powerpc/powernv: Report size of OPAL memcons log
[linux/fpc-iii.git] / net / ipv4 / ip_output.c
blobfac275c4810865a5b9b9ca1ac9fc826b8482aa9f
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <linux/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/bpf-cgroup.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
84 static int
85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
86 unsigned int mtu,
87 int (*output)(struct net *, struct sock *, struct sk_buff *));
89 /* Generate a checksum for an outgoing IP datagram. */
90 void ip_send_check(struct iphdr *iph)
92 iph->check = 0;
93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 EXPORT_SYMBOL(ip_send_check);
97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99 struct iphdr *iph = ip_hdr(skb);
101 iph->tot_len = htons(skb->len);
102 ip_send_check(iph);
104 /* if egress device is enslaved to an L3 master device pass the
105 * skb to its handler for processing
107 skb = l3mdev_ip_out(sk, skb);
108 if (unlikely(!skb))
109 return 0;
111 skb->protocol = htons(ETH_P_IP);
113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
114 net, sk, skb, NULL, skb_dst(skb)->dev,
115 dst_output);
118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
120 int err;
122 err = __ip_local_out(net, sk, skb);
123 if (likely(err == 1))
124 err = dst_output(net, sk, skb);
126 return err;
128 EXPORT_SYMBOL_GPL(ip_local_out);
130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
132 int ttl = inet->uc_ttl;
134 if (ttl < 0)
135 ttl = ip4_dst_hoplimit(dst);
136 return ttl;
140 * Add an ip header to a skbuff and send it out.
143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
146 struct inet_sock *inet = inet_sk(sk);
147 struct rtable *rt = skb_rtable(skb);
148 struct net *net = sock_net(sk);
149 struct iphdr *iph;
151 /* Build the IP header. */
152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
153 skb_reset_network_header(skb);
154 iph = ip_hdr(skb);
155 iph->version = 4;
156 iph->ihl = 5;
157 iph->tos = inet->tos;
158 iph->ttl = ip_select_ttl(inet, &rt->dst);
159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
160 iph->saddr = saddr;
161 iph->protocol = sk->sk_protocol;
162 if (ip_dont_fragment(sk, &rt->dst)) {
163 iph->frag_off = htons(IP_DF);
164 iph->id = 0;
165 } else {
166 iph->frag_off = 0;
167 __ip_select_ident(net, iph, 1);
170 if (opt && opt->opt.optlen) {
171 iph->ihl += opt->opt.optlen>>2;
172 ip_options_build(skb, &opt->opt, daddr, rt, 0);
175 skb->priority = sk->sk_priority;
176 skb->mark = sk->sk_mark;
178 /* Send it out. */
179 return ip_local_out(net, skb->sk, skb);
181 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
183 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
185 struct dst_entry *dst = skb_dst(skb);
186 struct rtable *rt = (struct rtable *)dst;
187 struct net_device *dev = dst->dev;
188 unsigned int hh_len = LL_RESERVED_SPACE(dev);
189 struct neighbour *neigh;
190 u32 nexthop;
192 if (rt->rt_type == RTN_MULTICAST) {
193 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
194 } else if (rt->rt_type == RTN_BROADCAST)
195 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
197 /* Be paranoid, rather than too clever. */
198 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
199 struct sk_buff *skb2;
201 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
202 if (!skb2) {
203 kfree_skb(skb);
204 return -ENOMEM;
206 if (skb->sk)
207 skb_set_owner_w(skb2, skb->sk);
208 consume_skb(skb);
209 skb = skb2;
212 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
213 int res = lwtunnel_xmit(skb);
215 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
216 return res;
219 rcu_read_lock_bh();
220 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
221 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
222 if (unlikely(!neigh))
223 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
224 if (!IS_ERR(neigh)) {
225 int res = dst_neigh_output(dst, neigh, skb);
227 rcu_read_unlock_bh();
228 return res;
230 rcu_read_unlock_bh();
232 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
233 __func__);
234 kfree_skb(skb);
235 return -EINVAL;
238 static int ip_finish_output_gso(struct net *net, struct sock *sk,
239 struct sk_buff *skb, unsigned int mtu)
241 netdev_features_t features;
242 struct sk_buff *segs;
243 int ret = 0;
245 /* common case: seglen is <= mtu
247 if (skb_gso_validate_mtu(skb, mtu))
248 return ip_finish_output2(net, sk, skb);
250 /* Slowpath - GSO segment length exceeds the egress MTU.
252 * This can happen in several cases:
253 * - Forwarding of a TCP GRO skb, when DF flag is not set.
254 * - Forwarding of an skb that arrived on a virtualization interface
255 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
256 * stack.
257 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
258 * interface with a smaller MTU.
259 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
260 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
261 * insufficent MTU.
263 features = netif_skb_features(skb);
264 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
265 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
266 if (IS_ERR_OR_NULL(segs)) {
267 kfree_skb(skb);
268 return -ENOMEM;
271 consume_skb(skb);
273 do {
274 struct sk_buff *nskb = segs->next;
275 int err;
277 segs->next = NULL;
278 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
280 if (err && ret == 0)
281 ret = err;
282 segs = nskb;
283 } while (segs);
285 return ret;
288 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
290 unsigned int mtu;
291 int ret;
293 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
294 if (ret) {
295 kfree_skb(skb);
296 return ret;
299 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
300 /* Policy lookup after SNAT yielded a new policy */
301 if (skb_dst(skb)->xfrm) {
302 IPCB(skb)->flags |= IPSKB_REROUTED;
303 return dst_output(net, sk, skb);
305 #endif
306 mtu = ip_skb_dst_mtu(sk, skb);
307 if (skb_is_gso(skb))
308 return ip_finish_output_gso(net, sk, skb, mtu);
310 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
311 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
313 return ip_finish_output2(net, sk, skb);
316 static int ip_mc_finish_output(struct net *net, struct sock *sk,
317 struct sk_buff *skb)
319 int ret;
321 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
322 if (ret) {
323 kfree_skb(skb);
324 return ret;
327 return dev_loopback_xmit(net, sk, skb);
330 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
332 struct rtable *rt = skb_rtable(skb);
333 struct net_device *dev = rt->dst.dev;
336 * If the indicated interface is up and running, send the packet.
338 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
340 skb->dev = dev;
341 skb->protocol = htons(ETH_P_IP);
344 * Multicasts are looped back for other local users
347 if (rt->rt_flags&RTCF_MULTICAST) {
348 if (sk_mc_loop(sk)
349 #ifdef CONFIG_IP_MROUTE
350 /* Small optimization: do not loopback not local frames,
351 which returned after forwarding; they will be dropped
352 by ip_mr_input in any case.
353 Note, that local frames are looped back to be delivered
354 to local recipients.
356 This check is duplicated in ip_mr_input at the moment.
359 ((rt->rt_flags & RTCF_LOCAL) ||
360 !(IPCB(skb)->flags & IPSKB_FORWARDED))
361 #endif
363 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
364 if (newskb)
365 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
366 net, sk, newskb, NULL, newskb->dev,
367 ip_mc_finish_output);
370 /* Multicasts with ttl 0 must not go beyond the host */
372 if (ip_hdr(skb)->ttl == 0) {
373 kfree_skb(skb);
374 return 0;
378 if (rt->rt_flags&RTCF_BROADCAST) {
379 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
380 if (newskb)
381 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
382 net, sk, newskb, NULL, newskb->dev,
383 ip_mc_finish_output);
386 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
387 net, sk, skb, NULL, skb->dev,
388 ip_finish_output,
389 !(IPCB(skb)->flags & IPSKB_REROUTED));
392 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
394 struct net_device *dev = skb_dst(skb)->dev;
396 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
398 skb->dev = dev;
399 skb->protocol = htons(ETH_P_IP);
401 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
402 net, sk, skb, NULL, dev,
403 ip_finish_output,
404 !(IPCB(skb)->flags & IPSKB_REROUTED));
408 * copy saddr and daddr, possibly using 64bit load/stores
409 * Equivalent to :
410 * iph->saddr = fl4->saddr;
411 * iph->daddr = fl4->daddr;
413 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
415 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
416 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
417 memcpy(&iph->saddr, &fl4->saddr,
418 sizeof(fl4->saddr) + sizeof(fl4->daddr));
421 /* Note: skb->sk can be different from sk, in case of tunnels */
422 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
424 struct inet_sock *inet = inet_sk(sk);
425 struct net *net = sock_net(sk);
426 struct ip_options_rcu *inet_opt;
427 struct flowi4 *fl4;
428 struct rtable *rt;
429 struct iphdr *iph;
430 int res;
432 /* Skip all of this if the packet is already routed,
433 * f.e. by something like SCTP.
435 rcu_read_lock();
436 inet_opt = rcu_dereference(inet->inet_opt);
437 fl4 = &fl->u.ip4;
438 rt = skb_rtable(skb);
439 if (rt)
440 goto packet_routed;
442 /* Make sure we can route this packet. */
443 rt = (struct rtable *)__sk_dst_check(sk, 0);
444 if (!rt) {
445 __be32 daddr;
447 /* Use correct destination address if we have options. */
448 daddr = inet->inet_daddr;
449 if (inet_opt && inet_opt->opt.srr)
450 daddr = inet_opt->opt.faddr;
452 /* If this fails, retransmit mechanism of transport layer will
453 * keep trying until route appears or the connection times
454 * itself out.
456 rt = ip_route_output_ports(net, fl4, sk,
457 daddr, inet->inet_saddr,
458 inet->inet_dport,
459 inet->inet_sport,
460 sk->sk_protocol,
461 RT_CONN_FLAGS(sk),
462 sk->sk_bound_dev_if);
463 if (IS_ERR(rt))
464 goto no_route;
465 sk_setup_caps(sk, &rt->dst);
467 skb_dst_set_noref(skb, &rt->dst);
469 packet_routed:
470 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
471 goto no_route;
473 /* OK, we know where to send it, allocate and build IP header. */
474 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
475 skb_reset_network_header(skb);
476 iph = ip_hdr(skb);
477 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
478 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
479 iph->frag_off = htons(IP_DF);
480 else
481 iph->frag_off = 0;
482 iph->ttl = ip_select_ttl(inet, &rt->dst);
483 iph->protocol = sk->sk_protocol;
484 ip_copy_addrs(iph, fl4);
486 /* Transport layer set skb->h.foo itself. */
488 if (inet_opt && inet_opt->opt.optlen) {
489 iph->ihl += inet_opt->opt.optlen >> 2;
490 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
493 ip_select_ident_segs(net, skb, sk,
494 skb_shinfo(skb)->gso_segs ?: 1);
496 /* TODO : should we use skb->sk here instead of sk ? */
497 skb->priority = sk->sk_priority;
498 skb->mark = sk->sk_mark;
500 res = ip_local_out(net, sk, skb);
501 rcu_read_unlock();
502 return res;
504 no_route:
505 rcu_read_unlock();
506 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
507 kfree_skb(skb);
508 return -EHOSTUNREACH;
510 EXPORT_SYMBOL(ip_queue_xmit);
512 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
514 to->pkt_type = from->pkt_type;
515 to->priority = from->priority;
516 to->protocol = from->protocol;
517 skb_dst_drop(to);
518 skb_dst_copy(to, from);
519 to->dev = from->dev;
520 to->mark = from->mark;
522 /* Copy the flags to each fragment. */
523 IPCB(to)->flags = IPCB(from)->flags;
525 #ifdef CONFIG_NET_SCHED
526 to->tc_index = from->tc_index;
527 #endif
528 nf_copy(to, from);
529 #if IS_ENABLED(CONFIG_IP_VS)
530 to->ipvs_property = from->ipvs_property;
531 #endif
532 skb_copy_secmark(to, from);
535 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
536 unsigned int mtu,
537 int (*output)(struct net *, struct sock *, struct sk_buff *))
539 struct iphdr *iph = ip_hdr(skb);
541 if ((iph->frag_off & htons(IP_DF)) == 0)
542 return ip_do_fragment(net, sk, skb, output);
544 if (unlikely(!skb->ignore_df ||
545 (IPCB(skb)->frag_max_size &&
546 IPCB(skb)->frag_max_size > mtu))) {
547 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
548 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
549 htonl(mtu));
550 kfree_skb(skb);
551 return -EMSGSIZE;
554 return ip_do_fragment(net, sk, skb, output);
558 * This IP datagram is too large to be sent in one piece. Break it up into
559 * smaller pieces (each of size equal to IP header plus
560 * a block of the data of the original IP data part) that will yet fit in a
561 * single device frame, and queue such a frame for sending.
564 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
565 int (*output)(struct net *, struct sock *, struct sk_buff *))
567 struct iphdr *iph;
568 int ptr;
569 struct sk_buff *skb2;
570 unsigned int mtu, hlen, left, len, ll_rs;
571 int offset;
572 __be16 not_last_frag;
573 struct rtable *rt = skb_rtable(skb);
574 int err = 0;
576 /* for offloaded checksums cleanup checksum before fragmentation */
577 if (skb->ip_summed == CHECKSUM_PARTIAL &&
578 (err = skb_checksum_help(skb)))
579 goto fail;
582 * Point into the IP datagram header.
585 iph = ip_hdr(skb);
587 mtu = ip_skb_dst_mtu(sk, skb);
588 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
589 mtu = IPCB(skb)->frag_max_size;
592 * Setup starting values.
595 hlen = iph->ihl * 4;
596 mtu = mtu - hlen; /* Size of data space */
597 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
599 /* When frag_list is given, use it. First, check its validity:
600 * some transformers could create wrong frag_list or break existing
601 * one, it is not prohibited. In this case fall back to copying.
603 * LATER: this step can be merged to real generation of fragments,
604 * we can switch to copy when see the first bad fragment.
606 if (skb_has_frag_list(skb)) {
607 struct sk_buff *frag, *frag2;
608 unsigned int first_len = skb_pagelen(skb);
610 if (first_len - hlen > mtu ||
611 ((first_len - hlen) & 7) ||
612 ip_is_fragment(iph) ||
613 skb_cloned(skb))
614 goto slow_path;
616 skb_walk_frags(skb, frag) {
617 /* Correct geometry. */
618 if (frag->len > mtu ||
619 ((frag->len & 7) && frag->next) ||
620 skb_headroom(frag) < hlen)
621 goto slow_path_clean;
623 /* Partially cloned skb? */
624 if (skb_shared(frag))
625 goto slow_path_clean;
627 BUG_ON(frag->sk);
628 if (skb->sk) {
629 frag->sk = skb->sk;
630 frag->destructor = sock_wfree;
632 skb->truesize -= frag->truesize;
635 /* Everything is OK. Generate! */
637 err = 0;
638 offset = 0;
639 frag = skb_shinfo(skb)->frag_list;
640 skb_frag_list_init(skb);
641 skb->data_len = first_len - skb_headlen(skb);
642 skb->len = first_len;
643 iph->tot_len = htons(first_len);
644 iph->frag_off = htons(IP_MF);
645 ip_send_check(iph);
647 for (;;) {
648 /* Prepare header of the next frame,
649 * before previous one went down. */
650 if (frag) {
651 frag->ip_summed = CHECKSUM_NONE;
652 skb_reset_transport_header(frag);
653 __skb_push(frag, hlen);
654 skb_reset_network_header(frag);
655 memcpy(skb_network_header(frag), iph, hlen);
656 iph = ip_hdr(frag);
657 iph->tot_len = htons(frag->len);
658 ip_copy_metadata(frag, skb);
659 if (offset == 0)
660 ip_options_fragment(frag);
661 offset += skb->len - hlen;
662 iph->frag_off = htons(offset>>3);
663 if (frag->next)
664 iph->frag_off |= htons(IP_MF);
665 /* Ready, complete checksum */
666 ip_send_check(iph);
669 err = output(net, sk, skb);
671 if (!err)
672 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
673 if (err || !frag)
674 break;
676 skb = frag;
677 frag = skb->next;
678 skb->next = NULL;
681 if (err == 0) {
682 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
683 return 0;
686 while (frag) {
687 skb = frag->next;
688 kfree_skb(frag);
689 frag = skb;
691 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
692 return err;
694 slow_path_clean:
695 skb_walk_frags(skb, frag2) {
696 if (frag2 == frag)
697 break;
698 frag2->sk = NULL;
699 frag2->destructor = NULL;
700 skb->truesize += frag2->truesize;
704 slow_path:
705 iph = ip_hdr(skb);
707 left = skb->len - hlen; /* Space per frame */
708 ptr = hlen; /* Where to start from */
710 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
713 * Fragment the datagram.
716 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
717 not_last_frag = iph->frag_off & htons(IP_MF);
720 * Keep copying data until we run out.
723 while (left > 0) {
724 len = left;
725 /* IF: it doesn't fit, use 'mtu' - the data space left */
726 if (len > mtu)
727 len = mtu;
728 /* IF: we are not sending up to and including the packet end
729 then align the next start on an eight byte boundary */
730 if (len < left) {
731 len &= ~7;
734 /* Allocate buffer */
735 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
736 if (!skb2) {
737 err = -ENOMEM;
738 goto fail;
742 * Set up data on packet
745 ip_copy_metadata(skb2, skb);
746 skb_reserve(skb2, ll_rs);
747 skb_put(skb2, len + hlen);
748 skb_reset_network_header(skb2);
749 skb2->transport_header = skb2->network_header + hlen;
752 * Charge the memory for the fragment to any owner
753 * it might possess
756 if (skb->sk)
757 skb_set_owner_w(skb2, skb->sk);
760 * Copy the packet header into the new buffer.
763 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
766 * Copy a block of the IP datagram.
768 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
769 BUG();
770 left -= len;
773 * Fill in the new header fields.
775 iph = ip_hdr(skb2);
776 iph->frag_off = htons((offset >> 3));
778 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
779 iph->frag_off |= htons(IP_DF);
781 /* ANK: dirty, but effective trick. Upgrade options only if
782 * the segment to be fragmented was THE FIRST (otherwise,
783 * options are already fixed) and make it ONCE
784 * on the initial skb, so that all the following fragments
785 * will inherit fixed options.
787 if (offset == 0)
788 ip_options_fragment(skb);
791 * Added AC : If we are fragmenting a fragment that's not the
792 * last fragment then keep MF on each bit
794 if (left > 0 || not_last_frag)
795 iph->frag_off |= htons(IP_MF);
796 ptr += len;
797 offset += len;
800 * Put this fragment into the sending queue.
802 iph->tot_len = htons(len + hlen);
804 ip_send_check(iph);
806 err = output(net, sk, skb2);
807 if (err)
808 goto fail;
810 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
812 consume_skb(skb);
813 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
814 return err;
816 fail:
817 kfree_skb(skb);
818 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
819 return err;
821 EXPORT_SYMBOL(ip_do_fragment);
824 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
826 struct msghdr *msg = from;
828 if (skb->ip_summed == CHECKSUM_PARTIAL) {
829 if (!copy_from_iter_full(to, len, &msg->msg_iter))
830 return -EFAULT;
831 } else {
832 __wsum csum = 0;
833 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
834 return -EFAULT;
835 skb->csum = csum_block_add(skb->csum, csum, odd);
837 return 0;
839 EXPORT_SYMBOL(ip_generic_getfrag);
841 static inline __wsum
842 csum_page(struct page *page, int offset, int copy)
844 char *kaddr;
845 __wsum csum;
846 kaddr = kmap(page);
847 csum = csum_partial(kaddr + offset, copy, 0);
848 kunmap(page);
849 return csum;
852 static inline int ip_ufo_append_data(struct sock *sk,
853 struct sk_buff_head *queue,
854 int getfrag(void *from, char *to, int offset, int len,
855 int odd, struct sk_buff *skb),
856 void *from, int length, int hh_len, int fragheaderlen,
857 int transhdrlen, int maxfraglen, unsigned int flags)
859 struct sk_buff *skb;
860 int err;
862 /* There is support for UDP fragmentation offload by network
863 * device, so create one single skb packet containing complete
864 * udp datagram
866 skb = skb_peek_tail(queue);
867 if (!skb) {
868 skb = sock_alloc_send_skb(sk,
869 hh_len + fragheaderlen + transhdrlen + 20,
870 (flags & MSG_DONTWAIT), &err);
872 if (!skb)
873 return err;
875 /* reserve space for Hardware header */
876 skb_reserve(skb, hh_len);
878 /* create space for UDP/IP header */
879 skb_put(skb, fragheaderlen + transhdrlen);
881 /* initialize network header pointer */
882 skb_reset_network_header(skb);
884 /* initialize protocol header pointer */
885 skb->transport_header = skb->network_header + fragheaderlen;
887 skb->csum = 0;
889 __skb_queue_tail(queue, skb);
890 } else if (skb_is_gso(skb)) {
891 goto append;
894 skb->ip_summed = CHECKSUM_PARTIAL;
895 /* specify the length of each IP datagram fragment */
896 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
897 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
899 append:
900 return skb_append_datato_frags(sk, skb, getfrag, from,
901 (length - transhdrlen));
904 static int __ip_append_data(struct sock *sk,
905 struct flowi4 *fl4,
906 struct sk_buff_head *queue,
907 struct inet_cork *cork,
908 struct page_frag *pfrag,
909 int getfrag(void *from, char *to, int offset,
910 int len, int odd, struct sk_buff *skb),
911 void *from, int length, int transhdrlen,
912 unsigned int flags)
914 struct inet_sock *inet = inet_sk(sk);
915 struct sk_buff *skb;
917 struct ip_options *opt = cork->opt;
918 int hh_len;
919 int exthdrlen;
920 int mtu;
921 int copy;
922 int err;
923 int offset = 0;
924 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
925 int csummode = CHECKSUM_NONE;
926 struct rtable *rt = (struct rtable *)cork->dst;
927 u32 tskey = 0;
929 skb = skb_peek_tail(queue);
931 exthdrlen = !skb ? rt->dst.header_len : 0;
932 mtu = cork->fragsize;
933 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
934 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
935 tskey = sk->sk_tskey++;
937 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
939 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
940 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
941 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
943 if (cork->length + length > maxnonfragsize - fragheaderlen) {
944 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
945 mtu - (opt ? opt->optlen : 0));
946 return -EMSGSIZE;
950 * transhdrlen > 0 means that this is the first fragment and we wish
951 * it won't be fragmented in the future.
953 if (transhdrlen &&
954 length + fragheaderlen <= mtu &&
955 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
956 !(flags & MSG_MORE) &&
957 !exthdrlen)
958 csummode = CHECKSUM_PARTIAL;
960 cork->length += length;
961 if ((((length + fragheaderlen) > mtu) || (skb && skb_is_gso(skb))) &&
962 (sk->sk_protocol == IPPROTO_UDP) &&
963 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
964 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
965 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
966 hh_len, fragheaderlen, transhdrlen,
967 maxfraglen, flags);
968 if (err)
969 goto error;
970 return 0;
973 /* So, what's going on in the loop below?
975 * We use calculated fragment length to generate chained skb,
976 * each of segments is IP fragment ready for sending to network after
977 * adding appropriate IP header.
980 if (!skb)
981 goto alloc_new_skb;
983 while (length > 0) {
984 /* Check if the remaining data fits into current packet. */
985 copy = mtu - skb->len;
986 if (copy < length)
987 copy = maxfraglen - skb->len;
988 if (copy <= 0) {
989 char *data;
990 unsigned int datalen;
991 unsigned int fraglen;
992 unsigned int fraggap;
993 unsigned int alloclen;
994 struct sk_buff *skb_prev;
995 alloc_new_skb:
996 skb_prev = skb;
997 if (skb_prev)
998 fraggap = skb_prev->len - maxfraglen;
999 else
1000 fraggap = 0;
1003 * If remaining data exceeds the mtu,
1004 * we know we need more fragment(s).
1006 datalen = length + fraggap;
1007 if (datalen > mtu - fragheaderlen)
1008 datalen = maxfraglen - fragheaderlen;
1009 fraglen = datalen + fragheaderlen;
1011 if ((flags & MSG_MORE) &&
1012 !(rt->dst.dev->features&NETIF_F_SG))
1013 alloclen = mtu;
1014 else
1015 alloclen = fraglen;
1017 alloclen += exthdrlen;
1019 /* The last fragment gets additional space at tail.
1020 * Note, with MSG_MORE we overallocate on fragments,
1021 * because we have no idea what fragment will be
1022 * the last.
1024 if (datalen == length + fraggap)
1025 alloclen += rt->dst.trailer_len;
1027 if (transhdrlen) {
1028 skb = sock_alloc_send_skb(sk,
1029 alloclen + hh_len + 15,
1030 (flags & MSG_DONTWAIT), &err);
1031 } else {
1032 skb = NULL;
1033 if (atomic_read(&sk->sk_wmem_alloc) <=
1034 2 * sk->sk_sndbuf)
1035 skb = sock_wmalloc(sk,
1036 alloclen + hh_len + 15, 1,
1037 sk->sk_allocation);
1038 if (unlikely(!skb))
1039 err = -ENOBUFS;
1041 if (!skb)
1042 goto error;
1045 * Fill in the control structures
1047 skb->ip_summed = csummode;
1048 skb->csum = 0;
1049 skb_reserve(skb, hh_len);
1051 /* only the initial fragment is time stamped */
1052 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1053 cork->tx_flags = 0;
1054 skb_shinfo(skb)->tskey = tskey;
1055 tskey = 0;
1058 * Find where to start putting bytes.
1060 data = skb_put(skb, fraglen + exthdrlen);
1061 skb_set_network_header(skb, exthdrlen);
1062 skb->transport_header = (skb->network_header +
1063 fragheaderlen);
1064 data += fragheaderlen + exthdrlen;
1066 if (fraggap) {
1067 skb->csum = skb_copy_and_csum_bits(
1068 skb_prev, maxfraglen,
1069 data + transhdrlen, fraggap, 0);
1070 skb_prev->csum = csum_sub(skb_prev->csum,
1071 skb->csum);
1072 data += fraggap;
1073 pskb_trim_unique(skb_prev, maxfraglen);
1076 copy = datalen - transhdrlen - fraggap;
1077 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1078 err = -EFAULT;
1079 kfree_skb(skb);
1080 goto error;
1083 offset += copy;
1084 length -= datalen - fraggap;
1085 transhdrlen = 0;
1086 exthdrlen = 0;
1087 csummode = CHECKSUM_NONE;
1090 * Put the packet on the pending queue.
1092 __skb_queue_tail(queue, skb);
1093 continue;
1096 if (copy > length)
1097 copy = length;
1099 if (!(rt->dst.dev->features&NETIF_F_SG)) {
1100 unsigned int off;
1102 off = skb->len;
1103 if (getfrag(from, skb_put(skb, copy),
1104 offset, copy, off, skb) < 0) {
1105 __skb_trim(skb, off);
1106 err = -EFAULT;
1107 goto error;
1109 } else {
1110 int i = skb_shinfo(skb)->nr_frags;
1112 err = -ENOMEM;
1113 if (!sk_page_frag_refill(sk, pfrag))
1114 goto error;
1116 if (!skb_can_coalesce(skb, i, pfrag->page,
1117 pfrag->offset)) {
1118 err = -EMSGSIZE;
1119 if (i == MAX_SKB_FRAGS)
1120 goto error;
1122 __skb_fill_page_desc(skb, i, pfrag->page,
1123 pfrag->offset, 0);
1124 skb_shinfo(skb)->nr_frags = ++i;
1125 get_page(pfrag->page);
1127 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1128 if (getfrag(from,
1129 page_address(pfrag->page) + pfrag->offset,
1130 offset, copy, skb->len, skb) < 0)
1131 goto error_efault;
1133 pfrag->offset += copy;
1134 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1135 skb->len += copy;
1136 skb->data_len += copy;
1137 skb->truesize += copy;
1138 atomic_add(copy, &sk->sk_wmem_alloc);
1140 offset += copy;
1141 length -= copy;
1144 return 0;
1146 error_efault:
1147 err = -EFAULT;
1148 error:
1149 cork->length -= length;
1150 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1151 return err;
1154 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1155 struct ipcm_cookie *ipc, struct rtable **rtp)
1157 struct ip_options_rcu *opt;
1158 struct rtable *rt;
1161 * setup for corking.
1163 opt = ipc->opt;
1164 if (opt) {
1165 if (!cork->opt) {
1166 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1167 sk->sk_allocation);
1168 if (unlikely(!cork->opt))
1169 return -ENOBUFS;
1171 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1172 cork->flags |= IPCORK_OPT;
1173 cork->addr = ipc->addr;
1175 rt = *rtp;
1176 if (unlikely(!rt))
1177 return -EFAULT;
1179 * We steal reference to this route, caller should not release it
1181 *rtp = NULL;
1182 cork->fragsize = ip_sk_use_pmtu(sk) ?
1183 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1184 cork->dst = &rt->dst;
1185 cork->length = 0;
1186 cork->ttl = ipc->ttl;
1187 cork->tos = ipc->tos;
1188 cork->priority = ipc->priority;
1189 cork->tx_flags = ipc->tx_flags;
1191 return 0;
1195 * ip_append_data() and ip_append_page() can make one large IP datagram
1196 * from many pieces of data. Each pieces will be holded on the socket
1197 * until ip_push_pending_frames() is called. Each piece can be a page
1198 * or non-page data.
1200 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1201 * this interface potentially.
1203 * LATER: length must be adjusted by pad at tail, when it is required.
1205 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1206 int getfrag(void *from, char *to, int offset, int len,
1207 int odd, struct sk_buff *skb),
1208 void *from, int length, int transhdrlen,
1209 struct ipcm_cookie *ipc, struct rtable **rtp,
1210 unsigned int flags)
1212 struct inet_sock *inet = inet_sk(sk);
1213 int err;
1215 if (flags&MSG_PROBE)
1216 return 0;
1218 if (skb_queue_empty(&sk->sk_write_queue)) {
1219 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1220 if (err)
1221 return err;
1222 } else {
1223 transhdrlen = 0;
1226 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1227 sk_page_frag(sk), getfrag,
1228 from, length, transhdrlen, flags);
1231 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1232 int offset, size_t size, int flags)
1234 struct inet_sock *inet = inet_sk(sk);
1235 struct sk_buff *skb;
1236 struct rtable *rt;
1237 struct ip_options *opt = NULL;
1238 struct inet_cork *cork;
1239 int hh_len;
1240 int mtu;
1241 int len;
1242 int err;
1243 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1245 if (inet->hdrincl)
1246 return -EPERM;
1248 if (flags&MSG_PROBE)
1249 return 0;
1251 if (skb_queue_empty(&sk->sk_write_queue))
1252 return -EINVAL;
1254 cork = &inet->cork.base;
1255 rt = (struct rtable *)cork->dst;
1256 if (cork->flags & IPCORK_OPT)
1257 opt = cork->opt;
1259 if (!(rt->dst.dev->features&NETIF_F_SG))
1260 return -EOPNOTSUPP;
1262 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1263 mtu = cork->fragsize;
1265 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1266 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1267 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1269 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1270 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1271 mtu - (opt ? opt->optlen : 0));
1272 return -EMSGSIZE;
1275 skb = skb_peek_tail(&sk->sk_write_queue);
1276 if (!skb)
1277 return -EINVAL;
1279 if ((size + skb->len > mtu) &&
1280 (sk->sk_protocol == IPPROTO_UDP) &&
1281 (rt->dst.dev->features & NETIF_F_UFO)) {
1282 if (skb->ip_summed != CHECKSUM_PARTIAL)
1283 return -EOPNOTSUPP;
1285 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1286 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1288 cork->length += size;
1290 while (size > 0) {
1291 if (skb_is_gso(skb)) {
1292 len = size;
1293 } else {
1295 /* Check if the remaining data fits into current packet. */
1296 len = mtu - skb->len;
1297 if (len < size)
1298 len = maxfraglen - skb->len;
1300 if (len <= 0) {
1301 struct sk_buff *skb_prev;
1302 int alloclen;
1304 skb_prev = skb;
1305 fraggap = skb_prev->len - maxfraglen;
1307 alloclen = fragheaderlen + hh_len + fraggap + 15;
1308 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1309 if (unlikely(!skb)) {
1310 err = -ENOBUFS;
1311 goto error;
1315 * Fill in the control structures
1317 skb->ip_summed = CHECKSUM_NONE;
1318 skb->csum = 0;
1319 skb_reserve(skb, hh_len);
1322 * Find where to start putting bytes.
1324 skb_put(skb, fragheaderlen + fraggap);
1325 skb_reset_network_header(skb);
1326 skb->transport_header = (skb->network_header +
1327 fragheaderlen);
1328 if (fraggap) {
1329 skb->csum = skb_copy_and_csum_bits(skb_prev,
1330 maxfraglen,
1331 skb_transport_header(skb),
1332 fraggap, 0);
1333 skb_prev->csum = csum_sub(skb_prev->csum,
1334 skb->csum);
1335 pskb_trim_unique(skb_prev, maxfraglen);
1339 * Put the packet on the pending queue.
1341 __skb_queue_tail(&sk->sk_write_queue, skb);
1342 continue;
1345 if (len > size)
1346 len = size;
1348 if (skb_append_pagefrags(skb, page, offset, len)) {
1349 err = -EMSGSIZE;
1350 goto error;
1353 if (skb->ip_summed == CHECKSUM_NONE) {
1354 __wsum csum;
1355 csum = csum_page(page, offset, len);
1356 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1359 skb->len += len;
1360 skb->data_len += len;
1361 skb->truesize += len;
1362 atomic_add(len, &sk->sk_wmem_alloc);
1363 offset += len;
1364 size -= len;
1366 return 0;
1368 error:
1369 cork->length -= size;
1370 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1371 return err;
1374 static void ip_cork_release(struct inet_cork *cork)
1376 cork->flags &= ~IPCORK_OPT;
1377 kfree(cork->opt);
1378 cork->opt = NULL;
1379 dst_release(cork->dst);
1380 cork->dst = NULL;
1384 * Combined all pending IP fragments on the socket as one IP datagram
1385 * and push them out.
1387 struct sk_buff *__ip_make_skb(struct sock *sk,
1388 struct flowi4 *fl4,
1389 struct sk_buff_head *queue,
1390 struct inet_cork *cork)
1392 struct sk_buff *skb, *tmp_skb;
1393 struct sk_buff **tail_skb;
1394 struct inet_sock *inet = inet_sk(sk);
1395 struct net *net = sock_net(sk);
1396 struct ip_options *opt = NULL;
1397 struct rtable *rt = (struct rtable *)cork->dst;
1398 struct iphdr *iph;
1399 __be16 df = 0;
1400 __u8 ttl;
1402 skb = __skb_dequeue(queue);
1403 if (!skb)
1404 goto out;
1405 tail_skb = &(skb_shinfo(skb)->frag_list);
1407 /* move skb->data to ip header from ext header */
1408 if (skb->data < skb_network_header(skb))
1409 __skb_pull(skb, skb_network_offset(skb));
1410 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1411 __skb_pull(tmp_skb, skb_network_header_len(skb));
1412 *tail_skb = tmp_skb;
1413 tail_skb = &(tmp_skb->next);
1414 skb->len += tmp_skb->len;
1415 skb->data_len += tmp_skb->len;
1416 skb->truesize += tmp_skb->truesize;
1417 tmp_skb->destructor = NULL;
1418 tmp_skb->sk = NULL;
1421 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1422 * to fragment the frame generated here. No matter, what transforms
1423 * how transforms change size of the packet, it will come out.
1425 skb->ignore_df = ip_sk_ignore_df(sk);
1427 /* DF bit is set when we want to see DF on outgoing frames.
1428 * If ignore_df is set too, we still allow to fragment this frame
1429 * locally. */
1430 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1431 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1432 (skb->len <= dst_mtu(&rt->dst) &&
1433 ip_dont_fragment(sk, &rt->dst)))
1434 df = htons(IP_DF);
1436 if (cork->flags & IPCORK_OPT)
1437 opt = cork->opt;
1439 if (cork->ttl != 0)
1440 ttl = cork->ttl;
1441 else if (rt->rt_type == RTN_MULTICAST)
1442 ttl = inet->mc_ttl;
1443 else
1444 ttl = ip_select_ttl(inet, &rt->dst);
1446 iph = ip_hdr(skb);
1447 iph->version = 4;
1448 iph->ihl = 5;
1449 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1450 iph->frag_off = df;
1451 iph->ttl = ttl;
1452 iph->protocol = sk->sk_protocol;
1453 ip_copy_addrs(iph, fl4);
1454 ip_select_ident(net, skb, sk);
1456 if (opt) {
1457 iph->ihl += opt->optlen>>2;
1458 ip_options_build(skb, opt, cork->addr, rt, 0);
1461 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1462 skb->mark = sk->sk_mark;
1464 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1465 * on dst refcount
1467 cork->dst = NULL;
1468 skb_dst_set(skb, &rt->dst);
1470 if (iph->protocol == IPPROTO_ICMP)
1471 icmp_out_count(net, ((struct icmphdr *)
1472 skb_transport_header(skb))->type);
1474 ip_cork_release(cork);
1475 out:
1476 return skb;
1479 int ip_send_skb(struct net *net, struct sk_buff *skb)
1481 int err;
1483 err = ip_local_out(net, skb->sk, skb);
1484 if (err) {
1485 if (err > 0)
1486 err = net_xmit_errno(err);
1487 if (err)
1488 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1491 return err;
1494 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1496 struct sk_buff *skb;
1498 skb = ip_finish_skb(sk, fl4);
1499 if (!skb)
1500 return 0;
1502 /* Netfilter gets whole the not fragmented skb. */
1503 return ip_send_skb(sock_net(sk), skb);
1507 * Throw away all pending data on the socket.
1509 static void __ip_flush_pending_frames(struct sock *sk,
1510 struct sk_buff_head *queue,
1511 struct inet_cork *cork)
1513 struct sk_buff *skb;
1515 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1516 kfree_skb(skb);
1518 ip_cork_release(cork);
1521 void ip_flush_pending_frames(struct sock *sk)
1523 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1526 struct sk_buff *ip_make_skb(struct sock *sk,
1527 struct flowi4 *fl4,
1528 int getfrag(void *from, char *to, int offset,
1529 int len, int odd, struct sk_buff *skb),
1530 void *from, int length, int transhdrlen,
1531 struct ipcm_cookie *ipc, struct rtable **rtp,
1532 unsigned int flags)
1534 struct inet_cork cork;
1535 struct sk_buff_head queue;
1536 int err;
1538 if (flags & MSG_PROBE)
1539 return NULL;
1541 __skb_queue_head_init(&queue);
1543 cork.flags = 0;
1544 cork.addr = 0;
1545 cork.opt = NULL;
1546 err = ip_setup_cork(sk, &cork, ipc, rtp);
1547 if (err)
1548 return ERR_PTR(err);
1550 err = __ip_append_data(sk, fl4, &queue, &cork,
1551 &current->task_frag, getfrag,
1552 from, length, transhdrlen, flags);
1553 if (err) {
1554 __ip_flush_pending_frames(sk, &queue, &cork);
1555 return ERR_PTR(err);
1558 return __ip_make_skb(sk, fl4, &queue, &cork);
1562 * Fetch data from kernel space and fill in checksum if needed.
1564 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1565 int len, int odd, struct sk_buff *skb)
1567 __wsum csum;
1569 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1570 skb->csum = csum_block_add(skb->csum, csum, odd);
1571 return 0;
1575 * Generic function to send a packet as reply to another packet.
1576 * Used to send some TCP resets/acks so far.
1578 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1579 const struct ip_options *sopt,
1580 __be32 daddr, __be32 saddr,
1581 const struct ip_reply_arg *arg,
1582 unsigned int len)
1584 struct ip_options_data replyopts;
1585 struct ipcm_cookie ipc;
1586 struct flowi4 fl4;
1587 struct rtable *rt = skb_rtable(skb);
1588 struct net *net = sock_net(sk);
1589 struct sk_buff *nskb;
1590 int err;
1591 int oif;
1593 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1594 return;
1596 ipc.addr = daddr;
1597 ipc.opt = NULL;
1598 ipc.tx_flags = 0;
1599 ipc.ttl = 0;
1600 ipc.tos = -1;
1602 if (replyopts.opt.opt.optlen) {
1603 ipc.opt = &replyopts.opt;
1605 if (replyopts.opt.opt.srr)
1606 daddr = replyopts.opt.opt.faddr;
1609 oif = arg->bound_dev_if;
1610 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1611 oif = skb->skb_iif;
1613 flowi4_init_output(&fl4, oif,
1614 IP4_REPLY_MARK(net, skb->mark),
1615 RT_TOS(arg->tos),
1616 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1617 ip_reply_arg_flowi_flags(arg),
1618 daddr, saddr,
1619 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1620 arg->uid);
1621 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1622 rt = ip_route_output_key(net, &fl4);
1623 if (IS_ERR(rt))
1624 return;
1626 inet_sk(sk)->tos = arg->tos;
1628 sk->sk_priority = skb->priority;
1629 sk->sk_protocol = ip_hdr(skb)->protocol;
1630 sk->sk_bound_dev_if = arg->bound_dev_if;
1631 sk->sk_sndbuf = sysctl_wmem_default;
1632 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1633 len, 0, &ipc, &rt, MSG_DONTWAIT);
1634 if (unlikely(err)) {
1635 ip_flush_pending_frames(sk);
1636 goto out;
1639 nskb = skb_peek(&sk->sk_write_queue);
1640 if (nskb) {
1641 if (arg->csumoffset >= 0)
1642 *((__sum16 *)skb_transport_header(nskb) +
1643 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1644 arg->csum));
1645 nskb->ip_summed = CHECKSUM_NONE;
1646 ip_push_pending_frames(sk, &fl4);
1648 out:
1649 ip_rt_put(rt);
1652 void __init ip_init(void)
1654 ip_rt_init();
1655 inet_initpeers();
1657 #if defined(CONFIG_IP_MULTICAST)
1658 igmp_mc_init();
1659 #endif