r8152: fix tx packets accounting
[linux/fpc-iii.git] / drivers / mmc / host / mmci.c
blobdf990bb8c8736fafe2833e912672b5b6a170d4bc
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
41 #include <asm/div64.h>
42 #include <asm/io.h>
44 #include "mmci.h"
45 #include "mmci_qcom_dml.h"
47 #define DRIVER_NAME "mmci-pl18x"
49 static unsigned int fmax = 515633;
51 /**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @st_sdio: enable ST specific SDIO logic
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68 * register
69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70 * @pwrreg_powerup: power up value for MMCIPOWER register
71 * @f_max: maximum clk frequency supported by the controller.
72 * @signal_direction: input/out direction of bus signals can be indicated
73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74 * @busy_detect: true if busy detection on dat0 is supported
75 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
76 * @explicit_mclk_control: enable explicit mclk control in driver.
77 * @qcom_fifo: enables qcom specific fifo pio read logic.
78 * @qcom_dml: enables qcom specific dma glue for dma transfers.
79 * @reversed_irq_handling: handle data irq before cmd irq.
81 struct variant_data {
82 unsigned int clkreg;
83 unsigned int clkreg_enable;
84 unsigned int clkreg_8bit_bus_enable;
85 unsigned int clkreg_neg_edge_enable;
86 unsigned int datalength_bits;
87 unsigned int fifosize;
88 unsigned int fifohalfsize;
89 unsigned int data_cmd_enable;
90 unsigned int datactrl_mask_ddrmode;
91 unsigned int datactrl_mask_sdio;
92 bool st_sdio;
93 bool st_clkdiv;
94 bool blksz_datactrl16;
95 bool blksz_datactrl4;
96 u32 pwrreg_powerup;
97 u32 f_max;
98 bool signal_direction;
99 bool pwrreg_clkgate;
100 bool busy_detect;
101 bool pwrreg_nopower;
102 bool explicit_mclk_control;
103 bool qcom_fifo;
104 bool qcom_dml;
105 bool reversed_irq_handling;
108 static struct variant_data variant_arm = {
109 .fifosize = 16 * 4,
110 .fifohalfsize = 8 * 4,
111 .datalength_bits = 16,
112 .pwrreg_powerup = MCI_PWR_UP,
113 .f_max = 100000000,
114 .reversed_irq_handling = true,
117 static struct variant_data variant_arm_extended_fifo = {
118 .fifosize = 128 * 4,
119 .fifohalfsize = 64 * 4,
120 .datalength_bits = 16,
121 .pwrreg_powerup = MCI_PWR_UP,
122 .f_max = 100000000,
125 static struct variant_data variant_arm_extended_fifo_hwfc = {
126 .fifosize = 128 * 4,
127 .fifohalfsize = 64 * 4,
128 .clkreg_enable = MCI_ARM_HWFCEN,
129 .datalength_bits = 16,
130 .pwrreg_powerup = MCI_PWR_UP,
131 .f_max = 100000000,
134 static struct variant_data variant_u300 = {
135 .fifosize = 16 * 4,
136 .fifohalfsize = 8 * 4,
137 .clkreg_enable = MCI_ST_U300_HWFCEN,
138 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
139 .datalength_bits = 16,
140 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
141 .st_sdio = true,
142 .pwrreg_powerup = MCI_PWR_ON,
143 .f_max = 100000000,
144 .signal_direction = true,
145 .pwrreg_clkgate = true,
146 .pwrreg_nopower = true,
149 static struct variant_data variant_nomadik = {
150 .fifosize = 16 * 4,
151 .fifohalfsize = 8 * 4,
152 .clkreg = MCI_CLK_ENABLE,
153 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
154 .datalength_bits = 24,
155 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
156 .st_sdio = true,
157 .st_clkdiv = true,
158 .pwrreg_powerup = MCI_PWR_ON,
159 .f_max = 100000000,
160 .signal_direction = true,
161 .pwrreg_clkgate = true,
162 .pwrreg_nopower = true,
165 static struct variant_data variant_ux500 = {
166 .fifosize = 30 * 4,
167 .fifohalfsize = 8 * 4,
168 .clkreg = MCI_CLK_ENABLE,
169 .clkreg_enable = MCI_ST_UX500_HWFCEN,
170 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
171 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
172 .datalength_bits = 24,
173 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
174 .st_sdio = true,
175 .st_clkdiv = true,
176 .pwrreg_powerup = MCI_PWR_ON,
177 .f_max = 100000000,
178 .signal_direction = true,
179 .pwrreg_clkgate = true,
180 .busy_detect = true,
181 .pwrreg_nopower = true,
184 static struct variant_data variant_ux500v2 = {
185 .fifosize = 30 * 4,
186 .fifohalfsize = 8 * 4,
187 .clkreg = MCI_CLK_ENABLE,
188 .clkreg_enable = MCI_ST_UX500_HWFCEN,
189 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
190 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
191 .datactrl_mask_ddrmode = MCI_ST_DPSM_DDRMODE,
192 .datalength_bits = 24,
193 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
194 .st_sdio = true,
195 .st_clkdiv = true,
196 .blksz_datactrl16 = true,
197 .pwrreg_powerup = MCI_PWR_ON,
198 .f_max = 100000000,
199 .signal_direction = true,
200 .pwrreg_clkgate = true,
201 .busy_detect = true,
202 .pwrreg_nopower = true,
205 static struct variant_data variant_qcom = {
206 .fifosize = 16 * 4,
207 .fifohalfsize = 8 * 4,
208 .clkreg = MCI_CLK_ENABLE,
209 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
210 MCI_QCOM_CLK_SELECT_IN_FBCLK,
211 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
212 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
213 .data_cmd_enable = MCI_QCOM_CSPM_DATCMD,
214 .blksz_datactrl4 = true,
215 .datalength_bits = 24,
216 .pwrreg_powerup = MCI_PWR_UP,
217 .f_max = 208000000,
218 .explicit_mclk_control = true,
219 .qcom_fifo = true,
220 .qcom_dml = true,
223 static int mmci_card_busy(struct mmc_host *mmc)
225 struct mmci_host *host = mmc_priv(mmc);
226 unsigned long flags;
227 int busy = 0;
229 spin_lock_irqsave(&host->lock, flags);
230 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
231 busy = 1;
232 spin_unlock_irqrestore(&host->lock, flags);
234 return busy;
238 * Validate mmc prerequisites
240 static int mmci_validate_data(struct mmci_host *host,
241 struct mmc_data *data)
243 if (!data)
244 return 0;
246 if (!is_power_of_2(data->blksz)) {
247 dev_err(mmc_dev(host->mmc),
248 "unsupported block size (%d bytes)\n", data->blksz);
249 return -EINVAL;
252 return 0;
255 static void mmci_reg_delay(struct mmci_host *host)
258 * According to the spec, at least three feedback clock cycles
259 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
260 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
261 * Worst delay time during card init is at 100 kHz => 30 us.
262 * Worst delay time when up and running is at 25 MHz => 120 ns.
264 if (host->cclk < 25000000)
265 udelay(30);
266 else
267 ndelay(120);
271 * This must be called with host->lock held
273 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
275 if (host->clk_reg != clk) {
276 host->clk_reg = clk;
277 writel(clk, host->base + MMCICLOCK);
282 * This must be called with host->lock held
284 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
286 if (host->pwr_reg != pwr) {
287 host->pwr_reg = pwr;
288 writel(pwr, host->base + MMCIPOWER);
293 * This must be called with host->lock held
295 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
297 /* Keep ST Micro busy mode if enabled */
298 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
300 if (host->datactrl_reg != datactrl) {
301 host->datactrl_reg = datactrl;
302 writel(datactrl, host->base + MMCIDATACTRL);
307 * This must be called with host->lock held
309 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
311 struct variant_data *variant = host->variant;
312 u32 clk = variant->clkreg;
314 /* Make sure cclk reflects the current calculated clock */
315 host->cclk = 0;
317 if (desired) {
318 if (variant->explicit_mclk_control) {
319 host->cclk = host->mclk;
320 } else if (desired >= host->mclk) {
321 clk = MCI_CLK_BYPASS;
322 if (variant->st_clkdiv)
323 clk |= MCI_ST_UX500_NEG_EDGE;
324 host->cclk = host->mclk;
325 } else if (variant->st_clkdiv) {
327 * DB8500 TRM says f = mclk / (clkdiv + 2)
328 * => clkdiv = (mclk / f) - 2
329 * Round the divider up so we don't exceed the max
330 * frequency
332 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
333 if (clk >= 256)
334 clk = 255;
335 host->cclk = host->mclk / (clk + 2);
336 } else {
338 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
339 * => clkdiv = mclk / (2 * f) - 1
341 clk = host->mclk / (2 * desired) - 1;
342 if (clk >= 256)
343 clk = 255;
344 host->cclk = host->mclk / (2 * (clk + 1));
347 clk |= variant->clkreg_enable;
348 clk |= MCI_CLK_ENABLE;
349 /* This hasn't proven to be worthwhile */
350 /* clk |= MCI_CLK_PWRSAVE; */
353 /* Set actual clock for debug */
354 host->mmc->actual_clock = host->cclk;
356 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
357 clk |= MCI_4BIT_BUS;
358 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
359 clk |= variant->clkreg_8bit_bus_enable;
361 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
362 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
363 clk |= variant->clkreg_neg_edge_enable;
365 mmci_write_clkreg(host, clk);
368 static void
369 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
371 writel(0, host->base + MMCICOMMAND);
373 BUG_ON(host->data);
375 host->mrq = NULL;
376 host->cmd = NULL;
378 mmc_request_done(host->mmc, mrq);
381 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
383 void __iomem *base = host->base;
385 if (host->singleirq) {
386 unsigned int mask0 = readl(base + MMCIMASK0);
388 mask0 &= ~MCI_IRQ1MASK;
389 mask0 |= mask;
391 writel(mask0, base + MMCIMASK0);
394 writel(mask, base + MMCIMASK1);
397 static void mmci_stop_data(struct mmci_host *host)
399 mmci_write_datactrlreg(host, 0);
400 mmci_set_mask1(host, 0);
401 host->data = NULL;
404 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
406 unsigned int flags = SG_MITER_ATOMIC;
408 if (data->flags & MMC_DATA_READ)
409 flags |= SG_MITER_TO_SG;
410 else
411 flags |= SG_MITER_FROM_SG;
413 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
417 * All the DMA operation mode stuff goes inside this ifdef.
418 * This assumes that you have a generic DMA device interface,
419 * no custom DMA interfaces are supported.
421 #ifdef CONFIG_DMA_ENGINE
422 static void mmci_dma_setup(struct mmci_host *host)
424 const char *rxname, *txname;
425 struct variant_data *variant = host->variant;
427 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
428 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
430 /* initialize pre request cookie */
431 host->next_data.cookie = 1;
434 * If only an RX channel is specified, the driver will
435 * attempt to use it bidirectionally, however if it is
436 * is specified but cannot be located, DMA will be disabled.
438 if (host->dma_rx_channel && !host->dma_tx_channel)
439 host->dma_tx_channel = host->dma_rx_channel;
441 if (host->dma_rx_channel)
442 rxname = dma_chan_name(host->dma_rx_channel);
443 else
444 rxname = "none";
446 if (host->dma_tx_channel)
447 txname = dma_chan_name(host->dma_tx_channel);
448 else
449 txname = "none";
451 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
452 rxname, txname);
455 * Limit the maximum segment size in any SG entry according to
456 * the parameters of the DMA engine device.
458 if (host->dma_tx_channel) {
459 struct device *dev = host->dma_tx_channel->device->dev;
460 unsigned int max_seg_size = dma_get_max_seg_size(dev);
462 if (max_seg_size < host->mmc->max_seg_size)
463 host->mmc->max_seg_size = max_seg_size;
465 if (host->dma_rx_channel) {
466 struct device *dev = host->dma_rx_channel->device->dev;
467 unsigned int max_seg_size = dma_get_max_seg_size(dev);
469 if (max_seg_size < host->mmc->max_seg_size)
470 host->mmc->max_seg_size = max_seg_size;
473 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
474 if (dml_hw_init(host, host->mmc->parent->of_node))
475 variant->qcom_dml = false;
479 * This is used in or so inline it
480 * so it can be discarded.
482 static inline void mmci_dma_release(struct mmci_host *host)
484 if (host->dma_rx_channel)
485 dma_release_channel(host->dma_rx_channel);
486 if (host->dma_tx_channel)
487 dma_release_channel(host->dma_tx_channel);
488 host->dma_rx_channel = host->dma_tx_channel = NULL;
491 static void mmci_dma_data_error(struct mmci_host *host)
493 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
494 dmaengine_terminate_all(host->dma_current);
495 host->dma_current = NULL;
496 host->dma_desc_current = NULL;
497 host->data->host_cookie = 0;
500 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
502 struct dma_chan *chan;
503 enum dma_data_direction dir;
505 if (data->flags & MMC_DATA_READ) {
506 dir = DMA_FROM_DEVICE;
507 chan = host->dma_rx_channel;
508 } else {
509 dir = DMA_TO_DEVICE;
510 chan = host->dma_tx_channel;
513 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
516 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
518 u32 status;
519 int i;
521 /* Wait up to 1ms for the DMA to complete */
522 for (i = 0; ; i++) {
523 status = readl(host->base + MMCISTATUS);
524 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
525 break;
526 udelay(10);
530 * Check to see whether we still have some data left in the FIFO -
531 * this catches DMA controllers which are unable to monitor the
532 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
533 * contiguous buffers. On TX, we'll get a FIFO underrun error.
535 if (status & MCI_RXDATAAVLBLMASK) {
536 mmci_dma_data_error(host);
537 if (!data->error)
538 data->error = -EIO;
541 if (!data->host_cookie)
542 mmci_dma_unmap(host, data);
545 * Use of DMA with scatter-gather is impossible.
546 * Give up with DMA and switch back to PIO mode.
548 if (status & MCI_RXDATAAVLBLMASK) {
549 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
550 mmci_dma_release(host);
553 host->dma_current = NULL;
554 host->dma_desc_current = NULL;
557 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
558 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
559 struct dma_chan **dma_chan,
560 struct dma_async_tx_descriptor **dma_desc)
562 struct variant_data *variant = host->variant;
563 struct dma_slave_config conf = {
564 .src_addr = host->phybase + MMCIFIFO,
565 .dst_addr = host->phybase + MMCIFIFO,
566 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
567 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
568 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
569 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
570 .device_fc = false,
572 struct dma_chan *chan;
573 struct dma_device *device;
574 struct dma_async_tx_descriptor *desc;
575 enum dma_data_direction buffer_dirn;
576 int nr_sg;
577 unsigned long flags = DMA_CTRL_ACK;
579 if (data->flags & MMC_DATA_READ) {
580 conf.direction = DMA_DEV_TO_MEM;
581 buffer_dirn = DMA_FROM_DEVICE;
582 chan = host->dma_rx_channel;
583 } else {
584 conf.direction = DMA_MEM_TO_DEV;
585 buffer_dirn = DMA_TO_DEVICE;
586 chan = host->dma_tx_channel;
589 /* If there's no DMA channel, fall back to PIO */
590 if (!chan)
591 return -EINVAL;
593 /* If less than or equal to the fifo size, don't bother with DMA */
594 if (data->blksz * data->blocks <= variant->fifosize)
595 return -EINVAL;
597 device = chan->device;
598 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
599 if (nr_sg == 0)
600 return -EINVAL;
602 if (host->variant->qcom_dml)
603 flags |= DMA_PREP_INTERRUPT;
605 dmaengine_slave_config(chan, &conf);
606 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
607 conf.direction, flags);
608 if (!desc)
609 goto unmap_exit;
611 *dma_chan = chan;
612 *dma_desc = desc;
614 return 0;
616 unmap_exit:
617 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
618 return -ENOMEM;
621 static inline int mmci_dma_prep_data(struct mmci_host *host,
622 struct mmc_data *data)
624 /* Check if next job is already prepared. */
625 if (host->dma_current && host->dma_desc_current)
626 return 0;
628 /* No job were prepared thus do it now. */
629 return __mmci_dma_prep_data(host, data, &host->dma_current,
630 &host->dma_desc_current);
633 static inline int mmci_dma_prep_next(struct mmci_host *host,
634 struct mmc_data *data)
636 struct mmci_host_next *nd = &host->next_data;
637 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
640 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
642 int ret;
643 struct mmc_data *data = host->data;
645 ret = mmci_dma_prep_data(host, host->data);
646 if (ret)
647 return ret;
649 /* Okay, go for it. */
650 dev_vdbg(mmc_dev(host->mmc),
651 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
652 data->sg_len, data->blksz, data->blocks, data->flags);
653 dmaengine_submit(host->dma_desc_current);
654 dma_async_issue_pending(host->dma_current);
656 if (host->variant->qcom_dml)
657 dml_start_xfer(host, data);
659 datactrl |= MCI_DPSM_DMAENABLE;
661 /* Trigger the DMA transfer */
662 mmci_write_datactrlreg(host, datactrl);
665 * Let the MMCI say when the data is ended and it's time
666 * to fire next DMA request. When that happens, MMCI will
667 * call mmci_data_end()
669 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
670 host->base + MMCIMASK0);
671 return 0;
674 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
676 struct mmci_host_next *next = &host->next_data;
678 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
679 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
681 host->dma_desc_current = next->dma_desc;
682 host->dma_current = next->dma_chan;
683 next->dma_desc = NULL;
684 next->dma_chan = NULL;
687 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
688 bool is_first_req)
690 struct mmci_host *host = mmc_priv(mmc);
691 struct mmc_data *data = mrq->data;
692 struct mmci_host_next *nd = &host->next_data;
694 if (!data)
695 return;
697 BUG_ON(data->host_cookie);
699 if (mmci_validate_data(host, data))
700 return;
702 if (!mmci_dma_prep_next(host, data))
703 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
706 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
707 int err)
709 struct mmci_host *host = mmc_priv(mmc);
710 struct mmc_data *data = mrq->data;
712 if (!data || !data->host_cookie)
713 return;
715 mmci_dma_unmap(host, data);
717 if (err) {
718 struct mmci_host_next *next = &host->next_data;
719 struct dma_chan *chan;
720 if (data->flags & MMC_DATA_READ)
721 chan = host->dma_rx_channel;
722 else
723 chan = host->dma_tx_channel;
724 dmaengine_terminate_all(chan);
726 if (host->dma_desc_current == next->dma_desc)
727 host->dma_desc_current = NULL;
729 if (host->dma_current == next->dma_chan)
730 host->dma_current = NULL;
732 next->dma_desc = NULL;
733 next->dma_chan = NULL;
734 data->host_cookie = 0;
738 #else
739 /* Blank functions if the DMA engine is not available */
740 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
743 static inline void mmci_dma_setup(struct mmci_host *host)
747 static inline void mmci_dma_release(struct mmci_host *host)
751 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
755 static inline void mmci_dma_finalize(struct mmci_host *host,
756 struct mmc_data *data)
760 static inline void mmci_dma_data_error(struct mmci_host *host)
764 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
766 return -ENOSYS;
769 #define mmci_pre_request NULL
770 #define mmci_post_request NULL
772 #endif
774 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
776 struct variant_data *variant = host->variant;
777 unsigned int datactrl, timeout, irqmask;
778 unsigned long long clks;
779 void __iomem *base;
780 int blksz_bits;
782 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
783 data->blksz, data->blocks, data->flags);
785 host->data = data;
786 host->size = data->blksz * data->blocks;
787 data->bytes_xfered = 0;
789 clks = (unsigned long long)data->timeout_ns * host->cclk;
790 do_div(clks, NSEC_PER_SEC);
792 timeout = data->timeout_clks + (unsigned int)clks;
794 base = host->base;
795 writel(timeout, base + MMCIDATATIMER);
796 writel(host->size, base + MMCIDATALENGTH);
798 blksz_bits = ffs(data->blksz) - 1;
799 BUG_ON(1 << blksz_bits != data->blksz);
801 if (variant->blksz_datactrl16)
802 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
803 else if (variant->blksz_datactrl4)
804 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
805 else
806 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
808 if (data->flags & MMC_DATA_READ)
809 datactrl |= MCI_DPSM_DIRECTION;
811 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
812 u32 clk;
814 datactrl |= variant->datactrl_mask_sdio;
817 * The ST Micro variant for SDIO small write transfers
818 * needs to have clock H/W flow control disabled,
819 * otherwise the transfer will not start. The threshold
820 * depends on the rate of MCLK.
822 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
823 (host->size < 8 ||
824 (host->size <= 8 && host->mclk > 50000000)))
825 clk = host->clk_reg & ~variant->clkreg_enable;
826 else
827 clk = host->clk_reg | variant->clkreg_enable;
829 mmci_write_clkreg(host, clk);
832 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
833 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
834 datactrl |= variant->datactrl_mask_ddrmode;
837 * Attempt to use DMA operation mode, if this
838 * should fail, fall back to PIO mode
840 if (!mmci_dma_start_data(host, datactrl))
841 return;
843 /* IRQ mode, map the SG list for CPU reading/writing */
844 mmci_init_sg(host, data);
846 if (data->flags & MMC_DATA_READ) {
847 irqmask = MCI_RXFIFOHALFFULLMASK;
850 * If we have less than the fifo 'half-full' threshold to
851 * transfer, trigger a PIO interrupt as soon as any data
852 * is available.
854 if (host->size < variant->fifohalfsize)
855 irqmask |= MCI_RXDATAAVLBLMASK;
856 } else {
858 * We don't actually need to include "FIFO empty" here
859 * since its implicit in "FIFO half empty".
861 irqmask = MCI_TXFIFOHALFEMPTYMASK;
864 mmci_write_datactrlreg(host, datactrl);
865 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
866 mmci_set_mask1(host, irqmask);
869 static void
870 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
872 void __iomem *base = host->base;
874 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
875 cmd->opcode, cmd->arg, cmd->flags);
877 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
878 writel(0, base + MMCICOMMAND);
879 mmci_reg_delay(host);
882 c |= cmd->opcode | MCI_CPSM_ENABLE;
883 if (cmd->flags & MMC_RSP_PRESENT) {
884 if (cmd->flags & MMC_RSP_136)
885 c |= MCI_CPSM_LONGRSP;
886 c |= MCI_CPSM_RESPONSE;
888 if (/*interrupt*/0)
889 c |= MCI_CPSM_INTERRUPT;
891 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
892 c |= host->variant->data_cmd_enable;
894 host->cmd = cmd;
896 writel(cmd->arg, base + MMCIARGUMENT);
897 writel(c, base + MMCICOMMAND);
900 static void
901 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
902 unsigned int status)
904 /* Make sure we have data to handle */
905 if (!data)
906 return;
908 /* First check for errors */
909 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
910 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
911 u32 remain, success;
913 /* Terminate the DMA transfer */
914 if (dma_inprogress(host)) {
915 mmci_dma_data_error(host);
916 mmci_dma_unmap(host, data);
920 * Calculate how far we are into the transfer. Note that
921 * the data counter gives the number of bytes transferred
922 * on the MMC bus, not on the host side. On reads, this
923 * can be as much as a FIFO-worth of data ahead. This
924 * matters for FIFO overruns only.
926 remain = readl(host->base + MMCIDATACNT);
927 success = data->blksz * data->blocks - remain;
929 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
930 status, success);
931 if (status & MCI_DATACRCFAIL) {
932 /* Last block was not successful */
933 success -= 1;
934 data->error = -EILSEQ;
935 } else if (status & MCI_DATATIMEOUT) {
936 data->error = -ETIMEDOUT;
937 } else if (status & MCI_STARTBITERR) {
938 data->error = -ECOMM;
939 } else if (status & MCI_TXUNDERRUN) {
940 data->error = -EIO;
941 } else if (status & MCI_RXOVERRUN) {
942 if (success > host->variant->fifosize)
943 success -= host->variant->fifosize;
944 else
945 success = 0;
946 data->error = -EIO;
948 data->bytes_xfered = round_down(success, data->blksz);
951 if (status & MCI_DATABLOCKEND)
952 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
954 if (status & MCI_DATAEND || data->error) {
955 if (dma_inprogress(host))
956 mmci_dma_finalize(host, data);
957 mmci_stop_data(host);
959 if (!data->error)
960 /* The error clause is handled above, success! */
961 data->bytes_xfered = data->blksz * data->blocks;
963 if (!data->stop || host->mrq->sbc) {
964 mmci_request_end(host, data->mrq);
965 } else {
966 mmci_start_command(host, data->stop, 0);
971 static void
972 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
973 unsigned int status)
975 void __iomem *base = host->base;
976 bool sbc, busy_resp;
978 if (!cmd)
979 return;
981 sbc = (cmd == host->mrq->sbc);
982 busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY);
984 if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
985 MCI_CMDSENT|MCI_CMDRESPEND)))
986 return;
988 /* Check if we need to wait for busy completion. */
989 if (host->busy_status && (status & MCI_ST_CARDBUSY))
990 return;
992 /* Enable busy completion if needed and supported. */
993 if (!host->busy_status && busy_resp &&
994 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
995 (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
996 writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
997 base + MMCIMASK0);
998 host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
999 return;
1002 /* At busy completion, mask the IRQ and complete the request. */
1003 if (host->busy_status) {
1004 writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
1005 base + MMCIMASK0);
1006 host->busy_status = 0;
1009 host->cmd = NULL;
1011 if (status & MCI_CMDTIMEOUT) {
1012 cmd->error = -ETIMEDOUT;
1013 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1014 cmd->error = -EILSEQ;
1015 } else {
1016 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1017 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1018 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1019 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1022 if ((!sbc && !cmd->data) || cmd->error) {
1023 if (host->data) {
1024 /* Terminate the DMA transfer */
1025 if (dma_inprogress(host)) {
1026 mmci_dma_data_error(host);
1027 mmci_dma_unmap(host, host->data);
1029 mmci_stop_data(host);
1031 mmci_request_end(host, host->mrq);
1032 } else if (sbc) {
1033 mmci_start_command(host, host->mrq->cmd, 0);
1034 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1035 mmci_start_data(host, cmd->data);
1039 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1041 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1044 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1047 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1048 * from the fifo range should be used
1050 if (status & MCI_RXFIFOHALFFULL)
1051 return host->variant->fifohalfsize;
1052 else if (status & MCI_RXDATAAVLBL)
1053 return 4;
1055 return 0;
1058 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1060 void __iomem *base = host->base;
1061 char *ptr = buffer;
1062 u32 status = readl(host->base + MMCISTATUS);
1063 int host_remain = host->size;
1065 do {
1066 int count = host->get_rx_fifocnt(host, status, host_remain);
1068 if (count > remain)
1069 count = remain;
1071 if (count <= 0)
1072 break;
1075 * SDIO especially may want to send something that is
1076 * not divisible by 4 (as opposed to card sectors
1077 * etc). Therefore make sure to always read the last bytes
1078 * while only doing full 32-bit reads towards the FIFO.
1080 if (unlikely(count & 0x3)) {
1081 if (count < 4) {
1082 unsigned char buf[4];
1083 ioread32_rep(base + MMCIFIFO, buf, 1);
1084 memcpy(ptr, buf, count);
1085 } else {
1086 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1087 count &= ~0x3;
1089 } else {
1090 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1093 ptr += count;
1094 remain -= count;
1095 host_remain -= count;
1097 if (remain == 0)
1098 break;
1100 status = readl(base + MMCISTATUS);
1101 } while (status & MCI_RXDATAAVLBL);
1103 return ptr - buffer;
1106 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1108 struct variant_data *variant = host->variant;
1109 void __iomem *base = host->base;
1110 char *ptr = buffer;
1112 do {
1113 unsigned int count, maxcnt;
1115 maxcnt = status & MCI_TXFIFOEMPTY ?
1116 variant->fifosize : variant->fifohalfsize;
1117 count = min(remain, maxcnt);
1120 * SDIO especially may want to send something that is
1121 * not divisible by 4 (as opposed to card sectors
1122 * etc), and the FIFO only accept full 32-bit writes.
1123 * So compensate by adding +3 on the count, a single
1124 * byte become a 32bit write, 7 bytes will be two
1125 * 32bit writes etc.
1127 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1129 ptr += count;
1130 remain -= count;
1132 if (remain == 0)
1133 break;
1135 status = readl(base + MMCISTATUS);
1136 } while (status & MCI_TXFIFOHALFEMPTY);
1138 return ptr - buffer;
1142 * PIO data transfer IRQ handler.
1144 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1146 struct mmci_host *host = dev_id;
1147 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1148 struct variant_data *variant = host->variant;
1149 void __iomem *base = host->base;
1150 unsigned long flags;
1151 u32 status;
1153 status = readl(base + MMCISTATUS);
1155 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1157 local_irq_save(flags);
1159 do {
1160 unsigned int remain, len;
1161 char *buffer;
1164 * For write, we only need to test the half-empty flag
1165 * here - if the FIFO is completely empty, then by
1166 * definition it is more than half empty.
1168 * For read, check for data available.
1170 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1171 break;
1173 if (!sg_miter_next(sg_miter))
1174 break;
1176 buffer = sg_miter->addr;
1177 remain = sg_miter->length;
1179 len = 0;
1180 if (status & MCI_RXACTIVE)
1181 len = mmci_pio_read(host, buffer, remain);
1182 if (status & MCI_TXACTIVE)
1183 len = mmci_pio_write(host, buffer, remain, status);
1185 sg_miter->consumed = len;
1187 host->size -= len;
1188 remain -= len;
1190 if (remain)
1191 break;
1193 status = readl(base + MMCISTATUS);
1194 } while (1);
1196 sg_miter_stop(sg_miter);
1198 local_irq_restore(flags);
1201 * If we have less than the fifo 'half-full' threshold to transfer,
1202 * trigger a PIO interrupt as soon as any data is available.
1204 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1205 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1208 * If we run out of data, disable the data IRQs; this
1209 * prevents a race where the FIFO becomes empty before
1210 * the chip itself has disabled the data path, and
1211 * stops us racing with our data end IRQ.
1213 if (host->size == 0) {
1214 mmci_set_mask1(host, 0);
1215 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1218 return IRQ_HANDLED;
1222 * Handle completion of command and data transfers.
1224 static irqreturn_t mmci_irq(int irq, void *dev_id)
1226 struct mmci_host *host = dev_id;
1227 u32 status;
1228 int ret = 0;
1230 spin_lock(&host->lock);
1232 do {
1233 status = readl(host->base + MMCISTATUS);
1235 if (host->singleirq) {
1236 if (status & readl(host->base + MMCIMASK1))
1237 mmci_pio_irq(irq, dev_id);
1239 status &= ~MCI_IRQ1MASK;
1243 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1244 * enabled) since the HW seems to be triggering the IRQ on both
1245 * edges while monitoring DAT0 for busy completion.
1247 status &= readl(host->base + MMCIMASK0);
1248 writel(status, host->base + MMCICLEAR);
1250 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1252 if (host->variant->reversed_irq_handling) {
1253 mmci_data_irq(host, host->data, status);
1254 mmci_cmd_irq(host, host->cmd, status);
1255 } else {
1256 mmci_cmd_irq(host, host->cmd, status);
1257 mmci_data_irq(host, host->data, status);
1260 /* Don't poll for busy completion in irq context. */
1261 if (host->busy_status)
1262 status &= ~MCI_ST_CARDBUSY;
1264 ret = 1;
1265 } while (status);
1267 spin_unlock(&host->lock);
1269 return IRQ_RETVAL(ret);
1272 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1274 struct mmci_host *host = mmc_priv(mmc);
1275 unsigned long flags;
1277 WARN_ON(host->mrq != NULL);
1279 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1280 if (mrq->cmd->error) {
1281 mmc_request_done(mmc, mrq);
1282 return;
1285 spin_lock_irqsave(&host->lock, flags);
1287 host->mrq = mrq;
1289 if (mrq->data)
1290 mmci_get_next_data(host, mrq->data);
1292 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1293 mmci_start_data(host, mrq->data);
1295 if (mrq->sbc)
1296 mmci_start_command(host, mrq->sbc, 0);
1297 else
1298 mmci_start_command(host, mrq->cmd, 0);
1300 spin_unlock_irqrestore(&host->lock, flags);
1303 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1305 struct mmci_host *host = mmc_priv(mmc);
1306 struct variant_data *variant = host->variant;
1307 u32 pwr = 0;
1308 unsigned long flags;
1309 int ret;
1311 if (host->plat->ios_handler &&
1312 host->plat->ios_handler(mmc_dev(mmc), ios))
1313 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1315 switch (ios->power_mode) {
1316 case MMC_POWER_OFF:
1317 if (!IS_ERR(mmc->supply.vmmc))
1318 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1320 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1321 regulator_disable(mmc->supply.vqmmc);
1322 host->vqmmc_enabled = false;
1325 break;
1326 case MMC_POWER_UP:
1327 if (!IS_ERR(mmc->supply.vmmc))
1328 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1331 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1332 * and instead uses MCI_PWR_ON so apply whatever value is
1333 * configured in the variant data.
1335 pwr |= variant->pwrreg_powerup;
1337 break;
1338 case MMC_POWER_ON:
1339 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1340 ret = regulator_enable(mmc->supply.vqmmc);
1341 if (ret < 0)
1342 dev_err(mmc_dev(mmc),
1343 "failed to enable vqmmc regulator\n");
1344 else
1345 host->vqmmc_enabled = true;
1348 pwr |= MCI_PWR_ON;
1349 break;
1352 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1354 * The ST Micro variant has some additional bits
1355 * indicating signal direction for the signals in
1356 * the SD/MMC bus and feedback-clock usage.
1358 pwr |= host->pwr_reg_add;
1360 if (ios->bus_width == MMC_BUS_WIDTH_4)
1361 pwr &= ~MCI_ST_DATA74DIREN;
1362 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1363 pwr &= (~MCI_ST_DATA74DIREN &
1364 ~MCI_ST_DATA31DIREN &
1365 ~MCI_ST_DATA2DIREN);
1368 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1369 if (host->hw_designer != AMBA_VENDOR_ST)
1370 pwr |= MCI_ROD;
1371 else {
1373 * The ST Micro variant use the ROD bit for something
1374 * else and only has OD (Open Drain).
1376 pwr |= MCI_OD;
1381 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1382 * gating the clock, the MCI_PWR_ON bit is cleared.
1384 if (!ios->clock && variant->pwrreg_clkgate)
1385 pwr &= ~MCI_PWR_ON;
1387 if (host->variant->explicit_mclk_control &&
1388 ios->clock != host->clock_cache) {
1389 ret = clk_set_rate(host->clk, ios->clock);
1390 if (ret < 0)
1391 dev_err(mmc_dev(host->mmc),
1392 "Error setting clock rate (%d)\n", ret);
1393 else
1394 host->mclk = clk_get_rate(host->clk);
1396 host->clock_cache = ios->clock;
1398 spin_lock_irqsave(&host->lock, flags);
1400 mmci_set_clkreg(host, ios->clock);
1401 mmci_write_pwrreg(host, pwr);
1402 mmci_reg_delay(host);
1404 spin_unlock_irqrestore(&host->lock, flags);
1407 static int mmci_get_cd(struct mmc_host *mmc)
1409 struct mmci_host *host = mmc_priv(mmc);
1410 struct mmci_platform_data *plat = host->plat;
1411 unsigned int status = mmc_gpio_get_cd(mmc);
1413 if (status == -ENOSYS) {
1414 if (!plat->status)
1415 return 1; /* Assume always present */
1417 status = plat->status(mmc_dev(host->mmc));
1419 return status;
1422 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1424 int ret = 0;
1426 if (!IS_ERR(mmc->supply.vqmmc)) {
1428 switch (ios->signal_voltage) {
1429 case MMC_SIGNAL_VOLTAGE_330:
1430 ret = regulator_set_voltage(mmc->supply.vqmmc,
1431 2700000, 3600000);
1432 break;
1433 case MMC_SIGNAL_VOLTAGE_180:
1434 ret = regulator_set_voltage(mmc->supply.vqmmc,
1435 1700000, 1950000);
1436 break;
1437 case MMC_SIGNAL_VOLTAGE_120:
1438 ret = regulator_set_voltage(mmc->supply.vqmmc,
1439 1100000, 1300000);
1440 break;
1443 if (ret)
1444 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1447 return ret;
1450 static struct mmc_host_ops mmci_ops = {
1451 .request = mmci_request,
1452 .pre_req = mmci_pre_request,
1453 .post_req = mmci_post_request,
1454 .set_ios = mmci_set_ios,
1455 .get_ro = mmc_gpio_get_ro,
1456 .get_cd = mmci_get_cd,
1457 .start_signal_voltage_switch = mmci_sig_volt_switch,
1460 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1462 struct mmci_host *host = mmc_priv(mmc);
1463 int ret = mmc_of_parse(mmc);
1465 if (ret)
1466 return ret;
1468 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1469 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1470 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1471 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1472 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1473 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1474 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1475 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1476 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1477 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1478 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1479 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1481 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1482 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1483 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1484 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1486 return 0;
1489 static int mmci_probe(struct amba_device *dev,
1490 const struct amba_id *id)
1492 struct mmci_platform_data *plat = dev->dev.platform_data;
1493 struct device_node *np = dev->dev.of_node;
1494 struct variant_data *variant = id->data;
1495 struct mmci_host *host;
1496 struct mmc_host *mmc;
1497 int ret;
1499 /* Must have platform data or Device Tree. */
1500 if (!plat && !np) {
1501 dev_err(&dev->dev, "No plat data or DT found\n");
1502 return -EINVAL;
1505 if (!plat) {
1506 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1507 if (!plat)
1508 return -ENOMEM;
1511 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1512 if (!mmc)
1513 return -ENOMEM;
1515 ret = mmci_of_parse(np, mmc);
1516 if (ret)
1517 goto host_free;
1519 host = mmc_priv(mmc);
1520 host->mmc = mmc;
1522 host->hw_designer = amba_manf(dev);
1523 host->hw_revision = amba_rev(dev);
1524 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1525 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1527 host->clk = devm_clk_get(&dev->dev, NULL);
1528 if (IS_ERR(host->clk)) {
1529 ret = PTR_ERR(host->clk);
1530 goto host_free;
1533 ret = clk_prepare_enable(host->clk);
1534 if (ret)
1535 goto host_free;
1537 if (variant->qcom_fifo)
1538 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1539 else
1540 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1542 host->plat = plat;
1543 host->variant = variant;
1544 host->mclk = clk_get_rate(host->clk);
1546 * According to the spec, mclk is max 100 MHz,
1547 * so we try to adjust the clock down to this,
1548 * (if possible).
1550 if (host->mclk > variant->f_max) {
1551 ret = clk_set_rate(host->clk, variant->f_max);
1552 if (ret < 0)
1553 goto clk_disable;
1554 host->mclk = clk_get_rate(host->clk);
1555 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1556 host->mclk);
1559 host->phybase = dev->res.start;
1560 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1561 if (IS_ERR(host->base)) {
1562 ret = PTR_ERR(host->base);
1563 goto clk_disable;
1567 * The ARM and ST versions of the block have slightly different
1568 * clock divider equations which means that the minimum divider
1569 * differs too.
1570 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1572 if (variant->st_clkdiv)
1573 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1574 else if (variant->explicit_mclk_control)
1575 mmc->f_min = clk_round_rate(host->clk, 100000);
1576 else
1577 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1579 * If no maximum operating frequency is supplied, fall back to use
1580 * the module parameter, which has a (low) default value in case it
1581 * is not specified. Either value must not exceed the clock rate into
1582 * the block, of course.
1584 if (mmc->f_max)
1585 mmc->f_max = variant->explicit_mclk_control ?
1586 min(variant->f_max, mmc->f_max) :
1587 min(host->mclk, mmc->f_max);
1588 else
1589 mmc->f_max = variant->explicit_mclk_control ?
1590 fmax : min(host->mclk, fmax);
1593 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1595 /* Get regulators and the supported OCR mask */
1596 ret = mmc_regulator_get_supply(mmc);
1597 if (ret == -EPROBE_DEFER)
1598 goto clk_disable;
1600 if (!mmc->ocr_avail)
1601 mmc->ocr_avail = plat->ocr_mask;
1602 else if (plat->ocr_mask)
1603 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1605 /* DT takes precedence over platform data. */
1606 if (!np) {
1607 if (!plat->cd_invert)
1608 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1609 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1612 /* We support these capabilities. */
1613 mmc->caps |= MMC_CAP_CMD23;
1615 if (variant->busy_detect) {
1616 mmci_ops.card_busy = mmci_card_busy;
1617 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1618 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1619 mmc->max_busy_timeout = 0;
1622 mmc->ops = &mmci_ops;
1624 /* We support these PM capabilities. */
1625 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1628 * We can do SGIO
1630 mmc->max_segs = NR_SG;
1633 * Since only a certain number of bits are valid in the data length
1634 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1635 * single request.
1637 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1640 * Set the maximum segment size. Since we aren't doing DMA
1641 * (yet) we are only limited by the data length register.
1643 mmc->max_seg_size = mmc->max_req_size;
1646 * Block size can be up to 2048 bytes, but must be a power of two.
1648 mmc->max_blk_size = 1 << 11;
1651 * Limit the number of blocks transferred so that we don't overflow
1652 * the maximum request size.
1654 mmc->max_blk_count = mmc->max_req_size >> 11;
1656 spin_lock_init(&host->lock);
1658 writel(0, host->base + MMCIMASK0);
1659 writel(0, host->base + MMCIMASK1);
1660 writel(0xfff, host->base + MMCICLEAR);
1663 * If:
1664 * - not using DT but using a descriptor table, or
1665 * - using a table of descriptors ALONGSIDE DT, or
1666 * look up these descriptors named "cd" and "wp" right here, fail
1667 * silently of these do not exist and proceed to try platform data
1669 if (!np) {
1670 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1671 if (ret < 0) {
1672 if (ret == -EPROBE_DEFER)
1673 goto clk_disable;
1674 else if (gpio_is_valid(plat->gpio_cd)) {
1675 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1676 if (ret)
1677 goto clk_disable;
1681 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1682 if (ret < 0) {
1683 if (ret == -EPROBE_DEFER)
1684 goto clk_disable;
1685 else if (gpio_is_valid(plat->gpio_wp)) {
1686 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1687 if (ret)
1688 goto clk_disable;
1693 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1694 DRIVER_NAME " (cmd)", host);
1695 if (ret)
1696 goto clk_disable;
1698 if (!dev->irq[1])
1699 host->singleirq = true;
1700 else {
1701 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1702 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1703 if (ret)
1704 goto clk_disable;
1707 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1709 amba_set_drvdata(dev, mmc);
1711 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1712 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1713 amba_rev(dev), (unsigned long long)dev->res.start,
1714 dev->irq[0], dev->irq[1]);
1716 mmci_dma_setup(host);
1718 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1719 pm_runtime_use_autosuspend(&dev->dev);
1721 mmc_add_host(mmc);
1723 pm_runtime_put(&dev->dev);
1724 return 0;
1726 clk_disable:
1727 clk_disable_unprepare(host->clk);
1728 host_free:
1729 mmc_free_host(mmc);
1730 return ret;
1733 static int mmci_remove(struct amba_device *dev)
1735 struct mmc_host *mmc = amba_get_drvdata(dev);
1737 if (mmc) {
1738 struct mmci_host *host = mmc_priv(mmc);
1741 * Undo pm_runtime_put() in probe. We use the _sync
1742 * version here so that we can access the primecell.
1744 pm_runtime_get_sync(&dev->dev);
1746 mmc_remove_host(mmc);
1748 writel(0, host->base + MMCIMASK0);
1749 writel(0, host->base + MMCIMASK1);
1751 writel(0, host->base + MMCICOMMAND);
1752 writel(0, host->base + MMCIDATACTRL);
1754 mmci_dma_release(host);
1755 clk_disable_unprepare(host->clk);
1756 mmc_free_host(mmc);
1759 return 0;
1762 #ifdef CONFIG_PM
1763 static void mmci_save(struct mmci_host *host)
1765 unsigned long flags;
1767 spin_lock_irqsave(&host->lock, flags);
1769 writel(0, host->base + MMCIMASK0);
1770 if (host->variant->pwrreg_nopower) {
1771 writel(0, host->base + MMCIDATACTRL);
1772 writel(0, host->base + MMCIPOWER);
1773 writel(0, host->base + MMCICLOCK);
1775 mmci_reg_delay(host);
1777 spin_unlock_irqrestore(&host->lock, flags);
1780 static void mmci_restore(struct mmci_host *host)
1782 unsigned long flags;
1784 spin_lock_irqsave(&host->lock, flags);
1786 if (host->variant->pwrreg_nopower) {
1787 writel(host->clk_reg, host->base + MMCICLOCK);
1788 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1789 writel(host->pwr_reg, host->base + MMCIPOWER);
1791 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1792 mmci_reg_delay(host);
1794 spin_unlock_irqrestore(&host->lock, flags);
1797 static int mmci_runtime_suspend(struct device *dev)
1799 struct amba_device *adev = to_amba_device(dev);
1800 struct mmc_host *mmc = amba_get_drvdata(adev);
1802 if (mmc) {
1803 struct mmci_host *host = mmc_priv(mmc);
1804 pinctrl_pm_select_sleep_state(dev);
1805 mmci_save(host);
1806 clk_disable_unprepare(host->clk);
1809 return 0;
1812 static int mmci_runtime_resume(struct device *dev)
1814 struct amba_device *adev = to_amba_device(dev);
1815 struct mmc_host *mmc = amba_get_drvdata(adev);
1817 if (mmc) {
1818 struct mmci_host *host = mmc_priv(mmc);
1819 clk_prepare_enable(host->clk);
1820 mmci_restore(host);
1821 pinctrl_pm_select_default_state(dev);
1824 return 0;
1826 #endif
1828 static const struct dev_pm_ops mmci_dev_pm_ops = {
1829 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1830 pm_runtime_force_resume)
1831 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1834 static struct amba_id mmci_ids[] = {
1836 .id = 0x00041180,
1837 .mask = 0xff0fffff,
1838 .data = &variant_arm,
1841 .id = 0x01041180,
1842 .mask = 0xff0fffff,
1843 .data = &variant_arm_extended_fifo,
1846 .id = 0x02041180,
1847 .mask = 0xff0fffff,
1848 .data = &variant_arm_extended_fifo_hwfc,
1851 .id = 0x00041181,
1852 .mask = 0x000fffff,
1853 .data = &variant_arm,
1855 /* ST Micro variants */
1857 .id = 0x00180180,
1858 .mask = 0x00ffffff,
1859 .data = &variant_u300,
1862 .id = 0x10180180,
1863 .mask = 0xf0ffffff,
1864 .data = &variant_nomadik,
1867 .id = 0x00280180,
1868 .mask = 0x00ffffff,
1869 .data = &variant_nomadik,
1872 .id = 0x00480180,
1873 .mask = 0xf0ffffff,
1874 .data = &variant_ux500,
1877 .id = 0x10480180,
1878 .mask = 0xf0ffffff,
1879 .data = &variant_ux500v2,
1881 /* Qualcomm variants */
1883 .id = 0x00051180,
1884 .mask = 0x000fffff,
1885 .data = &variant_qcom,
1887 { 0, 0 },
1890 MODULE_DEVICE_TABLE(amba, mmci_ids);
1892 static struct amba_driver mmci_driver = {
1893 .drv = {
1894 .name = DRIVER_NAME,
1895 .pm = &mmci_dev_pm_ops,
1897 .probe = mmci_probe,
1898 .remove = mmci_remove,
1899 .id_table = mmci_ids,
1902 module_amba_driver(mmci_driver);
1904 module_param(fmax, uint, 0444);
1906 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1907 MODULE_LICENSE("GPL");