_EXTEND
:
189 return RB_LEN_TIME_EXTEND
;
191 case RINGBUF_TYPE_TIME_STAMP
:
192 return RB_LEN_TIME_STAMP
;
194 case RINGBUF_TYPE_DATA
:
195 return rb_event_data_length(event
);
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event
*event
)
212 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
213 /* time extends include the data event after it */
214 len
= RB_LEN_TIME_EXTEND
;
215 event
= skip_time_extend(event
);
217 return len
+ rb_event_length(event
);
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
230 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
234 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
235 event
= skip_time_extend(event
);
237 length
= rb_event_length(event
);
238 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
240 length
-= RB_EVNT_HDR_SIZE
;
241 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
242 length
-= sizeof(event
->array
[0]);
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
247 /* inline for ring buffer fast paths */
248 static __always_inline
void *
249 rb_event_data(struct ring_buffer_event
*event
)
251 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
252 event
= skip_time_extend(event
);
253 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
254 /* If length is in len field, then array[0] has the data */
256 return (void *)&event
->array
[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event
->array
[1];
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
265 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
267 return rb_event_data(event
);
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
283 struct buffer_data_page
{
284 u64 time_stamp
; /* page time stamp */
285 local_t commit
; /* write committed index */
286 unsigned char data
[] RB_ALIGN_DATA
; /* data of buffer page */
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
298 struct list_head list
; /* list of buffer pages */
299 local_t write
; /* index for next write */
300 unsigned read
; /* index for next read */
301 local_t entries
; /* entries on this page */
302 unsigned long real_end
; /* real end of data */
303 struct buffer_data_page
*page
; /* Actual data page */
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
316 * The counter is 20 bits, and the state data is 12.
318 #define RB_WRITE_MASK 0xfffff
319 #define RB_WRITE_INTCNT (1 << 20)
321 static void rb_init_page(struct buffer_data_page
*bpage
)
323 local_set(&bpage
->commit
, 0);
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
330 * Returns the amount of data on the page, including buffer page header.
332 size_t ring_buffer_page_len(void *page
)
334 return local_read(&((struct buffer_data_page
*)page
)->commit
)
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
342 static void free_buffer_page(struct buffer_page
*bpage
)
344 free_page((unsigned long)bpage
->page
);
349 * We need to fit the time_stamp delta into 27 bits.
351 static inline int test_time_stamp(u64 delta
)
353 if (delta
& TS_DELTA_TEST
)
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
363 int ring_buffer_print_page_header(struct trace_seq
*s
)
365 struct buffer_data_page field
;
367 trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field
.time_stamp
),
370 (unsigned int)is_signed_type(u64
));
372 trace_seq_printf(s
, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field
), commit
),
375 (unsigned int)sizeof(field
.commit
),
376 (unsigned int)is_signed_type(long));
378 trace_seq_printf(s
, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field
), commit
),
382 (unsigned int)is_signed_type(long));
384 trace_seq_printf(s
, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field
), data
),
387 (unsigned int)BUF_PAGE_SIZE
,
388 (unsigned int)is_signed_type(char));
390 return !trace_seq_has_overflowed(s
);
394 struct irq_work work
;
395 wait_queue_head_t waiters
;
396 wait_queue_head_t full_waiters
;
397 bool waiters_pending
;
398 bool full_waiters_pending
;
403 * Structure to hold event state and handle nested events.
405 struct rb_event_info
{
408 unsigned long length
;
409 struct buffer_page
*tail_page
;
414 * Used for which event context the event is in.
420 * See trace_recursive_lock() comment below for more details.
431 * head_page == tail_page && head == tail then buffer is empty.
433 struct ring_buffer_per_cpu
{
435 atomic_t record_disabled
;
436 struct ring_buffer
*buffer
;
437 raw_spinlock_t reader_lock
; /* serialize readers */
438 arch_spinlock_t lock
;
439 struct lock_class_key lock_key
;
440 unsigned long nr_pages
;
441 unsigned int current_context
;
442 struct list_head
*pages
;
443 struct buffer_page
*head_page
; /* read from head */
444 struct buffer_page
*tail_page
; /* write to tail */
445 struct buffer_page
*commit_page
; /* committed pages */
446 struct buffer_page
*reader_page
;
447 unsigned long lost_events
;
448 unsigned long last_overrun
;
449 local_t entries_bytes
;
452 local_t commit_overrun
;
453 local_t dropped_events
;
457 unsigned long read_bytes
;
460 /* ring buffer pages to update, > 0 to add, < 0 to remove */
461 long nr_pages_to_update
;
462 struct list_head new_pages
; /* new pages to add */
463 struct work_struct update_pages_work
;
464 struct completion update_done
;
466 struct rb_irq_work irq_work
;
472 atomic_t record_disabled
;
473 atomic_t resize_disabled
;
474 cpumask_var_t cpumask
;
476 struct lock_class_key
*reader_lock_key
;
480 struct ring_buffer_per_cpu
**buffers
;
482 struct hlist_node node
;
485 struct rb_irq_work irq_work
;
488 struct ring_buffer_iter
{
489 struct ring_buffer_per_cpu
*cpu_buffer
;
491 struct buffer_page
*head_page
;
492 struct buffer_page
*cache_reader_page
;
493 unsigned long cache_read
;
498 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
500 * Schedules a delayed work to wake up any task that is blocked on the
501 * ring buffer waiters queue.
503 static void rb_wake_up_waiters(struct irq_work
*work
)
505 struct rb_irq_work
*rbwork
= container_of(work
, struct rb_irq_work
, work
);
507 wake_up_all(&rbwork
->waiters
);
508 if (rbwork
->wakeup_full
) {
509 rbwork
->wakeup_full
= false;
510 wake_up_all(&rbwork
->full_waiters
);
515 * ring_buffer_wait - wait for input to the ring buffer
516 * @buffer: buffer to wait on
517 * @cpu: the cpu buffer to wait on
518 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
520 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
521 * as data is added to any of the @buffer's cpu buffers. Otherwise
522 * it will wait for data to be added to a specific cpu buffer.
524 int ring_buffer_wait(struct ring_buffer
*buffer
, int cpu
, bool full
)
526 struct ring_buffer_per_cpu
*uninitialized_var(cpu_buffer
);
528 struct rb_irq_work
*work
;
532 * Depending on what the caller is waiting for, either any
533 * data in any cpu buffer, or a specific buffer, put the
534 * caller on the appropriate wait queue.
536 if (cpu
== RING_BUFFER_ALL_CPUS
) {
537 work
= &buffer
->irq_work
;
538 /* Full only makes sense on per cpu reads */
541 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
543 cpu_buffer
= buffer
->buffers
[cpu
];
544 work
= &cpu_buffer
->irq_work
;
550 prepare_to_wait(&work
->full_waiters
, &wait
, TASK_INTERRUPTIBLE
);
552 prepare_to_wait(&work
->waiters
, &wait
, TASK_INTERRUPTIBLE
);
555 * The events can happen in critical sections where
556 * checking a work queue can cause deadlocks.
557 * After adding a task to the queue, this flag is set
558 * only to notify events to try to wake up the queue
561 * We don't clear it even if the buffer is no longer
562 * empty. The flag only causes the next event to run
563 * irq_work to do the work queue wake up. The worse
564 * that can happen if we race with !trace_empty() is that
565 * an event will cause an irq_work to try to wake up
568 * There's no reason to protect this flag either, as
569 * the work queue and irq_work logic will do the necessary
570 * synchronization for the wake ups. The only thing
571 * that is necessary is that the wake up happens after
572 * a task has been queued. It's OK for spurious wake ups.
575 work
->full_waiters_pending
= true;
577 work
->waiters_pending
= true;
579 if (signal_pending(current
)) {
584 if (cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
))
587 if (cpu
!= RING_BUFFER_ALL_CPUS
&&
588 !ring_buffer_empty_cpu(buffer
, cpu
)) {
595 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
596 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
597 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
607 finish_wait(&work
->full_waiters
, &wait
);
609 finish_wait(&work
->waiters
, &wait
);
615 * ring_buffer_poll_wait - poll on buffer input
616 * @buffer: buffer to wait on
617 * @cpu: the cpu buffer to wait on
618 * @filp: the file descriptor
619 * @poll_table: The poll descriptor
621 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
622 * as data is added to any of the @buffer's cpu buffers. Otherwise
623 * it will wait for data to be added to a specific cpu buffer.
625 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628 int ring_buffer_poll_wait(struct ring_buffer
*buffer
, int cpu
,
629 struct file
*filp
, poll_table
*poll_table
)
631 struct ring_buffer_per_cpu
*cpu_buffer
;
632 struct rb_irq_work
*work
;
634 if (cpu
== RING_BUFFER_ALL_CPUS
)
635 work
= &buffer
->irq_work
;
637 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
640 cpu_buffer
= buffer
->buffers
[cpu
];
641 work
= &cpu_buffer
->irq_work
;
644 poll_wait(filp
, &work
->waiters
, poll_table
);
645 work
->waiters_pending
= true;
647 * There's a tight race between setting the waiters_pending and
648 * checking if the ring buffer is empty. Once the waiters_pending bit
649 * is set, the next event will wake the task up, but we can get stuck
650 * if there's only a single event in.
652 * FIXME: Ideally, we need a memory barrier on the writer side as well,
653 * but adding a memory barrier to all events will cause too much of a
654 * performance hit in the fast path. We only need a memory barrier when
655 * the buffer goes from empty to having content. But as this race is
656 * extremely small, and it's not a problem if another event comes in, we
661 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
662 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
663 return POLLIN
| POLLRDNORM
;
667 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
668 #define RB_WARN_ON(b, cond) \
670 int _____ret = unlikely(cond); \
672 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
673 struct ring_buffer_per_cpu *__b = \
675 atomic_inc(&__b->buffer->record_disabled); \
677 atomic_inc(&b->record_disabled); \
683 /* Up this if you want to test the TIME_EXTENTS and normalization */
684 #define DEBUG_SHIFT 0
686 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
688 /* shift to debug/test normalization and TIME_EXTENTS */
689 return buffer
->clock() << DEBUG_SHIFT
;
692 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
696 preempt_disable_notrace();
697 time
= rb_time_stamp(buffer
);
698 preempt_enable_no_resched_notrace();
702 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
704 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
707 /* Just stupid testing the normalize function and deltas */
710 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
713 * Making the ring buffer lockless makes things tricky.
714 * Although writes only happen on the CPU that they are on,
715 * and they only need to worry about interrupts. Reads can
718 * The reader page is always off the ring buffer, but when the
719 * reader finishes with a page, it needs to swap its page with
720 * a new one from the buffer. The reader needs to take from
721 * the head (writes go to the tail). But if a writer is in overwrite
722 * mode and wraps, it must push the head page forward.
724 * Here lies the problem.
726 * The reader must be careful to replace only the head page, and
727 * not another one. As described at the top of the file in the
728 * ASCII art, the reader sets its old page to point to the next
729 * page after head. It then sets the page after head to point to
730 * the old reader page. But if the writer moves the head page
731 * during this operation, the reader could end up with the tail.
733 * We use cmpxchg to help prevent this race. We also do something
734 * special with the page before head. We set the LSB to 1.
736 * When the writer must push the page forward, it will clear the
737 * bit that points to the head page, move the head, and then set
738 * the bit that points to the new head page.
740 * We also don't want an interrupt coming in and moving the head
741 * page on another writer. Thus we use the second LSB to catch
744 * head->list->prev->next bit 1 bit 0
747 * Points to head page 0 1
750 * Note we can not trust the prev pointer of the head page, because:
752 * +----+ +-----+ +-----+
753 * | |------>| T |---X--->| N |
755 * +----+ +-----+ +-----+
758 * +----------| R |----------+ |
762 * Key: ---X--> HEAD flag set in pointer
767 * (see __rb_reserve_next() to see where this happens)
769 * What the above shows is that the reader just swapped out
770 * the reader page with a page in the buffer, but before it
771 * could make the new header point back to the new page added
772 * it was preempted by a writer. The writer moved forward onto
773 * the new page added by the reader and is about to move forward
776 * You can see, it is legitimate for the previous pointer of
777 * the head (or any page) not to point back to itself. But only
781 #define RB_PAGE_NORMAL 0UL
782 #define RB_PAGE_HEAD 1UL
783 #define RB_PAGE_UPDATE 2UL
786 #define RB_FLAG_MASK 3UL
788 /* PAGE_MOVED is not part of the mask */
789 #define RB_PAGE_MOVED 4UL
792 * rb_list_head - remove any bit
794 static struct list_head
*rb_list_head(struct list_head
*list
)
796 unsigned long val
= (unsigned long)list
;
798 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
802 * rb_is_head_page - test if the given page is the head page
804 * Because the reader may move the head_page pointer, we can
805 * not trust what the head page is (it may be pointing to
806 * the reader page). But if the next page is a header page,
807 * its flags will be non zero.
810 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
811 struct buffer_page
*page
, struct list_head
*list
)
815 val
= (unsigned long)list
->next
;
817 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
818 return RB_PAGE_MOVED
;
820 return val
& RB_FLAG_MASK
;
826 * The unique thing about the reader page, is that, if the
827 * writer is ever on it, the previous pointer never points
828 * back to the reader page.
830 static bool rb_is_reader_page(struct buffer_page
*page
)
832 struct list_head
*list
= page
->list
.prev
;
834 return rb_list_head(list
->next
) != &page
->list
;
838 * rb_set_list_to_head - set a list_head to be pointing to head.
840 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
841 struct list_head
*list
)
845 ptr
= (unsigned long *)&list
->next
;
846 *ptr
|= RB_PAGE_HEAD
;
847 *ptr
&= ~RB_PAGE_UPDATE
;
851 * rb_head_page_activate - sets up head page
853 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
855 struct buffer_page
*head
;
857 head
= cpu_buffer
->head_page
;
862 * Set the previous list pointer to have the HEAD flag.
864 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
867 static void rb_list_head_clear(struct list_head
*list
)
869 unsigned long *ptr
= (unsigned long *)&list
->next
;
871 *ptr
&= ~RB_FLAG_MASK
;
875 * rb_head_page_dactivate - clears head page ptr (for free list)
878 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
880 struct list_head
*hd
;
882 /* Go through the whole list and clear any pointers found. */
883 rb_list_head_clear(cpu_buffer
->pages
);
885 list_for_each(hd
, cpu_buffer
->pages
)
886 rb_list_head_clear(hd
);
889 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
890 struct buffer_page
*head
,
891 struct buffer_page
*prev
,
892 int old_flag
, int new_flag
)
894 struct list_head
*list
;
895 unsigned long val
= (unsigned long)&head
->list
;
900 val
&= ~RB_FLAG_MASK
;
902 ret
= cmpxchg((unsigned long *)&list
->next
,
903 val
| old_flag
, val
| new_flag
);
905 /* check if the reader took the page */
906 if ((ret
& ~RB_FLAG_MASK
) != val
)
907 return RB_PAGE_MOVED
;
909 return ret
& RB_FLAG_MASK
;
912 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
913 struct buffer_page
*head
,
914 struct buffer_page
*prev
,
917 return rb_head_page_set(cpu_buffer
, head
, prev
,
918 old_flag
, RB_PAGE_UPDATE
);
921 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
922 struct buffer_page
*head
,
923 struct buffer_page
*prev
,
926 return rb_head_page_set(cpu_buffer
, head
, prev
,
927 old_flag
, RB_PAGE_HEAD
);
930 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
931 struct buffer_page
*head
,
932 struct buffer_page
*prev
,
935 return rb_head_page_set(cpu_buffer
, head
, prev
,
936 old_flag
, RB_PAGE_NORMAL
);
939 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
940 struct buffer_page
**bpage
)
942 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
944 *bpage
= list_entry(p
, struct buffer_page
, list
);
947 static struct buffer_page
*
948 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
950 struct buffer_page
*head
;
951 struct buffer_page
*page
;
952 struct list_head
*list
;
955 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
959 list
= cpu_buffer
->pages
;
960 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
963 page
= head
= cpu_buffer
->head_page
;
965 * It is possible that the writer moves the header behind
966 * where we started, and we miss in one loop.
967 * A second loop should grab the header, but we'll do
968 * three loops just because I'm paranoid.
970 for (i
= 0; i
< 3; i
++) {
972 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
973 cpu_buffer
->head_page
= page
;
976 rb_inc_page(cpu_buffer
, &page
);
977 } while (page
!= head
);
980 RB_WARN_ON(cpu_buffer
, 1);
985 static int rb_head_page_replace(struct buffer_page
*old
,
986 struct buffer_page
*new)
988 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
992 val
= *ptr
& ~RB_FLAG_MASK
;
995 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
1001 * rb_tail_page_update - move the tail page forward
1003 static void rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
1004 struct buffer_page
*tail_page
,
1005 struct buffer_page
*next_page
)
1007 unsigned long old_entries
;
1008 unsigned long old_write
;
1011 * The tail page now needs to be moved forward.
1013 * We need to reset the tail page, but without messing
1014 * with possible erasing of data brought in by interrupts
1015 * that have moved the tail page and are currently on it.
1017 * We add a counter to the write field to denote this.
1019 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
1020 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
1023 * Just make sure we have seen our old_write and synchronize
1024 * with any interrupts that come in.
1029 * If the tail page is still the same as what we think
1030 * it is, then it is up to us to update the tail
1033 if (tail_page
== READ_ONCE(cpu_buffer
->tail_page
)) {
1034 /* Zero the write counter */
1035 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
1036 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
1039 * This will only succeed if an interrupt did
1040 * not come in and change it. In which case, we
1041 * do not want to modify it.
1043 * We add (void) to let the compiler know that we do not care
1044 * about the return value of these functions. We use the
1045 * cmpxchg to only update if an interrupt did not already
1046 * do it for us. If the cmpxchg fails, we don't care.
1048 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
1049 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
1052 * No need to worry about races with clearing out the commit.
1053 * it only can increment when a commit takes place. But that
1054 * only happens in the outer most nested commit.
1056 local_set(&next_page
->page
->commit
, 0);
1058 /* Again, either we update tail_page or an interrupt does */
1059 (void)cmpxchg(&cpu_buffer
->tail_page
, tail_page
, next_page
);
1063 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
1064 struct buffer_page
*bpage
)
1066 unsigned long val
= (unsigned long)bpage
;
1068 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
1075 * rb_check_list - make sure a pointer to a list has the last bits zero
1077 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
1078 struct list_head
*list
)
1080 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
1082 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
1088 * rb_check_pages - integrity check of buffer pages
1089 * @cpu_buffer: CPU buffer with pages to test
1091 * As a safety measure we check to make sure the data pages have not
1094 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1096 struct list_head
*head
= cpu_buffer
->pages
;
1097 struct buffer_page
*bpage
, *tmp
;
1099 /* Reset the head page if it exists */
1100 if (cpu_buffer
->head_page
)
1101 rb_set_head_page(cpu_buffer
);
1103 rb_head_page_deactivate(cpu_buffer
);
1105 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
1107 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
1110 if (rb_check_list(cpu_buffer
, head
))
1113 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1114 if (RB_WARN_ON(cpu_buffer
,
1115 bpage
->list
.next
->prev
!= &bpage
->list
))
1117 if (RB_WARN_ON(cpu_buffer
,
1118 bpage
->list
.prev
->next
!= &bpage
->list
))
1120 if (rb_check_list(cpu_buffer
, &bpage
->list
))
1124 rb_head_page_activate(cpu_buffer
);
1129 static int __rb_allocate_pages(long nr_pages
, struct list_head
*pages
, int cpu
)
1131 struct buffer_page
*bpage
, *tmp
;
1134 for (i
= 0; i
< nr_pages
; i
++) {
1137 * __GFP_NORETRY flag makes sure that the allocation fails
1138 * gracefully without invoking oom-killer and the system is
1141 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1142 GFP_KERNEL
| __GFP_NORETRY
,
1147 list_add(&bpage
->list
, pages
);
1149 page
= alloc_pages_node(cpu_to_node(cpu
),
1150 GFP_KERNEL
| __GFP_NORETRY
, 0);
1153 bpage
->page
= page_address(page
);
1154 rb_init_page(bpage
->page
);
1160 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
1161 list_del_init(&bpage
->list
);
1162 free_buffer_page(bpage
);
1168 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1169 unsigned long nr_pages
)
1175 if (__rb_allocate_pages(nr_pages
, &pages
, cpu_buffer
->cpu
))
1179 * The ring buffer page list is a circular list that does not
1180 * start and end with a list head. All page list items point to
1183 cpu_buffer
->pages
= pages
.next
;
1186 cpu_buffer
->nr_pages
= nr_pages
;
1188 rb_check_pages(cpu_buffer
);
1193 static struct ring_buffer_per_cpu
*
1194 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, long nr_pages
, int cpu
)
1196 struct ring_buffer_per_cpu
*cpu_buffer
;
1197 struct buffer_page
*bpage
;
1201 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1202 GFP_KERNEL
, cpu_to_node(cpu
));
1206 cpu_buffer
->cpu
= cpu
;
1207 cpu_buffer
->buffer
= buffer
;
1208 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1209 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1210 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1211 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
1212 init_completion(&cpu_buffer
->update_done
);
1213 init_irq_work(&cpu_buffer
->irq_work
.work
, rb_wake_up_waiters
);
1214 init_waitqueue_head(&cpu_buffer
->irq_work
.waiters
);
1215 init_waitqueue_head(&cpu_buffer
->irq_work
.full_waiters
);
1217 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1218 GFP_KERNEL
, cpu_to_node(cpu
));
1220 goto fail_free_buffer
;
1222 rb_check_bpage(cpu_buffer
, bpage
);
1224 cpu_buffer
->reader_page
= bpage
;
1225 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1227 goto fail_free_reader
;
1228 bpage
->page
= page_address(page
);
1229 rb_init_page(bpage
->page
);
1231 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1232 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1234 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
1236 goto fail_free_reader
;
1238 cpu_buffer
->head_page
1239 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1240 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1242 rb_head_page_activate(cpu_buffer
);
1247 free_buffer_page(cpu_buffer
->reader_page
);
1254 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1256 struct list_head
*head
= cpu_buffer
->pages
;
1257 struct buffer_page
*bpage
, *tmp
;
1259 free_buffer_page(cpu_buffer
->reader_page
);
1261 rb_head_page_deactivate(cpu_buffer
);
1264 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1265 list_del_init(&bpage
->list
);
1266 free_buffer_page(bpage
);
1268 bpage
= list_entry(head
, struct buffer_page
, list
);
1269 free_buffer_page(bpage
);
1276 * __ring_buffer_alloc - allocate a new ring_buffer
1277 * @size: the size in bytes per cpu that is needed.
1278 * @flags: attributes to set for the ring buffer.
1280 * Currently the only flag that is available is the RB_FL_OVERWRITE
1281 * flag. This flag means that the buffer will overwrite old data
1282 * when the buffer wraps. If this flag is not set, the buffer will
1283 * drop data when the tail hits the head.
1285 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1286 struct lock_class_key
*key
)
1288 struct ring_buffer
*buffer
;
1294 /* keep it in its own cache line */
1295 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1300 if (!zalloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1301 goto fail_free_buffer
;
1303 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1304 buffer
->flags
= flags
;
1305 buffer
->clock
= trace_clock_local
;
1306 buffer
->reader_lock_key
= key
;
1308 init_irq_work(&buffer
->irq_work
.work
, rb_wake_up_waiters
);
1309 init_waitqueue_head(&buffer
->irq_work
.waiters
);
1311 /* need at least two pages */
1315 buffer
->cpus
= nr_cpu_ids
;
1317 bsize
= sizeof(void *) * nr_cpu_ids
;
1318 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1320 if (!buffer
->buffers
)
1321 goto fail_free_cpumask
;
1323 cpu
= raw_smp_processor_id();
1324 cpumask_set_cpu(cpu
, buffer
->cpumask
);
1325 buffer
->buffers
[cpu
] = rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
1326 if (!buffer
->buffers
[cpu
])
1327 goto fail_free_buffers
;
1329 ret
= cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE
, &buffer
->node
);
1331 goto fail_free_buffers
;
1333 mutex_init(&buffer
->mutex
);
1338 for_each_buffer_cpu(buffer
, cpu
) {
1339 if (buffer
->buffers
[cpu
])
1340 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1342 kfree(buffer
->buffers
);
1345 free_cpumask_var(buffer
->cpumask
);
1351 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1354 * ring_buffer_free - free a ring buffer.
1355 * @buffer: the buffer to free.
1358 ring_buffer_free(struct ring_buffer
*buffer
)
1362 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE
, &buffer
->node
);
1364 for_each_buffer_cpu(buffer
, cpu
)
1365 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1367 kfree(buffer
->buffers
);
1368 free_cpumask_var(buffer
->cpumask
);
1372 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1374 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1377 buffer
->clock
= clock
;
1380 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1382 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1384 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1387 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1389 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1393 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned long nr_pages
)
1395 struct list_head
*tail_page
, *to_remove
, *next_page
;
1396 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
1397 struct buffer_page
*last_page
, *first_page
;
1398 unsigned long nr_removed
;
1399 unsigned long head_bit
;
1404 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1405 atomic_inc(&cpu_buffer
->record_disabled
);
1407 * We don't race with the readers since we have acquired the reader
1408 * lock. We also don't race with writers after disabling recording.
1409 * This makes it easy to figure out the first and the last page to be
1410 * removed from the list. We unlink all the pages in between including
1411 * the first and last pages. This is done in a busy loop so that we
1412 * lose the least number of traces.
1413 * The pages are freed after we restart recording and unlock readers.
1415 tail_page
= &cpu_buffer
->tail_page
->list
;
1418 * tail page might be on reader page, we remove the next page
1419 * from the ring buffer
1421 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
1422 tail_page
= rb_list_head(tail_page
->next
);
1423 to_remove
= tail_page
;
1425 /* start of pages to remove */
1426 first_page
= list_entry(rb_list_head(to_remove
->next
),
1427 struct buffer_page
, list
);
1429 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
1430 to_remove
= rb_list_head(to_remove
)->next
;
1431 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
1434 next_page
= rb_list_head(to_remove
)->next
;
1437 * Now we remove all pages between tail_page and next_page.
1438 * Make sure that we have head_bit value preserved for the
1441 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
1443 next_page
= rb_list_head(next_page
);
1444 next_page
->prev
= tail_page
;
1446 /* make sure pages points to a valid page in the ring buffer */
1447 cpu_buffer
->pages
= next_page
;
1449 /* update head page */
1451 cpu_buffer
->head_page
= list_entry(next_page
,
1452 struct buffer_page
, list
);
1455 * change read pointer to make sure any read iterators reset
1458 cpu_buffer
->read
= 0;
1460 /* pages are removed, resume tracing and then free the pages */
1461 atomic_dec(&cpu_buffer
->record_disabled
);
1462 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1464 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
1466 /* last buffer page to remove */
1467 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
1469 tmp_iter_page
= first_page
;
1472 to_remove_page
= tmp_iter_page
;
1473 rb_inc_page(cpu_buffer
, &tmp_iter_page
);
1475 /* update the counters */
1476 page_entries
= rb_page_entries(to_remove_page
);
1479 * If something was added to this page, it was full
1480 * since it is not the tail page. So we deduct the
1481 * bytes consumed in ring buffer from here.
1482 * Increment overrun to account for the lost events.
1484 local_add(page_entries
, &cpu_buffer
->overrun
);
1485 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1489 * We have already removed references to this list item, just
1490 * free up the buffer_page and its page
1492 free_buffer_page(to_remove_page
);
1495 } while (to_remove_page
!= last_page
);
1497 RB_WARN_ON(cpu_buffer
, nr_removed
);
1499 return nr_removed
== 0;
1503 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1505 struct list_head
*pages
= &cpu_buffer
->new_pages
;
1506 int retries
, success
;
1508 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1510 * We are holding the reader lock, so the reader page won't be swapped
1511 * in the ring buffer. Now we are racing with the writer trying to
1512 * move head page and the tail page.
1513 * We are going to adapt the reader page update process where:
1514 * 1. We first splice the start and end of list of new pages between
1515 * the head page and its previous page.
1516 * 2. We cmpxchg the prev_page->next to point from head page to the
1517 * start of new pages list.
1518 * 3. Finally, we update the head->prev to the end of new list.
1520 * We will try this process 10 times, to make sure that we don't keep
1526 struct list_head
*head_page
, *prev_page
, *r
;
1527 struct list_head
*last_page
, *first_page
;
1528 struct list_head
*head_page_with_bit
;
1530 head_page
= &rb_set_head_page(cpu_buffer
)->list
;
1533 prev_page
= head_page
->prev
;
1535 first_page
= pages
->next
;
1536 last_page
= pages
->prev
;
1538 head_page_with_bit
= (struct list_head
*)
1539 ((unsigned long)head_page
| RB_PAGE_HEAD
);
1541 last_page
->next
= head_page_with_bit
;
1542 first_page
->prev
= prev_page
;
1544 r
= cmpxchg(&prev_page
->next
, head_page_with_bit
, first_page
);
1546 if (r
== head_page_with_bit
) {
1548 * yay, we replaced the page pointer to our new list,
1549 * now, we just have to update to head page's prev
1550 * pointer to point to end of list
1552 head_page
->prev
= last_page
;
1559 INIT_LIST_HEAD(pages
);
1561 * If we weren't successful in adding in new pages, warn and stop
1564 RB_WARN_ON(cpu_buffer
, !success
);
1565 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1567 /* free pages if they weren't inserted */
1569 struct buffer_page
*bpage
, *tmp
;
1570 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1572 list_del_init(&bpage
->list
);
1573 free_buffer_page(bpage
);
1579 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1583 if (cpu_buffer
->nr_pages_to_update
> 0)
1584 success
= rb_insert_pages(cpu_buffer
);
1586 success
= rb_remove_pages(cpu_buffer
,
1587 -cpu_buffer
->nr_pages_to_update
);
1590 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
1593 static void update_pages_handler(struct work_struct
*work
)
1595 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
1596 struct ring_buffer_per_cpu
, update_pages_work
);
1597 rb_update_pages(cpu_buffer
);
1598 complete(&cpu_buffer
->update_done
);
1602 * ring_buffer_resize - resize the ring buffer
1603 * @buffer: the buffer to resize.
1604 * @size: the new size.
1605 * @cpu_id: the cpu buffer to resize
1607 * Minimum size is 2 * BUF_PAGE_SIZE.
1609 * Returns 0 on success and < 0 on failure.
1611 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
,
1614 struct ring_buffer_per_cpu
*cpu_buffer
;
1615 unsigned long nr_pages
;
1619 * Always succeed at resizing a non-existent buffer:
1624 /* Make sure the requested buffer exists */
1625 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
1626 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1629 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1631 /* we need a minimum of two pages */
1635 size
= nr_pages
* BUF_PAGE_SIZE
;
1638 * Don't succeed if resizing is disabled, as a reader might be
1639 * manipulating the ring buffer and is expecting a sane state while
1642 if (atomic_read(&buffer
->resize_disabled
))
1645 /* prevent another thread from changing buffer sizes */
1646 mutex_lock(&buffer
->mutex
);
1648 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
1649 /* calculate the pages to update */
1650 for_each_buffer_cpu(buffer
, cpu
) {
1651 cpu_buffer
= buffer
->buffers
[cpu
];
1653 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1654 cpu_buffer
->nr_pages
;
1656 * nothing more to do for removing pages or no update
1658 if (cpu_buffer
->nr_pages_to_update
<= 0)
1661 * to add pages, make sure all new pages can be
1662 * allocated without receiving ENOMEM
1664 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1665 if (__rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1666 &cpu_buffer
->new_pages
, cpu
)) {
1667 /* not enough memory for new pages */
1675 * Fire off all the required work handlers
1676 * We can't schedule on offline CPUs, but it's not necessary
1677 * since we can change their buffer sizes without any race.
1679 for_each_buffer_cpu(buffer
, cpu
) {
1680 cpu_buffer
= buffer
->buffers
[cpu
];
1681 if (!cpu_buffer
->nr_pages_to_update
)
1684 /* Can't run something on an offline CPU. */
1685 if (!cpu_online(cpu
)) {
1686 rb_update_pages(cpu_buffer
);
1687 cpu_buffer
->nr_pages_to_update
= 0;
1689 schedule_work_on(cpu
,
1690 &cpu_buffer
->update_pages_work
);
1694 /* wait for all the updates to complete */
1695 for_each_buffer_cpu(buffer
, cpu
) {
1696 cpu_buffer
= buffer
->buffers
[cpu
];
1697 if (!cpu_buffer
->nr_pages_to_update
)
1700 if (cpu_online(cpu
))
1701 wait_for_completion(&cpu_buffer
->update_done
);
1702 cpu_buffer
->nr_pages_to_update
= 0;
1707 /* Make sure this CPU has been intitialized */
1708 if (!cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1711 cpu_buffer
= buffer
->buffers
[cpu_id
];
1713 if (nr_pages
== cpu_buffer
->nr_pages
)
1716 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1717 cpu_buffer
->nr_pages
;
1719 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1720 if (cpu_buffer
->nr_pages_to_update
> 0 &&
1721 __rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1722 &cpu_buffer
->new_pages
, cpu_id
)) {
1729 /* Can't run something on an offline CPU. */
1730 if (!cpu_online(cpu_id
))
1731 rb_update_pages(cpu_buffer
);
1733 schedule_work_on(cpu_id
,
1734 &cpu_buffer
->update_pages_work
);
1735 wait_for_completion(&cpu_buffer
->update_done
);
1738 cpu_buffer
->nr_pages_to_update
= 0;
1744 * The ring buffer resize can happen with the ring buffer
1745 * enabled, so that the update disturbs the tracing as little
1746 * as possible. But if the buffer is disabled, we do not need
1747 * to worry about that, and we can take the time to verify
1748 * that the buffer is not corrupt.
1750 if (atomic_read(&buffer
->record_disabled
)) {
1751 atomic_inc(&buffer
->record_disabled
);
1753 * Even though the buffer was disabled, we must make sure
1754 * that it is truly disabled before calling rb_check_pages.
1755 * There could have been a race between checking
1756 * record_disable and incrementing it.
1758 synchronize_sched();
1759 for_each_buffer_cpu(buffer
, cpu
) {
1760 cpu_buffer
= buffer
->buffers
[cpu
];
1761 rb_check_pages(cpu_buffer
);
1763 atomic_dec(&buffer
->record_disabled
);
1766 mutex_unlock(&buffer
->mutex
);
1770 for_each_buffer_cpu(buffer
, cpu
) {
1771 struct buffer_page
*bpage
, *tmp
;
1773 cpu_buffer
= buffer
->buffers
[cpu
];
1774 cpu_buffer
->nr_pages_to_update
= 0;
1776 if (list_empty(&cpu_buffer
->new_pages
))
1779 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1781 list_del_init(&bpage
->list
);
1782 free_buffer_page(bpage
);
1785 mutex_unlock(&buffer
->mutex
);
1788 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1790 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1792 mutex_lock(&buffer
->mutex
);
1794 buffer
->flags
|= RB_FL_OVERWRITE
;
1796 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1797 mutex_unlock(&buffer
->mutex
);
1799 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1801 static __always_inline
void *
1802 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1804 return bpage
->data
+ index
;
1807 static __always_inline
void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1809 return bpage
->page
->data
+ index
;
1812 static __always_inline
struct ring_buffer_event
*
1813 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1815 return __rb_page_index(cpu_buffer
->reader_page
,
1816 cpu_buffer
->reader_page
->read
);
1819 static __always_inline
struct ring_buffer_event
*
1820 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1822 return __rb_page_index(iter
->head_page
, iter
->head
);
1825 static __always_inline
unsigned rb_page_commit(struct buffer_page
*bpage
)
1827 return local_read(&bpage
->page
->commit
);
1830 /* Size is determined by what has been committed */
1831 static __always_inline
unsigned rb_page_size(struct buffer_page
*bpage
)
1833 return rb_page_commit(bpage
);
1836 static __always_inline
unsigned
1837 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1839 return rb_page_commit(cpu_buffer
->commit_page
);
1842 static __always_inline
unsigned
1843 rb_event_index(struct ring_buffer_event
*event
)
1845 unsigned long addr
= (unsigned long)event
;
1847 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1850 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1852 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1855 * The iterator could be on the reader page (it starts there).
1856 * But the head could have moved, since the reader was
1857 * found. Check for this case and assign the iterator
1858 * to the head page instead of next.
1860 if (iter
->head_page
== cpu_buffer
->reader_page
)
1861 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1863 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1865 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1870 * rb_handle_head_page - writer hit the head page
1872 * Returns: +1 to retry page
1877 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1878 struct buffer_page
*tail_page
,
1879 struct buffer_page
*next_page
)
1881 struct buffer_page
*new_head
;
1886 entries
= rb_page_entries(next_page
);
1889 * The hard part is here. We need to move the head
1890 * forward, and protect against both readers on
1891 * other CPUs and writers coming in via interrupts.
1893 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1897 * type can be one of four:
1898 * NORMAL - an interrupt already moved it for us
1899 * HEAD - we are the first to get here.
1900 * UPDATE - we are the interrupt interrupting
1902 * MOVED - a reader on another CPU moved the next
1903 * pointer to its reader page. Give up
1910 * We changed the head to UPDATE, thus
1911 * it is our responsibility to update
1914 local_add(entries
, &cpu_buffer
->overrun
);
1915 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1918 * The entries will be zeroed out when we move the
1922 /* still more to do */
1925 case RB_PAGE_UPDATE
:
1927 * This is an interrupt that interrupt the
1928 * previous update. Still more to do.
1931 case RB_PAGE_NORMAL
:
1933 * An interrupt came in before the update
1934 * and processed this for us.
1935 * Nothing left to do.
1940 * The reader is on another CPU and just did
1941 * a swap with our next_page.
1946 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
1951 * Now that we are here, the old head pointer is
1952 * set to UPDATE. This will keep the reader from
1953 * swapping the head page with the reader page.
1954 * The reader (on another CPU) will spin till
1957 * We just need to protect against interrupts
1958 * doing the job. We will set the next pointer
1959 * to HEAD. After that, we set the old pointer
1960 * to NORMAL, but only if it was HEAD before.
1961 * otherwise we are an interrupt, and only
1962 * want the outer most commit to reset it.
1964 new_head
= next_page
;
1965 rb_inc_page(cpu_buffer
, &new_head
);
1967 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
1971 * Valid returns are:
1972 * HEAD - an interrupt came in and already set it.
1973 * NORMAL - One of two things:
1974 * 1) We really set it.
1975 * 2) A bunch of interrupts came in and moved
1976 * the page forward again.
1980 case RB_PAGE_NORMAL
:
1984 RB_WARN_ON(cpu_buffer
, 1);
1989 * It is possible that an interrupt came in,
1990 * set the head up, then more interrupts came in
1991 * and moved it again. When we get back here,
1992 * the page would have been set to NORMAL but we
1993 * just set it back to HEAD.
1995 * How do you detect this? Well, if that happened
1996 * the tail page would have moved.
1998 if (ret
== RB_PAGE_NORMAL
) {
1999 struct buffer_page
*buffer_tail_page
;
2001 buffer_tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
2003 * If the tail had moved passed next, then we need
2004 * to reset the pointer.
2006 if (buffer_tail_page
!= tail_page
&&
2007 buffer_tail_page
!= next_page
)
2008 rb_head_page_set_normal(cpu_buffer
, new_head
,
2014 * If this was the outer most commit (the one that
2015 * changed the original pointer from HEAD to UPDATE),
2016 * then it is up to us to reset it to NORMAL.
2018 if (type
== RB_PAGE_HEAD
) {
2019 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
2022 if (RB_WARN_ON(cpu_buffer
,
2023 ret
!= RB_PAGE_UPDATE
))
2031 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2032 unsigned long tail
, struct rb_event_info
*info
)
2034 struct buffer_page
*tail_page
= info
->tail_page
;
2035 struct ring_buffer_event
*event
;
2036 unsigned long length
= info
->length
;
2039 * Only the event that crossed the page boundary
2040 * must fill the old tail_page with padding.
2042 if (tail
>= BUF_PAGE_SIZE
) {
2044 * If the page was filled, then we still need
2045 * to update the real_end. Reset it to zero
2046 * and the reader will ignore it.
2048 if (tail
== BUF_PAGE_SIZE
)
2049 tail_page
->real_end
= 0;
2051 local_sub(length
, &tail_page
->write
);
2055 event
= __rb_page_index(tail_page
, tail
);
2056 kmemcheck_annotate_bitfield(event
, bitfield
);
2058 /* account for padding bytes */
2059 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
2062 * Save the original length to the meta data.
2063 * This will be used by the reader to add lost event
2066 tail_page
->real_end
= tail
;
2069 * If this event is bigger than the minimum size, then
2070 * we need to be careful that we don't subtract the
2071 * write counter enough to allow another writer to slip
2073 * We put in a discarded commit instead, to make sure
2074 * that this space is not used again.
2076 * If we are less than the minimum size, we don't need to
2079 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
2080 /* No room for any events */
2082 /* Mark the rest of the page with padding */
2083 rb_event_set_padding(event
);
2085 /* Set the write back to the previous setting */
2086 local_sub(length
, &tail_page
->write
);
2090 /* Put in a discarded event */
2091 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
2092 event
->type_len
= RINGBUF_TYPE_PADDING
;
2093 /* time delta must be non zero */
2094 event
->time_delta
= 1;
2096 /* Set write to end of buffer */
2097 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
2098 local_sub(length
, &tail_page
->write
);
2101 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
);
2104 * This is the slow path, force gcc not to inline it.
2106 static noinline
struct ring_buffer_event
*
2107 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2108 unsigned long tail
, struct rb_event_info
*info
)
2110 struct buffer_page
*tail_page
= info
->tail_page
;
2111 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
2112 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
2113 struct buffer_page
*next_page
;
2116 next_page
= tail_page
;
2118 rb_inc_page(cpu_buffer
, &next_page
);
2121 * If for some reason, we had an interrupt storm that made
2122 * it all the way around the buffer, bail, and warn
2125 if (unlikely(next_page
== commit_page
)) {
2126 local_inc(&cpu_buffer
->commit_overrun
);
2131 * This is where the fun begins!
2133 * We are fighting against races between a reader that
2134 * could be on another CPU trying to swap its reader
2135 * page with the buffer head.
2137 * We are also fighting against interrupts coming in and
2138 * moving the head or tail on us as well.
2140 * If the next page is the head page then we have filled
2141 * the buffer, unless the commit page is still on the
2144 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
2147 * If the commit is not on the reader page, then
2148 * move the header page.
2150 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
2152 * If we are not in overwrite mode,
2153 * this is easy, just stop here.
2155 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
2156 local_inc(&cpu_buffer
->dropped_events
);
2160 ret
= rb_handle_head_page(cpu_buffer
,
2169 * We need to be careful here too. The
2170 * commit page could still be on the reader
2171 * page. We could have a small buffer, and
2172 * have filled up the buffer with events
2173 * from interrupts and such, and wrapped.
2175 * Note, if the tail page is also the on the
2176 * reader_page, we let it move out.
2178 if (unlikely((cpu_buffer
->commit_page
!=
2179 cpu_buffer
->tail_page
) &&
2180 (cpu_buffer
->commit_page
==
2181 cpu_buffer
->reader_page
))) {
2182 local_inc(&cpu_buffer
->commit_overrun
);
2188 rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
2192 rb_reset_tail(cpu_buffer
, tail
, info
);
2194 /* Commit what we have for now. */
2195 rb_end_commit(cpu_buffer
);
2196 /* rb_end_commit() decs committing */
2197 local_inc(&cpu_buffer
->committing
);
2199 /* fail and let the caller try again */
2200 return ERR_PTR(-EAGAIN
);
2204 rb_reset_tail(cpu_buffer
, tail
, info
);
2209 /* Slow path, do not inline */
2210 static noinline
struct ring_buffer_event
*
2211 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
)
2213 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
2215 /* Not the first event on the page? */
2216 if (rb_event_index(event
)) {
2217 event
->time_delta
= delta
& TS_MASK
;
2218 event
->array
[0] = delta
>> TS_SHIFT
;
2220 /* nope, just zero it */
2221 event
->time_delta
= 0;
2222 event
->array
[0] = 0;
2225 return skip_time_extend(event
);
2228 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2229 struct ring_buffer_event
*event
);
2232 * rb_update_event - update event type and data
2233 * @event: the event to update
2234 * @type: the type of event
2235 * @length: the size of the event field in the ring buffer
2237 * Update the type and data fields of the event. The length
2238 * is the actual size that is written to the ring buffer,
2239 * and with this, we can determine what to place into the
2243 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
2244 struct ring_buffer_event
*event
,
2245 struct rb_event_info
*info
)
2247 unsigned length
= info
->length
;
2248 u64 delta
= info
->delta
;
2250 /* Only a commit updates the timestamp */
2251 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
2255 * If we need to add a timestamp, then we
2256 * add it to the start of the resevered space.
2258 if (unlikely(info
->add_timestamp
)) {
2259 event
= rb_add_time_stamp(event
, delta
);
2260 length
-= RB_LEN_TIME_EXTEND
;
2264 event
->time_delta
= delta
;
2265 length
-= RB_EVNT_HDR_SIZE
;
2266 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
2267 event
->type_len
= 0;
2268 event
->array
[0] = length
;
2270 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
2273 static unsigned rb_calculate_event_length(unsigned length
)
2275 struct ring_buffer_event event
; /* Used only for sizeof array */
2277 /* zero length can cause confusions */
2281 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
2282 length
+= sizeof(event
.array
[0]);
2284 length
+= RB_EVNT_HDR_SIZE
;
2285 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
2288 * In case the time delta is larger than the 27 bits for it
2289 * in the header, we need to add a timestamp. If another
2290 * event comes in when trying to discard this one to increase
2291 * the length, then the timestamp will be added in the allocated
2292 * space of this event. If length is bigger than the size needed
2293 * for the TIME_EXTEND, then padding has to be used. The events
2294 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2295 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2296 * As length is a multiple of 4, we only need to worry if it
2297 * is 12 (RB_LEN_TIME_EXTEND + 4).
2299 if (length
== RB_LEN_TIME_EXTEND
+ RB_ALIGNMENT
)
2300 length
+= RB_ALIGNMENT
;
2305 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2306 static inline bool sched_clock_stable(void)
2313 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2314 struct ring_buffer_event
*event
)
2316 unsigned long new_index
, old_index
;
2317 struct buffer_page
*bpage
;
2318 unsigned long index
;
2321 new_index
= rb_event_index(event
);
2322 old_index
= new_index
+ rb_event_ts_length(event
);
2323 addr
= (unsigned long)event
;
2326 bpage
= READ_ONCE(cpu_buffer
->tail_page
);
2328 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2329 unsigned long write_mask
=
2330 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2331 unsigned long event_length
= rb_event_length(event
);
2333 * This is on the tail page. It is possible that
2334 * a write could come in and move the tail page
2335 * and write to the next page. That is fine
2336 * because we just shorten what is on this page.
2338 old_index
+= write_mask
;
2339 new_index
+= write_mask
;
2340 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2341 if (index
== old_index
) {
2342 /* update counters */
2343 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2348 /* could not discard */
2352 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2354 local_inc(&cpu_buffer
->committing
);
2355 local_inc(&cpu_buffer
->commits
);
2358 static __always_inline
void
2359 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
2361 unsigned long max_count
;
2364 * We only race with interrupts and NMIs on this CPU.
2365 * If we own the commit event, then we can commit
2366 * all others that interrupted us, since the interruptions
2367 * are in stack format (they finish before they come
2368 * back to us). This allows us to do a simple loop to
2369 * assign the commit to the tail.
2372 max_count
= cpu_buffer
->nr_pages
* 100;
2374 while (cpu_buffer
->commit_page
!= READ_ONCE(cpu_buffer
->tail_page
)) {
2375 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
2377 if (RB_WARN_ON(cpu_buffer
,
2378 rb_is_reader_page(cpu_buffer
->tail_page
)))
2380 local_set(&cpu_buffer
->commit_page
->page
->commit
,
2381 rb_page_write(cpu_buffer
->commit_page
));
2382 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
2383 /* Only update the write stamp if the page has an event */
2384 if (rb_page_write(cpu_buffer
->commit_page
))
2385 cpu_buffer
->write_stamp
=
2386 cpu_buffer
->commit_page
->page
->time_stamp
;
2387 /* add barrier to keep gcc from optimizing too much */
2390 while (rb_commit_index(cpu_buffer
) !=
2391 rb_page_write(cpu_buffer
->commit_page
)) {
2393 local_set(&cpu_buffer
->commit_page
->page
->commit
,
2394 rb_page_write(cpu_buffer
->commit_page
));
2395 RB_WARN_ON(cpu_buffer
,
2396 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
2401 /* again, keep gcc from optimizing */
2405 * If an interrupt came in just after the first while loop
2406 * and pushed the tail page forward, we will be left with
2407 * a dangling commit that will never go forward.
2409 if (unlikely(cpu_buffer
->commit_page
!= READ_ONCE(cpu_buffer
->tail_page
)))
2413 static __always_inline
void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2415 unsigned long commits
;
2417 if (RB_WARN_ON(cpu_buffer
,
2418 !local_read(&cpu_buffer
->committing
)))
2422 commits
= local_read(&cpu_buffer
->commits
);
2423 /* synchronize with interrupts */
2425 if (local_read(&cpu_buffer
->committing
) == 1)
2426 rb_set_commit_to_write(cpu_buffer
);
2428 local_dec(&cpu_buffer
->committing
);
2430 /* synchronize with interrupts */
2434 * Need to account for interrupts coming in between the
2435 * updating of the commit page and the clearing of the
2436 * committing counter.
2438 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2439 !local_read(&cpu_buffer
->committing
)) {
2440 local_inc(&cpu_buffer
->committing
);
2445 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2447 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
2448 event
= skip_time_extend(event
);
2450 /* array[0] holds the actual length for the discarded event */
2451 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2452 event
->type_len
= RINGBUF_TYPE_PADDING
;
2453 /* time delta must be non zero */
2454 if (!event
->time_delta
)
2455 event
->time_delta
= 1;
2458 static __always_inline
bool
2459 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2460 struct ring_buffer_event
*event
)
2462 unsigned long addr
= (unsigned long)event
;
2463 unsigned long index
;
2465 index
= rb_event_index(event
);
2468 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
2469 rb_commit_index(cpu_buffer
) == index
;
2472 static __always_inline
void
2473 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2474 struct ring_buffer_event
*event
)
2479 * The event first in the commit queue updates the
2482 if (rb_event_is_commit(cpu_buffer
, event
)) {
2484 * A commit event that is first on a page
2485 * updates the write timestamp with the page stamp
2487 if (!rb_event_index(event
))
2488 cpu_buffer
->write_stamp
=
2489 cpu_buffer
->commit_page
->page
->time_stamp
;
2490 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2491 delta
= event
->array
[0];
2493 delta
+= event
->time_delta
;
2494 cpu_buffer
->write_stamp
+= delta
;
2496 cpu_buffer
->write_stamp
+= event
->time_delta
;
2500 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2501 struct ring_buffer_event
*event
)
2503 local_inc(&cpu_buffer
->entries
);
2504 rb_update_write_stamp(cpu_buffer
, event
);
2505 rb_end_commit(cpu_buffer
);
2508 static __always_inline
void
2509 rb_wakeups(struct ring_buffer
*buffer
, struct ring_buffer_per_cpu
*cpu_buffer
)
2513 if (buffer
->irq_work
.waiters_pending
) {
2514 buffer
->irq_work
.waiters_pending
= false;
2515 /* irq_work_queue() supplies it's own memory barriers */
2516 irq_work_queue(&buffer
->irq_work
.work
);
2519 if (cpu_buffer
->irq_work
.waiters_pending
) {
2520 cpu_buffer
->irq_work
.waiters_pending
= false;
2521 /* irq_work_queue() supplies it's own memory barriers */
2522 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2525 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
2527 if (!pagebusy
&& cpu_buffer
->irq_work
.full_waiters_pending
) {
2528 cpu_buffer
->irq_work
.wakeup_full
= true;
2529 cpu_buffer
->irq_work
.full_waiters_pending
= false;
2530 /* irq_work_queue() supplies it's own memory barriers */
2531 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2536 * The lock and unlock are done within a preempt disable section.
2537 * The current_context per_cpu variable can only be modified
2538 * by the current task between lock and unlock. But it can
2539 * be modified more than once via an interrupt. To pass this
2540 * information from the lock to the unlock without having to
2541 * access the 'in_interrupt()' functions again (which do show
2542 * a bit of overhead in something as critical as function tracing,
2543 * we use a bitmask trick.
2545 * bit 0 = NMI context
2546 * bit 1 = IRQ context
2547 * bit 2 = SoftIRQ context
2548 * bit 3 = normal context.
2550 * This works because this is the order of contexts that can
2551 * preempt other contexts. A SoftIRQ never preempts an IRQ
2554 * When the context is determined, the corresponding bit is
2555 * checked and set (if it was set, then a recursion of that context
2558 * On unlock, we need to clear this bit. To do so, just subtract
2559 * 1 from the current_context and AND it to itself.
2563 * 101 & 100 = 100 (clearing bit zero)
2566 * 1010 & 1001 = 1000 (clearing bit 1)
2568 * The least significant bit can be cleared this way, and it
2569 * just so happens that it is the same bit corresponding to
2570 * the current context.
2573 static __always_inline
int
2574 trace_recursive_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
2576 unsigned int val
= cpu_buffer
->current_context
;
2579 if (in_interrupt()) {
2585 bit
= RB_CTX_SOFTIRQ
;
2587 bit
= RB_CTX_NORMAL
;
2589 if (unlikely(val
& (1 << bit
)))
2593 cpu_buffer
->current_context
= val
;
2598 static __always_inline
void
2599 trace_recursive_unlock(struct ring_buffer_per_cpu
*cpu_buffer
)
2601 cpu_buffer
->current_context
&= cpu_buffer
->current_context
- 1;
2605 * ring_buffer_unlock_commit - commit a reserved
2606 * @buffer: The buffer to commit to
2607 * @event: The event pointer to commit.
2609 * This commits the data to the ring buffer, and releases any locks held.
2611 * Must be paired with ring_buffer_lock_reserve.
2613 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2614 struct ring_buffer_event
*event
)
2616 struct ring_buffer_per_cpu
*cpu_buffer
;
2617 int cpu
= raw_smp_processor_id();
2619 cpu_buffer
= buffer
->buffers
[cpu
];
2621 rb_commit(cpu_buffer
, event
);
2623 rb_wakeups(buffer
, cpu_buffer
);
2625 trace_recursive_unlock(cpu_buffer
);
2627 preempt_enable_notrace();
2631 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2633 static noinline
void
2634 rb_handle_timestamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2635 struct rb_event_info
*info
)
2637 WARN_ONCE(info
->delta
> (1ULL << 59),
2638 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2639 (unsigned long long)info
->delta
,
2640 (unsigned long long)info
->ts
,
2641 (unsigned long long)cpu_buffer
->write_stamp
,
2642 sched_clock_stable() ? "" :
2643 "If you just came from a suspend/resume,\n"
2644 "please switch to the trace global clock:\n"
2645 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2646 info
->add_timestamp
= 1;
2649 static struct ring_buffer_event
*
2650 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2651 struct rb_event_info
*info
)
2653 struct ring_buffer_event
*event
;
2654 struct buffer_page
*tail_page
;
2655 unsigned long tail
, write
;
2658 * If the time delta since the last event is too big to
2659 * hold in the time field of the event, then we append a
2660 * TIME EXTEND event ahead of the data event.
2662 if (unlikely(info
->add_timestamp
))
2663 info
->length
+= RB_LEN_TIME_EXTEND
;
2665 /* Don't let the compiler play games with cpu_buffer->tail_page */
2666 tail_page
= info
->tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
2667 write
= local_add_return(info
->length
, &tail_page
->write
);
2669 /* set write to only the index of the write */
2670 write
&= RB_WRITE_MASK
;
2671 tail
= write
- info
->length
;
2674 * If this is the first commit on the page, then it has the same
2675 * timestamp as the page itself.
2680 /* See if we shot pass the end of this buffer page */
2681 if (unlikely(write
> BUF_PAGE_SIZE
))
2682 return rb_move_tail(cpu_buffer
, tail
, info
);
2684 /* We reserved something on the buffer */
2686 event
= __rb_page_index(tail_page
, tail
);
2687 kmemcheck_annotate_bitfield(event
, bitfield
);
2688 rb_update_event(cpu_buffer
, event
, info
);
2690 local_inc(&tail_page
->entries
);
2693 * If this is the first commit on the page, then update
2697 tail_page
->page
->time_stamp
= info
->ts
;
2699 /* account for these added bytes */
2700 local_add(info
->length
, &cpu_buffer
->entries_bytes
);
2705 static __always_inline
struct ring_buffer_event
*
2706 rb_reserve_next_event(struct ring_buffer
*buffer
,
2707 struct ring_buffer_per_cpu
*cpu_buffer
,
2708 unsigned long length
)
2710 struct ring_buffer_event
*event
;
2711 struct rb_event_info info
;
2715 rb_start_commit(cpu_buffer
);
2717 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2719 * Due to the ability to swap a cpu buffer from a buffer
2720 * it is possible it was swapped before we committed.
2721 * (committing stops a swap). We check for it here and
2722 * if it happened, we have to fail the write.
2725 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2726 local_dec(&cpu_buffer
->committing
);
2727 local_dec(&cpu_buffer
->commits
);
2732 info
.length
= rb_calculate_event_length(length
);
2734 info
.add_timestamp
= 0;
2738 * We allow for interrupts to reenter here and do a trace.
2739 * If one does, it will cause this original code to loop
2740 * back here. Even with heavy interrupts happening, this
2741 * should only happen a few times in a row. If this happens
2742 * 1000 times in a row, there must be either an interrupt
2743 * storm or we have something buggy.
2746 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2749 info
.ts
= rb_time_stamp(cpu_buffer
->buffer
);
2750 diff
= info
.ts
- cpu_buffer
->write_stamp
;
2752 /* make sure this diff is calculated here */
2755 /* Did the write stamp get updated already? */
2756 if (likely(info
.ts
>= cpu_buffer
->write_stamp
)) {
2758 if (unlikely(test_time_stamp(info
.delta
)))
2759 rb_handle_timestamp(cpu_buffer
, &info
);
2762 event
= __rb_reserve_next(cpu_buffer
, &info
);
2764 if (unlikely(PTR_ERR(event
) == -EAGAIN
)) {
2765 if (info
.add_timestamp
)
2766 info
.length
-= RB_LEN_TIME_EXTEND
;
2776 rb_end_commit(cpu_buffer
);
2781 * ring_buffer_lock_reserve - reserve a part of the buffer
2782 * @buffer: the ring buffer to reserve from
2783 * @length: the length of the data to reserve (excluding event header)
2785 * Returns a reseverd event on the ring buffer to copy directly to.
2786 * The user of this interface will need to get the body to write into
2787 * and can use the ring_buffer_event_data() interface.
2789 * The length is the length of the data needed, not the event length
2790 * which also includes the event header.
2792 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2793 * If NULL is returned, then nothing has been allocated or locked.
2795 struct ring_buffer_event
*
2796 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2798 struct ring_buffer_per_cpu
*cpu_buffer
;
2799 struct ring_buffer_event
*event
;
2802 /* If we are tracing schedule, we don't want to recurse */
2803 preempt_disable_notrace();
2805 if (unlikely(atomic_read(&buffer
->record_disabled
)))
2808 cpu
= raw_smp_processor_id();
2810 if (unlikely(!cpumask_test_cpu(cpu
, buffer
->cpumask
)))
2813 cpu_buffer
= buffer
->buffers
[cpu
];
2815 if (unlikely(atomic_read(&cpu_buffer
->record_disabled
)))
2818 if (unlikely(length
> BUF_MAX_DATA_SIZE
))
2821 if (unlikely(trace_recursive_lock(cpu_buffer
)))
2824 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2831 trace_recursive_unlock(cpu_buffer
);
2833 preempt_enable_notrace();
2836 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2839 * Decrement the entries to the page that an event is on.
2840 * The event does not even need to exist, only the pointer
2841 * to the page it is on. This may only be called before the commit
2845 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2846 struct ring_buffer_event
*event
)
2848 unsigned long addr
= (unsigned long)event
;
2849 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2850 struct buffer_page
*start
;
2854 /* Do the likely case first */
2855 if (likely(bpage
->page
== (void *)addr
)) {
2856 local_dec(&bpage
->entries
);
2861 * Because the commit page may be on the reader page we
2862 * start with the next page and check the end loop there.
2864 rb_inc_page(cpu_buffer
, &bpage
);
2867 if (bpage
->page
== (void *)addr
) {
2868 local_dec(&bpage
->entries
);
2871 rb_inc_page(cpu_buffer
, &bpage
);
2872 } while (bpage
!= start
);
2874 /* commit not part of this buffer?? */
2875 RB_WARN_ON(cpu_buffer
, 1);
2879 * ring_buffer_commit_discard - discard an event that has not been committed
2880 * @buffer: the ring buffer
2881 * @event: non committed event to discard
2883 * Sometimes an event that is in the ring buffer needs to be ignored.
2884 * This function lets the user discard an event in the ring buffer
2885 * and then that event will not be read later.
2887 * This function only works if it is called before the the item has been
2888 * committed. It will try to free the event from the ring buffer
2889 * if another event has not been added behind it.
2891 * If another event has been added behind it, it will set the event
2892 * up as discarded, and perform the commit.
2894 * If this function is called, do not call ring_buffer_unlock_commit on
2897 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2898 struct ring_buffer_event
*event
)
2900 struct ring_buffer_per_cpu
*cpu_buffer
;
2903 /* The event is discarded regardless */
2904 rb_event_discard(event
);
2906 cpu
= smp_processor_id();
2907 cpu_buffer
= buffer
->buffers
[cpu
];
2910 * This must only be called if the event has not been
2911 * committed yet. Thus we can assume that preemption
2912 * is still disabled.
2914 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2916 rb_decrement_entry(cpu_buffer
, event
);
2917 if (rb_try_to_discard(cpu_buffer
, event
))
2921 * The commit is still visible by the reader, so we
2922 * must still update the timestamp.
2924 rb_update_write_stamp(cpu_buffer
, event
);
2926 rb_end_commit(cpu_buffer
);
2928 trace_recursive_unlock(cpu_buffer
);
2930 preempt_enable_notrace();
2933 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2936 * ring_buffer_write - write data to the buffer without reserving
2937 * @buffer: The ring buffer to write to.
2938 * @length: The length of the data being written (excluding the event header)
2939 * @data: The data to write to the buffer.
2941 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2942 * one function. If you already have the data to write to the buffer, it
2943 * may be easier to simply call this function.
2945 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2946 * and not the length of the event which would hold the header.
2948 int ring_buffer_write(struct ring_buffer
*buffer
,
2949 unsigned long length
,
2952 struct ring_buffer_per_cpu
*cpu_buffer
;
2953 struct ring_buffer_event
*event
;
2958 preempt_disable_notrace();
2960 if (atomic_read(&buffer
->record_disabled
))
2963 cpu
= raw_smp_processor_id();
2965 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2968 cpu_buffer
= buffer
->buffers
[cpu
];
2970 if (atomic_read(&cpu_buffer
->record_disabled
))
2973 if (length
> BUF_MAX_DATA_SIZE
)
2976 if (unlikely(trace_recursive_lock(cpu_buffer
)))
2979 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2983 body
= rb_event_data(event
);
2985 memcpy(body
, data
, length
);
2987 rb_commit(cpu_buffer
, event
);
2989 rb_wakeups(buffer
, cpu_buffer
);
2994 trace_recursive_unlock(cpu_buffer
);
2997 preempt_enable_notrace();
3001 EXPORT_SYMBOL_GPL(ring_buffer_write
);
3003 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
3005 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
3006 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
3007 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
3009 /* In case of error, head will be NULL */
3010 if (unlikely(!head
))
3013 return reader
->read
== rb_page_commit(reader
) &&
3014 (commit
== reader
||
3016 head
->read
== rb_page_commit(commit
)));
3020 * ring_buffer_record_disable - stop all writes into the buffer
3021 * @buffer: The ring buffer to stop writes to.
3023 * This prevents all writes to the buffer. Any attempt to write
3024 * to the buffer after this will fail and return NULL.
3026 * The caller should call synchronize_sched() after this.
3028 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
3030 atomic_inc(&buffer
->record_disabled
);
3032 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
3035 * ring_buffer_record_enable - enable writes to the buffer
3036 * @buffer: The ring buffer to enable writes
3038 * Note, multiple disables will need the same number of enables
3039 * to truly enable the writing (much like preempt_disable).
3041 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
3043 atomic_dec(&buffer
->record_disabled
);
3045 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
3048 * ring_buffer_record_off - stop all writes into the buffer
3049 * @buffer: The ring buffer to stop writes to.
3051 * This prevents all writes to the buffer. Any attempt to write
3052 * to the buffer after this will fail and return NULL.
3054 * This is different than ring_buffer_record_disable() as
3055 * it works like an on/off switch, where as the disable() version
3056 * must be paired with a enable().
3058 void ring_buffer_record_off(struct ring_buffer
*buffer
)
3061 unsigned int new_rd
;
3064 rd
= atomic_read(&buffer
->record_disabled
);
3065 new_rd
= rd
| RB_BUFFER_OFF
;
3066 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3068 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
3071 * ring_buffer_record_on - restart writes into the buffer
3072 * @buffer: The ring buffer to start writes to.
3074 * This enables all writes to the buffer that was disabled by
3075 * ring_buffer_record_off().
3077 * This is different than ring_buffer_record_enable() as
3078 * it works like an on/off switch, where as the enable() version
3079 * must be paired with a disable().
3081 void ring_buffer_record_on(struct ring_buffer
*buffer
)
3084 unsigned int new_rd
;
3087 rd
= atomic_read(&buffer
->record_disabled
);
3088 new_rd
= rd
& ~RB_BUFFER_OFF
;
3089 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3091 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
3094 * ring_buffer_record_is_on - return true if the ring buffer can write
3095 * @buffer: The ring buffer to see if write is enabled
3097 * Returns true if the ring buffer is in a state that it accepts writes.
3099 int ring_buffer_record_is_on(struct ring_buffer
*buffer
)
3101 return !atomic_read(&buffer
->record_disabled
);
3105 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3106 * @buffer: The ring buffer to stop writes to.
3107 * @cpu: The CPU buffer to stop
3109 * This prevents all writes to the buffer. Any attempt to write
3110 * to the buffer after this will fail and return NULL.
3112 * The caller should call synchronize_sched() after this.
3114 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
3116 struct ring_buffer_per_cpu
*cpu_buffer
;
3118 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3121 cpu_buffer
= buffer
->buffers
[cpu
];
3122 atomic_inc(&cpu_buffer
->record_disabled
);
3124 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
3127 * ring_buffer_record_enable_cpu - enable writes to the buffer
3128 * @buffer: The ring buffer to enable writes
3129 * @cpu: The CPU to enable.
3131 * Note, multiple disables will need the same number of enables
3132 * to truly enable the writing (much like preempt_disable).
3134 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
3136 struct ring_buffer_per_cpu
*cpu_buffer
;
3138 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3141 cpu_buffer
= buffer
->buffers
[cpu
];
3142 atomic_dec(&cpu_buffer
->record_disabled
);
3144 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
3147 * The total entries in the ring buffer is the running counter
3148 * of entries entered into the ring buffer, minus the sum of
3149 * the entries read from the ring buffer and the number of
3150 * entries that were overwritten.
3152 static inline unsigned long
3153 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
3155 return local_read(&cpu_buffer
->entries
) -
3156 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
3160 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3161 * @buffer: The ring buffer
3162 * @cpu: The per CPU buffer to read from.
3164 u64
ring_buffer_oldest_event_ts(struct ring_buffer
*buffer
, int cpu
)
3166 unsigned long flags
;
3167 struct ring_buffer_per_cpu
*cpu_buffer
;
3168 struct buffer_page
*bpage
;
3171 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3174 cpu_buffer
= buffer
->buffers
[cpu
];
3175 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3177 * if the tail is on reader_page, oldest time stamp is on the reader
3180 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
3181 bpage
= cpu_buffer
->reader_page
;
3183 bpage
= rb_set_head_page(cpu_buffer
);
3185 ret
= bpage
->page
->time_stamp
;
3186 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3190 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
3193 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3194 * @buffer: The ring buffer
3195 * @cpu: The per CPU buffer to read from.
3197 unsigned long ring_buffer_bytes_cpu(struct ring_buffer
*buffer
, int cpu
)
3199 struct ring_buffer_per_cpu
*cpu_buffer
;
3202 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3205 cpu_buffer
= buffer
->buffers
[cpu
];
3206 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
3210 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
3213 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3214 * @buffer: The ring buffer
3215 * @cpu: The per CPU buffer to get the entries from.
3217 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
3219 struct ring_buffer_per_cpu
*cpu_buffer
;
3221 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3224 cpu_buffer
= buffer
->buffers
[cpu
];
3226 return rb_num_of_entries(cpu_buffer
);
3228 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
3231 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3232 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3233 * @buffer: The ring buffer
3234 * @cpu: The per CPU buffer to get the number of overruns from
3236 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3238 struct ring_buffer_per_cpu
*cpu_buffer
;
3241 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3244 cpu_buffer
= buffer
->buffers
[cpu
];
3245 ret
= local_read(&cpu_buffer
->overrun
);
3249 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
3252 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3253 * commits failing due to the buffer wrapping around while there are uncommitted
3254 * events, such as during an interrupt storm.
3255 * @buffer: The ring buffer
3256 * @cpu: The per CPU buffer to get the number of overruns from
3259 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3261 struct ring_buffer_per_cpu
*cpu_buffer
;
3264 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3267 cpu_buffer
= buffer
->buffers
[cpu
];
3268 ret
= local_read(&cpu_buffer
->commit_overrun
);
3272 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
3275 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3276 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3277 * @buffer: The ring buffer
3278 * @cpu: The per CPU buffer to get the number of overruns from
3281 ring_buffer_dropped_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3283 struct ring_buffer_per_cpu
*cpu_buffer
;
3286 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3289 cpu_buffer
= buffer
->buffers
[cpu
];
3290 ret
= local_read(&cpu_buffer
->dropped_events
);
3294 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
3297 * ring_buffer_read_events_cpu - get the number of events successfully read
3298 * @buffer: The ring buffer
3299 * @cpu: The per CPU buffer to get the number of events read
3302 ring_buffer_read_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3304 struct ring_buffer_per_cpu
*cpu_buffer
;
3306 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3309 cpu_buffer
= buffer
->buffers
[cpu
];
3310 return cpu_buffer
->read
;
3312 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu
);
3315 * ring_buffer_entries - get the number of entries in a buffer
3316 * @buffer: The ring buffer
3318 * Returns the total number of entries in the ring buffer
3321 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
3323 struct ring_buffer_per_cpu
*cpu_buffer
;
3324 unsigned long entries
= 0;
3327 /* if you care about this being correct, lock the buffer */
3328 for_each_buffer_cpu(buffer
, cpu
) {
3329 cpu_buffer
= buffer
->buffers
[cpu
];
3330 entries
+= rb_num_of_entries(cpu_buffer
);
3335 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
3338 * ring_buffer_overruns - get the number of overruns in buffer
3339 * @buffer: The ring buffer
3341 * Returns the total number of overruns in the ring buffer
3344 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
3346 struct ring_buffer_per_cpu
*cpu_buffer
;
3347 unsigned long overruns
= 0;
3350 /* if you care about this being correct, lock the buffer */
3351 for_each_buffer_cpu(buffer
, cpu
) {
3352 cpu_buffer
= buffer
->buffers
[cpu
];
3353 overruns
+= local_read(&cpu_buffer
->overrun
);
3358 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
3360 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
3362 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3364 /* Iterator usage is expected to have record disabled */
3365 iter
->head_page
= cpu_buffer
->reader_page
;
3366 iter
->head
= cpu_buffer
->reader_page
->read
;
3368 iter
->cache_reader_page
= iter
->head_page
;
3369 iter
->cache_read
= cpu_buffer
->read
;
3372 iter
->read_stamp
= cpu_buffer
->read_stamp
;
3374 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3378 * ring_buffer_iter_reset - reset an iterator
3379 * @iter: The iterator to reset
3381 * Resets the iterator, so that it will start from the beginning
3384 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
3386 struct ring_buffer_per_cpu
*cpu_buffer
;
3387 unsigned long flags
;
3392 cpu_buffer
= iter
->cpu_buffer
;
3394 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3395 rb_iter_reset(iter
);
3396 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3398 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
3401 * ring_buffer_iter_empty - check if an iterator has no more to read
3402 * @iter: The iterator to check
3404 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
3406 struct ring_buffer_per_cpu
*cpu_buffer
;
3408 cpu_buffer
= iter
->cpu_buffer
;
3410 return iter
->head_page
== cpu_buffer
->commit_page
&&
3411 iter
->head
== rb_commit_index(cpu_buffer
);
3413 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
3416 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3417 struct ring_buffer_event
*event
)
3421 switch (event
->type_len
) {
3422 case RINGBUF_TYPE_PADDING
:
3425 case RINGBUF_TYPE_TIME_EXTEND
:
3426 delta
= event
->array
[0];
3428 delta
+= event
->time_delta
;
3429 cpu_buffer
->read_stamp
+= delta
;
3432 case RINGBUF_TYPE_TIME_STAMP
:
3433 /* FIXME: not implemented */
3436 case RINGBUF_TYPE_DATA
:
3437 cpu_buffer
->read_stamp
+= event
->time_delta
;
3447 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
3448 struct ring_buffer_event
*event
)
3452 switch (event
->type_len
) {
3453 case RINGBUF_TYPE_PADDING
:
3456 case RINGBUF_TYPE_TIME_EXTEND
:
3457 delta
= event
->array
[0];
3459 delta
+= event
->time_delta
;
3460 iter
->read_stamp
+= delta
;
3463 case RINGBUF_TYPE_TIME_STAMP
:
3464 /* FIXME: not implemented */
3467 case RINGBUF_TYPE_DATA
:
3468 iter
->read_stamp
+= event
->time_delta
;
3477 static struct buffer_page
*
3478 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
3480 struct buffer_page
*reader
= NULL
;
3481 unsigned long overwrite
;
3482 unsigned long flags
;
3486 local_irq_save(flags
);
3487 arch_spin_lock(&cpu_buffer
->lock
);
3491 * This should normally only loop twice. But because the
3492 * start of the reader inserts an empty page, it causes
3493 * a case where we will loop three times. There should be no
3494 * reason to loop four times (that I know of).
3496 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
3501 reader
= cpu_buffer
->reader_page
;
3503 /* If there's more to read, return this page */
3504 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
3507 /* Never should we have an index greater than the size */
3508 if (RB_WARN_ON(cpu_buffer
,
3509 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
3512 /* check if we caught up to the tail */
3514 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
3517 /* Don't bother swapping if the ring buffer is empty */
3518 if (rb_num_of_entries(cpu_buffer
) == 0)
3522 * Reset the reader page to size zero.
3524 local_set(&cpu_buffer
->reader_page
->write
, 0);
3525 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3526 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3527 cpu_buffer
->reader_page
->real_end
= 0;
3531 * Splice the empty reader page into the list around the head.
3533 reader
= rb_set_head_page(cpu_buffer
);
3536 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3537 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3540 * cpu_buffer->pages just needs to point to the buffer, it
3541 * has no specific buffer page to point to. Lets move it out
3542 * of our way so we don't accidentally swap it.
3544 cpu_buffer
->pages
= reader
->list
.prev
;
3546 /* The reader page will be pointing to the new head */
3547 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3550 * We want to make sure we read the overruns after we set up our
3551 * pointers to the next object. The writer side does a
3552 * cmpxchg to cross pages which acts as the mb on the writer
3553 * side. Note, the reader will constantly fail the swap
3554 * while the writer is updating the pointers, so this
3555 * guarantees that the overwrite recorded here is the one we
3556 * want to compare with the last_overrun.
3559 overwrite
= local_read(&(cpu_buffer
->overrun
));
3562 * Here's the tricky part.
3564 * We need to move the pointer past the header page.
3565 * But we can only do that if a writer is not currently
3566 * moving it. The page before the header page has the
3567 * flag bit '1' set if it is pointing to the page we want.
3568 * but if the writer is in the process of moving it
3569 * than it will be '2' or already moved '0'.
3572 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3575 * If we did not convert it, then we must try again.
3581 * Yeah! We succeeded in replacing the page.
3583 * Now make the new head point back to the reader page.
3585 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3586 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3588 /* Finally update the reader page to the new head */
3589 cpu_buffer
->reader_page
= reader
;
3590 cpu_buffer
->reader_page
->read
= 0;
3592 if (overwrite
!= cpu_buffer
->last_overrun
) {
3593 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3594 cpu_buffer
->last_overrun
= overwrite
;
3600 /* Update the read_stamp on the first event */
3601 if (reader
&& reader
->read
== 0)
3602 cpu_buffer
->read_stamp
= reader
->page
->time_stamp
;
3604 arch_spin_unlock(&cpu_buffer
->lock
);
3605 local_irq_restore(flags
);
3610 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3612 struct ring_buffer_event
*event
;
3613 struct buffer_page
*reader
;
3616 reader
= rb_get_reader_page(cpu_buffer
);
3618 /* This function should not be called when buffer is empty */
3619 if (RB_WARN_ON(cpu_buffer
, !reader
))
3622 event
= rb_reader_event(cpu_buffer
);
3624 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3627 rb_update_read_stamp(cpu_buffer
, event
);
3629 length
= rb_event_length(event
);
3630 cpu_buffer
->reader_page
->read
+= length
;
3633 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3635 struct ring_buffer_per_cpu
*cpu_buffer
;
3636 struct ring_buffer_event
*event
;
3639 cpu_buffer
= iter
->cpu_buffer
;
3642 * Check if we are at the end of the buffer.
3644 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3645 /* discarded commits can make the page empty */
3646 if (iter
->head_page
== cpu_buffer
->commit_page
)
3652 event
= rb_iter_head_event(iter
);
3654 length
= rb_event_length(event
);
3657 * This should not be called to advance the header if we are
3658 * at the tail of the buffer.
3660 if (RB_WARN_ON(cpu_buffer
,
3661 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3662 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3665 rb_update_iter_read_stamp(iter
, event
);
3667 iter
->head
+= length
;
3669 /* check for end of page padding */
3670 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3671 (iter
->head_page
!= cpu_buffer
->commit_page
))
3675 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3677 return cpu_buffer
->lost_events
;
3680 static struct ring_buffer_event
*
3681 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3682 unsigned long *lost_events
)
3684 struct ring_buffer_event
*event
;
3685 struct buffer_page
*reader
;
3690 * We repeat when a time extend is encountered.
3691 * Since the time extend is always attached to a data event,
3692 * we should never loop more than once.
3693 * (We never hit the following condition more than twice).
3695 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3698 reader
= rb_get_reader_page(cpu_buffer
);
3702 event
= rb_reader_event(cpu_buffer
);
3704 switch (event
->type_len
) {
3705 case RINGBUF_TYPE_PADDING
:
3706 if (rb_null_event(event
))
3707 RB_WARN_ON(cpu_buffer
, 1);
3709 * Because the writer could be discarding every
3710 * event it creates (which would probably be bad)
3711 * if we were to go back to "again" then we may never
3712 * catch up, and will trigger the warn on, or lock
3713 * the box. Return the padding, and we will release
3714 * the current locks, and try again.
3718 case RINGBUF_TYPE_TIME_EXTEND
:
3719 /* Internal data, OK to advance */
3720 rb_advance_reader(cpu_buffer
);
3723 case RINGBUF_TYPE_TIME_STAMP
:
3724 /* FIXME: not implemented */
3725 rb_advance_reader(cpu_buffer
);
3728 case RINGBUF_TYPE_DATA
:
3730 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3731 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3732 cpu_buffer
->cpu
, ts
);
3735 *lost_events
= rb_lost_events(cpu_buffer
);
3744 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3746 static struct ring_buffer_event
*
3747 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3749 struct ring_buffer
*buffer
;
3750 struct ring_buffer_per_cpu
*cpu_buffer
;
3751 struct ring_buffer_event
*event
;
3754 cpu_buffer
= iter
->cpu_buffer
;
3755 buffer
= cpu_buffer
->buffer
;
3758 * Check if someone performed a consuming read to
3759 * the buffer. A consuming read invalidates the iterator
3760 * and we need to reset the iterator in this case.
3762 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3763 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3764 rb_iter_reset(iter
);
3767 if (ring_buffer_iter_empty(iter
))
3771 * We repeat when a time extend is encountered or we hit
3772 * the end of the page. Since the time extend is always attached
3773 * to a data event, we should never loop more than three times.
3774 * Once for going to next page, once on time extend, and
3775 * finally once to get the event.
3776 * (We never hit the following condition more than thrice).
3778 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3))
3781 if (rb_per_cpu_empty(cpu_buffer
))
3784 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3789 event
= rb_iter_head_event(iter
);
3791 switch (event
->type_len
) {
3792 case RINGBUF_TYPE_PADDING
:
3793 if (rb_null_event(event
)) {
3797 rb_advance_iter(iter
);
3800 case RINGBUF_TYPE_TIME_EXTEND
:
3801 /* Internal data, OK to advance */
3802 rb_advance_iter(iter
);
3805 case RINGBUF_TYPE_TIME_STAMP
:
3806 /* FIXME: not implemented */
3807 rb_advance_iter(iter
);
3810 case RINGBUF_TYPE_DATA
:
3812 *ts
= iter
->read_stamp
+ event
->time_delta
;
3813 ring_buffer_normalize_time_stamp(buffer
,
3814 cpu_buffer
->cpu
, ts
);
3824 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3826 static inline bool rb_reader_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
3828 if (likely(!in_nmi())) {
3829 raw_spin_lock(&cpu_buffer
->reader_lock
);
3834 * If an NMI die dumps out the content of the ring buffer
3835 * trylock must be used to prevent a deadlock if the NMI
3836 * preempted a task that holds the ring buffer locks. If
3837 * we get the lock then all is fine, if not, then continue
3838 * to do the read, but this can corrupt the ring buffer,
3839 * so it must be permanently disabled from future writes.
3840 * Reading from NMI is a oneshot deal.
3842 if (raw_spin_trylock(&cpu_buffer
->reader_lock
))
3845 /* Continue without locking, but disable the ring buffer */
3846 atomic_inc(&cpu_buffer
->record_disabled
);
3851 rb_reader_unlock(struct ring_buffer_per_cpu
*cpu_buffer
, bool locked
)
3854 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3859 * ring_buffer_peek - peek at the next event to be read
3860 * @buffer: The ring buffer to read
3861 * @cpu: The cpu to peak at
3862 * @ts: The timestamp counter of this event.
3863 * @lost_events: a variable to store if events were lost (may be NULL)
3865 * This will return the event that will be read next, but does
3866 * not consume the data.
3868 struct ring_buffer_event
*
3869 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3870 unsigned long *lost_events
)
3872 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3873 struct ring_buffer_event
*event
;
3874 unsigned long flags
;
3877 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3881 local_irq_save(flags
);
3882 dolock
= rb_reader_lock(cpu_buffer
);
3883 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3884 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3885 rb_advance_reader(cpu_buffer
);
3886 rb_reader_unlock(cpu_buffer
, dolock
);
3887 local_irq_restore(flags
);
3889 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3896 * ring_buffer_iter_peek - peek at the next event to be read
3897 * @iter: The ring buffer iterator
3898 * @ts: The timestamp counter of this event.
3900 * This will return the event that will be read next, but does
3901 * not increment the iterator.
3903 struct ring_buffer_event
*
3904 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3906 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3907 struct ring_buffer_event
*event
;
3908 unsigned long flags
;
3911 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3912 event
= rb_iter_peek(iter
, ts
);
3913 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3915 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3922 * ring_buffer_consume - return an event and consume it
3923 * @buffer: The ring buffer to get the next event from
3924 * @cpu: the cpu to read the buffer from
3925 * @ts: a variable to store the timestamp (may be NULL)
3926 * @lost_events: a variable to store if events were lost (may be NULL)
3928 * Returns the next event in the ring buffer, and that event is consumed.
3929 * Meaning, that sequential reads will keep returning a different event,
3930 * and eventually empty the ring buffer if the producer is slower.
3932 struct ring_buffer_event
*
3933 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3934 unsigned long *lost_events
)
3936 struct ring_buffer_per_cpu
*cpu_buffer
;
3937 struct ring_buffer_event
*event
= NULL
;
3938 unsigned long flags
;
3942 /* might be called in atomic */
3945 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3948 cpu_buffer
= buffer
->buffers
[cpu
];
3949 local_irq_save(flags
);
3950 dolock
= rb_reader_lock(cpu_buffer
);
3952 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3954 cpu_buffer
->lost_events
= 0;
3955 rb_advance_reader(cpu_buffer
);
3958 rb_reader_unlock(cpu_buffer
, dolock
);
3959 local_irq_restore(flags
);
3964 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3969 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3972 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3973 * @buffer: The ring buffer to read from
3974 * @cpu: The cpu buffer to iterate over
3976 * This performs the initial preparations necessary to iterate
3977 * through the buffer. Memory is allocated, buffer recording
3978 * is disabled, and the iterator pointer is returned to the caller.
3980 * Disabling buffer recordng prevents the reading from being
3981 * corrupted. This is not a consuming read, so a producer is not
3984 * After a sequence of ring_buffer_read_prepare calls, the user is
3985 * expected to make at least one call to ring_buffer_read_prepare_sync.
3986 * Afterwards, ring_buffer_read_start is invoked to get things going
3989 * This overall must be paired with ring_buffer_read_finish.
3991 struct ring_buffer_iter
*
3992 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
3994 struct ring_buffer_per_cpu
*cpu_buffer
;
3995 struct ring_buffer_iter
*iter
;
3997 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4000 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
4004 cpu_buffer
= buffer
->buffers
[cpu
];
4006 iter
->cpu_buffer
= cpu_buffer
;
4008 atomic_inc(&buffer
->resize_disabled
);
4009 atomic_inc(&cpu_buffer
->record_disabled
);
4013 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
4016 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4018 * All previously invoked ring_buffer_read_prepare calls to prepare
4019 * iterators will be synchronized. Afterwards, read_buffer_read_start
4020 * calls on those iterators are allowed.
4023 ring_buffer_read_prepare_sync(void)
4025 synchronize_sched();
4027 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
4030 * ring_buffer_read_start - start a non consuming read of the buffer
4031 * @iter: The iterator returned by ring_buffer_read_prepare
4033 * This finalizes the startup of an iteration through the buffer.
4034 * The iterator comes from a call to ring_buffer_read_prepare and
4035 * an intervening ring_buffer_read_prepare_sync must have been
4038 * Must be paired with ring_buffer_read_finish.
4041 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
4043 struct ring_buffer_per_cpu
*cpu_buffer
;
4044 unsigned long flags
;
4049 cpu_buffer
= iter
->cpu_buffer
;
4051 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4052 arch_spin_lock(&cpu_buffer
->lock
);
4053 rb_iter_reset(iter
);
4054 arch_spin_unlock(&cpu_buffer
->lock
);
4055 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4057 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
4060 * ring_buffer_read_finish - finish reading the iterator of the buffer
4061 * @iter: The iterator retrieved by ring_buffer_start
4063 * This re-enables the recording to the buffer, and frees the
4067 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
4069 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4070 unsigned long flags
;
4073 * Ring buffer is disabled from recording, here's a good place
4074 * to check the integrity of the ring buffer.
4075 * Must prevent readers from trying to read, as the check
4076 * clears the HEAD page and readers require it.
4078 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4079 rb_check_pages(cpu_buffer
);
4080 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4082 atomic_dec(&cpu_buffer
->record_disabled
);
4083 atomic_dec(&cpu_buffer
->buffer
->resize_disabled
);
4086 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
4089 * ring_buffer_read - read the next item in the ring buffer by the iterator
4090 * @iter: The ring buffer iterator
4091 * @ts: The time stamp of the event read.
4093 * This reads the next event in the ring buffer and increments the iterator.
4095 struct ring_buffer_event
*
4096 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
4098 struct ring_buffer_event
*event
;
4099 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4100 unsigned long flags
;
4102 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4104 event
= rb_iter_peek(iter
, ts
);
4108 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
4111 rb_advance_iter(iter
);
4113 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4117 EXPORT_SYMBOL_GPL(ring_buffer_read
);
4120 * ring_buffer_size - return the size of the ring buffer (in bytes)
4121 * @buffer: The ring buffer.
4123 unsigned long ring_buffer_size(struct ring_buffer
*buffer
, int cpu
)
4126 * Earlier, this method returned
4127 * BUF_PAGE_SIZE * buffer->nr_pages
4128 * Since the nr_pages field is now removed, we have converted this to
4129 * return the per cpu buffer value.
4131 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4134 return BUF_PAGE_SIZE
* buffer
->buffers
[cpu
]->nr_pages
;
4136 EXPORT_SYMBOL_GPL(ring_buffer_size
);
4139 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
4141 rb_head_page_deactivate(cpu_buffer
);
4143 cpu_buffer
->head_page
4144 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
4145 local_set(&cpu_buffer
->head_page
->write
, 0);
4146 local_set(&cpu_buffer
->head_page
->entries
, 0);
4147 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
4149 cpu_buffer
->head_page
->read
= 0;
4151 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
4152 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
4154 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
4155 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
4156 local_set(&cpu_buffer
->reader_page
->write
, 0);
4157 local_set(&cpu_buffer
->reader_page
->entries
, 0);
4158 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
4159 cpu_buffer
->reader_page
->read
= 0;
4161 local_set(&cpu_buffer
->entries_bytes
, 0);
4162 local_set(&cpu_buffer
->overrun
, 0);
4163 local_set(&cpu_buffer
->commit_overrun
, 0);
4164 local_set(&cpu_buffer
->dropped_events
, 0);
4165 local_set(&cpu_buffer
->entries
, 0);
4166 local_set(&cpu_buffer
->committing
, 0);
4167 local_set(&cpu_buffer
->commits
, 0);
4168 cpu_buffer
->read
= 0;
4169 cpu_buffer
->read_bytes
= 0;
4171 cpu_buffer
->write_stamp
= 0;
4172 cpu_buffer
->read_stamp
= 0;
4174 cpu_buffer
->lost_events
= 0;
4175 cpu_buffer
->last_overrun
= 0;
4177 rb_head_page_activate(cpu_buffer
);
4181 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4182 * @buffer: The ring buffer to reset a per cpu buffer of
4183 * @cpu: The CPU buffer to be reset
4185 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
4187 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4188 unsigned long flags
;
4190 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4193 atomic_inc(&buffer
->resize_disabled
);
4194 atomic_inc(&cpu_buffer
->record_disabled
);
4196 /* Make sure all commits have finished */
4197 synchronize_sched();
4199 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4201 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
4204 arch_spin_lock(&cpu_buffer
->lock
);
4206 rb_reset_cpu(cpu_buffer
);
4208 arch_spin_unlock(&cpu_buffer
->lock
);
4211 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4213 atomic_dec(&cpu_buffer
->record_disabled
);
4214 atomic_dec(&buffer
->resize_disabled
);
4216 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
4219 * ring_buffer_reset - reset a ring buffer
4220 * @buffer: The ring buffer to reset all cpu buffers
4222 void ring_buffer_reset(struct ring_buffer
*buffer
)
4226 for_each_buffer_cpu(buffer
, cpu
)
4227 ring_buffer_reset_cpu(buffer
, cpu
);
4229 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
4232 * rind_buffer_empty - is the ring buffer empty?
4233 * @buffer: The ring buffer to test
4235 bool ring_buffer_empty(struct ring_buffer
*buffer
)
4237 struct ring_buffer_per_cpu
*cpu_buffer
;
4238 unsigned long flags
;
4243 /* yes this is racy, but if you don't like the race, lock the buffer */
4244 for_each_buffer_cpu(buffer
, cpu
) {
4245 cpu_buffer
= buffer
->buffers
[cpu
];
4246 local_irq_save(flags
);
4247 dolock
= rb_reader_lock(cpu_buffer
);
4248 ret
= rb_per_cpu_empty(cpu_buffer
);
4249 rb_reader_unlock(cpu_buffer
, dolock
);
4250 local_irq_restore(flags
);
4258 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
4261 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4262 * @buffer: The ring buffer
4263 * @cpu: The CPU buffer to test
4265 bool ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
4267 struct ring_buffer_per_cpu
*cpu_buffer
;
4268 unsigned long flags
;
4272 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4275 cpu_buffer
= buffer
->buffers
[cpu
];
4276 local_irq_save(flags
);
4277 dolock
= rb_reader_lock(cpu_buffer
);
4278 ret
= rb_per_cpu_empty(cpu_buffer
);
4279 rb_reader_unlock(cpu_buffer
, dolock
);
4280 local_irq_restore(flags
);
4284 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
4286 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4288 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4289 * @buffer_a: One buffer to swap with
4290 * @buffer_b: The other buffer to swap with
4292 * This function is useful for tracers that want to take a "snapshot"
4293 * of a CPU buffer and has another back up buffer lying around.
4294 * it is expected that the tracer handles the cpu buffer not being
4295 * used at the moment.
4297 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
4298 struct ring_buffer
*buffer_b
, int cpu
)
4300 struct ring_buffer_per_cpu
*cpu_buffer_a
;
4301 struct ring_buffer_per_cpu
*cpu_buffer_b
;
4304 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
4305 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
4308 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
4309 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
4311 /* At least make sure the two buffers are somewhat the same */
4312 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
4317 if (atomic_read(&buffer_a
->record_disabled
))
4320 if (atomic_read(&buffer_b
->record_disabled
))
4323 if (atomic_read(&cpu_buffer_a
->record_disabled
))
4326 if (atomic_read(&cpu_buffer_b
->record_disabled
))
4330 * We can't do a synchronize_sched here because this
4331 * function can be called in atomic context.
4332 * Normally this will be called from the same CPU as cpu.
4333 * If not it's up to the caller to protect this.
4335 atomic_inc(&cpu_buffer_a
->record_disabled
);
4336 atomic_inc(&cpu_buffer_b
->record_disabled
);
4339 if (local_read(&cpu_buffer_a
->committing
))
4341 if (local_read(&cpu_buffer_b
->committing
))
4344 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
4345 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
4347 cpu_buffer_b
->buffer
= buffer_a
;
4348 cpu_buffer_a
->buffer
= buffer_b
;
4353 atomic_dec(&cpu_buffer_a
->record_disabled
);
4354 atomic_dec(&cpu_buffer_b
->record_disabled
);
4358 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
4359 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4362 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4363 * @buffer: the buffer to allocate for.
4364 * @cpu: the cpu buffer to allocate.
4366 * This function is used in conjunction with ring_buffer_read_page.
4367 * When reading a full page from the ring buffer, these functions
4368 * can be used to speed up the process. The calling function should
4369 * allocate a few pages first with this function. Then when it
4370 * needs to get pages from the ring buffer, it passes the result
4371 * of this function into ring_buffer_read_page, which will swap
4372 * the page that was allocated, with the read page of the buffer.
4375 * The page allocated, or NULL on error.
4377 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
4379 struct buffer_data_page
*bpage
;
4382 page
= alloc_pages_node(cpu_to_node(cpu
),
4383 GFP_KERNEL
| __GFP_NORETRY
, 0);
4387 bpage
= page_address(page
);
4389 rb_init_page(bpage
);
4393 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
4396 * ring_buffer_free_read_page - free an allocated read page
4397 * @buffer: the buffer the page was allocate for
4398 * @data: the page to free
4400 * Free a page allocated from ring_buffer_alloc_read_page.
4402 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
4404 free_page((unsigned long)data
);
4406 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
4409 * ring_buffer_read_page - extract a page from the ring buffer
4410 * @buffer: buffer to extract from
4411 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4412 * @len: amount to extract
4413 * @cpu: the cpu of the buffer to extract
4414 * @full: should the extraction only happen when the page is full.
4416 * This function will pull out a page from the ring buffer and consume it.
4417 * @data_page must be the address of the variable that was returned
4418 * from ring_buffer_alloc_read_page. This is because the page might be used
4419 * to swap with a page in the ring buffer.
4422 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4425 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4427 * process_page(rpage, ret);
4429 * When @full is set, the function will not return true unless
4430 * the writer is off the reader page.
4432 * Note: it is up to the calling functions to handle sleeps and wakeups.
4433 * The ring buffer can be used anywhere in the kernel and can not
4434 * blindly call wake_up. The layer that uses the ring buffer must be
4435 * responsible for that.
4438 * >=0 if data has been transferred, returns the offset of consumed data.
4439 * <0 if no data has been transferred.
4441 int ring_buffer_read_page(struct ring_buffer
*buffer
,
4442 void **data_page
, size_t len
, int cpu
, int full
)
4444 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4445 struct ring_buffer_event
*event
;
4446 struct buffer_data_page
*bpage
;
4447 struct buffer_page
*reader
;
4448 unsigned long missed_events
;
4449 unsigned long flags
;
4450 unsigned int commit
;
4455 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4459 * If len is not big enough to hold the page header, then
4460 * we can not copy anything.
4462 if (len
<= BUF_PAGE_HDR_SIZE
)
4465 len
-= BUF_PAGE_HDR_SIZE
;
4474 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4476 reader
= rb_get_reader_page(cpu_buffer
);
4480 event
= rb_reader_event(cpu_buffer
);
4482 read
= reader
->read
;
4483 commit
= rb_page_commit(reader
);
4485 /* Check if any events were dropped */
4486 missed_events
= cpu_buffer
->lost_events
;
4489 * If this page has been partially read or
4490 * if len is not big enough to read the rest of the page or
4491 * a writer is still on the page, then
4492 * we must copy the data from the page to the buffer.
4493 * Otherwise, we can simply swap the page with the one passed in.
4495 if (read
|| (len
< (commit
- read
)) ||
4496 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
4497 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
4498 unsigned int rpos
= read
;
4499 unsigned int pos
= 0;
4505 if (len
> (commit
- read
))
4506 len
= (commit
- read
);
4508 /* Always keep the time extend and data together */
4509 size
= rb_event_ts_length(event
);
4514 /* save the current timestamp, since the user will need it */
4515 save_timestamp
= cpu_buffer
->read_stamp
;
4517 /* Need to copy one event at a time */
4519 /* We need the size of one event, because
4520 * rb_advance_reader only advances by one event,
4521 * whereas rb_event_ts_length may include the size of
4522 * one or two events.
4523 * We have already ensured there's enough space if this
4524 * is a time extend. */
4525 size
= rb_event_length(event
);
4526 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
4530 rb_advance_reader(cpu_buffer
);
4531 rpos
= reader
->read
;
4537 event
= rb_reader_event(cpu_buffer
);
4538 /* Always keep the time extend and data together */
4539 size
= rb_event_ts_length(event
);
4540 } while (len
>= size
);
4543 local_set(&bpage
->commit
, pos
);
4544 bpage
->time_stamp
= save_timestamp
;
4546 /* we copied everything to the beginning */
4549 /* update the entry counter */
4550 cpu_buffer
->read
+= rb_page_entries(reader
);
4551 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
4553 /* swap the pages */
4554 rb_init_page(bpage
);
4555 bpage
= reader
->page
;
4556 reader
->page
= *data_page
;
4557 local_set(&reader
->write
, 0);
4558 local_set(&reader
->entries
, 0);
4563 * Use the real_end for the data size,
4564 * This gives us a chance to store the lost events
4567 if (reader
->real_end
)
4568 local_set(&bpage
->commit
, reader
->real_end
);
4572 cpu_buffer
->lost_events
= 0;
4574 commit
= local_read(&bpage
->commit
);
4576 * Set a flag in the commit field if we lost events
4578 if (missed_events
) {
4579 /* If there is room at the end of the page to save the
4580 * missed events, then record it there.
4582 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4583 memcpy(&bpage
->data
[commit
], &missed_events
,
4584 sizeof(missed_events
));
4585 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4586 commit
+= sizeof(missed_events
);
4588 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4592 * This page may be off to user land. Zero it out here.
4594 if (commit
< BUF_PAGE_SIZE
)
4595 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4598 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4603 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4606 * We only allocate new buffers, never free them if the CPU goes down.
4607 * If we were to free the buffer, then the user would lose any trace that was in
4610 int trace_rb_cpu_prepare(unsigned int cpu
, struct hlist_node
*node
)
4612 struct ring_buffer
*buffer
;
4615 unsigned long nr_pages
;
4617 buffer
= container_of(node
, struct ring_buffer
, node
);
4618 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4623 /* check if all cpu sizes are same */
4624 for_each_buffer_cpu(buffer
, cpu_i
) {
4625 /* fill in the size from first enabled cpu */
4627 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
4628 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
4633 /* allocate minimum pages, user can later expand it */
4636 buffer
->buffers
[cpu
] =
4637 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
4638 if (!buffer
->buffers
[cpu
]) {
4639 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4644 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4648 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4650 * This is a basic integrity check of the ring buffer.
4651 * Late in the boot cycle this test will run when configured in.
4652 * It will kick off a thread per CPU that will go into a loop
4653 * writing to the per cpu ring buffer various sizes of data.
4654 * Some of the data will be large items, some small.
4656 * Another thread is created that goes into a spin, sending out
4657 * IPIs to the other CPUs to also write into the ring buffer.
4658 * this is to test the nesting ability of the buffer.
4660 * Basic stats are recorded and reported. If something in the
4661 * ring buffer should happen that's not expected, a big warning
4662 * is displayed and all ring buffers are disabled.
4664 static struct task_struct
*rb_threads
[NR_CPUS
] __initdata
;
4666 struct rb_test_data
{
4667 struct ring_buffer
*buffer
;
4668 unsigned long events
;
4669 unsigned long bytes_written
;
4670 unsigned long bytes_alloc
;
4671 unsigned long bytes_dropped
;
4672 unsigned long events_nested
;
4673 unsigned long bytes_written_nested
;
4674 unsigned long bytes_alloc_nested
;
4675 unsigned long bytes_dropped_nested
;
4676 int min_size_nested
;
4677 int max_size_nested
;
4684 static struct rb_test_data rb_data
[NR_CPUS
] __initdata
;
4687 #define RB_TEST_BUFFER_SIZE 1048576
4689 static char rb_string
[] __initdata
=
4690 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4691 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4692 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4694 static bool rb_test_started __initdata
;
4701 static __init
int rb_write_something(struct rb_test_data
*data
, bool nested
)
4703 struct ring_buffer_event
*event
;
4704 struct rb_item
*item
;
4711 /* Have nested writes different that what is written */
4712 cnt
= data
->cnt
+ (nested
? 27 : 0);
4714 /* Multiply cnt by ~e, to make some unique increment */
4715 size
= (data
->cnt
* 68 / 25) % (sizeof(rb_string
) - 1);
4717 len
= size
+ sizeof(struct rb_item
);
4719 started
= rb_test_started
;
4720 /* read rb_test_started before checking buffer enabled */
4723 event
= ring_buffer_lock_reserve(data
->buffer
, len
);
4725 /* Ignore dropped events before test starts. */
4728 data
->bytes_dropped
+= len
;
4730 data
->bytes_dropped_nested
+= len
;
4735 event_len
= ring_buffer_event_length(event
);
4737 if (RB_WARN_ON(data
->buffer
, event_len
< len
))
4740 item
= ring_buffer_event_data(event
);
4742 memcpy(item
->str
, rb_string
, size
);
4745 data
->bytes_alloc_nested
+= event_len
;
4746 data
->bytes_written_nested
+= len
;
4747 data
->events_nested
++;
4748 if (!data
->min_size_nested
|| len
< data
->min_size_nested
)
4749 data
->min_size_nested
= len
;
4750 if (len
> data
->max_size_nested
)
4751 data
->max_size_nested
= len
;
4753 data
->bytes_alloc
+= event_len
;
4754 data
->bytes_written
+= len
;
4756 if (!data
->min_size
|| len
< data
->min_size
)
4757 data
->max_size
= len
;
4758 if (len
> data
->max_size
)
4759 data
->max_size
= len
;
4763 ring_buffer_unlock_commit(data
->buffer
, event
);
4768 static __init
int rb_test(void *arg
)
4770 struct rb_test_data
*data
= arg
;
4772 while (!kthread_should_stop()) {
4773 rb_write_something(data
, false);
4776 set_current_state(TASK_INTERRUPTIBLE
);
4777 /* Now sleep between a min of 100-300us and a max of 1ms */
4778 usleep_range(((data
->cnt
% 3) + 1) * 100, 1000);
4784 static __init
void rb_ipi(void *ignore
)
4786 struct rb_test_data
*data
;
4787 int cpu
= smp_processor_id();
4789 data
= &rb_data
[cpu
];
4790 rb_write_something(data
, true);
4793 static __init
int rb_hammer_test(void *arg
)
4795 while (!kthread_should_stop()) {
4797 /* Send an IPI to all cpus to write data! */
4798 smp_call_function(rb_ipi
, NULL
, 1);
4799 /* No sleep, but for non preempt, let others run */
4806 static __init
int test_ringbuffer(void)
4808 struct task_struct
*rb_hammer
;
4809 struct ring_buffer
*buffer
;
4813 pr_info("Running ring buffer tests...\n");
4815 buffer
= ring_buffer_alloc(RB_TEST_BUFFER_SIZE
, RB_FL_OVERWRITE
);
4816 if (WARN_ON(!buffer
))
4819 /* Disable buffer so that threads can't write to it yet */
4820 ring_buffer_record_off(buffer
);
4822 for_each_online_cpu(cpu
) {
4823 rb_data
[cpu
].buffer
= buffer
;
4824 rb_data
[cpu
].cpu
= cpu
;
4825 rb_data
[cpu
].cnt
= cpu
;
4826 rb_threads
[cpu
] = kthread_create(rb_test
, &rb_data
[cpu
],
4827 "rbtester/%d", cpu
);
4828 if (WARN_ON(!rb_threads
[cpu
])) {
4829 pr_cont("FAILED\n");
4834 kthread_bind(rb_threads
[cpu
], cpu
);
4835 wake_up_process(rb_threads
[cpu
]);
4838 /* Now create the rb hammer! */
4839 rb_hammer
= kthread_run(rb_hammer_test
, NULL
, "rbhammer");
4840 if (WARN_ON(!rb_hammer
)) {
4841 pr_cont("FAILED\n");
4846 ring_buffer_record_on(buffer
);
4848 * Show buffer is enabled before setting rb_test_started.
4849 * Yes there's a small race window where events could be
4850 * dropped and the thread wont catch it. But when a ring
4851 * buffer gets enabled, there will always be some kind of
4852 * delay before other CPUs see it. Thus, we don't care about
4853 * those dropped events. We care about events dropped after
4854 * the threads see that the buffer is active.
4857 rb_test_started
= true;
4859 set_current_state(TASK_INTERRUPTIBLE
);
4860 /* Just run for 10 seconds */;
4861 schedule_timeout(10 * HZ
);
4863 kthread_stop(rb_hammer
);
4866 for_each_online_cpu(cpu
) {
4867 if (!rb_threads
[cpu
])
4869 kthread_stop(rb_threads
[cpu
]);
4872 ring_buffer_free(buffer
);
4877 pr_info("finished\n");
4878 for_each_online_cpu(cpu
) {
4879 struct ring_buffer_event
*event
;
4880 struct rb_test_data
*data
= &rb_data
[cpu
];
4881 struct rb_item
*item
;
4882 unsigned long total_events
;
4883 unsigned long total_dropped
;
4884 unsigned long total_written
;
4885 unsigned long total_alloc
;
4886 unsigned long total_read
= 0;
4887 unsigned long total_size
= 0;
4888 unsigned long total_len
= 0;
4889 unsigned long total_lost
= 0;
4892 int small_event_size
;
4896 total_events
= data
->events
+ data
->events_nested
;
4897 total_written
= data
->bytes_written
+ data
->bytes_written_nested
;
4898 total_alloc
= data
->bytes_alloc
+ data
->bytes_alloc_nested
;
4899 total_dropped
= data
->bytes_dropped
+ data
->bytes_dropped_nested
;
4901 big_event_size
= data
->max_size
+ data
->max_size_nested
;
4902 small_event_size
= data
->min_size
+ data
->min_size_nested
;
4904 pr_info("CPU %d:\n", cpu
);
4905 pr_info(" events: %ld\n", total_events
);
4906 pr_info(" dropped bytes: %ld\n", total_dropped
);
4907 pr_info(" alloced bytes: %ld\n", total_alloc
);
4908 pr_info(" written bytes: %ld\n", total_written
);
4909 pr_info(" biggest event: %d\n", big_event_size
);
4910 pr_info(" smallest event: %d\n", small_event_size
);
4912 if (RB_WARN_ON(buffer
, total_dropped
))
4917 while ((event
= ring_buffer_consume(buffer
, cpu
, NULL
, &lost
))) {
4919 item
= ring_buffer_event_data(event
);
4920 total_len
+= ring_buffer_event_length(event
);
4921 total_size
+= item
->size
+ sizeof(struct rb_item
);
4922 if (memcmp(&item
->str
[0], rb_string
, item
->size
) != 0) {
4923 pr_info("FAILED!\n");
4924 pr_info("buffer had: %.*s\n", item
->size
, item
->str
);
4925 pr_info("expected: %.*s\n", item
->size
, rb_string
);
4926 RB_WARN_ON(buffer
, 1);
4937 pr_info(" read events: %ld\n", total_read
);
4938 pr_info(" lost events: %ld\n", total_lost
);
4939 pr_info(" total events: %ld\n", total_lost
+ total_read
);
4940 pr_info(" recorded len bytes: %ld\n", total_len
);
4941 pr_info(" recorded size bytes: %ld\n", total_size
);
4943 pr_info(" With dropped events, record len and size may not match\n"
4944 " alloced and written from above\n");
4946 if (RB_WARN_ON(buffer
, total_len
!= total_alloc
||
4947 total_size
!= total_written
))
4950 if (RB_WARN_ON(buffer
, total_lost
+ total_read
!= total_events
))
4956 pr_info("Ring buffer PASSED!\n");
4958 ring_buffer_free(buffer
);
4962 late_initcall(test_ringbuffer
);
4963 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */