2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally described in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <linux/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
83 #include <net/ip_fib.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
87 static unsigned int fib_seq_sum(void)
89 unsigned int fib_seq
= 0;
94 fib_seq
+= net
->ipv4
.fib_seq
;
100 static ATOMIC_NOTIFIER_HEAD(fib_chain
);
102 static int call_fib_notifier(struct notifier_block
*nb
, struct net
*net
,
103 enum fib_event_type event_type
,
104 struct fib_notifier_info
*info
)
107 return nb
->notifier_call(nb
, event_type
, info
);
110 static void fib_rules_notify(struct net
*net
, struct notifier_block
*nb
,
111 enum fib_event_type event_type
)
113 #ifdef CONFIG_IP_MULTIPLE_TABLES
114 struct fib_notifier_info info
;
116 if (net
->ipv4
.fib_has_custom_rules
)
117 call_fib_notifier(nb
, net
, event_type
, &info
);
121 static void fib_notify(struct net
*net
, struct notifier_block
*nb
,
122 enum fib_event_type event_type
);
124 static int call_fib_entry_notifier(struct notifier_block
*nb
, struct net
*net
,
125 enum fib_event_type event_type
, u32 dst
,
126 int dst_len
, struct fib_info
*fi
,
127 u8 tos
, u8 type
, u32 tb_id
, u32 nlflags
)
129 struct fib_entry_notifier_info info
= {
138 return call_fib_notifier(nb
, net
, event_type
, &info
.info
);
141 static bool fib_dump_is_consistent(struct notifier_block
*nb
,
142 void (*cb
)(struct notifier_block
*nb
),
143 unsigned int fib_seq
)
145 atomic_notifier_chain_register(&fib_chain
, nb
);
146 if (fib_seq
== fib_seq_sum())
148 atomic_notifier_chain_unregister(&fib_chain
, nb
);
154 #define FIB_DUMP_MAX_RETRIES 5
155 int register_fib_notifier(struct notifier_block
*nb
,
156 void (*cb
)(struct notifier_block
*nb
))
161 unsigned int fib_seq
= fib_seq_sum();
164 /* Mutex semantics guarantee that every change done to
165 * FIB tries before we read the change sequence counter
166 * is now visible to us.
169 for_each_net_rcu(net
) {
170 fib_rules_notify(net
, nb
, FIB_EVENT_RULE_ADD
);
171 fib_notify(net
, nb
, FIB_EVENT_ENTRY_ADD
);
175 if (fib_dump_is_consistent(nb
, cb
, fib_seq
))
177 } while (++retries
< FIB_DUMP_MAX_RETRIES
);
181 EXPORT_SYMBOL(register_fib_notifier
);
183 int unregister_fib_notifier(struct notifier_block
*nb
)
185 return atomic_notifier_chain_unregister(&fib_chain
, nb
);
187 EXPORT_SYMBOL(unregister_fib_notifier
);
189 int call_fib_notifiers(struct net
*net
, enum fib_event_type event_type
,
190 struct fib_notifier_info
*info
)
194 return atomic_notifier_call_chain(&fib_chain
, event_type
, info
);
197 static int call_fib_entry_notifiers(struct net
*net
,
198 enum fib_event_type event_type
, u32 dst
,
199 int dst_len
, struct fib_info
*fi
,
200 u8 tos
, u8 type
, u32 tb_id
, u32 nlflags
)
202 struct fib_entry_notifier_info info
= {
211 return call_fib_notifiers(net
, event_type
, &info
.info
);
214 #define MAX_STAT_DEPTH 32
216 #define KEYLENGTH (8*sizeof(t_key))
217 #define KEY_MAX ((t_key)~0)
219 typedef unsigned int t_key
;
221 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
222 #define IS_TNODE(n) ((n)->bits)
223 #define IS_LEAF(n) (!(n)->bits)
227 unsigned char pos
; /* 2log(KEYLENGTH) bits needed */
228 unsigned char bits
; /* 2log(KEYLENGTH) bits needed */
231 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
232 struct hlist_head leaf
;
233 /* This array is valid if (pos | bits) > 0 (TNODE) */
234 struct key_vector __rcu
*tnode
[0];
240 t_key empty_children
; /* KEYLENGTH bits needed */
241 t_key full_children
; /* KEYLENGTH bits needed */
242 struct key_vector __rcu
*parent
;
243 struct key_vector kv
[1];
244 #define tn_bits kv[0].bits
247 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
248 #define LEAF_SIZE TNODE_SIZE(1)
250 #ifdef CONFIG_IP_FIB_TRIE_STATS
251 struct trie_use_stats
{
253 unsigned int backtrack
;
254 unsigned int semantic_match_passed
;
255 unsigned int semantic_match_miss
;
256 unsigned int null_node_hit
;
257 unsigned int resize_node_skipped
;
262 unsigned int totdepth
;
263 unsigned int maxdepth
;
266 unsigned int nullpointers
;
267 unsigned int prefixes
;
268 unsigned int nodesizes
[MAX_STAT_DEPTH
];
272 struct key_vector kv
[1];
273 #ifdef CONFIG_IP_FIB_TRIE_STATS
274 struct trie_use_stats __percpu
*stats
;
278 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
);
279 static size_t tnode_free_size
;
282 * synchronize_rcu after call_rcu for that many pages; it should be especially
283 * useful before resizing the root node with PREEMPT_NONE configs; the value was
284 * obtained experimentally, aiming to avoid visible slowdown.
286 static const int sync_pages
= 128;
288 static struct kmem_cache
*fn_alias_kmem __read_mostly
;
289 static struct kmem_cache
*trie_leaf_kmem __read_mostly
;
291 static inline struct tnode
*tn_info(struct key_vector
*kv
)
293 return container_of(kv
, struct tnode
, kv
[0]);
296 /* caller must hold RTNL */
297 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
298 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
300 /* caller must hold RCU read lock or RTNL */
301 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
302 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
304 /* wrapper for rcu_assign_pointer */
305 static inline void node_set_parent(struct key_vector
*n
, struct key_vector
*tp
)
308 rcu_assign_pointer(tn_info(n
)->parent
, tp
);
311 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
313 /* This provides us with the number of children in this node, in the case of a
314 * leaf this will return 0 meaning none of the children are accessible.
316 static inline unsigned long child_length(const struct key_vector
*tn
)
318 return (1ul << tn
->bits
) & ~(1ul);
321 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
323 static inline unsigned long get_index(t_key key
, struct key_vector
*kv
)
325 unsigned long index
= key
^ kv
->key
;
327 if ((BITS_PER_LONG
<= KEYLENGTH
) && (KEYLENGTH
== kv
->pos
))
330 return index
>> kv
->pos
;
333 /* To understand this stuff, an understanding of keys and all their bits is
334 * necessary. Every node in the trie has a key associated with it, but not
335 * all of the bits in that key are significant.
337 * Consider a node 'n' and its parent 'tp'.
339 * If n is a leaf, every bit in its key is significant. Its presence is
340 * necessitated by path compression, since during a tree traversal (when
341 * searching for a leaf - unless we are doing an insertion) we will completely
342 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
343 * a potentially successful search, that we have indeed been walking the
346 * Note that we can never "miss" the correct key in the tree if present by
347 * following the wrong path. Path compression ensures that segments of the key
348 * that are the same for all keys with a given prefix are skipped, but the
349 * skipped part *is* identical for each node in the subtrie below the skipped
350 * bit! trie_insert() in this implementation takes care of that.
352 * if n is an internal node - a 'tnode' here, the various parts of its key
353 * have many different meanings.
356 * _________________________________________________________________
357 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
358 * -----------------------------------------------------------------
359 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
361 * _________________________________________________________________
362 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
363 * -----------------------------------------------------------------
364 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
371 * First, let's just ignore the bits that come before the parent tp, that is
372 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
373 * point we do not use them for anything.
375 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
376 * index into the parent's child array. That is, they will be used to find
377 * 'n' among tp's children.
379 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
382 * All the bits we have seen so far are significant to the node n. The rest
383 * of the bits are really not needed or indeed known in n->key.
385 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
386 * n's child array, and will of course be different for each child.
388 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
392 static const int halve_threshold
= 25;
393 static const int inflate_threshold
= 50;
394 static const int halve_threshold_root
= 15;
395 static const int inflate_threshold_root
= 30;
397 static void __alias_free_mem(struct rcu_head
*head
)
399 struct fib_alias
*fa
= container_of(head
, struct fib_alias
, rcu
);
400 kmem_cache_free(fn_alias_kmem
, fa
);
403 static inline void alias_free_mem_rcu(struct fib_alias
*fa
)
405 call_rcu(&fa
->rcu
, __alias_free_mem
);
408 #define TNODE_KMALLOC_MAX \
409 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
410 #define TNODE_VMALLOC_MAX \
411 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
413 static void __node_free_rcu(struct rcu_head
*head
)
415 struct tnode
*n
= container_of(head
, struct tnode
, rcu
);
418 kmem_cache_free(trie_leaf_kmem
, n
);
423 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
425 static struct tnode
*tnode_alloc(int bits
)
429 /* verify bits is within bounds */
430 if (bits
> TNODE_VMALLOC_MAX
)
433 /* determine size and verify it is non-zero and didn't overflow */
434 size
= TNODE_SIZE(1ul << bits
);
436 if (size
<= PAGE_SIZE
)
437 return kzalloc(size
, GFP_KERNEL
);
439 return vzalloc(size
);
442 static inline void empty_child_inc(struct key_vector
*n
)
444 ++tn_info(n
)->empty_children
? : ++tn_info(n
)->full_children
;
447 static inline void empty_child_dec(struct key_vector
*n
)
449 tn_info(n
)->empty_children
-- ? : tn_info(n
)->full_children
--;
452 static struct key_vector
*leaf_new(t_key key
, struct fib_alias
*fa
)
454 struct key_vector
*l
;
457 kv
= kmem_cache_alloc(trie_leaf_kmem
, GFP_KERNEL
);
461 /* initialize key vector */
466 l
->slen
= fa
->fa_slen
;
468 /* link leaf to fib alias */
469 INIT_HLIST_HEAD(&l
->leaf
);
470 hlist_add_head(&fa
->fa_list
, &l
->leaf
);
475 static struct key_vector
*tnode_new(t_key key
, int pos
, int bits
)
477 unsigned int shift
= pos
+ bits
;
478 struct key_vector
*tn
;
481 /* verify bits and pos their msb bits clear and values are valid */
482 BUG_ON(!bits
|| (shift
> KEYLENGTH
));
484 tnode
= tnode_alloc(bits
);
488 pr_debug("AT %p s=%zu %zu\n", tnode
, TNODE_SIZE(0),
489 sizeof(struct key_vector
*) << bits
);
491 if (bits
== KEYLENGTH
)
492 tnode
->full_children
= 1;
494 tnode
->empty_children
= 1ul << bits
;
497 tn
->key
= (shift
< KEYLENGTH
) ? (key
>> shift
) << shift
: 0;
505 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
506 * and no bits are skipped. See discussion in dyntree paper p. 6
508 static inline int tnode_full(struct key_vector
*tn
, struct key_vector
*n
)
510 return n
&& ((n
->pos
+ n
->bits
) == tn
->pos
) && IS_TNODE(n
);
513 /* Add a child at position i overwriting the old value.
514 * Update the value of full_children and empty_children.
516 static void put_child(struct key_vector
*tn
, unsigned long i
,
517 struct key_vector
*n
)
519 struct key_vector
*chi
= get_child(tn
, i
);
522 BUG_ON(i
>= child_length(tn
));
524 /* update emptyChildren, overflow into fullChildren */
530 /* update fullChildren */
531 wasfull
= tnode_full(tn
, chi
);
532 isfull
= tnode_full(tn
, n
);
534 if (wasfull
&& !isfull
)
535 tn_info(tn
)->full_children
--;
536 else if (!wasfull
&& isfull
)
537 tn_info(tn
)->full_children
++;
539 if (n
&& (tn
->slen
< n
->slen
))
542 rcu_assign_pointer(tn
->tnode
[i
], n
);
545 static void update_children(struct key_vector
*tn
)
549 /* update all of the child parent pointers */
550 for (i
= child_length(tn
); i
;) {
551 struct key_vector
*inode
= get_child(tn
, --i
);
556 /* Either update the children of a tnode that
557 * already belongs to us or update the child
558 * to point to ourselves.
560 if (node_parent(inode
) == tn
)
561 update_children(inode
);
563 node_set_parent(inode
, tn
);
567 static inline void put_child_root(struct key_vector
*tp
, t_key key
,
568 struct key_vector
*n
)
571 rcu_assign_pointer(tp
->tnode
[0], n
);
573 put_child(tp
, get_index(key
, tp
), n
);
576 static inline void tnode_free_init(struct key_vector
*tn
)
578 tn_info(tn
)->rcu
.next
= NULL
;
581 static inline void tnode_free_append(struct key_vector
*tn
,
582 struct key_vector
*n
)
584 tn_info(n
)->rcu
.next
= tn_info(tn
)->rcu
.next
;
585 tn_info(tn
)->rcu
.next
= &tn_info(n
)->rcu
;
588 static void tnode_free(struct key_vector
*tn
)
590 struct callback_head
*head
= &tn_info(tn
)->rcu
;
594 tnode_free_size
+= TNODE_SIZE(1ul << tn
->bits
);
597 tn
= container_of(head
, struct tnode
, rcu
)->kv
;
600 if (tnode_free_size
>= PAGE_SIZE
* sync_pages
) {
606 static struct key_vector
*replace(struct trie
*t
,
607 struct key_vector
*oldtnode
,
608 struct key_vector
*tn
)
610 struct key_vector
*tp
= node_parent(oldtnode
);
613 /* setup the parent pointer out of and back into this node */
614 NODE_INIT_PARENT(tn
, tp
);
615 put_child_root(tp
, tn
->key
, tn
);
617 /* update all of the child parent pointers */
620 /* all pointers should be clean so we are done */
621 tnode_free(oldtnode
);
623 /* resize children now that oldtnode is freed */
624 for (i
= child_length(tn
); i
;) {
625 struct key_vector
*inode
= get_child(tn
, --i
);
627 /* resize child node */
628 if (tnode_full(tn
, inode
))
629 tn
= resize(t
, inode
);
635 static struct key_vector
*inflate(struct trie
*t
,
636 struct key_vector
*oldtnode
)
638 struct key_vector
*tn
;
642 pr_debug("In inflate\n");
644 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
- 1, oldtnode
->bits
+ 1);
648 /* prepare oldtnode to be freed */
649 tnode_free_init(oldtnode
);
651 /* Assemble all of the pointers in our cluster, in this case that
652 * represents all of the pointers out of our allocated nodes that
653 * point to existing tnodes and the links between our allocated
656 for (i
= child_length(oldtnode
), m
= 1u << tn
->pos
; i
;) {
657 struct key_vector
*inode
= get_child(oldtnode
, --i
);
658 struct key_vector
*node0
, *node1
;
665 /* A leaf or an internal node with skipped bits */
666 if (!tnode_full(oldtnode
, inode
)) {
667 put_child(tn
, get_index(inode
->key
, tn
), inode
);
671 /* drop the node in the old tnode free list */
672 tnode_free_append(oldtnode
, inode
);
674 /* An internal node with two children */
675 if (inode
->bits
== 1) {
676 put_child(tn
, 2 * i
+ 1, get_child(inode
, 1));
677 put_child(tn
, 2 * i
, get_child(inode
, 0));
681 /* We will replace this node 'inode' with two new
682 * ones, 'node0' and 'node1', each with half of the
683 * original children. The two new nodes will have
684 * a position one bit further down the key and this
685 * means that the "significant" part of their keys
686 * (see the discussion near the top of this file)
687 * will differ by one bit, which will be "0" in
688 * node0's key and "1" in node1's key. Since we are
689 * moving the key position by one step, the bit that
690 * we are moving away from - the bit at position
691 * (tn->pos) - is the one that will differ between
692 * node0 and node1. So... we synthesize that bit in the
695 node1
= tnode_new(inode
->key
| m
, inode
->pos
, inode
->bits
- 1);
698 node0
= tnode_new(inode
->key
, inode
->pos
, inode
->bits
- 1);
700 tnode_free_append(tn
, node1
);
703 tnode_free_append(tn
, node0
);
705 /* populate child pointers in new nodes */
706 for (k
= child_length(inode
), j
= k
/ 2; j
;) {
707 put_child(node1
, --j
, get_child(inode
, --k
));
708 put_child(node0
, j
, get_child(inode
, j
));
709 put_child(node1
, --j
, get_child(inode
, --k
));
710 put_child(node0
, j
, get_child(inode
, j
));
713 /* link new nodes to parent */
714 NODE_INIT_PARENT(node1
, tn
);
715 NODE_INIT_PARENT(node0
, tn
);
717 /* link parent to nodes */
718 put_child(tn
, 2 * i
+ 1, node1
);
719 put_child(tn
, 2 * i
, node0
);
722 /* setup the parent pointers into and out of this node */
723 return replace(t
, oldtnode
, tn
);
725 /* all pointers should be clean so we are done */
731 static struct key_vector
*halve(struct trie
*t
,
732 struct key_vector
*oldtnode
)
734 struct key_vector
*tn
;
737 pr_debug("In halve\n");
739 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
+ 1, oldtnode
->bits
- 1);
743 /* prepare oldtnode to be freed */
744 tnode_free_init(oldtnode
);
746 /* Assemble all of the pointers in our cluster, in this case that
747 * represents all of the pointers out of our allocated nodes that
748 * point to existing tnodes and the links between our allocated
751 for (i
= child_length(oldtnode
); i
;) {
752 struct key_vector
*node1
= get_child(oldtnode
, --i
);
753 struct key_vector
*node0
= get_child(oldtnode
, --i
);
754 struct key_vector
*inode
;
756 /* At least one of the children is empty */
757 if (!node1
|| !node0
) {
758 put_child(tn
, i
/ 2, node1
? : node0
);
762 /* Two nonempty children */
763 inode
= tnode_new(node0
->key
, oldtnode
->pos
, 1);
766 tnode_free_append(tn
, inode
);
768 /* initialize pointers out of node */
769 put_child(inode
, 1, node1
);
770 put_child(inode
, 0, node0
);
771 NODE_INIT_PARENT(inode
, tn
);
773 /* link parent to node */
774 put_child(tn
, i
/ 2, inode
);
777 /* setup the parent pointers into and out of this node */
778 return replace(t
, oldtnode
, tn
);
780 /* all pointers should be clean so we are done */
786 static struct key_vector
*collapse(struct trie
*t
,
787 struct key_vector
*oldtnode
)
789 struct key_vector
*n
, *tp
;
792 /* scan the tnode looking for that one child that might still exist */
793 for (n
= NULL
, i
= child_length(oldtnode
); !n
&& i
;)
794 n
= get_child(oldtnode
, --i
);
796 /* compress one level */
797 tp
= node_parent(oldtnode
);
798 put_child_root(tp
, oldtnode
->key
, n
);
799 node_set_parent(n
, tp
);
807 static unsigned char update_suffix(struct key_vector
*tn
)
809 unsigned char slen
= tn
->pos
;
810 unsigned long stride
, i
;
811 unsigned char slen_max
;
813 /* only vector 0 can have a suffix length greater than or equal to
814 * tn->pos + tn->bits, the second highest node will have a suffix
815 * length at most of tn->pos + tn->bits - 1
817 slen_max
= min_t(unsigned char, tn
->pos
+ tn
->bits
- 1, tn
->slen
);
819 /* search though the list of children looking for nodes that might
820 * have a suffix greater than the one we currently have. This is
821 * why we start with a stride of 2 since a stride of 1 would
822 * represent the nodes with suffix length equal to tn->pos
824 for (i
= 0, stride
= 0x2ul
; i
< child_length(tn
); i
+= stride
) {
825 struct key_vector
*n
= get_child(tn
, i
);
827 if (!n
|| (n
->slen
<= slen
))
830 /* update stride and slen based on new value */
831 stride
<<= (n
->slen
- slen
);
835 /* stop searching if we have hit the maximum possible value */
836 if (slen
>= slen_max
)
845 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
846 * the Helsinki University of Technology and Matti Tikkanen of Nokia
847 * Telecommunications, page 6:
848 * "A node is doubled if the ratio of non-empty children to all
849 * children in the *doubled* node is at least 'high'."
851 * 'high' in this instance is the variable 'inflate_threshold'. It
852 * is expressed as a percentage, so we multiply it with
853 * child_length() and instead of multiplying by 2 (since the
854 * child array will be doubled by inflate()) and multiplying
855 * the left-hand side by 100 (to handle the percentage thing) we
856 * multiply the left-hand side by 50.
858 * The left-hand side may look a bit weird: child_length(tn)
859 * - tn->empty_children is of course the number of non-null children
860 * in the current node. tn->full_children is the number of "full"
861 * children, that is non-null tnodes with a skip value of 0.
862 * All of those will be doubled in the resulting inflated tnode, so
863 * we just count them one extra time here.
865 * A clearer way to write this would be:
867 * to_be_doubled = tn->full_children;
868 * not_to_be_doubled = child_length(tn) - tn->empty_children -
871 * new_child_length = child_length(tn) * 2;
873 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
875 * if (new_fill_factor >= inflate_threshold)
877 * ...and so on, tho it would mess up the while () loop.
880 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
884 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
885 * inflate_threshold * new_child_length
887 * expand not_to_be_doubled and to_be_doubled, and shorten:
888 * 100 * (child_length(tn) - tn->empty_children +
889 * tn->full_children) >= inflate_threshold * new_child_length
891 * expand new_child_length:
892 * 100 * (child_length(tn) - tn->empty_children +
893 * tn->full_children) >=
894 * inflate_threshold * child_length(tn) * 2
897 * 50 * (tn->full_children + child_length(tn) -
898 * tn->empty_children) >= inflate_threshold *
902 static inline bool should_inflate(struct key_vector
*tp
, struct key_vector
*tn
)
904 unsigned long used
= child_length(tn
);
905 unsigned long threshold
= used
;
907 /* Keep root node larger */
908 threshold
*= IS_TRIE(tp
) ? inflate_threshold_root
: inflate_threshold
;
909 used
-= tn_info(tn
)->empty_children
;
910 used
+= tn_info(tn
)->full_children
;
912 /* if bits == KEYLENGTH then pos = 0, and will fail below */
914 return (used
> 1) && tn
->pos
&& ((50 * used
) >= threshold
);
917 static inline bool should_halve(struct key_vector
*tp
, struct key_vector
*tn
)
919 unsigned long used
= child_length(tn
);
920 unsigned long threshold
= used
;
922 /* Keep root node larger */
923 threshold
*= IS_TRIE(tp
) ? halve_threshold_root
: halve_threshold
;
924 used
-= tn_info(tn
)->empty_children
;
926 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
928 return (used
> 1) && (tn
->bits
> 1) && ((100 * used
) < threshold
);
931 static inline bool should_collapse(struct key_vector
*tn
)
933 unsigned long used
= child_length(tn
);
935 used
-= tn_info(tn
)->empty_children
;
937 /* account for bits == KEYLENGTH case */
938 if ((tn
->bits
== KEYLENGTH
) && tn_info(tn
)->full_children
)
941 /* One child or none, time to drop us from the trie */
946 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
)
948 #ifdef CONFIG_IP_FIB_TRIE_STATS
949 struct trie_use_stats __percpu
*stats
= t
->stats
;
951 struct key_vector
*tp
= node_parent(tn
);
952 unsigned long cindex
= get_index(tn
->key
, tp
);
953 int max_work
= MAX_WORK
;
955 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
956 tn
, inflate_threshold
, halve_threshold
);
958 /* track the tnode via the pointer from the parent instead of
959 * doing it ourselves. This way we can let RCU fully do its
960 * thing without us interfering
962 BUG_ON(tn
!= get_child(tp
, cindex
));
964 /* Double as long as the resulting node has a number of
965 * nonempty nodes that are above the threshold.
967 while (should_inflate(tp
, tn
) && max_work
) {
970 #ifdef CONFIG_IP_FIB_TRIE_STATS
971 this_cpu_inc(stats
->resize_node_skipped
);
977 tn
= get_child(tp
, cindex
);
980 /* update parent in case inflate failed */
981 tp
= node_parent(tn
);
983 /* Return if at least one inflate is run */
984 if (max_work
!= MAX_WORK
)
987 /* Halve as long as the number of empty children in this
988 * node is above threshold.
990 while (should_halve(tp
, tn
) && max_work
) {
993 #ifdef CONFIG_IP_FIB_TRIE_STATS
994 this_cpu_inc(stats
->resize_node_skipped
);
1000 tn
= get_child(tp
, cindex
);
1003 /* Only one child remains */
1004 if (should_collapse(tn
))
1005 return collapse(t
, tn
);
1007 /* update parent in case halve failed */
1008 return node_parent(tn
);
1011 static void node_pull_suffix(struct key_vector
*tn
, unsigned char slen
)
1013 unsigned char node_slen
= tn
->slen
;
1015 while ((node_slen
> tn
->pos
) && (node_slen
> slen
)) {
1016 slen
= update_suffix(tn
);
1017 if (node_slen
== slen
)
1020 tn
= node_parent(tn
);
1021 node_slen
= tn
->slen
;
1025 static void node_push_suffix(struct key_vector
*tn
, unsigned char slen
)
1027 while (tn
->slen
< slen
) {
1029 tn
= node_parent(tn
);
1033 /* rcu_read_lock needs to be hold by caller from readside */
1034 static struct key_vector
*fib_find_node(struct trie
*t
,
1035 struct key_vector
**tp
, u32 key
)
1037 struct key_vector
*pn
, *n
= t
->kv
;
1038 unsigned long index
= 0;
1042 n
= get_child_rcu(n
, index
);
1047 index
= get_cindex(key
, n
);
1049 /* This bit of code is a bit tricky but it combines multiple
1050 * checks into a single check. The prefix consists of the
1051 * prefix plus zeros for the bits in the cindex. The index
1052 * is the difference between the key and this value. From
1053 * this we can actually derive several pieces of data.
1054 * if (index >= (1ul << bits))
1055 * we have a mismatch in skip bits and failed
1057 * we know the value is cindex
1059 * This check is safe even if bits == KEYLENGTH due to the
1060 * fact that we can only allocate a node with 32 bits if a
1061 * long is greater than 32 bits.
1063 if (index
>= (1ul << n
->bits
)) {
1068 /* keep searching until we find a perfect match leaf or NULL */
1069 } while (IS_TNODE(n
));
1076 /* Return the first fib alias matching TOS with
1077 * priority less than or equal to PRIO.
1079 static struct fib_alias
*fib_find_alias(struct hlist_head
*fah
, u8 slen
,
1080 u8 tos
, u32 prio
, u32 tb_id
)
1082 struct fib_alias
*fa
;
1087 hlist_for_each_entry(fa
, fah
, fa_list
) {
1088 if (fa
->fa_slen
< slen
)
1090 if (fa
->fa_slen
!= slen
)
1092 if (fa
->tb_id
> tb_id
)
1094 if (fa
->tb_id
!= tb_id
)
1096 if (fa
->fa_tos
> tos
)
1098 if (fa
->fa_info
->fib_priority
>= prio
|| fa
->fa_tos
< tos
)
1105 static void trie_rebalance(struct trie
*t
, struct key_vector
*tn
)
1107 while (!IS_TRIE(tn
))
1111 static int fib_insert_node(struct trie
*t
, struct key_vector
*tp
,
1112 struct fib_alias
*new, t_key key
)
1114 struct key_vector
*n
, *l
;
1116 l
= leaf_new(key
, new);
1120 /* retrieve child from parent node */
1121 n
= get_child(tp
, get_index(key
, tp
));
1123 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1125 * Add a new tnode here
1126 * first tnode need some special handling
1127 * leaves us in position for handling as case 3
1130 struct key_vector
*tn
;
1132 tn
= tnode_new(key
, __fls(key
^ n
->key
), 1);
1136 /* initialize routes out of node */
1137 NODE_INIT_PARENT(tn
, tp
);
1138 put_child(tn
, get_index(key
, tn
) ^ 1, n
);
1140 /* start adding routes into the node */
1141 put_child_root(tp
, key
, tn
);
1142 node_set_parent(n
, tn
);
1144 /* parent now has a NULL spot where the leaf can go */
1148 /* Case 3: n is NULL, and will just insert a new leaf */
1149 node_push_suffix(tp
, new->fa_slen
);
1150 NODE_INIT_PARENT(l
, tp
);
1151 put_child_root(tp
, key
, l
);
1152 trie_rebalance(t
, tp
);
1161 static int fib_insert_alias(struct trie
*t
, struct key_vector
*tp
,
1162 struct key_vector
*l
, struct fib_alias
*new,
1163 struct fib_alias
*fa
, t_key key
)
1166 return fib_insert_node(t
, tp
, new, key
);
1169 hlist_add_before_rcu(&new->fa_list
, &fa
->fa_list
);
1171 struct fib_alias
*last
;
1173 hlist_for_each_entry(last
, &l
->leaf
, fa_list
) {
1174 if (new->fa_slen
< last
->fa_slen
)
1176 if ((new->fa_slen
== last
->fa_slen
) &&
1177 (new->tb_id
> last
->tb_id
))
1183 hlist_add_behind_rcu(&new->fa_list
, &fa
->fa_list
);
1185 hlist_add_head_rcu(&new->fa_list
, &l
->leaf
);
1188 /* if we added to the tail node then we need to update slen */
1189 if (l
->slen
< new->fa_slen
) {
1190 l
->slen
= new->fa_slen
;
1191 node_push_suffix(tp
, new->fa_slen
);
1197 /* Caller must hold RTNL. */
1198 int fib_table_insert(struct net
*net
, struct fib_table
*tb
,
1199 struct fib_config
*cfg
)
1201 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1202 struct fib_alias
*fa
, *new_fa
;
1203 struct key_vector
*l
, *tp
;
1204 u16 nlflags
= NLM_F_EXCL
;
1205 struct fib_info
*fi
;
1206 u8 plen
= cfg
->fc_dst_len
;
1207 u8 slen
= KEYLENGTH
- plen
;
1208 u8 tos
= cfg
->fc_tos
;
1212 if (plen
> KEYLENGTH
)
1215 key
= ntohl(cfg
->fc_dst
);
1217 pr_debug("Insert table=%u %08x/%d\n", tb
->tb_id
, key
, plen
);
1219 if ((plen
< KEYLENGTH
) && (key
<< plen
))
1222 fi
= fib_create_info(cfg
);
1228 l
= fib_find_node(t
, &tp
, key
);
1229 fa
= l
? fib_find_alias(&l
->leaf
, slen
, tos
, fi
->fib_priority
,
1232 /* Now fa, if non-NULL, points to the first fib alias
1233 * with the same keys [prefix,tos,priority], if such key already
1234 * exists or to the node before which we will insert new one.
1236 * If fa is NULL, we will need to allocate a new one and
1237 * insert to the tail of the section matching the suffix length
1241 if (fa
&& fa
->fa_tos
== tos
&&
1242 fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1243 struct fib_alias
*fa_first
, *fa_match
;
1246 if (cfg
->fc_nlflags
& NLM_F_EXCL
)
1249 nlflags
&= ~NLM_F_EXCL
;
1252 * 1. Find exact match for type, scope, fib_info to avoid
1254 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1258 hlist_for_each_entry_from(fa
, fa_list
) {
1259 if ((fa
->fa_slen
!= slen
) ||
1260 (fa
->tb_id
!= tb
->tb_id
) ||
1261 (fa
->fa_tos
!= tos
))
1263 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1265 if (fa
->fa_type
== cfg
->fc_type
&&
1266 fa
->fa_info
== fi
) {
1272 if (cfg
->fc_nlflags
& NLM_F_REPLACE
) {
1273 struct fib_info
*fi_drop
;
1276 nlflags
|= NLM_F_REPLACE
;
1284 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1288 fi_drop
= fa
->fa_info
;
1289 new_fa
->fa_tos
= fa
->fa_tos
;
1290 new_fa
->fa_info
= fi
;
1291 new_fa
->fa_type
= cfg
->fc_type
;
1292 state
= fa
->fa_state
;
1293 new_fa
->fa_state
= state
& ~FA_S_ACCESSED
;
1294 new_fa
->fa_slen
= fa
->fa_slen
;
1295 new_fa
->tb_id
= tb
->tb_id
;
1296 new_fa
->fa_default
= -1;
1298 hlist_replace_rcu(&fa
->fa_list
, &new_fa
->fa_list
);
1300 alias_free_mem_rcu(fa
);
1302 fib_release_info(fi_drop
);
1303 if (state
& FA_S_ACCESSED
)
1304 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1306 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_ADD
,
1308 new_fa
->fa_tos
, cfg
->fc_type
,
1309 tb
->tb_id
, cfg
->fc_nlflags
);
1310 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
,
1311 tb
->tb_id
, &cfg
->fc_nlinfo
, nlflags
);
1315 /* Error if we find a perfect match which
1316 * uses the same scope, type, and nexthop
1322 if (cfg
->fc_nlflags
& NLM_F_APPEND
)
1323 nlflags
|= NLM_F_APPEND
;
1328 if (!(cfg
->fc_nlflags
& NLM_F_CREATE
))
1331 nlflags
|= NLM_F_CREATE
;
1333 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1337 new_fa
->fa_info
= fi
;
1338 new_fa
->fa_tos
= tos
;
1339 new_fa
->fa_type
= cfg
->fc_type
;
1340 new_fa
->fa_state
= 0;
1341 new_fa
->fa_slen
= slen
;
1342 new_fa
->tb_id
= tb
->tb_id
;
1343 new_fa
->fa_default
= -1;
1345 /* Insert new entry to the list. */
1346 err
= fib_insert_alias(t
, tp
, l
, new_fa
, fa
, key
);
1348 goto out_free_new_fa
;
1351 tb
->tb_num_default
++;
1353 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1354 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_ADD
, key
, plen
, fi
, tos
,
1355 cfg
->fc_type
, tb
->tb_id
, cfg
->fc_nlflags
);
1356 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, new_fa
->tb_id
,
1357 &cfg
->fc_nlinfo
, nlflags
);
1362 kmem_cache_free(fn_alias_kmem
, new_fa
);
1364 fib_release_info(fi
);
1369 static inline t_key
prefix_mismatch(t_key key
, struct key_vector
*n
)
1371 t_key prefix
= n
->key
;
1373 return (key
^ prefix
) & (prefix
| -prefix
);
1376 /* should be called with rcu_read_lock */
1377 int fib_table_lookup(struct fib_table
*tb
, const struct flowi4
*flp
,
1378 struct fib_result
*res
, int fib_flags
)
1380 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1381 #ifdef CONFIG_IP_FIB_TRIE_STATS
1382 struct trie_use_stats __percpu
*stats
= t
->stats
;
1384 const t_key key
= ntohl(flp
->daddr
);
1385 struct key_vector
*n
, *pn
;
1386 struct fib_alias
*fa
;
1387 unsigned long index
;
1390 trace_fib_table_lookup(tb
->tb_id
, flp
);
1395 n
= get_child_rcu(pn
, cindex
);
1399 #ifdef CONFIG_IP_FIB_TRIE_STATS
1400 this_cpu_inc(stats
->gets
);
1403 /* Step 1: Travel to the longest prefix match in the trie */
1405 index
= get_cindex(key
, n
);
1407 /* This bit of code is a bit tricky but it combines multiple
1408 * checks into a single check. The prefix consists of the
1409 * prefix plus zeros for the "bits" in the prefix. The index
1410 * is the difference between the key and this value. From
1411 * this we can actually derive several pieces of data.
1412 * if (index >= (1ul << bits))
1413 * we have a mismatch in skip bits and failed
1415 * we know the value is cindex
1417 * This check is safe even if bits == KEYLENGTH due to the
1418 * fact that we can only allocate a node with 32 bits if a
1419 * long is greater than 32 bits.
1421 if (index
>= (1ul << n
->bits
))
1424 /* we have found a leaf. Prefixes have already been compared */
1428 /* only record pn and cindex if we are going to be chopping
1429 * bits later. Otherwise we are just wasting cycles.
1431 if (n
->slen
> n
->pos
) {
1436 n
= get_child_rcu(n
, index
);
1441 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1443 /* record the pointer where our next node pointer is stored */
1444 struct key_vector __rcu
**cptr
= n
->tnode
;
1446 /* This test verifies that none of the bits that differ
1447 * between the key and the prefix exist in the region of
1448 * the lsb and higher in the prefix.
1450 if (unlikely(prefix_mismatch(key
, n
)) || (n
->slen
== n
->pos
))
1453 /* exit out and process leaf */
1454 if (unlikely(IS_LEAF(n
)))
1457 /* Don't bother recording parent info. Since we are in
1458 * prefix match mode we will have to come back to wherever
1459 * we started this traversal anyway
1462 while ((n
= rcu_dereference(*cptr
)) == NULL
) {
1464 #ifdef CONFIG_IP_FIB_TRIE_STATS
1466 this_cpu_inc(stats
->null_node_hit
);
1468 /* If we are at cindex 0 there are no more bits for
1469 * us to strip at this level so we must ascend back
1470 * up one level to see if there are any more bits to
1471 * be stripped there.
1474 t_key pkey
= pn
->key
;
1476 /* If we don't have a parent then there is
1477 * nothing for us to do as we do not have any
1478 * further nodes to parse.
1482 #ifdef CONFIG_IP_FIB_TRIE_STATS
1483 this_cpu_inc(stats
->backtrack
);
1485 /* Get Child's index */
1486 pn
= node_parent_rcu(pn
);
1487 cindex
= get_index(pkey
, pn
);
1490 /* strip the least significant bit from the cindex */
1491 cindex
&= cindex
- 1;
1493 /* grab pointer for next child node */
1494 cptr
= &pn
->tnode
[cindex
];
1499 /* this line carries forward the xor from earlier in the function */
1500 index
= key
^ n
->key
;
1502 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1503 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
1504 struct fib_info
*fi
= fa
->fa_info
;
1507 if ((BITS_PER_LONG
> KEYLENGTH
) || (fa
->fa_slen
< KEYLENGTH
)) {
1508 if (index
>= (1ul << fa
->fa_slen
))
1511 if (fa
->fa_tos
&& fa
->fa_tos
!= flp
->flowi4_tos
)
1515 if (fa
->fa_info
->fib_scope
< flp
->flowi4_scope
)
1517 fib_alias_accessed(fa
);
1518 err
= fib_props
[fa
->fa_type
].error
;
1519 if (unlikely(err
< 0)) {
1520 #ifdef CONFIG_IP_FIB_TRIE_STATS
1521 this_cpu_inc(stats
->semantic_match_passed
);
1525 if (fi
->fib_flags
& RTNH_F_DEAD
)
1527 for (nhsel
= 0; nhsel
< fi
->fib_nhs
; nhsel
++) {
1528 const struct fib_nh
*nh
= &fi
->fib_nh
[nhsel
];
1529 struct in_device
*in_dev
= __in_dev_get_rcu(nh
->nh_dev
);
1531 if (nh
->nh_flags
& RTNH_F_DEAD
)
1534 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev
) &&
1535 nh
->nh_flags
& RTNH_F_LINKDOWN
&&
1536 !(fib_flags
& FIB_LOOKUP_IGNORE_LINKSTATE
))
1538 if (!(flp
->flowi4_flags
& FLOWI_FLAG_SKIP_NH_OIF
)) {
1539 if (flp
->flowi4_oif
&&
1540 flp
->flowi4_oif
!= nh
->nh_oif
)
1544 if (!(fib_flags
& FIB_LOOKUP_NOREF
))
1545 atomic_inc(&fi
->fib_clntref
);
1547 res
->prefixlen
= KEYLENGTH
- fa
->fa_slen
;
1548 res
->nh_sel
= nhsel
;
1549 res
->type
= fa
->fa_type
;
1550 res
->scope
= fi
->fib_scope
;
1553 res
->fa_head
= &n
->leaf
;
1554 #ifdef CONFIG_IP_FIB_TRIE_STATS
1555 this_cpu_inc(stats
->semantic_match_passed
);
1557 trace_fib_table_lookup_nh(nh
);
1562 #ifdef CONFIG_IP_FIB_TRIE_STATS
1563 this_cpu_inc(stats
->semantic_match_miss
);
1567 EXPORT_SYMBOL_GPL(fib_table_lookup
);
1569 static void fib_remove_alias(struct trie
*t
, struct key_vector
*tp
,
1570 struct key_vector
*l
, struct fib_alias
*old
)
1572 /* record the location of the previous list_info entry */
1573 struct hlist_node
**pprev
= old
->fa_list
.pprev
;
1574 struct fib_alias
*fa
= hlist_entry(pprev
, typeof(*fa
), fa_list
.next
);
1576 /* remove the fib_alias from the list */
1577 hlist_del_rcu(&old
->fa_list
);
1579 /* if we emptied the list this leaf will be freed and we can sort
1580 * out parent suffix lengths as a part of trie_rebalance
1582 if (hlist_empty(&l
->leaf
)) {
1583 if (tp
->slen
== l
->slen
)
1584 node_pull_suffix(tp
, tp
->pos
);
1585 put_child_root(tp
, l
->key
, NULL
);
1587 trie_rebalance(t
, tp
);
1591 /* only access fa if it is pointing at the last valid hlist_node */
1595 /* update the trie with the latest suffix length */
1596 l
->slen
= fa
->fa_slen
;
1597 node_pull_suffix(tp
, fa
->fa_slen
);
1600 /* Caller must hold RTNL. */
1601 int fib_table_delete(struct net
*net
, struct fib_table
*tb
,
1602 struct fib_config
*cfg
)
1604 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1605 struct fib_alias
*fa
, *fa_to_delete
;
1606 struct key_vector
*l
, *tp
;
1607 u8 plen
= cfg
->fc_dst_len
;
1608 u8 slen
= KEYLENGTH
- plen
;
1609 u8 tos
= cfg
->fc_tos
;
1612 if (plen
> KEYLENGTH
)
1615 key
= ntohl(cfg
->fc_dst
);
1617 if ((plen
< KEYLENGTH
) && (key
<< plen
))
1620 l
= fib_find_node(t
, &tp
, key
);
1624 fa
= fib_find_alias(&l
->leaf
, slen
, tos
, 0, tb
->tb_id
);
1628 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key
, plen
, tos
, t
);
1630 fa_to_delete
= NULL
;
1631 hlist_for_each_entry_from(fa
, fa_list
) {
1632 struct fib_info
*fi
= fa
->fa_info
;
1634 if ((fa
->fa_slen
!= slen
) ||
1635 (fa
->tb_id
!= tb
->tb_id
) ||
1636 (fa
->fa_tos
!= tos
))
1639 if ((!cfg
->fc_type
|| fa
->fa_type
== cfg
->fc_type
) &&
1640 (cfg
->fc_scope
== RT_SCOPE_NOWHERE
||
1641 fa
->fa_info
->fib_scope
== cfg
->fc_scope
) &&
1642 (!cfg
->fc_prefsrc
||
1643 fi
->fib_prefsrc
== cfg
->fc_prefsrc
) &&
1644 (!cfg
->fc_protocol
||
1645 fi
->fib_protocol
== cfg
->fc_protocol
) &&
1646 fib_nh_match(cfg
, fi
) == 0) {
1655 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
, key
, plen
,
1656 fa_to_delete
->fa_info
, tos
, cfg
->fc_type
,
1658 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa_to_delete
, plen
, tb
->tb_id
,
1659 &cfg
->fc_nlinfo
, 0);
1662 tb
->tb_num_default
--;
1664 fib_remove_alias(t
, tp
, l
, fa_to_delete
);
1666 if (fa_to_delete
->fa_state
& FA_S_ACCESSED
)
1667 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1669 fib_release_info(fa_to_delete
->fa_info
);
1670 alias_free_mem_rcu(fa_to_delete
);
1674 /* Scan for the next leaf starting at the provided key value */
1675 static struct key_vector
*leaf_walk_rcu(struct key_vector
**tn
, t_key key
)
1677 struct key_vector
*pn
, *n
= *tn
;
1678 unsigned long cindex
;
1680 /* this loop is meant to try and find the key in the trie */
1682 /* record parent and next child index */
1684 cindex
= (key
> pn
->key
) ? get_index(key
, pn
) : 0;
1686 if (cindex
>> pn
->bits
)
1689 /* descend into the next child */
1690 n
= get_child_rcu(pn
, cindex
++);
1694 /* guarantee forward progress on the keys */
1695 if (IS_LEAF(n
) && (n
->key
>= key
))
1697 } while (IS_TNODE(n
));
1699 /* this loop will search for the next leaf with a greater key */
1700 while (!IS_TRIE(pn
)) {
1701 /* if we exhausted the parent node we will need to climb */
1702 if (cindex
>= (1ul << pn
->bits
)) {
1703 t_key pkey
= pn
->key
;
1705 pn
= node_parent_rcu(pn
);
1706 cindex
= get_index(pkey
, pn
) + 1;
1710 /* grab the next available node */
1711 n
= get_child_rcu(pn
, cindex
++);
1715 /* no need to compare keys since we bumped the index */
1719 /* Rescan start scanning in new node */
1725 return NULL
; /* Root of trie */
1727 /* if we are at the limit for keys just return NULL for the tnode */
1732 static void fib_trie_free(struct fib_table
*tb
)
1734 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1735 struct key_vector
*pn
= t
->kv
;
1736 unsigned long cindex
= 1;
1737 struct hlist_node
*tmp
;
1738 struct fib_alias
*fa
;
1740 /* walk trie in reverse order and free everything */
1742 struct key_vector
*n
;
1745 t_key pkey
= pn
->key
;
1751 pn
= node_parent(pn
);
1753 /* drop emptied tnode */
1754 put_child_root(pn
, n
->key
, NULL
);
1757 cindex
= get_index(pkey
, pn
);
1762 /* grab the next available node */
1763 n
= get_child(pn
, cindex
);
1768 /* record pn and cindex for leaf walking */
1770 cindex
= 1ul << n
->bits
;
1775 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1776 hlist_del_rcu(&fa
->fa_list
);
1777 alias_free_mem_rcu(fa
);
1780 put_child_root(pn
, n
->key
, NULL
);
1784 #ifdef CONFIG_IP_FIB_TRIE_STATS
1785 free_percpu(t
->stats
);
1790 struct fib_table
*fib_trie_unmerge(struct fib_table
*oldtb
)
1792 struct trie
*ot
= (struct trie
*)oldtb
->tb_data
;
1793 struct key_vector
*l
, *tp
= ot
->kv
;
1794 struct fib_table
*local_tb
;
1795 struct fib_alias
*fa
;
1799 if (oldtb
->tb_data
== oldtb
->__data
)
1802 local_tb
= fib_trie_table(RT_TABLE_LOCAL
, NULL
);
1806 lt
= (struct trie
*)local_tb
->tb_data
;
1808 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1809 struct key_vector
*local_l
= NULL
, *local_tp
;
1811 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1812 struct fib_alias
*new_fa
;
1814 if (local_tb
->tb_id
!= fa
->tb_id
)
1817 /* clone fa for new local table */
1818 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1822 memcpy(new_fa
, fa
, sizeof(*fa
));
1824 /* insert clone into table */
1826 local_l
= fib_find_node(lt
, &local_tp
, l
->key
);
1828 if (fib_insert_alias(lt
, local_tp
, local_l
, new_fa
,
1830 kmem_cache_free(fn_alias_kmem
, new_fa
);
1835 /* stop loop if key wrapped back to 0 */
1843 fib_trie_free(local_tb
);
1848 /* Caller must hold RTNL */
1849 void fib_table_flush_external(struct fib_table
*tb
)
1851 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1852 struct key_vector
*pn
= t
->kv
;
1853 unsigned long cindex
= 1;
1854 struct hlist_node
*tmp
;
1855 struct fib_alias
*fa
;
1857 /* walk trie in reverse order */
1859 unsigned char slen
= 0;
1860 struct key_vector
*n
;
1863 t_key pkey
= pn
->key
;
1865 /* cannot resize the trie vector */
1869 /* update the suffix to address pulled leaves */
1870 if (pn
->slen
> pn
->pos
)
1873 /* resize completed node */
1875 cindex
= get_index(pkey
, pn
);
1880 /* grab the next available node */
1881 n
= get_child(pn
, cindex
);
1886 /* record pn and cindex for leaf walking */
1888 cindex
= 1ul << n
->bits
;
1893 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1894 /* if alias was cloned to local then we just
1895 * need to remove the local copy from main
1897 if (tb
->tb_id
!= fa
->tb_id
) {
1898 hlist_del_rcu(&fa
->fa_list
);
1899 alias_free_mem_rcu(fa
);
1903 /* record local slen */
1907 /* update leaf slen */
1910 if (hlist_empty(&n
->leaf
)) {
1911 put_child_root(pn
, n
->key
, NULL
);
1917 /* Caller must hold RTNL. */
1918 int fib_table_flush(struct net
*net
, struct fib_table
*tb
)
1920 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1921 struct key_vector
*pn
= t
->kv
;
1922 unsigned long cindex
= 1;
1923 struct hlist_node
*tmp
;
1924 struct fib_alias
*fa
;
1927 /* walk trie in reverse order */
1929 unsigned char slen
= 0;
1930 struct key_vector
*n
;
1933 t_key pkey
= pn
->key
;
1935 /* cannot resize the trie vector */
1939 /* update the suffix to address pulled leaves */
1940 if (pn
->slen
> pn
->pos
)
1943 /* resize completed node */
1945 cindex
= get_index(pkey
, pn
);
1950 /* grab the next available node */
1951 n
= get_child(pn
, cindex
);
1956 /* record pn and cindex for leaf walking */
1958 cindex
= 1ul << n
->bits
;
1963 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1964 struct fib_info
*fi
= fa
->fa_info
;
1966 if (!fi
|| !(fi
->fib_flags
& RTNH_F_DEAD
)) {
1971 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
,
1973 KEYLENGTH
- fa
->fa_slen
,
1974 fi
, fa
->fa_tos
, fa
->fa_type
,
1976 hlist_del_rcu(&fa
->fa_list
);
1977 fib_release_info(fa
->fa_info
);
1978 alias_free_mem_rcu(fa
);
1982 /* update leaf slen */
1985 if (hlist_empty(&n
->leaf
)) {
1986 put_child_root(pn
, n
->key
, NULL
);
1991 pr_debug("trie_flush found=%d\n", found
);
1995 static void fib_leaf_notify(struct net
*net
, struct key_vector
*l
,
1996 struct fib_table
*tb
, struct notifier_block
*nb
,
1997 enum fib_event_type event_type
)
1999 struct fib_alias
*fa
;
2001 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2002 struct fib_info
*fi
= fa
->fa_info
;
2007 /* local and main table can share the same trie,
2008 * so don't notify twice for the same entry.
2010 if (tb
->tb_id
!= fa
->tb_id
)
2013 call_fib_entry_notifier(nb
, net
, event_type
, l
->key
,
2014 KEYLENGTH
- fa
->fa_slen
, fi
, fa
->fa_tos
,
2015 fa
->fa_type
, fa
->tb_id
, 0);
2019 static void fib_table_notify(struct net
*net
, struct fib_table
*tb
,
2020 struct notifier_block
*nb
,
2021 enum fib_event_type event_type
)
2023 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2024 struct key_vector
*l
, *tp
= t
->kv
;
2027 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
2028 fib_leaf_notify(net
, l
, tb
, nb
, event_type
);
2031 /* stop in case of wrap around */
2037 static void fib_notify(struct net
*net
, struct notifier_block
*nb
,
2038 enum fib_event_type event_type
)
2042 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2043 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2044 struct fib_table
*tb
;
2046 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
)
2047 fib_table_notify(net
, tb
, nb
, event_type
);
2051 static void __trie_free_rcu(struct rcu_head
*head
)
2053 struct fib_table
*tb
= container_of(head
, struct fib_table
, rcu
);
2054 #ifdef CONFIG_IP_FIB_TRIE_STATS
2055 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2057 if (tb
->tb_data
== tb
->__data
)
2058 free_percpu(t
->stats
);
2059 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2063 void fib_free_table(struct fib_table
*tb
)
2065 call_rcu(&tb
->rcu
, __trie_free_rcu
);
2068 static int fn_trie_dump_leaf(struct key_vector
*l
, struct fib_table
*tb
,
2069 struct sk_buff
*skb
, struct netlink_callback
*cb
)
2071 __be32 xkey
= htonl(l
->key
);
2072 struct fib_alias
*fa
;
2078 /* rcu_read_lock is hold by caller */
2079 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2085 if (tb
->tb_id
!= fa
->tb_id
) {
2090 if (fib_dump_info(skb
, NETLINK_CB(cb
->skb
).portid
,
2096 KEYLENGTH
- fa
->fa_slen
,
2098 fa
->fa_info
, NLM_F_MULTI
) < 0) {
2109 /* rcu_read_lock needs to be hold by caller from readside */
2110 int fib_table_dump(struct fib_table
*tb
, struct sk_buff
*skb
,
2111 struct netlink_callback
*cb
)
2113 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2114 struct key_vector
*l
, *tp
= t
->kv
;
2115 /* Dump starting at last key.
2116 * Note: 0.0.0.0/0 (ie default) is first key.
2118 int count
= cb
->args
[2];
2119 t_key key
= cb
->args
[3];
2121 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
2122 if (fn_trie_dump_leaf(l
, tb
, skb
, cb
) < 0) {
2124 cb
->args
[2] = count
;
2131 memset(&cb
->args
[4], 0,
2132 sizeof(cb
->args
) - 4*sizeof(cb
->args
[0]));
2134 /* stop loop if key wrapped back to 0 */
2140 cb
->args
[2] = count
;
2145 void __init
fib_trie_init(void)
2147 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
2148 sizeof(struct fib_alias
),
2149 0, SLAB_PANIC
, NULL
);
2151 trie_leaf_kmem
= kmem_cache_create("ip_fib_trie",
2153 0, SLAB_PANIC
, NULL
);
2156 struct fib_table
*fib_trie_table(u32 id
, struct fib_table
*alias
)
2158 struct fib_table
*tb
;
2160 size_t sz
= sizeof(*tb
);
2163 sz
+= sizeof(struct trie
);
2165 tb
= kzalloc(sz
, GFP_KERNEL
);
2170 tb
->tb_num_default
= 0;
2171 tb
->tb_data
= (alias
? alias
->__data
: tb
->__data
);
2176 t
= (struct trie
*) tb
->tb_data
;
2177 t
->kv
[0].pos
= KEYLENGTH
;
2178 t
->kv
[0].slen
= KEYLENGTH
;
2179 #ifdef CONFIG_IP_FIB_TRIE_STATS
2180 t
->stats
= alloc_percpu(struct trie_use_stats
);
2190 #ifdef CONFIG_PROC_FS
2191 /* Depth first Trie walk iterator */
2192 struct fib_trie_iter
{
2193 struct seq_net_private p
;
2194 struct fib_table
*tb
;
2195 struct key_vector
*tnode
;
2200 static struct key_vector
*fib_trie_get_next(struct fib_trie_iter
*iter
)
2202 unsigned long cindex
= iter
->index
;
2203 struct key_vector
*pn
= iter
->tnode
;
2206 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2207 iter
->tnode
, iter
->index
, iter
->depth
);
2209 while (!IS_TRIE(pn
)) {
2210 while (cindex
< child_length(pn
)) {
2211 struct key_vector
*n
= get_child_rcu(pn
, cindex
++);
2218 iter
->index
= cindex
;
2220 /* push down one level */
2229 /* Current node exhausted, pop back up */
2231 pn
= node_parent_rcu(pn
);
2232 cindex
= get_index(pkey
, pn
) + 1;
2236 /* record root node so further searches know we are done */
2243 static struct key_vector
*fib_trie_get_first(struct fib_trie_iter
*iter
,
2246 struct key_vector
*n
, *pn
;
2252 n
= rcu_dereference(pn
->tnode
[0]);
2269 static void trie_collect_stats(struct trie
*t
, struct trie_stat
*s
)
2271 struct key_vector
*n
;
2272 struct fib_trie_iter iter
;
2274 memset(s
, 0, sizeof(*s
));
2277 for (n
= fib_trie_get_first(&iter
, t
); n
; n
= fib_trie_get_next(&iter
)) {
2279 struct fib_alias
*fa
;
2282 s
->totdepth
+= iter
.depth
;
2283 if (iter
.depth
> s
->maxdepth
)
2284 s
->maxdepth
= iter
.depth
;
2286 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
)
2290 if (n
->bits
< MAX_STAT_DEPTH
)
2291 s
->nodesizes
[n
->bits
]++;
2292 s
->nullpointers
+= tn_info(n
)->empty_children
;
2299 * This outputs /proc/net/fib_triestats
2301 static void trie_show_stats(struct seq_file
*seq
, struct trie_stat
*stat
)
2303 unsigned int i
, max
, pointers
, bytes
, avdepth
;
2306 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2310 seq_printf(seq
, "\tAver depth: %u.%02d\n",
2311 avdepth
/ 100, avdepth
% 100);
2312 seq_printf(seq
, "\tMax depth: %u\n", stat
->maxdepth
);
2314 seq_printf(seq
, "\tLeaves: %u\n", stat
->leaves
);
2315 bytes
= LEAF_SIZE
* stat
->leaves
;
2317 seq_printf(seq
, "\tPrefixes: %u\n", stat
->prefixes
);
2318 bytes
+= sizeof(struct fib_alias
) * stat
->prefixes
;
2320 seq_printf(seq
, "\tInternal nodes: %u\n\t", stat
->tnodes
);
2321 bytes
+= TNODE_SIZE(0) * stat
->tnodes
;
2323 max
= MAX_STAT_DEPTH
;
2324 while (max
> 0 && stat
->nodesizes
[max
-1] == 0)
2328 for (i
= 1; i
< max
; i
++)
2329 if (stat
->nodesizes
[i
] != 0) {
2330 seq_printf(seq
, " %u: %u", i
, stat
->nodesizes
[i
]);
2331 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2333 seq_putc(seq
, '\n');
2334 seq_printf(seq
, "\tPointers: %u\n", pointers
);
2336 bytes
+= sizeof(struct key_vector
*) * pointers
;
2337 seq_printf(seq
, "Null ptrs: %u\n", stat
->nullpointers
);
2338 seq_printf(seq
, "Total size: %u kB\n", (bytes
+ 1023) / 1024);
2341 #ifdef CONFIG_IP_FIB_TRIE_STATS
2342 static void trie_show_usage(struct seq_file
*seq
,
2343 const struct trie_use_stats __percpu
*stats
)
2345 struct trie_use_stats s
= { 0 };
2348 /* loop through all of the CPUs and gather up the stats */
2349 for_each_possible_cpu(cpu
) {
2350 const struct trie_use_stats
*pcpu
= per_cpu_ptr(stats
, cpu
);
2352 s
.gets
+= pcpu
->gets
;
2353 s
.backtrack
+= pcpu
->backtrack
;
2354 s
.semantic_match_passed
+= pcpu
->semantic_match_passed
;
2355 s
.semantic_match_miss
+= pcpu
->semantic_match_miss
;
2356 s
.null_node_hit
+= pcpu
->null_node_hit
;
2357 s
.resize_node_skipped
+= pcpu
->resize_node_skipped
;
2360 seq_printf(seq
, "\nCounters:\n---------\n");
2361 seq_printf(seq
, "gets = %u\n", s
.gets
);
2362 seq_printf(seq
, "backtracks = %u\n", s
.backtrack
);
2363 seq_printf(seq
, "semantic match passed = %u\n",
2364 s
.semantic_match_passed
);
2365 seq_printf(seq
, "semantic match miss = %u\n", s
.semantic_match_miss
);
2366 seq_printf(seq
, "null node hit= %u\n", s
.null_node_hit
);
2367 seq_printf(seq
, "skipped node resize = %u\n\n", s
.resize_node_skipped
);
2369 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2371 static void fib_table_print(struct seq_file
*seq
, struct fib_table
*tb
)
2373 if (tb
->tb_id
== RT_TABLE_LOCAL
)
2374 seq_puts(seq
, "Local:\n");
2375 else if (tb
->tb_id
== RT_TABLE_MAIN
)
2376 seq_puts(seq
, "Main:\n");
2378 seq_printf(seq
, "Id %d:\n", tb
->tb_id
);
2382 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2384 struct net
*net
= (struct net
*)seq
->private;
2388 "Basic info: size of leaf:"
2389 " %Zd bytes, size of tnode: %Zd bytes.\n",
2390 LEAF_SIZE
, TNODE_SIZE(0));
2392 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2393 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2394 struct fib_table
*tb
;
2396 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2397 struct trie
*t
= (struct trie
*) tb
->tb_data
;
2398 struct trie_stat stat
;
2403 fib_table_print(seq
, tb
);
2405 trie_collect_stats(t
, &stat
);
2406 trie_show_stats(seq
, &stat
);
2407 #ifdef CONFIG_IP_FIB_TRIE_STATS
2408 trie_show_usage(seq
, t
->stats
);
2416 static int fib_triestat_seq_open(struct inode
*inode
, struct file
*file
)
2418 return single_open_net(inode
, file
, fib_triestat_seq_show
);
2421 static const struct file_operations fib_triestat_fops
= {
2422 .owner
= THIS_MODULE
,
2423 .open
= fib_triestat_seq_open
,
2425 .llseek
= seq_lseek
,
2426 .release
= single_release_net
,
2429 static struct key_vector
*fib_trie_get_idx(struct seq_file
*seq
, loff_t pos
)
2431 struct fib_trie_iter
*iter
= seq
->private;
2432 struct net
*net
= seq_file_net(seq
);
2436 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2437 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2438 struct fib_table
*tb
;
2440 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2441 struct key_vector
*n
;
2443 for (n
= fib_trie_get_first(iter
,
2444 (struct trie
*) tb
->tb_data
);
2445 n
; n
= fib_trie_get_next(iter
))
2456 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2460 return fib_trie_get_idx(seq
, *pos
);
2463 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2465 struct fib_trie_iter
*iter
= seq
->private;
2466 struct net
*net
= seq_file_net(seq
);
2467 struct fib_table
*tb
= iter
->tb
;
2468 struct hlist_node
*tb_node
;
2470 struct key_vector
*n
;
2473 /* next node in same table */
2474 n
= fib_trie_get_next(iter
);
2478 /* walk rest of this hash chain */
2479 h
= tb
->tb_id
& (FIB_TABLE_HASHSZ
- 1);
2480 while ((tb_node
= rcu_dereference(hlist_next_rcu(&tb
->tb_hlist
)))) {
2481 tb
= hlist_entry(tb_node
, struct fib_table
, tb_hlist
);
2482 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2487 /* new hash chain */
2488 while (++h
< FIB_TABLE_HASHSZ
) {
2489 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2490 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2491 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2503 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2509 static void seq_indent(struct seq_file
*seq
, int n
)
2515 static inline const char *rtn_scope(char *buf
, size_t len
, enum rt_scope_t s
)
2518 case RT_SCOPE_UNIVERSE
: return "universe";
2519 case RT_SCOPE_SITE
: return "site";
2520 case RT_SCOPE_LINK
: return "link";
2521 case RT_SCOPE_HOST
: return "host";
2522 case RT_SCOPE_NOWHERE
: return "nowhere";
2524 snprintf(buf
, len
, "scope=%d", s
);
2529 static const char *const rtn_type_names
[__RTN_MAX
] = {
2530 [RTN_UNSPEC
] = "UNSPEC",
2531 [RTN_UNICAST
] = "UNICAST",
2532 [RTN_LOCAL
] = "LOCAL",
2533 [RTN_BROADCAST
] = "BROADCAST",
2534 [RTN_ANYCAST
] = "ANYCAST",
2535 [RTN_MULTICAST
] = "MULTICAST",
2536 [RTN_BLACKHOLE
] = "BLACKHOLE",
2537 [RTN_UNREACHABLE
] = "UNREACHABLE",
2538 [RTN_PROHIBIT
] = "PROHIBIT",
2539 [RTN_THROW
] = "THROW",
2541 [RTN_XRESOLVE
] = "XRESOLVE",
2544 static inline const char *rtn_type(char *buf
, size_t len
, unsigned int t
)
2546 if (t
< __RTN_MAX
&& rtn_type_names
[t
])
2547 return rtn_type_names
[t
];
2548 snprintf(buf
, len
, "type %u", t
);
2552 /* Pretty print the trie */
2553 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2555 const struct fib_trie_iter
*iter
= seq
->private;
2556 struct key_vector
*n
= v
;
2558 if (IS_TRIE(node_parent_rcu(n
)))
2559 fib_table_print(seq
, iter
->tb
);
2562 __be32 prf
= htonl(n
->key
);
2564 seq_indent(seq
, iter
->depth
-1);
2565 seq_printf(seq
, " +-- %pI4/%zu %u %u %u\n",
2566 &prf
, KEYLENGTH
- n
->pos
- n
->bits
, n
->bits
,
2567 tn_info(n
)->full_children
,
2568 tn_info(n
)->empty_children
);
2570 __be32 val
= htonl(n
->key
);
2571 struct fib_alias
*fa
;
2573 seq_indent(seq
, iter
->depth
);
2574 seq_printf(seq
, " |-- %pI4\n", &val
);
2576 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
2577 char buf1
[32], buf2
[32];
2579 seq_indent(seq
, iter
->depth
+ 1);
2580 seq_printf(seq
, " /%zu %s %s",
2581 KEYLENGTH
- fa
->fa_slen
,
2582 rtn_scope(buf1
, sizeof(buf1
),
2583 fa
->fa_info
->fib_scope
),
2584 rtn_type(buf2
, sizeof(buf2
),
2587 seq_printf(seq
, " tos=%d", fa
->fa_tos
);
2588 seq_putc(seq
, '\n');
2595 static const struct seq_operations fib_trie_seq_ops
= {
2596 .start
= fib_trie_seq_start
,
2597 .next
= fib_trie_seq_next
,
2598 .stop
= fib_trie_seq_stop
,
2599 .show
= fib_trie_seq_show
,
2602 static int fib_trie_seq_open(struct inode
*inode
, struct file
*file
)
2604 return seq_open_net(inode
, file
, &fib_trie_seq_ops
,
2605 sizeof(struct fib_trie_iter
));
2608 static const struct file_operations fib_trie_fops
= {
2609 .owner
= THIS_MODULE
,
2610 .open
= fib_trie_seq_open
,
2612 .llseek
= seq_lseek
,
2613 .release
= seq_release_net
,
2616 struct fib_route_iter
{
2617 struct seq_net_private p
;
2618 struct fib_table
*main_tb
;
2619 struct key_vector
*tnode
;
2624 static struct key_vector
*fib_route_get_idx(struct fib_route_iter
*iter
,
2627 struct key_vector
*l
, **tp
= &iter
->tnode
;
2630 /* use cached location of previously found key */
2631 if (iter
->pos
> 0 && pos
>= iter
->pos
) {
2640 while ((l
= leaf_walk_rcu(tp
, key
)) && (pos
-- > 0)) {
2645 /* handle unlikely case of a key wrap */
2651 iter
->key
= l
->key
; /* remember it */
2653 iter
->pos
= 0; /* forget it */
2658 static void *fib_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2661 struct fib_route_iter
*iter
= seq
->private;
2662 struct fib_table
*tb
;
2667 tb
= fib_get_table(seq_file_net(seq
), RT_TABLE_MAIN
);
2672 t
= (struct trie
*)tb
->tb_data
;
2673 iter
->tnode
= t
->kv
;
2676 return fib_route_get_idx(iter
, *pos
);
2679 iter
->key
= KEY_MAX
;
2681 return SEQ_START_TOKEN
;
2684 static void *fib_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2686 struct fib_route_iter
*iter
= seq
->private;
2687 struct key_vector
*l
= NULL
;
2688 t_key key
= iter
->key
+ 1;
2692 /* only allow key of 0 for start of sequence */
2693 if ((v
== SEQ_START_TOKEN
) || key
)
2694 l
= leaf_walk_rcu(&iter
->tnode
, key
);
2706 static void fib_route_seq_stop(struct seq_file
*seq
, void *v
)
2712 static unsigned int fib_flag_trans(int type
, __be32 mask
, const struct fib_info
*fi
)
2714 unsigned int flags
= 0;
2716 if (type
== RTN_UNREACHABLE
|| type
== RTN_PROHIBIT
)
2718 if (fi
&& fi
->fib_nh
->nh_gw
)
2719 flags
|= RTF_GATEWAY
;
2720 if (mask
== htonl(0xFFFFFFFF))
2727 * This outputs /proc/net/route.
2728 * The format of the file is not supposed to be changed
2729 * and needs to be same as fib_hash output to avoid breaking
2732 static int fib_route_seq_show(struct seq_file
*seq
, void *v
)
2734 struct fib_route_iter
*iter
= seq
->private;
2735 struct fib_table
*tb
= iter
->main_tb
;
2736 struct fib_alias
*fa
;
2737 struct key_vector
*l
= v
;
2740 if (v
== SEQ_START_TOKEN
) {
2741 seq_printf(seq
, "%-127s\n", "Iface\tDestination\tGateway "
2742 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2747 prefix
= htonl(l
->key
);
2749 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2750 const struct fib_info
*fi
= fa
->fa_info
;
2751 __be32 mask
= inet_make_mask(KEYLENGTH
- fa
->fa_slen
);
2752 unsigned int flags
= fib_flag_trans(fa
->fa_type
, mask
, fi
);
2754 if ((fa
->fa_type
== RTN_BROADCAST
) ||
2755 (fa
->fa_type
== RTN_MULTICAST
))
2758 if (fa
->tb_id
!= tb
->tb_id
)
2761 seq_setwidth(seq
, 127);
2765 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2766 "%d\t%08X\t%d\t%u\t%u",
2767 fi
->fib_dev
? fi
->fib_dev
->name
: "*",
2769 fi
->fib_nh
->nh_gw
, flags
, 0, 0,
2773 fi
->fib_advmss
+ 40 : 0),
2778 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2779 "%d\t%08X\t%d\t%u\t%u",
2780 prefix
, 0, flags
, 0, 0, 0,
2789 static const struct seq_operations fib_route_seq_ops
= {
2790 .start
= fib_route_seq_start
,
2791 .next
= fib_route_seq_next
,
2792 .stop
= fib_route_seq_stop
,
2793 .show
= fib_route_seq_show
,
2796 static int fib_route_seq_open(struct inode
*inode
, struct file
*file
)
2798 return seq_open_net(inode
, file
, &fib_route_seq_ops
,
2799 sizeof(struct fib_route_iter
));
2802 static const struct file_operations fib_route_fops
= {
2803 .owner
= THIS_MODULE
,
2804 .open
= fib_route_seq_open
,
2806 .llseek
= seq_lseek
,
2807 .release
= seq_release_net
,
2810 int __net_init
fib_proc_init(struct net
*net
)
2812 if (!proc_create("fib_trie", S_IRUGO
, net
->proc_net
, &fib_trie_fops
))
2815 if (!proc_create("fib_triestat", S_IRUGO
, net
->proc_net
,
2816 &fib_triestat_fops
))
2819 if (!proc_create("route", S_IRUGO
, net
->proc_net
, &fib_route_fops
))
2825 remove_proc_entry("fib_triestat", net
->proc_net
);
2827 remove_proc_entry("fib_trie", net
->proc_net
);
2832 void __net_exit
fib_proc_exit(struct net
*net
)
2834 remove_proc_entry("fib_trie", net
->proc_net
);
2835 remove_proc_entry("fib_triestat", net
->proc_net
);
2836 remove_proc_entry("route", net
->proc_net
);
2839 #endif /* CONFIG_PROC_FS */