2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The IP fragmentation functionality.
8 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9 * Alan Cox <alan@lxorguk.ukuu.org.uk>
12 * Alan Cox : Split from ip.c , see ip_input.c for history.
13 * David S. Miller : Begin massive cleanup...
14 * Andi Kleen : Add sysctls.
15 * xxxx : Overlapfrag bug.
16 * Ultima : ip_expire() kernel panic.
17 * Bill Hawes : Frag accounting and evictor fixes.
18 * John McDonald : 0 length frag bug.
19 * Alexey Kuznetsov: SMP races, threading, cleanup.
20 * Patrick McHardy : LRU queue of frag heads for evictor.
23 #define pr_fmt(fmt) "IPv4: " fmt
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <linux/slab.h>
38 #include <net/route.h>
43 #include <net/checksum.h>
44 #include <net/inetpeer.h>
45 #include <net/inet_frag.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/inet.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <net/inet_ecn.h>
51 #include <net/l3mdev.h>
53 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
54 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
55 * as well. Or notify me, at least. --ANK
57 static const char ip_frag_cache_name
[] = "ip4-frags";
61 struct inet_skb_parm h
;
65 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
67 /* Describe an entry in the "incomplete datagrams" queue. */
69 struct inet_frag_queue q
;
76 u8 ecn
; /* RFC3168 support */
77 u16 max_df_size
; /* largest frag with DF set seen */
79 int vif
; /* L3 master device index */
81 struct inet_peer
*peer
;
84 static u8
ip4_frag_ecn(u8 tos
)
86 return 1 << (tos
& INET_ECN_MASK
);
89 static struct inet_frags ip4_frags
;
91 int ip_frag_mem(struct net
*net
)
93 return sum_frag_mem_limit(&net
->ipv4
.frags
);
96 static int ip_frag_reasm(struct ipq
*qp
, struct sk_buff
*prev
,
97 struct net_device
*dev
);
99 struct ip4_create_arg
{
105 static unsigned int ipqhashfn(__be16 id
, __be32 saddr
, __be32 daddr
, u8 prot
)
107 net_get_random_once(&ip4_frags
.rnd
, sizeof(ip4_frags
.rnd
));
108 return jhash_3words((__force u32
)id
<< 16 | prot
,
109 (__force u32
)saddr
, (__force u32
)daddr
,
113 static unsigned int ip4_hashfn(const struct inet_frag_queue
*q
)
115 const struct ipq
*ipq
;
117 ipq
= container_of(q
, struct ipq
, q
);
118 return ipqhashfn(ipq
->id
, ipq
->saddr
, ipq
->daddr
, ipq
->protocol
);
121 static bool ip4_frag_match(const struct inet_frag_queue
*q
, const void *a
)
123 const struct ipq
*qp
;
124 const struct ip4_create_arg
*arg
= a
;
126 qp
= container_of(q
, struct ipq
, q
);
127 return qp
->id
== arg
->iph
->id
&&
128 qp
->saddr
== arg
->iph
->saddr
&&
129 qp
->daddr
== arg
->iph
->daddr
&&
130 qp
->protocol
== arg
->iph
->protocol
&&
131 qp
->user
== arg
->user
&&
135 static void ip4_frag_init(struct inet_frag_queue
*q
, const void *a
)
137 struct ipq
*qp
= container_of(q
, struct ipq
, q
);
138 struct netns_ipv4
*ipv4
= container_of(q
->net
, struct netns_ipv4
,
140 struct net
*net
= container_of(ipv4
, struct net
, ipv4
);
142 const struct ip4_create_arg
*arg
= a
;
144 qp
->protocol
= arg
->iph
->protocol
;
145 qp
->id
= arg
->iph
->id
;
146 qp
->ecn
= ip4_frag_ecn(arg
->iph
->tos
);
147 qp
->saddr
= arg
->iph
->saddr
;
148 qp
->daddr
= arg
->iph
->daddr
;
150 qp
->user
= arg
->user
;
151 qp
->peer
= q
->net
->max_dist
?
152 inet_getpeer_v4(net
->ipv4
.peers
, arg
->iph
->saddr
, arg
->vif
, 1) :
156 static void ip4_frag_free(struct inet_frag_queue
*q
)
160 qp
= container_of(q
, struct ipq
, q
);
162 inet_putpeer(qp
->peer
);
166 /* Destruction primitives. */
168 static void ipq_put(struct ipq
*ipq
)
170 inet_frag_put(&ipq
->q
, &ip4_frags
);
173 /* Kill ipq entry. It is not destroyed immediately,
174 * because caller (and someone more) holds reference count.
176 static void ipq_kill(struct ipq
*ipq
)
178 inet_frag_kill(&ipq
->q
, &ip4_frags
);
181 static bool frag_expire_skip_icmp(u32 user
)
183 return user
== IP_DEFRAG_AF_PACKET
||
184 ip_defrag_user_in_between(user
, IP_DEFRAG_CONNTRACK_IN
,
185 __IP_DEFRAG_CONNTRACK_IN_END
) ||
186 ip_defrag_user_in_between(user
, IP_DEFRAG_CONNTRACK_BRIDGE_IN
,
187 __IP_DEFRAG_CONNTRACK_BRIDGE_IN
);
191 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
193 static void ip_expire(unsigned long arg
)
198 qp
= container_of((struct inet_frag_queue
*) arg
, struct ipq
, q
);
199 net
= container_of(qp
->q
.net
, struct net
, ipv4
.frags
);
201 spin_lock(&qp
->q
.lock
);
203 if (qp
->q
.flags
& INET_FRAG_COMPLETE
)
207 __IP_INC_STATS(net
, IPSTATS_MIB_REASMFAILS
);
209 if (!inet_frag_evicting(&qp
->q
)) {
210 struct sk_buff
*head
= qp
->q
.fragments
;
211 const struct iphdr
*iph
;
214 __IP_INC_STATS(net
, IPSTATS_MIB_REASMTIMEOUT
);
216 if (!(qp
->q
.flags
& INET_FRAG_FIRST_IN
) || !qp
->q
.fragments
)
220 head
->dev
= dev_get_by_index_rcu(net
, qp
->iif
);
224 /* skb has no dst, perform route lookup again */
226 err
= ip_route_input_noref(head
, iph
->daddr
, iph
->saddr
,
227 iph
->tos
, head
->dev
);
231 /* Only an end host needs to send an ICMP
232 * "Fragment Reassembly Timeout" message, per RFC792.
234 if (frag_expire_skip_icmp(qp
->user
) &&
235 (skb_rtable(head
)->rt_type
!= RTN_LOCAL
))
238 /* Send an ICMP "Fragment Reassembly Timeout" message. */
239 icmp_send(head
, ICMP_TIME_EXCEEDED
, ICMP_EXC_FRAGTIME
, 0);
244 spin_unlock(&qp
->q
.lock
);
248 /* Find the correct entry in the "incomplete datagrams" queue for
249 * this IP datagram, and create new one, if nothing is found.
251 static struct ipq
*ip_find(struct net
*net
, struct iphdr
*iph
,
254 struct inet_frag_queue
*q
;
255 struct ip4_create_arg arg
;
262 hash
= ipqhashfn(iph
->id
, iph
->saddr
, iph
->daddr
, iph
->protocol
);
264 q
= inet_frag_find(&net
->ipv4
.frags
, &ip4_frags
, &arg
, hash
);
265 if (IS_ERR_OR_NULL(q
)) {
266 inet_frag_maybe_warn_overflow(q
, pr_fmt());
269 return container_of(q
, struct ipq
, q
);
272 /* Is the fragment too far ahead to be part of ipq? */
273 static int ip_frag_too_far(struct ipq
*qp
)
275 struct inet_peer
*peer
= qp
->peer
;
276 unsigned int max
= qp
->q
.net
->max_dist
;
277 unsigned int start
, end
;
285 end
= atomic_inc_return(&peer
->rid
);
288 rc
= qp
->q
.fragments
&& (end
- start
) > max
;
293 net
= container_of(qp
->q
.net
, struct net
, ipv4
.frags
);
294 __IP_INC_STATS(net
, IPSTATS_MIB_REASMFAILS
);
300 static int ip_frag_reinit(struct ipq
*qp
)
303 unsigned int sum_truesize
= 0;
305 if (!mod_timer(&qp
->q
.timer
, jiffies
+ qp
->q
.net
->timeout
)) {
306 atomic_inc(&qp
->q
.refcnt
);
310 fp
= qp
->q
.fragments
;
312 struct sk_buff
*xp
= fp
->next
;
314 sum_truesize
+= fp
->truesize
;
318 sub_frag_mem_limit(qp
->q
.net
, sum_truesize
);
323 qp
->q
.fragments
= NULL
;
324 qp
->q
.fragments_tail
= NULL
;
331 /* Add new segment to existing queue. */
332 static int ip_frag_queue(struct ipq
*qp
, struct sk_buff
*skb
)
334 struct sk_buff
*prev
, *next
;
335 struct net_device
*dev
;
336 unsigned int fragsize
;
342 if (qp
->q
.flags
& INET_FRAG_COMPLETE
)
345 if (!(IPCB(skb
)->flags
& IPSKB_FRAG_COMPLETE
) &&
346 unlikely(ip_frag_too_far(qp
)) &&
347 unlikely(err
= ip_frag_reinit(qp
))) {
352 ecn
= ip4_frag_ecn(ip_hdr(skb
)->tos
);
353 offset
= ntohs(ip_hdr(skb
)->frag_off
);
354 flags
= offset
& ~IP_OFFSET
;
356 offset
<<= 3; /* offset is in 8-byte chunks */
357 ihl
= ip_hdrlen(skb
);
359 /* Determine the position of this fragment. */
360 end
= offset
+ skb
->len
- skb_network_offset(skb
) - ihl
;
363 /* Is this the final fragment? */
364 if ((flags
& IP_MF
) == 0) {
365 /* If we already have some bits beyond end
366 * or have different end, the segment is corrupted.
368 if (end
< qp
->q
.len
||
369 ((qp
->q
.flags
& INET_FRAG_LAST_IN
) && end
!= qp
->q
.len
))
371 qp
->q
.flags
|= INET_FRAG_LAST_IN
;
376 if (skb
->ip_summed
!= CHECKSUM_UNNECESSARY
)
377 skb
->ip_summed
= CHECKSUM_NONE
;
379 if (end
> qp
->q
.len
) {
380 /* Some bits beyond end -> corruption. */
381 if (qp
->q
.flags
& INET_FRAG_LAST_IN
)
390 if (!pskb_pull(skb
, skb_network_offset(skb
) + ihl
))
393 err
= pskb_trim_rcsum(skb
, end
- offset
);
397 /* Find out which fragments are in front and at the back of us
398 * in the chain of fragments so far. We must know where to put
399 * this fragment, right?
401 prev
= qp
->q
.fragments_tail
;
402 if (!prev
|| FRAG_CB(prev
)->offset
< offset
) {
407 for (next
= qp
->q
.fragments
; next
!= NULL
; next
= next
->next
) {
408 if (FRAG_CB(next
)->offset
>= offset
)
414 /* We found where to put this one. Check for overlap with
415 * preceding fragment, and, if needed, align things so that
416 * any overlaps are eliminated.
419 int i
= (FRAG_CB(prev
)->offset
+ prev
->len
) - offset
;
427 if (!pskb_pull(skb
, i
))
429 if (skb
->ip_summed
!= CHECKSUM_UNNECESSARY
)
430 skb
->ip_summed
= CHECKSUM_NONE
;
436 while (next
&& FRAG_CB(next
)->offset
< end
) {
437 int i
= end
- FRAG_CB(next
)->offset
; /* overlap is 'i' bytes */
440 /* Eat head of the next overlapped fragment
441 * and leave the loop. The next ones cannot overlap.
443 if (!pskb_pull(next
, i
))
445 FRAG_CB(next
)->offset
+= i
;
447 if (next
->ip_summed
!= CHECKSUM_UNNECESSARY
)
448 next
->ip_summed
= CHECKSUM_NONE
;
451 struct sk_buff
*free_it
= next
;
453 /* Old fragment is completely overridden with
461 qp
->q
.fragments
= next
;
463 qp
->q
.meat
-= free_it
->len
;
464 sub_frag_mem_limit(qp
->q
.net
, free_it
->truesize
);
469 FRAG_CB(skb
)->offset
= offset
;
471 /* Insert this fragment in the chain of fragments. */
474 qp
->q
.fragments_tail
= skb
;
478 qp
->q
.fragments
= skb
;
482 qp
->iif
= dev
->ifindex
;
485 qp
->q
.stamp
= skb
->tstamp
;
486 qp
->q
.meat
+= skb
->len
;
488 add_frag_mem_limit(qp
->q
.net
, skb
->truesize
);
490 qp
->q
.flags
|= INET_FRAG_FIRST_IN
;
492 fragsize
= skb
->len
+ ihl
;
494 if (fragsize
> qp
->q
.max_size
)
495 qp
->q
.max_size
= fragsize
;
497 if (ip_hdr(skb
)->frag_off
& htons(IP_DF
) &&
498 fragsize
> qp
->max_df_size
)
499 qp
->max_df_size
= fragsize
;
501 if (qp
->q
.flags
== (INET_FRAG_FIRST_IN
| INET_FRAG_LAST_IN
) &&
502 qp
->q
.meat
== qp
->q
.len
) {
503 unsigned long orefdst
= skb
->_skb_refdst
;
505 skb
->_skb_refdst
= 0UL;
506 err
= ip_frag_reasm(qp
, prev
, dev
);
507 skb
->_skb_refdst
= orefdst
;
520 /* Build a new IP datagram from all its fragments. */
522 static int ip_frag_reasm(struct ipq
*qp
, struct sk_buff
*prev
,
523 struct net_device
*dev
)
525 struct net
*net
= container_of(qp
->q
.net
, struct net
, ipv4
.frags
);
527 struct sk_buff
*fp
, *head
= qp
->q
.fragments
;
535 ecn
= ip_frag_ecn_table
[qp
->ecn
];
536 if (unlikely(ecn
== 0xff)) {
540 /* Make the one we just received the head. */
543 fp
= skb_clone(head
, GFP_ATOMIC
);
547 fp
->next
= head
->next
;
549 qp
->q
.fragments_tail
= fp
;
552 skb_morph(head
, qp
->q
.fragments
);
553 head
->next
= qp
->q
.fragments
->next
;
555 consume_skb(qp
->q
.fragments
);
556 qp
->q
.fragments
= head
;
560 WARN_ON(FRAG_CB(head
)->offset
!= 0);
562 /* Allocate a new buffer for the datagram. */
563 ihlen
= ip_hdrlen(head
);
564 len
= ihlen
+ qp
->q
.len
;
570 /* Head of list must not be cloned. */
571 if (skb_unclone(head
, GFP_ATOMIC
))
574 /* If the first fragment is fragmented itself, we split
575 * it to two chunks: the first with data and paged part
576 * and the second, holding only fragments. */
577 if (skb_has_frag_list(head
)) {
578 struct sk_buff
*clone
;
581 clone
= alloc_skb(0, GFP_ATOMIC
);
584 clone
->next
= head
->next
;
586 skb_shinfo(clone
)->frag_list
= skb_shinfo(head
)->frag_list
;
587 skb_frag_list_init(head
);
588 for (i
= 0; i
< skb_shinfo(head
)->nr_frags
; i
++)
589 plen
+= skb_frag_size(&skb_shinfo(head
)->frags
[i
]);
590 clone
->len
= clone
->data_len
= head
->data_len
- plen
;
591 head
->data_len
-= clone
->len
;
592 head
->len
-= clone
->len
;
594 clone
->ip_summed
= head
->ip_summed
;
595 add_frag_mem_limit(qp
->q
.net
, clone
->truesize
);
598 skb_shinfo(head
)->frag_list
= head
->next
;
599 skb_push(head
, head
->data
- skb_network_header(head
));
601 for (fp
=head
->next
; fp
; fp
= fp
->next
) {
602 head
->data_len
+= fp
->len
;
603 head
->len
+= fp
->len
;
604 if (head
->ip_summed
!= fp
->ip_summed
)
605 head
->ip_summed
= CHECKSUM_NONE
;
606 else if (head
->ip_summed
== CHECKSUM_COMPLETE
)
607 head
->csum
= csum_add(head
->csum
, fp
->csum
);
608 head
->truesize
+= fp
->truesize
;
610 sub_frag_mem_limit(qp
->q
.net
, head
->truesize
);
614 head
->tstamp
= qp
->q
.stamp
;
615 IPCB(head
)->frag_max_size
= max(qp
->max_df_size
, qp
->q
.max_size
);
618 iph
->tot_len
= htons(len
);
621 /* When we set IP_DF on a refragmented skb we must also force a
622 * call to ip_fragment to avoid forwarding a DF-skb of size s while
623 * original sender only sent fragments of size f (where f < s).
625 * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest
626 * frag seen to avoid sending tiny DF-fragments in case skb was built
627 * from one very small df-fragment and one large non-df frag.
629 if (qp
->max_df_size
== qp
->q
.max_size
) {
630 IPCB(head
)->flags
|= IPSKB_FRAG_PMTU
;
631 iph
->frag_off
= htons(IP_DF
);
638 __IP_INC_STATS(net
, IPSTATS_MIB_REASMOKS
);
639 qp
->q
.fragments
= NULL
;
640 qp
->q
.fragments_tail
= NULL
;
644 net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp
);
648 net_info_ratelimited("Oversized IP packet from %pI4\n", &qp
->saddr
);
650 __IP_INC_STATS(net
, IPSTATS_MIB_REASMFAILS
);
654 /* Process an incoming IP datagram fragment. */
655 int ip_defrag(struct net
*net
, struct sk_buff
*skb
, u32 user
)
657 struct net_device
*dev
= skb
->dev
? : skb_dst(skb
)->dev
;
658 int vif
= l3mdev_master_ifindex_rcu(dev
);
661 __IP_INC_STATS(net
, IPSTATS_MIB_REASMREQDS
);
664 /* Lookup (or create) queue header */
665 qp
= ip_find(net
, ip_hdr(skb
), user
, vif
);
669 spin_lock(&qp
->q
.lock
);
671 ret
= ip_frag_queue(qp
, skb
);
673 spin_unlock(&qp
->q
.lock
);
678 __IP_INC_STATS(net
, IPSTATS_MIB_REASMFAILS
);
682 EXPORT_SYMBOL(ip_defrag
);
684 struct sk_buff
*ip_check_defrag(struct net
*net
, struct sk_buff
*skb
, u32 user
)
690 if (skb
->protocol
!= htons(ETH_P_IP
))
693 netoff
= skb_network_offset(skb
);
695 if (skb_copy_bits(skb
, netoff
, &iph
, sizeof(iph
)) < 0)
698 if (iph
.ihl
< 5 || iph
.version
!= 4)
701 len
= ntohs(iph
.tot_len
);
702 if (skb
->len
< netoff
+ len
|| len
< (iph
.ihl
* 4))
705 if (ip_is_fragment(&iph
)) {
706 skb
= skb_share_check(skb
, GFP_ATOMIC
);
708 if (!pskb_may_pull(skb
, netoff
+ iph
.ihl
* 4))
710 if (pskb_trim_rcsum(skb
, netoff
+ len
))
712 memset(IPCB(skb
), 0, sizeof(struct inet_skb_parm
));
713 if (ip_defrag(net
, skb
, user
))
720 EXPORT_SYMBOL(ip_check_defrag
);
725 static struct ctl_table ip4_frags_ns_ctl_table
[] = {
727 .procname
= "ipfrag_high_thresh",
728 .data
= &init_net
.ipv4
.frags
.high_thresh
,
729 .maxlen
= sizeof(int),
731 .proc_handler
= proc_dointvec_minmax
,
732 .extra1
= &init_net
.ipv4
.frags
.low_thresh
735 .procname
= "ipfrag_low_thresh",
736 .data
= &init_net
.ipv4
.frags
.low_thresh
,
737 .maxlen
= sizeof(int),
739 .proc_handler
= proc_dointvec_minmax
,
741 .extra2
= &init_net
.ipv4
.frags
.high_thresh
744 .procname
= "ipfrag_time",
745 .data
= &init_net
.ipv4
.frags
.timeout
,
746 .maxlen
= sizeof(int),
748 .proc_handler
= proc_dointvec_jiffies
,
751 .procname
= "ipfrag_max_dist",
752 .data
= &init_net
.ipv4
.frags
.max_dist
,
753 .maxlen
= sizeof(int),
755 .proc_handler
= proc_dointvec_minmax
,
761 /* secret interval has been deprecated */
762 static int ip4_frags_secret_interval_unused
;
763 static struct ctl_table ip4_frags_ctl_table
[] = {
765 .procname
= "ipfrag_secret_interval",
766 .data
= &ip4_frags_secret_interval_unused
,
767 .maxlen
= sizeof(int),
769 .proc_handler
= proc_dointvec_jiffies
,
774 static int __net_init
ip4_frags_ns_ctl_register(struct net
*net
)
776 struct ctl_table
*table
;
777 struct ctl_table_header
*hdr
;
779 table
= ip4_frags_ns_ctl_table
;
780 if (!net_eq(net
, &init_net
)) {
781 table
= kmemdup(table
, sizeof(ip4_frags_ns_ctl_table
), GFP_KERNEL
);
785 table
[0].data
= &net
->ipv4
.frags
.high_thresh
;
786 table
[0].extra1
= &net
->ipv4
.frags
.low_thresh
;
787 table
[0].extra2
= &init_net
.ipv4
.frags
.high_thresh
;
788 table
[1].data
= &net
->ipv4
.frags
.low_thresh
;
789 table
[1].extra2
= &net
->ipv4
.frags
.high_thresh
;
790 table
[2].data
= &net
->ipv4
.frags
.timeout
;
791 table
[3].data
= &net
->ipv4
.frags
.max_dist
;
794 hdr
= register_net_sysctl(net
, "net/ipv4", table
);
798 net
->ipv4
.frags_hdr
= hdr
;
802 if (!net_eq(net
, &init_net
))
808 static void __net_exit
ip4_frags_ns_ctl_unregister(struct net
*net
)
810 struct ctl_table
*table
;
812 table
= net
->ipv4
.frags_hdr
->ctl_table_arg
;
813 unregister_net_sysctl_table(net
->ipv4
.frags_hdr
);
817 static void __init
ip4_frags_ctl_register(void)
819 register_net_sysctl(&init_net
, "net/ipv4", ip4_frags_ctl_table
);
822 static int ip4_frags_ns_ctl_register(struct net
*net
)
827 static void ip4_frags_ns_ctl_unregister(struct net
*net
)
831 static void __init
ip4_frags_ctl_register(void)
836 static int __net_init
ipv4_frags_init_net(struct net
*net
)
840 /* Fragment cache limits.
842 * The fragment memory accounting code, (tries to) account for
843 * the real memory usage, by measuring both the size of frag
844 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
845 * and the SKB's truesize.
847 * A 64K fragment consumes 129736 bytes (44*2944)+200
848 * (1500 truesize == 2944, sizeof(struct ipq) == 200)
850 * We will commit 4MB at one time. Should we cross that limit
851 * we will prune down to 3MB, making room for approx 8 big 64K
854 net
->ipv4
.frags
.high_thresh
= 4 * 1024 * 1024;
855 net
->ipv4
.frags
.low_thresh
= 3 * 1024 * 1024;
857 * Important NOTE! Fragment queue must be destroyed before MSL expires.
858 * RFC791 is wrong proposing to prolongate timer each fragment arrival
861 net
->ipv4
.frags
.timeout
= IP_FRAG_TIME
;
863 net
->ipv4
.frags
.max_dist
= 64;
865 res
= inet_frags_init_net(&net
->ipv4
.frags
);
868 res
= ip4_frags_ns_ctl_register(net
);
870 inet_frags_uninit_net(&net
->ipv4
.frags
);
874 static void __net_exit
ipv4_frags_exit_net(struct net
*net
)
876 ip4_frags_ns_ctl_unregister(net
);
877 inet_frags_exit_net(&net
->ipv4
.frags
, &ip4_frags
);
880 static struct pernet_operations ip4_frags_ops
= {
881 .init
= ipv4_frags_init_net
,
882 .exit
= ipv4_frags_exit_net
,
885 void __init
ipfrag_init(void)
887 ip4_frags_ctl_register();
888 register_pernet_subsys(&ip4_frags_ops
);
889 ip4_frags
.hashfn
= ip4_hashfn
;
890 ip4_frags
.constructor
= ip4_frag_init
;
891 ip4_frags
.destructor
= ip4_frag_free
;
892 ip4_frags
.qsize
= sizeof(struct ipq
);
893 ip4_frags
.match
= ip4_frag_match
;
894 ip4_frags
.frag_expire
= ip_expire
;
895 ip4_frags
.frags_cache_name
= ip_frag_cache_name
;
896 if (inet_frags_init(&ip4_frags
))
897 panic("IP: failed to allocate ip4_frags cache\n");