powerpc/powernv: Report size of OPAL memcons log
[linux/fpc-iii.git] / net / sunrpc / auth_gss / auth_gss.c
blobcdeb1d81483350549fc558c0331ee2aa45a5c9c2
1 /*
2 * linux/net/sunrpc/auth_gss/auth_gss.c
4 * RPCSEC_GSS client authentication.
6 * Copyright (c) 2000 The Regents of the University of Michigan.
7 * All rights reserved.
9 * Dug Song <dugsong@monkey.org>
10 * Andy Adamson <andros@umich.edu>
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/sched.h>
44 #include <linux/pagemap.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/auth.h>
47 #include <linux/sunrpc/auth_gss.h>
48 #include <linux/sunrpc/svcauth_gss.h>
49 #include <linux/sunrpc/gss_err.h>
50 #include <linux/workqueue.h>
51 #include <linux/sunrpc/rpc_pipe_fs.h>
52 #include <linux/sunrpc/gss_api.h>
53 #include <linux/uaccess.h>
54 #include <linux/hashtable.h>
56 #include "../netns.h"
58 static const struct rpc_authops authgss_ops;
60 static const struct rpc_credops gss_credops;
61 static const struct rpc_credops gss_nullops;
63 #define GSS_RETRY_EXPIRED 5
64 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED;
66 #define GSS_KEY_EXPIRE_TIMEO 240
67 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO;
69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
70 # define RPCDBG_FACILITY RPCDBG_AUTH
71 #endif
73 #define GSS_CRED_SLACK (RPC_MAX_AUTH_SIZE * 2)
74 /* length of a krb5 verifier (48), plus data added before arguments when
75 * using integrity (two 4-byte integers): */
76 #define GSS_VERF_SLACK 100
78 static DEFINE_HASHTABLE(gss_auth_hash_table, 4);
79 static DEFINE_SPINLOCK(gss_auth_hash_lock);
81 struct gss_pipe {
82 struct rpc_pipe_dir_object pdo;
83 struct rpc_pipe *pipe;
84 struct rpc_clnt *clnt;
85 const char *name;
86 struct kref kref;
89 struct gss_auth {
90 struct kref kref;
91 struct hlist_node hash;
92 struct rpc_auth rpc_auth;
93 struct gss_api_mech *mech;
94 enum rpc_gss_svc service;
95 struct rpc_clnt *client;
96 struct net *net;
98 * There are two upcall pipes; dentry[1], named "gssd", is used
99 * for the new text-based upcall; dentry[0] is named after the
100 * mechanism (for example, "krb5") and exists for
101 * backwards-compatibility with older gssd's.
103 struct gss_pipe *gss_pipe[2];
104 const char *target_name;
107 /* pipe_version >= 0 if and only if someone has a pipe open. */
108 static DEFINE_SPINLOCK(pipe_version_lock);
109 static struct rpc_wait_queue pipe_version_rpc_waitqueue;
110 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue);
111 static void gss_put_auth(struct gss_auth *gss_auth);
113 static void gss_free_ctx(struct gss_cl_ctx *);
114 static const struct rpc_pipe_ops gss_upcall_ops_v0;
115 static const struct rpc_pipe_ops gss_upcall_ops_v1;
117 static inline struct gss_cl_ctx *
118 gss_get_ctx(struct gss_cl_ctx *ctx)
120 atomic_inc(&ctx->count);
121 return ctx;
124 static inline void
125 gss_put_ctx(struct gss_cl_ctx *ctx)
127 if (atomic_dec_and_test(&ctx->count))
128 gss_free_ctx(ctx);
131 /* gss_cred_set_ctx:
132 * called by gss_upcall_callback and gss_create_upcall in order
133 * to set the gss context. The actual exchange of an old context
134 * and a new one is protected by the pipe->lock.
136 static void
137 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
139 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
141 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
142 return;
143 gss_get_ctx(ctx);
144 rcu_assign_pointer(gss_cred->gc_ctx, ctx);
145 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
146 smp_mb__before_atomic();
147 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
150 static const void *
151 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
153 const void *q = (const void *)((const char *)p + len);
154 if (unlikely(q > end || q < p))
155 return ERR_PTR(-EFAULT);
156 memcpy(res, p, len);
157 return q;
160 static inline const void *
161 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
163 const void *q;
164 unsigned int len;
166 p = simple_get_bytes(p, end, &len, sizeof(len));
167 if (IS_ERR(p))
168 return p;
169 q = (const void *)((const char *)p + len);
170 if (unlikely(q > end || q < p))
171 return ERR_PTR(-EFAULT);
172 dest->data = kmemdup(p, len, GFP_NOFS);
173 if (unlikely(dest->data == NULL))
174 return ERR_PTR(-ENOMEM);
175 dest->len = len;
176 return q;
179 static struct gss_cl_ctx *
180 gss_cred_get_ctx(struct rpc_cred *cred)
182 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
183 struct gss_cl_ctx *ctx = NULL;
185 rcu_read_lock();
186 ctx = rcu_dereference(gss_cred->gc_ctx);
187 if (ctx)
188 gss_get_ctx(ctx);
189 rcu_read_unlock();
190 return ctx;
193 static struct gss_cl_ctx *
194 gss_alloc_context(void)
196 struct gss_cl_ctx *ctx;
198 ctx = kzalloc(sizeof(*ctx), GFP_NOFS);
199 if (ctx != NULL) {
200 ctx->gc_proc = RPC_GSS_PROC_DATA;
201 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */
202 spin_lock_init(&ctx->gc_seq_lock);
203 atomic_set(&ctx->count,1);
205 return ctx;
208 #define GSSD_MIN_TIMEOUT (60 * 60)
209 static const void *
210 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
212 const void *q;
213 unsigned int seclen;
214 unsigned int timeout;
215 unsigned long now = jiffies;
216 u32 window_size;
217 int ret;
219 /* First unsigned int gives the remaining lifetime in seconds of the
220 * credential - e.g. the remaining TGT lifetime for Kerberos or
221 * the -t value passed to GSSD.
223 p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
224 if (IS_ERR(p))
225 goto err;
226 if (timeout == 0)
227 timeout = GSSD_MIN_TIMEOUT;
228 ctx->gc_expiry = now + ((unsigned long)timeout * HZ);
229 /* Sequence number window. Determines the maximum number of
230 * simultaneous requests
232 p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
233 if (IS_ERR(p))
234 goto err;
235 ctx->gc_win = window_size;
236 /* gssd signals an error by passing ctx->gc_win = 0: */
237 if (ctx->gc_win == 0) {
239 * in which case, p points to an error code. Anything other
240 * than -EKEYEXPIRED gets converted to -EACCES.
242 p = simple_get_bytes(p, end, &ret, sizeof(ret));
243 if (!IS_ERR(p))
244 p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) :
245 ERR_PTR(-EACCES);
246 goto err;
248 /* copy the opaque wire context */
249 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
250 if (IS_ERR(p))
251 goto err;
252 /* import the opaque security context */
253 p = simple_get_bytes(p, end, &seclen, sizeof(seclen));
254 if (IS_ERR(p))
255 goto err;
256 q = (const void *)((const char *)p + seclen);
257 if (unlikely(q > end || q < p)) {
258 p = ERR_PTR(-EFAULT);
259 goto err;
261 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_NOFS);
262 if (ret < 0) {
263 p = ERR_PTR(ret);
264 goto err;
267 /* is there any trailing data? */
268 if (q == end) {
269 p = q;
270 goto done;
273 /* pull in acceptor name (if there is one) */
274 p = simple_get_netobj(q, end, &ctx->gc_acceptor);
275 if (IS_ERR(p))
276 goto err;
277 done:
278 dprintk("RPC: %s Success. gc_expiry %lu now %lu timeout %u acceptor %.*s\n",
279 __func__, ctx->gc_expiry, now, timeout, ctx->gc_acceptor.len,
280 ctx->gc_acceptor.data);
281 return p;
282 err:
283 dprintk("RPC: %s returns error %ld\n", __func__, -PTR_ERR(p));
284 return p;
287 #define UPCALL_BUF_LEN 128
289 struct gss_upcall_msg {
290 atomic_t count;
291 kuid_t uid;
292 struct rpc_pipe_msg msg;
293 struct list_head list;
294 struct gss_auth *auth;
295 struct rpc_pipe *pipe;
296 struct rpc_wait_queue rpc_waitqueue;
297 wait_queue_head_t waitqueue;
298 struct gss_cl_ctx *ctx;
299 char databuf[UPCALL_BUF_LEN];
302 static int get_pipe_version(struct net *net)
304 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
305 int ret;
307 spin_lock(&pipe_version_lock);
308 if (sn->pipe_version >= 0) {
309 atomic_inc(&sn->pipe_users);
310 ret = sn->pipe_version;
311 } else
312 ret = -EAGAIN;
313 spin_unlock(&pipe_version_lock);
314 return ret;
317 static void put_pipe_version(struct net *net)
319 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
321 if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) {
322 sn->pipe_version = -1;
323 spin_unlock(&pipe_version_lock);
327 static void
328 gss_release_msg(struct gss_upcall_msg *gss_msg)
330 struct net *net = gss_msg->auth->net;
331 if (!atomic_dec_and_test(&gss_msg->count))
332 return;
333 put_pipe_version(net);
334 BUG_ON(!list_empty(&gss_msg->list));
335 if (gss_msg->ctx != NULL)
336 gss_put_ctx(gss_msg->ctx);
337 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue);
338 gss_put_auth(gss_msg->auth);
339 kfree(gss_msg);
342 static struct gss_upcall_msg *
343 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid, const struct gss_auth *auth)
345 struct gss_upcall_msg *pos;
346 list_for_each_entry(pos, &pipe->in_downcall, list) {
347 if (!uid_eq(pos->uid, uid))
348 continue;
349 if (auth && pos->auth->service != auth->service)
350 continue;
351 atomic_inc(&pos->count);
352 dprintk("RPC: %s found msg %p\n", __func__, pos);
353 return pos;
355 dprintk("RPC: %s found nothing\n", __func__);
356 return NULL;
359 /* Try to add an upcall to the pipefs queue.
360 * If an upcall owned by our uid already exists, then we return a reference
361 * to that upcall instead of adding the new upcall.
363 static inline struct gss_upcall_msg *
364 gss_add_msg(struct gss_upcall_msg *gss_msg)
366 struct rpc_pipe *pipe = gss_msg->pipe;
367 struct gss_upcall_msg *old;
369 spin_lock(&pipe->lock);
370 old = __gss_find_upcall(pipe, gss_msg->uid, gss_msg->auth);
371 if (old == NULL) {
372 atomic_inc(&gss_msg->count);
373 list_add(&gss_msg->list, &pipe->in_downcall);
374 } else
375 gss_msg = old;
376 spin_unlock(&pipe->lock);
377 return gss_msg;
380 static void
381 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
383 list_del_init(&gss_msg->list);
384 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
385 wake_up_all(&gss_msg->waitqueue);
386 atomic_dec(&gss_msg->count);
389 static void
390 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
392 struct rpc_pipe *pipe = gss_msg->pipe;
394 if (list_empty(&gss_msg->list))
395 return;
396 spin_lock(&pipe->lock);
397 if (!list_empty(&gss_msg->list))
398 __gss_unhash_msg(gss_msg);
399 spin_unlock(&pipe->lock);
402 static void
403 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg)
405 switch (gss_msg->msg.errno) {
406 case 0:
407 if (gss_msg->ctx == NULL)
408 break;
409 clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
410 gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx);
411 break;
412 case -EKEYEXPIRED:
413 set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
415 gss_cred->gc_upcall_timestamp = jiffies;
416 gss_cred->gc_upcall = NULL;
417 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
420 static void
421 gss_upcall_callback(struct rpc_task *task)
423 struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred,
424 struct gss_cred, gc_base);
425 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
426 struct rpc_pipe *pipe = gss_msg->pipe;
428 spin_lock(&pipe->lock);
429 gss_handle_downcall_result(gss_cred, gss_msg);
430 spin_unlock(&pipe->lock);
431 task->tk_status = gss_msg->msg.errno;
432 gss_release_msg(gss_msg);
435 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg)
437 uid_t uid = from_kuid(&init_user_ns, gss_msg->uid);
438 memcpy(gss_msg->databuf, &uid, sizeof(uid));
439 gss_msg->msg.data = gss_msg->databuf;
440 gss_msg->msg.len = sizeof(uid);
442 BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf));
445 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg,
446 const char *service_name,
447 const char *target_name)
449 struct gss_api_mech *mech = gss_msg->auth->mech;
450 char *p = gss_msg->databuf;
451 size_t buflen = sizeof(gss_msg->databuf);
452 int len;
454 len = scnprintf(p, buflen, "mech=%s uid=%d ", mech->gm_name,
455 from_kuid(&init_user_ns, gss_msg->uid));
456 buflen -= len;
457 p += len;
458 gss_msg->msg.len = len;
459 if (target_name) {
460 len = scnprintf(p, buflen, "target=%s ", target_name);
461 buflen -= len;
462 p += len;
463 gss_msg->msg.len += len;
465 if (service_name != NULL) {
466 len = scnprintf(p, buflen, "service=%s ", service_name);
467 buflen -= len;
468 p += len;
469 gss_msg->msg.len += len;
471 if (mech->gm_upcall_enctypes) {
472 len = scnprintf(p, buflen, "enctypes=%s ",
473 mech->gm_upcall_enctypes);
474 buflen -= len;
475 p += len;
476 gss_msg->msg.len += len;
478 len = scnprintf(p, buflen, "\n");
479 if (len == 0)
480 goto out_overflow;
481 gss_msg->msg.len += len;
483 gss_msg->msg.data = gss_msg->databuf;
484 return 0;
485 out_overflow:
486 WARN_ON_ONCE(1);
487 return -ENOMEM;
490 static struct gss_upcall_msg *
491 gss_alloc_msg(struct gss_auth *gss_auth,
492 kuid_t uid, const char *service_name)
494 struct gss_upcall_msg *gss_msg;
495 int vers;
496 int err = -ENOMEM;
498 gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS);
499 if (gss_msg == NULL)
500 goto err;
501 vers = get_pipe_version(gss_auth->net);
502 err = vers;
503 if (err < 0)
504 goto err_free_msg;
505 gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe;
506 INIT_LIST_HEAD(&gss_msg->list);
507 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
508 init_waitqueue_head(&gss_msg->waitqueue);
509 atomic_set(&gss_msg->count, 1);
510 gss_msg->uid = uid;
511 gss_msg->auth = gss_auth;
512 switch (vers) {
513 case 0:
514 gss_encode_v0_msg(gss_msg);
515 break;
516 default:
517 err = gss_encode_v1_msg(gss_msg, service_name, gss_auth->target_name);
518 if (err)
519 goto err_put_pipe_version;
521 kref_get(&gss_auth->kref);
522 return gss_msg;
523 err_put_pipe_version:
524 put_pipe_version(gss_auth->net);
525 err_free_msg:
526 kfree(gss_msg);
527 err:
528 return ERR_PTR(err);
531 static struct gss_upcall_msg *
532 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred)
534 struct gss_cred *gss_cred = container_of(cred,
535 struct gss_cred, gc_base);
536 struct gss_upcall_msg *gss_new, *gss_msg;
537 kuid_t uid = cred->cr_uid;
539 gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal);
540 if (IS_ERR(gss_new))
541 return gss_new;
542 gss_msg = gss_add_msg(gss_new);
543 if (gss_msg == gss_new) {
544 int res;
545 atomic_inc(&gss_msg->count);
546 res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg);
547 if (res) {
548 gss_unhash_msg(gss_new);
549 atomic_dec(&gss_msg->count);
550 gss_release_msg(gss_new);
551 gss_msg = ERR_PTR(res);
553 } else
554 gss_release_msg(gss_new);
555 return gss_msg;
558 static void warn_gssd(void)
560 dprintk("AUTH_GSS upcall failed. Please check user daemon is running.\n");
563 static inline int
564 gss_refresh_upcall(struct rpc_task *task)
566 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
567 struct gss_auth *gss_auth = container_of(cred->cr_auth,
568 struct gss_auth, rpc_auth);
569 struct gss_cred *gss_cred = container_of(cred,
570 struct gss_cred, gc_base);
571 struct gss_upcall_msg *gss_msg;
572 struct rpc_pipe *pipe;
573 int err = 0;
575 dprintk("RPC: %5u %s for uid %u\n",
576 task->tk_pid, __func__, from_kuid(&init_user_ns, cred->cr_uid));
577 gss_msg = gss_setup_upcall(gss_auth, cred);
578 if (PTR_ERR(gss_msg) == -EAGAIN) {
579 /* XXX: warning on the first, under the assumption we
580 * shouldn't normally hit this case on a refresh. */
581 warn_gssd();
582 task->tk_timeout = 15*HZ;
583 rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL);
584 return -EAGAIN;
586 if (IS_ERR(gss_msg)) {
587 err = PTR_ERR(gss_msg);
588 goto out;
590 pipe = gss_msg->pipe;
591 spin_lock(&pipe->lock);
592 if (gss_cred->gc_upcall != NULL)
593 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL);
594 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
595 task->tk_timeout = 0;
596 gss_cred->gc_upcall = gss_msg;
597 /* gss_upcall_callback will release the reference to gss_upcall_msg */
598 atomic_inc(&gss_msg->count);
599 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback);
600 } else {
601 gss_handle_downcall_result(gss_cred, gss_msg);
602 err = gss_msg->msg.errno;
604 spin_unlock(&pipe->lock);
605 gss_release_msg(gss_msg);
606 out:
607 dprintk("RPC: %5u %s for uid %u result %d\n",
608 task->tk_pid, __func__,
609 from_kuid(&init_user_ns, cred->cr_uid), err);
610 return err;
613 static inline int
614 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
616 struct net *net = gss_auth->net;
617 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
618 struct rpc_pipe *pipe;
619 struct rpc_cred *cred = &gss_cred->gc_base;
620 struct gss_upcall_msg *gss_msg;
621 DEFINE_WAIT(wait);
622 int err;
624 dprintk("RPC: %s for uid %u\n",
625 __func__, from_kuid(&init_user_ns, cred->cr_uid));
626 retry:
627 err = 0;
628 /* if gssd is down, just skip upcalling altogether */
629 if (!gssd_running(net)) {
630 warn_gssd();
631 return -EACCES;
633 gss_msg = gss_setup_upcall(gss_auth, cred);
634 if (PTR_ERR(gss_msg) == -EAGAIN) {
635 err = wait_event_interruptible_timeout(pipe_version_waitqueue,
636 sn->pipe_version >= 0, 15 * HZ);
637 if (sn->pipe_version < 0) {
638 warn_gssd();
639 err = -EACCES;
641 if (err < 0)
642 goto out;
643 goto retry;
645 if (IS_ERR(gss_msg)) {
646 err = PTR_ERR(gss_msg);
647 goto out;
649 pipe = gss_msg->pipe;
650 for (;;) {
651 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE);
652 spin_lock(&pipe->lock);
653 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
654 break;
656 spin_unlock(&pipe->lock);
657 if (fatal_signal_pending(current)) {
658 err = -ERESTARTSYS;
659 goto out_intr;
661 schedule();
663 if (gss_msg->ctx)
664 gss_cred_set_ctx(cred, gss_msg->ctx);
665 else
666 err = gss_msg->msg.errno;
667 spin_unlock(&pipe->lock);
668 out_intr:
669 finish_wait(&gss_msg->waitqueue, &wait);
670 gss_release_msg(gss_msg);
671 out:
672 dprintk("RPC: %s for uid %u result %d\n",
673 __func__, from_kuid(&init_user_ns, cred->cr_uid), err);
674 return err;
677 #define MSG_BUF_MAXSIZE 1024
679 static ssize_t
680 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
682 const void *p, *end;
683 void *buf;
684 struct gss_upcall_msg *gss_msg;
685 struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe;
686 struct gss_cl_ctx *ctx;
687 uid_t id;
688 kuid_t uid;
689 ssize_t err = -EFBIG;
691 if (mlen > MSG_BUF_MAXSIZE)
692 goto out;
693 err = -ENOMEM;
694 buf = kmalloc(mlen, GFP_NOFS);
695 if (!buf)
696 goto out;
698 err = -EFAULT;
699 if (copy_from_user(buf, src, mlen))
700 goto err;
702 end = (const void *)((char *)buf + mlen);
703 p = simple_get_bytes(buf, end, &id, sizeof(id));
704 if (IS_ERR(p)) {
705 err = PTR_ERR(p);
706 goto err;
709 uid = make_kuid(&init_user_ns, id);
710 if (!uid_valid(uid)) {
711 err = -EINVAL;
712 goto err;
715 err = -ENOMEM;
716 ctx = gss_alloc_context();
717 if (ctx == NULL)
718 goto err;
720 err = -ENOENT;
721 /* Find a matching upcall */
722 spin_lock(&pipe->lock);
723 gss_msg = __gss_find_upcall(pipe, uid, NULL);
724 if (gss_msg == NULL) {
725 spin_unlock(&pipe->lock);
726 goto err_put_ctx;
728 list_del_init(&gss_msg->list);
729 spin_unlock(&pipe->lock);
731 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
732 if (IS_ERR(p)) {
733 err = PTR_ERR(p);
734 switch (err) {
735 case -EACCES:
736 case -EKEYEXPIRED:
737 gss_msg->msg.errno = err;
738 err = mlen;
739 break;
740 case -EFAULT:
741 case -ENOMEM:
742 case -EINVAL:
743 case -ENOSYS:
744 gss_msg->msg.errno = -EAGAIN;
745 break;
746 default:
747 printk(KERN_CRIT "%s: bad return from "
748 "gss_fill_context: %zd\n", __func__, err);
749 gss_msg->msg.errno = -EIO;
751 goto err_release_msg;
753 gss_msg->ctx = gss_get_ctx(ctx);
754 err = mlen;
756 err_release_msg:
757 spin_lock(&pipe->lock);
758 __gss_unhash_msg(gss_msg);
759 spin_unlock(&pipe->lock);
760 gss_release_msg(gss_msg);
761 err_put_ctx:
762 gss_put_ctx(ctx);
763 err:
764 kfree(buf);
765 out:
766 dprintk("RPC: %s returning %Zd\n", __func__, err);
767 return err;
770 static int gss_pipe_open(struct inode *inode, int new_version)
772 struct net *net = inode->i_sb->s_fs_info;
773 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
774 int ret = 0;
776 spin_lock(&pipe_version_lock);
777 if (sn->pipe_version < 0) {
778 /* First open of any gss pipe determines the version: */
779 sn->pipe_version = new_version;
780 rpc_wake_up(&pipe_version_rpc_waitqueue);
781 wake_up(&pipe_version_waitqueue);
782 } else if (sn->pipe_version != new_version) {
783 /* Trying to open a pipe of a different version */
784 ret = -EBUSY;
785 goto out;
787 atomic_inc(&sn->pipe_users);
788 out:
789 spin_unlock(&pipe_version_lock);
790 return ret;
794 static int gss_pipe_open_v0(struct inode *inode)
796 return gss_pipe_open(inode, 0);
799 static int gss_pipe_open_v1(struct inode *inode)
801 return gss_pipe_open(inode, 1);
804 static void
805 gss_pipe_release(struct inode *inode)
807 struct net *net = inode->i_sb->s_fs_info;
808 struct rpc_pipe *pipe = RPC_I(inode)->pipe;
809 struct gss_upcall_msg *gss_msg;
811 restart:
812 spin_lock(&pipe->lock);
813 list_for_each_entry(gss_msg, &pipe->in_downcall, list) {
815 if (!list_empty(&gss_msg->msg.list))
816 continue;
817 gss_msg->msg.errno = -EPIPE;
818 atomic_inc(&gss_msg->count);
819 __gss_unhash_msg(gss_msg);
820 spin_unlock(&pipe->lock);
821 gss_release_msg(gss_msg);
822 goto restart;
824 spin_unlock(&pipe->lock);
826 put_pipe_version(net);
829 static void
830 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
832 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
834 if (msg->errno < 0) {
835 dprintk("RPC: %s releasing msg %p\n",
836 __func__, gss_msg);
837 atomic_inc(&gss_msg->count);
838 gss_unhash_msg(gss_msg);
839 if (msg->errno == -ETIMEDOUT)
840 warn_gssd();
841 gss_release_msg(gss_msg);
843 gss_release_msg(gss_msg);
846 static void gss_pipe_dentry_destroy(struct dentry *dir,
847 struct rpc_pipe_dir_object *pdo)
849 struct gss_pipe *gss_pipe = pdo->pdo_data;
850 struct rpc_pipe *pipe = gss_pipe->pipe;
852 if (pipe->dentry != NULL) {
853 rpc_unlink(pipe->dentry);
854 pipe->dentry = NULL;
858 static int gss_pipe_dentry_create(struct dentry *dir,
859 struct rpc_pipe_dir_object *pdo)
861 struct gss_pipe *p = pdo->pdo_data;
862 struct dentry *dentry;
864 dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe);
865 if (IS_ERR(dentry))
866 return PTR_ERR(dentry);
867 p->pipe->dentry = dentry;
868 return 0;
871 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = {
872 .create = gss_pipe_dentry_create,
873 .destroy = gss_pipe_dentry_destroy,
876 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt,
877 const char *name,
878 const struct rpc_pipe_ops *upcall_ops)
880 struct gss_pipe *p;
881 int err = -ENOMEM;
883 p = kmalloc(sizeof(*p), GFP_KERNEL);
884 if (p == NULL)
885 goto err;
886 p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN);
887 if (IS_ERR(p->pipe)) {
888 err = PTR_ERR(p->pipe);
889 goto err_free_gss_pipe;
891 p->name = name;
892 p->clnt = clnt;
893 kref_init(&p->kref);
894 rpc_init_pipe_dir_object(&p->pdo,
895 &gss_pipe_dir_object_ops,
897 return p;
898 err_free_gss_pipe:
899 kfree(p);
900 err:
901 return ERR_PTR(err);
904 struct gss_alloc_pdo {
905 struct rpc_clnt *clnt;
906 const char *name;
907 const struct rpc_pipe_ops *upcall_ops;
910 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data)
912 struct gss_pipe *gss_pipe;
913 struct gss_alloc_pdo *args = data;
915 if (pdo->pdo_ops != &gss_pipe_dir_object_ops)
916 return 0;
917 gss_pipe = container_of(pdo, struct gss_pipe, pdo);
918 if (strcmp(gss_pipe->name, args->name) != 0)
919 return 0;
920 if (!kref_get_unless_zero(&gss_pipe->kref))
921 return 0;
922 return 1;
925 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data)
927 struct gss_pipe *gss_pipe;
928 struct gss_alloc_pdo *args = data;
930 gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops);
931 if (!IS_ERR(gss_pipe))
932 return &gss_pipe->pdo;
933 return NULL;
936 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt,
937 const char *name,
938 const struct rpc_pipe_ops *upcall_ops)
940 struct net *net = rpc_net_ns(clnt);
941 struct rpc_pipe_dir_object *pdo;
942 struct gss_alloc_pdo args = {
943 .clnt = clnt,
944 .name = name,
945 .upcall_ops = upcall_ops,
948 pdo = rpc_find_or_alloc_pipe_dir_object(net,
949 &clnt->cl_pipedir_objects,
950 gss_pipe_match_pdo,
951 gss_pipe_alloc_pdo,
952 &args);
953 if (pdo != NULL)
954 return container_of(pdo, struct gss_pipe, pdo);
955 return ERR_PTR(-ENOMEM);
958 static void __gss_pipe_free(struct gss_pipe *p)
960 struct rpc_clnt *clnt = p->clnt;
961 struct net *net = rpc_net_ns(clnt);
963 rpc_remove_pipe_dir_object(net,
964 &clnt->cl_pipedir_objects,
965 &p->pdo);
966 rpc_destroy_pipe_data(p->pipe);
967 kfree(p);
970 static void __gss_pipe_release(struct kref *kref)
972 struct gss_pipe *p = container_of(kref, struct gss_pipe, kref);
974 __gss_pipe_free(p);
977 static void gss_pipe_free(struct gss_pipe *p)
979 if (p != NULL)
980 kref_put(&p->kref, __gss_pipe_release);
984 * NOTE: we have the opportunity to use different
985 * parameters based on the input flavor (which must be a pseudoflavor)
987 static struct gss_auth *
988 gss_create_new(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
990 rpc_authflavor_t flavor = args->pseudoflavor;
991 struct gss_auth *gss_auth;
992 struct gss_pipe *gss_pipe;
993 struct rpc_auth * auth;
994 int err = -ENOMEM; /* XXX? */
996 dprintk("RPC: creating GSS authenticator for client %p\n", clnt);
998 if (!try_module_get(THIS_MODULE))
999 return ERR_PTR(err);
1000 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
1001 goto out_dec;
1002 INIT_HLIST_NODE(&gss_auth->hash);
1003 gss_auth->target_name = NULL;
1004 if (args->target_name) {
1005 gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL);
1006 if (gss_auth->target_name == NULL)
1007 goto err_free;
1009 gss_auth->client = clnt;
1010 gss_auth->net = get_net(rpc_net_ns(clnt));
1011 err = -EINVAL;
1012 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
1013 if (!gss_auth->mech) {
1014 dprintk("RPC: Pseudoflavor %d not found!\n", flavor);
1015 goto err_put_net;
1017 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
1018 if (gss_auth->service == 0)
1019 goto err_put_mech;
1020 if (!gssd_running(gss_auth->net))
1021 goto err_put_mech;
1022 auth = &gss_auth->rpc_auth;
1023 auth->au_cslack = GSS_CRED_SLACK >> 2;
1024 auth->au_rslack = GSS_VERF_SLACK >> 2;
1025 auth->au_flags = 0;
1026 auth->au_ops = &authgss_ops;
1027 auth->au_flavor = flavor;
1028 if (gss_pseudoflavor_to_datatouch(gss_auth->mech, flavor))
1029 auth->au_flags |= RPCAUTH_AUTH_DATATOUCH;
1030 atomic_set(&auth->au_count, 1);
1031 kref_init(&gss_auth->kref);
1033 err = rpcauth_init_credcache(auth);
1034 if (err)
1035 goto err_put_mech;
1037 * Note: if we created the old pipe first, then someone who
1038 * examined the directory at the right moment might conclude
1039 * that we supported only the old pipe. So we instead create
1040 * the new pipe first.
1042 gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1);
1043 if (IS_ERR(gss_pipe)) {
1044 err = PTR_ERR(gss_pipe);
1045 goto err_destroy_credcache;
1047 gss_auth->gss_pipe[1] = gss_pipe;
1049 gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name,
1050 &gss_upcall_ops_v0);
1051 if (IS_ERR(gss_pipe)) {
1052 err = PTR_ERR(gss_pipe);
1053 goto err_destroy_pipe_1;
1055 gss_auth->gss_pipe[0] = gss_pipe;
1057 return gss_auth;
1058 err_destroy_pipe_1:
1059 gss_pipe_free(gss_auth->gss_pipe[1]);
1060 err_destroy_credcache:
1061 rpcauth_destroy_credcache(auth);
1062 err_put_mech:
1063 gss_mech_put(gss_auth->mech);
1064 err_put_net:
1065 put_net(gss_auth->net);
1066 err_free:
1067 kfree(gss_auth->target_name);
1068 kfree(gss_auth);
1069 out_dec:
1070 module_put(THIS_MODULE);
1071 return ERR_PTR(err);
1074 static void
1075 gss_free(struct gss_auth *gss_auth)
1077 gss_pipe_free(gss_auth->gss_pipe[0]);
1078 gss_pipe_free(gss_auth->gss_pipe[1]);
1079 gss_mech_put(gss_auth->mech);
1080 put_net(gss_auth->net);
1081 kfree(gss_auth->target_name);
1083 kfree(gss_auth);
1084 module_put(THIS_MODULE);
1087 static void
1088 gss_free_callback(struct kref *kref)
1090 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
1092 gss_free(gss_auth);
1095 static void
1096 gss_put_auth(struct gss_auth *gss_auth)
1098 kref_put(&gss_auth->kref, gss_free_callback);
1101 static void
1102 gss_destroy(struct rpc_auth *auth)
1104 struct gss_auth *gss_auth = container_of(auth,
1105 struct gss_auth, rpc_auth);
1107 dprintk("RPC: destroying GSS authenticator %p flavor %d\n",
1108 auth, auth->au_flavor);
1110 if (hash_hashed(&gss_auth->hash)) {
1111 spin_lock(&gss_auth_hash_lock);
1112 hash_del(&gss_auth->hash);
1113 spin_unlock(&gss_auth_hash_lock);
1116 gss_pipe_free(gss_auth->gss_pipe[0]);
1117 gss_auth->gss_pipe[0] = NULL;
1118 gss_pipe_free(gss_auth->gss_pipe[1]);
1119 gss_auth->gss_pipe[1] = NULL;
1120 rpcauth_destroy_credcache(auth);
1122 gss_put_auth(gss_auth);
1126 * Auths may be shared between rpc clients that were cloned from a
1127 * common client with the same xprt, if they also share the flavor and
1128 * target_name.
1130 * The auth is looked up from the oldest parent sharing the same
1131 * cl_xprt, and the auth itself references only that common parent
1132 * (which is guaranteed to last as long as any of its descendants).
1134 static struct gss_auth *
1135 gss_auth_find_or_add_hashed(struct rpc_auth_create_args *args,
1136 struct rpc_clnt *clnt,
1137 struct gss_auth *new)
1139 struct gss_auth *gss_auth;
1140 unsigned long hashval = (unsigned long)clnt;
1142 spin_lock(&gss_auth_hash_lock);
1143 hash_for_each_possible(gss_auth_hash_table,
1144 gss_auth,
1145 hash,
1146 hashval) {
1147 if (gss_auth->client != clnt)
1148 continue;
1149 if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor)
1150 continue;
1151 if (gss_auth->target_name != args->target_name) {
1152 if (gss_auth->target_name == NULL)
1153 continue;
1154 if (args->target_name == NULL)
1155 continue;
1156 if (strcmp(gss_auth->target_name, args->target_name))
1157 continue;
1159 if (!atomic_inc_not_zero(&gss_auth->rpc_auth.au_count))
1160 continue;
1161 goto out;
1163 if (new)
1164 hash_add(gss_auth_hash_table, &new->hash, hashval);
1165 gss_auth = new;
1166 out:
1167 spin_unlock(&gss_auth_hash_lock);
1168 return gss_auth;
1171 static struct gss_auth *
1172 gss_create_hashed(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1174 struct gss_auth *gss_auth;
1175 struct gss_auth *new;
1177 gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL);
1178 if (gss_auth != NULL)
1179 goto out;
1180 new = gss_create_new(args, clnt);
1181 if (IS_ERR(new))
1182 return new;
1183 gss_auth = gss_auth_find_or_add_hashed(args, clnt, new);
1184 if (gss_auth != new)
1185 gss_destroy(&new->rpc_auth);
1186 out:
1187 return gss_auth;
1190 static struct rpc_auth *
1191 gss_create(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1193 struct gss_auth *gss_auth;
1194 struct rpc_xprt_switch *xps = rcu_access_pointer(clnt->cl_xpi.xpi_xpswitch);
1196 while (clnt != clnt->cl_parent) {
1197 struct rpc_clnt *parent = clnt->cl_parent;
1198 /* Find the original parent for this transport */
1199 if (rcu_access_pointer(parent->cl_xpi.xpi_xpswitch) != xps)
1200 break;
1201 clnt = parent;
1204 gss_auth = gss_create_hashed(args, clnt);
1205 if (IS_ERR(gss_auth))
1206 return ERR_CAST(gss_auth);
1207 return &gss_auth->rpc_auth;
1211 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
1212 * to the server with the GSS control procedure field set to
1213 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
1214 * all RPCSEC_GSS state associated with that context.
1216 static int
1217 gss_destroying_context(struct rpc_cred *cred)
1219 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1220 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1221 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1);
1222 struct rpc_task *task;
1224 if (test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0)
1225 return 0;
1227 ctx->gc_proc = RPC_GSS_PROC_DESTROY;
1228 cred->cr_ops = &gss_nullops;
1230 /* Take a reference to ensure the cred will be destroyed either
1231 * by the RPC call or by the put_rpccred() below */
1232 get_rpccred(cred);
1234 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT);
1235 if (!IS_ERR(task))
1236 rpc_put_task(task);
1238 put_rpccred(cred);
1239 return 1;
1242 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
1243 * to create a new cred or context, so they check that things have been
1244 * allocated before freeing them. */
1245 static void
1246 gss_do_free_ctx(struct gss_cl_ctx *ctx)
1248 dprintk("RPC: %s\n", __func__);
1250 gss_delete_sec_context(&ctx->gc_gss_ctx);
1251 kfree(ctx->gc_wire_ctx.data);
1252 kfree(ctx->gc_acceptor.data);
1253 kfree(ctx);
1256 static void
1257 gss_free_ctx_callback(struct rcu_head *head)
1259 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
1260 gss_do_free_ctx(ctx);
1263 static void
1264 gss_free_ctx(struct gss_cl_ctx *ctx)
1266 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
1269 static void
1270 gss_free_cred(struct gss_cred *gss_cred)
1272 dprintk("RPC: %s cred=%p\n", __func__, gss_cred);
1273 kfree(gss_cred);
1276 static void
1277 gss_free_cred_callback(struct rcu_head *head)
1279 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
1280 gss_free_cred(gss_cred);
1283 static void
1284 gss_destroy_nullcred(struct rpc_cred *cred)
1286 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1287 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1288 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1);
1290 RCU_INIT_POINTER(gss_cred->gc_ctx, NULL);
1291 call_rcu(&cred->cr_rcu, gss_free_cred_callback);
1292 if (ctx)
1293 gss_put_ctx(ctx);
1294 gss_put_auth(gss_auth);
1297 static void
1298 gss_destroy_cred(struct rpc_cred *cred)
1301 if (gss_destroying_context(cred))
1302 return;
1303 gss_destroy_nullcred(cred);
1306 static int
1307 gss_hash_cred(struct auth_cred *acred, unsigned int hashbits)
1309 return hash_64(from_kuid(&init_user_ns, acred->uid), hashbits);
1313 * Lookup RPCSEC_GSS cred for the current process
1315 static struct rpc_cred *
1316 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
1318 return rpcauth_lookup_credcache(auth, acred, flags, GFP_NOFS);
1321 static struct rpc_cred *
1322 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags, gfp_t gfp)
1324 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1325 struct gss_cred *cred = NULL;
1326 int err = -ENOMEM;
1328 dprintk("RPC: %s for uid %d, flavor %d\n",
1329 __func__, from_kuid(&init_user_ns, acred->uid),
1330 auth->au_flavor);
1332 if (!(cred = kzalloc(sizeof(*cred), gfp)))
1333 goto out_err;
1335 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
1337 * Note: in order to force a call to call_refresh(), we deliberately
1338 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
1340 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
1341 cred->gc_service = gss_auth->service;
1342 cred->gc_principal = NULL;
1343 if (acred->machine_cred)
1344 cred->gc_principal = acred->principal;
1345 kref_get(&gss_auth->kref);
1346 return &cred->gc_base;
1348 out_err:
1349 dprintk("RPC: %s failed with error %d\n", __func__, err);
1350 return ERR_PTR(err);
1353 static int
1354 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
1356 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1357 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
1358 int err;
1360 do {
1361 err = gss_create_upcall(gss_auth, gss_cred);
1362 } while (err == -EAGAIN);
1363 return err;
1366 static char *
1367 gss_stringify_acceptor(struct rpc_cred *cred)
1369 char *string = NULL;
1370 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1371 struct gss_cl_ctx *ctx;
1372 unsigned int len;
1373 struct xdr_netobj *acceptor;
1375 rcu_read_lock();
1376 ctx = rcu_dereference(gss_cred->gc_ctx);
1377 if (!ctx)
1378 goto out;
1380 len = ctx->gc_acceptor.len;
1381 rcu_read_unlock();
1383 /* no point if there's no string */
1384 if (!len)
1385 return NULL;
1386 realloc:
1387 string = kmalloc(len + 1, GFP_KERNEL);
1388 if (!string)
1389 return NULL;
1391 rcu_read_lock();
1392 ctx = rcu_dereference(gss_cred->gc_ctx);
1394 /* did the ctx disappear or was it replaced by one with no acceptor? */
1395 if (!ctx || !ctx->gc_acceptor.len) {
1396 kfree(string);
1397 string = NULL;
1398 goto out;
1401 acceptor = &ctx->gc_acceptor;
1404 * Did we find a new acceptor that's longer than the original? Allocate
1405 * a longer buffer and try again.
1407 if (len < acceptor->len) {
1408 len = acceptor->len;
1409 rcu_read_unlock();
1410 kfree(string);
1411 goto realloc;
1414 memcpy(string, acceptor->data, acceptor->len);
1415 string[acceptor->len] = '\0';
1416 out:
1417 rcu_read_unlock();
1418 return string;
1422 * Returns -EACCES if GSS context is NULL or will expire within the
1423 * timeout (miliseconds)
1425 static int
1426 gss_key_timeout(struct rpc_cred *rc)
1428 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1429 struct gss_cl_ctx *ctx;
1430 unsigned long timeout = jiffies + (gss_key_expire_timeo * HZ);
1431 int ret = 0;
1433 rcu_read_lock();
1434 ctx = rcu_dereference(gss_cred->gc_ctx);
1435 if (!ctx || time_after(timeout, ctx->gc_expiry))
1436 ret = -EACCES;
1437 rcu_read_unlock();
1439 return ret;
1442 static int
1443 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
1445 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1446 struct gss_cl_ctx *ctx;
1447 int ret;
1449 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
1450 goto out;
1451 /* Don't match with creds that have expired. */
1452 rcu_read_lock();
1453 ctx = rcu_dereference(gss_cred->gc_ctx);
1454 if (!ctx || time_after(jiffies, ctx->gc_expiry)) {
1455 rcu_read_unlock();
1456 return 0;
1458 rcu_read_unlock();
1459 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags))
1460 return 0;
1461 out:
1462 if (acred->principal != NULL) {
1463 if (gss_cred->gc_principal == NULL)
1464 return 0;
1465 ret = strcmp(acred->principal, gss_cred->gc_principal) == 0;
1466 goto check_expire;
1468 if (gss_cred->gc_principal != NULL)
1469 return 0;
1470 ret = uid_eq(rc->cr_uid, acred->uid);
1472 check_expire:
1473 if (ret == 0)
1474 return ret;
1476 /* Notify acred users of GSS context expiration timeout */
1477 if (test_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags) &&
1478 (gss_key_timeout(rc) != 0)) {
1479 /* test will now be done from generic cred */
1480 test_and_clear_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags);
1481 /* tell NFS layer that key will expire soon */
1482 set_bit(RPC_CRED_KEY_EXPIRE_SOON, &acred->ac_flags);
1484 return ret;
1488 * Marshal credentials.
1489 * Maybe we should keep a cached credential for performance reasons.
1491 static __be32 *
1492 gss_marshal(struct rpc_task *task, __be32 *p)
1494 struct rpc_rqst *req = task->tk_rqstp;
1495 struct rpc_cred *cred = req->rq_cred;
1496 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1497 gc_base);
1498 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1499 __be32 *cred_len;
1500 u32 maj_stat = 0;
1501 struct xdr_netobj mic;
1502 struct kvec iov;
1503 struct xdr_buf verf_buf;
1505 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1507 *p++ = htonl(RPC_AUTH_GSS);
1508 cred_len = p++;
1510 spin_lock(&ctx->gc_seq_lock);
1511 req->rq_seqno = ctx->gc_seq++;
1512 spin_unlock(&ctx->gc_seq_lock);
1514 *p++ = htonl((u32) RPC_GSS_VERSION);
1515 *p++ = htonl((u32) ctx->gc_proc);
1516 *p++ = htonl((u32) req->rq_seqno);
1517 *p++ = htonl((u32) gss_cred->gc_service);
1518 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
1519 *cred_len = htonl((p - (cred_len + 1)) << 2);
1521 /* We compute the checksum for the verifier over the xdr-encoded bytes
1522 * starting with the xid and ending at the end of the credential: */
1523 iov.iov_base = xprt_skip_transport_header(req->rq_xprt,
1524 req->rq_snd_buf.head[0].iov_base);
1525 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
1526 xdr_buf_from_iov(&iov, &verf_buf);
1528 /* set verifier flavor*/
1529 *p++ = htonl(RPC_AUTH_GSS);
1531 mic.data = (u8 *)(p + 1);
1532 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1533 if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
1534 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1535 } else if (maj_stat != 0) {
1536 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
1537 goto out_put_ctx;
1539 p = xdr_encode_opaque(p, NULL, mic.len);
1540 gss_put_ctx(ctx);
1541 return p;
1542 out_put_ctx:
1543 gss_put_ctx(ctx);
1544 return NULL;
1547 static int gss_renew_cred(struct rpc_task *task)
1549 struct rpc_cred *oldcred = task->tk_rqstp->rq_cred;
1550 struct gss_cred *gss_cred = container_of(oldcred,
1551 struct gss_cred,
1552 gc_base);
1553 struct rpc_auth *auth = oldcred->cr_auth;
1554 struct auth_cred acred = {
1555 .uid = oldcred->cr_uid,
1556 .principal = gss_cred->gc_principal,
1557 .machine_cred = (gss_cred->gc_principal != NULL ? 1 : 0),
1559 struct rpc_cred *new;
1561 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW);
1562 if (IS_ERR(new))
1563 return PTR_ERR(new);
1564 task->tk_rqstp->rq_cred = new;
1565 put_rpccred(oldcred);
1566 return 0;
1569 static int gss_cred_is_negative_entry(struct rpc_cred *cred)
1571 if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) {
1572 unsigned long now = jiffies;
1573 unsigned long begin, expire;
1574 struct gss_cred *gss_cred;
1576 gss_cred = container_of(cred, struct gss_cred, gc_base);
1577 begin = gss_cred->gc_upcall_timestamp;
1578 expire = begin + gss_expired_cred_retry_delay * HZ;
1580 if (time_in_range_open(now, begin, expire))
1581 return 1;
1583 return 0;
1587 * Refresh credentials. XXX - finish
1589 static int
1590 gss_refresh(struct rpc_task *task)
1592 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1593 int ret = 0;
1595 if (gss_cred_is_negative_entry(cred))
1596 return -EKEYEXPIRED;
1598 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) &&
1599 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) {
1600 ret = gss_renew_cred(task);
1601 if (ret < 0)
1602 goto out;
1603 cred = task->tk_rqstp->rq_cred;
1606 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
1607 ret = gss_refresh_upcall(task);
1608 out:
1609 return ret;
1612 /* Dummy refresh routine: used only when destroying the context */
1613 static int
1614 gss_refresh_null(struct rpc_task *task)
1616 return 0;
1619 static __be32 *
1620 gss_validate(struct rpc_task *task, __be32 *p)
1622 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1623 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1624 __be32 *seq = NULL;
1625 struct kvec iov;
1626 struct xdr_buf verf_buf;
1627 struct xdr_netobj mic;
1628 u32 flav,len;
1629 u32 maj_stat;
1630 __be32 *ret = ERR_PTR(-EIO);
1632 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1634 flav = ntohl(*p++);
1635 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
1636 goto out_bad;
1637 if (flav != RPC_AUTH_GSS)
1638 goto out_bad;
1639 seq = kmalloc(4, GFP_NOFS);
1640 if (!seq)
1641 goto out_bad;
1642 *seq = htonl(task->tk_rqstp->rq_seqno);
1643 iov.iov_base = seq;
1644 iov.iov_len = 4;
1645 xdr_buf_from_iov(&iov, &verf_buf);
1646 mic.data = (u8 *)p;
1647 mic.len = len;
1649 ret = ERR_PTR(-EACCES);
1650 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1651 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1652 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1653 if (maj_stat) {
1654 dprintk("RPC: %5u %s: gss_verify_mic returned error 0x%08x\n",
1655 task->tk_pid, __func__, maj_stat);
1656 goto out_bad;
1658 /* We leave it to unwrap to calculate au_rslack. For now we just
1659 * calculate the length of the verifier: */
1660 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
1661 gss_put_ctx(ctx);
1662 dprintk("RPC: %5u %s: gss_verify_mic succeeded.\n",
1663 task->tk_pid, __func__);
1664 kfree(seq);
1665 return p + XDR_QUADLEN(len);
1666 out_bad:
1667 gss_put_ctx(ctx);
1668 dprintk("RPC: %5u %s failed ret %ld.\n", task->tk_pid, __func__,
1669 PTR_ERR(ret));
1670 kfree(seq);
1671 return ret;
1674 static void gss_wrap_req_encode(kxdreproc_t encode, struct rpc_rqst *rqstp,
1675 __be32 *p, void *obj)
1677 struct xdr_stream xdr;
1679 xdr_init_encode(&xdr, &rqstp->rq_snd_buf, p);
1680 encode(rqstp, &xdr, obj);
1683 static inline int
1684 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1685 kxdreproc_t encode, struct rpc_rqst *rqstp,
1686 __be32 *p, void *obj)
1688 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1689 struct xdr_buf integ_buf;
1690 __be32 *integ_len = NULL;
1691 struct xdr_netobj mic;
1692 u32 offset;
1693 __be32 *q;
1694 struct kvec *iov;
1695 u32 maj_stat = 0;
1696 int status = -EIO;
1698 integ_len = p++;
1699 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1700 *p++ = htonl(rqstp->rq_seqno);
1702 gss_wrap_req_encode(encode, rqstp, p, obj);
1704 if (xdr_buf_subsegment(snd_buf, &integ_buf,
1705 offset, snd_buf->len - offset))
1706 return status;
1707 *integ_len = htonl(integ_buf.len);
1709 /* guess whether we're in the head or the tail: */
1710 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1711 iov = snd_buf->tail;
1712 else
1713 iov = snd_buf->head;
1714 p = iov->iov_base + iov->iov_len;
1715 mic.data = (u8 *)(p + 1);
1717 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1718 status = -EIO; /* XXX? */
1719 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1720 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1721 else if (maj_stat)
1722 return status;
1723 q = xdr_encode_opaque(p, NULL, mic.len);
1725 offset = (u8 *)q - (u8 *)p;
1726 iov->iov_len += offset;
1727 snd_buf->len += offset;
1728 return 0;
1731 static void
1732 priv_release_snd_buf(struct rpc_rqst *rqstp)
1734 int i;
1736 for (i=0; i < rqstp->rq_enc_pages_num; i++)
1737 __free_page(rqstp->rq_enc_pages[i]);
1738 kfree(rqstp->rq_enc_pages);
1741 static int
1742 alloc_enc_pages(struct rpc_rqst *rqstp)
1744 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1745 int first, last, i;
1747 if (snd_buf->page_len == 0) {
1748 rqstp->rq_enc_pages_num = 0;
1749 return 0;
1752 first = snd_buf->page_base >> PAGE_SHIFT;
1753 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_SHIFT;
1754 rqstp->rq_enc_pages_num = last - first + 1 + 1;
1755 rqstp->rq_enc_pages
1756 = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1757 GFP_NOFS);
1758 if (!rqstp->rq_enc_pages)
1759 goto out;
1760 for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1761 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1762 if (rqstp->rq_enc_pages[i] == NULL)
1763 goto out_free;
1765 rqstp->rq_release_snd_buf = priv_release_snd_buf;
1766 return 0;
1767 out_free:
1768 rqstp->rq_enc_pages_num = i;
1769 priv_release_snd_buf(rqstp);
1770 out:
1771 return -EAGAIN;
1774 static inline int
1775 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1776 kxdreproc_t encode, struct rpc_rqst *rqstp,
1777 __be32 *p, void *obj)
1779 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1780 u32 offset;
1781 u32 maj_stat;
1782 int status;
1783 __be32 *opaque_len;
1784 struct page **inpages;
1785 int first;
1786 int pad;
1787 struct kvec *iov;
1788 char *tmp;
1790 opaque_len = p++;
1791 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1792 *p++ = htonl(rqstp->rq_seqno);
1794 gss_wrap_req_encode(encode, rqstp, p, obj);
1796 status = alloc_enc_pages(rqstp);
1797 if (status)
1798 return status;
1799 first = snd_buf->page_base >> PAGE_SHIFT;
1800 inpages = snd_buf->pages + first;
1801 snd_buf->pages = rqstp->rq_enc_pages;
1802 snd_buf->page_base -= first << PAGE_SHIFT;
1804 * Give the tail its own page, in case we need extra space in the
1805 * head when wrapping:
1807 * call_allocate() allocates twice the slack space required
1808 * by the authentication flavor to rq_callsize.
1809 * For GSS, slack is GSS_CRED_SLACK.
1811 if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1812 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1813 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1814 snd_buf->tail[0].iov_base = tmp;
1816 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1817 /* slack space should prevent this ever happening: */
1818 BUG_ON(snd_buf->len > snd_buf->buflen);
1819 status = -EIO;
1820 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1821 * done anyway, so it's safe to put the request on the wire: */
1822 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1823 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1824 else if (maj_stat)
1825 return status;
1827 *opaque_len = htonl(snd_buf->len - offset);
1828 /* guess whether we're in the head or the tail: */
1829 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1830 iov = snd_buf->tail;
1831 else
1832 iov = snd_buf->head;
1833 p = iov->iov_base + iov->iov_len;
1834 pad = 3 - ((snd_buf->len - offset - 1) & 3);
1835 memset(p, 0, pad);
1836 iov->iov_len += pad;
1837 snd_buf->len += pad;
1839 return 0;
1842 static int
1843 gss_wrap_req(struct rpc_task *task,
1844 kxdreproc_t encode, void *rqstp, __be32 *p, void *obj)
1846 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1847 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1848 gc_base);
1849 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1850 int status = -EIO;
1852 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1853 if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1854 /* The spec seems a little ambiguous here, but I think that not
1855 * wrapping context destruction requests makes the most sense.
1857 gss_wrap_req_encode(encode, rqstp, p, obj);
1858 status = 0;
1859 goto out;
1861 switch (gss_cred->gc_service) {
1862 case RPC_GSS_SVC_NONE:
1863 gss_wrap_req_encode(encode, rqstp, p, obj);
1864 status = 0;
1865 break;
1866 case RPC_GSS_SVC_INTEGRITY:
1867 status = gss_wrap_req_integ(cred, ctx, encode, rqstp, p, obj);
1868 break;
1869 case RPC_GSS_SVC_PRIVACY:
1870 status = gss_wrap_req_priv(cred, ctx, encode, rqstp, p, obj);
1871 break;
1873 out:
1874 gss_put_ctx(ctx);
1875 dprintk("RPC: %5u %s returning %d\n", task->tk_pid, __func__, status);
1876 return status;
1879 static inline int
1880 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1881 struct rpc_rqst *rqstp, __be32 **p)
1883 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1884 struct xdr_buf integ_buf;
1885 struct xdr_netobj mic;
1886 u32 data_offset, mic_offset;
1887 u32 integ_len;
1888 u32 maj_stat;
1889 int status = -EIO;
1891 integ_len = ntohl(*(*p)++);
1892 if (integ_len & 3)
1893 return status;
1894 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1895 mic_offset = integ_len + data_offset;
1896 if (mic_offset > rcv_buf->len)
1897 return status;
1898 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1899 return status;
1901 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1902 mic_offset - data_offset))
1903 return status;
1905 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1906 return status;
1908 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1909 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1910 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1911 if (maj_stat != GSS_S_COMPLETE)
1912 return status;
1913 return 0;
1916 static inline int
1917 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1918 struct rpc_rqst *rqstp, __be32 **p)
1920 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1921 u32 offset;
1922 u32 opaque_len;
1923 u32 maj_stat;
1924 int status = -EIO;
1926 opaque_len = ntohl(*(*p)++);
1927 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1928 if (offset + opaque_len > rcv_buf->len)
1929 return status;
1930 /* remove padding: */
1931 rcv_buf->len = offset + opaque_len;
1933 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1934 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1935 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1936 if (maj_stat != GSS_S_COMPLETE)
1937 return status;
1938 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1939 return status;
1941 return 0;
1944 static int
1945 gss_unwrap_req_decode(kxdrdproc_t decode, struct rpc_rqst *rqstp,
1946 __be32 *p, void *obj)
1948 struct xdr_stream xdr;
1950 xdr_init_decode(&xdr, &rqstp->rq_rcv_buf, p);
1951 return decode(rqstp, &xdr, obj);
1954 static int
1955 gss_unwrap_resp(struct rpc_task *task,
1956 kxdrdproc_t decode, void *rqstp, __be32 *p, void *obj)
1958 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1959 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1960 gc_base);
1961 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1962 __be32 *savedp = p;
1963 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1964 int savedlen = head->iov_len;
1965 int status = -EIO;
1967 if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1968 goto out_decode;
1969 switch (gss_cred->gc_service) {
1970 case RPC_GSS_SVC_NONE:
1971 break;
1972 case RPC_GSS_SVC_INTEGRITY:
1973 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1974 if (status)
1975 goto out;
1976 break;
1977 case RPC_GSS_SVC_PRIVACY:
1978 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1979 if (status)
1980 goto out;
1981 break;
1983 /* take into account extra slack for integrity and privacy cases: */
1984 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1985 + (savedlen - head->iov_len);
1986 out_decode:
1987 status = gss_unwrap_req_decode(decode, rqstp, p, obj);
1988 out:
1989 gss_put_ctx(ctx);
1990 dprintk("RPC: %5u %s returning %d\n",
1991 task->tk_pid, __func__, status);
1992 return status;
1995 static const struct rpc_authops authgss_ops = {
1996 .owner = THIS_MODULE,
1997 .au_flavor = RPC_AUTH_GSS,
1998 .au_name = "RPCSEC_GSS",
1999 .create = gss_create,
2000 .destroy = gss_destroy,
2001 .hash_cred = gss_hash_cred,
2002 .lookup_cred = gss_lookup_cred,
2003 .crcreate = gss_create_cred,
2004 .list_pseudoflavors = gss_mech_list_pseudoflavors,
2005 .info2flavor = gss_mech_info2flavor,
2006 .flavor2info = gss_mech_flavor2info,
2009 static const struct rpc_credops gss_credops = {
2010 .cr_name = "AUTH_GSS",
2011 .crdestroy = gss_destroy_cred,
2012 .cr_init = gss_cred_init,
2013 .crbind = rpcauth_generic_bind_cred,
2014 .crmatch = gss_match,
2015 .crmarshal = gss_marshal,
2016 .crrefresh = gss_refresh,
2017 .crvalidate = gss_validate,
2018 .crwrap_req = gss_wrap_req,
2019 .crunwrap_resp = gss_unwrap_resp,
2020 .crkey_timeout = gss_key_timeout,
2021 .crstringify_acceptor = gss_stringify_acceptor,
2024 static const struct rpc_credops gss_nullops = {
2025 .cr_name = "AUTH_GSS",
2026 .crdestroy = gss_destroy_nullcred,
2027 .crbind = rpcauth_generic_bind_cred,
2028 .crmatch = gss_match,
2029 .crmarshal = gss_marshal,
2030 .crrefresh = gss_refresh_null,
2031 .crvalidate = gss_validate,
2032 .crwrap_req = gss_wrap_req,
2033 .crunwrap_resp = gss_unwrap_resp,
2034 .crstringify_acceptor = gss_stringify_acceptor,
2037 static const struct rpc_pipe_ops gss_upcall_ops_v0 = {
2038 .upcall = rpc_pipe_generic_upcall,
2039 .downcall = gss_pipe_downcall,
2040 .destroy_msg = gss_pipe_destroy_msg,
2041 .open_pipe = gss_pipe_open_v0,
2042 .release_pipe = gss_pipe_release,
2045 static const struct rpc_pipe_ops gss_upcall_ops_v1 = {
2046 .upcall = rpc_pipe_generic_upcall,
2047 .downcall = gss_pipe_downcall,
2048 .destroy_msg = gss_pipe_destroy_msg,
2049 .open_pipe = gss_pipe_open_v1,
2050 .release_pipe = gss_pipe_release,
2053 static __net_init int rpcsec_gss_init_net(struct net *net)
2055 return gss_svc_init_net(net);
2058 static __net_exit void rpcsec_gss_exit_net(struct net *net)
2060 gss_svc_shutdown_net(net);
2063 static struct pernet_operations rpcsec_gss_net_ops = {
2064 .init = rpcsec_gss_init_net,
2065 .exit = rpcsec_gss_exit_net,
2069 * Initialize RPCSEC_GSS module
2071 static int __init init_rpcsec_gss(void)
2073 int err = 0;
2075 err = rpcauth_register(&authgss_ops);
2076 if (err)
2077 goto out;
2078 err = gss_svc_init();
2079 if (err)
2080 goto out_unregister;
2081 err = register_pernet_subsys(&rpcsec_gss_net_ops);
2082 if (err)
2083 goto out_svc_exit;
2084 rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version");
2085 return 0;
2086 out_svc_exit:
2087 gss_svc_shutdown();
2088 out_unregister:
2089 rpcauth_unregister(&authgss_ops);
2090 out:
2091 return err;
2094 static void __exit exit_rpcsec_gss(void)
2096 unregister_pernet_subsys(&rpcsec_gss_net_ops);
2097 gss_svc_shutdown();
2098 rpcauth_unregister(&authgss_ops);
2099 rcu_barrier(); /* Wait for completion of call_rcu()'s */
2102 MODULE_ALIAS("rpc-auth-6");
2103 MODULE_LICENSE("GPL");
2104 module_param_named(expired_cred_retry_delay,
2105 gss_expired_cred_retry_delay,
2106 uint, 0644);
2107 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until "
2108 "the RPC engine retries an expired credential");
2110 module_param_named(key_expire_timeo,
2111 gss_key_expire_timeo,
2112 uint, 0644);
2113 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a "
2114 "credential keys lifetime where the NFS layer cleans up "
2115 "prior to key expiration");
2117 module_init(init_rpcsec_gss)
2118 module_exit(exit_rpcsec_gss)