2 * Linux INET6 implementation
3 * Forwarding Information Database
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
17 * Ville Nuorvala: Fixed routing subtrees.
20 #define pr_fmt(fmt) "IPv6: " fmt
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
43 #define RT6_TRACE(x...) pr_debug(x)
45 #define RT6_TRACE(x...) do { ; } while (0)
48 static struct kmem_cache
*fib6_node_kmem __read_mostly
;
53 int (*func
)(struct rt6_info
*, void *arg
);
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
61 #define FWS_INIT FWS_L
64 static void fib6_prune_clones(struct net
*net
, struct fib6_node
*fn
);
65 static struct rt6_info
*fib6_find_prefix(struct net
*net
, struct fib6_node
*fn
);
66 static struct fib6_node
*fib6_repair_tree(struct net
*net
, struct fib6_node
*fn
);
67 static int fib6_walk(struct net
*net
, struct fib6_walker
*w
);
68 static int fib6_walk_continue(struct fib6_walker
*w
);
71 * A routing update causes an increase of the serial number on the
72 * affected subtree. This allows for cached routes to be asynchronously
73 * tested when modifications are made to the destination cache as a
74 * result of redirects, path MTU changes, etc.
77 static void fib6_gc_timer_cb(unsigned long arg
);
79 #define FOR_WALKERS(net, w) \
80 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
82 static void fib6_walker_link(struct net
*net
, struct fib6_walker
*w
)
84 write_lock_bh(&net
->ipv6
.fib6_walker_lock
);
85 list_add(&w
->lh
, &net
->ipv6
.fib6_walkers
);
86 write_unlock_bh(&net
->ipv6
.fib6_walker_lock
);
89 static void fib6_walker_unlink(struct net
*net
, struct fib6_walker
*w
)
91 write_lock_bh(&net
->ipv6
.fib6_walker_lock
);
93 write_unlock_bh(&net
->ipv6
.fib6_walker_lock
);
96 static int fib6_new_sernum(struct net
*net
)
101 old
= atomic_read(&net
->ipv6
.fib6_sernum
);
102 new = old
< INT_MAX
? old
+ 1 : 1;
103 } while (atomic_cmpxchg(&net
->ipv6
.fib6_sernum
,
109 FIB6_NO_SERNUM_CHANGE
= 0,
113 * Auxiliary address test functions for the radix tree.
115 * These assume a 32bit processor (although it will work on
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
125 # define BITOP_BE32_SWIZZLE 0
128 static __be32
addr_bit_set(const void *token
, int fn_bit
)
130 const __be32
*addr
= token
;
133 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 * is optimized version of
135 * htonl(1 << ((~fn_bit)&0x1F))
136 * See include/asm-generic/bitops/le.h.
138 return (__force __be32
)(1 << ((~fn_bit
^ BITOP_BE32_SWIZZLE
) & 0x1f)) &
142 static struct fib6_node
*node_alloc(void)
144 struct fib6_node
*fn
;
146 fn
= kmem_cache_zalloc(fib6_node_kmem
, GFP_ATOMIC
);
151 static void node_free(struct fib6_node
*fn
)
153 kmem_cache_free(fib6_node_kmem
, fn
);
156 static void rt6_rcu_free(struct rt6_info
*rt
)
158 call_rcu(&rt
->dst
.rcu_head
, dst_rcu_free
);
161 static void rt6_free_pcpu(struct rt6_info
*non_pcpu_rt
)
165 if (!non_pcpu_rt
->rt6i_pcpu
)
168 for_each_possible_cpu(cpu
) {
169 struct rt6_info
**ppcpu_rt
;
170 struct rt6_info
*pcpu_rt
;
172 ppcpu_rt
= per_cpu_ptr(non_pcpu_rt
->rt6i_pcpu
, cpu
);
175 rt6_rcu_free(pcpu_rt
);
180 free_percpu(non_pcpu_rt
->rt6i_pcpu
);
181 non_pcpu_rt
->rt6i_pcpu
= NULL
;
184 static void rt6_release(struct rt6_info
*rt
)
186 if (atomic_dec_and_test(&rt
->rt6i_ref
)) {
192 static void fib6_link_table(struct net
*net
, struct fib6_table
*tb
)
197 * Initialize table lock at a single place to give lockdep a key,
198 * tables aren't visible prior to being linked to the list.
200 rwlock_init(&tb
->tb6_lock
);
202 h
= tb
->tb6_id
& (FIB6_TABLE_HASHSZ
- 1);
205 * No protection necessary, this is the only list mutatation
206 * operation, tables never disappear once they exist.
208 hlist_add_head_rcu(&tb
->tb6_hlist
, &net
->ipv6
.fib_table_hash
[h
]);
211 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
213 static struct fib6_table
*fib6_alloc_table(struct net
*net
, u32 id
)
215 struct fib6_table
*table
;
217 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
220 table
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
221 table
->tb6_root
.fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
222 inet_peer_base_init(&table
->tb6_peers
);
228 struct fib6_table
*fib6_new_table(struct net
*net
, u32 id
)
230 struct fib6_table
*tb
;
234 tb
= fib6_get_table(net
, id
);
238 tb
= fib6_alloc_table(net
, id
);
240 fib6_link_table(net
, tb
);
244 EXPORT_SYMBOL_GPL(fib6_new_table
);
246 struct fib6_table
*fib6_get_table(struct net
*net
, u32 id
)
248 struct fib6_table
*tb
;
249 struct hlist_head
*head
;
254 h
= id
& (FIB6_TABLE_HASHSZ
- 1);
256 head
= &net
->ipv6
.fib_table_hash
[h
];
257 hlist_for_each_entry_rcu(tb
, head
, tb6_hlist
) {
258 if (tb
->tb6_id
== id
) {
267 EXPORT_SYMBOL_GPL(fib6_get_table
);
269 static void __net_init
fib6_tables_init(struct net
*net
)
271 fib6_link_table(net
, net
->ipv6
.fib6_main_tbl
);
272 fib6_link_table(net
, net
->ipv6
.fib6_local_tbl
);
276 struct fib6_table
*fib6_new_table(struct net
*net
, u32 id
)
278 return fib6_get_table(net
, id
);
281 struct fib6_table
*fib6_get_table(struct net
*net
, u32 id
)
283 return net
->ipv6
.fib6_main_tbl
;
286 struct dst_entry
*fib6_rule_lookup(struct net
*net
, struct flowi6
*fl6
,
287 int flags
, pol_lookup_t lookup
)
291 rt
= lookup(net
, net
->ipv6
.fib6_main_tbl
, fl6
, flags
);
292 if (rt
->rt6i_flags
& RTF_REJECT
&&
293 rt
->dst
.error
== -EAGAIN
) {
295 rt
= net
->ipv6
.ip6_null_entry
;
302 static void __net_init
fib6_tables_init(struct net
*net
)
304 fib6_link_table(net
, net
->ipv6
.fib6_main_tbl
);
309 static int fib6_dump_node(struct fib6_walker
*w
)
314 for (rt
= w
->leaf
; rt
; rt
= rt
->dst
.rt6_next
) {
315 res
= rt6_dump_route(rt
, w
->args
);
317 /* Frame is full, suspend walking */
326 static void fib6_dump_end(struct netlink_callback
*cb
)
328 struct net
*net
= sock_net(cb
->skb
->sk
);
329 struct fib6_walker
*w
= (void *)cb
->args
[2];
334 fib6_walker_unlink(net
, w
);
339 cb
->done
= (void *)cb
->args
[3];
343 static int fib6_dump_done(struct netlink_callback
*cb
)
346 return cb
->done
? cb
->done(cb
) : 0;
349 static int fib6_dump_table(struct fib6_table
*table
, struct sk_buff
*skb
,
350 struct netlink_callback
*cb
)
352 struct net
*net
= sock_net(skb
->sk
);
353 struct fib6_walker
*w
;
356 w
= (void *)cb
->args
[2];
357 w
->root
= &table
->tb6_root
;
359 if (cb
->args
[4] == 0) {
363 read_lock_bh(&table
->tb6_lock
);
364 res
= fib6_walk(net
, w
);
365 read_unlock_bh(&table
->tb6_lock
);
368 cb
->args
[5] = w
->root
->fn_sernum
;
371 if (cb
->args
[5] != w
->root
->fn_sernum
) {
372 /* Begin at the root if the tree changed */
373 cb
->args
[5] = w
->root
->fn_sernum
;
380 read_lock_bh(&table
->tb6_lock
);
381 res
= fib6_walk_continue(w
);
382 read_unlock_bh(&table
->tb6_lock
);
384 fib6_walker_unlink(net
, w
);
392 static int inet6_dump_fib(struct sk_buff
*skb
, struct netlink_callback
*cb
)
394 struct net
*net
= sock_net(skb
->sk
);
396 unsigned int e
= 0, s_e
;
397 struct rt6_rtnl_dump_arg arg
;
398 struct fib6_walker
*w
;
399 struct fib6_table
*tb
;
400 struct hlist_head
*head
;
406 w
= (void *)cb
->args
[2];
410 * 1. hook callback destructor.
412 cb
->args
[3] = (long)cb
->done
;
413 cb
->done
= fib6_dump_done
;
416 * 2. allocate and initialize walker.
418 w
= kzalloc(sizeof(*w
), GFP_ATOMIC
);
421 w
->func
= fib6_dump_node
;
422 cb
->args
[2] = (long)w
;
431 for (h
= s_h
; h
< FIB6_TABLE_HASHSZ
; h
++, s_e
= 0) {
433 head
= &net
->ipv6
.fib_table_hash
[h
];
434 hlist_for_each_entry_rcu(tb
, head
, tb6_hlist
) {
437 res
= fib6_dump_table(tb
, skb
, cb
);
449 res
= res
< 0 ? res
: skb
->len
;
458 * return the appropriate node for a routing tree "add" operation
459 * by either creating and inserting or by returning an existing
463 static struct fib6_node
*fib6_add_1(struct fib6_node
*root
,
464 struct in6_addr
*addr
, int plen
,
465 int offset
, int allow_create
,
466 int replace_required
, int sernum
)
468 struct fib6_node
*fn
, *in
, *ln
;
469 struct fib6_node
*pn
= NULL
;
474 RT6_TRACE("fib6_add_1\n");
476 /* insert node in tree */
481 key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
486 if (plen
< fn
->fn_bit
||
487 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
)) {
489 if (replace_required
) {
490 pr_warn("Can't replace route, no match found\n");
491 return ERR_PTR(-ENOENT
);
493 pr_warn("NLM_F_CREATE should be set when creating new route\n");
502 if (plen
== fn
->fn_bit
) {
503 /* clean up an intermediate node */
504 if (!(fn
->fn_flags
& RTN_RTINFO
)) {
505 rt6_release(fn
->leaf
);
509 fn
->fn_sernum
= sernum
;
515 * We have more bits to go
518 /* Try to walk down on tree. */
519 fn
->fn_sernum
= sernum
;
520 dir
= addr_bit_set(addr
, fn
->fn_bit
);
522 fn
= dir
? fn
->right
: fn
->left
;
526 /* We should not create new node because
527 * NLM_F_REPLACE was specified without NLM_F_CREATE
528 * I assume it is safe to require NLM_F_CREATE when
529 * REPLACE flag is used! Later we may want to remove the
530 * check for replace_required, because according
531 * to netlink specification, NLM_F_CREATE
532 * MUST be specified if new route is created.
533 * That would keep IPv6 consistent with IPv4
535 if (replace_required
) {
536 pr_warn("Can't replace route, no match found\n");
537 return ERR_PTR(-ENOENT
);
539 pr_warn("NLM_F_CREATE should be set when creating new route\n");
542 * We walked to the bottom of tree.
543 * Create new leaf node without children.
549 return ERR_PTR(-ENOMEM
);
553 ln
->fn_sernum
= sernum
;
565 * split since we don't have a common prefix anymore or
566 * we have a less significant route.
567 * we've to insert an intermediate node on the list
568 * this new node will point to the one we need to create
574 /* find 1st bit in difference between the 2 addrs.
576 See comment in __ipv6_addr_diff: bit may be an invalid value,
577 but if it is >= plen, the value is ignored in any case.
580 bit
= __ipv6_addr_diff(addr
, &key
->addr
, sizeof(*addr
));
585 * (new leaf node)[ln] (old node)[fn]
596 return ERR_PTR(-ENOMEM
);
600 * new intermediate node.
602 * be off since that an address that chooses one of
603 * the branches would not match less specific routes
604 * in the other branch
611 atomic_inc(&in
->leaf
->rt6i_ref
);
613 in
->fn_sernum
= sernum
;
615 /* update parent pointer */
626 ln
->fn_sernum
= sernum
;
628 if (addr_bit_set(addr
, bit
)) {
635 } else { /* plen <= bit */
638 * (new leaf node)[ln]
640 * (old node)[fn] NULL
646 return ERR_PTR(-ENOMEM
);
652 ln
->fn_sernum
= sernum
;
659 if (addr_bit_set(&key
->addr
, plen
))
669 static bool rt6_qualify_for_ecmp(struct rt6_info
*rt
)
671 return (rt
->rt6i_flags
& (RTF_GATEWAY
|RTF_ADDRCONF
|RTF_DYNAMIC
)) ==
675 static void fib6_copy_metrics(u32
*mp
, const struct mx6_config
*mxc
)
679 for (i
= 0; i
< RTAX_MAX
; i
++) {
680 if (test_bit(i
, mxc
->mx_valid
))
685 static int fib6_commit_metrics(struct dst_entry
*dst
, struct mx6_config
*mxc
)
690 if (dst
->flags
& DST_HOST
) {
691 u32
*mp
= dst_metrics_write_ptr(dst
);
696 fib6_copy_metrics(mp
, mxc
);
698 dst_init_metrics(dst
, mxc
->mx
, false);
700 /* We've stolen mx now. */
707 static void fib6_purge_rt(struct rt6_info
*rt
, struct fib6_node
*fn
,
710 if (atomic_read(&rt
->rt6i_ref
) != 1) {
711 /* This route is used as dummy address holder in some split
712 * nodes. It is not leaked, but it still holds other resources,
713 * which must be released in time. So, scan ascendant nodes
714 * and replace dummy references to this route with references
715 * to still alive ones.
718 if (!(fn
->fn_flags
& RTN_RTINFO
) && fn
->leaf
== rt
) {
719 fn
->leaf
= fib6_find_prefix(net
, fn
);
720 atomic_inc(&fn
->leaf
->rt6i_ref
);
725 /* No more references are possible at this point. */
726 BUG_ON(atomic_read(&rt
->rt6i_ref
) != 1);
731 * Insert routing information in a node.
734 static int fib6_add_rt2node(struct fib6_node
*fn
, struct rt6_info
*rt
,
735 struct nl_info
*info
, struct mx6_config
*mxc
)
737 struct rt6_info
*iter
= NULL
;
738 struct rt6_info
**ins
;
739 struct rt6_info
**fallback_ins
= NULL
;
740 int replace
= (info
->nlh
&&
741 (info
->nlh
->nlmsg_flags
& NLM_F_REPLACE
));
742 int add
= (!info
->nlh
||
743 (info
->nlh
->nlmsg_flags
& NLM_F_CREATE
));
745 bool rt_can_ecmp
= rt6_qualify_for_ecmp(rt
);
746 u16 nlflags
= NLM_F_EXCL
;
751 for (iter
= fn
->leaf
; iter
; iter
= iter
->dst
.rt6_next
) {
753 * Search for duplicates
756 if (iter
->rt6i_metric
== rt
->rt6i_metric
) {
758 * Same priority level
761 (info
->nlh
->nlmsg_flags
& NLM_F_EXCL
))
764 nlflags
&= ~NLM_F_EXCL
;
766 if (rt_can_ecmp
== rt6_qualify_for_ecmp(iter
)) {
771 fallback_ins
= fallback_ins
?: ins
;
775 if (iter
->dst
.dev
== rt
->dst
.dev
&&
776 iter
->rt6i_idev
== rt
->rt6i_idev
&&
777 ipv6_addr_equal(&iter
->rt6i_gateway
,
778 &rt
->rt6i_gateway
)) {
779 if (rt
->rt6i_nsiblings
)
780 rt
->rt6i_nsiblings
= 0;
781 if (!(iter
->rt6i_flags
& RTF_EXPIRES
))
783 if (!(rt
->rt6i_flags
& RTF_EXPIRES
))
784 rt6_clean_expires(iter
);
786 rt6_set_expires(iter
, rt
->dst
.expires
);
787 iter
->rt6i_pmtu
= rt
->rt6i_pmtu
;
790 /* If we have the same destination and the same metric,
791 * but not the same gateway, then the route we try to
792 * add is sibling to this route, increment our counter
793 * of siblings, and later we will add our route to the
795 * Only static routes (which don't have flag
796 * RTF_EXPIRES) are used for ECMPv6.
798 * To avoid long list, we only had siblings if the
799 * route have a gateway.
802 rt6_qualify_for_ecmp(iter
))
803 rt
->rt6i_nsiblings
++;
806 if (iter
->rt6i_metric
> rt
->rt6i_metric
)
810 ins
= &iter
->dst
.rt6_next
;
813 if (fallback_ins
&& !found
) {
814 /* No ECMP-able route found, replace first non-ECMP one */
820 /* Reset round-robin state, if necessary */
821 if (ins
== &fn
->leaf
)
824 /* Link this route to others same route. */
825 if (rt
->rt6i_nsiblings
) {
826 unsigned int rt6i_nsiblings
;
827 struct rt6_info
*sibling
, *temp_sibling
;
829 /* Find the first route that have the same metric */
832 if (sibling
->rt6i_metric
== rt
->rt6i_metric
&&
833 rt6_qualify_for_ecmp(sibling
)) {
834 list_add_tail(&rt
->rt6i_siblings
,
835 &sibling
->rt6i_siblings
);
838 sibling
= sibling
->dst
.rt6_next
;
840 /* For each sibling in the list, increment the counter of
841 * siblings. BUG() if counters does not match, list of siblings
845 list_for_each_entry_safe(sibling
, temp_sibling
,
846 &rt
->rt6i_siblings
, rt6i_siblings
) {
847 sibling
->rt6i_nsiblings
++;
848 BUG_ON(sibling
->rt6i_nsiblings
!= rt
->rt6i_nsiblings
);
851 BUG_ON(rt6i_nsiblings
!= rt
->rt6i_nsiblings
);
859 pr_warn("NLM_F_CREATE should be set when creating new route\n");
862 nlflags
|= NLM_F_CREATE
;
863 err
= fib6_commit_metrics(&rt
->dst
, mxc
);
867 rt
->dst
.rt6_next
= iter
;
870 atomic_inc(&rt
->rt6i_ref
);
871 inet6_rt_notify(RTM_NEWROUTE
, rt
, info
, nlflags
);
872 info
->nl_net
->ipv6
.rt6_stats
->fib_rt_entries
++;
874 if (!(fn
->fn_flags
& RTN_RTINFO
)) {
875 info
->nl_net
->ipv6
.rt6_stats
->fib_route_nodes
++;
876 fn
->fn_flags
|= RTN_RTINFO
;
885 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
889 err
= fib6_commit_metrics(&rt
->dst
, mxc
);
895 rt
->dst
.rt6_next
= iter
->dst
.rt6_next
;
896 atomic_inc(&rt
->rt6i_ref
);
897 inet6_rt_notify(RTM_NEWROUTE
, rt
, info
, NLM_F_REPLACE
);
898 if (!(fn
->fn_flags
& RTN_RTINFO
)) {
899 info
->nl_net
->ipv6
.rt6_stats
->fib_route_nodes
++;
900 fn
->fn_flags
|= RTN_RTINFO
;
902 nsiblings
= iter
->rt6i_nsiblings
;
903 fib6_purge_rt(iter
, fn
, info
->nl_net
);
907 /* Replacing an ECMP route, remove all siblings */
908 ins
= &rt
->dst
.rt6_next
;
911 if (rt6_qualify_for_ecmp(iter
)) {
912 *ins
= iter
->dst
.rt6_next
;
913 fib6_purge_rt(iter
, fn
, info
->nl_net
);
917 ins
= &iter
->dst
.rt6_next
;
921 WARN_ON(nsiblings
!= 0);
928 static void fib6_start_gc(struct net
*net
, struct rt6_info
*rt
)
930 if (!timer_pending(&net
->ipv6
.ip6_fib_timer
) &&
931 (rt
->rt6i_flags
& (RTF_EXPIRES
| RTF_CACHE
)))
932 mod_timer(&net
->ipv6
.ip6_fib_timer
,
933 jiffies
+ net
->ipv6
.sysctl
.ip6_rt_gc_interval
);
936 void fib6_force_start_gc(struct net
*net
)
938 if (!timer_pending(&net
->ipv6
.ip6_fib_timer
))
939 mod_timer(&net
->ipv6
.ip6_fib_timer
,
940 jiffies
+ net
->ipv6
.sysctl
.ip6_rt_gc_interval
);
944 * Add routing information to the routing tree.
945 * <destination addr>/<source addr>
946 * with source addr info in sub-trees
949 int fib6_add(struct fib6_node
*root
, struct rt6_info
*rt
,
950 struct nl_info
*info
, struct mx6_config
*mxc
)
952 struct fib6_node
*fn
, *pn
= NULL
;
954 int allow_create
= 1;
955 int replace_required
= 0;
956 int sernum
= fib6_new_sernum(info
->nl_net
);
958 if (WARN_ON_ONCE((rt
->dst
.flags
& DST_NOCACHE
) &&
959 !atomic_read(&rt
->dst
.__refcnt
)))
963 if (!(info
->nlh
->nlmsg_flags
& NLM_F_CREATE
))
965 if (info
->nlh
->nlmsg_flags
& NLM_F_REPLACE
)
966 replace_required
= 1;
968 if (!allow_create
&& !replace_required
)
969 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
971 fn
= fib6_add_1(root
, &rt
->rt6i_dst
.addr
, rt
->rt6i_dst
.plen
,
972 offsetof(struct rt6_info
, rt6i_dst
), allow_create
,
973 replace_required
, sernum
);
982 #ifdef CONFIG_IPV6_SUBTREES
983 if (rt
->rt6i_src
.plen
) {
984 struct fib6_node
*sn
;
987 struct fib6_node
*sfn
;
999 /* Create subtree root node */
1004 sfn
->leaf
= info
->nl_net
->ipv6
.ip6_null_entry
;
1005 atomic_inc(&info
->nl_net
->ipv6
.ip6_null_entry
->rt6i_ref
);
1006 sfn
->fn_flags
= RTN_ROOT
;
1007 sfn
->fn_sernum
= sernum
;
1009 /* Now add the first leaf node to new subtree */
1011 sn
= fib6_add_1(sfn
, &rt
->rt6i_src
.addr
,
1013 offsetof(struct rt6_info
, rt6i_src
),
1014 allow_create
, replace_required
, sernum
);
1017 /* If it is failed, discard just allocated
1018 root, and then (in st_failure) stale node
1026 /* Now link new subtree to main tree */
1030 sn
= fib6_add_1(fn
->subtree
, &rt
->rt6i_src
.addr
,
1032 offsetof(struct rt6_info
, rt6i_src
),
1033 allow_create
, replace_required
, sernum
);
1043 atomic_inc(&rt
->rt6i_ref
);
1049 err
= fib6_add_rt2node(fn
, rt
, info
, mxc
);
1051 fib6_start_gc(info
->nl_net
, rt
);
1052 if (!(rt
->rt6i_flags
& RTF_CACHE
))
1053 fib6_prune_clones(info
->nl_net
, pn
);
1054 rt
->dst
.flags
&= ~DST_NOCACHE
;
1059 #ifdef CONFIG_IPV6_SUBTREES
1061 * If fib6_add_1 has cleared the old leaf pointer in the
1062 * super-tree leaf node we have to find a new one for it.
1064 if (pn
!= fn
&& pn
->leaf
== rt
) {
1066 atomic_dec(&rt
->rt6i_ref
);
1068 if (pn
!= fn
&& !pn
->leaf
&& !(pn
->fn_flags
& RTN_RTINFO
)) {
1069 pn
->leaf
= fib6_find_prefix(info
->nl_net
, pn
);
1072 WARN_ON(pn
->leaf
== NULL
);
1073 pn
->leaf
= info
->nl_net
->ipv6
.ip6_null_entry
;
1076 atomic_inc(&pn
->leaf
->rt6i_ref
);
1079 if (!(rt
->dst
.flags
& DST_NOCACHE
))
1084 #ifdef CONFIG_IPV6_SUBTREES
1085 /* Subtree creation failed, probably main tree node
1086 is orphan. If it is, shoot it.
1089 if (fn
&& !(fn
->fn_flags
& (RTN_RTINFO
|RTN_ROOT
)))
1090 fib6_repair_tree(info
->nl_net
, fn
);
1091 if (!(rt
->dst
.flags
& DST_NOCACHE
))
1098 * Routing tree lookup
1102 struct lookup_args
{
1103 int offset
; /* key offset on rt6_info */
1104 const struct in6_addr
*addr
; /* search key */
1107 static struct fib6_node
*fib6_lookup_1(struct fib6_node
*root
,
1108 struct lookup_args
*args
)
1110 struct fib6_node
*fn
;
1113 if (unlikely(args
->offset
== 0))
1123 struct fib6_node
*next
;
1125 dir
= addr_bit_set(args
->addr
, fn
->fn_bit
);
1127 next
= dir
? fn
->right
: fn
->left
;
1137 if (FIB6_SUBTREE(fn
) || fn
->fn_flags
& RTN_RTINFO
) {
1140 key
= (struct rt6key
*) ((u8
*) fn
->leaf
+
1143 if (ipv6_prefix_equal(&key
->addr
, args
->addr
, key
->plen
)) {
1144 #ifdef CONFIG_IPV6_SUBTREES
1146 struct fib6_node
*sfn
;
1147 sfn
= fib6_lookup_1(fn
->subtree
,
1154 if (fn
->fn_flags
& RTN_RTINFO
)
1158 #ifdef CONFIG_IPV6_SUBTREES
1161 if (fn
->fn_flags
& RTN_ROOT
)
1170 struct fib6_node
*fib6_lookup(struct fib6_node
*root
, const struct in6_addr
*daddr
,
1171 const struct in6_addr
*saddr
)
1173 struct fib6_node
*fn
;
1174 struct lookup_args args
[] = {
1176 .offset
= offsetof(struct rt6_info
, rt6i_dst
),
1179 #ifdef CONFIG_IPV6_SUBTREES
1181 .offset
= offsetof(struct rt6_info
, rt6i_src
),
1186 .offset
= 0, /* sentinel */
1190 fn
= fib6_lookup_1(root
, daddr
? args
: args
+ 1);
1191 if (!fn
|| fn
->fn_flags
& RTN_TL_ROOT
)
1198 * Get node with specified destination prefix (and source prefix,
1199 * if subtrees are used)
1203 static struct fib6_node
*fib6_locate_1(struct fib6_node
*root
,
1204 const struct in6_addr
*addr
,
1205 int plen
, int offset
)
1207 struct fib6_node
*fn
;
1209 for (fn
= root
; fn
; ) {
1210 struct rt6key
*key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
1215 if (plen
< fn
->fn_bit
||
1216 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
1219 if (plen
== fn
->fn_bit
)
1223 * We have more bits to go
1225 if (addr_bit_set(addr
, fn
->fn_bit
))
1233 struct fib6_node
*fib6_locate(struct fib6_node
*root
,
1234 const struct in6_addr
*daddr
, int dst_len
,
1235 const struct in6_addr
*saddr
, int src_len
)
1237 struct fib6_node
*fn
;
1239 fn
= fib6_locate_1(root
, daddr
, dst_len
,
1240 offsetof(struct rt6_info
, rt6i_dst
));
1242 #ifdef CONFIG_IPV6_SUBTREES
1244 WARN_ON(saddr
== NULL
);
1245 if (fn
&& fn
->subtree
)
1246 fn
= fib6_locate_1(fn
->subtree
, saddr
, src_len
,
1247 offsetof(struct rt6_info
, rt6i_src
));
1251 if (fn
&& fn
->fn_flags
& RTN_RTINFO
)
1263 static struct rt6_info
*fib6_find_prefix(struct net
*net
, struct fib6_node
*fn
)
1265 if (fn
->fn_flags
& RTN_ROOT
)
1266 return net
->ipv6
.ip6_null_entry
;
1270 return fn
->left
->leaf
;
1272 return fn
->right
->leaf
;
1274 fn
= FIB6_SUBTREE(fn
);
1280 * Called to trim the tree of intermediate nodes when possible. "fn"
1281 * is the node we want to try and remove.
1284 static struct fib6_node
*fib6_repair_tree(struct net
*net
,
1285 struct fib6_node
*fn
)
1289 struct fib6_node
*child
, *pn
;
1290 struct fib6_walker
*w
;
1294 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn
->fn_bit
, iter
);
1297 WARN_ON(fn
->fn_flags
& RTN_RTINFO
);
1298 WARN_ON(fn
->fn_flags
& RTN_TL_ROOT
);
1304 child
= fn
->right
, children
|= 1;
1306 child
= fn
->left
, children
|= 2;
1308 if (children
== 3 || FIB6_SUBTREE(fn
)
1309 #ifdef CONFIG_IPV6_SUBTREES
1310 /* Subtree root (i.e. fn) may have one child */
1311 || (children
&& fn
->fn_flags
& RTN_ROOT
)
1314 fn
->leaf
= fib6_find_prefix(net
, fn
);
1318 fn
->leaf
= net
->ipv6
.ip6_null_entry
;
1321 atomic_inc(&fn
->leaf
->rt6i_ref
);
1326 #ifdef CONFIG_IPV6_SUBTREES
1327 if (FIB6_SUBTREE(pn
) == fn
) {
1328 WARN_ON(!(fn
->fn_flags
& RTN_ROOT
));
1329 FIB6_SUBTREE(pn
) = NULL
;
1332 WARN_ON(fn
->fn_flags
& RTN_ROOT
);
1334 if (pn
->right
== fn
)
1336 else if (pn
->left
== fn
)
1345 #ifdef CONFIG_IPV6_SUBTREES
1349 read_lock(&net
->ipv6
.fib6_walker_lock
);
1350 FOR_WALKERS(net
, w
) {
1352 if (w
->root
== fn
) {
1353 w
->root
= w
->node
= NULL
;
1354 RT6_TRACE("W %p adjusted by delroot 1\n", w
);
1355 } else if (w
->node
== fn
) {
1356 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w
, w
->state
, nstate
);
1361 if (w
->root
== fn
) {
1363 RT6_TRACE("W %p adjusted by delroot 2\n", w
);
1365 if (w
->node
== fn
) {
1368 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1369 w
->state
= w
->state
>= FWS_R
? FWS_U
: FWS_INIT
;
1371 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1372 w
->state
= w
->state
>= FWS_C
? FWS_U
: FWS_INIT
;
1377 read_unlock(&net
->ipv6
.fib6_walker_lock
);
1380 if (pn
->fn_flags
& RTN_RTINFO
|| FIB6_SUBTREE(pn
))
1383 rt6_release(pn
->leaf
);
1389 static void fib6_del_route(struct fib6_node
*fn
, struct rt6_info
**rtp
,
1390 struct nl_info
*info
)
1392 struct fib6_walker
*w
;
1393 struct rt6_info
*rt
= *rtp
;
1394 struct net
*net
= info
->nl_net
;
1396 RT6_TRACE("fib6_del_route\n");
1399 *rtp
= rt
->dst
.rt6_next
;
1400 rt
->rt6i_node
= NULL
;
1401 net
->ipv6
.rt6_stats
->fib_rt_entries
--;
1402 net
->ipv6
.rt6_stats
->fib_discarded_routes
++;
1404 /* Reset round-robin state, if necessary */
1405 if (fn
->rr_ptr
== rt
)
1408 /* Remove this entry from other siblings */
1409 if (rt
->rt6i_nsiblings
) {
1410 struct rt6_info
*sibling
, *next_sibling
;
1412 list_for_each_entry_safe(sibling
, next_sibling
,
1413 &rt
->rt6i_siblings
, rt6i_siblings
)
1414 sibling
->rt6i_nsiblings
--;
1415 rt
->rt6i_nsiblings
= 0;
1416 list_del_init(&rt
->rt6i_siblings
);
1419 /* Adjust walkers */
1420 read_lock(&net
->ipv6
.fib6_walker_lock
);
1421 FOR_WALKERS(net
, w
) {
1422 if (w
->state
== FWS_C
&& w
->leaf
== rt
) {
1423 RT6_TRACE("walker %p adjusted by delroute\n", w
);
1424 w
->leaf
= rt
->dst
.rt6_next
;
1429 read_unlock(&net
->ipv6
.fib6_walker_lock
);
1431 rt
->dst
.rt6_next
= NULL
;
1433 /* If it was last route, expunge its radix tree node */
1435 fn
->fn_flags
&= ~RTN_RTINFO
;
1436 net
->ipv6
.rt6_stats
->fib_route_nodes
--;
1437 fn
= fib6_repair_tree(net
, fn
);
1440 fib6_purge_rt(rt
, fn
, net
);
1442 inet6_rt_notify(RTM_DELROUTE
, rt
, info
, 0);
1446 int fib6_del(struct rt6_info
*rt
, struct nl_info
*info
)
1448 struct net
*net
= info
->nl_net
;
1449 struct fib6_node
*fn
= rt
->rt6i_node
;
1450 struct rt6_info
**rtp
;
1453 if (rt
->dst
.obsolete
> 0) {
1458 if (!fn
|| rt
== net
->ipv6
.ip6_null_entry
)
1461 WARN_ON(!(fn
->fn_flags
& RTN_RTINFO
));
1463 if (!(rt
->rt6i_flags
& RTF_CACHE
)) {
1464 struct fib6_node
*pn
= fn
;
1465 #ifdef CONFIG_IPV6_SUBTREES
1466 /* clones of this route might be in another subtree */
1467 if (rt
->rt6i_src
.plen
) {
1468 while (!(pn
->fn_flags
& RTN_ROOT
))
1473 fib6_prune_clones(info
->nl_net
, pn
);
1477 * Walk the leaf entries looking for ourself
1480 for (rtp
= &fn
->leaf
; *rtp
; rtp
= &(*rtp
)->dst
.rt6_next
) {
1482 fib6_del_route(fn
, rtp
, info
);
1490 * Tree traversal function.
1492 * Certainly, it is not interrupt safe.
1493 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1494 * It means, that we can modify tree during walking
1495 * and use this function for garbage collection, clone pruning,
1496 * cleaning tree when a device goes down etc. etc.
1498 * It guarantees that every node will be traversed,
1499 * and that it will be traversed only once.
1501 * Callback function w->func may return:
1502 * 0 -> continue walking.
1503 * positive value -> walking is suspended (used by tree dumps,
1504 * and probably by gc, if it will be split to several slices)
1505 * negative value -> terminate walking.
1507 * The function itself returns:
1508 * 0 -> walk is complete.
1509 * >0 -> walk is incomplete (i.e. suspended)
1510 * <0 -> walk is terminated by an error.
1513 static int fib6_walk_continue(struct fib6_walker
*w
)
1515 struct fib6_node
*fn
, *pn
;
1522 if (w
->prune
&& fn
!= w
->root
&&
1523 fn
->fn_flags
& RTN_RTINFO
&& w
->state
< FWS_C
) {
1528 #ifdef CONFIG_IPV6_SUBTREES
1530 if (FIB6_SUBTREE(fn
)) {
1531 w
->node
= FIB6_SUBTREE(fn
);
1539 w
->state
= FWS_INIT
;
1545 w
->node
= fn
->right
;
1546 w
->state
= FWS_INIT
;
1552 if (w
->leaf
&& fn
->fn_flags
& RTN_RTINFO
) {
1574 #ifdef CONFIG_IPV6_SUBTREES
1575 if (FIB6_SUBTREE(pn
) == fn
) {
1576 WARN_ON(!(fn
->fn_flags
& RTN_ROOT
));
1581 if (pn
->left
== fn
) {
1585 if (pn
->right
== fn
) {
1587 w
->leaf
= w
->node
->leaf
;
1597 static int fib6_walk(struct net
*net
, struct fib6_walker
*w
)
1601 w
->state
= FWS_INIT
;
1604 fib6_walker_link(net
, w
);
1605 res
= fib6_walk_continue(w
);
1607 fib6_walker_unlink(net
, w
);
1611 static int fib6_clean_node(struct fib6_walker
*w
)
1614 struct rt6_info
*rt
;
1615 struct fib6_cleaner
*c
= container_of(w
, struct fib6_cleaner
, w
);
1616 struct nl_info info
= {
1620 if (c
->sernum
!= FIB6_NO_SERNUM_CHANGE
&&
1621 w
->node
->fn_sernum
!= c
->sernum
)
1622 w
->node
->fn_sernum
= c
->sernum
;
1625 WARN_ON_ONCE(c
->sernum
== FIB6_NO_SERNUM_CHANGE
);
1630 for (rt
= w
->leaf
; rt
; rt
= rt
->dst
.rt6_next
) {
1631 res
= c
->func(rt
, c
->arg
);
1634 res
= fib6_del(rt
, &info
);
1637 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1638 __func__
, rt
, rt
->rt6i_node
, res
);
1651 * Convenient frontend to tree walker.
1653 * func is called on each route.
1654 * It may return -1 -> delete this route.
1655 * 0 -> continue walking
1657 * prune==1 -> only immediate children of node (certainly,
1658 * ignoring pure split nodes) will be scanned.
1661 static void fib6_clean_tree(struct net
*net
, struct fib6_node
*root
,
1662 int (*func
)(struct rt6_info
*, void *arg
),
1663 bool prune
, int sernum
, void *arg
)
1665 struct fib6_cleaner c
;
1668 c
.w
.func
= fib6_clean_node
;
1677 fib6_walk(net
, &c
.w
);
1680 static void __fib6_clean_all(struct net
*net
,
1681 int (*func
)(struct rt6_info
*, void *),
1682 int sernum
, void *arg
)
1684 struct fib6_table
*table
;
1685 struct hlist_head
*head
;
1689 for (h
= 0; h
< FIB6_TABLE_HASHSZ
; h
++) {
1690 head
= &net
->ipv6
.fib_table_hash
[h
];
1691 hlist_for_each_entry_rcu(table
, head
, tb6_hlist
) {
1692 write_lock_bh(&table
->tb6_lock
);
1693 fib6_clean_tree(net
, &table
->tb6_root
,
1694 func
, false, sernum
, arg
);
1695 write_unlock_bh(&table
->tb6_lock
);
1701 void fib6_clean_all(struct net
*net
, int (*func
)(struct rt6_info
*, void *),
1704 __fib6_clean_all(net
, func
, FIB6_NO_SERNUM_CHANGE
, arg
);
1707 static int fib6_prune_clone(struct rt6_info
*rt
, void *arg
)
1709 if (rt
->rt6i_flags
& RTF_CACHE
) {
1710 RT6_TRACE("pruning clone %p\n", rt
);
1717 static void fib6_prune_clones(struct net
*net
, struct fib6_node
*fn
)
1719 fib6_clean_tree(net
, fn
, fib6_prune_clone
, true,
1720 FIB6_NO_SERNUM_CHANGE
, NULL
);
1723 static void fib6_flush_trees(struct net
*net
)
1725 int new_sernum
= fib6_new_sernum(net
);
1727 __fib6_clean_all(net
, NULL
, new_sernum
, NULL
);
1731 * Garbage collection
1740 static int fib6_age(struct rt6_info
*rt
, void *arg
)
1742 struct fib6_gc_args
*gc_args
= arg
;
1743 unsigned long now
= jiffies
;
1746 * check addrconf expiration here.
1747 * Routes are expired even if they are in use.
1749 * Also age clones. Note, that clones are aged out
1750 * only if they are not in use now.
1753 if (rt
->rt6i_flags
& RTF_EXPIRES
&& rt
->dst
.expires
) {
1754 if (time_after(now
, rt
->dst
.expires
)) {
1755 RT6_TRACE("expiring %p\n", rt
);
1759 } else if (rt
->rt6i_flags
& RTF_CACHE
) {
1760 if (atomic_read(&rt
->dst
.__refcnt
) == 0 &&
1761 time_after_eq(now
, rt
->dst
.lastuse
+ gc_args
->timeout
)) {
1762 RT6_TRACE("aging clone %p\n", rt
);
1764 } else if (rt
->rt6i_flags
& RTF_GATEWAY
) {
1765 struct neighbour
*neigh
;
1766 __u8 neigh_flags
= 0;
1768 neigh
= dst_neigh_lookup(&rt
->dst
, &rt
->rt6i_gateway
);
1770 neigh_flags
= neigh
->flags
;
1771 neigh_release(neigh
);
1773 if (!(neigh_flags
& NTF_ROUTER
)) {
1774 RT6_TRACE("purging route %p via non-router but gateway\n",
1785 void fib6_run_gc(unsigned long expires
, struct net
*net
, bool force
)
1787 struct fib6_gc_args gc_args
;
1791 spin_lock_bh(&net
->ipv6
.fib6_gc_lock
);
1792 } else if (!spin_trylock_bh(&net
->ipv6
.fib6_gc_lock
)) {
1793 mod_timer(&net
->ipv6
.ip6_fib_timer
, jiffies
+ HZ
);
1796 gc_args
.timeout
= expires
? (int)expires
:
1797 net
->ipv6
.sysctl
.ip6_rt_gc_interval
;
1799 gc_args
.more
= icmp6_dst_gc();
1801 fib6_clean_all(net
, fib6_age
, &gc_args
);
1803 net
->ipv6
.ip6_rt_last_gc
= now
;
1806 mod_timer(&net
->ipv6
.ip6_fib_timer
,
1808 + net
->ipv6
.sysctl
.ip6_rt_gc_interval
));
1810 del_timer(&net
->ipv6
.ip6_fib_timer
);
1811 spin_unlock_bh(&net
->ipv6
.fib6_gc_lock
);
1814 static void fib6_gc_timer_cb(unsigned long arg
)
1816 fib6_run_gc(0, (struct net
*)arg
, true);
1819 static int __net_init
fib6_net_init(struct net
*net
)
1821 size_t size
= sizeof(struct hlist_head
) * FIB6_TABLE_HASHSZ
;
1823 spin_lock_init(&net
->ipv6
.fib6_gc_lock
);
1824 rwlock_init(&net
->ipv6
.fib6_walker_lock
);
1825 INIT_LIST_HEAD(&net
->ipv6
.fib6_walkers
);
1826 setup_timer(&net
->ipv6
.ip6_fib_timer
, fib6_gc_timer_cb
, (unsigned long)net
);
1828 net
->ipv6
.rt6_stats
= kzalloc(sizeof(*net
->ipv6
.rt6_stats
), GFP_KERNEL
);
1829 if (!net
->ipv6
.rt6_stats
)
1832 /* Avoid false sharing : Use at least a full cache line */
1833 size
= max_t(size_t, size
, L1_CACHE_BYTES
);
1835 net
->ipv6
.fib_table_hash
= kzalloc(size
, GFP_KERNEL
);
1836 if (!net
->ipv6
.fib_table_hash
)
1839 net
->ipv6
.fib6_main_tbl
= kzalloc(sizeof(*net
->ipv6
.fib6_main_tbl
),
1841 if (!net
->ipv6
.fib6_main_tbl
)
1842 goto out_fib_table_hash
;
1844 net
->ipv6
.fib6_main_tbl
->tb6_id
= RT6_TABLE_MAIN
;
1845 net
->ipv6
.fib6_main_tbl
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
1846 net
->ipv6
.fib6_main_tbl
->tb6_root
.fn_flags
=
1847 RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
1848 inet_peer_base_init(&net
->ipv6
.fib6_main_tbl
->tb6_peers
);
1850 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1851 net
->ipv6
.fib6_local_tbl
= kzalloc(sizeof(*net
->ipv6
.fib6_local_tbl
),
1853 if (!net
->ipv6
.fib6_local_tbl
)
1854 goto out_fib6_main_tbl
;
1855 net
->ipv6
.fib6_local_tbl
->tb6_id
= RT6_TABLE_LOCAL
;
1856 net
->ipv6
.fib6_local_tbl
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
1857 net
->ipv6
.fib6_local_tbl
->tb6_root
.fn_flags
=
1858 RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
1859 inet_peer_base_init(&net
->ipv6
.fib6_local_tbl
->tb6_peers
);
1861 fib6_tables_init(net
);
1865 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1867 kfree(net
->ipv6
.fib6_main_tbl
);
1870 kfree(net
->ipv6
.fib_table_hash
);
1872 kfree(net
->ipv6
.rt6_stats
);
1877 static void fib6_net_exit(struct net
*net
)
1879 rt6_ifdown(net
, NULL
);
1880 del_timer_sync(&net
->ipv6
.ip6_fib_timer
);
1882 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1883 inetpeer_invalidate_tree(&net
->ipv6
.fib6_local_tbl
->tb6_peers
);
1884 kfree(net
->ipv6
.fib6_local_tbl
);
1886 inetpeer_invalidate_tree(&net
->ipv6
.fib6_main_tbl
->tb6_peers
);
1887 kfree(net
->ipv6
.fib6_main_tbl
);
1888 kfree(net
->ipv6
.fib_table_hash
);
1889 kfree(net
->ipv6
.rt6_stats
);
1892 static struct pernet_operations fib6_net_ops
= {
1893 .init
= fib6_net_init
,
1894 .exit
= fib6_net_exit
,
1897 int __init
fib6_init(void)
1901 fib6_node_kmem
= kmem_cache_create("fib6_nodes",
1902 sizeof(struct fib6_node
),
1903 0, SLAB_HWCACHE_ALIGN
,
1905 if (!fib6_node_kmem
)
1908 ret
= register_pernet_subsys(&fib6_net_ops
);
1910 goto out_kmem_cache_create
;
1912 ret
= __rtnl_register(PF_INET6
, RTM_GETROUTE
, NULL
, inet6_dump_fib
,
1915 goto out_unregister_subsys
;
1917 __fib6_flush_trees
= fib6_flush_trees
;
1921 out_unregister_subsys
:
1922 unregister_pernet_subsys(&fib6_net_ops
);
1923 out_kmem_cache_create
:
1924 kmem_cache_destroy(fib6_node_kmem
);
1928 void fib6_gc_cleanup(void)
1930 unregister_pernet_subsys(&fib6_net_ops
);
1931 kmem_cache_destroy(fib6_node_kmem
);
1934 #ifdef CONFIG_PROC_FS
1936 struct ipv6_route_iter
{
1937 struct seq_net_private p
;
1938 struct fib6_walker w
;
1940 struct fib6_table
*tbl
;
1944 static int ipv6_route_seq_show(struct seq_file
*seq
, void *v
)
1946 struct rt6_info
*rt
= v
;
1947 struct ipv6_route_iter
*iter
= seq
->private;
1949 seq_printf(seq
, "%pi6 %02x ", &rt
->rt6i_dst
.addr
, rt
->rt6i_dst
.plen
);
1951 #ifdef CONFIG_IPV6_SUBTREES
1952 seq_printf(seq
, "%pi6 %02x ", &rt
->rt6i_src
.addr
, rt
->rt6i_src
.plen
);
1954 seq_puts(seq
, "00000000000000000000000000000000 00 ");
1956 if (rt
->rt6i_flags
& RTF_GATEWAY
)
1957 seq_printf(seq
, "%pi6", &rt
->rt6i_gateway
);
1959 seq_puts(seq
, "00000000000000000000000000000000");
1961 seq_printf(seq
, " %08x %08x %08x %08x %8s\n",
1962 rt
->rt6i_metric
, atomic_read(&rt
->dst
.__refcnt
),
1963 rt
->dst
.__use
, rt
->rt6i_flags
,
1964 rt
->dst
.dev
? rt
->dst
.dev
->name
: "");
1965 iter
->w
.leaf
= NULL
;
1969 static int ipv6_route_yield(struct fib6_walker
*w
)
1971 struct ipv6_route_iter
*iter
= w
->args
;
1977 iter
->w
.leaf
= iter
->w
.leaf
->dst
.rt6_next
;
1979 if (!iter
->skip
&& iter
->w
.leaf
)
1981 } while (iter
->w
.leaf
);
1986 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter
*iter
,
1989 memset(&iter
->w
, 0, sizeof(iter
->w
));
1990 iter
->w
.func
= ipv6_route_yield
;
1991 iter
->w
.root
= &iter
->tbl
->tb6_root
;
1992 iter
->w
.state
= FWS_INIT
;
1993 iter
->w
.node
= iter
->w
.root
;
1994 iter
->w
.args
= iter
;
1995 iter
->sernum
= iter
->w
.root
->fn_sernum
;
1996 INIT_LIST_HEAD(&iter
->w
.lh
);
1997 fib6_walker_link(net
, &iter
->w
);
2000 static struct fib6_table
*ipv6_route_seq_next_table(struct fib6_table
*tbl
,
2004 struct hlist_node
*node
;
2007 h
= (tbl
->tb6_id
& (FIB6_TABLE_HASHSZ
- 1)) + 1;
2008 node
= rcu_dereference_bh(hlist_next_rcu(&tbl
->tb6_hlist
));
2014 while (!node
&& h
< FIB6_TABLE_HASHSZ
) {
2015 node
= rcu_dereference_bh(
2016 hlist_first_rcu(&net
->ipv6
.fib_table_hash
[h
++]));
2018 return hlist_entry_safe(node
, struct fib6_table
, tb6_hlist
);
2021 static void ipv6_route_check_sernum(struct ipv6_route_iter
*iter
)
2023 if (iter
->sernum
!= iter
->w
.root
->fn_sernum
) {
2024 iter
->sernum
= iter
->w
.root
->fn_sernum
;
2025 iter
->w
.state
= FWS_INIT
;
2026 iter
->w
.node
= iter
->w
.root
;
2027 WARN_ON(iter
->w
.skip
);
2028 iter
->w
.skip
= iter
->w
.count
;
2032 static void *ipv6_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2036 struct net
*net
= seq_file_net(seq
);
2037 struct ipv6_route_iter
*iter
= seq
->private;
2042 n
= ((struct rt6_info
*)v
)->dst
.rt6_next
;
2049 ipv6_route_check_sernum(iter
);
2050 read_lock(&iter
->tbl
->tb6_lock
);
2051 r
= fib6_walk_continue(&iter
->w
);
2052 read_unlock(&iter
->tbl
->tb6_lock
);
2056 return iter
->w
.leaf
;
2058 fib6_walker_unlink(net
, &iter
->w
);
2061 fib6_walker_unlink(net
, &iter
->w
);
2063 iter
->tbl
= ipv6_route_seq_next_table(iter
->tbl
, net
);
2067 ipv6_route_seq_setup_walk(iter
, net
);
2071 static void *ipv6_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2074 struct net
*net
= seq_file_net(seq
);
2075 struct ipv6_route_iter
*iter
= seq
->private;
2078 iter
->tbl
= ipv6_route_seq_next_table(NULL
, net
);
2082 ipv6_route_seq_setup_walk(iter
, net
);
2083 return ipv6_route_seq_next(seq
, NULL
, pos
);
2089 static bool ipv6_route_iter_active(struct ipv6_route_iter
*iter
)
2091 struct fib6_walker
*w
= &iter
->w
;
2092 return w
->node
&& !(w
->state
== FWS_U
&& w
->node
== w
->root
);
2095 static void ipv6_route_seq_stop(struct seq_file
*seq
, void *v
)
2098 struct net
*net
= seq_file_net(seq
);
2099 struct ipv6_route_iter
*iter
= seq
->private;
2101 if (ipv6_route_iter_active(iter
))
2102 fib6_walker_unlink(net
, &iter
->w
);
2104 rcu_read_unlock_bh();
2107 static const struct seq_operations ipv6_route_seq_ops
= {
2108 .start
= ipv6_route_seq_start
,
2109 .next
= ipv6_route_seq_next
,
2110 .stop
= ipv6_route_seq_stop
,
2111 .show
= ipv6_route_seq_show
2114 int ipv6_route_open(struct inode
*inode
, struct file
*file
)
2116 return seq_open_net(inode
, file
, &ipv6_route_seq_ops
,
2117 sizeof(struct ipv6_route_iter
));
2120 #endif /* CONFIG_PROC_FS */