2 * Support for Marvell's crypto engine which can be found on some Orion5X
5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/genalloc.h>
13 #include <linux/interrupt.h>
15 #include <linux/kthread.h>
16 #include <linux/platform_device.h>
17 #include <linux/scatterlist.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/clk.h>
21 #include <crypto/internal/hash.h>
22 #include <crypto/sha.h>
24 #include <linux/of_platform.h>
25 #include <linux/of_irq.h>
29 #define MV_CESA "MV-CESA:"
30 #define MAX_HW_HASH_SIZE 0xFFFF
31 #define MV_CESA_EXPIRE 500 /* msec */
33 #define MV_CESA_DEFAULT_SRAM_SIZE 2048
37 * /---------------------------------------\
38 * | | request complete
40 * IDLE -> new request -> BUSY -> done -> DEQUEUE
42 * | | more scatter entries
52 * struct req_progress - used for every crypt request
53 * @src_sg_it: sg iterator for src
54 * @dst_sg_it: sg iterator for dst
55 * @sg_src_left: bytes left in src to process (scatter list)
56 * @src_start: offset to add to src start position (scatter list)
57 * @crypt_len: length of current hw crypt/hash process
58 * @hw_nbytes: total bytes to process in hw for this request
59 * @copy_back: whether to copy data back (crypt) or not (hash)
60 * @sg_dst_left: bytes left dst to process in this scatter list
61 * @dst_start: offset to add to dst start position (scatter list)
62 * @hw_processed_bytes: number of bytes processed by hw (request).
64 * sg helper are used to iterate over the scatterlist. Since the size of the
65 * SRAM may be less than the scatter size, this struct struct is used to keep
66 * track of progress within current scatterlist.
69 struct sg_mapping_iter src_sg_it
;
70 struct sg_mapping_iter dst_sg_it
;
71 void (*complete
) (void);
72 void (*process
) (int is_first
);
83 int hw_processed_bytes
;
89 struct gen_pool
*sram_pool
;
93 struct task_struct
*queue_th
;
95 /* the lock protects queue and eng_st */
97 struct crypto_queue queue
;
98 enum engine_status eng_st
;
99 struct timer_list completion_timer
;
100 struct crypto_async_request
*cur_req
;
101 struct req_progress p
;
108 static struct crypto_priv
*cpg
;
111 u8 aes_enc_key
[AES_KEY_LEN
];
114 u32 need_calc_aes_dkey
;
132 struct mv_tfm_hash_ctx
{
133 struct crypto_shash
*fallback
;
134 struct crypto_shash
*base_hash
;
135 u32 ivs
[2 * SHA1_DIGEST_SIZE
/ 4];
140 struct mv_req_hash_ctx
{
142 u32 state
[SHA1_DIGEST_SIZE
/ 4];
143 u8 buffer
[SHA1_BLOCK_SIZE
];
144 int first_hash
; /* marks that we don't have previous state */
145 int last_chunk
; /* marks that this is the 'final' request */
146 int extra_bytes
; /* unprocessed bytes in buffer */
151 static void mv_completion_timer_callback(unsigned long unused
)
153 int active
= readl(cpg
->reg
+ SEC_ACCEL_CMD
) & SEC_CMD_EN_SEC_ACCL0
;
155 printk(KERN_ERR MV_CESA
156 "completion timer expired (CESA %sactive), cleaning up.\n",
159 del_timer(&cpg
->completion_timer
);
160 writel(SEC_CMD_DISABLE_SEC
, cpg
->reg
+ SEC_ACCEL_CMD
);
161 while(readl(cpg
->reg
+ SEC_ACCEL_CMD
) & SEC_CMD_DISABLE_SEC
)
162 printk(KERN_INFO MV_CESA
"%s: waiting for engine finishing\n", __func__
);
163 cpg
->eng_st
= ENGINE_W_DEQUEUE
;
164 wake_up_process(cpg
->queue_th
);
167 static void mv_setup_timer(void)
169 setup_timer(&cpg
->completion_timer
, &mv_completion_timer_callback
, 0);
170 mod_timer(&cpg
->completion_timer
,
171 jiffies
+ msecs_to_jiffies(MV_CESA_EXPIRE
));
174 static void compute_aes_dec_key(struct mv_ctx
*ctx
)
176 struct crypto_aes_ctx gen_aes_key
;
179 if (!ctx
->need_calc_aes_dkey
)
182 crypto_aes_expand_key(&gen_aes_key
, ctx
->aes_enc_key
, ctx
->key_len
);
184 key_pos
= ctx
->key_len
+ 24;
185 memcpy(ctx
->aes_dec_key
, &gen_aes_key
.key_enc
[key_pos
], 4 * 4);
186 switch (ctx
->key_len
) {
187 case AES_KEYSIZE_256
:
190 case AES_KEYSIZE_192
:
192 memcpy(&ctx
->aes_dec_key
[4], &gen_aes_key
.key_enc
[key_pos
],
196 ctx
->need_calc_aes_dkey
= 0;
199 static int mv_setkey_aes(struct crypto_ablkcipher
*cipher
, const u8
*key
,
202 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
203 struct mv_ctx
*ctx
= crypto_tfm_ctx(tfm
);
206 case AES_KEYSIZE_128
:
207 case AES_KEYSIZE_192
:
208 case AES_KEYSIZE_256
:
211 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
215 ctx
->need_calc_aes_dkey
= 1;
217 memcpy(ctx
->aes_enc_key
, key
, AES_KEY_LEN
);
221 static void copy_src_to_buf(struct req_progress
*p
, char *dbuf
, int len
)
228 if (!p
->sg_src_left
) {
229 ret
= sg_miter_next(&p
->src_sg_it
);
231 p
->sg_src_left
= p
->src_sg_it
.length
;
235 sbuf
= p
->src_sg_it
.addr
+ p
->src_start
;
237 copy_len
= min(p
->sg_src_left
, len
);
238 memcpy(dbuf
, sbuf
, copy_len
);
240 p
->src_start
+= copy_len
;
241 p
->sg_src_left
-= copy_len
;
248 static void setup_data_in(void)
250 struct req_progress
*p
= &cpg
->p
;
252 min(p
->hw_nbytes
- p
->hw_processed_bytes
, cpg
->max_req_size
);
253 copy_src_to_buf(p
, cpg
->sram
+ SRAM_DATA_IN_START
+ p
->crypt_len
,
254 data_in_sram
- p
->crypt_len
);
255 p
->crypt_len
= data_in_sram
;
258 static void mv_process_current_q(int first_block
)
260 struct ablkcipher_request
*req
= ablkcipher_request_cast(cpg
->cur_req
);
261 struct mv_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
262 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
263 struct sec_accel_config op
;
265 switch (req_ctx
->op
) {
267 op
.config
= CFG_OP_CRYPT_ONLY
| CFG_ENCM_AES
| CFG_ENC_MODE_ECB
;
271 op
.config
= CFG_OP_CRYPT_ONLY
| CFG_ENCM_AES
| CFG_ENC_MODE_CBC
;
272 op
.enc_iv
= ENC_IV_POINT(SRAM_DATA_IV
) |
273 ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF
);
275 memcpy(cpg
->sram
+ SRAM_DATA_IV
, req
->info
, 16);
278 if (req_ctx
->decrypt
) {
279 op
.config
|= CFG_DIR_DEC
;
280 memcpy(cpg
->sram
+ SRAM_DATA_KEY_P
, ctx
->aes_dec_key
,
283 op
.config
|= CFG_DIR_ENC
;
284 memcpy(cpg
->sram
+ SRAM_DATA_KEY_P
, ctx
->aes_enc_key
,
288 switch (ctx
->key_len
) {
289 case AES_KEYSIZE_128
:
290 op
.config
|= CFG_AES_LEN_128
;
292 case AES_KEYSIZE_192
:
293 op
.config
|= CFG_AES_LEN_192
;
295 case AES_KEYSIZE_256
:
296 op
.config
|= CFG_AES_LEN_256
;
299 op
.enc_p
= ENC_P_SRC(SRAM_DATA_IN_START
) |
300 ENC_P_DST(SRAM_DATA_OUT_START
);
301 op
.enc_key_p
= SRAM_DATA_KEY_P
;
304 op
.enc_len
= cpg
->p
.crypt_len
;
305 memcpy(cpg
->sram
+ SRAM_CONFIG
, &op
,
306 sizeof(struct sec_accel_config
));
310 writel(SEC_CMD_EN_SEC_ACCL0
, cpg
->reg
+ SEC_ACCEL_CMD
);
313 static void mv_crypto_algo_completion(void)
315 struct ablkcipher_request
*req
= ablkcipher_request_cast(cpg
->cur_req
);
316 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
318 sg_miter_stop(&cpg
->p
.src_sg_it
);
319 sg_miter_stop(&cpg
->p
.dst_sg_it
);
321 if (req_ctx
->op
!= COP_AES_CBC
)
324 memcpy(req
->info
, cpg
->sram
+ SRAM_DATA_IV_BUF
, 16);
327 static void mv_process_hash_current(int first_block
)
329 struct ahash_request
*req
= ahash_request_cast(cpg
->cur_req
);
330 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
331 struct mv_req_hash_ctx
*req_ctx
= ahash_request_ctx(req
);
332 struct req_progress
*p
= &cpg
->p
;
333 struct sec_accel_config op
= { 0 };
336 switch (req_ctx
->op
) {
339 op
.config
= CFG_OP_MAC_ONLY
| CFG_MACM_SHA1
;
342 op
.config
= CFG_OP_MAC_ONLY
| CFG_MACM_HMAC_SHA1
;
343 memcpy(cpg
->sram
+ SRAM_HMAC_IV_IN
,
344 tfm_ctx
->ivs
, sizeof(tfm_ctx
->ivs
));
349 MAC_SRC_DATA_P(SRAM_DATA_IN_START
) | MAC_SRC_TOTAL_LEN((u32
)
356 MAC_DIGEST_P(SRAM_DIGEST_BUF
) | MAC_FRAG_LEN(p
->crypt_len
);
358 MAC_INNER_IV_P(SRAM_HMAC_IV_IN
) |
359 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT
);
361 is_last
= req_ctx
->last_chunk
362 && (p
->hw_processed_bytes
+ p
->crypt_len
>= p
->hw_nbytes
)
363 && (req_ctx
->count
<= MAX_HW_HASH_SIZE
);
364 if (req_ctx
->first_hash
) {
366 op
.config
|= CFG_NOT_FRAG
;
368 op
.config
|= CFG_FIRST_FRAG
;
370 req_ctx
->first_hash
= 0;
373 op
.config
|= CFG_LAST_FRAG
;
375 op
.config
|= CFG_MID_FRAG
;
378 writel(req_ctx
->state
[0], cpg
->reg
+ DIGEST_INITIAL_VAL_A
);
379 writel(req_ctx
->state
[1], cpg
->reg
+ DIGEST_INITIAL_VAL_B
);
380 writel(req_ctx
->state
[2], cpg
->reg
+ DIGEST_INITIAL_VAL_C
);
381 writel(req_ctx
->state
[3], cpg
->reg
+ DIGEST_INITIAL_VAL_D
);
382 writel(req_ctx
->state
[4], cpg
->reg
+ DIGEST_INITIAL_VAL_E
);
386 memcpy(cpg
->sram
+ SRAM_CONFIG
, &op
, sizeof(struct sec_accel_config
));
390 writel(SEC_CMD_EN_SEC_ACCL0
, cpg
->reg
+ SEC_ACCEL_CMD
);
393 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx
*ctx
,
394 struct shash_desc
*desc
)
397 struct sha1_state shash_state
;
399 shash_state
.count
= ctx
->count
+ ctx
->count_add
;
400 for (i
= 0; i
< 5; i
++)
401 shash_state
.state
[i
] = ctx
->state
[i
];
402 memcpy(shash_state
.buffer
, ctx
->buffer
, sizeof(shash_state
.buffer
));
403 return crypto_shash_import(desc
, &shash_state
);
406 static int mv_hash_final_fallback(struct ahash_request
*req
)
408 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
409 struct mv_req_hash_ctx
*req_ctx
= ahash_request_ctx(req
);
410 SHASH_DESC_ON_STACK(shash
, tfm_ctx
->fallback
);
413 shash
->tfm
= tfm_ctx
->fallback
;
414 shash
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
415 if (unlikely(req_ctx
->first_hash
)) {
416 crypto_shash_init(shash
);
417 crypto_shash_update(shash
, req_ctx
->buffer
,
418 req_ctx
->extra_bytes
);
420 /* only SHA1 for now....
422 rc
= mv_hash_import_sha1_ctx(req_ctx
, shash
);
426 rc
= crypto_shash_final(shash
, req
->result
);
431 static void mv_save_digest_state(struct mv_req_hash_ctx
*ctx
)
433 ctx
->state
[0] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_A
);
434 ctx
->state
[1] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_B
);
435 ctx
->state
[2] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_C
);
436 ctx
->state
[3] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_D
);
437 ctx
->state
[4] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_E
);
440 static void mv_hash_algo_completion(void)
442 struct ahash_request
*req
= ahash_request_cast(cpg
->cur_req
);
443 struct mv_req_hash_ctx
*ctx
= ahash_request_ctx(req
);
445 if (ctx
->extra_bytes
)
446 copy_src_to_buf(&cpg
->p
, ctx
->buffer
, ctx
->extra_bytes
);
447 sg_miter_stop(&cpg
->p
.src_sg_it
);
449 if (likely(ctx
->last_chunk
)) {
450 if (likely(ctx
->count
<= MAX_HW_HASH_SIZE
)) {
451 memcpy(req
->result
, cpg
->sram
+ SRAM_DIGEST_BUF
,
452 crypto_ahash_digestsize(crypto_ahash_reqtfm
455 mv_save_digest_state(ctx
);
456 mv_hash_final_fallback(req
);
459 mv_save_digest_state(ctx
);
463 static void dequeue_complete_req(void)
465 struct crypto_async_request
*req
= cpg
->cur_req
;
468 cpg
->p
.hw_processed_bytes
+= cpg
->p
.crypt_len
;
469 if (cpg
->p
.copy_back
) {
470 int need_copy_len
= cpg
->p
.crypt_len
;
475 if (!cpg
->p
.sg_dst_left
) {
476 ret
= sg_miter_next(&cpg
->p
.dst_sg_it
);
478 cpg
->p
.sg_dst_left
= cpg
->p
.dst_sg_it
.length
;
479 cpg
->p
.dst_start
= 0;
482 buf
= cpg
->p
.dst_sg_it
.addr
;
483 buf
+= cpg
->p
.dst_start
;
485 dst_copy
= min(need_copy_len
, cpg
->p
.sg_dst_left
);
488 cpg
->sram
+ SRAM_DATA_OUT_START
+ sram_offset
,
490 sram_offset
+= dst_copy
;
491 cpg
->p
.sg_dst_left
-= dst_copy
;
492 need_copy_len
-= dst_copy
;
493 cpg
->p
.dst_start
+= dst_copy
;
494 } while (need_copy_len
> 0);
497 cpg
->p
.crypt_len
= 0;
499 BUG_ON(cpg
->eng_st
!= ENGINE_W_DEQUEUE
);
500 if (cpg
->p
.hw_processed_bytes
< cpg
->p
.hw_nbytes
) {
501 /* process next scatter list entry */
502 cpg
->eng_st
= ENGINE_BUSY
;
506 cpg
->eng_st
= ENGINE_IDLE
;
508 req
->complete(req
, 0);
513 static int count_sgs(struct scatterlist
*sl
, unsigned int total_bytes
)
519 cur_len
= sl
[i
].length
;
521 if (total_bytes
> cur_len
)
522 total_bytes
-= cur_len
;
530 static void mv_start_new_crypt_req(struct ablkcipher_request
*req
)
532 struct req_progress
*p
= &cpg
->p
;
535 cpg
->cur_req
= &req
->base
;
536 memset(p
, 0, sizeof(struct req_progress
));
537 p
->hw_nbytes
= req
->nbytes
;
538 p
->complete
= mv_crypto_algo_completion
;
539 p
->process
= mv_process_current_q
;
542 num_sgs
= count_sgs(req
->src
, req
->nbytes
);
543 sg_miter_start(&p
->src_sg_it
, req
->src
, num_sgs
, SG_MITER_FROM_SG
);
545 num_sgs
= count_sgs(req
->dst
, req
->nbytes
);
546 sg_miter_start(&p
->dst_sg_it
, req
->dst
, num_sgs
, SG_MITER_TO_SG
);
548 mv_process_current_q(1);
551 static void mv_start_new_hash_req(struct ahash_request
*req
)
553 struct req_progress
*p
= &cpg
->p
;
554 struct mv_req_hash_ctx
*ctx
= ahash_request_ctx(req
);
555 int num_sgs
, hw_bytes
, old_extra_bytes
, rc
;
556 cpg
->cur_req
= &req
->base
;
557 memset(p
, 0, sizeof(struct req_progress
));
558 hw_bytes
= req
->nbytes
+ ctx
->extra_bytes
;
559 old_extra_bytes
= ctx
->extra_bytes
;
561 ctx
->extra_bytes
= hw_bytes
% SHA1_BLOCK_SIZE
;
562 if (ctx
->extra_bytes
!= 0
563 && (!ctx
->last_chunk
|| ctx
->count
> MAX_HW_HASH_SIZE
))
564 hw_bytes
-= ctx
->extra_bytes
;
566 ctx
->extra_bytes
= 0;
568 num_sgs
= count_sgs(req
->src
, req
->nbytes
);
569 sg_miter_start(&p
->src_sg_it
, req
->src
, num_sgs
, SG_MITER_FROM_SG
);
572 p
->hw_nbytes
= hw_bytes
;
573 p
->complete
= mv_hash_algo_completion
;
574 p
->process
= mv_process_hash_current
;
576 if (unlikely(old_extra_bytes
)) {
577 memcpy(cpg
->sram
+ SRAM_DATA_IN_START
, ctx
->buffer
,
579 p
->crypt_len
= old_extra_bytes
;
582 mv_process_hash_current(1);
584 copy_src_to_buf(p
, ctx
->buffer
+ old_extra_bytes
,
585 ctx
->extra_bytes
- old_extra_bytes
);
586 sg_miter_stop(&p
->src_sg_it
);
588 rc
= mv_hash_final_fallback(req
);
591 cpg
->eng_st
= ENGINE_IDLE
;
593 req
->base
.complete(&req
->base
, rc
);
598 static int queue_manag(void *data
)
600 cpg
->eng_st
= ENGINE_IDLE
;
602 struct crypto_async_request
*async_req
= NULL
;
603 struct crypto_async_request
*backlog
= NULL
;
605 __set_current_state(TASK_INTERRUPTIBLE
);
607 if (cpg
->eng_st
== ENGINE_W_DEQUEUE
)
608 dequeue_complete_req();
610 spin_lock_irq(&cpg
->lock
);
611 if (cpg
->eng_st
== ENGINE_IDLE
) {
612 backlog
= crypto_get_backlog(&cpg
->queue
);
613 async_req
= crypto_dequeue_request(&cpg
->queue
);
615 BUG_ON(cpg
->eng_st
!= ENGINE_IDLE
);
616 cpg
->eng_st
= ENGINE_BUSY
;
619 spin_unlock_irq(&cpg
->lock
);
622 backlog
->complete(backlog
, -EINPROGRESS
);
627 if (crypto_tfm_alg_type(async_req
->tfm
) !=
628 CRYPTO_ALG_TYPE_AHASH
) {
629 struct ablkcipher_request
*req
=
630 ablkcipher_request_cast(async_req
);
631 mv_start_new_crypt_req(req
);
633 struct ahash_request
*req
=
634 ahash_request_cast(async_req
);
635 mv_start_new_hash_req(req
);
642 } while (!kthread_should_stop());
646 static int mv_handle_req(struct crypto_async_request
*req
)
651 spin_lock_irqsave(&cpg
->lock
, flags
);
652 ret
= crypto_enqueue_request(&cpg
->queue
, req
);
653 spin_unlock_irqrestore(&cpg
->lock
, flags
);
654 wake_up_process(cpg
->queue_th
);
658 static int mv_enc_aes_ecb(struct ablkcipher_request
*req
)
660 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
662 req_ctx
->op
= COP_AES_ECB
;
663 req_ctx
->decrypt
= 0;
665 return mv_handle_req(&req
->base
);
668 static int mv_dec_aes_ecb(struct ablkcipher_request
*req
)
670 struct mv_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
671 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
673 req_ctx
->op
= COP_AES_ECB
;
674 req_ctx
->decrypt
= 1;
676 compute_aes_dec_key(ctx
);
677 return mv_handle_req(&req
->base
);
680 static int mv_enc_aes_cbc(struct ablkcipher_request
*req
)
682 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
684 req_ctx
->op
= COP_AES_CBC
;
685 req_ctx
->decrypt
= 0;
687 return mv_handle_req(&req
->base
);
690 static int mv_dec_aes_cbc(struct ablkcipher_request
*req
)
692 struct mv_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
693 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
695 req_ctx
->op
= COP_AES_CBC
;
696 req_ctx
->decrypt
= 1;
698 compute_aes_dec_key(ctx
);
699 return mv_handle_req(&req
->base
);
702 static int mv_cra_init(struct crypto_tfm
*tfm
)
704 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct mv_req_ctx
);
708 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx
*ctx
, int op
,
709 int is_last
, unsigned int req_len
,
712 memset(ctx
, 0, sizeof(*ctx
));
714 ctx
->count
= req_len
;
716 ctx
->last_chunk
= is_last
;
717 ctx
->count_add
= count_add
;
720 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx
*ctx
, int is_last
,
723 ctx
->last_chunk
= is_last
;
724 ctx
->count
+= req_len
;
727 static int mv_hash_init(struct ahash_request
*req
)
729 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
730 mv_init_hash_req_ctx(ahash_request_ctx(req
), tfm_ctx
->op
, 0, 0,
735 static int mv_hash_update(struct ahash_request
*req
)
740 mv_update_hash_req_ctx(ahash_request_ctx(req
), 0, req
->nbytes
);
741 return mv_handle_req(&req
->base
);
744 static int mv_hash_final(struct ahash_request
*req
)
746 struct mv_req_hash_ctx
*ctx
= ahash_request_ctx(req
);
748 ahash_request_set_crypt(req
, NULL
, req
->result
, 0);
749 mv_update_hash_req_ctx(ctx
, 1, 0);
750 return mv_handle_req(&req
->base
);
753 static int mv_hash_finup(struct ahash_request
*req
)
755 mv_update_hash_req_ctx(ahash_request_ctx(req
), 1, req
->nbytes
);
756 return mv_handle_req(&req
->base
);
759 static int mv_hash_digest(struct ahash_request
*req
)
761 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
762 mv_init_hash_req_ctx(ahash_request_ctx(req
), tfm_ctx
->op
, 1,
763 req
->nbytes
, tfm_ctx
->count_add
);
764 return mv_handle_req(&req
->base
);
767 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx
*ctx
, const void *istate
,
770 const struct sha1_state
*isha1_state
= istate
, *osha1_state
= ostate
;
772 for (i
= 0; i
< 5; i
++) {
773 ctx
->ivs
[i
] = cpu_to_be32(isha1_state
->state
[i
]);
774 ctx
->ivs
[i
+ 5] = cpu_to_be32(osha1_state
->state
[i
]);
778 static int mv_hash_setkey(struct crypto_ahash
*tfm
, const u8
* key
,
782 struct mv_tfm_hash_ctx
*ctx
= crypto_tfm_ctx(&tfm
->base
);
788 rc
= crypto_shash_setkey(ctx
->fallback
, key
, keylen
);
792 /* Can't see a way to extract the ipad/opad from the fallback tfm
793 so I'm basically copying code from the hmac module */
794 bs
= crypto_shash_blocksize(ctx
->base_hash
);
795 ds
= crypto_shash_digestsize(ctx
->base_hash
);
796 ss
= crypto_shash_statesize(ctx
->base_hash
);
799 SHASH_DESC_ON_STACK(shash
, ctx
->base_hash
);
805 shash
->tfm
= ctx
->base_hash
;
806 shash
->flags
= crypto_shash_get_flags(ctx
->base_hash
) &
807 CRYPTO_TFM_REQ_MAY_SLEEP
;
813 crypto_shash_digest(shash
, key
, keylen
, ipad
);
819 memcpy(ipad
, key
, keylen
);
821 memset(ipad
+ keylen
, 0, bs
- keylen
);
822 memcpy(opad
, ipad
, bs
);
824 for (i
= 0; i
< bs
; i
++) {
829 rc
= crypto_shash_init(shash
) ? :
830 crypto_shash_update(shash
, ipad
, bs
) ? :
831 crypto_shash_export(shash
, ipad
) ? :
832 crypto_shash_init(shash
) ? :
833 crypto_shash_update(shash
, opad
, bs
) ? :
834 crypto_shash_export(shash
, opad
);
837 mv_hash_init_ivs(ctx
, ipad
, opad
);
843 static int mv_cra_hash_init(struct crypto_tfm
*tfm
, const char *base_hash_name
,
844 enum hash_op op
, int count_add
)
846 const char *fallback_driver_name
= crypto_tfm_alg_name(tfm
);
847 struct mv_tfm_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
848 struct crypto_shash
*fallback_tfm
= NULL
;
849 struct crypto_shash
*base_hash
= NULL
;
853 ctx
->count_add
= count_add
;
855 /* Allocate a fallback and abort if it failed. */
856 fallback_tfm
= crypto_alloc_shash(fallback_driver_name
, 0,
857 CRYPTO_ALG_NEED_FALLBACK
);
858 if (IS_ERR(fallback_tfm
)) {
859 printk(KERN_WARNING MV_CESA
860 "Fallback driver '%s' could not be loaded!\n",
861 fallback_driver_name
);
862 err
= PTR_ERR(fallback_tfm
);
865 ctx
->fallback
= fallback_tfm
;
867 if (base_hash_name
) {
868 /* Allocate a hash to compute the ipad/opad of hmac. */
869 base_hash
= crypto_alloc_shash(base_hash_name
, 0,
870 CRYPTO_ALG_NEED_FALLBACK
);
871 if (IS_ERR(base_hash
)) {
872 printk(KERN_WARNING MV_CESA
873 "Base driver '%s' could not be loaded!\n",
875 err
= PTR_ERR(base_hash
);
879 ctx
->base_hash
= base_hash
;
881 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
882 sizeof(struct mv_req_hash_ctx
) +
883 crypto_shash_descsize(ctx
->fallback
));
886 crypto_free_shash(fallback_tfm
);
891 static void mv_cra_hash_exit(struct crypto_tfm
*tfm
)
893 struct mv_tfm_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
895 crypto_free_shash(ctx
->fallback
);
897 crypto_free_shash(ctx
->base_hash
);
900 static int mv_cra_hash_sha1_init(struct crypto_tfm
*tfm
)
902 return mv_cra_hash_init(tfm
, NULL
, COP_SHA1
, 0);
905 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm
*tfm
)
907 return mv_cra_hash_init(tfm
, "sha1", COP_HMAC_SHA1
, SHA1_BLOCK_SIZE
);
910 static irqreturn_t
crypto_int(int irq
, void *priv
)
914 val
= readl(cpg
->reg
+ SEC_ACCEL_INT_STATUS
);
915 if (!(val
& SEC_INT_ACCEL0_DONE
))
918 if (!del_timer(&cpg
->completion_timer
)) {
919 printk(KERN_WARNING MV_CESA
920 "got an interrupt but no pending timer?\n");
922 val
&= ~SEC_INT_ACCEL0_DONE
;
923 writel(val
, cpg
->reg
+ FPGA_INT_STATUS
);
924 writel(val
, cpg
->reg
+ SEC_ACCEL_INT_STATUS
);
925 BUG_ON(cpg
->eng_st
!= ENGINE_BUSY
);
926 cpg
->eng_st
= ENGINE_W_DEQUEUE
;
927 wake_up_process(cpg
->queue_th
);
931 static struct crypto_alg mv_aes_alg_ecb
= {
932 .cra_name
= "ecb(aes)",
933 .cra_driver_name
= "mv-ecb-aes",
935 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
936 CRYPTO_ALG_KERN_DRIVER_ONLY
| CRYPTO_ALG_ASYNC
,
938 .cra_ctxsize
= sizeof(struct mv_ctx
),
940 .cra_type
= &crypto_ablkcipher_type
,
941 .cra_module
= THIS_MODULE
,
942 .cra_init
= mv_cra_init
,
945 .min_keysize
= AES_MIN_KEY_SIZE
,
946 .max_keysize
= AES_MAX_KEY_SIZE
,
947 .setkey
= mv_setkey_aes
,
948 .encrypt
= mv_enc_aes_ecb
,
949 .decrypt
= mv_dec_aes_ecb
,
954 static struct crypto_alg mv_aes_alg_cbc
= {
955 .cra_name
= "cbc(aes)",
956 .cra_driver_name
= "mv-cbc-aes",
958 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
959 CRYPTO_ALG_KERN_DRIVER_ONLY
| CRYPTO_ALG_ASYNC
,
960 .cra_blocksize
= AES_BLOCK_SIZE
,
961 .cra_ctxsize
= sizeof(struct mv_ctx
),
963 .cra_type
= &crypto_ablkcipher_type
,
964 .cra_module
= THIS_MODULE
,
965 .cra_init
= mv_cra_init
,
968 .ivsize
= AES_BLOCK_SIZE
,
969 .min_keysize
= AES_MIN_KEY_SIZE
,
970 .max_keysize
= AES_MAX_KEY_SIZE
,
971 .setkey
= mv_setkey_aes
,
972 .encrypt
= mv_enc_aes_cbc
,
973 .decrypt
= mv_dec_aes_cbc
,
978 static struct ahash_alg mv_sha1_alg
= {
979 .init
= mv_hash_init
,
980 .update
= mv_hash_update
,
981 .final
= mv_hash_final
,
982 .finup
= mv_hash_finup
,
983 .digest
= mv_hash_digest
,
985 .digestsize
= SHA1_DIGEST_SIZE
,
988 .cra_driver_name
= "mv-sha1",
991 CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
|
992 CRYPTO_ALG_NEED_FALLBACK
,
993 .cra_blocksize
= SHA1_BLOCK_SIZE
,
994 .cra_ctxsize
= sizeof(struct mv_tfm_hash_ctx
),
995 .cra_init
= mv_cra_hash_sha1_init
,
996 .cra_exit
= mv_cra_hash_exit
,
997 .cra_module
= THIS_MODULE
,
1002 static struct ahash_alg mv_hmac_sha1_alg
= {
1003 .init
= mv_hash_init
,
1004 .update
= mv_hash_update
,
1005 .final
= mv_hash_final
,
1006 .finup
= mv_hash_finup
,
1007 .digest
= mv_hash_digest
,
1008 .setkey
= mv_hash_setkey
,
1010 .digestsize
= SHA1_DIGEST_SIZE
,
1012 .cra_name
= "hmac(sha1)",
1013 .cra_driver_name
= "mv-hmac-sha1",
1014 .cra_priority
= 300,
1016 CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
|
1017 CRYPTO_ALG_NEED_FALLBACK
,
1018 .cra_blocksize
= SHA1_BLOCK_SIZE
,
1019 .cra_ctxsize
= sizeof(struct mv_tfm_hash_ctx
),
1020 .cra_init
= mv_cra_hash_hmac_sha1_init
,
1021 .cra_exit
= mv_cra_hash_exit
,
1022 .cra_module
= THIS_MODULE
,
1027 static int mv_cesa_get_sram(struct platform_device
*pdev
,
1028 struct crypto_priv
*cp
)
1030 struct resource
*res
;
1031 u32 sram_size
= MV_CESA_DEFAULT_SRAM_SIZE
;
1033 of_property_read_u32(pdev
->dev
.of_node
, "marvell,crypto-sram-size",
1036 cp
->sram_size
= sram_size
;
1037 cp
->sram_pool
= of_gen_pool_get(pdev
->dev
.of_node
,
1038 "marvell,crypto-srams", 0);
1039 if (cp
->sram_pool
) {
1040 cp
->sram
= gen_pool_dma_alloc(cp
->sram_pool
, sram_size
,
1048 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
1050 if (!res
|| resource_size(res
) < cp
->sram_size
)
1053 cp
->sram
= devm_ioremap_resource(&pdev
->dev
, res
);
1054 if (IS_ERR(cp
->sram
))
1055 return PTR_ERR(cp
->sram
);
1060 static int mv_probe(struct platform_device
*pdev
)
1062 struct crypto_priv
*cp
;
1063 struct resource
*res
;
1068 printk(KERN_ERR MV_CESA
"Second crypto dev?\n");
1072 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "regs");
1076 cp
= kzalloc(sizeof(*cp
), GFP_KERNEL
);
1080 spin_lock_init(&cp
->lock
);
1081 crypto_init_queue(&cp
->queue
, 50);
1082 cp
->reg
= devm_ioremap_resource(&pdev
->dev
, res
);
1083 if (IS_ERR(cp
->reg
)) {
1084 ret
= PTR_ERR(cp
->reg
);
1088 ret
= mv_cesa_get_sram(pdev
, cp
);
1092 cp
->max_req_size
= cp
->sram_size
- SRAM_CFG_SPACE
;
1094 irq
= platform_get_irq(pdev
, 0);
1101 platform_set_drvdata(pdev
, cp
);
1104 cp
->queue_th
= kthread_run(queue_manag
, cp
, "mv_crypto");
1105 if (IS_ERR(cp
->queue_th
)) {
1106 ret
= PTR_ERR(cp
->queue_th
);
1110 ret
= request_irq(irq
, crypto_int
, 0, dev_name(&pdev
->dev
),
1115 /* Not all platforms can gate the clock, so it is not
1116 an error if the clock does not exists. */
1117 cp
->clk
= clk_get(&pdev
->dev
, NULL
);
1118 if (!IS_ERR(cp
->clk
))
1119 clk_prepare_enable(cp
->clk
);
1121 writel(0, cpg
->reg
+ SEC_ACCEL_INT_STATUS
);
1122 writel(SEC_INT_ACCEL0_DONE
, cpg
->reg
+ SEC_ACCEL_INT_MASK
);
1123 writel(SEC_CFG_STOP_DIG_ERR
, cpg
->reg
+ SEC_ACCEL_CFG
);
1124 writel(SRAM_CONFIG
, cpg
->reg
+ SEC_ACCEL_DESC_P0
);
1126 ret
= crypto_register_alg(&mv_aes_alg_ecb
);
1128 printk(KERN_WARNING MV_CESA
1129 "Could not register aes-ecb driver\n");
1133 ret
= crypto_register_alg(&mv_aes_alg_cbc
);
1135 printk(KERN_WARNING MV_CESA
1136 "Could not register aes-cbc driver\n");
1140 ret
= crypto_register_ahash(&mv_sha1_alg
);
1144 printk(KERN_WARNING MV_CESA
"Could not register sha1 driver\n");
1146 ret
= crypto_register_ahash(&mv_hmac_sha1_alg
);
1148 cpg
->has_hmac_sha1
= 1;
1150 printk(KERN_WARNING MV_CESA
1151 "Could not register hmac-sha1 driver\n");
1156 crypto_unregister_alg(&mv_aes_alg_ecb
);
1159 if (!IS_ERR(cp
->clk
)) {
1160 clk_disable_unprepare(cp
->clk
);
1164 kthread_stop(cp
->queue_th
);
1171 static int mv_remove(struct platform_device
*pdev
)
1173 struct crypto_priv
*cp
= platform_get_drvdata(pdev
);
1175 crypto_unregister_alg(&mv_aes_alg_ecb
);
1176 crypto_unregister_alg(&mv_aes_alg_cbc
);
1178 crypto_unregister_ahash(&mv_sha1_alg
);
1179 if (cp
->has_hmac_sha1
)
1180 crypto_unregister_ahash(&mv_hmac_sha1_alg
);
1181 kthread_stop(cp
->queue_th
);
1182 free_irq(cp
->irq
, cp
);
1183 memset(cp
->sram
, 0, cp
->sram_size
);
1185 if (!IS_ERR(cp
->clk
)) {
1186 clk_disable_unprepare(cp
->clk
);
1195 static const struct of_device_id mv_cesa_of_match_table
[] = {
1196 { .compatible
= "marvell,orion-crypto", },
1197 { .compatible
= "marvell,kirkwood-crypto", },
1198 { .compatible
= "marvell,dove-crypto", },
1201 MODULE_DEVICE_TABLE(of
, mv_cesa_of_match_table
);
1203 static struct platform_driver marvell_crypto
= {
1205 .remove
= mv_remove
,
1207 .name
= "mv_crypto",
1208 .of_match_table
= mv_cesa_of_match_table
,
1211 MODULE_ALIAS("platform:mv_crypto");
1213 module_platform_driver(marvell_crypto
);
1215 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1216 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1217 MODULE_LICENSE("GPL");