4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9 * Released under terms in GPL version 2. See COPYING.
13 #include <linux/types.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/string_helpers.h>
24 #include <linux/uaccess.h>
25 #include <linux/poll.h>
26 #include <linux/seq_file.h>
27 #include <linux/proc_fs.h>
28 #include <linux/net.h>
29 #include <linux/workqueue.h>
30 #include <linux/mutex.h>
31 #include <linux/pagemap.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
39 #define RPCDBG_FACILITY RPCDBG_CACHE
41 static bool cache_defer_req(struct cache_req
*req
, struct cache_head
*item
);
42 static void cache_revisit_request(struct cache_head
*item
);
44 static void cache_init(struct cache_head
*h
, struct cache_detail
*detail
)
46 time_t now
= seconds_since_boot();
47 INIT_HLIST_NODE(&h
->cache_list
);
50 h
->expiry_time
= now
+ CACHE_NEW_EXPIRY
;
51 if (now
<= detail
->flush_time
)
52 /* ensure it isn't already expired */
53 now
= detail
->flush_time
+ 1;
54 h
->last_refresh
= now
;
57 struct cache_head
*sunrpc_cache_lookup(struct cache_detail
*detail
,
58 struct cache_head
*key
, int hash
)
60 struct cache_head
*new = NULL
, *freeme
= NULL
, *tmp
= NULL
;
61 struct hlist_head
*head
;
63 head
= &detail
->hash_table
[hash
];
65 read_lock(&detail
->hash_lock
);
67 hlist_for_each_entry(tmp
, head
, cache_list
) {
68 if (detail
->match(tmp
, key
)) {
69 if (cache_is_expired(detail
, tmp
))
70 /* This entry is expired, we will discard it. */
73 read_unlock(&detail
->hash_lock
);
77 read_unlock(&detail
->hash_lock
);
78 /* Didn't find anything, insert an empty entry */
80 new = detail
->alloc();
83 /* must fully initialise 'new', else
84 * we might get lose if we need to
87 cache_init(new, detail
);
88 detail
->init(new, key
);
90 write_lock(&detail
->hash_lock
);
92 /* check if entry appeared while we slept */
93 hlist_for_each_entry(tmp
, head
, cache_list
) {
94 if (detail
->match(tmp
, key
)) {
95 if (cache_is_expired(detail
, tmp
)) {
96 hlist_del_init(&tmp
->cache_list
);
102 write_unlock(&detail
->hash_lock
);
103 cache_put(new, detail
);
108 hlist_add_head(&new->cache_list
, head
);
111 write_unlock(&detail
->hash_lock
);
114 cache_put(freeme
, detail
);
117 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup
);
120 static void cache_dequeue(struct cache_detail
*detail
, struct cache_head
*ch
);
122 static void cache_fresh_locked(struct cache_head
*head
, time_t expiry
,
123 struct cache_detail
*detail
)
125 time_t now
= seconds_since_boot();
126 if (now
<= detail
->flush_time
)
127 /* ensure it isn't immediately treated as expired */
128 now
= detail
->flush_time
+ 1;
129 head
->expiry_time
= expiry
;
130 head
->last_refresh
= now
;
131 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132 set_bit(CACHE_VALID
, &head
->flags
);
135 static void cache_fresh_unlocked(struct cache_head
*head
,
136 struct cache_detail
*detail
)
138 if (test_and_clear_bit(CACHE_PENDING
, &head
->flags
)) {
139 cache_revisit_request(head
);
140 cache_dequeue(detail
, head
);
144 struct cache_head
*sunrpc_cache_update(struct cache_detail
*detail
,
145 struct cache_head
*new, struct cache_head
*old
, int hash
)
147 /* The 'old' entry is to be replaced by 'new'.
148 * If 'old' is not VALID, we update it directly,
149 * otherwise we need to replace it
151 struct cache_head
*tmp
;
153 if (!test_bit(CACHE_VALID
, &old
->flags
)) {
154 write_lock(&detail
->hash_lock
);
155 if (!test_bit(CACHE_VALID
, &old
->flags
)) {
156 if (test_bit(CACHE_NEGATIVE
, &new->flags
))
157 set_bit(CACHE_NEGATIVE
, &old
->flags
);
159 detail
->update(old
, new);
160 cache_fresh_locked(old
, new->expiry_time
, detail
);
161 write_unlock(&detail
->hash_lock
);
162 cache_fresh_unlocked(old
, detail
);
165 write_unlock(&detail
->hash_lock
);
167 /* We need to insert a new entry */
168 tmp
= detail
->alloc();
170 cache_put(old
, detail
);
173 cache_init(tmp
, detail
);
174 detail
->init(tmp
, old
);
176 write_lock(&detail
->hash_lock
);
177 if (test_bit(CACHE_NEGATIVE
, &new->flags
))
178 set_bit(CACHE_NEGATIVE
, &tmp
->flags
);
180 detail
->update(tmp
, new);
181 hlist_add_head(&tmp
->cache_list
, &detail
->hash_table
[hash
]);
184 cache_fresh_locked(tmp
, new->expiry_time
, detail
);
185 cache_fresh_locked(old
, 0, detail
);
186 write_unlock(&detail
->hash_lock
);
187 cache_fresh_unlocked(tmp
, detail
);
188 cache_fresh_unlocked(old
, detail
);
189 cache_put(old
, detail
);
192 EXPORT_SYMBOL_GPL(sunrpc_cache_update
);
194 static int cache_make_upcall(struct cache_detail
*cd
, struct cache_head
*h
)
196 if (cd
->cache_upcall
)
197 return cd
->cache_upcall(cd
, h
);
198 return sunrpc_cache_pipe_upcall(cd
, h
);
201 static inline int cache_is_valid(struct cache_head
*h
)
203 if (!test_bit(CACHE_VALID
, &h
->flags
))
207 if (test_bit(CACHE_NEGATIVE
, &h
->flags
))
211 * In combination with write barrier in
212 * sunrpc_cache_update, ensures that anyone
213 * using the cache entry after this sees the
222 static int try_to_negate_entry(struct cache_detail
*detail
, struct cache_head
*h
)
226 write_lock(&detail
->hash_lock
);
227 rv
= cache_is_valid(h
);
229 set_bit(CACHE_NEGATIVE
, &h
->flags
);
230 cache_fresh_locked(h
, seconds_since_boot()+CACHE_NEW_EXPIRY
,
234 write_unlock(&detail
->hash_lock
);
235 cache_fresh_unlocked(h
, detail
);
240 * This is the generic cache management routine for all
241 * the authentication caches.
242 * It checks the currency of a cache item and will (later)
243 * initiate an upcall to fill it if needed.
246 * Returns 0 if the cache_head can be used, or cache_puts it and returns
247 * -EAGAIN if upcall is pending and request has been queued
248 * -ETIMEDOUT if upcall failed or request could not be queue or
249 * upcall completed but item is still invalid (implying that
250 * the cache item has been replaced with a newer one).
251 * -ENOENT if cache entry was negative
253 int cache_check(struct cache_detail
*detail
,
254 struct cache_head
*h
, struct cache_req
*rqstp
)
257 long refresh_age
, age
;
259 /* First decide return status as best we can */
260 rv
= cache_is_valid(h
);
262 /* now see if we want to start an upcall */
263 refresh_age
= (h
->expiry_time
- h
->last_refresh
);
264 age
= seconds_since_boot() - h
->last_refresh
;
269 } else if (rv
== -EAGAIN
||
270 (h
->expiry_time
!= 0 && age
> refresh_age
/2)) {
271 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
273 if (!test_and_set_bit(CACHE_PENDING
, &h
->flags
)) {
274 switch (cache_make_upcall(detail
, h
)) {
276 rv
= try_to_negate_entry(detail
, h
);
279 cache_fresh_unlocked(h
, detail
);
286 if (!cache_defer_req(rqstp
, h
)) {
288 * Request was not deferred; handle it as best
291 rv
= cache_is_valid(h
);
297 cache_put(h
, detail
);
300 EXPORT_SYMBOL_GPL(cache_check
);
303 * caches need to be periodically cleaned.
304 * For this we maintain a list of cache_detail and
305 * a current pointer into that list and into the table
308 * Each time cache_clean is called it finds the next non-empty entry
309 * in the current table and walks the list in that entry
310 * looking for entries that can be removed.
312 * An entry gets removed if:
313 * - The expiry is before current time
314 * - The last_refresh time is before the flush_time for that cache
316 * later we might drop old entries with non-NEVER expiry if that table
317 * is getting 'full' for some definition of 'full'
319 * The question of "how often to scan a table" is an interesting one
320 * and is answered in part by the use of the "nextcheck" field in the
322 * When a scan of a table begins, the nextcheck field is set to a time
323 * that is well into the future.
324 * While scanning, if an expiry time is found that is earlier than the
325 * current nextcheck time, nextcheck is set to that expiry time.
326 * If the flush_time is ever set to a time earlier than the nextcheck
327 * time, the nextcheck time is then set to that flush_time.
329 * A table is then only scanned if the current time is at least
330 * the nextcheck time.
334 static LIST_HEAD(cache_list
);
335 static DEFINE_SPINLOCK(cache_list_lock
);
336 static struct cache_detail
*current_detail
;
337 static int current_index
;
339 static void do_cache_clean(struct work_struct
*work
);
340 static struct delayed_work cache_cleaner
;
342 void sunrpc_init_cache_detail(struct cache_detail
*cd
)
344 rwlock_init(&cd
->hash_lock
);
345 INIT_LIST_HEAD(&cd
->queue
);
346 spin_lock(&cache_list_lock
);
349 atomic_set(&cd
->readers
, 0);
352 list_add(&cd
->others
, &cache_list
);
353 spin_unlock(&cache_list_lock
);
355 /* start the cleaning process */
356 queue_delayed_work(system_power_efficient_wq
, &cache_cleaner
, 0);
358 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail
);
360 void sunrpc_destroy_cache_detail(struct cache_detail
*cd
)
363 spin_lock(&cache_list_lock
);
364 write_lock(&cd
->hash_lock
);
366 write_unlock(&cd
->hash_lock
);
367 spin_unlock(&cache_list_lock
);
370 if (current_detail
== cd
)
371 current_detail
= NULL
;
372 list_del_init(&cd
->others
);
373 write_unlock(&cd
->hash_lock
);
374 spin_unlock(&cache_list_lock
);
375 if (list_empty(&cache_list
)) {
376 /* module must be being unloaded so its safe to kill the worker */
377 cancel_delayed_work_sync(&cache_cleaner
);
381 printk(KERN_ERR
"RPC: failed to unregister %s cache\n", cd
->name
);
383 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail
);
385 /* clean cache tries to find something to clean
387 * It returns 1 if it cleaned something,
388 * 0 if it didn't find anything this time
389 * -1 if it fell off the end of the list.
391 static int cache_clean(void)
394 struct list_head
*next
;
396 spin_lock(&cache_list_lock
);
398 /* find a suitable table if we don't already have one */
399 while (current_detail
== NULL
||
400 current_index
>= current_detail
->hash_size
) {
402 next
= current_detail
->others
.next
;
404 next
= cache_list
.next
;
405 if (next
== &cache_list
) {
406 current_detail
= NULL
;
407 spin_unlock(&cache_list_lock
);
410 current_detail
= list_entry(next
, struct cache_detail
, others
);
411 if (current_detail
->nextcheck
> seconds_since_boot())
412 current_index
= current_detail
->hash_size
;
415 current_detail
->nextcheck
= seconds_since_boot()+30*60;
419 /* find a non-empty bucket in the table */
420 while (current_detail
&&
421 current_index
< current_detail
->hash_size
&&
422 hlist_empty(¤t_detail
->hash_table
[current_index
]))
425 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
427 if (current_detail
&& current_index
< current_detail
->hash_size
) {
428 struct cache_head
*ch
= NULL
;
429 struct cache_detail
*d
;
430 struct hlist_head
*head
;
431 struct hlist_node
*tmp
;
433 write_lock(¤t_detail
->hash_lock
);
435 /* Ok, now to clean this strand */
437 head
= ¤t_detail
->hash_table
[current_index
];
438 hlist_for_each_entry_safe(ch
, tmp
, head
, cache_list
) {
439 if (current_detail
->nextcheck
> ch
->expiry_time
)
440 current_detail
->nextcheck
= ch
->expiry_time
+1;
441 if (!cache_is_expired(current_detail
, ch
))
444 hlist_del_init(&ch
->cache_list
);
445 current_detail
->entries
--;
450 write_unlock(¤t_detail
->hash_lock
);
454 spin_unlock(&cache_list_lock
);
456 set_bit(CACHE_CLEANED
, &ch
->flags
);
457 cache_fresh_unlocked(ch
, d
);
461 spin_unlock(&cache_list_lock
);
467 * We want to regularly clean the cache, so we need to schedule some work ...
469 static void do_cache_clean(struct work_struct
*work
)
472 if (cache_clean() == -1)
473 delay
= round_jiffies_relative(30*HZ
);
475 if (list_empty(&cache_list
))
479 queue_delayed_work(system_power_efficient_wq
,
480 &cache_cleaner
, delay
);
485 * Clean all caches promptly. This just calls cache_clean
486 * repeatedly until we are sure that every cache has had a chance to
489 void cache_flush(void)
491 while (cache_clean() != -1)
493 while (cache_clean() != -1)
496 EXPORT_SYMBOL_GPL(cache_flush
);
498 void cache_purge(struct cache_detail
*detail
)
500 time_t now
= seconds_since_boot();
501 if (detail
->flush_time
>= now
)
502 now
= detail
->flush_time
+ 1;
503 /* 'now' is the maximum value any 'last_refresh' can have */
504 detail
->flush_time
= now
;
505 detail
->nextcheck
= seconds_since_boot();
508 EXPORT_SYMBOL_GPL(cache_purge
);
512 * Deferral and Revisiting of Requests.
514 * If a cache lookup finds a pending entry, we
515 * need to defer the request and revisit it later.
516 * All deferred requests are stored in a hash table,
517 * indexed by "struct cache_head *".
518 * As it may be wasteful to store a whole request
519 * structure, we allow the request to provide a
520 * deferred form, which must contain a
521 * 'struct cache_deferred_req'
522 * This cache_deferred_req contains a method to allow
523 * it to be revisited when cache info is available
526 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
527 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
529 #define DFR_MAX 300 /* ??? */
531 static DEFINE_SPINLOCK(cache_defer_lock
);
532 static LIST_HEAD(cache_defer_list
);
533 static struct hlist_head cache_defer_hash
[DFR_HASHSIZE
];
534 static int cache_defer_cnt
;
536 static void __unhash_deferred_req(struct cache_deferred_req
*dreq
)
538 hlist_del_init(&dreq
->hash
);
539 if (!list_empty(&dreq
->recent
)) {
540 list_del_init(&dreq
->recent
);
545 static void __hash_deferred_req(struct cache_deferred_req
*dreq
, struct cache_head
*item
)
547 int hash
= DFR_HASH(item
);
549 INIT_LIST_HEAD(&dreq
->recent
);
550 hlist_add_head(&dreq
->hash
, &cache_defer_hash
[hash
]);
553 static void setup_deferral(struct cache_deferred_req
*dreq
,
554 struct cache_head
*item
,
560 spin_lock(&cache_defer_lock
);
562 __hash_deferred_req(dreq
, item
);
566 list_add(&dreq
->recent
, &cache_defer_list
);
569 spin_unlock(&cache_defer_lock
);
573 struct thread_deferred_req
{
574 struct cache_deferred_req handle
;
575 struct completion completion
;
578 static void cache_restart_thread(struct cache_deferred_req
*dreq
, int too_many
)
580 struct thread_deferred_req
*dr
=
581 container_of(dreq
, struct thread_deferred_req
, handle
);
582 complete(&dr
->completion
);
585 static void cache_wait_req(struct cache_req
*req
, struct cache_head
*item
)
587 struct thread_deferred_req sleeper
;
588 struct cache_deferred_req
*dreq
= &sleeper
.handle
;
590 sleeper
.completion
= COMPLETION_INITIALIZER_ONSTACK(sleeper
.completion
);
591 dreq
->revisit
= cache_restart_thread
;
593 setup_deferral(dreq
, item
, 0);
595 if (!test_bit(CACHE_PENDING
, &item
->flags
) ||
596 wait_for_completion_interruptible_timeout(
597 &sleeper
.completion
, req
->thread_wait
) <= 0) {
598 /* The completion wasn't completed, so we need
601 spin_lock(&cache_defer_lock
);
602 if (!hlist_unhashed(&sleeper
.handle
.hash
)) {
603 __unhash_deferred_req(&sleeper
.handle
);
604 spin_unlock(&cache_defer_lock
);
606 /* cache_revisit_request already removed
607 * this from the hash table, but hasn't
608 * called ->revisit yet. It will very soon
609 * and we need to wait for it.
611 spin_unlock(&cache_defer_lock
);
612 wait_for_completion(&sleeper
.completion
);
617 static void cache_limit_defers(void)
619 /* Make sure we haven't exceed the limit of allowed deferred
622 struct cache_deferred_req
*discard
= NULL
;
624 if (cache_defer_cnt
<= DFR_MAX
)
627 spin_lock(&cache_defer_lock
);
629 /* Consider removing either the first or the last */
630 if (cache_defer_cnt
> DFR_MAX
) {
631 if (prandom_u32() & 1)
632 discard
= list_entry(cache_defer_list
.next
,
633 struct cache_deferred_req
, recent
);
635 discard
= list_entry(cache_defer_list
.prev
,
636 struct cache_deferred_req
, recent
);
637 __unhash_deferred_req(discard
);
639 spin_unlock(&cache_defer_lock
);
641 discard
->revisit(discard
, 1);
644 /* Return true if and only if a deferred request is queued. */
645 static bool cache_defer_req(struct cache_req
*req
, struct cache_head
*item
)
647 struct cache_deferred_req
*dreq
;
649 if (req
->thread_wait
) {
650 cache_wait_req(req
, item
);
651 if (!test_bit(CACHE_PENDING
, &item
->flags
))
654 dreq
= req
->defer(req
);
657 setup_deferral(dreq
, item
, 1);
658 if (!test_bit(CACHE_PENDING
, &item
->flags
))
659 /* Bit could have been cleared before we managed to
660 * set up the deferral, so need to revisit just in case
662 cache_revisit_request(item
);
664 cache_limit_defers();
668 static void cache_revisit_request(struct cache_head
*item
)
670 struct cache_deferred_req
*dreq
;
671 struct list_head pending
;
672 struct hlist_node
*tmp
;
673 int hash
= DFR_HASH(item
);
675 INIT_LIST_HEAD(&pending
);
676 spin_lock(&cache_defer_lock
);
678 hlist_for_each_entry_safe(dreq
, tmp
, &cache_defer_hash
[hash
], hash
)
679 if (dreq
->item
== item
) {
680 __unhash_deferred_req(dreq
);
681 list_add(&dreq
->recent
, &pending
);
684 spin_unlock(&cache_defer_lock
);
686 while (!list_empty(&pending
)) {
687 dreq
= list_entry(pending
.next
, struct cache_deferred_req
, recent
);
688 list_del_init(&dreq
->recent
);
689 dreq
->revisit(dreq
, 0);
693 void cache_clean_deferred(void *owner
)
695 struct cache_deferred_req
*dreq
, *tmp
;
696 struct list_head pending
;
699 INIT_LIST_HEAD(&pending
);
700 spin_lock(&cache_defer_lock
);
702 list_for_each_entry_safe(dreq
, tmp
, &cache_defer_list
, recent
) {
703 if (dreq
->owner
== owner
) {
704 __unhash_deferred_req(dreq
);
705 list_add(&dreq
->recent
, &pending
);
708 spin_unlock(&cache_defer_lock
);
710 while (!list_empty(&pending
)) {
711 dreq
= list_entry(pending
.next
, struct cache_deferred_req
, recent
);
712 list_del_init(&dreq
->recent
);
713 dreq
->revisit(dreq
, 1);
718 * communicate with user-space
720 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
721 * On read, you get a full request, or block.
722 * On write, an update request is processed.
723 * Poll works if anything to read, and always allows write.
725 * Implemented by linked list of requests. Each open file has
726 * a ->private that also exists in this list. New requests are added
727 * to the end and may wakeup and preceding readers.
728 * New readers are added to the head. If, on read, an item is found with
729 * CACHE_UPCALLING clear, we free it from the list.
733 static DEFINE_SPINLOCK(queue_lock
);
734 static DEFINE_MUTEX(queue_io_mutex
);
737 struct list_head list
;
738 int reader
; /* if 0, then request */
740 struct cache_request
{
741 struct cache_queue q
;
742 struct cache_head
*item
;
747 struct cache_reader
{
748 struct cache_queue q
;
749 int offset
; /* if non-0, we have a refcnt on next request */
752 static int cache_request(struct cache_detail
*detail
,
753 struct cache_request
*crq
)
758 detail
->cache_request(detail
, crq
->item
, &bp
, &len
);
761 return PAGE_SIZE
- len
;
764 static ssize_t
cache_read(struct file
*filp
, char __user
*buf
, size_t count
,
765 loff_t
*ppos
, struct cache_detail
*cd
)
767 struct cache_reader
*rp
= filp
->private_data
;
768 struct cache_request
*rq
;
769 struct inode
*inode
= file_inode(filp
);
775 inode_lock(inode
); /* protect against multiple concurrent
776 * readers on this file */
778 spin_lock(&queue_lock
);
779 /* need to find next request */
780 while (rp
->q
.list
.next
!= &cd
->queue
&&
781 list_entry(rp
->q
.list
.next
, struct cache_queue
, list
)
783 struct list_head
*next
= rp
->q
.list
.next
;
784 list_move(&rp
->q
.list
, next
);
786 if (rp
->q
.list
.next
== &cd
->queue
) {
787 spin_unlock(&queue_lock
);
789 WARN_ON_ONCE(rp
->offset
);
792 rq
= container_of(rp
->q
.list
.next
, struct cache_request
, q
.list
);
793 WARN_ON_ONCE(rq
->q
.reader
);
796 spin_unlock(&queue_lock
);
799 err
= cache_request(cd
, rq
);
805 if (rp
->offset
== 0 && !test_bit(CACHE_PENDING
, &rq
->item
->flags
)) {
807 spin_lock(&queue_lock
);
808 list_move(&rp
->q
.list
, &rq
->q
.list
);
809 spin_unlock(&queue_lock
);
811 if (rp
->offset
+ count
> rq
->len
)
812 count
= rq
->len
- rp
->offset
;
814 if (copy_to_user(buf
, rq
->buf
+ rp
->offset
, count
))
817 if (rp
->offset
>= rq
->len
) {
819 spin_lock(&queue_lock
);
820 list_move(&rp
->q
.list
, &rq
->q
.list
);
821 spin_unlock(&queue_lock
);
826 if (rp
->offset
== 0) {
827 /* need to release rq */
828 spin_lock(&queue_lock
);
830 if (rq
->readers
== 0 &&
831 !test_bit(CACHE_PENDING
, &rq
->item
->flags
)) {
832 list_del(&rq
->q
.list
);
833 spin_unlock(&queue_lock
);
834 cache_put(rq
->item
, cd
);
838 spin_unlock(&queue_lock
);
843 return err
? err
: count
;
846 static ssize_t
cache_do_downcall(char *kaddr
, const char __user
*buf
,
847 size_t count
, struct cache_detail
*cd
)
853 if (copy_from_user(kaddr
, buf
, count
))
856 ret
= cd
->cache_parse(cd
, kaddr
, count
);
862 static ssize_t
cache_slow_downcall(const char __user
*buf
,
863 size_t count
, struct cache_detail
*cd
)
865 static char write_buf
[8192]; /* protected by queue_io_mutex */
866 ssize_t ret
= -EINVAL
;
868 if (count
>= sizeof(write_buf
))
870 mutex_lock(&queue_io_mutex
);
871 ret
= cache_do_downcall(write_buf
, buf
, count
, cd
);
872 mutex_unlock(&queue_io_mutex
);
877 static ssize_t
cache_downcall(struct address_space
*mapping
,
878 const char __user
*buf
,
879 size_t count
, struct cache_detail
*cd
)
883 ssize_t ret
= -ENOMEM
;
885 if (count
>= PAGE_SIZE
)
888 page
= find_or_create_page(mapping
, 0, GFP_KERNEL
);
893 ret
= cache_do_downcall(kaddr
, buf
, count
, cd
);
899 return cache_slow_downcall(buf
, count
, cd
);
902 static ssize_t
cache_write(struct file
*filp
, const char __user
*buf
,
903 size_t count
, loff_t
*ppos
,
904 struct cache_detail
*cd
)
906 struct address_space
*mapping
= filp
->f_mapping
;
907 struct inode
*inode
= file_inode(filp
);
908 ssize_t ret
= -EINVAL
;
910 if (!cd
->cache_parse
)
914 ret
= cache_downcall(mapping
, buf
, count
, cd
);
920 static DECLARE_WAIT_QUEUE_HEAD(queue_wait
);
922 static unsigned int cache_poll(struct file
*filp
, poll_table
*wait
,
923 struct cache_detail
*cd
)
926 struct cache_reader
*rp
= filp
->private_data
;
927 struct cache_queue
*cq
;
929 poll_wait(filp
, &queue_wait
, wait
);
931 /* alway allow write */
932 mask
= POLLOUT
| POLLWRNORM
;
937 spin_lock(&queue_lock
);
939 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
940 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
942 mask
|= POLLIN
| POLLRDNORM
;
945 spin_unlock(&queue_lock
);
949 static int cache_ioctl(struct inode
*ino
, struct file
*filp
,
950 unsigned int cmd
, unsigned long arg
,
951 struct cache_detail
*cd
)
954 struct cache_reader
*rp
= filp
->private_data
;
955 struct cache_queue
*cq
;
957 if (cmd
!= FIONREAD
|| !rp
)
960 spin_lock(&queue_lock
);
962 /* only find the length remaining in current request,
963 * or the length of the next request
965 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
966 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
968 struct cache_request
*cr
=
969 container_of(cq
, struct cache_request
, q
);
970 len
= cr
->len
- rp
->offset
;
973 spin_unlock(&queue_lock
);
975 return put_user(len
, (int __user
*)arg
);
978 static int cache_open(struct inode
*inode
, struct file
*filp
,
979 struct cache_detail
*cd
)
981 struct cache_reader
*rp
= NULL
;
983 if (!cd
|| !try_module_get(cd
->owner
))
985 nonseekable_open(inode
, filp
);
986 if (filp
->f_mode
& FMODE_READ
) {
987 rp
= kmalloc(sizeof(*rp
), GFP_KERNEL
);
989 module_put(cd
->owner
);
994 atomic_inc(&cd
->readers
);
995 spin_lock(&queue_lock
);
996 list_add(&rp
->q
.list
, &cd
->queue
);
997 spin_unlock(&queue_lock
);
999 filp
->private_data
= rp
;
1003 static int cache_release(struct inode
*inode
, struct file
*filp
,
1004 struct cache_detail
*cd
)
1006 struct cache_reader
*rp
= filp
->private_data
;
1009 spin_lock(&queue_lock
);
1011 struct cache_queue
*cq
;
1012 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
1013 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
1015 container_of(cq
, struct cache_request
, q
)
1021 list_del(&rp
->q
.list
);
1022 spin_unlock(&queue_lock
);
1024 filp
->private_data
= NULL
;
1027 cd
->last_close
= seconds_since_boot();
1028 atomic_dec(&cd
->readers
);
1030 module_put(cd
->owner
);
1036 static void cache_dequeue(struct cache_detail
*detail
, struct cache_head
*ch
)
1038 struct cache_queue
*cq
, *tmp
;
1039 struct cache_request
*cr
;
1040 struct list_head dequeued
;
1042 INIT_LIST_HEAD(&dequeued
);
1043 spin_lock(&queue_lock
);
1044 list_for_each_entry_safe(cq
, tmp
, &detail
->queue
, list
)
1046 cr
= container_of(cq
, struct cache_request
, q
);
1049 if (test_bit(CACHE_PENDING
, &ch
->flags
))
1050 /* Lost a race and it is pending again */
1052 if (cr
->readers
!= 0)
1054 list_move(&cr
->q
.list
, &dequeued
);
1056 spin_unlock(&queue_lock
);
1057 while (!list_empty(&dequeued
)) {
1058 cr
= list_entry(dequeued
.next
, struct cache_request
, q
.list
);
1059 list_del(&cr
->q
.list
);
1060 cache_put(cr
->item
, detail
);
1067 * Support routines for text-based upcalls.
1068 * Fields are separated by spaces.
1069 * Fields are either mangled to quote space tab newline slosh with slosh
1070 * or a hexified with a leading \x
1071 * Record is terminated with newline.
1075 void qword_add(char **bpp
, int *lp
, char *str
)
1081 if (len
< 0) return;
1083 ret
= string_escape_str(str
, bp
, len
, ESCAPE_OCTAL
, "\\ \n\t");
1096 EXPORT_SYMBOL_GPL(qword_add
);
1098 void qword_addhex(char **bpp
, int *lp
, char *buf
, int blen
)
1103 if (len
< 0) return;
1109 while (blen
&& len
>= 2) {
1110 bp
= hex_byte_pack(bp
, *buf
++);
1115 if (blen
|| len
<1) len
= -1;
1123 EXPORT_SYMBOL_GPL(qword_addhex
);
1125 static void warn_no_listener(struct cache_detail
*detail
)
1127 if (detail
->last_warn
!= detail
->last_close
) {
1128 detail
->last_warn
= detail
->last_close
;
1129 if (detail
->warn_no_listener
)
1130 detail
->warn_no_listener(detail
, detail
->last_close
!= 0);
1134 static bool cache_listeners_exist(struct cache_detail
*detail
)
1136 if (atomic_read(&detail
->readers
))
1138 if (detail
->last_close
== 0)
1139 /* This cache was never opened */
1141 if (detail
->last_close
< seconds_since_boot() - 30)
1143 * We allow for the possibility that someone might
1144 * restart a userspace daemon without restarting the
1145 * server; but after 30 seconds, we give up.
1152 * register an upcall request to user-space and queue it up for read() by the
1155 * Each request is at most one page long.
1157 int sunrpc_cache_pipe_upcall(struct cache_detail
*detail
, struct cache_head
*h
)
1161 struct cache_request
*crq
;
1164 if (!detail
->cache_request
)
1167 if (!cache_listeners_exist(detail
)) {
1168 warn_no_listener(detail
);
1171 if (test_bit(CACHE_CLEANED
, &h
->flags
))
1172 /* Too late to make an upcall */
1175 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1179 crq
= kmalloc(sizeof (*crq
), GFP_KERNEL
);
1189 spin_lock(&queue_lock
);
1190 if (test_bit(CACHE_PENDING
, &h
->flags
)) {
1191 crq
->item
= cache_get(h
);
1192 list_add_tail(&crq
->q
.list
, &detail
->queue
);
1194 /* Lost a race, no longer PENDING, so don't enqueue */
1196 spin_unlock(&queue_lock
);
1197 wake_up(&queue_wait
);
1198 if (ret
== -EAGAIN
) {
1204 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall
);
1207 * parse a message from user-space and pass it
1208 * to an appropriate cache
1209 * Messages are, like requests, separated into fields by
1210 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1213 * reply cachename expiry key ... content....
1215 * key and content are both parsed by cache
1218 int qword_get(char **bpp
, char *dest
, int bufsize
)
1220 /* return bytes copied, or -1 on error */
1224 while (*bp
== ' ') bp
++;
1226 if (bp
[0] == '\\' && bp
[1] == 'x') {
1229 while (len
< bufsize
- 1) {
1232 h
= hex_to_bin(bp
[0]);
1236 l
= hex_to_bin(bp
[1]);
1240 *dest
++ = (h
<< 4) | l
;
1245 /* text with \nnn octal quoting */
1246 while (*bp
!= ' ' && *bp
!= '\n' && *bp
&& len
< bufsize
-1) {
1248 isodigit(bp
[1]) && (bp
[1] <= '3') &&
1251 int byte
= (*++bp
-'0');
1253 byte
= (byte
<< 3) | (*bp
++ - '0');
1254 byte
= (byte
<< 3) | (*bp
++ - '0');
1264 if (*bp
!= ' ' && *bp
!= '\n' && *bp
!= '\0')
1266 while (*bp
== ' ') bp
++;
1271 EXPORT_SYMBOL_GPL(qword_get
);
1275 * support /proc/sunrpc/cache/$CACHENAME/content
1277 * We call ->cache_show passing NULL for the item to
1278 * get a header, then pass each real item in the cache
1281 void *cache_seq_start(struct seq_file
*m
, loff_t
*pos
)
1282 __acquires(cd
->hash_lock
)
1285 unsigned int hash
, entry
;
1286 struct cache_head
*ch
;
1287 struct cache_detail
*cd
= m
->private;
1289 read_lock(&cd
->hash_lock
);
1291 return SEQ_START_TOKEN
;
1293 entry
= n
& ((1LL<<32) - 1);
1295 hlist_for_each_entry(ch
, &cd
->hash_table
[hash
], cache_list
)
1298 n
&= ~((1LL<<32) - 1);
1302 } while(hash
< cd
->hash_size
&&
1303 hlist_empty(&cd
->hash_table
[hash
]));
1304 if (hash
>= cd
->hash_size
)
1307 return hlist_entry_safe(cd
->hash_table
[hash
].first
,
1308 struct cache_head
, cache_list
);
1310 EXPORT_SYMBOL_GPL(cache_seq_start
);
1312 void *cache_seq_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1314 struct cache_head
*ch
= p
;
1315 int hash
= (*pos
>> 32);
1316 struct cache_detail
*cd
= m
->private;
1318 if (p
== SEQ_START_TOKEN
)
1320 else if (ch
->cache_list
.next
== NULL
) {
1325 return hlist_entry_safe(ch
->cache_list
.next
,
1326 struct cache_head
, cache_list
);
1328 *pos
&= ~((1LL<<32) - 1);
1329 while (hash
< cd
->hash_size
&&
1330 hlist_empty(&cd
->hash_table
[hash
])) {
1334 if (hash
>= cd
->hash_size
)
1337 return hlist_entry_safe(cd
->hash_table
[hash
].first
,
1338 struct cache_head
, cache_list
);
1340 EXPORT_SYMBOL_GPL(cache_seq_next
);
1342 void cache_seq_stop(struct seq_file
*m
, void *p
)
1343 __releases(cd
->hash_lock
)
1345 struct cache_detail
*cd
= m
->private;
1346 read_unlock(&cd
->hash_lock
);
1348 EXPORT_SYMBOL_GPL(cache_seq_stop
);
1350 static int c_show(struct seq_file
*m
, void *p
)
1352 struct cache_head
*cp
= p
;
1353 struct cache_detail
*cd
= m
->private;
1355 if (p
== SEQ_START_TOKEN
)
1356 return cd
->cache_show(m
, cd
, NULL
);
1359 seq_printf(m
, "# expiry=%ld refcnt=%d flags=%lx\n",
1360 convert_to_wallclock(cp
->expiry_time
),
1361 atomic_read(&cp
->ref
.refcount
), cp
->flags
);
1363 if (cache_check(cd
, cp
, NULL
))
1364 /* cache_check does a cache_put on failure */
1365 seq_printf(m
, "# ");
1367 if (cache_is_expired(cd
, cp
))
1368 seq_printf(m
, "# ");
1372 return cd
->cache_show(m
, cd
, cp
);
1375 static const struct seq_operations cache_content_op
= {
1376 .start
= cache_seq_start
,
1377 .next
= cache_seq_next
,
1378 .stop
= cache_seq_stop
,
1382 static int content_open(struct inode
*inode
, struct file
*file
,
1383 struct cache_detail
*cd
)
1385 struct seq_file
*seq
;
1388 if (!cd
|| !try_module_get(cd
->owner
))
1391 err
= seq_open(file
, &cache_content_op
);
1393 module_put(cd
->owner
);
1397 seq
= file
->private_data
;
1402 static int content_release(struct inode
*inode
, struct file
*file
,
1403 struct cache_detail
*cd
)
1405 int ret
= seq_release(inode
, file
);
1406 module_put(cd
->owner
);
1410 static int open_flush(struct inode
*inode
, struct file
*file
,
1411 struct cache_detail
*cd
)
1413 if (!cd
|| !try_module_get(cd
->owner
))
1415 return nonseekable_open(inode
, file
);
1418 static int release_flush(struct inode
*inode
, struct file
*file
,
1419 struct cache_detail
*cd
)
1421 module_put(cd
->owner
);
1425 static ssize_t
read_flush(struct file
*file
, char __user
*buf
,
1426 size_t count
, loff_t
*ppos
,
1427 struct cache_detail
*cd
)
1430 unsigned long p
= *ppos
;
1433 snprintf(tbuf
, sizeof(tbuf
), "%lu\n", convert_to_wallclock(cd
->flush_time
));
1440 if (copy_to_user(buf
, (void*)(tbuf
+p
), len
))
1446 static ssize_t
write_flush(struct file
*file
, const char __user
*buf
,
1447 size_t count
, loff_t
*ppos
,
1448 struct cache_detail
*cd
)
1454 if (*ppos
|| count
> sizeof(tbuf
)-1)
1456 if (copy_from_user(tbuf
, buf
, count
))
1459 simple_strtoul(tbuf
, &ep
, 0);
1460 if (*ep
&& *ep
!= '\n')
1464 then
= get_expiry(&bp
);
1465 now
= seconds_since_boot();
1466 cd
->nextcheck
= now
;
1467 /* Can only set flush_time to 1 second beyond "now", or
1468 * possibly 1 second beyond flushtime. This is because
1469 * flush_time never goes backwards so it mustn't get too far
1473 /* Want to flush everything, so behave like cache_purge() */
1474 if (cd
->flush_time
>= now
)
1475 now
= cd
->flush_time
+ 1;
1479 cd
->flush_time
= then
;
1486 static ssize_t
cache_read_procfs(struct file
*filp
, char __user
*buf
,
1487 size_t count
, loff_t
*ppos
)
1489 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1491 return cache_read(filp
, buf
, count
, ppos
, cd
);
1494 static ssize_t
cache_write_procfs(struct file
*filp
, const char __user
*buf
,
1495 size_t count
, loff_t
*ppos
)
1497 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1499 return cache_write(filp
, buf
, count
, ppos
, cd
);
1502 static unsigned int cache_poll_procfs(struct file
*filp
, poll_table
*wait
)
1504 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1506 return cache_poll(filp
, wait
, cd
);
1509 static long cache_ioctl_procfs(struct file
*filp
,
1510 unsigned int cmd
, unsigned long arg
)
1512 struct inode
*inode
= file_inode(filp
);
1513 struct cache_detail
*cd
= PDE_DATA(inode
);
1515 return cache_ioctl(inode
, filp
, cmd
, arg
, cd
);
1518 static int cache_open_procfs(struct inode
*inode
, struct file
*filp
)
1520 struct cache_detail
*cd
= PDE_DATA(inode
);
1522 return cache_open(inode
, filp
, cd
);
1525 static int cache_release_procfs(struct inode
*inode
, struct file
*filp
)
1527 struct cache_detail
*cd
= PDE_DATA(inode
);
1529 return cache_release(inode
, filp
, cd
);
1532 static const struct file_operations cache_file_operations_procfs
= {
1533 .owner
= THIS_MODULE
,
1534 .llseek
= no_llseek
,
1535 .read
= cache_read_procfs
,
1536 .write
= cache_write_procfs
,
1537 .poll
= cache_poll_procfs
,
1538 .unlocked_ioctl
= cache_ioctl_procfs
, /* for FIONREAD */
1539 .open
= cache_open_procfs
,
1540 .release
= cache_release_procfs
,
1543 static int content_open_procfs(struct inode
*inode
, struct file
*filp
)
1545 struct cache_detail
*cd
= PDE_DATA(inode
);
1547 return content_open(inode
, filp
, cd
);
1550 static int content_release_procfs(struct inode
*inode
, struct file
*filp
)
1552 struct cache_detail
*cd
= PDE_DATA(inode
);
1554 return content_release(inode
, filp
, cd
);
1557 static const struct file_operations content_file_operations_procfs
= {
1558 .open
= content_open_procfs
,
1560 .llseek
= seq_lseek
,
1561 .release
= content_release_procfs
,
1564 static int open_flush_procfs(struct inode
*inode
, struct file
*filp
)
1566 struct cache_detail
*cd
= PDE_DATA(inode
);
1568 return open_flush(inode
, filp
, cd
);
1571 static int release_flush_procfs(struct inode
*inode
, struct file
*filp
)
1573 struct cache_detail
*cd
= PDE_DATA(inode
);
1575 return release_flush(inode
, filp
, cd
);
1578 static ssize_t
read_flush_procfs(struct file
*filp
, char __user
*buf
,
1579 size_t count
, loff_t
*ppos
)
1581 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1583 return read_flush(filp
, buf
, count
, ppos
, cd
);
1586 static ssize_t
write_flush_procfs(struct file
*filp
,
1587 const char __user
*buf
,
1588 size_t count
, loff_t
*ppos
)
1590 struct cache_detail
*cd
= PDE_DATA(file_inode(filp
));
1592 return write_flush(filp
, buf
, count
, ppos
, cd
);
1595 static const struct file_operations cache_flush_operations_procfs
= {
1596 .open
= open_flush_procfs
,
1597 .read
= read_flush_procfs
,
1598 .write
= write_flush_procfs
,
1599 .release
= release_flush_procfs
,
1600 .llseek
= no_llseek
,
1603 static void remove_cache_proc_entries(struct cache_detail
*cd
, struct net
*net
)
1605 struct sunrpc_net
*sn
;
1607 if (cd
->u
.procfs
.proc_ent
== NULL
)
1609 if (cd
->u
.procfs
.flush_ent
)
1610 remove_proc_entry("flush", cd
->u
.procfs
.proc_ent
);
1611 if (cd
->u
.procfs
.channel_ent
)
1612 remove_proc_entry("channel", cd
->u
.procfs
.proc_ent
);
1613 if (cd
->u
.procfs
.content_ent
)
1614 remove_proc_entry("content", cd
->u
.procfs
.proc_ent
);
1615 cd
->u
.procfs
.proc_ent
= NULL
;
1616 sn
= net_generic(net
, sunrpc_net_id
);
1617 remove_proc_entry(cd
->name
, sn
->proc_net_rpc
);
1620 #ifdef CONFIG_PROC_FS
1621 static int create_cache_proc_entries(struct cache_detail
*cd
, struct net
*net
)
1623 struct proc_dir_entry
*p
;
1624 struct sunrpc_net
*sn
;
1626 sn
= net_generic(net
, sunrpc_net_id
);
1627 cd
->u
.procfs
.proc_ent
= proc_mkdir(cd
->name
, sn
->proc_net_rpc
);
1628 if (cd
->u
.procfs
.proc_ent
== NULL
)
1630 cd
->u
.procfs
.channel_ent
= NULL
;
1631 cd
->u
.procfs
.content_ent
= NULL
;
1633 p
= proc_create_data("flush", S_IFREG
|S_IRUSR
|S_IWUSR
,
1634 cd
->u
.procfs
.proc_ent
,
1635 &cache_flush_operations_procfs
, cd
);
1636 cd
->u
.procfs
.flush_ent
= p
;
1640 if (cd
->cache_request
|| cd
->cache_parse
) {
1641 p
= proc_create_data("channel", S_IFREG
|S_IRUSR
|S_IWUSR
,
1642 cd
->u
.procfs
.proc_ent
,
1643 &cache_file_operations_procfs
, cd
);
1644 cd
->u
.procfs
.channel_ent
= p
;
1648 if (cd
->cache_show
) {
1649 p
= proc_create_data("content", S_IFREG
|S_IRUSR
,
1650 cd
->u
.procfs
.proc_ent
,
1651 &content_file_operations_procfs
, cd
);
1652 cd
->u
.procfs
.content_ent
= p
;
1658 remove_cache_proc_entries(cd
, net
);
1661 #else /* CONFIG_PROC_FS */
1662 static int create_cache_proc_entries(struct cache_detail
*cd
, struct net
*net
)
1668 void __init
cache_initialize(void)
1670 INIT_DEFERRABLE_WORK(&cache_cleaner
, do_cache_clean
);
1673 int cache_register_net(struct cache_detail
*cd
, struct net
*net
)
1677 sunrpc_init_cache_detail(cd
);
1678 ret
= create_cache_proc_entries(cd
, net
);
1680 sunrpc_destroy_cache_detail(cd
);
1683 EXPORT_SYMBOL_GPL(cache_register_net
);
1685 void cache_unregister_net(struct cache_detail
*cd
, struct net
*net
)
1687 remove_cache_proc_entries(cd
, net
);
1688 sunrpc_destroy_cache_detail(cd
);
1690 EXPORT_SYMBOL_GPL(cache_unregister_net
);
1692 struct cache_detail
*cache_create_net(struct cache_detail
*tmpl
, struct net
*net
)
1694 struct cache_detail
*cd
;
1697 cd
= kmemdup(tmpl
, sizeof(struct cache_detail
), GFP_KERNEL
);
1699 return ERR_PTR(-ENOMEM
);
1701 cd
->hash_table
= kzalloc(cd
->hash_size
* sizeof(struct hlist_head
),
1703 if (cd
->hash_table
== NULL
) {
1705 return ERR_PTR(-ENOMEM
);
1708 for (i
= 0; i
< cd
->hash_size
; i
++)
1709 INIT_HLIST_HEAD(&cd
->hash_table
[i
]);
1713 EXPORT_SYMBOL_GPL(cache_create_net
);
1715 void cache_destroy_net(struct cache_detail
*cd
, struct net
*net
)
1717 kfree(cd
->hash_table
);
1720 EXPORT_SYMBOL_GPL(cache_destroy_net
);
1722 static ssize_t
cache_read_pipefs(struct file
*filp
, char __user
*buf
,
1723 size_t count
, loff_t
*ppos
)
1725 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1727 return cache_read(filp
, buf
, count
, ppos
, cd
);
1730 static ssize_t
cache_write_pipefs(struct file
*filp
, const char __user
*buf
,
1731 size_t count
, loff_t
*ppos
)
1733 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1735 return cache_write(filp
, buf
, count
, ppos
, cd
);
1738 static unsigned int cache_poll_pipefs(struct file
*filp
, poll_table
*wait
)
1740 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1742 return cache_poll(filp
, wait
, cd
);
1745 static long cache_ioctl_pipefs(struct file
*filp
,
1746 unsigned int cmd
, unsigned long arg
)
1748 struct inode
*inode
= file_inode(filp
);
1749 struct cache_detail
*cd
= RPC_I(inode
)->private;
1751 return cache_ioctl(inode
, filp
, cmd
, arg
, cd
);
1754 static int cache_open_pipefs(struct inode
*inode
, struct file
*filp
)
1756 struct cache_detail
*cd
= RPC_I(inode
)->private;
1758 return cache_open(inode
, filp
, cd
);
1761 static int cache_release_pipefs(struct inode
*inode
, struct file
*filp
)
1763 struct cache_detail
*cd
= RPC_I(inode
)->private;
1765 return cache_release(inode
, filp
, cd
);
1768 const struct file_operations cache_file_operations_pipefs
= {
1769 .owner
= THIS_MODULE
,
1770 .llseek
= no_llseek
,
1771 .read
= cache_read_pipefs
,
1772 .write
= cache_write_pipefs
,
1773 .poll
= cache_poll_pipefs
,
1774 .unlocked_ioctl
= cache_ioctl_pipefs
, /* for FIONREAD */
1775 .open
= cache_open_pipefs
,
1776 .release
= cache_release_pipefs
,
1779 static int content_open_pipefs(struct inode
*inode
, struct file
*filp
)
1781 struct cache_detail
*cd
= RPC_I(inode
)->private;
1783 return content_open(inode
, filp
, cd
);
1786 static int content_release_pipefs(struct inode
*inode
, struct file
*filp
)
1788 struct cache_detail
*cd
= RPC_I(inode
)->private;
1790 return content_release(inode
, filp
, cd
);
1793 const struct file_operations content_file_operations_pipefs
= {
1794 .open
= content_open_pipefs
,
1796 .llseek
= seq_lseek
,
1797 .release
= content_release_pipefs
,
1800 static int open_flush_pipefs(struct inode
*inode
, struct file
*filp
)
1802 struct cache_detail
*cd
= RPC_I(inode
)->private;
1804 return open_flush(inode
, filp
, cd
);
1807 static int release_flush_pipefs(struct inode
*inode
, struct file
*filp
)
1809 struct cache_detail
*cd
= RPC_I(inode
)->private;
1811 return release_flush(inode
, filp
, cd
);
1814 static ssize_t
read_flush_pipefs(struct file
*filp
, char __user
*buf
,
1815 size_t count
, loff_t
*ppos
)
1817 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1819 return read_flush(filp
, buf
, count
, ppos
, cd
);
1822 static ssize_t
write_flush_pipefs(struct file
*filp
,
1823 const char __user
*buf
,
1824 size_t count
, loff_t
*ppos
)
1826 struct cache_detail
*cd
= RPC_I(file_inode(filp
))->private;
1828 return write_flush(filp
, buf
, count
, ppos
, cd
);
1831 const struct file_operations cache_flush_operations_pipefs
= {
1832 .open
= open_flush_pipefs
,
1833 .read
= read_flush_pipefs
,
1834 .write
= write_flush_pipefs
,
1835 .release
= release_flush_pipefs
,
1836 .llseek
= no_llseek
,
1839 int sunrpc_cache_register_pipefs(struct dentry
*parent
,
1840 const char *name
, umode_t umode
,
1841 struct cache_detail
*cd
)
1843 struct dentry
*dir
= rpc_create_cache_dir(parent
, name
, umode
, cd
);
1845 return PTR_ERR(dir
);
1846 cd
->u
.pipefs
.dir
= dir
;
1849 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs
);
1851 void sunrpc_cache_unregister_pipefs(struct cache_detail
*cd
)
1853 rpc_remove_cache_dir(cd
->u
.pipefs
.dir
);
1854 cd
->u
.pipefs
.dir
= NULL
;
1856 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs
);