2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly
= 1;
80 int sysctl_tcp_window_scaling __read_mostly
= 1;
81 int sysctl_tcp_sack __read_mostly
= 1;
82 int sysctl_tcp_fack __read_mostly
= 1;
83 int sysctl_tcp_max_reordering __read_mostly
= 300;
84 int sysctl_tcp_dsack __read_mostly
= 1;
85 int sysctl_tcp_app_win __read_mostly
= 31;
86 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
88 EXPORT_SYMBOL(sysctl_tcp_timestamps
);
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit
= 1000;
93 int sysctl_tcp_stdurg __read_mostly
;
94 int sysctl_tcp_rfc1337 __read_mostly
;
95 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
96 int sysctl_tcp_frto __read_mostly
= 2;
97 int sysctl_tcp_min_rtt_wlen __read_mostly
= 300;
99 int sysctl_tcp_thin_dupack __read_mostly
;
101 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
102 int sysctl_tcp_early_retrans __read_mostly
= 3;
103 int sysctl_tcp_invalid_ratelimit __read_mostly
= HZ
/2;
105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
111 #define FLAG_ECE 0x40 /* ECE in this ACK */
112 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
118 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
120 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
125 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
126 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128 #define REXMIT_NONE 0 /* no loss recovery to do */
129 #define REXMIT_LOST 1 /* retransmit packets marked lost */
130 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
132 static void tcp_gro_dev_warn(struct sock
*sk
, const struct sk_buff
*skb
)
134 static bool __once __read_mostly
;
137 struct net_device
*dev
;
142 dev
= dev_get_by_index_rcu(sock_net(sk
), skb
->skb_iif
);
143 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
144 dev
? dev
->name
: "Unknown driver");
149 /* Adapt the MSS value used to make delayed ack decision to the
152 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
154 struct inet_connection_sock
*icsk
= inet_csk(sk
);
155 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
158 icsk
->icsk_ack
.last_seg_size
= 0;
160 /* skb->len may jitter because of SACKs, even if peer
161 * sends good full-sized frames.
163 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
164 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
165 icsk
->icsk_ack
.rcv_mss
= min_t(unsigned int, len
,
167 if (unlikely(icsk
->icsk_ack
.rcv_mss
!= len
))
168 tcp_gro_dev_warn(sk
, skb
);
170 /* Otherwise, we make more careful check taking into account,
171 * that SACKs block is variable.
173 * "len" is invariant segment length, including TCP header.
175 len
+= skb
->data
- skb_transport_header(skb
);
176 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
177 /* If PSH is not set, packet should be
178 * full sized, provided peer TCP is not badly broken.
179 * This observation (if it is correct 8)) allows
180 * to handle super-low mtu links fairly.
182 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
183 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
184 /* Subtract also invariant (if peer is RFC compliant),
185 * tcp header plus fixed timestamp option length.
186 * Resulting "len" is MSS free of SACK jitter.
188 len
-= tcp_sk(sk
)->tcp_header_len
;
189 icsk
->icsk_ack
.last_seg_size
= len
;
191 icsk
->icsk_ack
.rcv_mss
= len
;
195 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
196 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
197 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
201 static void tcp_incr_quickack(struct sock
*sk
)
203 struct inet_connection_sock
*icsk
= inet_csk(sk
);
204 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
208 if (quickacks
> icsk
->icsk_ack
.quick
)
209 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
212 static void tcp_enter_quickack_mode(struct sock
*sk
)
214 struct inet_connection_sock
*icsk
= inet_csk(sk
);
215 tcp_incr_quickack(sk
);
216 icsk
->icsk_ack
.pingpong
= 0;
217 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
220 /* Send ACKs quickly, if "quick" count is not exhausted
221 * and the session is not interactive.
224 static bool tcp_in_quickack_mode(struct sock
*sk
)
226 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
227 const struct dst_entry
*dst
= __sk_dst_get(sk
);
229 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
230 (icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
);
233 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
235 if (tp
->ecn_flags
& TCP_ECN_OK
)
236 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
239 static void tcp_ecn_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
241 if (tcp_hdr(skb
)->cwr
)
242 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
245 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
247 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
250 static void __tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
252 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
253 case INET_ECN_NOT_ECT
:
254 /* Funny extension: if ECT is not set on a segment,
255 * and we already seen ECT on a previous segment,
256 * it is probably a retransmit.
258 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
259 tcp_enter_quickack_mode((struct sock
*)tp
);
262 if (tcp_ca_needs_ecn((struct sock
*)tp
))
263 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_IS_CE
);
265 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
266 /* Better not delay acks, sender can have a very low cwnd */
267 tcp_enter_quickack_mode((struct sock
*)tp
);
268 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
270 tp
->ecn_flags
|= TCP_ECN_SEEN
;
273 if (tcp_ca_needs_ecn((struct sock
*)tp
))
274 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_NO_CE
);
275 tp
->ecn_flags
|= TCP_ECN_SEEN
;
280 static void tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
282 if (tp
->ecn_flags
& TCP_ECN_OK
)
283 __tcp_ecn_check_ce(tp
, skb
);
286 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
288 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
289 tp
->ecn_flags
&= ~TCP_ECN_OK
;
292 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
294 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
295 tp
->ecn_flags
&= ~TCP_ECN_OK
;
298 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
300 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
305 /* Buffer size and advertised window tuning.
307 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
310 static void tcp_sndbuf_expand(struct sock
*sk
)
312 const struct tcp_sock
*tp
= tcp_sk(sk
);
313 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
317 /* Worst case is non GSO/TSO : each frame consumes one skb
318 * and skb->head is kmalloced using power of two area of memory
320 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
324 per_mss
= roundup_pow_of_two(per_mss
) +
325 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
327 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
328 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
330 /* Fast Recovery (RFC 5681 3.2) :
331 * Cubic needs 1.7 factor, rounded to 2 to include
332 * extra cushion (application might react slowly to POLLOUT)
334 sndmem
= ca_ops
->sndbuf_expand
? ca_ops
->sndbuf_expand(sk
) : 2;
335 sndmem
*= nr_segs
* per_mss
;
337 if (sk
->sk_sndbuf
< sndmem
)
338 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
341 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
343 * All tcp_full_space() is split to two parts: "network" buffer, allocated
344 * forward and advertised in receiver window (tp->rcv_wnd) and
345 * "application buffer", required to isolate scheduling/application
346 * latencies from network.
347 * window_clamp is maximal advertised window. It can be less than
348 * tcp_full_space(), in this case tcp_full_space() - window_clamp
349 * is reserved for "application" buffer. The less window_clamp is
350 * the smoother our behaviour from viewpoint of network, but the lower
351 * throughput and the higher sensitivity of the connection to losses. 8)
353 * rcv_ssthresh is more strict window_clamp used at "slow start"
354 * phase to predict further behaviour of this connection.
355 * It is used for two goals:
356 * - to enforce header prediction at sender, even when application
357 * requires some significant "application buffer". It is check #1.
358 * - to prevent pruning of receive queue because of misprediction
359 * of receiver window. Check #2.
361 * The scheme does not work when sender sends good segments opening
362 * window and then starts to feed us spaghetti. But it should work
363 * in common situations. Otherwise, we have to rely on queue collapsing.
366 /* Slow part of check#2. */
367 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
369 struct tcp_sock
*tp
= tcp_sk(sk
);
371 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
372 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
374 while (tp
->rcv_ssthresh
<= window
) {
375 if (truesize
<= skb
->len
)
376 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
384 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
386 struct tcp_sock
*tp
= tcp_sk(sk
);
389 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
390 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
391 !tcp_under_memory_pressure(sk
)) {
394 /* Check #2. Increase window, if skb with such overhead
395 * will fit to rcvbuf in future.
397 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
398 incr
= 2 * tp
->advmss
;
400 incr
= __tcp_grow_window(sk
, skb
);
403 incr
= max_t(int, incr
, 2 * skb
->len
);
404 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
406 inet_csk(sk
)->icsk_ack
.quick
|= 1;
411 /* 3. Tuning rcvbuf, when connection enters established state. */
412 static void tcp_fixup_rcvbuf(struct sock
*sk
)
414 u32 mss
= tcp_sk(sk
)->advmss
;
417 rcvmem
= 2 * SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
) *
418 tcp_default_init_rwnd(mss
);
420 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
421 * Allow enough cushion so that sender is not limited by our window
423 if (sysctl_tcp_moderate_rcvbuf
)
426 if (sk
->sk_rcvbuf
< rcvmem
)
427 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
430 /* 4. Try to fixup all. It is made immediately after connection enters
433 void tcp_init_buffer_space(struct sock
*sk
)
435 struct tcp_sock
*tp
= tcp_sk(sk
);
438 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
439 tcp_fixup_rcvbuf(sk
);
440 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
441 tcp_sndbuf_expand(sk
);
443 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
444 tp
->rcvq_space
.time
= tcp_time_stamp
;
445 tp
->rcvq_space
.seq
= tp
->copied_seq
;
447 maxwin
= tcp_full_space(sk
);
449 if (tp
->window_clamp
>= maxwin
) {
450 tp
->window_clamp
= maxwin
;
452 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
453 tp
->window_clamp
= max(maxwin
-
454 (maxwin
>> sysctl_tcp_app_win
),
458 /* Force reservation of one segment. */
459 if (sysctl_tcp_app_win
&&
460 tp
->window_clamp
> 2 * tp
->advmss
&&
461 tp
->window_clamp
+ tp
->advmss
> maxwin
)
462 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
464 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
465 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
468 /* 5. Recalculate window clamp after socket hit its memory bounds. */
469 static void tcp_clamp_window(struct sock
*sk
)
471 struct tcp_sock
*tp
= tcp_sk(sk
);
472 struct inet_connection_sock
*icsk
= inet_csk(sk
);
474 icsk
->icsk_ack
.quick
= 0;
476 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
477 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
478 !tcp_under_memory_pressure(sk
) &&
479 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
480 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
483 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
484 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
487 /* Initialize RCV_MSS value.
488 * RCV_MSS is an our guess about MSS used by the peer.
489 * We haven't any direct information about the MSS.
490 * It's better to underestimate the RCV_MSS rather than overestimate.
491 * Overestimations make us ACKing less frequently than needed.
492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494 void tcp_initialize_rcv_mss(struct sock
*sk
)
496 const struct tcp_sock
*tp
= tcp_sk(sk
);
497 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
499 hint
= min(hint
, tp
->rcv_wnd
/ 2);
500 hint
= min(hint
, TCP_MSS_DEFAULT
);
501 hint
= max(hint
, TCP_MIN_MSS
);
503 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
505 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
507 /* Receiver "autotuning" code.
509 * The algorithm for RTT estimation w/o timestamps is based on
510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
511 * <http://public.lanl.gov/radiant/pubs.html#DRS>
513 * More detail on this code can be found at
514 * <http://staff.psc.edu/jheffner/>,
515 * though this reference is out of date. A new paper
518 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
520 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
526 if (new_sample
!= 0) {
527 /* If we sample in larger samples in the non-timestamp
528 * case, we could grossly overestimate the RTT especially
529 * with chatty applications or bulk transfer apps which
530 * are stalled on filesystem I/O.
532 * Also, since we are only going for a minimum in the
533 * non-timestamp case, we do not smooth things out
534 * else with timestamps disabled convergence takes too
538 m
-= (new_sample
>> 3);
546 /* No previous measure. */
550 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
551 tp
->rcv_rtt_est
.rtt
= new_sample
;
554 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
556 if (tp
->rcv_rtt_est
.time
== 0)
558 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
560 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rcv_rtt_est
.time
, 1);
563 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
564 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
567 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
568 const struct sk_buff
*skb
)
570 struct tcp_sock
*tp
= tcp_sk(sk
);
571 if (tp
->rx_opt
.rcv_tsecr
&&
572 (TCP_SKB_CB(skb
)->end_seq
-
573 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
574 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
578 * This function should be called every time data is copied to user space.
579 * It calculates the appropriate TCP receive buffer space.
581 void tcp_rcv_space_adjust(struct sock
*sk
)
583 struct tcp_sock
*tp
= tcp_sk(sk
);
587 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
588 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
591 /* Number of bytes copied to user in last RTT */
592 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
593 if (copied
<= tp
->rcvq_space
.space
)
597 * copied = bytes received in previous RTT, our base window
598 * To cope with packet losses, we need a 2x factor
599 * To cope with slow start, and sender growing its cwin by 100 %
600 * every RTT, we need a 4x factor, because the ACK we are sending
601 * now is for the next RTT, not the current one :
602 * <prev RTT . ><current RTT .. ><next RTT .... >
605 if (sysctl_tcp_moderate_rcvbuf
&&
606 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
607 int rcvwin
, rcvmem
, rcvbuf
;
609 /* minimal window to cope with packet losses, assuming
610 * steady state. Add some cushion because of small variations.
612 rcvwin
= (copied
<< 1) + 16 * tp
->advmss
;
614 /* If rate increased by 25%,
615 * assume slow start, rcvwin = 3 * copied
616 * If rate increased by 50%,
617 * assume sender can use 2x growth, rcvwin = 4 * copied
620 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 2)) {
622 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 1))
625 rcvwin
+= (rcvwin
>> 1);
628 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
629 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
632 rcvbuf
= min(rcvwin
/ tp
->advmss
* rcvmem
, sysctl_tcp_rmem
[2]);
633 if (rcvbuf
> sk
->sk_rcvbuf
) {
634 sk
->sk_rcvbuf
= rcvbuf
;
636 /* Make the window clamp follow along. */
637 tp
->window_clamp
= rcvwin
;
640 tp
->rcvq_space
.space
= copied
;
643 tp
->rcvq_space
.seq
= tp
->copied_seq
;
644 tp
->rcvq_space
.time
= tcp_time_stamp
;
647 /* There is something which you must keep in mind when you analyze the
648 * behavior of the tp->ato delayed ack timeout interval. When a
649 * connection starts up, we want to ack as quickly as possible. The
650 * problem is that "good" TCP's do slow start at the beginning of data
651 * transmission. The means that until we send the first few ACK's the
652 * sender will sit on his end and only queue most of his data, because
653 * he can only send snd_cwnd unacked packets at any given time. For
654 * each ACK we send, he increments snd_cwnd and transmits more of his
657 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
659 struct tcp_sock
*tp
= tcp_sk(sk
);
660 struct inet_connection_sock
*icsk
= inet_csk(sk
);
663 inet_csk_schedule_ack(sk
);
665 tcp_measure_rcv_mss(sk
, skb
);
667 tcp_rcv_rtt_measure(tp
);
669 now
= tcp_time_stamp
;
671 if (!icsk
->icsk_ack
.ato
) {
672 /* The _first_ data packet received, initialize
673 * delayed ACK engine.
675 tcp_incr_quickack(sk
);
676 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
678 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
680 if (m
<= TCP_ATO_MIN
/ 2) {
681 /* The fastest case is the first. */
682 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
683 } else if (m
< icsk
->icsk_ack
.ato
) {
684 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
685 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
686 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
687 } else if (m
> icsk
->icsk_rto
) {
688 /* Too long gap. Apparently sender failed to
689 * restart window, so that we send ACKs quickly.
691 tcp_incr_quickack(sk
);
695 icsk
->icsk_ack
.lrcvtime
= now
;
697 tcp_ecn_check_ce(tp
, skb
);
700 tcp_grow_window(sk
, skb
);
703 /* Called to compute a smoothed rtt estimate. The data fed to this
704 * routine either comes from timestamps, or from segments that were
705 * known _not_ to have been retransmitted [see Karn/Partridge
706 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
707 * piece by Van Jacobson.
708 * NOTE: the next three routines used to be one big routine.
709 * To save cycles in the RFC 1323 implementation it was better to break
710 * it up into three procedures. -- erics
712 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
714 struct tcp_sock
*tp
= tcp_sk(sk
);
715 long m
= mrtt_us
; /* RTT */
716 u32 srtt
= tp
->srtt_us
;
718 /* The following amusing code comes from Jacobson's
719 * article in SIGCOMM '88. Note that rtt and mdev
720 * are scaled versions of rtt and mean deviation.
721 * This is designed to be as fast as possible
722 * m stands for "measurement".
724 * On a 1990 paper the rto value is changed to:
725 * RTO = rtt + 4 * mdev
727 * Funny. This algorithm seems to be very broken.
728 * These formulae increase RTO, when it should be decreased, increase
729 * too slowly, when it should be increased quickly, decrease too quickly
730 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
731 * does not matter how to _calculate_ it. Seems, it was trap
732 * that VJ failed to avoid. 8)
735 m
-= (srtt
>> 3); /* m is now error in rtt est */
736 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
738 m
= -m
; /* m is now abs(error) */
739 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
740 /* This is similar to one of Eifel findings.
741 * Eifel blocks mdev updates when rtt decreases.
742 * This solution is a bit different: we use finer gain
743 * for mdev in this case (alpha*beta).
744 * Like Eifel it also prevents growth of rto,
745 * but also it limits too fast rto decreases,
746 * happening in pure Eifel.
751 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
753 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
754 if (tp
->mdev_us
> tp
->mdev_max_us
) {
755 tp
->mdev_max_us
= tp
->mdev_us
;
756 if (tp
->mdev_max_us
> tp
->rttvar_us
)
757 tp
->rttvar_us
= tp
->mdev_max_us
;
759 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
760 if (tp
->mdev_max_us
< tp
->rttvar_us
)
761 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
762 tp
->rtt_seq
= tp
->snd_nxt
;
763 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
766 /* no previous measure. */
767 srtt
= m
<< 3; /* take the measured time to be rtt */
768 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
769 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
770 tp
->mdev_max_us
= tp
->rttvar_us
;
771 tp
->rtt_seq
= tp
->snd_nxt
;
773 tp
->srtt_us
= max(1U, srtt
);
776 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
777 * Note: TCP stack does not yet implement pacing.
778 * FQ packet scheduler can be used to implement cheap but effective
779 * TCP pacing, to smooth the burst on large writes when packets
780 * in flight is significantly lower than cwnd (or rwin)
782 int sysctl_tcp_pacing_ss_ratio __read_mostly
= 200;
783 int sysctl_tcp_pacing_ca_ratio __read_mostly
= 120;
785 static void tcp_update_pacing_rate(struct sock
*sk
)
787 const struct tcp_sock
*tp
= tcp_sk(sk
);
790 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
791 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
793 /* current rate is (cwnd * mss) / srtt
794 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
795 * In Congestion Avoidance phase, set it to 120 % the current rate.
797 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
798 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
799 * end of slow start and should slow down.
801 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
802 rate
*= sysctl_tcp_pacing_ss_ratio
;
804 rate
*= sysctl_tcp_pacing_ca_ratio
;
806 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
808 if (likely(tp
->srtt_us
))
809 do_div(rate
, tp
->srtt_us
);
811 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
812 * without any lock. We want to make sure compiler wont store
813 * intermediate values in this location.
815 ACCESS_ONCE(sk
->sk_pacing_rate
) = min_t(u64
, rate
,
816 sk
->sk_max_pacing_rate
);
819 /* Calculate rto without backoff. This is the second half of Van Jacobson's
820 * routine referred to above.
822 static void tcp_set_rto(struct sock
*sk
)
824 const struct tcp_sock
*tp
= tcp_sk(sk
);
825 /* Old crap is replaced with new one. 8)
828 * 1. If rtt variance happened to be less 50msec, it is hallucination.
829 * It cannot be less due to utterly erratic ACK generation made
830 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
831 * to do with delayed acks, because at cwnd>2 true delack timeout
832 * is invisible. Actually, Linux-2.4 also generates erratic
833 * ACKs in some circumstances.
835 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
837 /* 2. Fixups made earlier cannot be right.
838 * If we do not estimate RTO correctly without them,
839 * all the algo is pure shit and should be replaced
840 * with correct one. It is exactly, which we pretend to do.
843 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
844 * guarantees that rto is higher.
849 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
851 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
854 cwnd
= TCP_INIT_CWND
;
855 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
859 * Packet counting of FACK is based on in-order assumptions, therefore TCP
860 * disables it when reordering is detected
862 void tcp_disable_fack(struct tcp_sock
*tp
)
864 /* RFC3517 uses different metric in lost marker => reset on change */
866 tp
->lost_skb_hint
= NULL
;
867 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock
*tp
)
873 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
876 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
879 struct tcp_sock
*tp
= tcp_sk(sk
);
880 if (metric
> tp
->reordering
) {
883 tp
->reordering
= min(sysctl_tcp_max_reordering
, metric
);
885 /* This exciting event is worth to be remembered. 8) */
887 mib_idx
= LINUX_MIB_TCPTSREORDER
;
888 else if (tcp_is_reno(tp
))
889 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
890 else if (tcp_is_fack(tp
))
891 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
893 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
895 NET_INC_STATS(sock_net(sk
), mib_idx
);
896 #if FASTRETRANS_DEBUG > 1
897 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
898 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
902 tp
->undo_marker
? tp
->undo_retrans
: 0);
904 tcp_disable_fack(tp
);
908 tcp_disable_early_retrans(tp
);
912 /* This must be called before lost_out is incremented */
913 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
915 if (!tp
->retransmit_skb_hint
||
916 before(TCP_SKB_CB(skb
)->seq
,
917 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
918 tp
->retransmit_skb_hint
= skb
;
921 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
922 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
925 /* Sum the number of packets on the wire we have marked as lost.
926 * There are two cases we care about here:
927 * a) Packet hasn't been marked lost (nor retransmitted),
928 * and this is the first loss.
929 * b) Packet has been marked both lost and retransmitted,
930 * and this means we think it was lost again.
932 static void tcp_sum_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
934 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
936 if (!(sacked
& TCPCB_LOST
) ||
937 ((sacked
& TCPCB_LOST
) && (sacked
& TCPCB_SACKED_RETRANS
)))
938 tp
->lost
+= tcp_skb_pcount(skb
);
941 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
943 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
944 tcp_verify_retransmit_hint(tp
, skb
);
946 tp
->lost_out
+= tcp_skb_pcount(skb
);
947 tcp_sum_lost(tp
, skb
);
948 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
952 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
954 tcp_verify_retransmit_hint(tp
, skb
);
956 tcp_sum_lost(tp
, skb
);
957 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
958 tp
->lost_out
+= tcp_skb_pcount(skb
);
959 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
963 /* This procedure tags the retransmission queue when SACKs arrive.
965 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
966 * Packets in queue with these bits set are counted in variables
967 * sacked_out, retrans_out and lost_out, correspondingly.
969 * Valid combinations are:
970 * Tag InFlight Description
971 * 0 1 - orig segment is in flight.
972 * S 0 - nothing flies, orig reached receiver.
973 * L 0 - nothing flies, orig lost by net.
974 * R 2 - both orig and retransmit are in flight.
975 * L|R 1 - orig is lost, retransmit is in flight.
976 * S|R 1 - orig reached receiver, retrans is still in flight.
977 * (L|S|R is logically valid, it could occur when L|R is sacked,
978 * but it is equivalent to plain S and code short-curcuits it to S.
979 * L|S is logically invalid, it would mean -1 packet in flight 8))
981 * These 6 states form finite state machine, controlled by the following events:
982 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
983 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
984 * 3. Loss detection event of two flavors:
985 * A. Scoreboard estimator decided the packet is lost.
986 * A'. Reno "three dupacks" marks head of queue lost.
987 * A''. Its FACK modification, head until snd.fack is lost.
988 * B. SACK arrives sacking SND.NXT at the moment, when the
989 * segment was retransmitted.
990 * 4. D-SACK added new rule: D-SACK changes any tag to S.
992 * It is pleasant to note, that state diagram turns out to be commutative,
993 * so that we are allowed not to be bothered by order of our actions,
994 * when multiple events arrive simultaneously. (see the function below).
996 * Reordering detection.
997 * --------------------
998 * Reordering metric is maximal distance, which a packet can be displaced
999 * in packet stream. With SACKs we can estimate it:
1001 * 1. SACK fills old hole and the corresponding segment was not
1002 * ever retransmitted -> reordering. Alas, we cannot use it
1003 * when segment was retransmitted.
1004 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1005 * for retransmitted and already SACKed segment -> reordering..
1006 * Both of these heuristics are not used in Loss state, when we cannot
1007 * account for retransmits accurately.
1009 * SACK block validation.
1010 * ----------------------
1012 * SACK block range validation checks that the received SACK block fits to
1013 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1014 * Note that SND.UNA is not included to the range though being valid because
1015 * it means that the receiver is rather inconsistent with itself reporting
1016 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1017 * perfectly valid, however, in light of RFC2018 which explicitly states
1018 * that "SACK block MUST reflect the newest segment. Even if the newest
1019 * segment is going to be discarded ...", not that it looks very clever
1020 * in case of head skb. Due to potentional receiver driven attacks, we
1021 * choose to avoid immediate execution of a walk in write queue due to
1022 * reneging and defer head skb's loss recovery to standard loss recovery
1023 * procedure that will eventually trigger (nothing forbids us doing this).
1025 * Implements also blockage to start_seq wrap-around. Problem lies in the
1026 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1027 * there's no guarantee that it will be before snd_nxt (n). The problem
1028 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1031 * <- outs wnd -> <- wrapzone ->
1032 * u e n u_w e_w s n_w
1034 * |<------------+------+----- TCP seqno space --------------+---------->|
1035 * ...-- <2^31 ->| |<--------...
1036 * ...---- >2^31 ------>| |<--------...
1038 * Current code wouldn't be vulnerable but it's better still to discard such
1039 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1040 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1041 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1042 * equal to the ideal case (infinite seqno space without wrap caused issues).
1044 * With D-SACK the lower bound is extended to cover sequence space below
1045 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1046 * again, D-SACK block must not to go across snd_una (for the same reason as
1047 * for the normal SACK blocks, explained above). But there all simplicity
1048 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1049 * fully below undo_marker they do not affect behavior in anyway and can
1050 * therefore be safely ignored. In rare cases (which are more or less
1051 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1052 * fragmentation and packet reordering past skb's retransmission. To consider
1053 * them correctly, the acceptable range must be extended even more though
1054 * the exact amount is rather hard to quantify. However, tp->max_window can
1055 * be used as an exaggerated estimate.
1057 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1058 u32 start_seq
, u32 end_seq
)
1060 /* Too far in future, or reversed (interpretation is ambiguous) */
1061 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1064 /* Nasty start_seq wrap-around check (see comments above) */
1065 if (!before(start_seq
, tp
->snd_nxt
))
1068 /* In outstanding window? ...This is valid exit for D-SACKs too.
1069 * start_seq == snd_una is non-sensical (see comments above)
1071 if (after(start_seq
, tp
->snd_una
))
1074 if (!is_dsack
|| !tp
->undo_marker
)
1077 /* ...Then it's D-SACK, and must reside below snd_una completely */
1078 if (after(end_seq
, tp
->snd_una
))
1081 if (!before(start_seq
, tp
->undo_marker
))
1085 if (!after(end_seq
, tp
->undo_marker
))
1088 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1089 * start_seq < undo_marker and end_seq >= undo_marker.
1091 return !before(start_seq
, end_seq
- tp
->max_window
);
1094 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1095 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1098 struct tcp_sock
*tp
= tcp_sk(sk
);
1099 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1100 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1101 bool dup_sack
= false;
1103 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1106 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1107 } else if (num_sacks
> 1) {
1108 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1109 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1111 if (!after(end_seq_0
, end_seq_1
) &&
1112 !before(start_seq_0
, start_seq_1
)) {
1115 NET_INC_STATS(sock_net(sk
),
1116 LINUX_MIB_TCPDSACKOFORECV
);
1120 /* D-SACK for already forgotten data... Do dumb counting. */
1121 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1122 !after(end_seq_0
, prior_snd_una
) &&
1123 after(end_seq_0
, tp
->undo_marker
))
1129 struct tcp_sacktag_state
{
1132 /* Timestamps for earliest and latest never-retransmitted segment
1133 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1134 * but congestion control should still get an accurate delay signal.
1136 struct skb_mstamp first_sackt
;
1137 struct skb_mstamp last_sackt
;
1138 struct rate_sample
*rate
;
1142 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1143 * the incoming SACK may not exactly match but we can find smaller MSS
1144 * aligned portion of it that matches. Therefore we might need to fragment
1145 * which may fail and creates some hassle (caller must handle error case
1148 * FIXME: this could be merged to shift decision code
1150 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1151 u32 start_seq
, u32 end_seq
)
1155 unsigned int pkt_len
;
1158 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1159 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1161 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1162 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1163 mss
= tcp_skb_mss(skb
);
1164 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1167 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1171 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1176 /* Round if necessary so that SACKs cover only full MSSes
1177 * and/or the remaining small portion (if present)
1179 if (pkt_len
> mss
) {
1180 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1181 if (!in_sack
&& new_len
< pkt_len
) {
1183 if (new_len
>= skb
->len
)
1188 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
, GFP_ATOMIC
);
1196 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1197 static u8
tcp_sacktag_one(struct sock
*sk
,
1198 struct tcp_sacktag_state
*state
, u8 sacked
,
1199 u32 start_seq
, u32 end_seq
,
1200 int dup_sack
, int pcount
,
1201 const struct skb_mstamp
*xmit_time
)
1203 struct tcp_sock
*tp
= tcp_sk(sk
);
1204 int fack_count
= state
->fack_count
;
1206 /* Account D-SACK for retransmitted packet. */
1207 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1208 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1209 after(end_seq
, tp
->undo_marker
))
1211 if (sacked
& TCPCB_SACKED_ACKED
)
1212 state
->reord
= min(fack_count
, state
->reord
);
1215 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1216 if (!after(end_seq
, tp
->snd_una
))
1219 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1220 tcp_rack_advance(tp
, xmit_time
, sacked
);
1222 if (sacked
& TCPCB_SACKED_RETRANS
) {
1223 /* If the segment is not tagged as lost,
1224 * we do not clear RETRANS, believing
1225 * that retransmission is still in flight.
1227 if (sacked
& TCPCB_LOST
) {
1228 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1229 tp
->lost_out
-= pcount
;
1230 tp
->retrans_out
-= pcount
;
1233 if (!(sacked
& TCPCB_RETRANS
)) {
1234 /* New sack for not retransmitted frame,
1235 * which was in hole. It is reordering.
1237 if (before(start_seq
,
1238 tcp_highest_sack_seq(tp
)))
1239 state
->reord
= min(fack_count
,
1241 if (!after(end_seq
, tp
->high_seq
))
1242 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1243 if (state
->first_sackt
.v64
== 0)
1244 state
->first_sackt
= *xmit_time
;
1245 state
->last_sackt
= *xmit_time
;
1248 if (sacked
& TCPCB_LOST
) {
1249 sacked
&= ~TCPCB_LOST
;
1250 tp
->lost_out
-= pcount
;
1254 sacked
|= TCPCB_SACKED_ACKED
;
1255 state
->flag
|= FLAG_DATA_SACKED
;
1256 tp
->sacked_out
+= pcount
;
1257 tp
->delivered
+= pcount
; /* Out-of-order packets delivered */
1259 fack_count
+= pcount
;
1261 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1262 if (!tcp_is_fack(tp
) && tp
->lost_skb_hint
&&
1263 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1264 tp
->lost_cnt_hint
+= pcount
;
1266 if (fack_count
> tp
->fackets_out
)
1267 tp
->fackets_out
= fack_count
;
1270 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1271 * frames and clear it. undo_retrans is decreased above, L|R frames
1272 * are accounted above as well.
1274 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1275 sacked
&= ~TCPCB_SACKED_RETRANS
;
1276 tp
->retrans_out
-= pcount
;
1282 /* Shift newly-SACKed bytes from this skb to the immediately previous
1283 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1285 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1286 struct tcp_sacktag_state
*state
,
1287 unsigned int pcount
, int shifted
, int mss
,
1290 struct tcp_sock
*tp
= tcp_sk(sk
);
1291 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1292 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1293 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1297 /* Adjust counters and hints for the newly sacked sequence
1298 * range but discard the return value since prev is already
1299 * marked. We must tag the range first because the seq
1300 * advancement below implicitly advances
1301 * tcp_highest_sack_seq() when skb is highest_sack.
1303 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1304 start_seq
, end_seq
, dup_sack
, pcount
,
1306 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1308 if (skb
== tp
->lost_skb_hint
)
1309 tp
->lost_cnt_hint
+= pcount
;
1311 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1312 TCP_SKB_CB(skb
)->seq
+= shifted
;
1314 tcp_skb_pcount_add(prev
, pcount
);
1315 BUG_ON(tcp_skb_pcount(skb
) < pcount
);
1316 tcp_skb_pcount_add(skb
, -pcount
);
1318 /* When we're adding to gso_segs == 1, gso_size will be zero,
1319 * in theory this shouldn't be necessary but as long as DSACK
1320 * code can come after this skb later on it's better to keep
1321 * setting gso_size to something.
1323 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1324 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1326 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1327 if (tcp_skb_pcount(skb
) <= 1)
1328 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1330 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1331 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1334 BUG_ON(!tcp_skb_pcount(skb
));
1335 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1339 /* Whole SKB was eaten :-) */
1341 if (skb
== tp
->retransmit_skb_hint
)
1342 tp
->retransmit_skb_hint
= prev
;
1343 if (skb
== tp
->lost_skb_hint
) {
1344 tp
->lost_skb_hint
= prev
;
1345 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1348 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1349 TCP_SKB_CB(prev
)->eor
= TCP_SKB_CB(skb
)->eor
;
1350 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1351 TCP_SKB_CB(prev
)->end_seq
++;
1353 if (skb
== tcp_highest_sack(sk
))
1354 tcp_advance_highest_sack(sk
, skb
);
1356 tcp_skb_collapse_tstamp(prev
, skb
);
1357 if (unlikely(TCP_SKB_CB(prev
)->tx
.delivered_mstamp
.v64
))
1358 TCP_SKB_CB(prev
)->tx
.delivered_mstamp
.v64
= 0;
1360 tcp_unlink_write_queue(skb
, sk
);
1361 sk_wmem_free_skb(sk
, skb
);
1363 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1368 /* I wish gso_size would have a bit more sane initialization than
1369 * something-or-zero which complicates things
1371 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1373 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1376 /* Shifting pages past head area doesn't work */
1377 static int skb_can_shift(const struct sk_buff
*skb
)
1379 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1382 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1385 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1386 struct tcp_sacktag_state
*state
,
1387 u32 start_seq
, u32 end_seq
,
1390 struct tcp_sock
*tp
= tcp_sk(sk
);
1391 struct sk_buff
*prev
;
1397 if (!sk_can_gso(sk
))
1400 /* Normally R but no L won't result in plain S */
1402 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1404 if (!skb_can_shift(skb
))
1406 /* This frame is about to be dropped (was ACKed). */
1407 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1410 /* Can only happen with delayed DSACK + discard craziness */
1411 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1413 prev
= tcp_write_queue_prev(sk
, skb
);
1415 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1418 if (!tcp_skb_can_collapse_to(prev
))
1421 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1422 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1426 pcount
= tcp_skb_pcount(skb
);
1427 mss
= tcp_skb_seglen(skb
);
1429 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1430 * drop this restriction as unnecessary
1432 if (mss
!= tcp_skb_seglen(prev
))
1435 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1437 /* CHECKME: This is non-MSS split case only?, this will
1438 * cause skipped skbs due to advancing loop btw, original
1439 * has that feature too
1441 if (tcp_skb_pcount(skb
) <= 1)
1444 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1446 /* TODO: head merge to next could be attempted here
1447 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1448 * though it might not be worth of the additional hassle
1450 * ...we can probably just fallback to what was done
1451 * previously. We could try merging non-SACKed ones
1452 * as well but it probably isn't going to buy off
1453 * because later SACKs might again split them, and
1454 * it would make skb timestamp tracking considerably
1460 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1462 BUG_ON(len
> skb
->len
);
1464 /* MSS boundaries should be honoured or else pcount will
1465 * severely break even though it makes things bit trickier.
1466 * Optimize common case to avoid most of the divides
1468 mss
= tcp_skb_mss(skb
);
1470 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1471 * drop this restriction as unnecessary
1473 if (mss
!= tcp_skb_seglen(prev
))
1478 } else if (len
< mss
) {
1486 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1487 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1490 if (!skb_shift(prev
, skb
, len
))
1492 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1495 /* Hole filled allows collapsing with the next as well, this is very
1496 * useful when hole on every nth skb pattern happens
1498 if (prev
== tcp_write_queue_tail(sk
))
1500 skb
= tcp_write_queue_next(sk
, prev
);
1502 if (!skb_can_shift(skb
) ||
1503 (skb
== tcp_send_head(sk
)) ||
1504 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1505 (mss
!= tcp_skb_seglen(skb
)))
1509 if (skb_shift(prev
, skb
, len
)) {
1510 pcount
+= tcp_skb_pcount(skb
);
1511 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1515 state
->fack_count
+= pcount
;
1522 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1526 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1527 struct tcp_sack_block
*next_dup
,
1528 struct tcp_sacktag_state
*state
,
1529 u32 start_seq
, u32 end_seq
,
1532 struct tcp_sock
*tp
= tcp_sk(sk
);
1533 struct sk_buff
*tmp
;
1535 tcp_for_write_queue_from(skb
, sk
) {
1537 bool dup_sack
= dup_sack_in
;
1539 if (skb
== tcp_send_head(sk
))
1542 /* queue is in-order => we can short-circuit the walk early */
1543 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1547 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1548 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1549 next_dup
->start_seq
,
1555 /* skb reference here is a bit tricky to get right, since
1556 * shifting can eat and free both this skb and the next,
1557 * so not even _safe variant of the loop is enough.
1560 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1561 start_seq
, end_seq
, dup_sack
);
1570 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1576 if (unlikely(in_sack
< 0))
1580 TCP_SKB_CB(skb
)->sacked
=
1583 TCP_SKB_CB(skb
)->sacked
,
1584 TCP_SKB_CB(skb
)->seq
,
1585 TCP_SKB_CB(skb
)->end_seq
,
1587 tcp_skb_pcount(skb
),
1589 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1591 if (!before(TCP_SKB_CB(skb
)->seq
,
1592 tcp_highest_sack_seq(tp
)))
1593 tcp_advance_highest_sack(sk
, skb
);
1596 state
->fack_count
+= tcp_skb_pcount(skb
);
1601 /* Avoid all extra work that is being done by sacktag while walking in
1604 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1605 struct tcp_sacktag_state
*state
,
1608 tcp_for_write_queue_from(skb
, sk
) {
1609 if (skb
== tcp_send_head(sk
))
1612 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1615 state
->fack_count
+= tcp_skb_pcount(skb
);
1620 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1622 struct tcp_sack_block
*next_dup
,
1623 struct tcp_sacktag_state
*state
,
1629 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1630 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1631 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1632 next_dup
->start_seq
, next_dup
->end_seq
,
1639 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1641 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1645 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1646 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1648 struct tcp_sock
*tp
= tcp_sk(sk
);
1649 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1650 TCP_SKB_CB(ack_skb
)->sacked
);
1651 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1652 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1653 struct tcp_sack_block
*cache
;
1654 struct sk_buff
*skb
;
1655 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1657 bool found_dup_sack
= false;
1659 int first_sack_index
;
1662 state
->reord
= tp
->packets_out
;
1664 if (!tp
->sacked_out
) {
1665 if (WARN_ON(tp
->fackets_out
))
1666 tp
->fackets_out
= 0;
1667 tcp_highest_sack_reset(sk
);
1670 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1671 num_sacks
, prior_snd_una
);
1672 if (found_dup_sack
) {
1673 state
->flag
|= FLAG_DSACKING_ACK
;
1674 tp
->delivered
++; /* A spurious retransmission is delivered */
1677 /* Eliminate too old ACKs, but take into
1678 * account more or less fresh ones, they can
1679 * contain valid SACK info.
1681 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1684 if (!tp
->packets_out
)
1688 first_sack_index
= 0;
1689 for (i
= 0; i
< num_sacks
; i
++) {
1690 bool dup_sack
= !i
&& found_dup_sack
;
1692 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1693 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1695 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1696 sp
[used_sacks
].start_seq
,
1697 sp
[used_sacks
].end_seq
)) {
1701 if (!tp
->undo_marker
)
1702 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1704 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1706 /* Don't count olds caused by ACK reordering */
1707 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1708 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1710 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1713 NET_INC_STATS(sock_net(sk
), mib_idx
);
1715 first_sack_index
= -1;
1719 /* Ignore very old stuff early */
1720 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1726 /* order SACK blocks to allow in order walk of the retrans queue */
1727 for (i
= used_sacks
- 1; i
> 0; i
--) {
1728 for (j
= 0; j
< i
; j
++) {
1729 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1730 swap(sp
[j
], sp
[j
+ 1]);
1732 /* Track where the first SACK block goes to */
1733 if (j
== first_sack_index
)
1734 first_sack_index
= j
+ 1;
1739 skb
= tcp_write_queue_head(sk
);
1740 state
->fack_count
= 0;
1743 if (!tp
->sacked_out
) {
1744 /* It's already past, so skip checking against it */
1745 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1747 cache
= tp
->recv_sack_cache
;
1748 /* Skip empty blocks in at head of the cache */
1749 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1754 while (i
< used_sacks
) {
1755 u32 start_seq
= sp
[i
].start_seq
;
1756 u32 end_seq
= sp
[i
].end_seq
;
1757 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1758 struct tcp_sack_block
*next_dup
= NULL
;
1760 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1761 next_dup
= &sp
[i
+ 1];
1763 /* Skip too early cached blocks */
1764 while (tcp_sack_cache_ok(tp
, cache
) &&
1765 !before(start_seq
, cache
->end_seq
))
1768 /* Can skip some work by looking recv_sack_cache? */
1769 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1770 after(end_seq
, cache
->start_seq
)) {
1773 if (before(start_seq
, cache
->start_seq
)) {
1774 skb
= tcp_sacktag_skip(skb
, sk
, state
,
1776 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1783 /* Rest of the block already fully processed? */
1784 if (!after(end_seq
, cache
->end_seq
))
1787 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1791 /* ...tail remains todo... */
1792 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1793 /* ...but better entrypoint exists! */
1794 skb
= tcp_highest_sack(sk
);
1797 state
->fack_count
= tp
->fackets_out
;
1802 skb
= tcp_sacktag_skip(skb
, sk
, state
, cache
->end_seq
);
1803 /* Check overlap against next cached too (past this one already) */
1808 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1809 skb
= tcp_highest_sack(sk
);
1812 state
->fack_count
= tp
->fackets_out
;
1814 skb
= tcp_sacktag_skip(skb
, sk
, state
, start_seq
);
1817 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1818 start_seq
, end_seq
, dup_sack
);
1824 /* Clear the head of the cache sack blocks so we can skip it next time */
1825 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1826 tp
->recv_sack_cache
[i
].start_seq
= 0;
1827 tp
->recv_sack_cache
[i
].end_seq
= 0;
1829 for (j
= 0; j
< used_sacks
; j
++)
1830 tp
->recv_sack_cache
[i
++] = sp
[j
];
1832 if ((state
->reord
< tp
->fackets_out
) &&
1833 ((inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
))
1834 tcp_update_reordering(sk
, tp
->fackets_out
- state
->reord
, 0);
1836 tcp_verify_left_out(tp
);
1839 #if FASTRETRANS_DEBUG > 0
1840 WARN_ON((int)tp
->sacked_out
< 0);
1841 WARN_ON((int)tp
->lost_out
< 0);
1842 WARN_ON((int)tp
->retrans_out
< 0);
1843 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1848 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1849 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1851 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1855 holes
= max(tp
->lost_out
, 1U);
1856 holes
= min(holes
, tp
->packets_out
);
1858 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1859 tp
->sacked_out
= tp
->packets_out
- holes
;
1865 /* If we receive more dupacks than we expected counting segments
1866 * in assumption of absent reordering, interpret this as reordering.
1867 * The only another reason could be bug in receiver TCP.
1869 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1871 struct tcp_sock
*tp
= tcp_sk(sk
);
1872 if (tcp_limit_reno_sacked(tp
))
1873 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1876 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1878 static void tcp_add_reno_sack(struct sock
*sk
)
1880 struct tcp_sock
*tp
= tcp_sk(sk
);
1881 u32 prior_sacked
= tp
->sacked_out
;
1884 tcp_check_reno_reordering(sk
, 0);
1885 if (tp
->sacked_out
> prior_sacked
)
1886 tp
->delivered
++; /* Some out-of-order packet is delivered */
1887 tcp_verify_left_out(tp
);
1890 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1892 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1894 struct tcp_sock
*tp
= tcp_sk(sk
);
1897 /* One ACK acked hole. The rest eat duplicate ACKs. */
1898 tp
->delivered
+= max_t(int, acked
- tp
->sacked_out
, 1);
1899 if (acked
- 1 >= tp
->sacked_out
)
1902 tp
->sacked_out
-= acked
- 1;
1904 tcp_check_reno_reordering(sk
, acked
);
1905 tcp_verify_left_out(tp
);
1908 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1913 void tcp_clear_retrans(struct tcp_sock
*tp
)
1915 tp
->retrans_out
= 0;
1917 tp
->undo_marker
= 0;
1918 tp
->undo_retrans
= -1;
1919 tp
->fackets_out
= 0;
1923 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1925 tp
->undo_marker
= tp
->snd_una
;
1926 /* Retransmission still in flight may cause DSACKs later. */
1927 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1930 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1931 * and reset tags completely, otherwise preserve SACKs. If receiver
1932 * dropped its ofo queue, we will know this due to reneging detection.
1934 void tcp_enter_loss(struct sock
*sk
)
1936 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1937 struct tcp_sock
*tp
= tcp_sk(sk
);
1938 struct net
*net
= sock_net(sk
);
1939 struct sk_buff
*skb
;
1940 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
1941 bool is_reneg
; /* is receiver reneging on SACKs? */
1944 /* Reduce ssthresh if it has not yet been made inside this window. */
1945 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1946 !after(tp
->high_seq
, tp
->snd_una
) ||
1947 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1948 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1949 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1950 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1954 tp
->snd_cwnd_cnt
= 0;
1955 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1957 tp
->retrans_out
= 0;
1960 if (tcp_is_reno(tp
))
1961 tcp_reset_reno_sack(tp
);
1963 skb
= tcp_write_queue_head(sk
);
1964 is_reneg
= skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
);
1966 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1968 tp
->fackets_out
= 0;
1970 tcp_clear_all_retrans_hints(tp
);
1972 tcp_for_write_queue(skb
, sk
) {
1973 if (skb
== tcp_send_head(sk
))
1976 mark_lost
= (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
1979 tcp_sum_lost(tp
, skb
);
1980 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1982 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1983 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1984 tp
->lost_out
+= tcp_skb_pcount(skb
);
1985 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
1988 tcp_verify_left_out(tp
);
1990 /* Timeout in disordered state after receiving substantial DUPACKs
1991 * suggests that the degree of reordering is over-estimated.
1993 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
1994 tp
->sacked_out
>= net
->ipv4
.sysctl_tcp_reordering
)
1995 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1996 net
->ipv4
.sysctl_tcp_reordering
);
1997 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1998 tp
->high_seq
= tp
->snd_nxt
;
1999 tcp_ecn_queue_cwr(tp
);
2001 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2002 * loss recovery is underway except recurring timeout(s) on
2003 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2005 tp
->frto
= sysctl_tcp_frto
&&
2006 (new_recovery
|| icsk
->icsk_retransmits
) &&
2007 !inet_csk(sk
)->icsk_mtup
.probe_size
;
2010 /* If ACK arrived pointing to a remembered SACK, it means that our
2011 * remembered SACKs do not reflect real state of receiver i.e.
2012 * receiver _host_ is heavily congested (or buggy).
2014 * To avoid big spurious retransmission bursts due to transient SACK
2015 * scoreboard oddities that look like reneging, we give the receiver a
2016 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2017 * restore sanity to the SACK scoreboard. If the apparent reneging
2018 * persists until this RTO then we'll clear the SACK scoreboard.
2020 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2022 if (flag
& FLAG_SACK_RENEGING
) {
2023 struct tcp_sock
*tp
= tcp_sk(sk
);
2024 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
2025 msecs_to_jiffies(10));
2027 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2028 delay
, TCP_RTO_MAX
);
2034 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
2036 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2039 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2040 * counter when SACK is enabled (without SACK, sacked_out is used for
2043 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2044 * segments up to the highest received SACK block so far and holes in
2047 * With reordering, holes may still be in flight, so RFC3517 recovery
2048 * uses pure sacked_out (total number of SACKed segments) even though
2049 * it violates the RFC that uses duplicate ACKs, often these are equal
2050 * but when e.g. out-of-window ACKs or packet duplication occurs,
2051 * they differ. Since neither occurs due to loss, TCP should really
2054 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2056 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2059 static bool tcp_pause_early_retransmit(struct sock
*sk
, int flag
)
2061 struct tcp_sock
*tp
= tcp_sk(sk
);
2062 unsigned long delay
;
2064 /* Delay early retransmit and entering fast recovery for
2065 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2066 * available, or RTO is scheduled to fire first.
2068 if (sysctl_tcp_early_retrans
< 2 || sysctl_tcp_early_retrans
> 3 ||
2069 (flag
& FLAG_ECE
) || !tp
->srtt_us
)
2072 delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 5),
2073 msecs_to_jiffies(2));
2075 if (!time_after(inet_csk(sk
)->icsk_timeout
, (jiffies
+ delay
)))
2078 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_EARLY_RETRANS
, delay
,
2083 /* Linux NewReno/SACK/FACK/ECN state machine.
2084 * --------------------------------------
2086 * "Open" Normal state, no dubious events, fast path.
2087 * "Disorder" In all the respects it is "Open",
2088 * but requires a bit more attention. It is entered when
2089 * we see some SACKs or dupacks. It is split of "Open"
2090 * mainly to move some processing from fast path to slow one.
2091 * "CWR" CWND was reduced due to some Congestion Notification event.
2092 * It can be ECN, ICMP source quench, local device congestion.
2093 * "Recovery" CWND was reduced, we are fast-retransmitting.
2094 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2096 * tcp_fastretrans_alert() is entered:
2097 * - each incoming ACK, if state is not "Open"
2098 * - when arrived ACK is unusual, namely:
2103 * Counting packets in flight is pretty simple.
2105 * in_flight = packets_out - left_out + retrans_out
2107 * packets_out is SND.NXT-SND.UNA counted in packets.
2109 * retrans_out is number of retransmitted segments.
2111 * left_out is number of segments left network, but not ACKed yet.
2113 * left_out = sacked_out + lost_out
2115 * sacked_out: Packets, which arrived to receiver out of order
2116 * and hence not ACKed. With SACKs this number is simply
2117 * amount of SACKed data. Even without SACKs
2118 * it is easy to give pretty reliable estimate of this number,
2119 * counting duplicate ACKs.
2121 * lost_out: Packets lost by network. TCP has no explicit
2122 * "loss notification" feedback from network (for now).
2123 * It means that this number can be only _guessed_.
2124 * Actually, it is the heuristics to predict lossage that
2125 * distinguishes different algorithms.
2127 * F.e. after RTO, when all the queue is considered as lost,
2128 * lost_out = packets_out and in_flight = retrans_out.
2130 * Essentially, we have now two algorithms counting
2133 * FACK: It is the simplest heuristics. As soon as we decided
2134 * that something is lost, we decide that _all_ not SACKed
2135 * packets until the most forward SACK are lost. I.e.
2136 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2137 * It is absolutely correct estimate, if network does not reorder
2138 * packets. And it loses any connection to reality when reordering
2139 * takes place. We use FACK by default until reordering
2140 * is suspected on the path to this destination.
2142 * NewReno: when Recovery is entered, we assume that one segment
2143 * is lost (classic Reno). While we are in Recovery and
2144 * a partial ACK arrives, we assume that one more packet
2145 * is lost (NewReno). This heuristics are the same in NewReno
2148 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2149 * deflation etc. CWND is real congestion window, never inflated, changes
2150 * only according to classic VJ rules.
2152 * Really tricky (and requiring careful tuning) part of algorithm
2153 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2154 * The first determines the moment _when_ we should reduce CWND and,
2155 * hence, slow down forward transmission. In fact, it determines the moment
2156 * when we decide that hole is caused by loss, rather than by a reorder.
2158 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2159 * holes, caused by lost packets.
2161 * And the most logically complicated part of algorithm is undo
2162 * heuristics. We detect false retransmits due to both too early
2163 * fast retransmit (reordering) and underestimated RTO, analyzing
2164 * timestamps and D-SACKs. When we detect that some segments were
2165 * retransmitted by mistake and CWND reduction was wrong, we undo
2166 * window reduction and abort recovery phase. This logic is hidden
2167 * inside several functions named tcp_try_undo_<something>.
2170 /* This function decides, when we should leave Disordered state
2171 * and enter Recovery phase, reducing congestion window.
2173 * Main question: may we further continue forward transmission
2174 * with the same cwnd?
2176 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2178 struct tcp_sock
*tp
= tcp_sk(sk
);
2180 int tcp_reordering
= sock_net(sk
)->ipv4
.sysctl_tcp_reordering
;
2182 /* Trick#1: The loss is proven. */
2186 /* Not-A-Trick#2 : Classic rule... */
2187 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2190 /* Trick#4: It is still not OK... But will it be useful to delay
2193 packets_out
= tp
->packets_out
;
2194 if (packets_out
<= tp
->reordering
&&
2195 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, tcp_reordering
) &&
2196 !tcp_may_send_now(sk
)) {
2197 /* We have nothing to send. This connection is limited
2198 * either by receiver window or by application.
2203 /* If a thin stream is detected, retransmit after first
2204 * received dupack. Employ only if SACK is supported in order
2205 * to avoid possible corner-case series of spurious retransmissions
2206 * Use only if there are no unsent data.
2208 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2209 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2210 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2213 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2214 * retransmissions due to small network reorderings, we implement
2215 * Mitigation A.3 in the RFC and delay the retransmission for a short
2216 * interval if appropriate.
2218 if (tp
->do_early_retrans
&& !tp
->retrans_out
&& tp
->sacked_out
&&
2219 (tp
->packets_out
>= (tp
->sacked_out
+ 1) && tp
->packets_out
< 4) &&
2220 !tcp_may_send_now(sk
))
2221 return !tcp_pause_early_retransmit(sk
, flag
);
2226 /* Detect loss in event "A" above by marking head of queue up as lost.
2227 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2228 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2229 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2230 * the maximum SACKed segments to pass before reaching this limit.
2232 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2234 struct tcp_sock
*tp
= tcp_sk(sk
);
2235 struct sk_buff
*skb
;
2236 int cnt
, oldcnt
, lost
;
2238 /* Use SACK to deduce losses of new sequences sent during recovery */
2239 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2241 WARN_ON(packets
> tp
->packets_out
);
2242 if (tp
->lost_skb_hint
) {
2243 skb
= tp
->lost_skb_hint
;
2244 cnt
= tp
->lost_cnt_hint
;
2245 /* Head already handled? */
2246 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2249 skb
= tcp_write_queue_head(sk
);
2253 tcp_for_write_queue_from(skb
, sk
) {
2254 if (skb
== tcp_send_head(sk
))
2256 /* TODO: do this better */
2257 /* this is not the most efficient way to do this... */
2258 tp
->lost_skb_hint
= skb
;
2259 tp
->lost_cnt_hint
= cnt
;
2261 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2265 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2266 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2267 cnt
+= tcp_skb_pcount(skb
);
2269 if (cnt
> packets
) {
2270 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2271 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2272 (oldcnt
>= packets
))
2275 mss
= tcp_skb_mss(skb
);
2276 /* If needed, chop off the prefix to mark as lost. */
2277 lost
= (packets
- oldcnt
) * mss
;
2278 if (lost
< skb
->len
&&
2279 tcp_fragment(sk
, skb
, lost
, mss
, GFP_ATOMIC
) < 0)
2284 tcp_skb_mark_lost(tp
, skb
);
2289 tcp_verify_left_out(tp
);
2292 /* Account newly detected lost packet(s) */
2294 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2296 struct tcp_sock
*tp
= tcp_sk(sk
);
2298 if (tcp_is_reno(tp
)) {
2299 tcp_mark_head_lost(sk
, 1, 1);
2300 } else if (tcp_is_fack(tp
)) {
2301 int lost
= tp
->fackets_out
- tp
->reordering
;
2304 tcp_mark_head_lost(sk
, lost
, 0);
2306 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2307 if (sacked_upto
>= 0)
2308 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2309 else if (fast_rexmit
)
2310 tcp_mark_head_lost(sk
, 1, 1);
2314 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2316 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2317 before(tp
->rx_opt
.rcv_tsecr
, when
);
2320 /* skb is spurious retransmitted if the returned timestamp echo
2321 * reply is prior to the skb transmission time
2323 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2324 const struct sk_buff
*skb
)
2326 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2327 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2330 /* Nothing was retransmitted or returned timestamp is less
2331 * than timestamp of the first retransmission.
2333 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2335 return !tp
->retrans_stamp
||
2336 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2339 /* Undo procedures. */
2341 /* We can clear retrans_stamp when there are no retransmissions in the
2342 * window. It would seem that it is trivially available for us in
2343 * tp->retrans_out, however, that kind of assumptions doesn't consider
2344 * what will happen if errors occur when sending retransmission for the
2345 * second time. ...It could the that such segment has only
2346 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2347 * the head skb is enough except for some reneging corner cases that
2348 * are not worth the effort.
2350 * Main reason for all this complexity is the fact that connection dying
2351 * time now depends on the validity of the retrans_stamp, in particular,
2352 * that successive retransmissions of a segment must not advance
2353 * retrans_stamp under any conditions.
2355 static bool tcp_any_retrans_done(const struct sock
*sk
)
2357 const struct tcp_sock
*tp
= tcp_sk(sk
);
2358 struct sk_buff
*skb
;
2360 if (tp
->retrans_out
)
2363 skb
= tcp_write_queue_head(sk
);
2364 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2370 #if FASTRETRANS_DEBUG > 1
2371 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2373 struct tcp_sock
*tp
= tcp_sk(sk
);
2374 struct inet_sock
*inet
= inet_sk(sk
);
2376 if (sk
->sk_family
== AF_INET
) {
2377 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2379 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2380 tp
->snd_cwnd
, tcp_left_out(tp
),
2381 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2384 #if IS_ENABLED(CONFIG_IPV6)
2385 else if (sk
->sk_family
== AF_INET6
) {
2386 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2388 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2389 tp
->snd_cwnd
, tcp_left_out(tp
),
2390 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2396 #define DBGUNDO(x...) do { } while (0)
2399 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2401 struct tcp_sock
*tp
= tcp_sk(sk
);
2404 struct sk_buff
*skb
;
2406 tcp_for_write_queue(skb
, sk
) {
2407 if (skb
== tcp_send_head(sk
))
2409 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2412 tcp_clear_all_retrans_hints(tp
);
2415 if (tp
->prior_ssthresh
) {
2416 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2418 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2420 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2421 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2422 tcp_ecn_withdraw_cwr(tp
);
2425 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2426 tp
->undo_marker
= 0;
2429 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2431 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2434 /* People celebrate: "We love our President!" */
2435 static bool tcp_try_undo_recovery(struct sock
*sk
)
2437 struct tcp_sock
*tp
= tcp_sk(sk
);
2439 if (tcp_may_undo(tp
)) {
2442 /* Happy end! We did not retransmit anything
2443 * or our original transmission succeeded.
2445 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2446 tcp_undo_cwnd_reduction(sk
, false);
2447 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2448 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2450 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2452 NET_INC_STATS(sock_net(sk
), mib_idx
);
2454 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2455 /* Hold old state until something *above* high_seq
2456 * is ACKed. For Reno it is MUST to prevent false
2457 * fast retransmits (RFC2582). SACK TCP is safe. */
2458 if (!tcp_any_retrans_done(sk
))
2459 tp
->retrans_stamp
= 0;
2462 tcp_set_ca_state(sk
, TCP_CA_Open
);
2466 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2467 static bool tcp_try_undo_dsack(struct sock
*sk
)
2469 struct tcp_sock
*tp
= tcp_sk(sk
);
2471 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2472 DBGUNDO(sk
, "D-SACK");
2473 tcp_undo_cwnd_reduction(sk
, false);
2474 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2480 /* Undo during loss recovery after partial ACK or using F-RTO. */
2481 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2483 struct tcp_sock
*tp
= tcp_sk(sk
);
2485 if (frto_undo
|| tcp_may_undo(tp
)) {
2486 tcp_undo_cwnd_reduction(sk
, true);
2488 DBGUNDO(sk
, "partial loss");
2489 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2491 NET_INC_STATS(sock_net(sk
),
2492 LINUX_MIB_TCPSPURIOUSRTOS
);
2493 inet_csk(sk
)->icsk_retransmits
= 0;
2494 if (frto_undo
|| tcp_is_sack(tp
))
2495 tcp_set_ca_state(sk
, TCP_CA_Open
);
2501 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2502 * It computes the number of packets to send (sndcnt) based on packets newly
2504 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2505 * cwnd reductions across a full RTT.
2506 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2507 * But when the retransmits are acked without further losses, PRR
2508 * slow starts cwnd up to ssthresh to speed up the recovery.
2510 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2512 struct tcp_sock
*tp
= tcp_sk(sk
);
2514 tp
->high_seq
= tp
->snd_nxt
;
2515 tp
->tlp_high_seq
= 0;
2516 tp
->snd_cwnd_cnt
= 0;
2517 tp
->prior_cwnd
= tp
->snd_cwnd
;
2518 tp
->prr_delivered
= 0;
2520 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2521 tcp_ecn_queue_cwr(tp
);
2524 static void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
,
2527 struct tcp_sock
*tp
= tcp_sk(sk
);
2529 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2531 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2534 tp
->prr_delivered
+= newly_acked_sacked
;
2536 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2538 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2539 } else if ((flag
& FLAG_RETRANS_DATA_ACKED
) &&
2540 !(flag
& FLAG_LOST_RETRANS
)) {
2541 sndcnt
= min_t(int, delta
,
2542 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2543 newly_acked_sacked
) + 1);
2545 sndcnt
= min(delta
, newly_acked_sacked
);
2547 /* Force a fast retransmit upon entering fast recovery */
2548 sndcnt
= max(sndcnt
, (tp
->prr_out
? 0 : 1));
2549 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2552 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2554 struct tcp_sock
*tp
= tcp_sk(sk
);
2556 if (inet_csk(sk
)->icsk_ca_ops
->cong_control
)
2559 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2560 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
||
2561 (tp
->undo_marker
&& tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
)) {
2562 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2563 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2565 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2568 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2569 void tcp_enter_cwr(struct sock
*sk
)
2571 struct tcp_sock
*tp
= tcp_sk(sk
);
2573 tp
->prior_ssthresh
= 0;
2574 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2575 tp
->undo_marker
= 0;
2576 tcp_init_cwnd_reduction(sk
);
2577 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2580 EXPORT_SYMBOL(tcp_enter_cwr
);
2582 static void tcp_try_keep_open(struct sock
*sk
)
2584 struct tcp_sock
*tp
= tcp_sk(sk
);
2585 int state
= TCP_CA_Open
;
2587 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2588 state
= TCP_CA_Disorder
;
2590 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2591 tcp_set_ca_state(sk
, state
);
2592 tp
->high_seq
= tp
->snd_nxt
;
2596 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2598 struct tcp_sock
*tp
= tcp_sk(sk
);
2600 tcp_verify_left_out(tp
);
2602 if (!tcp_any_retrans_done(sk
))
2603 tp
->retrans_stamp
= 0;
2605 if (flag
& FLAG_ECE
)
2608 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2609 tcp_try_keep_open(sk
);
2613 static void tcp_mtup_probe_failed(struct sock
*sk
)
2615 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2617 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2618 icsk
->icsk_mtup
.probe_size
= 0;
2619 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2622 static void tcp_mtup_probe_success(struct sock
*sk
)
2624 struct tcp_sock
*tp
= tcp_sk(sk
);
2625 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2627 /* FIXME: breaks with very large cwnd */
2628 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2629 tp
->snd_cwnd
= tp
->snd_cwnd
*
2630 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2631 icsk
->icsk_mtup
.probe_size
;
2632 tp
->snd_cwnd_cnt
= 0;
2633 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2634 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2636 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2637 icsk
->icsk_mtup
.probe_size
= 0;
2638 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2639 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2642 /* Do a simple retransmit without using the backoff mechanisms in
2643 * tcp_timer. This is used for path mtu discovery.
2644 * The socket is already locked here.
2646 void tcp_simple_retransmit(struct sock
*sk
)
2648 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2649 struct tcp_sock
*tp
= tcp_sk(sk
);
2650 struct sk_buff
*skb
;
2651 unsigned int mss
= tcp_current_mss(sk
);
2652 u32 prior_lost
= tp
->lost_out
;
2654 tcp_for_write_queue(skb
, sk
) {
2655 if (skb
== tcp_send_head(sk
))
2657 if (tcp_skb_seglen(skb
) > mss
&&
2658 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2659 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2660 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2661 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2663 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2667 tcp_clear_retrans_hints_partial(tp
);
2669 if (prior_lost
== tp
->lost_out
)
2672 if (tcp_is_reno(tp
))
2673 tcp_limit_reno_sacked(tp
);
2675 tcp_verify_left_out(tp
);
2677 /* Don't muck with the congestion window here.
2678 * Reason is that we do not increase amount of _data_
2679 * in network, but units changed and effective
2680 * cwnd/ssthresh really reduced now.
2682 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2683 tp
->high_seq
= tp
->snd_nxt
;
2684 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2685 tp
->prior_ssthresh
= 0;
2686 tp
->undo_marker
= 0;
2687 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2689 tcp_xmit_retransmit_queue(sk
);
2691 EXPORT_SYMBOL(tcp_simple_retransmit
);
2693 static void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2695 struct tcp_sock
*tp
= tcp_sk(sk
);
2698 if (tcp_is_reno(tp
))
2699 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2701 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2703 NET_INC_STATS(sock_net(sk
), mib_idx
);
2705 tp
->prior_ssthresh
= 0;
2708 if (!tcp_in_cwnd_reduction(sk
)) {
2710 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2711 tcp_init_cwnd_reduction(sk
);
2713 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2716 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2717 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2719 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
,
2722 struct tcp_sock
*tp
= tcp_sk(sk
);
2723 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2725 if ((flag
& FLAG_SND_UNA_ADVANCED
) &&
2726 tcp_try_undo_loss(sk
, false))
2729 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2730 /* Step 3.b. A timeout is spurious if not all data are
2731 * lost, i.e., never-retransmitted data are (s)acked.
2733 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2734 tcp_try_undo_loss(sk
, true))
2737 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2738 if (flag
& FLAG_DATA_SACKED
|| is_dupack
)
2739 tp
->frto
= 0; /* Step 3.a. loss was real */
2740 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2741 tp
->high_seq
= tp
->snd_nxt
;
2742 /* Step 2.b. Try send new data (but deferred until cwnd
2743 * is updated in tcp_ack()). Otherwise fall back to
2744 * the conventional recovery.
2746 if (tcp_send_head(sk
) &&
2747 after(tcp_wnd_end(tp
), tp
->snd_nxt
)) {
2748 *rexmit
= REXMIT_NEW
;
2756 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2757 tcp_try_undo_recovery(sk
);
2760 if (tcp_is_reno(tp
)) {
2761 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2762 * delivered. Lower inflight to clock out (re)tranmissions.
2764 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2765 tcp_add_reno_sack(sk
);
2766 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2767 tcp_reset_reno_sack(tp
);
2769 *rexmit
= REXMIT_LOST
;
2772 /* Undo during fast recovery after partial ACK. */
2773 static bool tcp_try_undo_partial(struct sock
*sk
, const int acked
)
2775 struct tcp_sock
*tp
= tcp_sk(sk
);
2777 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2778 /* Plain luck! Hole if filled with delayed
2779 * packet, rather than with a retransmit.
2781 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2783 /* We are getting evidence that the reordering degree is higher
2784 * than we realized. If there are no retransmits out then we
2785 * can undo. Otherwise we clock out new packets but do not
2786 * mark more packets lost or retransmit more.
2788 if (tp
->retrans_out
)
2791 if (!tcp_any_retrans_done(sk
))
2792 tp
->retrans_stamp
= 0;
2794 DBGUNDO(sk
, "partial recovery");
2795 tcp_undo_cwnd_reduction(sk
, true);
2796 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2797 tcp_try_keep_open(sk
);
2803 /* Process an event, which can update packets-in-flight not trivially.
2804 * Main goal of this function is to calculate new estimate for left_out,
2805 * taking into account both packets sitting in receiver's buffer and
2806 * packets lost by network.
2808 * Besides that it updates the congestion state when packet loss or ECN
2809 * is detected. But it does not reduce the cwnd, it is done by the
2810 * congestion control later.
2812 * It does _not_ decide what to send, it is made in function
2813 * tcp_xmit_retransmit_queue().
2815 static void tcp_fastretrans_alert(struct sock
*sk
, const int acked
,
2816 bool is_dupack
, int *ack_flag
, int *rexmit
)
2818 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2819 struct tcp_sock
*tp
= tcp_sk(sk
);
2820 int fast_rexmit
= 0, flag
= *ack_flag
;
2821 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2822 (tcp_fackets_out(tp
) > tp
->reordering
));
2824 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2826 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2827 tp
->fackets_out
= 0;
2829 /* Now state machine starts.
2830 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2831 if (flag
& FLAG_ECE
)
2832 tp
->prior_ssthresh
= 0;
2834 /* B. In all the states check for reneging SACKs. */
2835 if (tcp_check_sack_reneging(sk
, flag
))
2838 /* C. Check consistency of the current state. */
2839 tcp_verify_left_out(tp
);
2841 /* D. Check state exit conditions. State can be terminated
2842 * when high_seq is ACKed. */
2843 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2844 WARN_ON(tp
->retrans_out
!= 0);
2845 tp
->retrans_stamp
= 0;
2846 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2847 switch (icsk
->icsk_ca_state
) {
2849 /* CWR is to be held something *above* high_seq
2850 * is ACKed for CWR bit to reach receiver. */
2851 if (tp
->snd_una
!= tp
->high_seq
) {
2852 tcp_end_cwnd_reduction(sk
);
2853 tcp_set_ca_state(sk
, TCP_CA_Open
);
2857 case TCP_CA_Recovery
:
2858 if (tcp_is_reno(tp
))
2859 tcp_reset_reno_sack(tp
);
2860 if (tcp_try_undo_recovery(sk
))
2862 tcp_end_cwnd_reduction(sk
);
2867 /* Use RACK to detect loss */
2868 if (sysctl_tcp_recovery
& TCP_RACK_LOST_RETRANS
&&
2869 tcp_rack_mark_lost(sk
)) {
2870 flag
|= FLAG_LOST_RETRANS
;
2871 *ack_flag
|= FLAG_LOST_RETRANS
;
2874 /* E. Process state. */
2875 switch (icsk
->icsk_ca_state
) {
2876 case TCP_CA_Recovery
:
2877 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2878 if (tcp_is_reno(tp
) && is_dupack
)
2879 tcp_add_reno_sack(sk
);
2881 if (tcp_try_undo_partial(sk
, acked
))
2883 /* Partial ACK arrived. Force fast retransmit. */
2884 do_lost
= tcp_is_reno(tp
) ||
2885 tcp_fackets_out(tp
) > tp
->reordering
;
2887 if (tcp_try_undo_dsack(sk
)) {
2888 tcp_try_keep_open(sk
);
2893 tcp_process_loss(sk
, flag
, is_dupack
, rexmit
);
2894 if (icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2895 !(flag
& FLAG_LOST_RETRANS
))
2897 /* Change state if cwnd is undone or retransmits are lost */
2899 if (tcp_is_reno(tp
)) {
2900 if (flag
& FLAG_SND_UNA_ADVANCED
)
2901 tcp_reset_reno_sack(tp
);
2903 tcp_add_reno_sack(sk
);
2906 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2907 tcp_try_undo_dsack(sk
);
2909 if (!tcp_time_to_recover(sk
, flag
)) {
2910 tcp_try_to_open(sk
, flag
);
2914 /* MTU probe failure: don't reduce cwnd */
2915 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2916 icsk
->icsk_mtup
.probe_size
&&
2917 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2918 tcp_mtup_probe_failed(sk
);
2919 /* Restores the reduction we did in tcp_mtup_probe() */
2921 tcp_simple_retransmit(sk
);
2925 /* Otherwise enter Recovery state */
2926 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2931 tcp_update_scoreboard(sk
, fast_rexmit
);
2932 *rexmit
= REXMIT_LOST
;
2935 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
)
2937 struct tcp_sock
*tp
= tcp_sk(sk
);
2938 u32 wlen
= sysctl_tcp_min_rtt_wlen
* HZ
;
2940 minmax_running_min(&tp
->rtt_min
, wlen
, tcp_time_stamp
,
2941 rtt_us
? : jiffies_to_usecs(1));
2944 static inline bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2945 long seq_rtt_us
, long sack_rtt_us
,
2948 const struct tcp_sock
*tp
= tcp_sk(sk
);
2950 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2951 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2952 * Karn's algorithm forbids taking RTT if some retransmitted data
2953 * is acked (RFC6298).
2956 seq_rtt_us
= sack_rtt_us
;
2958 /* RTTM Rule: A TSecr value received in a segment is used to
2959 * update the averaged RTT measurement only if the segment
2960 * acknowledges some new data, i.e., only if it advances the
2961 * left edge of the send window.
2962 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2964 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2966 seq_rtt_us
= ca_rtt_us
= jiffies_to_usecs(tcp_time_stamp
-
2967 tp
->rx_opt
.rcv_tsecr
);
2971 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2972 * always taken together with ACK, SACK, or TS-opts. Any negative
2973 * values will be skipped with the seq_rtt_us < 0 check above.
2975 tcp_update_rtt_min(sk
, ca_rtt_us
);
2976 tcp_rtt_estimator(sk
, seq_rtt_us
);
2979 /* RFC6298: only reset backoff on valid RTT measurement. */
2980 inet_csk(sk
)->icsk_backoff
= 0;
2984 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2985 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2989 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
.v64
) {
2990 struct skb_mstamp now
;
2992 skb_mstamp_get(&now
);
2993 rtt_us
= skb_mstamp_us_delta(&now
, &tcp_rsk(req
)->snt_synack
);
2996 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
);
3000 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
3002 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3004 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
3005 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3008 /* Restart timer after forward progress on connection.
3009 * RFC2988 recommends to restart timer to now+rto.
3011 void tcp_rearm_rto(struct sock
*sk
)
3013 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3014 struct tcp_sock
*tp
= tcp_sk(sk
);
3016 /* If the retrans timer is currently being used by Fast Open
3017 * for SYN-ACK retrans purpose, stay put.
3019 if (tp
->fastopen_rsk
)
3022 if (!tp
->packets_out
) {
3023 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3025 u32 rto
= inet_csk(sk
)->icsk_rto
;
3026 /* Offset the time elapsed after installing regular RTO */
3027 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
3028 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
3029 struct sk_buff
*skb
= tcp_write_queue_head(sk
);
3030 const u32 rto_time_stamp
=
3031 tcp_skb_timestamp(skb
) + rto
;
3032 s32 delta
= (s32
)(rto_time_stamp
- tcp_time_stamp
);
3033 /* delta may not be positive if the socket is locked
3034 * when the retrans timer fires and is rescheduled.
3039 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3044 /* This function is called when the delayed ER timer fires. TCP enters
3045 * fast recovery and performs fast-retransmit.
3047 void tcp_resume_early_retransmit(struct sock
*sk
)
3049 struct tcp_sock
*tp
= tcp_sk(sk
);
3053 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3054 if (!tp
->do_early_retrans
)
3057 tcp_enter_recovery(sk
, false);
3058 tcp_update_scoreboard(sk
, 1);
3059 tcp_xmit_retransmit_queue(sk
);
3062 /* If we get here, the whole TSO packet has not been acked. */
3063 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3065 struct tcp_sock
*tp
= tcp_sk(sk
);
3068 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3070 packets_acked
= tcp_skb_pcount(skb
);
3071 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3073 packets_acked
-= tcp_skb_pcount(skb
);
3075 if (packets_acked
) {
3076 BUG_ON(tcp_skb_pcount(skb
) == 0);
3077 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3080 return packets_acked
;
3083 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3086 const struct skb_shared_info
*shinfo
;
3088 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3089 if (likely(!TCP_SKB_CB(skb
)->txstamp_ack
))
3092 shinfo
= skb_shinfo(skb
);
3093 if (!before(shinfo
->tskey
, prior_snd_una
) &&
3094 before(shinfo
->tskey
, tcp_sk(sk
)->snd_una
))
3095 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3098 /* Remove acknowledged frames from the retransmission queue. If our packet
3099 * is before the ack sequence we can discard it as it's confirmed to have
3100 * arrived at the other end.
3102 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3103 u32 prior_snd_una
, int *acked
,
3104 struct tcp_sacktag_state
*sack
,
3105 struct skb_mstamp
*now
)
3107 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3108 struct skb_mstamp first_ackt
, last_ackt
;
3109 struct tcp_sock
*tp
= tcp_sk(sk
);
3110 u32 prior_sacked
= tp
->sacked_out
;
3111 u32 reord
= tp
->packets_out
;
3112 bool fully_acked
= true;
3113 long sack_rtt_us
= -1L;
3114 long seq_rtt_us
= -1L;
3115 long ca_rtt_us
= -1L;
3116 struct sk_buff
*skb
;
3118 u32 last_in_flight
= 0;
3124 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3125 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3126 u8 sacked
= scb
->sacked
;
3129 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3131 /* Determine how many packets and what bytes were acked, tso and else */
3132 if (after(scb
->end_seq
, tp
->snd_una
)) {
3133 if (tcp_skb_pcount(skb
) == 1 ||
3134 !after(tp
->snd_una
, scb
->seq
))
3137 acked_pcount
= tcp_tso_acked(sk
, skb
);
3140 fully_acked
= false;
3142 /* Speedup tcp_unlink_write_queue() and next loop */
3143 prefetchw(skb
->next
);
3144 acked_pcount
= tcp_skb_pcount(skb
);
3147 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3148 if (sacked
& TCPCB_SACKED_RETRANS
)
3149 tp
->retrans_out
-= acked_pcount
;
3150 flag
|= FLAG_RETRANS_DATA_ACKED
;
3151 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3152 last_ackt
= skb
->skb_mstamp
;
3153 WARN_ON_ONCE(last_ackt
.v64
== 0);
3154 if (!first_ackt
.v64
)
3155 first_ackt
= last_ackt
;
3157 last_in_flight
= TCP_SKB_CB(skb
)->tx
.in_flight
;
3158 reord
= min(pkts_acked
, reord
);
3159 if (!after(scb
->end_seq
, tp
->high_seq
))
3160 flag
|= FLAG_ORIG_SACK_ACKED
;
3163 if (sacked
& TCPCB_SACKED_ACKED
) {
3164 tp
->sacked_out
-= acked_pcount
;
3165 } else if (tcp_is_sack(tp
)) {
3166 tp
->delivered
+= acked_pcount
;
3167 if (!tcp_skb_spurious_retrans(tp
, skb
))
3168 tcp_rack_advance(tp
, &skb
->skb_mstamp
, sacked
);
3170 if (sacked
& TCPCB_LOST
)
3171 tp
->lost_out
-= acked_pcount
;
3173 tp
->packets_out
-= acked_pcount
;
3174 pkts_acked
+= acked_pcount
;
3175 tcp_rate_skb_delivered(sk
, skb
, sack
->rate
);
3177 /* Initial outgoing SYN's get put onto the write_queue
3178 * just like anything else we transmit. It is not
3179 * true data, and if we misinform our callers that
3180 * this ACK acks real data, we will erroneously exit
3181 * connection startup slow start one packet too
3182 * quickly. This is severely frowned upon behavior.
3184 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3185 flag
|= FLAG_DATA_ACKED
;
3187 flag
|= FLAG_SYN_ACKED
;
3188 tp
->retrans_stamp
= 0;
3194 tcp_unlink_write_queue(skb
, sk
);
3195 sk_wmem_free_skb(sk
, skb
);
3196 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3197 tp
->retransmit_skb_hint
= NULL
;
3198 if (unlikely(skb
== tp
->lost_skb_hint
))
3199 tp
->lost_skb_hint
= NULL
;
3203 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
3205 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3206 tp
->snd_up
= tp
->snd_una
;
3208 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3209 flag
|= FLAG_SACK_RENEGING
;
3211 if (likely(first_ackt
.v64
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3212 seq_rtt_us
= skb_mstamp_us_delta(now
, &first_ackt
);
3213 ca_rtt_us
= skb_mstamp_us_delta(now
, &last_ackt
);
3215 if (sack
->first_sackt
.v64
) {
3216 sack_rtt_us
= skb_mstamp_us_delta(now
, &sack
->first_sackt
);
3217 ca_rtt_us
= skb_mstamp_us_delta(now
, &sack
->last_sackt
);
3219 sack
->rate
->rtt_us
= ca_rtt_us
; /* RTT of last (S)ACKed packet, or -1 */
3220 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3223 if (flag
& FLAG_ACKED
) {
3225 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3226 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3227 tcp_mtup_probe_success(sk
);
3230 if (tcp_is_reno(tp
)) {
3231 tcp_remove_reno_sacks(sk
, pkts_acked
);
3235 /* Non-retransmitted hole got filled? That's reordering */
3236 if (reord
< prior_fackets
)
3237 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3239 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3240 prior_sacked
- tp
->sacked_out
;
3241 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3244 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3246 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3247 sack_rtt_us
> skb_mstamp_us_delta(now
, &skb
->skb_mstamp
)) {
3248 /* Do not re-arm RTO if the sack RTT is measured from data sent
3249 * after when the head was last (re)transmitted. Otherwise the
3250 * timeout may continue to extend in loss recovery.
3255 if (icsk
->icsk_ca_ops
->pkts_acked
) {
3256 struct ack_sample sample
= { .pkts_acked
= pkts_acked
,
3257 .rtt_us
= ca_rtt_us
,
3258 .in_flight
= last_in_flight
};
3260 icsk
->icsk_ca_ops
->pkts_acked(sk
, &sample
);
3263 #if FASTRETRANS_DEBUG > 0
3264 WARN_ON((int)tp
->sacked_out
< 0);
3265 WARN_ON((int)tp
->lost_out
< 0);
3266 WARN_ON((int)tp
->retrans_out
< 0);
3267 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3268 icsk
= inet_csk(sk
);
3270 pr_debug("Leak l=%u %d\n",
3271 tp
->lost_out
, icsk
->icsk_ca_state
);
3274 if (tp
->sacked_out
) {
3275 pr_debug("Leak s=%u %d\n",
3276 tp
->sacked_out
, icsk
->icsk_ca_state
);
3279 if (tp
->retrans_out
) {
3280 pr_debug("Leak r=%u %d\n",
3281 tp
->retrans_out
, icsk
->icsk_ca_state
);
3282 tp
->retrans_out
= 0;
3286 *acked
= pkts_acked
;
3290 static void tcp_ack_probe(struct sock
*sk
)
3292 const struct tcp_sock
*tp
= tcp_sk(sk
);
3293 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3295 /* Was it a usable window open? */
3297 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3298 icsk
->icsk_backoff
= 0;
3299 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3300 /* Socket must be waked up by subsequent tcp_data_snd_check().
3301 * This function is not for random using!
3304 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3306 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3311 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3313 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3314 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3317 /* Decide wheather to run the increase function of congestion control. */
3318 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3320 /* If reordering is high then always grow cwnd whenever data is
3321 * delivered regardless of its ordering. Otherwise stay conservative
3322 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3323 * new SACK or ECE mark may first advance cwnd here and later reduce
3324 * cwnd in tcp_fastretrans_alert() based on more states.
3326 if (tcp_sk(sk
)->reordering
> sock_net(sk
)->ipv4
.sysctl_tcp_reordering
)
3327 return flag
& FLAG_FORWARD_PROGRESS
;
3329 return flag
& FLAG_DATA_ACKED
;
3332 /* The "ultimate" congestion control function that aims to replace the rigid
3333 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3334 * It's called toward the end of processing an ACK with precise rate
3335 * information. All transmission or retransmission are delayed afterwards.
3337 static void tcp_cong_control(struct sock
*sk
, u32 ack
, u32 acked_sacked
,
3338 int flag
, const struct rate_sample
*rs
)
3340 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3342 if (icsk
->icsk_ca_ops
->cong_control
) {
3343 icsk
->icsk_ca_ops
->cong_control(sk
, rs
);
3347 if (tcp_in_cwnd_reduction(sk
)) {
3348 /* Reduce cwnd if state mandates */
3349 tcp_cwnd_reduction(sk
, acked_sacked
, flag
);
3350 } else if (tcp_may_raise_cwnd(sk
, flag
)) {
3351 /* Advance cwnd if state allows */
3352 tcp_cong_avoid(sk
, ack
, acked_sacked
);
3354 tcp_update_pacing_rate(sk
);
3357 /* Check that window update is acceptable.
3358 * The function assumes that snd_una<=ack<=snd_next.
3360 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3361 const u32 ack
, const u32 ack_seq
,
3364 return after(ack
, tp
->snd_una
) ||
3365 after(ack_seq
, tp
->snd_wl1
) ||
3366 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3369 /* If we update tp->snd_una, also update tp->bytes_acked */
3370 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3372 u32 delta
= ack
- tp
->snd_una
;
3374 sock_owned_by_me((struct sock
*)tp
);
3375 tp
->bytes_acked
+= delta
;
3379 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3380 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3382 u32 delta
= seq
- tp
->rcv_nxt
;
3384 sock_owned_by_me((struct sock
*)tp
);
3385 tp
->bytes_received
+= delta
;
3389 /* Update our send window.
3391 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3392 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3394 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3397 struct tcp_sock
*tp
= tcp_sk(sk
);
3399 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3401 if (likely(!tcp_hdr(skb
)->syn
))
3402 nwin
<<= tp
->rx_opt
.snd_wscale
;
3404 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3405 flag
|= FLAG_WIN_UPDATE
;
3406 tcp_update_wl(tp
, ack_seq
);
3408 if (tp
->snd_wnd
!= nwin
) {
3411 /* Note, it is the only place, where
3412 * fast path is recovered for sending TCP.
3415 tcp_fast_path_check(sk
);
3417 if (tcp_send_head(sk
))
3418 tcp_slow_start_after_idle_check(sk
);
3420 if (nwin
> tp
->max_window
) {
3421 tp
->max_window
= nwin
;
3422 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3427 tcp_snd_una_update(tp
, ack
);
3432 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3433 u32
*last_oow_ack_time
)
3435 if (*last_oow_ack_time
) {
3436 s32 elapsed
= (s32
)(tcp_time_stamp
- *last_oow_ack_time
);
3438 if (0 <= elapsed
&& elapsed
< sysctl_tcp_invalid_ratelimit
) {
3439 NET_INC_STATS(net
, mib_idx
);
3440 return true; /* rate-limited: don't send yet! */
3444 *last_oow_ack_time
= tcp_time_stamp
;
3446 return false; /* not rate-limited: go ahead, send dupack now! */
3449 /* Return true if we're currently rate-limiting out-of-window ACKs and
3450 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3451 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3452 * attacks that send repeated SYNs or ACKs for the same connection. To
3453 * do this, we do not send a duplicate SYNACK or ACK if the remote
3454 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3456 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3457 int mib_idx
, u32
*last_oow_ack_time
)
3459 /* Data packets without SYNs are not likely part of an ACK loop. */
3460 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3464 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3467 /* RFC 5961 7 [ACK Throttling] */
3468 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3470 /* unprotected vars, we dont care of overwrites */
3471 static u32 challenge_timestamp
;
3472 static unsigned int challenge_count
;
3473 struct tcp_sock
*tp
= tcp_sk(sk
);
3476 /* First check our per-socket dupack rate limit. */
3477 if (__tcp_oow_rate_limited(sock_net(sk
),
3478 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3479 &tp
->last_oow_ack_time
))
3482 /* Then check host-wide RFC 5961 rate limit. */
3484 if (now
!= challenge_timestamp
) {
3485 u32 half
= (sysctl_tcp_challenge_ack_limit
+ 1) >> 1;
3487 challenge_timestamp
= now
;
3488 WRITE_ONCE(challenge_count
, half
+
3489 prandom_u32_max(sysctl_tcp_challenge_ack_limit
));
3491 count
= READ_ONCE(challenge_count
);
3493 WRITE_ONCE(challenge_count
, count
- 1);
3494 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
3499 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3501 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3502 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3505 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3507 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3508 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3509 * extra check below makes sure this can only happen
3510 * for pure ACK frames. -DaveM
3512 * Not only, also it occurs for expired timestamps.
3515 if (tcp_paws_check(&tp
->rx_opt
, 0))
3516 tcp_store_ts_recent(tp
);
3520 /* This routine deals with acks during a TLP episode.
3521 * We mark the end of a TLP episode on receiving TLP dupack or when
3522 * ack is after tlp_high_seq.
3523 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3525 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3527 struct tcp_sock
*tp
= tcp_sk(sk
);
3529 if (before(ack
, tp
->tlp_high_seq
))
3532 if (flag
& FLAG_DSACKING_ACK
) {
3533 /* This DSACK means original and TLP probe arrived; no loss */
3534 tp
->tlp_high_seq
= 0;
3535 } else if (after(ack
, tp
->tlp_high_seq
)) {
3536 /* ACK advances: there was a loss, so reduce cwnd. Reset
3537 * tlp_high_seq in tcp_init_cwnd_reduction()
3539 tcp_init_cwnd_reduction(sk
);
3540 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3541 tcp_end_cwnd_reduction(sk
);
3542 tcp_try_keep_open(sk
);
3543 NET_INC_STATS(sock_net(sk
),
3544 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3545 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3546 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3547 /* Pure dupack: original and TLP probe arrived; no loss */
3548 tp
->tlp_high_seq
= 0;
3552 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3554 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3556 if (icsk
->icsk_ca_ops
->in_ack_event
)
3557 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3560 /* Congestion control has updated the cwnd already. So if we're in
3561 * loss recovery then now we do any new sends (for FRTO) or
3562 * retransmits (for CA_Loss or CA_recovery) that make sense.
3564 static void tcp_xmit_recovery(struct sock
*sk
, int rexmit
)
3566 struct tcp_sock
*tp
= tcp_sk(sk
);
3568 if (rexmit
== REXMIT_NONE
)
3571 if (unlikely(rexmit
== 2)) {
3572 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
3574 if (after(tp
->snd_nxt
, tp
->high_seq
))
3578 tcp_xmit_retransmit_queue(sk
);
3581 /* This routine deals with incoming acks, but not outgoing ones. */
3582 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3584 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3585 struct tcp_sock
*tp
= tcp_sk(sk
);
3586 struct tcp_sacktag_state sack_state
;
3587 struct rate_sample rs
= { .prior_delivered
= 0 };
3588 u32 prior_snd_una
= tp
->snd_una
;
3589 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3590 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3591 bool is_dupack
= false;
3593 int prior_packets
= tp
->packets_out
;
3594 u32 delivered
= tp
->delivered
;
3595 u32 lost
= tp
->lost
;
3596 int acked
= 0; /* Number of packets newly acked */
3597 int rexmit
= REXMIT_NONE
; /* Flag to (re)transmit to recover losses */
3598 struct skb_mstamp now
;
3600 sack_state
.first_sackt
.v64
= 0;
3601 sack_state
.rate
= &rs
;
3603 /* We very likely will need to access write queue head. */
3604 prefetchw(sk
->sk_write_queue
.next
);
3606 /* If the ack is older than previous acks
3607 * then we can probably ignore it.
3609 if (before(ack
, prior_snd_una
)) {
3610 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3611 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3612 tcp_send_challenge_ack(sk
, skb
);
3618 /* If the ack includes data we haven't sent yet, discard
3619 * this segment (RFC793 Section 3.9).
3621 if (after(ack
, tp
->snd_nxt
))
3624 skb_mstamp_get(&now
);
3626 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
3627 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
3630 if (after(ack
, prior_snd_una
)) {
3631 flag
|= FLAG_SND_UNA_ADVANCED
;
3632 icsk
->icsk_retransmits
= 0;
3635 prior_fackets
= tp
->fackets_out
;
3636 rs
.prior_in_flight
= tcp_packets_in_flight(tp
);
3638 /* ts_recent update must be made after we are sure that the packet
3641 if (flag
& FLAG_UPDATE_TS_RECENT
)
3642 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3644 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3645 /* Window is constant, pure forward advance.
3646 * No more checks are required.
3647 * Note, we use the fact that SND.UNA>=SND.WL2.
3649 tcp_update_wl(tp
, ack_seq
);
3650 tcp_snd_una_update(tp
, ack
);
3651 flag
|= FLAG_WIN_UPDATE
;
3653 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3655 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3657 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3659 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3662 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3664 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3666 if (TCP_SKB_CB(skb
)->sacked
)
3667 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3670 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3672 ack_ev_flags
|= CA_ACK_ECE
;
3675 if (flag
& FLAG_WIN_UPDATE
)
3676 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3678 tcp_in_ack_event(sk
, ack_ev_flags
);
3681 /* We passed data and got it acked, remove any soft error
3682 * log. Something worked...
3684 sk
->sk_err_soft
= 0;
3685 icsk
->icsk_probes_out
= 0;
3686 tp
->rcv_tstamp
= tcp_time_stamp
;
3690 /* See if we can take anything off of the retransmit queue. */
3691 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
, &acked
,
3694 if (tcp_ack_is_dubious(sk
, flag
)) {
3695 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3696 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3698 if (tp
->tlp_high_seq
)
3699 tcp_process_tlp_ack(sk
, ack
, flag
);
3701 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
)) {
3702 struct dst_entry
*dst
= __sk_dst_get(sk
);
3707 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
)
3708 tcp_schedule_loss_probe(sk
);
3709 delivered
= tp
->delivered
- delivered
; /* freshly ACKed or SACKed */
3710 lost
= tp
->lost
- lost
; /* freshly marked lost */
3711 tcp_rate_gen(sk
, delivered
, lost
, &now
, &rs
);
3712 tcp_cong_control(sk
, ack
, delivered
, flag
, &rs
);
3713 tcp_xmit_recovery(sk
, rexmit
);
3717 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3718 if (flag
& FLAG_DSACKING_ACK
)
3719 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3720 /* If this ack opens up a zero window, clear backoff. It was
3721 * being used to time the probes, and is probably far higher than
3722 * it needs to be for normal retransmission.
3724 if (tcp_send_head(sk
))
3727 if (tp
->tlp_high_seq
)
3728 tcp_process_tlp_ack(sk
, ack
, flag
);
3732 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3736 /* If data was SACKed, tag it and see if we should send more data.
3737 * If data was DSACKed, see if we can undo a cwnd reduction.
3739 if (TCP_SKB_CB(skb
)->sacked
) {
3740 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3742 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3743 tcp_xmit_recovery(sk
, rexmit
);
3746 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3750 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3751 bool syn
, struct tcp_fastopen_cookie
*foc
,
3754 /* Valid only in SYN or SYN-ACK with an even length. */
3755 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3758 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3759 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3760 memcpy(foc
->val
, cookie
, len
);
3767 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3768 * But, this can also be called on packets in the established flow when
3769 * the fast version below fails.
3771 void tcp_parse_options(const struct sk_buff
*skb
,
3772 struct tcp_options_received
*opt_rx
, int estab
,
3773 struct tcp_fastopen_cookie
*foc
)
3775 const unsigned char *ptr
;
3776 const struct tcphdr
*th
= tcp_hdr(skb
);
3777 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3779 ptr
= (const unsigned char *)(th
+ 1);
3780 opt_rx
->saw_tstamp
= 0;
3782 while (length
> 0) {
3783 int opcode
= *ptr
++;
3789 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3794 if (opsize
< 2) /* "silly options" */
3796 if (opsize
> length
)
3797 return; /* don't parse partial options */
3800 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3801 u16 in_mss
= get_unaligned_be16(ptr
);
3803 if (opt_rx
->user_mss
&&
3804 opt_rx
->user_mss
< in_mss
)
3805 in_mss
= opt_rx
->user_mss
;
3806 opt_rx
->mss_clamp
= in_mss
;
3811 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3812 !estab
&& sysctl_tcp_window_scaling
) {
3813 __u8 snd_wscale
= *(__u8
*)ptr
;
3814 opt_rx
->wscale_ok
= 1;
3815 if (snd_wscale
> 14) {
3816 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3821 opt_rx
->snd_wscale
= snd_wscale
;
3824 case TCPOPT_TIMESTAMP
:
3825 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3826 ((estab
&& opt_rx
->tstamp_ok
) ||
3827 (!estab
&& sysctl_tcp_timestamps
))) {
3828 opt_rx
->saw_tstamp
= 1;
3829 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3830 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3833 case TCPOPT_SACK_PERM
:
3834 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3835 !estab
&& sysctl_tcp_sack
) {
3836 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3837 tcp_sack_reset(opt_rx
);
3842 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3843 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3845 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3848 #ifdef CONFIG_TCP_MD5SIG
3851 * The MD5 Hash has already been
3852 * checked (see tcp_v{4,6}_do_rcv()).
3856 case TCPOPT_FASTOPEN
:
3857 tcp_parse_fastopen_option(
3858 opsize
- TCPOLEN_FASTOPEN_BASE
,
3859 ptr
, th
->syn
, foc
, false);
3863 /* Fast Open option shares code 254 using a
3864 * 16 bits magic number.
3866 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3867 get_unaligned_be16(ptr
) ==
3868 TCPOPT_FASTOPEN_MAGIC
)
3869 tcp_parse_fastopen_option(opsize
-
3870 TCPOLEN_EXP_FASTOPEN_BASE
,
3871 ptr
+ 2, th
->syn
, foc
, true);
3880 EXPORT_SYMBOL(tcp_parse_options
);
3882 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3884 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3886 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3887 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3888 tp
->rx_opt
.saw_tstamp
= 1;
3890 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3893 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3895 tp
->rx_opt
.rcv_tsecr
= 0;
3901 /* Fast parse options. This hopes to only see timestamps.
3902 * If it is wrong it falls back on tcp_parse_options().
3904 static bool tcp_fast_parse_options(const struct sk_buff
*skb
,
3905 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3907 /* In the spirit of fast parsing, compare doff directly to constant
3908 * values. Because equality is used, short doff can be ignored here.
3910 if (th
->doff
== (sizeof(*th
) / 4)) {
3911 tp
->rx_opt
.saw_tstamp
= 0;
3913 } else if (tp
->rx_opt
.tstamp_ok
&&
3914 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3915 if (tcp_parse_aligned_timestamp(tp
, th
))
3919 tcp_parse_options(skb
, &tp
->rx_opt
, 1, NULL
);
3920 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3921 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3926 #ifdef CONFIG_TCP_MD5SIG
3928 * Parse MD5 Signature option
3930 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3932 int length
= (th
->doff
<< 2) - sizeof(*th
);
3933 const u8
*ptr
= (const u8
*)(th
+ 1);
3935 /* If the TCP option is too short, we can short cut */
3936 if (length
< TCPOLEN_MD5SIG
)
3939 while (length
> 0) {
3940 int opcode
= *ptr
++;
3951 if (opsize
< 2 || opsize
> length
)
3953 if (opcode
== TCPOPT_MD5SIG
)
3954 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3961 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3964 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3966 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3967 * it can pass through stack. So, the following predicate verifies that
3968 * this segment is not used for anything but congestion avoidance or
3969 * fast retransmit. Moreover, we even are able to eliminate most of such
3970 * second order effects, if we apply some small "replay" window (~RTO)
3971 * to timestamp space.
3973 * All these measures still do not guarantee that we reject wrapped ACKs
3974 * on networks with high bandwidth, when sequence space is recycled fastly,
3975 * but it guarantees that such events will be very rare and do not affect
3976 * connection seriously. This doesn't look nice, but alas, PAWS is really
3979 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3980 * states that events when retransmit arrives after original data are rare.
3981 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3982 * the biggest problem on large power networks even with minor reordering.
3983 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3984 * up to bandwidth of 18Gigabit/sec. 8) ]
3987 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3989 const struct tcp_sock
*tp
= tcp_sk(sk
);
3990 const struct tcphdr
*th
= tcp_hdr(skb
);
3991 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3992 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3994 return (/* 1. Pure ACK with correct sequence number. */
3995 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3997 /* 2. ... and duplicate ACK. */
3998 ack
== tp
->snd_una
&&
4000 /* 3. ... and does not update window. */
4001 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4003 /* 4. ... and sits in replay window. */
4004 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4007 static inline bool tcp_paws_discard(const struct sock
*sk
,
4008 const struct sk_buff
*skb
)
4010 const struct tcp_sock
*tp
= tcp_sk(sk
);
4012 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4013 !tcp_disordered_ack(sk
, skb
);
4016 /* Check segment sequence number for validity.
4018 * Segment controls are considered valid, if the segment
4019 * fits to the window after truncation to the window. Acceptability
4020 * of data (and SYN, FIN, of course) is checked separately.
4021 * See tcp_data_queue(), for example.
4023 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4024 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4025 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4026 * (borrowed from freebsd)
4029 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4031 return !before(end_seq
, tp
->rcv_wup
) &&
4032 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4035 /* When we get a reset we do this. */
4036 void tcp_reset(struct sock
*sk
)
4038 /* We want the right error as BSD sees it (and indeed as we do). */
4039 switch (sk
->sk_state
) {
4041 sk
->sk_err
= ECONNREFUSED
;
4043 case TCP_CLOSE_WAIT
:
4049 sk
->sk_err
= ECONNRESET
;
4051 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4054 if (!sock_flag(sk
, SOCK_DEAD
))
4055 sk
->sk_error_report(sk
);
4061 * Process the FIN bit. This now behaves as it is supposed to work
4062 * and the FIN takes effect when it is validly part of sequence
4063 * space. Not before when we get holes.
4065 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4066 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4069 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4070 * close and we go into CLOSING (and later onto TIME-WAIT)
4072 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4074 void tcp_fin(struct sock
*sk
)
4076 struct tcp_sock
*tp
= tcp_sk(sk
);
4078 inet_csk_schedule_ack(sk
);
4080 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4081 sock_set_flag(sk
, SOCK_DONE
);
4083 switch (sk
->sk_state
) {
4085 case TCP_ESTABLISHED
:
4086 /* Move to CLOSE_WAIT */
4087 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4088 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4091 case TCP_CLOSE_WAIT
:
4093 /* Received a retransmission of the FIN, do
4098 /* RFC793: Remain in the LAST-ACK state. */
4102 /* This case occurs when a simultaneous close
4103 * happens, we must ack the received FIN and
4104 * enter the CLOSING state.
4107 tcp_set_state(sk
, TCP_CLOSING
);
4110 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4112 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4115 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4116 * cases we should never reach this piece of code.
4118 pr_err("%s: Impossible, sk->sk_state=%d\n",
4119 __func__
, sk
->sk_state
);
4123 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4124 * Probably, we should reset in this case. For now drop them.
4126 skb_rbtree_purge(&tp
->out_of_order_queue
);
4127 if (tcp_is_sack(tp
))
4128 tcp_sack_reset(&tp
->rx_opt
);
4131 if (!sock_flag(sk
, SOCK_DEAD
)) {
4132 sk
->sk_state_change(sk
);
4134 /* Do not send POLL_HUP for half duplex close. */
4135 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4136 sk
->sk_state
== TCP_CLOSE
)
4137 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4139 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4143 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4146 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4147 if (before(seq
, sp
->start_seq
))
4148 sp
->start_seq
= seq
;
4149 if (after(end_seq
, sp
->end_seq
))
4150 sp
->end_seq
= end_seq
;
4156 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4158 struct tcp_sock
*tp
= tcp_sk(sk
);
4160 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4163 if (before(seq
, tp
->rcv_nxt
))
4164 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4166 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4168 NET_INC_STATS(sock_net(sk
), mib_idx
);
4170 tp
->rx_opt
.dsack
= 1;
4171 tp
->duplicate_sack
[0].start_seq
= seq
;
4172 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4176 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4178 struct tcp_sock
*tp
= tcp_sk(sk
);
4180 if (!tp
->rx_opt
.dsack
)
4181 tcp_dsack_set(sk
, seq
, end_seq
);
4183 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4186 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4188 struct tcp_sock
*tp
= tcp_sk(sk
);
4190 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4191 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4192 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4193 tcp_enter_quickack_mode(sk
);
4195 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4196 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4198 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4199 end_seq
= tp
->rcv_nxt
;
4200 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4207 /* These routines update the SACK block as out-of-order packets arrive or
4208 * in-order packets close up the sequence space.
4210 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4213 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4214 struct tcp_sack_block
*swalk
= sp
+ 1;
4216 /* See if the recent change to the first SACK eats into
4217 * or hits the sequence space of other SACK blocks, if so coalesce.
4219 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4220 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4223 /* Zap SWALK, by moving every further SACK up by one slot.
4224 * Decrease num_sacks.
4226 tp
->rx_opt
.num_sacks
--;
4227 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4231 this_sack
++, swalk
++;
4235 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4237 struct tcp_sock
*tp
= tcp_sk(sk
);
4238 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4239 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4245 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4246 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4247 /* Rotate this_sack to the first one. */
4248 for (; this_sack
> 0; this_sack
--, sp
--)
4249 swap(*sp
, *(sp
- 1));
4251 tcp_sack_maybe_coalesce(tp
);
4256 /* Could not find an adjacent existing SACK, build a new one,
4257 * put it at the front, and shift everyone else down. We
4258 * always know there is at least one SACK present already here.
4260 * If the sack array is full, forget about the last one.
4262 if (this_sack
>= TCP_NUM_SACKS
) {
4264 tp
->rx_opt
.num_sacks
--;
4267 for (; this_sack
> 0; this_sack
--, sp
--)
4271 /* Build the new head SACK, and we're done. */
4272 sp
->start_seq
= seq
;
4273 sp
->end_seq
= end_seq
;
4274 tp
->rx_opt
.num_sacks
++;
4277 /* RCV.NXT advances, some SACKs should be eaten. */
4279 static void tcp_sack_remove(struct tcp_sock
*tp
)
4281 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4282 int num_sacks
= tp
->rx_opt
.num_sacks
;
4285 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4286 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4287 tp
->rx_opt
.num_sacks
= 0;
4291 for (this_sack
= 0; this_sack
< num_sacks
;) {
4292 /* Check if the start of the sack is covered by RCV.NXT. */
4293 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4296 /* RCV.NXT must cover all the block! */
4297 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4299 /* Zap this SACK, by moving forward any other SACKS. */
4300 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4301 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4308 tp
->rx_opt
.num_sacks
= num_sacks
;
4312 * tcp_try_coalesce - try to merge skb to prior one
4315 * @from: buffer to add in queue
4316 * @fragstolen: pointer to boolean
4318 * Before queueing skb @from after @to, try to merge them
4319 * to reduce overall memory use and queue lengths, if cost is small.
4320 * Packets in ofo or receive queues can stay a long time.
4321 * Better try to coalesce them right now to avoid future collapses.
4322 * Returns true if caller should free @from instead of queueing it
4324 static bool tcp_try_coalesce(struct sock
*sk
,
4326 struct sk_buff
*from
,
4331 *fragstolen
= false;
4333 /* Its possible this segment overlaps with prior segment in queue */
4334 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4337 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4340 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4341 sk_mem_charge(sk
, delta
);
4342 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4343 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4344 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4345 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4349 static void tcp_drop(struct sock
*sk
, struct sk_buff
*skb
)
4351 sk_drops_add(sk
, skb
);
4355 /* This one checks to see if we can put data from the
4356 * out_of_order queue into the receive_queue.
4358 static void tcp_ofo_queue(struct sock
*sk
)
4360 struct tcp_sock
*tp
= tcp_sk(sk
);
4361 __u32 dsack_high
= tp
->rcv_nxt
;
4362 bool fin
, fragstolen
, eaten
;
4363 struct sk_buff
*skb
, *tail
;
4366 p
= rb_first(&tp
->out_of_order_queue
);
4368 skb
= rb_entry(p
, struct sk_buff
, rbnode
);
4369 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4372 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4373 __u32 dsack
= dsack_high
;
4374 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4375 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4376 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4379 rb_erase(&skb
->rbnode
, &tp
->out_of_order_queue
);
4381 if (unlikely(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))) {
4382 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4386 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4387 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4388 TCP_SKB_CB(skb
)->end_seq
);
4390 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4391 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4392 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4393 fin
= TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
;
4395 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4397 kfree_skb_partial(skb
, fragstolen
);
4399 if (unlikely(fin
)) {
4401 /* tcp_fin() purges tp->out_of_order_queue,
4402 * so we must end this loop right now.
4409 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4410 static int tcp_prune_queue(struct sock
*sk
);
4412 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4415 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4416 !sk_rmem_schedule(sk
, skb
, size
)) {
4418 if (tcp_prune_queue(sk
) < 0)
4421 while (!sk_rmem_schedule(sk
, skb
, size
)) {
4422 if (!tcp_prune_ofo_queue(sk
))
4429 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4431 struct tcp_sock
*tp
= tcp_sk(sk
);
4432 struct rb_node
**p
, *q
, *parent
;
4433 struct sk_buff
*skb1
;
4437 tcp_ecn_check_ce(tp
, skb
);
4439 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4440 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4445 /* Disable header prediction. */
4447 inet_csk_schedule_ack(sk
);
4449 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4450 seq
= TCP_SKB_CB(skb
)->seq
;
4451 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4452 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4453 tp
->rcv_nxt
, seq
, end_seq
);
4455 p
= &tp
->out_of_order_queue
.rb_node
;
4456 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4457 /* Initial out of order segment, build 1 SACK. */
4458 if (tcp_is_sack(tp
)) {
4459 tp
->rx_opt
.num_sacks
= 1;
4460 tp
->selective_acks
[0].start_seq
= seq
;
4461 tp
->selective_acks
[0].end_seq
= end_seq
;
4463 rb_link_node(&skb
->rbnode
, NULL
, p
);
4464 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4465 tp
->ooo_last_skb
= skb
;
4469 /* In the typical case, we are adding an skb to the end of the list.
4470 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4472 if (tcp_try_coalesce(sk
, tp
->ooo_last_skb
, skb
, &fragstolen
)) {
4474 tcp_grow_window(sk
, skb
);
4475 kfree_skb_partial(skb
, fragstolen
);
4479 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4480 if (!before(seq
, TCP_SKB_CB(tp
->ooo_last_skb
)->end_seq
)) {
4481 parent
= &tp
->ooo_last_skb
->rbnode
;
4482 p
= &parent
->rb_right
;
4486 /* Find place to insert this segment. Handle overlaps on the way. */
4490 skb1
= rb_entry(parent
, struct sk_buff
, rbnode
);
4491 if (before(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4492 p
= &parent
->rb_left
;
4495 if (before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4496 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4497 /* All the bits are present. Drop. */
4498 NET_INC_STATS(sock_net(sk
),
4499 LINUX_MIB_TCPOFOMERGE
);
4502 tcp_dsack_set(sk
, seq
, end_seq
);
4505 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4506 /* Partial overlap. */
4507 tcp_dsack_set(sk
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
4509 /* skb's seq == skb1's seq and skb covers skb1.
4510 * Replace skb1 with skb.
4512 rb_replace_node(&skb1
->rbnode
, &skb
->rbnode
,
4513 &tp
->out_of_order_queue
);
4514 tcp_dsack_extend(sk
,
4515 TCP_SKB_CB(skb1
)->seq
,
4516 TCP_SKB_CB(skb1
)->end_seq
);
4517 NET_INC_STATS(sock_net(sk
),
4518 LINUX_MIB_TCPOFOMERGE
);
4522 } else if (tcp_try_coalesce(sk
, skb1
, skb
, &fragstolen
)) {
4525 p
= &parent
->rb_right
;
4528 /* Insert segment into RB tree. */
4529 rb_link_node(&skb
->rbnode
, parent
, p
);
4530 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4533 /* Remove other segments covered by skb. */
4534 while ((q
= rb_next(&skb
->rbnode
)) != NULL
) {
4535 skb1
= rb_entry(q
, struct sk_buff
, rbnode
);
4537 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4539 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4540 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4544 rb_erase(&skb1
->rbnode
, &tp
->out_of_order_queue
);
4545 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4546 TCP_SKB_CB(skb1
)->end_seq
);
4547 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4550 /* If there is no skb after us, we are the last_skb ! */
4552 tp
->ooo_last_skb
= skb
;
4555 if (tcp_is_sack(tp
))
4556 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4559 tcp_grow_window(sk
, skb
);
4560 skb_set_owner_r(skb
, sk
);
4564 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4568 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4570 __skb_pull(skb
, hdrlen
);
4572 tcp_try_coalesce(sk
, tail
, skb
, fragstolen
)) ? 1 : 0;
4573 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4575 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4576 skb_set_owner_r(skb
, sk
);
4581 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4583 struct sk_buff
*skb
;
4591 if (size
> PAGE_SIZE
) {
4592 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4594 data_len
= npages
<< PAGE_SHIFT
;
4595 size
= data_len
+ (size
& ~PAGE_MASK
);
4597 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4598 PAGE_ALLOC_COSTLY_ORDER
,
4599 &err
, sk
->sk_allocation
);
4603 skb_put(skb
, size
- data_len
);
4604 skb
->data_len
= data_len
;
4607 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4610 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4614 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4615 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4616 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4618 if (tcp_queue_rcv(sk
, skb
, 0, &fragstolen
)) {
4619 WARN_ON_ONCE(fragstolen
); /* should not happen */
4631 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4633 struct tcp_sock
*tp
= tcp_sk(sk
);
4634 bool fragstolen
= false;
4637 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
4642 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4644 tcp_ecn_accept_cwr(tp
, skb
);
4646 tp
->rx_opt
.dsack
= 0;
4648 /* Queue data for delivery to the user.
4649 * Packets in sequence go to the receive queue.
4650 * Out of sequence packets to the out_of_order_queue.
4652 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4653 if (tcp_receive_window(tp
) == 0)
4656 /* Ok. In sequence. In window. */
4657 if (tp
->ucopy
.task
== current
&&
4658 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4659 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4660 int chunk
= min_t(unsigned int, skb
->len
,
4663 __set_current_state(TASK_RUNNING
);
4665 if (!skb_copy_datagram_msg(skb
, 0, tp
->ucopy
.msg
, chunk
)) {
4666 tp
->ucopy
.len
-= chunk
;
4667 tp
->copied_seq
+= chunk
;
4668 eaten
= (chunk
== skb
->len
);
4669 tcp_rcv_space_adjust(sk
);
4676 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4677 sk_forced_mem_schedule(sk
, skb
->truesize
);
4678 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4681 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4683 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4685 tcp_event_data_recv(sk
, skb
);
4686 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4689 if (!RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4692 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4693 * gap in queue is filled.
4695 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4696 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4699 if (tp
->rx_opt
.num_sacks
)
4700 tcp_sack_remove(tp
);
4702 tcp_fast_path_check(sk
);
4705 kfree_skb_partial(skb
, fragstolen
);
4706 if (!sock_flag(sk
, SOCK_DEAD
))
4707 sk
->sk_data_ready(sk
);
4711 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4712 /* A retransmit, 2nd most common case. Force an immediate ack. */
4713 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4714 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4717 tcp_enter_quickack_mode(sk
);
4718 inet_csk_schedule_ack(sk
);
4724 /* Out of window. F.e. zero window probe. */
4725 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4728 tcp_enter_quickack_mode(sk
);
4730 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4731 /* Partial packet, seq < rcv_next < end_seq */
4732 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4733 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4734 TCP_SKB_CB(skb
)->end_seq
);
4736 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4738 /* If window is closed, drop tail of packet. But after
4739 * remembering D-SACK for its head made in previous line.
4741 if (!tcp_receive_window(tp
))
4746 tcp_data_queue_ofo(sk
, skb
);
4749 static struct sk_buff
*tcp_skb_next(struct sk_buff
*skb
, struct sk_buff_head
*list
)
4752 return !skb_queue_is_last(list
, skb
) ? skb
->next
: NULL
;
4754 return rb_entry_safe(rb_next(&skb
->rbnode
), struct sk_buff
, rbnode
);
4757 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4758 struct sk_buff_head
*list
,
4759 struct rb_root
*root
)
4761 struct sk_buff
*next
= tcp_skb_next(skb
, list
);
4764 __skb_unlink(skb
, list
);
4766 rb_erase(&skb
->rbnode
, root
);
4769 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4774 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4775 static void tcp_rbtree_insert(struct rb_root
*root
, struct sk_buff
*skb
)
4777 struct rb_node
**p
= &root
->rb_node
;
4778 struct rb_node
*parent
= NULL
;
4779 struct sk_buff
*skb1
;
4783 skb1
= rb_entry(parent
, struct sk_buff
, rbnode
);
4784 if (before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb1
)->seq
))
4785 p
= &parent
->rb_left
;
4787 p
= &parent
->rb_right
;
4789 rb_link_node(&skb
->rbnode
, parent
, p
);
4790 rb_insert_color(&skb
->rbnode
, root
);
4793 /* Collapse contiguous sequence of skbs head..tail with
4794 * sequence numbers start..end.
4796 * If tail is NULL, this means until the end of the queue.
4798 * Segments with FIN/SYN are not collapsed (only because this
4802 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
, struct rb_root
*root
,
4803 struct sk_buff
*head
, struct sk_buff
*tail
, u32 start
, u32 end
)
4805 struct sk_buff
*skb
= head
, *n
;
4806 struct sk_buff_head tmp
;
4809 /* First, check that queue is collapsible and find
4810 * the point where collapsing can be useful.
4813 for (end_of_skbs
= true; skb
!= NULL
&& skb
!= tail
; skb
= n
) {
4814 n
= tcp_skb_next(skb
, list
);
4816 /* No new bits? It is possible on ofo queue. */
4817 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4818 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4824 /* The first skb to collapse is:
4826 * - bloated or contains data before "start" or
4827 * overlaps to the next one.
4829 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4830 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4831 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4832 end_of_skbs
= false;
4836 if (n
&& n
!= tail
&&
4837 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(n
)->seq
) {
4838 end_of_skbs
= false;
4842 /* Decided to skip this, advance start seq. */
4843 start
= TCP_SKB_CB(skb
)->end_seq
;
4846 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4849 __skb_queue_head_init(&tmp
);
4851 while (before(start
, end
)) {
4852 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4853 struct sk_buff
*nskb
;
4855 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4859 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4860 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4862 __skb_queue_before(list
, skb
, nskb
);
4864 __skb_queue_tail(&tmp
, nskb
); /* defer rbtree insertion */
4865 skb_set_owner_r(nskb
, sk
);
4867 /* Copy data, releasing collapsed skbs. */
4869 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4870 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4874 size
= min(copy
, size
);
4875 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4877 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4881 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4882 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4885 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4891 skb_queue_walk_safe(&tmp
, skb
, n
)
4892 tcp_rbtree_insert(root
, skb
);
4895 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4896 * and tcp_collapse() them until all the queue is collapsed.
4898 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4900 struct tcp_sock
*tp
= tcp_sk(sk
);
4901 struct sk_buff
*skb
, *head
;
4905 p
= rb_first(&tp
->out_of_order_queue
);
4906 skb
= rb_entry_safe(p
, struct sk_buff
, rbnode
);
4909 p
= rb_last(&tp
->out_of_order_queue
);
4910 /* Note: This is possible p is NULL here. We do not
4911 * use rb_entry_safe(), as ooo_last_skb is valid only
4912 * if rbtree is not empty.
4914 tp
->ooo_last_skb
= rb_entry(p
, struct sk_buff
, rbnode
);
4917 start
= TCP_SKB_CB(skb
)->seq
;
4918 end
= TCP_SKB_CB(skb
)->end_seq
;
4920 for (head
= skb
;;) {
4921 skb
= tcp_skb_next(skb
, NULL
);
4923 /* Range is terminated when we see a gap or when
4924 * we are at the queue end.
4927 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4928 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4929 tcp_collapse(sk
, NULL
, &tp
->out_of_order_queue
,
4930 head
, skb
, start
, end
);
4934 if (unlikely(before(TCP_SKB_CB(skb
)->seq
, start
)))
4935 start
= TCP_SKB_CB(skb
)->seq
;
4936 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4937 end
= TCP_SKB_CB(skb
)->end_seq
;
4942 * Clean the out-of-order queue to make room.
4943 * We drop high sequences packets to :
4944 * 1) Let a chance for holes to be filled.
4945 * 2) not add too big latencies if thousands of packets sit there.
4946 * (But if application shrinks SO_RCVBUF, we could still end up
4947 * freeing whole queue here)
4949 * Return true if queue has shrunk.
4951 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4953 struct tcp_sock
*tp
= tcp_sk(sk
);
4954 struct rb_node
*node
, *prev
;
4956 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4959 NET_INC_STATS(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4960 node
= &tp
->ooo_last_skb
->rbnode
;
4962 prev
= rb_prev(node
);
4963 rb_erase(node
, &tp
->out_of_order_queue
);
4964 tcp_drop(sk
, rb_entry(node
, struct sk_buff
, rbnode
));
4966 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
&&
4967 !tcp_under_memory_pressure(sk
))
4971 tp
->ooo_last_skb
= rb_entry(prev
, struct sk_buff
, rbnode
);
4973 /* Reset SACK state. A conforming SACK implementation will
4974 * do the same at a timeout based retransmit. When a connection
4975 * is in a sad state like this, we care only about integrity
4976 * of the connection not performance.
4978 if (tp
->rx_opt
.sack_ok
)
4979 tcp_sack_reset(&tp
->rx_opt
);
4983 /* Reduce allocated memory if we can, trying to get
4984 * the socket within its memory limits again.
4986 * Return less than zero if we should start dropping frames
4987 * until the socket owning process reads some of the data
4988 * to stabilize the situation.
4990 static int tcp_prune_queue(struct sock
*sk
)
4992 struct tcp_sock
*tp
= tcp_sk(sk
);
4994 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4996 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4998 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4999 tcp_clamp_window(sk
);
5000 else if (tcp_under_memory_pressure(sk
))
5001 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
5003 tcp_collapse_ofo_queue(sk
);
5004 if (!skb_queue_empty(&sk
->sk_receive_queue
))
5005 tcp_collapse(sk
, &sk
->sk_receive_queue
, NULL
,
5006 skb_peek(&sk
->sk_receive_queue
),
5008 tp
->copied_seq
, tp
->rcv_nxt
);
5011 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5014 /* Collapsing did not help, destructive actions follow.
5015 * This must not ever occur. */
5017 tcp_prune_ofo_queue(sk
);
5019 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5022 /* If we are really being abused, tell the caller to silently
5023 * drop receive data on the floor. It will get retransmitted
5024 * and hopefully then we'll have sufficient space.
5026 NET_INC_STATS(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
5028 /* Massive buffer overcommit. */
5033 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
5035 const struct tcp_sock
*tp
= tcp_sk(sk
);
5037 /* If the user specified a specific send buffer setting, do
5040 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
5043 /* If we are under global TCP memory pressure, do not expand. */
5044 if (tcp_under_memory_pressure(sk
))
5047 /* If we are under soft global TCP memory pressure, do not expand. */
5048 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
5051 /* If we filled the congestion window, do not expand. */
5052 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
5058 /* When incoming ACK allowed to free some skb from write_queue,
5059 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5060 * on the exit from tcp input handler.
5062 * PROBLEM: sndbuf expansion does not work well with largesend.
5064 static void tcp_new_space(struct sock
*sk
)
5066 struct tcp_sock
*tp
= tcp_sk(sk
);
5068 if (tcp_should_expand_sndbuf(sk
)) {
5069 tcp_sndbuf_expand(sk
);
5070 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
5073 sk
->sk_write_space(sk
);
5076 static void tcp_check_space(struct sock
*sk
)
5078 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5079 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5080 /* pairs with tcp_poll() */
5081 smp_mb__after_atomic();
5082 if (sk
->sk_socket
&&
5083 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
5085 if (!test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5086 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
5091 static inline void tcp_data_snd_check(struct sock
*sk
)
5093 tcp_push_pending_frames(sk
);
5094 tcp_check_space(sk
);
5098 * Check if sending an ack is needed.
5100 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5102 struct tcp_sock
*tp
= tcp_sk(sk
);
5104 /* More than one full frame received... */
5105 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5106 /* ... and right edge of window advances far enough.
5107 * (tcp_recvmsg() will send ACK otherwise). Or...
5109 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5110 /* We ACK each frame or... */
5111 tcp_in_quickack_mode(sk
) ||
5112 /* We have out of order data. */
5113 (ofo_possible
&& !RB_EMPTY_ROOT(&tp
->out_of_order_queue
))) {
5114 /* Then ack it now */
5117 /* Else, send delayed ack. */
5118 tcp_send_delayed_ack(sk
);
5122 static inline void tcp_ack_snd_check(struct sock
*sk
)
5124 if (!inet_csk_ack_scheduled(sk
)) {
5125 /* We sent a data segment already. */
5128 __tcp_ack_snd_check(sk
, 1);
5132 * This routine is only called when we have urgent data
5133 * signaled. Its the 'slow' part of tcp_urg. It could be
5134 * moved inline now as tcp_urg is only called from one
5135 * place. We handle URGent data wrong. We have to - as
5136 * BSD still doesn't use the correction from RFC961.
5137 * For 1003.1g we should support a new option TCP_STDURG to permit
5138 * either form (or just set the sysctl tcp_stdurg).
5141 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5143 struct tcp_sock
*tp
= tcp_sk(sk
);
5144 u32 ptr
= ntohs(th
->urg_ptr
);
5146 if (ptr
&& !sysctl_tcp_stdurg
)
5148 ptr
+= ntohl(th
->seq
);
5150 /* Ignore urgent data that we've already seen and read. */
5151 if (after(tp
->copied_seq
, ptr
))
5154 /* Do not replay urg ptr.
5156 * NOTE: interesting situation not covered by specs.
5157 * Misbehaving sender may send urg ptr, pointing to segment,
5158 * which we already have in ofo queue. We are not able to fetch
5159 * such data and will stay in TCP_URG_NOTYET until will be eaten
5160 * by recvmsg(). Seems, we are not obliged to handle such wicked
5161 * situations. But it is worth to think about possibility of some
5162 * DoSes using some hypothetical application level deadlock.
5164 if (before(ptr
, tp
->rcv_nxt
))
5167 /* Do we already have a newer (or duplicate) urgent pointer? */
5168 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5171 /* Tell the world about our new urgent pointer. */
5174 /* We may be adding urgent data when the last byte read was
5175 * urgent. To do this requires some care. We cannot just ignore
5176 * tp->copied_seq since we would read the last urgent byte again
5177 * as data, nor can we alter copied_seq until this data arrives
5178 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5180 * NOTE. Double Dutch. Rendering to plain English: author of comment
5181 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5182 * and expect that both A and B disappear from stream. This is _wrong_.
5183 * Though this happens in BSD with high probability, this is occasional.
5184 * Any application relying on this is buggy. Note also, that fix "works"
5185 * only in this artificial test. Insert some normal data between A and B and we will
5186 * decline of BSD again. Verdict: it is better to remove to trap
5189 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5190 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5191 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5193 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5194 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5199 tp
->urg_data
= TCP_URG_NOTYET
;
5202 /* Disable header prediction. */
5206 /* This is the 'fast' part of urgent handling. */
5207 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5209 struct tcp_sock
*tp
= tcp_sk(sk
);
5211 /* Check if we get a new urgent pointer - normally not. */
5213 tcp_check_urg(sk
, th
);
5215 /* Do we wait for any urgent data? - normally not... */
5216 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5217 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5220 /* Is the urgent pointer pointing into this packet? */
5221 if (ptr
< skb
->len
) {
5223 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5225 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5226 if (!sock_flag(sk
, SOCK_DEAD
))
5227 sk
->sk_data_ready(sk
);
5232 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5234 struct tcp_sock
*tp
= tcp_sk(sk
);
5235 int chunk
= skb
->len
- hlen
;
5238 if (skb_csum_unnecessary(skb
))
5239 err
= skb_copy_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
, chunk
);
5241 err
= skb_copy_and_csum_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
);
5244 tp
->ucopy
.len
-= chunk
;
5245 tp
->copied_seq
+= chunk
;
5246 tcp_rcv_space_adjust(sk
);
5252 /* Does PAWS and seqno based validation of an incoming segment, flags will
5253 * play significant role here.
5255 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5256 const struct tcphdr
*th
, int syn_inerr
)
5258 struct tcp_sock
*tp
= tcp_sk(sk
);
5259 bool rst_seq_match
= false;
5261 /* RFC1323: H1. Apply PAWS check first. */
5262 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5263 tcp_paws_discard(sk
, skb
)) {
5265 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5266 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5267 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5268 &tp
->last_oow_ack_time
))
5269 tcp_send_dupack(sk
, skb
);
5272 /* Reset is accepted even if it did not pass PAWS. */
5275 /* Step 1: check sequence number */
5276 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5277 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5278 * (RST) segments are validated by checking their SEQ-fields."
5279 * And page 69: "If an incoming segment is not acceptable,
5280 * an acknowledgment should be sent in reply (unless the RST
5281 * bit is set, if so drop the segment and return)".
5286 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5287 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5288 &tp
->last_oow_ack_time
))
5289 tcp_send_dupack(sk
, skb
);
5294 /* Step 2: check RST bit */
5296 /* RFC 5961 3.2 (extend to match against SACK too if available):
5297 * If seq num matches RCV.NXT or the right-most SACK block,
5299 * RESET the connection
5301 * Send a challenge ACK
5303 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
5304 rst_seq_match
= true;
5305 } else if (tcp_is_sack(tp
) && tp
->rx_opt
.num_sacks
> 0) {
5306 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
5307 int max_sack
= sp
[0].end_seq
;
5310 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;
5312 max_sack
= after(sp
[this_sack
].end_seq
,
5314 sp
[this_sack
].end_seq
: max_sack
;
5317 if (TCP_SKB_CB(skb
)->seq
== max_sack
)
5318 rst_seq_match
= true;
5324 tcp_send_challenge_ack(sk
, skb
);
5328 /* step 3: check security and precedence [ignored] */
5330 /* step 4: Check for a SYN
5331 * RFC 5961 4.2 : Send a challenge ack
5336 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5337 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5338 tcp_send_challenge_ack(sk
, skb
);
5350 * TCP receive function for the ESTABLISHED state.
5352 * It is split into a fast path and a slow path. The fast path is
5354 * - A zero window was announced from us - zero window probing
5355 * is only handled properly in the slow path.
5356 * - Out of order segments arrived.
5357 * - Urgent data is expected.
5358 * - There is no buffer space left
5359 * - Unexpected TCP flags/window values/header lengths are received
5360 * (detected by checking the TCP header against pred_flags)
5361 * - Data is sent in both directions. Fast path only supports pure senders
5362 * or pure receivers (this means either the sequence number or the ack
5363 * value must stay constant)
5364 * - Unexpected TCP option.
5366 * When these conditions are not satisfied it drops into a standard
5367 * receive procedure patterned after RFC793 to handle all cases.
5368 * The first three cases are guaranteed by proper pred_flags setting,
5369 * the rest is checked inline. Fast processing is turned on in
5370 * tcp_data_queue when everything is OK.
5372 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5373 const struct tcphdr
*th
, unsigned int len
)
5375 struct tcp_sock
*tp
= tcp_sk(sk
);
5377 if (unlikely(!sk
->sk_rx_dst
))
5378 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5380 * Header prediction.
5381 * The code loosely follows the one in the famous
5382 * "30 instruction TCP receive" Van Jacobson mail.
5384 * Van's trick is to deposit buffers into socket queue
5385 * on a device interrupt, to call tcp_recv function
5386 * on the receive process context and checksum and copy
5387 * the buffer to user space. smart...
5389 * Our current scheme is not silly either but we take the
5390 * extra cost of the net_bh soft interrupt processing...
5391 * We do checksum and copy also but from device to kernel.
5394 tp
->rx_opt
.saw_tstamp
= 0;
5396 /* pred_flags is 0xS?10 << 16 + snd_wnd
5397 * if header_prediction is to be made
5398 * 'S' will always be tp->tcp_header_len >> 2
5399 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5400 * turn it off (when there are holes in the receive
5401 * space for instance)
5402 * PSH flag is ignored.
5405 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5406 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5407 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5408 int tcp_header_len
= tp
->tcp_header_len
;
5410 /* Timestamp header prediction: tcp_header_len
5411 * is automatically equal to th->doff*4 due to pred_flags
5415 /* Check timestamp */
5416 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5417 /* No? Slow path! */
5418 if (!tcp_parse_aligned_timestamp(tp
, th
))
5421 /* If PAWS failed, check it more carefully in slow path */
5422 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5425 /* DO NOT update ts_recent here, if checksum fails
5426 * and timestamp was corrupted part, it will result
5427 * in a hung connection since we will drop all
5428 * future packets due to the PAWS test.
5432 if (len
<= tcp_header_len
) {
5433 /* Bulk data transfer: sender */
5434 if (len
== tcp_header_len
) {
5435 /* Predicted packet is in window by definition.
5436 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5437 * Hence, check seq<=rcv_wup reduces to:
5439 if (tcp_header_len
==
5440 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5441 tp
->rcv_nxt
== tp
->rcv_wup
)
5442 tcp_store_ts_recent(tp
);
5444 /* We know that such packets are checksummed
5447 tcp_ack(sk
, skb
, 0);
5449 tcp_data_snd_check(sk
);
5451 } else { /* Header too small */
5452 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5457 bool fragstolen
= false;
5459 if (tp
->ucopy
.task
== current
&&
5460 tp
->copied_seq
== tp
->rcv_nxt
&&
5461 len
- tcp_header_len
<= tp
->ucopy
.len
&&
5462 sock_owned_by_user(sk
)) {
5463 __set_current_state(TASK_RUNNING
);
5465 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
)) {
5466 /* Predicted packet is in window by definition.
5467 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5468 * Hence, check seq<=rcv_wup reduces to:
5470 if (tcp_header_len
==
5471 (sizeof(struct tcphdr
) +
5472 TCPOLEN_TSTAMP_ALIGNED
) &&
5473 tp
->rcv_nxt
== tp
->rcv_wup
)
5474 tcp_store_ts_recent(tp
);
5476 tcp_rcv_rtt_measure_ts(sk
, skb
);
5478 __skb_pull(skb
, tcp_header_len
);
5479 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
5480 NET_INC_STATS(sock_net(sk
),
5481 LINUX_MIB_TCPHPHITSTOUSER
);
5486 if (tcp_checksum_complete(skb
))
5489 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5492 /* Predicted packet is in window by definition.
5493 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5494 * Hence, check seq<=rcv_wup reduces to:
5496 if (tcp_header_len
==
5497 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5498 tp
->rcv_nxt
== tp
->rcv_wup
)
5499 tcp_store_ts_recent(tp
);
5501 tcp_rcv_rtt_measure_ts(sk
, skb
);
5503 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5505 /* Bulk data transfer: receiver */
5506 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5510 tcp_event_data_recv(sk
, skb
);
5512 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5513 /* Well, only one small jumplet in fast path... */
5514 tcp_ack(sk
, skb
, FLAG_DATA
);
5515 tcp_data_snd_check(sk
);
5516 if (!inet_csk_ack_scheduled(sk
))
5520 __tcp_ack_snd_check(sk
, 0);
5523 kfree_skb_partial(skb
, fragstolen
);
5524 sk
->sk_data_ready(sk
);
5530 if (len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
))
5533 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5537 * Standard slow path.
5540 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5544 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5547 tcp_rcv_rtt_measure_ts(sk
, skb
);
5549 /* Process urgent data. */
5550 tcp_urg(sk
, skb
, th
);
5552 /* step 7: process the segment text */
5553 tcp_data_queue(sk
, skb
);
5555 tcp_data_snd_check(sk
);
5556 tcp_ack_snd_check(sk
);
5560 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5561 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5566 EXPORT_SYMBOL(tcp_rcv_established
);
5568 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5570 struct tcp_sock
*tp
= tcp_sk(sk
);
5571 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5573 tcp_set_state(sk
, TCP_ESTABLISHED
);
5576 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5577 security_inet_conn_established(sk
, skb
);
5580 /* Make sure socket is routed, for correct metrics. */
5581 icsk
->icsk_af_ops
->rebuild_header(sk
);
5583 tcp_init_metrics(sk
);
5585 tcp_init_congestion_control(sk
);
5587 /* Prevent spurious tcp_cwnd_restart() on first data
5590 tp
->lsndtime
= tcp_time_stamp
;
5592 tcp_init_buffer_space(sk
);
5594 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5595 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5597 if (!tp
->rx_opt
.snd_wscale
)
5598 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5602 if (!sock_flag(sk
, SOCK_DEAD
)) {
5603 sk
->sk_state_change(sk
);
5604 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5608 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5609 struct tcp_fastopen_cookie
*cookie
)
5611 struct tcp_sock
*tp
= tcp_sk(sk
);
5612 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5613 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5614 bool syn_drop
= false;
5616 if (mss
== tp
->rx_opt
.user_mss
) {
5617 struct tcp_options_received opt
;
5619 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5620 tcp_clear_options(&opt
);
5621 opt
.user_mss
= opt
.mss_clamp
= 0;
5622 tcp_parse_options(synack
, &opt
, 0, NULL
);
5623 mss
= opt
.mss_clamp
;
5626 if (!tp
->syn_fastopen
) {
5627 /* Ignore an unsolicited cookie */
5629 } else if (tp
->total_retrans
) {
5630 /* SYN timed out and the SYN-ACK neither has a cookie nor
5631 * acknowledges data. Presumably the remote received only
5632 * the retransmitted (regular) SYNs: either the original
5633 * SYN-data or the corresponding SYN-ACK was dropped.
5635 syn_drop
= (cookie
->len
< 0 && data
);
5636 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5637 /* We requested a cookie but didn't get it. If we did not use
5638 * the (old) exp opt format then try so next time (try_exp=1).
5639 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5641 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5644 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5646 if (data
) { /* Retransmit unacked data in SYN */
5647 tcp_for_write_queue_from(data
, sk
) {
5648 if (data
== tcp_send_head(sk
) ||
5649 __tcp_retransmit_skb(sk
, data
, 1))
5653 NET_INC_STATS(sock_net(sk
),
5654 LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5657 tp
->syn_data_acked
= tp
->syn_data
;
5658 if (tp
->syn_data_acked
)
5659 NET_INC_STATS(sock_net(sk
),
5660 LINUX_MIB_TCPFASTOPENACTIVE
);
5662 tcp_fastopen_add_skb(sk
, synack
);
5667 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5668 const struct tcphdr
*th
)
5670 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5671 struct tcp_sock
*tp
= tcp_sk(sk
);
5672 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5673 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5675 tcp_parse_options(skb
, &tp
->rx_opt
, 0, &foc
);
5676 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5677 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5681 * "If the state is SYN-SENT then
5682 * first check the ACK bit
5683 * If the ACK bit is set
5684 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5685 * a reset (unless the RST bit is set, if so drop
5686 * the segment and return)"
5688 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5689 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5690 goto reset_and_undo
;
5692 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5693 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5695 NET_INC_STATS(sock_net(sk
),
5696 LINUX_MIB_PAWSACTIVEREJECTED
);
5697 goto reset_and_undo
;
5700 /* Now ACK is acceptable.
5702 * "If the RST bit is set
5703 * If the ACK was acceptable then signal the user "error:
5704 * connection reset", drop the segment, enter CLOSED state,
5705 * delete TCB, and return."
5714 * "fifth, if neither of the SYN or RST bits is set then
5715 * drop the segment and return."
5721 goto discard_and_undo
;
5724 * "If the SYN bit is on ...
5725 * are acceptable then ...
5726 * (our SYN has been ACKed), change the connection
5727 * state to ESTABLISHED..."
5730 tcp_ecn_rcv_synack(tp
, th
);
5732 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5733 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5735 /* Ok.. it's good. Set up sequence numbers and
5736 * move to established.
5738 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5739 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5741 /* RFC1323: The window in SYN & SYN/ACK segments is
5744 tp
->snd_wnd
= ntohs(th
->window
);
5746 if (!tp
->rx_opt
.wscale_ok
) {
5747 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5748 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5751 if (tp
->rx_opt
.saw_tstamp
) {
5752 tp
->rx_opt
.tstamp_ok
= 1;
5753 tp
->tcp_header_len
=
5754 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5755 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5756 tcp_store_ts_recent(tp
);
5758 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5761 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5762 tcp_enable_fack(tp
);
5765 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5766 tcp_initialize_rcv_mss(sk
);
5768 /* Remember, tcp_poll() does not lock socket!
5769 * Change state from SYN-SENT only after copied_seq
5770 * is initialized. */
5771 tp
->copied_seq
= tp
->rcv_nxt
;
5775 tcp_finish_connect(sk
, skb
);
5777 if ((tp
->syn_fastopen
|| tp
->syn_data
) &&
5778 tcp_rcv_fastopen_synack(sk
, skb
, &foc
))
5781 if (sk
->sk_write_pending
||
5782 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5783 icsk
->icsk_ack
.pingpong
) {
5784 /* Save one ACK. Data will be ready after
5785 * several ticks, if write_pending is set.
5787 * It may be deleted, but with this feature tcpdumps
5788 * look so _wonderfully_ clever, that I was not able
5789 * to stand against the temptation 8) --ANK
5791 inet_csk_schedule_ack(sk
);
5792 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5793 tcp_enter_quickack_mode(sk
);
5794 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5795 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5806 /* No ACK in the segment */
5810 * "If the RST bit is set
5812 * Otherwise (no ACK) drop the segment and return."
5815 goto discard_and_undo
;
5819 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5820 tcp_paws_reject(&tp
->rx_opt
, 0))
5821 goto discard_and_undo
;
5824 /* We see SYN without ACK. It is attempt of
5825 * simultaneous connect with crossed SYNs.
5826 * Particularly, it can be connect to self.
5828 tcp_set_state(sk
, TCP_SYN_RECV
);
5830 if (tp
->rx_opt
.saw_tstamp
) {
5831 tp
->rx_opt
.tstamp_ok
= 1;
5832 tcp_store_ts_recent(tp
);
5833 tp
->tcp_header_len
=
5834 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5836 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5839 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5840 tp
->copied_seq
= tp
->rcv_nxt
;
5841 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5843 /* RFC1323: The window in SYN & SYN/ACK segments is
5846 tp
->snd_wnd
= ntohs(th
->window
);
5847 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5848 tp
->max_window
= tp
->snd_wnd
;
5850 tcp_ecn_rcv_syn(tp
, th
);
5853 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5854 tcp_initialize_rcv_mss(sk
);
5856 tcp_send_synack(sk
);
5858 /* Note, we could accept data and URG from this segment.
5859 * There are no obstacles to make this (except that we must
5860 * either change tcp_recvmsg() to prevent it from returning data
5861 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5863 * However, if we ignore data in ACKless segments sometimes,
5864 * we have no reasons to accept it sometimes.
5865 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5866 * is not flawless. So, discard packet for sanity.
5867 * Uncomment this return to process the data.
5874 /* "fifth, if neither of the SYN or RST bits is set then
5875 * drop the segment and return."
5879 tcp_clear_options(&tp
->rx_opt
);
5880 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5884 tcp_clear_options(&tp
->rx_opt
);
5885 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5890 * This function implements the receiving procedure of RFC 793 for
5891 * all states except ESTABLISHED and TIME_WAIT.
5892 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5893 * address independent.
5896 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
5898 struct tcp_sock
*tp
= tcp_sk(sk
);
5899 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5900 const struct tcphdr
*th
= tcp_hdr(skb
);
5901 struct request_sock
*req
;
5905 switch (sk
->sk_state
) {
5919 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5928 tp
->rx_opt
.saw_tstamp
= 0;
5929 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
5933 /* Do step6 onward by hand. */
5934 tcp_urg(sk
, skb
, th
);
5936 tcp_data_snd_check(sk
);
5940 tp
->rx_opt
.saw_tstamp
= 0;
5941 req
= tp
->fastopen_rsk
;
5943 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5944 sk
->sk_state
!= TCP_FIN_WAIT1
);
5946 if (!tcp_check_req(sk
, skb
, req
, true))
5950 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5953 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5956 /* step 5: check the ACK field */
5957 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
5958 FLAG_UPDATE_TS_RECENT
) > 0;
5960 switch (sk
->sk_state
) {
5966 tcp_synack_rtt_meas(sk
, req
);
5968 /* Once we leave TCP_SYN_RECV, we no longer need req
5972 inet_csk(sk
)->icsk_retransmits
= 0;
5973 reqsk_fastopen_remove(sk
, req
, false);
5975 /* Make sure socket is routed, for correct metrics. */
5976 icsk
->icsk_af_ops
->rebuild_header(sk
);
5977 tcp_init_congestion_control(sk
);
5980 tp
->copied_seq
= tp
->rcv_nxt
;
5981 tcp_init_buffer_space(sk
);
5984 tcp_set_state(sk
, TCP_ESTABLISHED
);
5985 sk
->sk_state_change(sk
);
5987 /* Note, that this wakeup is only for marginal crossed SYN case.
5988 * Passively open sockets are not waked up, because
5989 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5992 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5994 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5995 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
5996 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5998 if (tp
->rx_opt
.tstamp_ok
)
5999 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
6002 /* Re-arm the timer because data may have been sent out.
6003 * This is similar to the regular data transmission case
6004 * when new data has just been ack'ed.
6006 * (TFO) - we could try to be more aggressive and
6007 * retransmitting any data sooner based on when they
6012 tcp_init_metrics(sk
);
6014 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
6015 tcp_update_pacing_rate(sk
);
6017 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6018 tp
->lsndtime
= tcp_time_stamp
;
6020 tcp_initialize_rcv_mss(sk
);
6021 tcp_fast_path_on(tp
);
6024 case TCP_FIN_WAIT1
: {
6025 struct dst_entry
*dst
;
6028 /* If we enter the TCP_FIN_WAIT1 state and we are a
6029 * Fast Open socket and this is the first acceptable
6030 * ACK we have received, this would have acknowledged
6031 * our SYNACK so stop the SYNACK timer.
6034 /* Return RST if ack_seq is invalid.
6035 * Note that RFC793 only says to generate a
6036 * DUPACK for it but for TCP Fast Open it seems
6037 * better to treat this case like TCP_SYN_RECV
6042 /* We no longer need the request sock. */
6043 reqsk_fastopen_remove(sk
, req
, false);
6046 if (tp
->snd_una
!= tp
->write_seq
)
6049 tcp_set_state(sk
, TCP_FIN_WAIT2
);
6050 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
6052 dst
= __sk_dst_get(sk
);
6056 if (!sock_flag(sk
, SOCK_DEAD
)) {
6057 /* Wake up lingering close() */
6058 sk
->sk_state_change(sk
);
6062 if (tp
->linger2
< 0 ||
6063 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6064 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
6066 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6070 tmo
= tcp_fin_time(sk
);
6071 if (tmo
> TCP_TIMEWAIT_LEN
) {
6072 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
6073 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
6074 /* Bad case. We could lose such FIN otherwise.
6075 * It is not a big problem, but it looks confusing
6076 * and not so rare event. We still can lose it now,
6077 * if it spins in bh_lock_sock(), but it is really
6080 inet_csk_reset_keepalive_timer(sk
, tmo
);
6082 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6089 if (tp
->snd_una
== tp
->write_seq
) {
6090 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6096 if (tp
->snd_una
== tp
->write_seq
) {
6097 tcp_update_metrics(sk
);
6104 /* step 6: check the URG bit */
6105 tcp_urg(sk
, skb
, th
);
6107 /* step 7: process the segment text */
6108 switch (sk
->sk_state
) {
6109 case TCP_CLOSE_WAIT
:
6112 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6116 /* RFC 793 says to queue data in these states,
6117 * RFC 1122 says we MUST send a reset.
6118 * BSD 4.4 also does reset.
6120 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6121 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6122 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6123 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6129 case TCP_ESTABLISHED
:
6130 tcp_data_queue(sk
, skb
);
6135 /* tcp_data could move socket to TIME-WAIT */
6136 if (sk
->sk_state
!= TCP_CLOSE
) {
6137 tcp_data_snd_check(sk
);
6138 tcp_ack_snd_check(sk
);
6147 EXPORT_SYMBOL(tcp_rcv_state_process
);
6149 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6151 struct inet_request_sock
*ireq
= inet_rsk(req
);
6153 if (family
== AF_INET
)
6154 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6155 &ireq
->ir_rmt_addr
, port
);
6156 #if IS_ENABLED(CONFIG_IPV6)
6157 else if (family
== AF_INET6
)
6158 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6159 &ireq
->ir_v6_rmt_addr
, port
);
6163 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6165 * If we receive a SYN packet with these bits set, it means a
6166 * network is playing bad games with TOS bits. In order to
6167 * avoid possible false congestion notifications, we disable
6168 * TCP ECN negotiation.
6170 * Exception: tcp_ca wants ECN. This is required for DCTCP
6171 * congestion control: Linux DCTCP asserts ECT on all packets,
6172 * including SYN, which is most optimal solution; however,
6173 * others, such as FreeBSD do not.
6175 static void tcp_ecn_create_request(struct request_sock
*req
,
6176 const struct sk_buff
*skb
,
6177 const struct sock
*listen_sk
,
6178 const struct dst_entry
*dst
)
6180 const struct tcphdr
*th
= tcp_hdr(skb
);
6181 const struct net
*net
= sock_net(listen_sk
);
6182 bool th_ecn
= th
->ece
&& th
->cwr
;
6189 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6190 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6191 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6193 if ((!ect
&& ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6194 (ecn_ok_dst
& DST_FEATURE_ECN_CA
))
6195 inet_rsk(req
)->ecn_ok
= 1;
6198 static void tcp_openreq_init(struct request_sock
*req
,
6199 const struct tcp_options_received
*rx_opt
,
6200 struct sk_buff
*skb
, const struct sock
*sk
)
6202 struct inet_request_sock
*ireq
= inet_rsk(req
);
6204 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6206 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6207 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6208 skb_mstamp_get(&tcp_rsk(req
)->snt_synack
);
6209 tcp_rsk(req
)->last_oow_ack_time
= 0;
6210 req
->mss
= rx_opt
->mss_clamp
;
6211 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6212 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6213 ireq
->sack_ok
= rx_opt
->sack_ok
;
6214 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6215 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6218 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6219 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6220 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6223 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6224 struct sock
*sk_listener
,
6225 bool attach_listener
)
6227 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6231 struct inet_request_sock
*ireq
= inet_rsk(req
);
6233 kmemcheck_annotate_bitfield(ireq
, flags
);
6235 #if IS_ENABLED(CONFIG_IPV6)
6236 ireq
->pktopts
= NULL
;
6238 atomic64_set(&ireq
->ir_cookie
, 0);
6239 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6240 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6241 ireq
->ireq_family
= sk_listener
->sk_family
;
6246 EXPORT_SYMBOL(inet_reqsk_alloc
);
6249 * Return true if a syncookie should be sent
6251 static bool tcp_syn_flood_action(const struct sock
*sk
,
6252 const struct sk_buff
*skb
,
6255 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6256 const char *msg
= "Dropping request";
6257 bool want_cookie
= false;
6258 struct net
*net
= sock_net(sk
);
6260 #ifdef CONFIG_SYN_COOKIES
6261 if (net
->ipv4
.sysctl_tcp_syncookies
) {
6262 msg
= "Sending cookies";
6264 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6267 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6269 if (!queue
->synflood_warned
&&
6270 net
->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6271 xchg(&queue
->synflood_warned
, 1) == 0)
6272 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6273 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
6278 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6279 struct request_sock
*req
,
6280 const struct sk_buff
*skb
)
6282 if (tcp_sk(sk
)->save_syn
) {
6283 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6286 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6289 memcpy(©
[1], skb_network_header(skb
), len
);
6290 req
->saved_syn
= copy
;
6295 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6296 const struct tcp_request_sock_ops
*af_ops
,
6297 struct sock
*sk
, struct sk_buff
*skb
)
6299 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6300 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6301 struct tcp_options_received tmp_opt
;
6302 struct tcp_sock
*tp
= tcp_sk(sk
);
6303 struct net
*net
= sock_net(sk
);
6304 struct sock
*fastopen_sk
= NULL
;
6305 struct dst_entry
*dst
= NULL
;
6306 struct request_sock
*req
;
6307 bool want_cookie
= false;
6310 /* TW buckets are converted to open requests without
6311 * limitations, they conserve resources and peer is
6312 * evidently real one.
6314 if ((net
->ipv4
.sysctl_tcp_syncookies
== 2 ||
6315 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6316 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
6321 if (sk_acceptq_is_full(sk
)) {
6322 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6326 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6330 tcp_rsk(req
)->af_specific
= af_ops
;
6331 tcp_rsk(req
)->ts_off
= 0;
6333 tcp_clear_options(&tmp_opt
);
6334 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6335 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6336 tcp_parse_options(skb
, &tmp_opt
, 0, want_cookie
? NULL
: &foc
);
6338 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6339 tcp_clear_options(&tmp_opt
);
6341 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6342 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6343 inet_rsk(req
)->no_srccheck
= inet_sk(sk
)->transparent
;
6345 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6346 inet_rsk(req
)->ir_iif
= inet_request_bound_dev_if(sk
, skb
);
6348 af_ops
->init_req(req
, sk
, skb
);
6350 if (security_inet_conn_request(sk
, skb
, req
))
6353 if (isn
&& tmp_opt
.tstamp_ok
)
6354 af_ops
->init_seq(skb
, &tcp_rsk(req
)->ts_off
);
6356 if (!want_cookie
&& !isn
) {
6357 /* VJ's idea. We save last timestamp seen
6358 * from the destination in peer table, when entering
6359 * state TIME-WAIT, and check against it before
6360 * accepting new connection request.
6362 * If "isn" is not zero, this request hit alive
6363 * timewait bucket, so that all the necessary checks
6364 * are made in the function processing timewait state.
6366 if (tcp_death_row
.sysctl_tw_recycle
) {
6369 dst
= af_ops
->route_req(sk
, &fl
, req
, &strict
);
6371 if (dst
&& strict
&&
6372 !tcp_peer_is_proven(req
, dst
, true,
6373 tmp_opt
.saw_tstamp
)) {
6374 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSPASSIVEREJECTED
);
6375 goto drop_and_release
;
6378 /* Kill the following clause, if you dislike this way. */
6379 else if (!net
->ipv4
.sysctl_tcp_syncookies
&&
6380 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6381 (sysctl_max_syn_backlog
>> 2)) &&
6382 !tcp_peer_is_proven(req
, dst
, false,
6383 tmp_opt
.saw_tstamp
)) {
6384 /* Without syncookies last quarter of
6385 * backlog is filled with destinations,
6386 * proven to be alive.
6387 * It means that we continue to communicate
6388 * to destinations, already remembered
6389 * to the moment of synflood.
6391 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6393 goto drop_and_release
;
6396 isn
= af_ops
->init_seq(skb
, &tcp_rsk(req
)->ts_off
);
6399 dst
= af_ops
->route_req(sk
, &fl
, req
, NULL
);
6404 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6407 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6408 tcp_rsk(req
)->ts_off
= 0;
6409 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6410 if (!tmp_opt
.tstamp_ok
)
6411 inet_rsk(req
)->ecn_ok
= 0;
6414 tcp_rsk(req
)->snt_isn
= isn
;
6415 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6416 tcp_openreq_init_rwin(req
, sk
, dst
);
6418 tcp_reqsk_record_syn(sk
, req
, skb
);
6419 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6422 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6423 &foc
, TCP_SYNACK_FASTOPEN
);
6424 /* Add the child socket directly into the accept queue */
6425 inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
);
6426 sk
->sk_data_ready(sk
);
6427 bh_unlock_sock(fastopen_sk
);
6428 sock_put(fastopen_sk
);
6430 tcp_rsk(req
)->tfo_listener
= false;
6432 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
6433 af_ops
->send_synack(sk
, dst
, &fl
, req
, &foc
,
6434 !want_cookie
? TCP_SYNACK_NORMAL
:
6452 EXPORT_SYMBOL(tcp_conn_request
);