r8152: fix tx packets accounting
[linux/fpc-iii.git] / drivers / crypto / n2_core.c
blobb365ad78ac27accff12e0ad9099cf92cb75bc84a
1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
4 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
31 #include "n2_core.h"
33 #define DRV_MODULE_NAME "n2_crypto"
34 #define DRV_MODULE_VERSION "0.2"
35 #define DRV_MODULE_RELDATE "July 28, 2011"
37 static const char version[] =
38 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION);
45 #define N2_CRA_PRIORITY 200
47 static DEFINE_MUTEX(spu_lock);
49 struct spu_queue {
50 cpumask_t sharing;
51 unsigned long qhandle;
53 spinlock_t lock;
54 u8 q_type;
55 void *q;
56 unsigned long head;
57 unsigned long tail;
58 struct list_head jobs;
60 unsigned long devino;
62 char irq_name[32];
63 unsigned int irq;
65 struct list_head list;
68 static struct spu_queue **cpu_to_cwq;
69 static struct spu_queue **cpu_to_mau;
71 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
73 if (q->q_type == HV_NCS_QTYPE_MAU) {
74 off += MAU_ENTRY_SIZE;
75 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
76 off = 0;
77 } else {
78 off += CWQ_ENTRY_SIZE;
79 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
80 off = 0;
82 return off;
85 struct n2_request_common {
86 struct list_head entry;
87 unsigned int offset;
89 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
91 /* An async job request records the final tail value it used in
92 * n2_request_common->offset, test to see if that offset is in
93 * the range old_head, new_head, inclusive.
95 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
96 unsigned long old_head, unsigned long new_head)
98 if (old_head <= new_head) {
99 if (offset > old_head && offset <= new_head)
100 return true;
101 } else {
102 if (offset > old_head || offset <= new_head)
103 return true;
105 return false;
108 /* When the HEAD marker is unequal to the actual HEAD, we get
109 * a virtual device INO interrupt. We should process the
110 * completed CWQ entries and adjust the HEAD marker to clear
111 * the IRQ.
113 static irqreturn_t cwq_intr(int irq, void *dev_id)
115 unsigned long off, new_head, hv_ret;
116 struct spu_queue *q = dev_id;
118 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
119 smp_processor_id(), q->qhandle);
121 spin_lock(&q->lock);
123 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
125 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
126 smp_processor_id(), new_head, hv_ret);
128 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
129 /* XXX ... XXX */
132 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
133 if (hv_ret == HV_EOK)
134 q->head = new_head;
136 spin_unlock(&q->lock);
138 return IRQ_HANDLED;
141 static irqreturn_t mau_intr(int irq, void *dev_id)
143 struct spu_queue *q = dev_id;
144 unsigned long head, hv_ret;
146 spin_lock(&q->lock);
148 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
149 smp_processor_id(), q->qhandle);
151 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
153 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
154 smp_processor_id(), head, hv_ret);
156 sun4v_ncs_sethead_marker(q->qhandle, head);
158 spin_unlock(&q->lock);
160 return IRQ_HANDLED;
163 static void *spu_queue_next(struct spu_queue *q, void *cur)
165 return q->q + spu_next_offset(q, cur - q->q);
168 static int spu_queue_num_free(struct spu_queue *q)
170 unsigned long head = q->head;
171 unsigned long tail = q->tail;
172 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
173 unsigned long diff;
175 if (head > tail)
176 diff = head - tail;
177 else
178 diff = (end - tail) + head;
180 return (diff / CWQ_ENTRY_SIZE) - 1;
183 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
185 int avail = spu_queue_num_free(q);
187 if (avail >= num_entries)
188 return q->q + q->tail;
190 return NULL;
193 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
195 unsigned long hv_ret, new_tail;
197 new_tail = spu_next_offset(q, last - q->q);
199 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
200 if (hv_ret == HV_EOK)
201 q->tail = new_tail;
202 return hv_ret;
205 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
206 int enc_type, int auth_type,
207 unsigned int hash_len,
208 bool sfas, bool sob, bool eob, bool encrypt,
209 int opcode)
211 u64 word = (len - 1) & CONTROL_LEN;
213 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
214 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
215 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
216 if (sfas)
217 word |= CONTROL_STORE_FINAL_AUTH_STATE;
218 if (sob)
219 word |= CONTROL_START_OF_BLOCK;
220 if (eob)
221 word |= CONTROL_END_OF_BLOCK;
222 if (encrypt)
223 word |= CONTROL_ENCRYPT;
224 if (hmac_key_len)
225 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
226 if (hash_len)
227 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
229 return word;
232 #if 0
233 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
235 if (this_len >= 64 ||
236 qp->head != qp->tail)
237 return true;
238 return false;
240 #endif
242 struct n2_ahash_alg {
243 struct list_head entry;
244 const u8 *hash_zero;
245 const u32 *hash_init;
246 u8 hw_op_hashsz;
247 u8 digest_size;
248 u8 auth_type;
249 u8 hmac_type;
250 struct ahash_alg alg;
253 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
255 struct crypto_alg *alg = tfm->__crt_alg;
256 struct ahash_alg *ahash_alg;
258 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
260 return container_of(ahash_alg, struct n2_ahash_alg, alg);
263 struct n2_hmac_alg {
264 const char *child_alg;
265 struct n2_ahash_alg derived;
268 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
270 struct crypto_alg *alg = tfm->__crt_alg;
271 struct ahash_alg *ahash_alg;
273 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
275 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
278 struct n2_hash_ctx {
279 struct crypto_ahash *fallback_tfm;
282 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
284 struct n2_hmac_ctx {
285 struct n2_hash_ctx base;
287 struct crypto_shash *child_shash;
289 int hash_key_len;
290 unsigned char hash_key[N2_HASH_KEY_MAX];
293 struct n2_hash_req_ctx {
294 union {
295 struct md5_state md5;
296 struct sha1_state sha1;
297 struct sha256_state sha256;
298 } u;
300 struct ahash_request fallback_req;
303 static int n2_hash_async_init(struct ahash_request *req)
305 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
306 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
307 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
309 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
310 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
312 return crypto_ahash_init(&rctx->fallback_req);
315 static int n2_hash_async_update(struct ahash_request *req)
317 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
318 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
319 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
321 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
322 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
323 rctx->fallback_req.nbytes = req->nbytes;
324 rctx->fallback_req.src = req->src;
326 return crypto_ahash_update(&rctx->fallback_req);
329 static int n2_hash_async_final(struct ahash_request *req)
331 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
332 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
333 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
335 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
336 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
337 rctx->fallback_req.result = req->result;
339 return crypto_ahash_final(&rctx->fallback_req);
342 static int n2_hash_async_finup(struct ahash_request *req)
344 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
345 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
346 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
348 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
349 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
350 rctx->fallback_req.nbytes = req->nbytes;
351 rctx->fallback_req.src = req->src;
352 rctx->fallback_req.result = req->result;
354 return crypto_ahash_finup(&rctx->fallback_req);
357 static int n2_hash_cra_init(struct crypto_tfm *tfm)
359 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
360 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
361 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
362 struct crypto_ahash *fallback_tfm;
363 int err;
365 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
366 CRYPTO_ALG_NEED_FALLBACK);
367 if (IS_ERR(fallback_tfm)) {
368 pr_warning("Fallback driver '%s' could not be loaded!\n",
369 fallback_driver_name);
370 err = PTR_ERR(fallback_tfm);
371 goto out;
374 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
375 crypto_ahash_reqsize(fallback_tfm)));
377 ctx->fallback_tfm = fallback_tfm;
378 return 0;
380 out:
381 return err;
384 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
386 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
387 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
389 crypto_free_ahash(ctx->fallback_tfm);
392 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
394 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
395 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
396 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
397 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
398 struct crypto_ahash *fallback_tfm;
399 struct crypto_shash *child_shash;
400 int err;
402 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
403 CRYPTO_ALG_NEED_FALLBACK);
404 if (IS_ERR(fallback_tfm)) {
405 pr_warning("Fallback driver '%s' could not be loaded!\n",
406 fallback_driver_name);
407 err = PTR_ERR(fallback_tfm);
408 goto out;
411 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
412 if (IS_ERR(child_shash)) {
413 pr_warning("Child shash '%s' could not be loaded!\n",
414 n2alg->child_alg);
415 err = PTR_ERR(child_shash);
416 goto out_free_fallback;
419 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
420 crypto_ahash_reqsize(fallback_tfm)));
422 ctx->child_shash = child_shash;
423 ctx->base.fallback_tfm = fallback_tfm;
424 return 0;
426 out_free_fallback:
427 crypto_free_ahash(fallback_tfm);
429 out:
430 return err;
433 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
435 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
436 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
438 crypto_free_ahash(ctx->base.fallback_tfm);
439 crypto_free_shash(ctx->child_shash);
442 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
443 unsigned int keylen)
445 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
446 struct crypto_shash *child_shash = ctx->child_shash;
447 struct crypto_ahash *fallback_tfm;
448 SHASH_DESC_ON_STACK(shash, child_shash);
449 int err, bs, ds;
451 fallback_tfm = ctx->base.fallback_tfm;
452 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
453 if (err)
454 return err;
456 shash->tfm = child_shash;
457 shash->flags = crypto_ahash_get_flags(tfm) &
458 CRYPTO_TFM_REQ_MAY_SLEEP;
460 bs = crypto_shash_blocksize(child_shash);
461 ds = crypto_shash_digestsize(child_shash);
462 BUG_ON(ds > N2_HASH_KEY_MAX);
463 if (keylen > bs) {
464 err = crypto_shash_digest(shash, key, keylen,
465 ctx->hash_key);
466 if (err)
467 return err;
468 keylen = ds;
469 } else if (keylen <= N2_HASH_KEY_MAX)
470 memcpy(ctx->hash_key, key, keylen);
472 ctx->hash_key_len = keylen;
474 return err;
477 static unsigned long wait_for_tail(struct spu_queue *qp)
479 unsigned long head, hv_ret;
481 do {
482 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
483 if (hv_ret != HV_EOK) {
484 pr_err("Hypervisor error on gethead\n");
485 break;
487 if (head == qp->tail) {
488 qp->head = head;
489 break;
491 } while (1);
492 return hv_ret;
495 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
496 struct cwq_initial_entry *ent)
498 unsigned long hv_ret = spu_queue_submit(qp, ent);
500 if (hv_ret == HV_EOK)
501 hv_ret = wait_for_tail(qp);
503 return hv_ret;
506 static int n2_do_async_digest(struct ahash_request *req,
507 unsigned int auth_type, unsigned int digest_size,
508 unsigned int result_size, void *hash_loc,
509 unsigned long auth_key, unsigned int auth_key_len)
511 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
512 struct cwq_initial_entry *ent;
513 struct crypto_hash_walk walk;
514 struct spu_queue *qp;
515 unsigned long flags;
516 int err = -ENODEV;
517 int nbytes, cpu;
519 /* The total effective length of the operation may not
520 * exceed 2^16.
522 if (unlikely(req->nbytes > (1 << 16))) {
523 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
524 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
526 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
527 rctx->fallback_req.base.flags =
528 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
529 rctx->fallback_req.nbytes = req->nbytes;
530 rctx->fallback_req.src = req->src;
531 rctx->fallback_req.result = req->result;
533 return crypto_ahash_digest(&rctx->fallback_req);
536 nbytes = crypto_hash_walk_first(req, &walk);
538 cpu = get_cpu();
539 qp = cpu_to_cwq[cpu];
540 if (!qp)
541 goto out;
543 spin_lock_irqsave(&qp->lock, flags);
545 /* XXX can do better, improve this later by doing a by-hand scatterlist
546 * XXX walk, etc.
548 ent = qp->q + qp->tail;
550 ent->control = control_word_base(nbytes, auth_key_len, 0,
551 auth_type, digest_size,
552 false, true, false, false,
553 OPCODE_INPLACE_BIT |
554 OPCODE_AUTH_MAC);
555 ent->src_addr = __pa(walk.data);
556 ent->auth_key_addr = auth_key;
557 ent->auth_iv_addr = __pa(hash_loc);
558 ent->final_auth_state_addr = 0UL;
559 ent->enc_key_addr = 0UL;
560 ent->enc_iv_addr = 0UL;
561 ent->dest_addr = __pa(hash_loc);
563 nbytes = crypto_hash_walk_done(&walk, 0);
564 while (nbytes > 0) {
565 ent = spu_queue_next(qp, ent);
567 ent->control = (nbytes - 1);
568 ent->src_addr = __pa(walk.data);
569 ent->auth_key_addr = 0UL;
570 ent->auth_iv_addr = 0UL;
571 ent->final_auth_state_addr = 0UL;
572 ent->enc_key_addr = 0UL;
573 ent->enc_iv_addr = 0UL;
574 ent->dest_addr = 0UL;
576 nbytes = crypto_hash_walk_done(&walk, 0);
578 ent->control |= CONTROL_END_OF_BLOCK;
580 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
581 err = -EINVAL;
582 else
583 err = 0;
585 spin_unlock_irqrestore(&qp->lock, flags);
587 if (!err)
588 memcpy(req->result, hash_loc, result_size);
589 out:
590 put_cpu();
592 return err;
595 static int n2_hash_async_digest(struct ahash_request *req)
597 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
598 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
599 int ds;
601 ds = n2alg->digest_size;
602 if (unlikely(req->nbytes == 0)) {
603 memcpy(req->result, n2alg->hash_zero, ds);
604 return 0;
606 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
608 return n2_do_async_digest(req, n2alg->auth_type,
609 n2alg->hw_op_hashsz, ds,
610 &rctx->u, 0UL, 0);
613 static int n2_hmac_async_digest(struct ahash_request *req)
615 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
616 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
617 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
618 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
619 int ds;
621 ds = n2alg->derived.digest_size;
622 if (unlikely(req->nbytes == 0) ||
623 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
624 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
625 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
627 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
628 rctx->fallback_req.base.flags =
629 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
630 rctx->fallback_req.nbytes = req->nbytes;
631 rctx->fallback_req.src = req->src;
632 rctx->fallback_req.result = req->result;
634 return crypto_ahash_digest(&rctx->fallback_req);
636 memcpy(&rctx->u, n2alg->derived.hash_init,
637 n2alg->derived.hw_op_hashsz);
639 return n2_do_async_digest(req, n2alg->derived.hmac_type,
640 n2alg->derived.hw_op_hashsz, ds,
641 &rctx->u,
642 __pa(&ctx->hash_key),
643 ctx->hash_key_len);
646 struct n2_cipher_context {
647 int key_len;
648 int enc_type;
649 union {
650 u8 aes[AES_MAX_KEY_SIZE];
651 u8 des[DES_KEY_SIZE];
652 u8 des3[3 * DES_KEY_SIZE];
653 u8 arc4[258]; /* S-box, X, Y */
654 } key;
657 #define N2_CHUNK_ARR_LEN 16
659 struct n2_crypto_chunk {
660 struct list_head entry;
661 unsigned long iv_paddr : 44;
662 unsigned long arr_len : 20;
663 unsigned long dest_paddr;
664 unsigned long dest_final;
665 struct {
666 unsigned long src_paddr : 44;
667 unsigned long src_len : 20;
668 } arr[N2_CHUNK_ARR_LEN];
671 struct n2_request_context {
672 struct ablkcipher_walk walk;
673 struct list_head chunk_list;
674 struct n2_crypto_chunk chunk;
675 u8 temp_iv[16];
678 /* The SPU allows some level of flexibility for partial cipher blocks
679 * being specified in a descriptor.
681 * It merely requires that every descriptor's length field is at least
682 * as large as the cipher block size. This means that a cipher block
683 * can span at most 2 descriptors. However, this does not allow a
684 * partial block to span into the final descriptor as that would
685 * violate the rule (since every descriptor's length must be at lest
686 * the block size). So, for example, assuming an 8 byte block size:
688 * 0xe --> 0xa --> 0x8
690 * is a valid length sequence, whereas:
692 * 0xe --> 0xb --> 0x7
694 * is not a valid sequence.
697 struct n2_cipher_alg {
698 struct list_head entry;
699 u8 enc_type;
700 struct crypto_alg alg;
703 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
705 struct crypto_alg *alg = tfm->__crt_alg;
707 return container_of(alg, struct n2_cipher_alg, alg);
710 struct n2_cipher_request_context {
711 struct ablkcipher_walk walk;
714 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
715 unsigned int keylen)
717 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
718 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
719 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
721 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
723 switch (keylen) {
724 case AES_KEYSIZE_128:
725 ctx->enc_type |= ENC_TYPE_ALG_AES128;
726 break;
727 case AES_KEYSIZE_192:
728 ctx->enc_type |= ENC_TYPE_ALG_AES192;
729 break;
730 case AES_KEYSIZE_256:
731 ctx->enc_type |= ENC_TYPE_ALG_AES256;
732 break;
733 default:
734 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
735 return -EINVAL;
738 ctx->key_len = keylen;
739 memcpy(ctx->key.aes, key, keylen);
740 return 0;
743 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
744 unsigned int keylen)
746 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
747 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
748 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
749 u32 tmp[DES_EXPKEY_WORDS];
750 int err;
752 ctx->enc_type = n2alg->enc_type;
754 if (keylen != DES_KEY_SIZE) {
755 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
756 return -EINVAL;
759 err = des_ekey(tmp, key);
760 if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
761 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
762 return -EINVAL;
765 ctx->key_len = keylen;
766 memcpy(ctx->key.des, key, keylen);
767 return 0;
770 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
771 unsigned int keylen)
773 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
774 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
775 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
777 ctx->enc_type = n2alg->enc_type;
779 if (keylen != (3 * DES_KEY_SIZE)) {
780 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
781 return -EINVAL;
783 ctx->key_len = keylen;
784 memcpy(ctx->key.des3, key, keylen);
785 return 0;
788 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
789 unsigned int keylen)
791 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
792 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
793 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
794 u8 *s = ctx->key.arc4;
795 u8 *x = s + 256;
796 u8 *y = x + 1;
797 int i, j, k;
799 ctx->enc_type = n2alg->enc_type;
801 j = k = 0;
802 *x = 0;
803 *y = 0;
804 for (i = 0; i < 256; i++)
805 s[i] = i;
806 for (i = 0; i < 256; i++) {
807 u8 a = s[i];
808 j = (j + key[k] + a) & 0xff;
809 s[i] = s[j];
810 s[j] = a;
811 if (++k >= keylen)
812 k = 0;
815 return 0;
818 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
820 int this_len = nbytes;
822 this_len -= (nbytes & (block_size - 1));
823 return this_len > (1 << 16) ? (1 << 16) : this_len;
826 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
827 struct spu_queue *qp, bool encrypt)
829 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
830 struct cwq_initial_entry *ent;
831 bool in_place;
832 int i;
834 ent = spu_queue_alloc(qp, cp->arr_len);
835 if (!ent) {
836 pr_info("queue_alloc() of %d fails\n",
837 cp->arr_len);
838 return -EBUSY;
841 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
843 ent->control = control_word_base(cp->arr[0].src_len,
844 0, ctx->enc_type, 0, 0,
845 false, true, false, encrypt,
846 OPCODE_ENCRYPT |
847 (in_place ? OPCODE_INPLACE_BIT : 0));
848 ent->src_addr = cp->arr[0].src_paddr;
849 ent->auth_key_addr = 0UL;
850 ent->auth_iv_addr = 0UL;
851 ent->final_auth_state_addr = 0UL;
852 ent->enc_key_addr = __pa(&ctx->key);
853 ent->enc_iv_addr = cp->iv_paddr;
854 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
856 for (i = 1; i < cp->arr_len; i++) {
857 ent = spu_queue_next(qp, ent);
859 ent->control = cp->arr[i].src_len - 1;
860 ent->src_addr = cp->arr[i].src_paddr;
861 ent->auth_key_addr = 0UL;
862 ent->auth_iv_addr = 0UL;
863 ent->final_auth_state_addr = 0UL;
864 ent->enc_key_addr = 0UL;
865 ent->enc_iv_addr = 0UL;
866 ent->dest_addr = 0UL;
868 ent->control |= CONTROL_END_OF_BLOCK;
870 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
873 static int n2_compute_chunks(struct ablkcipher_request *req)
875 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
876 struct ablkcipher_walk *walk = &rctx->walk;
877 struct n2_crypto_chunk *chunk;
878 unsigned long dest_prev;
879 unsigned int tot_len;
880 bool prev_in_place;
881 int err, nbytes;
883 ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
884 err = ablkcipher_walk_phys(req, walk);
885 if (err)
886 return err;
888 INIT_LIST_HEAD(&rctx->chunk_list);
890 chunk = &rctx->chunk;
891 INIT_LIST_HEAD(&chunk->entry);
893 chunk->iv_paddr = 0UL;
894 chunk->arr_len = 0;
895 chunk->dest_paddr = 0UL;
897 prev_in_place = false;
898 dest_prev = ~0UL;
899 tot_len = 0;
901 while ((nbytes = walk->nbytes) != 0) {
902 unsigned long dest_paddr, src_paddr;
903 bool in_place;
904 int this_len;
906 src_paddr = (page_to_phys(walk->src.page) +
907 walk->src.offset);
908 dest_paddr = (page_to_phys(walk->dst.page) +
909 walk->dst.offset);
910 in_place = (src_paddr == dest_paddr);
911 this_len = cipher_descriptor_len(nbytes, walk->blocksize);
913 if (chunk->arr_len != 0) {
914 if (in_place != prev_in_place ||
915 (!prev_in_place &&
916 dest_paddr != dest_prev) ||
917 chunk->arr_len == N2_CHUNK_ARR_LEN ||
918 tot_len + this_len > (1 << 16)) {
919 chunk->dest_final = dest_prev;
920 list_add_tail(&chunk->entry,
921 &rctx->chunk_list);
922 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
923 if (!chunk) {
924 err = -ENOMEM;
925 break;
927 INIT_LIST_HEAD(&chunk->entry);
930 if (chunk->arr_len == 0) {
931 chunk->dest_paddr = dest_paddr;
932 tot_len = 0;
934 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
935 chunk->arr[chunk->arr_len].src_len = this_len;
936 chunk->arr_len++;
938 dest_prev = dest_paddr + this_len;
939 prev_in_place = in_place;
940 tot_len += this_len;
942 err = ablkcipher_walk_done(req, walk, nbytes - this_len);
943 if (err)
944 break;
946 if (!err && chunk->arr_len != 0) {
947 chunk->dest_final = dest_prev;
948 list_add_tail(&chunk->entry, &rctx->chunk_list);
951 return err;
954 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
956 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
957 struct n2_crypto_chunk *c, *tmp;
959 if (final_iv)
960 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
962 ablkcipher_walk_complete(&rctx->walk);
963 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
964 list_del(&c->entry);
965 if (unlikely(c != &rctx->chunk))
966 kfree(c);
971 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
973 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
974 struct crypto_tfm *tfm = req->base.tfm;
975 int err = n2_compute_chunks(req);
976 struct n2_crypto_chunk *c, *tmp;
977 unsigned long flags, hv_ret;
978 struct spu_queue *qp;
980 if (err)
981 return err;
983 qp = cpu_to_cwq[get_cpu()];
984 err = -ENODEV;
985 if (!qp)
986 goto out;
988 spin_lock_irqsave(&qp->lock, flags);
990 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
991 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
992 if (err)
993 break;
994 list_del(&c->entry);
995 if (unlikely(c != &rctx->chunk))
996 kfree(c);
998 if (!err) {
999 hv_ret = wait_for_tail(qp);
1000 if (hv_ret != HV_EOK)
1001 err = -EINVAL;
1004 spin_unlock_irqrestore(&qp->lock, flags);
1006 out:
1007 put_cpu();
1009 n2_chunk_complete(req, NULL);
1010 return err;
1013 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1015 return n2_do_ecb(req, true);
1018 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1020 return n2_do_ecb(req, false);
1023 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1025 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1026 struct crypto_tfm *tfm = req->base.tfm;
1027 unsigned long flags, hv_ret, iv_paddr;
1028 int err = n2_compute_chunks(req);
1029 struct n2_crypto_chunk *c, *tmp;
1030 struct spu_queue *qp;
1031 void *final_iv_addr;
1033 final_iv_addr = NULL;
1035 if (err)
1036 return err;
1038 qp = cpu_to_cwq[get_cpu()];
1039 err = -ENODEV;
1040 if (!qp)
1041 goto out;
1043 spin_lock_irqsave(&qp->lock, flags);
1045 if (encrypt) {
1046 iv_paddr = __pa(rctx->walk.iv);
1047 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1048 entry) {
1049 c->iv_paddr = iv_paddr;
1050 err = __n2_crypt_chunk(tfm, c, qp, true);
1051 if (err)
1052 break;
1053 iv_paddr = c->dest_final - rctx->walk.blocksize;
1054 list_del(&c->entry);
1055 if (unlikely(c != &rctx->chunk))
1056 kfree(c);
1058 final_iv_addr = __va(iv_paddr);
1059 } else {
1060 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1061 entry) {
1062 if (c == &rctx->chunk) {
1063 iv_paddr = __pa(rctx->walk.iv);
1064 } else {
1065 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1066 tmp->arr[tmp->arr_len-1].src_len -
1067 rctx->walk.blocksize);
1069 if (!final_iv_addr) {
1070 unsigned long pa;
1072 pa = (c->arr[c->arr_len-1].src_paddr +
1073 c->arr[c->arr_len-1].src_len -
1074 rctx->walk.blocksize);
1075 final_iv_addr = rctx->temp_iv;
1076 memcpy(rctx->temp_iv, __va(pa),
1077 rctx->walk.blocksize);
1079 c->iv_paddr = iv_paddr;
1080 err = __n2_crypt_chunk(tfm, c, qp, false);
1081 if (err)
1082 break;
1083 list_del(&c->entry);
1084 if (unlikely(c != &rctx->chunk))
1085 kfree(c);
1088 if (!err) {
1089 hv_ret = wait_for_tail(qp);
1090 if (hv_ret != HV_EOK)
1091 err = -EINVAL;
1094 spin_unlock_irqrestore(&qp->lock, flags);
1096 out:
1097 put_cpu();
1099 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1100 return err;
1103 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1105 return n2_do_chaining(req, true);
1108 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1110 return n2_do_chaining(req, false);
1113 struct n2_cipher_tmpl {
1114 const char *name;
1115 const char *drv_name;
1116 u8 block_size;
1117 u8 enc_type;
1118 struct ablkcipher_alg ablkcipher;
1121 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1122 /* ARC4: only ECB is supported (chaining bits ignored) */
1123 { .name = "ecb(arc4)",
1124 .drv_name = "ecb-arc4",
1125 .block_size = 1,
1126 .enc_type = (ENC_TYPE_ALG_RC4_STREAM |
1127 ENC_TYPE_CHAINING_ECB),
1128 .ablkcipher = {
1129 .min_keysize = 1,
1130 .max_keysize = 256,
1131 .setkey = n2_arc4_setkey,
1132 .encrypt = n2_encrypt_ecb,
1133 .decrypt = n2_decrypt_ecb,
1137 /* DES: ECB CBC and CFB are supported */
1138 { .name = "ecb(des)",
1139 .drv_name = "ecb-des",
1140 .block_size = DES_BLOCK_SIZE,
1141 .enc_type = (ENC_TYPE_ALG_DES |
1142 ENC_TYPE_CHAINING_ECB),
1143 .ablkcipher = {
1144 .min_keysize = DES_KEY_SIZE,
1145 .max_keysize = DES_KEY_SIZE,
1146 .setkey = n2_des_setkey,
1147 .encrypt = n2_encrypt_ecb,
1148 .decrypt = n2_decrypt_ecb,
1151 { .name = "cbc(des)",
1152 .drv_name = "cbc-des",
1153 .block_size = DES_BLOCK_SIZE,
1154 .enc_type = (ENC_TYPE_ALG_DES |
1155 ENC_TYPE_CHAINING_CBC),
1156 .ablkcipher = {
1157 .ivsize = DES_BLOCK_SIZE,
1158 .min_keysize = DES_KEY_SIZE,
1159 .max_keysize = DES_KEY_SIZE,
1160 .setkey = n2_des_setkey,
1161 .encrypt = n2_encrypt_chaining,
1162 .decrypt = n2_decrypt_chaining,
1165 { .name = "cfb(des)",
1166 .drv_name = "cfb-des",
1167 .block_size = DES_BLOCK_SIZE,
1168 .enc_type = (ENC_TYPE_ALG_DES |
1169 ENC_TYPE_CHAINING_CFB),
1170 .ablkcipher = {
1171 .min_keysize = DES_KEY_SIZE,
1172 .max_keysize = DES_KEY_SIZE,
1173 .setkey = n2_des_setkey,
1174 .encrypt = n2_encrypt_chaining,
1175 .decrypt = n2_decrypt_chaining,
1179 /* 3DES: ECB CBC and CFB are supported */
1180 { .name = "ecb(des3_ede)",
1181 .drv_name = "ecb-3des",
1182 .block_size = DES_BLOCK_SIZE,
1183 .enc_type = (ENC_TYPE_ALG_3DES |
1184 ENC_TYPE_CHAINING_ECB),
1185 .ablkcipher = {
1186 .min_keysize = 3 * DES_KEY_SIZE,
1187 .max_keysize = 3 * DES_KEY_SIZE,
1188 .setkey = n2_3des_setkey,
1189 .encrypt = n2_encrypt_ecb,
1190 .decrypt = n2_decrypt_ecb,
1193 { .name = "cbc(des3_ede)",
1194 .drv_name = "cbc-3des",
1195 .block_size = DES_BLOCK_SIZE,
1196 .enc_type = (ENC_TYPE_ALG_3DES |
1197 ENC_TYPE_CHAINING_CBC),
1198 .ablkcipher = {
1199 .ivsize = DES_BLOCK_SIZE,
1200 .min_keysize = 3 * DES_KEY_SIZE,
1201 .max_keysize = 3 * DES_KEY_SIZE,
1202 .setkey = n2_3des_setkey,
1203 .encrypt = n2_encrypt_chaining,
1204 .decrypt = n2_decrypt_chaining,
1207 { .name = "cfb(des3_ede)",
1208 .drv_name = "cfb-3des",
1209 .block_size = DES_BLOCK_SIZE,
1210 .enc_type = (ENC_TYPE_ALG_3DES |
1211 ENC_TYPE_CHAINING_CFB),
1212 .ablkcipher = {
1213 .min_keysize = 3 * DES_KEY_SIZE,
1214 .max_keysize = 3 * DES_KEY_SIZE,
1215 .setkey = n2_3des_setkey,
1216 .encrypt = n2_encrypt_chaining,
1217 .decrypt = n2_decrypt_chaining,
1220 /* AES: ECB CBC and CTR are supported */
1221 { .name = "ecb(aes)",
1222 .drv_name = "ecb-aes",
1223 .block_size = AES_BLOCK_SIZE,
1224 .enc_type = (ENC_TYPE_ALG_AES128 |
1225 ENC_TYPE_CHAINING_ECB),
1226 .ablkcipher = {
1227 .min_keysize = AES_MIN_KEY_SIZE,
1228 .max_keysize = AES_MAX_KEY_SIZE,
1229 .setkey = n2_aes_setkey,
1230 .encrypt = n2_encrypt_ecb,
1231 .decrypt = n2_decrypt_ecb,
1234 { .name = "cbc(aes)",
1235 .drv_name = "cbc-aes",
1236 .block_size = AES_BLOCK_SIZE,
1237 .enc_type = (ENC_TYPE_ALG_AES128 |
1238 ENC_TYPE_CHAINING_CBC),
1239 .ablkcipher = {
1240 .ivsize = AES_BLOCK_SIZE,
1241 .min_keysize = AES_MIN_KEY_SIZE,
1242 .max_keysize = AES_MAX_KEY_SIZE,
1243 .setkey = n2_aes_setkey,
1244 .encrypt = n2_encrypt_chaining,
1245 .decrypt = n2_decrypt_chaining,
1248 { .name = "ctr(aes)",
1249 .drv_name = "ctr-aes",
1250 .block_size = AES_BLOCK_SIZE,
1251 .enc_type = (ENC_TYPE_ALG_AES128 |
1252 ENC_TYPE_CHAINING_COUNTER),
1253 .ablkcipher = {
1254 .ivsize = AES_BLOCK_SIZE,
1255 .min_keysize = AES_MIN_KEY_SIZE,
1256 .max_keysize = AES_MAX_KEY_SIZE,
1257 .setkey = n2_aes_setkey,
1258 .encrypt = n2_encrypt_chaining,
1259 .decrypt = n2_encrypt_chaining,
1264 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1266 static LIST_HEAD(cipher_algs);
1268 struct n2_hash_tmpl {
1269 const char *name;
1270 const u8 *hash_zero;
1271 const u32 *hash_init;
1272 u8 hw_op_hashsz;
1273 u8 digest_size;
1274 u8 block_size;
1275 u8 auth_type;
1276 u8 hmac_type;
1279 static const u32 md5_init[MD5_HASH_WORDS] = {
1280 cpu_to_le32(MD5_H0),
1281 cpu_to_le32(MD5_H1),
1282 cpu_to_le32(MD5_H2),
1283 cpu_to_le32(MD5_H3),
1285 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1286 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1288 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1289 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1290 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1292 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1293 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1294 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1297 static const struct n2_hash_tmpl hash_tmpls[] = {
1298 { .name = "md5",
1299 .hash_zero = md5_zero_message_hash,
1300 .hash_init = md5_init,
1301 .auth_type = AUTH_TYPE_MD5,
1302 .hmac_type = AUTH_TYPE_HMAC_MD5,
1303 .hw_op_hashsz = MD5_DIGEST_SIZE,
1304 .digest_size = MD5_DIGEST_SIZE,
1305 .block_size = MD5_HMAC_BLOCK_SIZE },
1306 { .name = "sha1",
1307 .hash_zero = sha1_zero_message_hash,
1308 .hash_init = sha1_init,
1309 .auth_type = AUTH_TYPE_SHA1,
1310 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1311 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1312 .digest_size = SHA1_DIGEST_SIZE,
1313 .block_size = SHA1_BLOCK_SIZE },
1314 { .name = "sha256",
1315 .hash_zero = sha256_zero_message_hash,
1316 .hash_init = sha256_init,
1317 .auth_type = AUTH_TYPE_SHA256,
1318 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1319 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1320 .digest_size = SHA256_DIGEST_SIZE,
1321 .block_size = SHA256_BLOCK_SIZE },
1322 { .name = "sha224",
1323 .hash_zero = sha224_zero_message_hash,
1324 .hash_init = sha224_init,
1325 .auth_type = AUTH_TYPE_SHA256,
1326 .hmac_type = AUTH_TYPE_RESERVED,
1327 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1328 .digest_size = SHA224_DIGEST_SIZE,
1329 .block_size = SHA224_BLOCK_SIZE },
1331 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1333 static LIST_HEAD(ahash_algs);
1334 static LIST_HEAD(hmac_algs);
1336 static int algs_registered;
1338 static void __n2_unregister_algs(void)
1340 struct n2_cipher_alg *cipher, *cipher_tmp;
1341 struct n2_ahash_alg *alg, *alg_tmp;
1342 struct n2_hmac_alg *hmac, *hmac_tmp;
1344 list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1345 crypto_unregister_alg(&cipher->alg);
1346 list_del(&cipher->entry);
1347 kfree(cipher);
1349 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1350 crypto_unregister_ahash(&hmac->derived.alg);
1351 list_del(&hmac->derived.entry);
1352 kfree(hmac);
1354 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1355 crypto_unregister_ahash(&alg->alg);
1356 list_del(&alg->entry);
1357 kfree(alg);
1361 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1363 tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1364 return 0;
1367 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1369 struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1370 struct crypto_alg *alg;
1371 int err;
1373 if (!p)
1374 return -ENOMEM;
1376 alg = &p->alg;
1378 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1379 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1380 alg->cra_priority = N2_CRA_PRIORITY;
1381 alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1382 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1383 alg->cra_blocksize = tmpl->block_size;
1384 p->enc_type = tmpl->enc_type;
1385 alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1386 alg->cra_type = &crypto_ablkcipher_type;
1387 alg->cra_u.ablkcipher = tmpl->ablkcipher;
1388 alg->cra_init = n2_cipher_cra_init;
1389 alg->cra_module = THIS_MODULE;
1391 list_add(&p->entry, &cipher_algs);
1392 err = crypto_register_alg(alg);
1393 if (err) {
1394 pr_err("%s alg registration failed\n", alg->cra_name);
1395 list_del(&p->entry);
1396 kfree(p);
1397 } else {
1398 pr_info("%s alg registered\n", alg->cra_name);
1400 return err;
1403 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1405 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1406 struct ahash_alg *ahash;
1407 struct crypto_alg *base;
1408 int err;
1410 if (!p)
1411 return -ENOMEM;
1413 p->child_alg = n2ahash->alg.halg.base.cra_name;
1414 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1415 INIT_LIST_HEAD(&p->derived.entry);
1417 ahash = &p->derived.alg;
1418 ahash->digest = n2_hmac_async_digest;
1419 ahash->setkey = n2_hmac_async_setkey;
1421 base = &ahash->halg.base;
1422 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1423 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1425 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1426 base->cra_init = n2_hmac_cra_init;
1427 base->cra_exit = n2_hmac_cra_exit;
1429 list_add(&p->derived.entry, &hmac_algs);
1430 err = crypto_register_ahash(ahash);
1431 if (err) {
1432 pr_err("%s alg registration failed\n", base->cra_name);
1433 list_del(&p->derived.entry);
1434 kfree(p);
1435 } else {
1436 pr_info("%s alg registered\n", base->cra_name);
1438 return err;
1441 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1443 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1444 struct hash_alg_common *halg;
1445 struct crypto_alg *base;
1446 struct ahash_alg *ahash;
1447 int err;
1449 if (!p)
1450 return -ENOMEM;
1452 p->hash_zero = tmpl->hash_zero;
1453 p->hash_init = tmpl->hash_init;
1454 p->auth_type = tmpl->auth_type;
1455 p->hmac_type = tmpl->hmac_type;
1456 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1457 p->digest_size = tmpl->digest_size;
1459 ahash = &p->alg;
1460 ahash->init = n2_hash_async_init;
1461 ahash->update = n2_hash_async_update;
1462 ahash->final = n2_hash_async_final;
1463 ahash->finup = n2_hash_async_finup;
1464 ahash->digest = n2_hash_async_digest;
1466 halg = &ahash->halg;
1467 halg->digestsize = tmpl->digest_size;
1469 base = &halg->base;
1470 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1471 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1472 base->cra_priority = N2_CRA_PRIORITY;
1473 base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
1474 CRYPTO_ALG_KERN_DRIVER_ONLY |
1475 CRYPTO_ALG_NEED_FALLBACK;
1476 base->cra_blocksize = tmpl->block_size;
1477 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1478 base->cra_module = THIS_MODULE;
1479 base->cra_init = n2_hash_cra_init;
1480 base->cra_exit = n2_hash_cra_exit;
1482 list_add(&p->entry, &ahash_algs);
1483 err = crypto_register_ahash(ahash);
1484 if (err) {
1485 pr_err("%s alg registration failed\n", base->cra_name);
1486 list_del(&p->entry);
1487 kfree(p);
1488 } else {
1489 pr_info("%s alg registered\n", base->cra_name);
1491 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1492 err = __n2_register_one_hmac(p);
1493 return err;
1496 static int n2_register_algs(void)
1498 int i, err = 0;
1500 mutex_lock(&spu_lock);
1501 if (algs_registered++)
1502 goto out;
1504 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1505 err = __n2_register_one_ahash(&hash_tmpls[i]);
1506 if (err) {
1507 __n2_unregister_algs();
1508 goto out;
1511 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1512 err = __n2_register_one_cipher(&cipher_tmpls[i]);
1513 if (err) {
1514 __n2_unregister_algs();
1515 goto out;
1519 out:
1520 mutex_unlock(&spu_lock);
1521 return err;
1524 static void n2_unregister_algs(void)
1526 mutex_lock(&spu_lock);
1527 if (!--algs_registered)
1528 __n2_unregister_algs();
1529 mutex_unlock(&spu_lock);
1532 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1533 * a devino. This isn't very useful to us because all of the
1534 * interrupts listed in the device_node have been translated to
1535 * Linux virtual IRQ cookie numbers.
1537 * So we have to back-translate, going through the 'intr' and 'ino'
1538 * property tables of the n2cp MDESC node, matching it with the OF
1539 * 'interrupts' property entries, in order to to figure out which
1540 * devino goes to which already-translated IRQ.
1542 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1543 unsigned long dev_ino)
1545 const unsigned int *dev_intrs;
1546 unsigned int intr;
1547 int i;
1549 for (i = 0; i < ip->num_intrs; i++) {
1550 if (ip->ino_table[i].ino == dev_ino)
1551 break;
1553 if (i == ip->num_intrs)
1554 return -ENODEV;
1556 intr = ip->ino_table[i].intr;
1558 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1559 if (!dev_intrs)
1560 return -ENODEV;
1562 for (i = 0; i < dev->archdata.num_irqs; i++) {
1563 if (dev_intrs[i] == intr)
1564 return i;
1567 return -ENODEV;
1570 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1571 const char *irq_name, struct spu_queue *p,
1572 irq_handler_t handler)
1574 unsigned long herr;
1575 int index;
1577 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1578 if (herr)
1579 return -EINVAL;
1581 index = find_devino_index(dev, ip, p->devino);
1582 if (index < 0)
1583 return index;
1585 p->irq = dev->archdata.irqs[index];
1587 sprintf(p->irq_name, "%s-%d", irq_name, index);
1589 return request_irq(p->irq, handler, 0, p->irq_name, p);
1592 static struct kmem_cache *queue_cache[2];
1594 static void *new_queue(unsigned long q_type)
1596 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1599 static void free_queue(void *p, unsigned long q_type)
1601 kmem_cache_free(queue_cache[q_type - 1], p);
1604 static int queue_cache_init(void)
1606 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1607 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1608 kmem_cache_create("mau_queue",
1609 (MAU_NUM_ENTRIES *
1610 MAU_ENTRY_SIZE),
1611 MAU_ENTRY_SIZE, 0, NULL);
1612 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1613 return -ENOMEM;
1615 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1616 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1617 kmem_cache_create("cwq_queue",
1618 (CWQ_NUM_ENTRIES *
1619 CWQ_ENTRY_SIZE),
1620 CWQ_ENTRY_SIZE, 0, NULL);
1621 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1622 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1623 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1624 return -ENOMEM;
1626 return 0;
1629 static void queue_cache_destroy(void)
1631 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1632 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1633 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1634 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1637 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1639 cpumask_var_t old_allowed;
1640 unsigned long hv_ret;
1642 if (cpumask_empty(&p->sharing))
1643 return -EINVAL;
1645 if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL))
1646 return -ENOMEM;
1648 cpumask_copy(old_allowed, &current->cpus_allowed);
1650 set_cpus_allowed_ptr(current, &p->sharing);
1652 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1653 CWQ_NUM_ENTRIES, &p->qhandle);
1654 if (!hv_ret)
1655 sun4v_ncs_sethead_marker(p->qhandle, 0);
1657 set_cpus_allowed_ptr(current, old_allowed);
1659 free_cpumask_var(old_allowed);
1661 return (hv_ret ? -EINVAL : 0);
1664 static int spu_queue_setup(struct spu_queue *p)
1666 int err;
1668 p->q = new_queue(p->q_type);
1669 if (!p->q)
1670 return -ENOMEM;
1672 err = spu_queue_register(p, p->q_type);
1673 if (err) {
1674 free_queue(p->q, p->q_type);
1675 p->q = NULL;
1678 return err;
1681 static void spu_queue_destroy(struct spu_queue *p)
1683 unsigned long hv_ret;
1685 if (!p->q)
1686 return;
1688 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1690 if (!hv_ret)
1691 free_queue(p->q, p->q_type);
1694 static void spu_list_destroy(struct list_head *list)
1696 struct spu_queue *p, *n;
1698 list_for_each_entry_safe(p, n, list, list) {
1699 int i;
1701 for (i = 0; i < NR_CPUS; i++) {
1702 if (cpu_to_cwq[i] == p)
1703 cpu_to_cwq[i] = NULL;
1706 if (p->irq) {
1707 free_irq(p->irq, p);
1708 p->irq = 0;
1710 spu_queue_destroy(p);
1711 list_del(&p->list);
1712 kfree(p);
1716 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1717 * gathering cpu membership information.
1719 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1720 struct platform_device *dev,
1721 u64 node, struct spu_queue *p,
1722 struct spu_queue **table)
1724 u64 arc;
1726 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1727 u64 tgt = mdesc_arc_target(mdesc, arc);
1728 const char *name = mdesc_node_name(mdesc, tgt);
1729 const u64 *id;
1731 if (strcmp(name, "cpu"))
1732 continue;
1733 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1734 if (table[*id] != NULL) {
1735 dev_err(&dev->dev, "%s: SPU cpu slot already set.\n",
1736 dev->dev.of_node->full_name);
1737 return -EINVAL;
1739 cpumask_set_cpu(*id, &p->sharing);
1740 table[*id] = p;
1742 return 0;
1745 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
1746 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1747 struct platform_device *dev, struct mdesc_handle *mdesc,
1748 u64 node, const char *iname, unsigned long q_type,
1749 irq_handler_t handler, struct spu_queue **table)
1751 struct spu_queue *p;
1752 int err;
1754 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1755 if (!p) {
1756 dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n",
1757 dev->dev.of_node->full_name);
1758 return -ENOMEM;
1761 cpumask_clear(&p->sharing);
1762 spin_lock_init(&p->lock);
1763 p->q_type = q_type;
1764 INIT_LIST_HEAD(&p->jobs);
1765 list_add(&p->list, list);
1767 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1768 if (err)
1769 return err;
1771 err = spu_queue_setup(p);
1772 if (err)
1773 return err;
1775 return spu_map_ino(dev, ip, iname, p, handler);
1778 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1779 struct spu_mdesc_info *ip, struct list_head *list,
1780 const char *exec_name, unsigned long q_type,
1781 irq_handler_t handler, struct spu_queue **table)
1783 int err = 0;
1784 u64 node;
1786 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1787 const char *type;
1789 type = mdesc_get_property(mdesc, node, "type", NULL);
1790 if (!type || strcmp(type, exec_name))
1791 continue;
1793 err = handle_exec_unit(ip, list, dev, mdesc, node,
1794 exec_name, q_type, handler, table);
1795 if (err) {
1796 spu_list_destroy(list);
1797 break;
1801 return err;
1804 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1805 struct spu_mdesc_info *ip)
1807 const u64 *ino;
1808 int ino_len;
1809 int i;
1811 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1812 if (!ino) {
1813 printk("NO 'ino'\n");
1814 return -ENODEV;
1817 ip->num_intrs = ino_len / sizeof(u64);
1818 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1819 ip->num_intrs),
1820 GFP_KERNEL);
1821 if (!ip->ino_table)
1822 return -ENOMEM;
1824 for (i = 0; i < ip->num_intrs; i++) {
1825 struct ino_blob *b = &ip->ino_table[i];
1826 b->intr = i + 1;
1827 b->ino = ino[i];
1830 return 0;
1833 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1834 struct platform_device *dev,
1835 struct spu_mdesc_info *ip,
1836 const char *node_name)
1838 const unsigned int *reg;
1839 u64 node;
1841 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1842 if (!reg)
1843 return -ENODEV;
1845 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1846 const char *name;
1847 const u64 *chdl;
1849 name = mdesc_get_property(mdesc, node, "name", NULL);
1850 if (!name || strcmp(name, node_name))
1851 continue;
1852 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1853 if (!chdl || (*chdl != *reg))
1854 continue;
1855 ip->cfg_handle = *chdl;
1856 return get_irq_props(mdesc, node, ip);
1859 return -ENODEV;
1862 static unsigned long n2_spu_hvapi_major;
1863 static unsigned long n2_spu_hvapi_minor;
1865 static int n2_spu_hvapi_register(void)
1867 int err;
1869 n2_spu_hvapi_major = 2;
1870 n2_spu_hvapi_minor = 0;
1872 err = sun4v_hvapi_register(HV_GRP_NCS,
1873 n2_spu_hvapi_major,
1874 &n2_spu_hvapi_minor);
1876 if (!err)
1877 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1878 n2_spu_hvapi_major,
1879 n2_spu_hvapi_minor);
1881 return err;
1884 static void n2_spu_hvapi_unregister(void)
1886 sun4v_hvapi_unregister(HV_GRP_NCS);
1889 static int global_ref;
1891 static int grab_global_resources(void)
1893 int err = 0;
1895 mutex_lock(&spu_lock);
1897 if (global_ref++)
1898 goto out;
1900 err = n2_spu_hvapi_register();
1901 if (err)
1902 goto out;
1904 err = queue_cache_init();
1905 if (err)
1906 goto out_hvapi_release;
1908 err = -ENOMEM;
1909 cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1910 GFP_KERNEL);
1911 if (!cpu_to_cwq)
1912 goto out_queue_cache_destroy;
1914 cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1915 GFP_KERNEL);
1916 if (!cpu_to_mau)
1917 goto out_free_cwq_table;
1919 err = 0;
1921 out:
1922 if (err)
1923 global_ref--;
1924 mutex_unlock(&spu_lock);
1925 return err;
1927 out_free_cwq_table:
1928 kfree(cpu_to_cwq);
1929 cpu_to_cwq = NULL;
1931 out_queue_cache_destroy:
1932 queue_cache_destroy();
1934 out_hvapi_release:
1935 n2_spu_hvapi_unregister();
1936 goto out;
1939 static void release_global_resources(void)
1941 mutex_lock(&spu_lock);
1942 if (!--global_ref) {
1943 kfree(cpu_to_cwq);
1944 cpu_to_cwq = NULL;
1946 kfree(cpu_to_mau);
1947 cpu_to_mau = NULL;
1949 queue_cache_destroy();
1950 n2_spu_hvapi_unregister();
1952 mutex_unlock(&spu_lock);
1955 static struct n2_crypto *alloc_n2cp(void)
1957 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1959 if (np)
1960 INIT_LIST_HEAD(&np->cwq_list);
1962 return np;
1965 static void free_n2cp(struct n2_crypto *np)
1967 if (np->cwq_info.ino_table) {
1968 kfree(np->cwq_info.ino_table);
1969 np->cwq_info.ino_table = NULL;
1972 kfree(np);
1975 static void n2_spu_driver_version(void)
1977 static int n2_spu_version_printed;
1979 if (n2_spu_version_printed++ == 0)
1980 pr_info("%s", version);
1983 static int n2_crypto_probe(struct platform_device *dev)
1985 struct mdesc_handle *mdesc;
1986 const char *full_name;
1987 struct n2_crypto *np;
1988 int err;
1990 n2_spu_driver_version();
1992 full_name = dev->dev.of_node->full_name;
1993 pr_info("Found N2CP at %s\n", full_name);
1995 np = alloc_n2cp();
1996 if (!np) {
1997 dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n",
1998 full_name);
1999 return -ENOMEM;
2002 err = grab_global_resources();
2003 if (err) {
2004 dev_err(&dev->dev, "%s: Unable to grab "
2005 "global resources.\n", full_name);
2006 goto out_free_n2cp;
2009 mdesc = mdesc_grab();
2011 if (!mdesc) {
2012 dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
2013 full_name);
2014 err = -ENODEV;
2015 goto out_free_global;
2017 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2018 if (err) {
2019 dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
2020 full_name);
2021 mdesc_release(mdesc);
2022 goto out_free_global;
2025 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2026 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2027 cpu_to_cwq);
2028 mdesc_release(mdesc);
2030 if (err) {
2031 dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n",
2032 full_name);
2033 goto out_free_global;
2036 err = n2_register_algs();
2037 if (err) {
2038 dev_err(&dev->dev, "%s: Unable to register algorithms.\n",
2039 full_name);
2040 goto out_free_spu_list;
2043 dev_set_drvdata(&dev->dev, np);
2045 return 0;
2047 out_free_spu_list:
2048 spu_list_destroy(&np->cwq_list);
2050 out_free_global:
2051 release_global_resources();
2053 out_free_n2cp:
2054 free_n2cp(np);
2056 return err;
2059 static int n2_crypto_remove(struct platform_device *dev)
2061 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2063 n2_unregister_algs();
2065 spu_list_destroy(&np->cwq_list);
2067 release_global_resources();
2069 free_n2cp(np);
2071 return 0;
2074 static struct n2_mau *alloc_ncp(void)
2076 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2078 if (mp)
2079 INIT_LIST_HEAD(&mp->mau_list);
2081 return mp;
2084 static void free_ncp(struct n2_mau *mp)
2086 if (mp->mau_info.ino_table) {
2087 kfree(mp->mau_info.ino_table);
2088 mp->mau_info.ino_table = NULL;
2091 kfree(mp);
2094 static int n2_mau_probe(struct platform_device *dev)
2096 struct mdesc_handle *mdesc;
2097 const char *full_name;
2098 struct n2_mau *mp;
2099 int err;
2101 n2_spu_driver_version();
2103 full_name = dev->dev.of_node->full_name;
2104 pr_info("Found NCP at %s\n", full_name);
2106 mp = alloc_ncp();
2107 if (!mp) {
2108 dev_err(&dev->dev, "%s: Unable to allocate ncp.\n",
2109 full_name);
2110 return -ENOMEM;
2113 err = grab_global_resources();
2114 if (err) {
2115 dev_err(&dev->dev, "%s: Unable to grab "
2116 "global resources.\n", full_name);
2117 goto out_free_ncp;
2120 mdesc = mdesc_grab();
2122 if (!mdesc) {
2123 dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
2124 full_name);
2125 err = -ENODEV;
2126 goto out_free_global;
2129 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2130 if (err) {
2131 dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
2132 full_name);
2133 mdesc_release(mdesc);
2134 goto out_free_global;
2137 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2138 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2139 cpu_to_mau);
2140 mdesc_release(mdesc);
2142 if (err) {
2143 dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n",
2144 full_name);
2145 goto out_free_global;
2148 dev_set_drvdata(&dev->dev, mp);
2150 return 0;
2152 out_free_global:
2153 release_global_resources();
2155 out_free_ncp:
2156 free_ncp(mp);
2158 return err;
2161 static int n2_mau_remove(struct platform_device *dev)
2163 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2165 spu_list_destroy(&mp->mau_list);
2167 release_global_resources();
2169 free_ncp(mp);
2171 return 0;
2174 static struct of_device_id n2_crypto_match[] = {
2176 .name = "n2cp",
2177 .compatible = "SUNW,n2-cwq",
2180 .name = "n2cp",
2181 .compatible = "SUNW,vf-cwq",
2184 .name = "n2cp",
2185 .compatible = "SUNW,kt-cwq",
2190 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2192 static struct platform_driver n2_crypto_driver = {
2193 .driver = {
2194 .name = "n2cp",
2195 .of_match_table = n2_crypto_match,
2197 .probe = n2_crypto_probe,
2198 .remove = n2_crypto_remove,
2201 static struct of_device_id n2_mau_match[] = {
2203 .name = "ncp",
2204 .compatible = "SUNW,n2-mau",
2207 .name = "ncp",
2208 .compatible = "SUNW,vf-mau",
2211 .name = "ncp",
2212 .compatible = "SUNW,kt-mau",
2217 MODULE_DEVICE_TABLE(of, n2_mau_match);
2219 static struct platform_driver n2_mau_driver = {
2220 .driver = {
2221 .name = "ncp",
2222 .of_match_table = n2_mau_match,
2224 .probe = n2_mau_probe,
2225 .remove = n2_mau_remove,
2228 static struct platform_driver * const drivers[] = {
2229 &n2_crypto_driver,
2230 &n2_mau_driver,
2233 static int __init n2_init(void)
2235 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2238 static void __exit n2_exit(void)
2240 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2243 module_init(n2_init);
2244 module_exit(n2_exit);