r8152: fix tx packets accounting
[linux/fpc-iii.git] / kernel / sched / core.c
blob917be221438b0e257aafa06047ba70f87811db9e
1 /*
2 * kernel/sched/core.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
99 void update_rq_clock(struct rq *rq)
101 s64 delta;
103 lockdep_assert_held(&rq->lock);
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 return;
108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 if (delta < 0)
110 return;
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
116 * Debugging: various feature bits
119 #define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
126 #undef SCHED_FEAT
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
132 const_debug unsigned int sysctl_sched_nr_migrate = 32;
135 * period over which we average the RT time consumption, measured
136 * in ms.
138 * default: 1s
140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
143 * period over which we measure -rt task cpu usage in us.
144 * default: 1s
146 unsigned int sysctl_sched_rt_period = 1000000;
148 __read_mostly int scheduler_running;
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
154 int sysctl_sched_rt_runtime = 950000;
156 /* cpus with isolated domains */
157 cpumask_var_t cpu_isolated_map;
160 * this_rq_lock - lock this runqueue and disable interrupts.
162 static struct rq *this_rq_lock(void)
163 __acquires(rq->lock)
165 struct rq *rq;
167 local_irq_disable();
168 rq = this_rq();
169 raw_spin_lock(&rq->lock);
171 return rq;
175 * __task_rq_lock - lock the rq @p resides on.
177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 __acquires(rq->lock)
180 struct rq *rq;
182 lockdep_assert_held(&p->pi_lock);
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188 rf->cookie = lockdep_pin_lock(&rq->lock);
189 return rq;
191 raw_spin_unlock(&rq->lock);
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
205 struct rq *rq;
207 for (;;) {
208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
212 * move_queued_task() task_rq_lock()
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228 rf->cookie = lockdep_pin_lock(&rq->lock);
229 return rq;
231 raw_spin_unlock(&rq->lock);
232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
239 #ifdef CONFIG_SCHED_HRTICK
241 * Use HR-timers to deliver accurate preemption points.
244 static void hrtick_clear(struct rq *rq)
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
254 static enum hrtimer_restart hrtick(struct hrtimer *timer)
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
260 raw_spin_lock(&rq->lock);
261 update_rq_clock(rq);
262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263 raw_spin_unlock(&rq->lock);
265 return HRTIMER_NORESTART;
268 #ifdef CONFIG_SMP
270 static void __hrtick_restart(struct rq *rq)
272 struct hrtimer *timer = &rq->hrtick_timer;
274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
278 * called from hardirq (IPI) context
280 static void __hrtick_start(void *arg)
282 struct rq *rq = arg;
284 raw_spin_lock(&rq->lock);
285 __hrtick_restart(rq);
286 rq->hrtick_csd_pending = 0;
287 raw_spin_unlock(&rq->lock);
291 * Called to set the hrtick timer state.
293 * called with rq->lock held and irqs disabled
295 void hrtick_start(struct rq *rq, u64 delay)
297 struct hrtimer *timer = &rq->hrtick_timer;
298 ktime_t time;
299 s64 delta;
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
308 hrtimer_set_expires(timer, time);
310 if (rq == this_rq()) {
311 __hrtick_restart(rq);
312 } else if (!rq->hrtick_csd_pending) {
313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 rq->hrtick_csd_pending = 1;
318 #else
320 * Called to set the hrtick timer state.
322 * called with rq->lock held and irqs disabled
324 void hrtick_start(struct rq *rq, u64 delay)
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
330 delay = max_t(u64, delay, 10000LL);
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
334 #endif /* CONFIG_SMP */
336 static void init_rq_hrtick(struct rq *rq)
338 #ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344 #endif
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
349 #else /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
354 static inline void init_rq_hrtick(struct rq *rq)
357 #endif /* CONFIG_SCHED_HRTICK */
360 * cmpxchg based fetch_or, macro so it works for different integer types
362 #define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
374 _old; \
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
383 static bool set_nr_and_not_polling(struct task_struct *p)
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
395 static bool set_nr_if_polling(struct task_struct *p)
397 struct thread_info *ti = task_thread_info(p);
398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
410 return true;
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
416 set_tsk_need_resched(p);
417 return true;
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
423 return false;
425 #endif
426 #endif
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
430 struct wake_q_node *node = &task->wake_q;
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
443 get_task_struct(task);
446 * The head is context local, there can be no concurrency.
448 *head->lastp = node;
449 head->lastp = &node->next;
452 void wake_up_q(struct wake_q_head *head)
454 struct wake_q_node *node = head->first;
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
469 wake_up_process(task);
470 put_task_struct(task);
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
481 void resched_curr(struct rq *rq)
483 struct task_struct *curr = rq->curr;
484 int cpu;
486 lockdep_assert_held(&rq->lock);
488 if (test_tsk_need_resched(curr))
489 return;
491 cpu = cpu_of(rq);
493 if (cpu == smp_processor_id()) {
494 set_tsk_need_resched(curr);
495 set_preempt_need_resched();
496 return;
499 if (set_nr_and_not_polling(curr))
500 smp_send_reschedule(cpu);
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
505 void resched_cpu(int cpu)
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
510 raw_spin_lock_irqsave(&rq->lock, flags);
511 if (cpu_online(cpu) || cpu == smp_processor_id())
512 resched_curr(rq);
513 raw_spin_unlock_irqrestore(&rq->lock, flags);
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
526 int get_nohz_timer_target(void)
528 int i, cpu = smp_processor_id();
529 struct sched_domain *sd;
531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 return cpu;
534 rcu_read_lock();
535 for_each_domain(cpu, sd) {
536 for_each_cpu(i, sched_domain_span(sd)) {
537 if (cpu == i)
538 continue;
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 cpu = i;
542 goto unlock;
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
549 unlock:
550 rcu_read_unlock();
551 return cpu;
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
563 static void wake_up_idle_cpu(int cpu)
565 struct rq *rq = cpu_rq(cpu);
567 if (cpu == smp_processor_id())
568 return;
570 if (set_nr_and_not_polling(rq->idle))
571 smp_send_reschedule(cpu);
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
576 static bool wake_up_full_nohz_cpu(int cpu)
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
586 if (tick_nohz_full_cpu(cpu)) {
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
589 tick_nohz_full_kick_cpu(cpu);
590 return true;
593 return false;
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
601 void wake_up_nohz_cpu(int cpu)
603 if (!wake_up_full_nohz_cpu(cpu))
604 wake_up_idle_cpu(cpu);
607 static inline bool got_nohz_idle_kick(void)
609 int cpu = smp_processor_id();
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
625 #else /* CONFIG_NO_HZ_COMMON */
627 static inline bool got_nohz_idle_kick(void)
629 return false;
632 #endif /* CONFIG_NO_HZ_COMMON */
634 #ifdef CONFIG_NO_HZ_FULL
635 bool sched_can_stop_tick(struct rq *rq)
637 int fifo_nr_running;
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
667 if (rq->nr_running > 1)
668 return false;
670 return true;
672 #endif /* CONFIG_NO_HZ_FULL */
674 void sched_avg_update(struct rq *rq)
676 s64 period = sched_avg_period();
678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
684 asm("" : "+rm" (rq->age_stamp));
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
690 #endif /* CONFIG_SMP */
692 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
698 * Caller must hold rcu_lock or sufficient equivalent.
700 int walk_tg_tree_from(struct task_group *from,
701 tg_visitor down, tg_visitor up, void *data)
703 struct task_group *parent, *child;
704 int ret;
706 parent = from;
708 down:
709 ret = (*down)(parent, data);
710 if (ret)
711 goto out;
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
717 continue;
719 ret = (*up)(parent, data);
720 if (ret || parent == from)
721 goto out;
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
727 out:
728 return ret;
731 int tg_nop(struct task_group *tg, void *data)
733 return 0;
735 #endif
737 static void set_load_weight(struct task_struct *p)
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
743 * SCHED_IDLE tasks get minimal weight:
745 if (idle_policy(p->policy)) {
746 load->weight = scale_load(WEIGHT_IDLEPRIO);
747 load->inv_weight = WMULT_IDLEPRIO;
748 return;
751 load->weight = scale_load(sched_prio_to_weight[prio]);
752 load->inv_weight = sched_prio_to_wmult[prio];
755 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
757 update_rq_clock(rq);
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
760 p->sched_class->enqueue_task(rq, p, flags);
763 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
765 update_rq_clock(rq);
766 if (!(flags & DEQUEUE_SAVE))
767 sched_info_dequeued(rq, p);
768 p->sched_class->dequeue_task(rq, p, flags);
771 void activate_task(struct rq *rq, struct task_struct *p, int flags)
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible--;
776 enqueue_task(rq, p, flags);
779 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible++;
784 dequeue_task(rq, p, flags);
787 static void update_rq_clock_task(struct rq *rq, s64 delta)
790 * In theory, the compile should just see 0 here, and optimize out the call
791 * to sched_rt_avg_update. But I don't trust it...
793 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
794 s64 steal = 0, irq_delta = 0;
795 #endif
796 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
800 * Since irq_time is only updated on {soft,}irq_exit, we might run into
801 * this case when a previous update_rq_clock() happened inside a
802 * {soft,}irq region.
804 * When this happens, we stop ->clock_task and only update the
805 * prev_irq_time stamp to account for the part that fit, so that a next
806 * update will consume the rest. This ensures ->clock_task is
807 * monotonic.
809 * It does however cause some slight miss-attribution of {soft,}irq
810 * time, a more accurate solution would be to update the irq_time using
811 * the current rq->clock timestamp, except that would require using
812 * atomic ops.
814 if (irq_delta > delta)
815 irq_delta = delta;
817 rq->prev_irq_time += irq_delta;
818 delta -= irq_delta;
819 #endif
820 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
821 if (static_key_false((&paravirt_steal_rq_enabled))) {
822 steal = paravirt_steal_clock(cpu_of(rq));
823 steal -= rq->prev_steal_time_rq;
825 if (unlikely(steal > delta))
826 steal = delta;
828 rq->prev_steal_time_rq += steal;
829 delta -= steal;
831 #endif
833 rq->clock_task += delta;
835 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
837 sched_rt_avg_update(rq, irq_delta + steal);
838 #endif
841 void sched_set_stop_task(int cpu, struct task_struct *stop)
843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
844 struct task_struct *old_stop = cpu_rq(cpu)->stop;
846 if (stop) {
848 * Make it appear like a SCHED_FIFO task, its something
849 * userspace knows about and won't get confused about.
851 * Also, it will make PI more or less work without too
852 * much confusion -- but then, stop work should not
853 * rely on PI working anyway.
855 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
857 stop->sched_class = &stop_sched_class;
860 cpu_rq(cpu)->stop = stop;
862 if (old_stop) {
864 * Reset it back to a normal scheduling class so that
865 * it can die in pieces.
867 old_stop->sched_class = &rt_sched_class;
872 * __normal_prio - return the priority that is based on the static prio
874 static inline int __normal_prio(struct task_struct *p)
876 return p->static_prio;
880 * Calculate the expected normal priority: i.e. priority
881 * without taking RT-inheritance into account. Might be
882 * boosted by interactivity modifiers. Changes upon fork,
883 * setprio syscalls, and whenever the interactivity
884 * estimator recalculates.
886 static inline int normal_prio(struct task_struct *p)
888 int prio;
890 if (task_has_dl_policy(p))
891 prio = MAX_DL_PRIO-1;
892 else if (task_has_rt_policy(p))
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
906 static int effective_prio(struct task_struct *p)
908 p->normal_prio = normal_prio(p);
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
923 * Return: 1 if the task is currently executing. 0 otherwise.
925 inline int task_curr(const struct task_struct *p)
927 return cpu_curr(task_cpu(p)) == p;
931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
932 * use the balance_callback list if you want balancing.
934 * this means any call to check_class_changed() must be followed by a call to
935 * balance_callback().
937 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
939 int oldprio)
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
943 prev_class->switched_from(rq, p);
945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio || dl_task(p))
947 p->sched_class->prio_changed(rq, p, oldprio);
950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
952 const struct sched_class *class;
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_curr(rq);
962 break;
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
972 rq_clock_skip_update(rq, true);
975 #ifdef CONFIG_SMP
977 * This is how migration works:
979 * 1) we invoke migration_cpu_stop() on the target CPU using
980 * stop_one_cpu().
981 * 2) stopper starts to run (implicitly forcing the migrated thread
982 * off the CPU)
983 * 3) it checks whether the migrated task is still in the wrong runqueue.
984 * 4) if it's in the wrong runqueue then the migration thread removes
985 * it and puts it into the right queue.
986 * 5) stopper completes and stop_one_cpu() returns and the migration
987 * is done.
991 * move_queued_task - move a queued task to new rq.
993 * Returns (locked) new rq. Old rq's lock is released.
995 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
997 lockdep_assert_held(&rq->lock);
999 p->on_rq = TASK_ON_RQ_MIGRATING;
1000 dequeue_task(rq, p, 0);
1001 set_task_cpu(p, new_cpu);
1002 raw_spin_unlock(&rq->lock);
1004 rq = cpu_rq(new_cpu);
1006 raw_spin_lock(&rq->lock);
1007 BUG_ON(task_cpu(p) != new_cpu);
1008 enqueue_task(rq, p, 0);
1009 p->on_rq = TASK_ON_RQ_QUEUED;
1010 check_preempt_curr(rq, p, 0);
1012 return rq;
1015 struct migration_arg {
1016 struct task_struct *task;
1017 int dest_cpu;
1021 * Move (not current) task off this cpu, onto dest cpu. We're doing
1022 * this because either it can't run here any more (set_cpus_allowed()
1023 * away from this CPU, or CPU going down), or because we're
1024 * attempting to rebalance this task on exec (sched_exec).
1026 * So we race with normal scheduler movements, but that's OK, as long
1027 * as the task is no longer on this CPU.
1029 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1031 if (unlikely(!cpu_active(dest_cpu)))
1032 return rq;
1034 /* Affinity changed (again). */
1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1036 return rq;
1038 rq = move_queued_task(rq, p, dest_cpu);
1040 return rq;
1044 * migration_cpu_stop - this will be executed by a highprio stopper thread
1045 * and performs thread migration by bumping thread off CPU then
1046 * 'pushing' onto another runqueue.
1048 static int migration_cpu_stop(void *data)
1050 struct migration_arg *arg = data;
1051 struct task_struct *p = arg->task;
1052 struct rq *rq = this_rq();
1055 * The original target cpu might have gone down and we might
1056 * be on another cpu but it doesn't matter.
1058 local_irq_disable();
1060 * We need to explicitly wake pending tasks before running
1061 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1064 sched_ttwu_pending();
1066 raw_spin_lock(&p->pi_lock);
1067 raw_spin_lock(&rq->lock);
1069 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071 * we're holding p->pi_lock.
1073 if (task_rq(p) == rq) {
1074 if (task_on_rq_queued(p))
1075 rq = __migrate_task(rq, p, arg->dest_cpu);
1076 else
1077 p->wake_cpu = arg->dest_cpu;
1079 raw_spin_unlock(&rq->lock);
1080 raw_spin_unlock(&p->pi_lock);
1082 local_irq_enable();
1083 return 0;
1087 * sched_class::set_cpus_allowed must do the below, but is not required to
1088 * actually call this function.
1090 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1092 cpumask_copy(&p->cpus_allowed, new_mask);
1093 p->nr_cpus_allowed = cpumask_weight(new_mask);
1096 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1098 struct rq *rq = task_rq(p);
1099 bool queued, running;
1101 lockdep_assert_held(&p->pi_lock);
1103 queued = task_on_rq_queued(p);
1104 running = task_current(rq, p);
1106 if (queued) {
1108 * Because __kthread_bind() calls this on blocked tasks without
1109 * holding rq->lock.
1111 lockdep_assert_held(&rq->lock);
1112 dequeue_task(rq, p, DEQUEUE_SAVE);
1114 if (running)
1115 put_prev_task(rq, p);
1117 p->sched_class->set_cpus_allowed(p, new_mask);
1119 if (queued)
1120 enqueue_task(rq, p, ENQUEUE_RESTORE);
1121 if (running)
1122 set_curr_task(rq, p);
1126 * Change a given task's CPU affinity. Migrate the thread to a
1127 * proper CPU and schedule it away if the CPU it's executing on
1128 * is removed from the allowed bitmask.
1130 * NOTE: the caller must have a valid reference to the task, the
1131 * task must not exit() & deallocate itself prematurely. The
1132 * call is not atomic; no spinlocks may be held.
1134 static int __set_cpus_allowed_ptr(struct task_struct *p,
1135 const struct cpumask *new_mask, bool check)
1137 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1138 unsigned int dest_cpu;
1139 struct rq_flags rf;
1140 struct rq *rq;
1141 int ret = 0;
1143 rq = task_rq_lock(p, &rf);
1144 update_rq_clock(rq);
1146 if (p->flags & PF_KTHREAD) {
1148 * Kernel threads are allowed on online && !active CPUs
1150 cpu_valid_mask = cpu_online_mask;
1154 * Must re-check here, to close a race against __kthread_bind(),
1155 * sched_setaffinity() is not guaranteed to observe the flag.
1157 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1158 ret = -EINVAL;
1159 goto out;
1162 if (cpumask_equal(&p->cpus_allowed, new_mask))
1163 goto out;
1165 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1166 ret = -EINVAL;
1167 goto out;
1170 do_set_cpus_allowed(p, new_mask);
1172 if (p->flags & PF_KTHREAD) {
1174 * For kernel threads that do indeed end up on online &&
1175 * !active we want to ensure they are strict per-cpu threads.
1177 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1178 !cpumask_intersects(new_mask, cpu_active_mask) &&
1179 p->nr_cpus_allowed != 1);
1182 /* Can the task run on the task's current CPU? If so, we're done */
1183 if (cpumask_test_cpu(task_cpu(p), new_mask))
1184 goto out;
1186 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1187 if (task_running(rq, p) || p->state == TASK_WAKING) {
1188 struct migration_arg arg = { p, dest_cpu };
1189 /* Need help from migration thread: drop lock and wait. */
1190 task_rq_unlock(rq, p, &rf);
1191 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1192 tlb_migrate_finish(p->mm);
1193 return 0;
1194 } else if (task_on_rq_queued(p)) {
1196 * OK, since we're going to drop the lock immediately
1197 * afterwards anyway.
1199 lockdep_unpin_lock(&rq->lock, rf.cookie);
1200 rq = move_queued_task(rq, p, dest_cpu);
1201 lockdep_repin_lock(&rq->lock, rf.cookie);
1203 out:
1204 task_rq_unlock(rq, p, &rf);
1206 return ret;
1209 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1211 return __set_cpus_allowed_ptr(p, new_mask, false);
1213 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1215 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1217 #ifdef CONFIG_SCHED_DEBUG
1219 * We should never call set_task_cpu() on a blocked task,
1220 * ttwu() will sort out the placement.
1222 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1223 !p->on_rq);
1226 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1227 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1228 * time relying on p->on_rq.
1230 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1231 p->sched_class == &fair_sched_class &&
1232 (p->on_rq && !task_on_rq_migrating(p)));
1234 #ifdef CONFIG_LOCKDEP
1236 * The caller should hold either p->pi_lock or rq->lock, when changing
1237 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1239 * sched_move_task() holds both and thus holding either pins the cgroup,
1240 * see task_group().
1242 * Furthermore, all task_rq users should acquire both locks, see
1243 * task_rq_lock().
1245 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1246 lockdep_is_held(&task_rq(p)->lock)));
1247 #endif
1248 #endif
1250 trace_sched_migrate_task(p, new_cpu);
1252 if (task_cpu(p) != new_cpu) {
1253 if (p->sched_class->migrate_task_rq)
1254 p->sched_class->migrate_task_rq(p);
1255 p->se.nr_migrations++;
1256 perf_event_task_migrate(p);
1259 __set_task_cpu(p, new_cpu);
1262 static void __migrate_swap_task(struct task_struct *p, int cpu)
1264 if (task_on_rq_queued(p)) {
1265 struct rq *src_rq, *dst_rq;
1267 src_rq = task_rq(p);
1268 dst_rq = cpu_rq(cpu);
1270 p->on_rq = TASK_ON_RQ_MIGRATING;
1271 deactivate_task(src_rq, p, 0);
1272 set_task_cpu(p, cpu);
1273 activate_task(dst_rq, p, 0);
1274 p->on_rq = TASK_ON_RQ_QUEUED;
1275 check_preempt_curr(dst_rq, p, 0);
1276 } else {
1278 * Task isn't running anymore; make it appear like we migrated
1279 * it before it went to sleep. This means on wakeup we make the
1280 * previous cpu our target instead of where it really is.
1282 p->wake_cpu = cpu;
1286 struct migration_swap_arg {
1287 struct task_struct *src_task, *dst_task;
1288 int src_cpu, dst_cpu;
1291 static int migrate_swap_stop(void *data)
1293 struct migration_swap_arg *arg = data;
1294 struct rq *src_rq, *dst_rq;
1295 int ret = -EAGAIN;
1297 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1298 return -EAGAIN;
1300 src_rq = cpu_rq(arg->src_cpu);
1301 dst_rq = cpu_rq(arg->dst_cpu);
1303 double_raw_lock(&arg->src_task->pi_lock,
1304 &arg->dst_task->pi_lock);
1305 double_rq_lock(src_rq, dst_rq);
1307 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1308 goto unlock;
1310 if (task_cpu(arg->src_task) != arg->src_cpu)
1311 goto unlock;
1313 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1314 goto unlock;
1316 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1317 goto unlock;
1319 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1320 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1322 ret = 0;
1324 unlock:
1325 double_rq_unlock(src_rq, dst_rq);
1326 raw_spin_unlock(&arg->dst_task->pi_lock);
1327 raw_spin_unlock(&arg->src_task->pi_lock);
1329 return ret;
1333 * Cross migrate two tasks
1335 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1337 struct migration_swap_arg arg;
1338 int ret = -EINVAL;
1340 arg = (struct migration_swap_arg){
1341 .src_task = cur,
1342 .src_cpu = task_cpu(cur),
1343 .dst_task = p,
1344 .dst_cpu = task_cpu(p),
1347 if (arg.src_cpu == arg.dst_cpu)
1348 goto out;
1351 * These three tests are all lockless; this is OK since all of them
1352 * will be re-checked with proper locks held further down the line.
1354 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1355 goto out;
1357 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1358 goto out;
1360 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1361 goto out;
1363 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1364 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1366 out:
1367 return ret;
1371 * wait_task_inactive - wait for a thread to unschedule.
1373 * If @match_state is nonzero, it's the @p->state value just checked and
1374 * not expected to change. If it changes, i.e. @p might have woken up,
1375 * then return zero. When we succeed in waiting for @p to be off its CPU,
1376 * we return a positive number (its total switch count). If a second call
1377 * a short while later returns the same number, the caller can be sure that
1378 * @p has remained unscheduled the whole time.
1380 * The caller must ensure that the task *will* unschedule sometime soon,
1381 * else this function might spin for a *long* time. This function can't
1382 * be called with interrupts off, or it may introduce deadlock with
1383 * smp_call_function() if an IPI is sent by the same process we are
1384 * waiting to become inactive.
1386 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1388 int running, queued;
1389 struct rq_flags rf;
1390 unsigned long ncsw;
1391 struct rq *rq;
1393 for (;;) {
1395 * We do the initial early heuristics without holding
1396 * any task-queue locks at all. We'll only try to get
1397 * the runqueue lock when things look like they will
1398 * work out!
1400 rq = task_rq(p);
1403 * If the task is actively running on another CPU
1404 * still, just relax and busy-wait without holding
1405 * any locks.
1407 * NOTE! Since we don't hold any locks, it's not
1408 * even sure that "rq" stays as the right runqueue!
1409 * But we don't care, since "task_running()" will
1410 * return false if the runqueue has changed and p
1411 * is actually now running somewhere else!
1413 while (task_running(rq, p)) {
1414 if (match_state && unlikely(p->state != match_state))
1415 return 0;
1416 cpu_relax();
1420 * Ok, time to look more closely! We need the rq
1421 * lock now, to be *sure*. If we're wrong, we'll
1422 * just go back and repeat.
1424 rq = task_rq_lock(p, &rf);
1425 trace_sched_wait_task(p);
1426 running = task_running(rq, p);
1427 queued = task_on_rq_queued(p);
1428 ncsw = 0;
1429 if (!match_state || p->state == match_state)
1430 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1431 task_rq_unlock(rq, p, &rf);
1434 * If it changed from the expected state, bail out now.
1436 if (unlikely(!ncsw))
1437 break;
1440 * Was it really running after all now that we
1441 * checked with the proper locks actually held?
1443 * Oops. Go back and try again..
1445 if (unlikely(running)) {
1446 cpu_relax();
1447 continue;
1451 * It's not enough that it's not actively running,
1452 * it must be off the runqueue _entirely_, and not
1453 * preempted!
1455 * So if it was still runnable (but just not actively
1456 * running right now), it's preempted, and we should
1457 * yield - it could be a while.
1459 if (unlikely(queued)) {
1460 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1462 set_current_state(TASK_UNINTERRUPTIBLE);
1463 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1464 continue;
1468 * Ahh, all good. It wasn't running, and it wasn't
1469 * runnable, which means that it will never become
1470 * running in the future either. We're all done!
1472 break;
1475 return ncsw;
1478 /***
1479 * kick_process - kick a running thread to enter/exit the kernel
1480 * @p: the to-be-kicked thread
1482 * Cause a process which is running on another CPU to enter
1483 * kernel-mode, without any delay. (to get signals handled.)
1485 * NOTE: this function doesn't have to take the runqueue lock,
1486 * because all it wants to ensure is that the remote task enters
1487 * the kernel. If the IPI races and the task has been migrated
1488 * to another CPU then no harm is done and the purpose has been
1489 * achieved as well.
1491 void kick_process(struct task_struct *p)
1493 int cpu;
1495 preempt_disable();
1496 cpu = task_cpu(p);
1497 if ((cpu != smp_processor_id()) && task_curr(p))
1498 smp_send_reschedule(cpu);
1499 preempt_enable();
1501 EXPORT_SYMBOL_GPL(kick_process);
1504 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1506 * A few notes on cpu_active vs cpu_online:
1508 * - cpu_active must be a subset of cpu_online
1510 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1511 * see __set_cpus_allowed_ptr(). At this point the newly online
1512 * cpu isn't yet part of the sched domains, and balancing will not
1513 * see it.
1515 * - on cpu-down we clear cpu_active() to mask the sched domains and
1516 * avoid the load balancer to place new tasks on the to be removed
1517 * cpu. Existing tasks will remain running there and will be taken
1518 * off.
1520 * This means that fallback selection must not select !active CPUs.
1521 * And can assume that any active CPU must be online. Conversely
1522 * select_task_rq() below may allow selection of !active CPUs in order
1523 * to satisfy the above rules.
1525 static int select_fallback_rq(int cpu, struct task_struct *p)
1527 int nid = cpu_to_node(cpu);
1528 const struct cpumask *nodemask = NULL;
1529 enum { cpuset, possible, fail } state = cpuset;
1530 int dest_cpu;
1533 * If the node that the cpu is on has been offlined, cpu_to_node()
1534 * will return -1. There is no cpu on the node, and we should
1535 * select the cpu on the other node.
1537 if (nid != -1) {
1538 nodemask = cpumask_of_node(nid);
1540 /* Look for allowed, online CPU in same node. */
1541 for_each_cpu(dest_cpu, nodemask) {
1542 if (!cpu_active(dest_cpu))
1543 continue;
1544 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1545 return dest_cpu;
1549 for (;;) {
1550 /* Any allowed, online CPU? */
1551 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1552 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1553 continue;
1554 if (!cpu_online(dest_cpu))
1555 continue;
1556 goto out;
1559 /* No more Mr. Nice Guy. */
1560 switch (state) {
1561 case cpuset:
1562 if (IS_ENABLED(CONFIG_CPUSETS)) {
1563 cpuset_cpus_allowed_fallback(p);
1564 state = possible;
1565 break;
1567 /* fall-through */
1568 case possible:
1569 do_set_cpus_allowed(p, cpu_possible_mask);
1570 state = fail;
1571 break;
1573 case fail:
1574 BUG();
1575 break;
1579 out:
1580 if (state != cpuset) {
1582 * Don't tell them about moving exiting tasks or
1583 * kernel threads (both mm NULL), since they never
1584 * leave kernel.
1586 if (p->mm && printk_ratelimit()) {
1587 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1588 task_pid_nr(p), p->comm, cpu);
1592 return dest_cpu;
1596 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1598 static inline
1599 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1601 lockdep_assert_held(&p->pi_lock);
1603 if (tsk_nr_cpus_allowed(p) > 1)
1604 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1605 else
1606 cpu = cpumask_any(tsk_cpus_allowed(p));
1609 * In order not to call set_task_cpu() on a blocking task we need
1610 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1611 * cpu.
1613 * Since this is common to all placement strategies, this lives here.
1615 * [ this allows ->select_task() to simply return task_cpu(p) and
1616 * not worry about this generic constraint ]
1618 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1619 !cpu_online(cpu)))
1620 cpu = select_fallback_rq(task_cpu(p), p);
1622 return cpu;
1625 static void update_avg(u64 *avg, u64 sample)
1627 s64 diff = sample - *avg;
1628 *avg += diff >> 3;
1631 #else
1633 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1634 const struct cpumask *new_mask, bool check)
1636 return set_cpus_allowed_ptr(p, new_mask);
1639 #endif /* CONFIG_SMP */
1641 static void
1642 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1644 struct rq *rq;
1646 if (!schedstat_enabled())
1647 return;
1649 rq = this_rq();
1651 #ifdef CONFIG_SMP
1652 if (cpu == rq->cpu) {
1653 schedstat_inc(rq->ttwu_local);
1654 schedstat_inc(p->se.statistics.nr_wakeups_local);
1655 } else {
1656 struct sched_domain *sd;
1658 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1659 rcu_read_lock();
1660 for_each_domain(rq->cpu, sd) {
1661 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1662 schedstat_inc(sd->ttwu_wake_remote);
1663 break;
1666 rcu_read_unlock();
1669 if (wake_flags & WF_MIGRATED)
1670 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1671 #endif /* CONFIG_SMP */
1673 schedstat_inc(rq->ttwu_count);
1674 schedstat_inc(p->se.statistics.nr_wakeups);
1676 if (wake_flags & WF_SYNC)
1677 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1680 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1682 activate_task(rq, p, en_flags);
1683 p->on_rq = TASK_ON_RQ_QUEUED;
1685 /* if a worker is waking up, notify workqueue */
1686 if (p->flags & PF_WQ_WORKER)
1687 wq_worker_waking_up(p, cpu_of(rq));
1691 * Mark the task runnable and perform wakeup-preemption.
1693 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1694 struct pin_cookie cookie)
1696 check_preempt_curr(rq, p, wake_flags);
1697 p->state = TASK_RUNNING;
1698 trace_sched_wakeup(p);
1700 #ifdef CONFIG_SMP
1701 if (p->sched_class->task_woken) {
1703 * Our task @p is fully woken up and running; so its safe to
1704 * drop the rq->lock, hereafter rq is only used for statistics.
1706 lockdep_unpin_lock(&rq->lock, cookie);
1707 p->sched_class->task_woken(rq, p);
1708 lockdep_repin_lock(&rq->lock, cookie);
1711 if (rq->idle_stamp) {
1712 u64 delta = rq_clock(rq) - rq->idle_stamp;
1713 u64 max = 2*rq->max_idle_balance_cost;
1715 update_avg(&rq->avg_idle, delta);
1717 if (rq->avg_idle > max)
1718 rq->avg_idle = max;
1720 rq->idle_stamp = 0;
1722 #endif
1725 static void
1726 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1727 struct pin_cookie cookie)
1729 int en_flags = ENQUEUE_WAKEUP;
1731 lockdep_assert_held(&rq->lock);
1733 #ifdef CONFIG_SMP
1734 if (p->sched_contributes_to_load)
1735 rq->nr_uninterruptible--;
1737 if (wake_flags & WF_MIGRATED)
1738 en_flags |= ENQUEUE_MIGRATED;
1739 #endif
1741 ttwu_activate(rq, p, en_flags);
1742 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1746 * Called in case the task @p isn't fully descheduled from its runqueue,
1747 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1748 * since all we need to do is flip p->state to TASK_RUNNING, since
1749 * the task is still ->on_rq.
1751 static int ttwu_remote(struct task_struct *p, int wake_flags)
1753 struct rq_flags rf;
1754 struct rq *rq;
1755 int ret = 0;
1757 rq = __task_rq_lock(p, &rf);
1758 if (task_on_rq_queued(p)) {
1759 /* check_preempt_curr() may use rq clock */
1760 update_rq_clock(rq);
1761 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1762 ret = 1;
1764 __task_rq_unlock(rq, &rf);
1766 return ret;
1769 #ifdef CONFIG_SMP
1770 void sched_ttwu_pending(void)
1772 struct rq *rq = this_rq();
1773 struct llist_node *llist = llist_del_all(&rq->wake_list);
1774 struct pin_cookie cookie;
1775 struct task_struct *p;
1776 unsigned long flags;
1778 if (!llist)
1779 return;
1781 raw_spin_lock_irqsave(&rq->lock, flags);
1782 cookie = lockdep_pin_lock(&rq->lock);
1784 while (llist) {
1785 int wake_flags = 0;
1787 p = llist_entry(llist, struct task_struct, wake_entry);
1788 llist = llist_next(llist);
1790 if (p->sched_remote_wakeup)
1791 wake_flags = WF_MIGRATED;
1793 ttwu_do_activate(rq, p, wake_flags, cookie);
1796 lockdep_unpin_lock(&rq->lock, cookie);
1797 raw_spin_unlock_irqrestore(&rq->lock, flags);
1800 void scheduler_ipi(void)
1803 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1804 * TIF_NEED_RESCHED remotely (for the first time) will also send
1805 * this IPI.
1807 preempt_fold_need_resched();
1809 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1810 return;
1813 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1814 * traditionally all their work was done from the interrupt return
1815 * path. Now that we actually do some work, we need to make sure
1816 * we do call them.
1818 * Some archs already do call them, luckily irq_enter/exit nest
1819 * properly.
1821 * Arguably we should visit all archs and update all handlers,
1822 * however a fair share of IPIs are still resched only so this would
1823 * somewhat pessimize the simple resched case.
1825 irq_enter();
1826 sched_ttwu_pending();
1829 * Check if someone kicked us for doing the nohz idle load balance.
1831 if (unlikely(got_nohz_idle_kick())) {
1832 this_rq()->idle_balance = 1;
1833 raise_softirq_irqoff(SCHED_SOFTIRQ);
1835 irq_exit();
1838 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1840 struct rq *rq = cpu_rq(cpu);
1842 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1844 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1845 if (!set_nr_if_polling(rq->idle))
1846 smp_send_reschedule(cpu);
1847 else
1848 trace_sched_wake_idle_without_ipi(cpu);
1852 void wake_up_if_idle(int cpu)
1854 struct rq *rq = cpu_rq(cpu);
1855 unsigned long flags;
1857 rcu_read_lock();
1859 if (!is_idle_task(rcu_dereference(rq->curr)))
1860 goto out;
1862 if (set_nr_if_polling(rq->idle)) {
1863 trace_sched_wake_idle_without_ipi(cpu);
1864 } else {
1865 raw_spin_lock_irqsave(&rq->lock, flags);
1866 if (is_idle_task(rq->curr))
1867 smp_send_reschedule(cpu);
1868 /* Else cpu is not in idle, do nothing here */
1869 raw_spin_unlock_irqrestore(&rq->lock, flags);
1872 out:
1873 rcu_read_unlock();
1876 bool cpus_share_cache(int this_cpu, int that_cpu)
1878 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1880 #endif /* CONFIG_SMP */
1882 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1884 struct rq *rq = cpu_rq(cpu);
1885 struct pin_cookie cookie;
1887 #if defined(CONFIG_SMP)
1888 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1889 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1890 ttwu_queue_remote(p, cpu, wake_flags);
1891 return;
1893 #endif
1895 raw_spin_lock(&rq->lock);
1896 cookie = lockdep_pin_lock(&rq->lock);
1897 ttwu_do_activate(rq, p, wake_flags, cookie);
1898 lockdep_unpin_lock(&rq->lock, cookie);
1899 raw_spin_unlock(&rq->lock);
1903 * Notes on Program-Order guarantees on SMP systems.
1905 * MIGRATION
1907 * The basic program-order guarantee on SMP systems is that when a task [t]
1908 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1909 * execution on its new cpu [c1].
1911 * For migration (of runnable tasks) this is provided by the following means:
1913 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1914 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1915 * rq(c1)->lock (if not at the same time, then in that order).
1916 * C) LOCK of the rq(c1)->lock scheduling in task
1918 * Transitivity guarantees that B happens after A and C after B.
1919 * Note: we only require RCpc transitivity.
1920 * Note: the cpu doing B need not be c0 or c1
1922 * Example:
1924 * CPU0 CPU1 CPU2
1926 * LOCK rq(0)->lock
1927 * sched-out X
1928 * sched-in Y
1929 * UNLOCK rq(0)->lock
1931 * LOCK rq(0)->lock // orders against CPU0
1932 * dequeue X
1933 * UNLOCK rq(0)->lock
1935 * LOCK rq(1)->lock
1936 * enqueue X
1937 * UNLOCK rq(1)->lock
1939 * LOCK rq(1)->lock // orders against CPU2
1940 * sched-out Z
1941 * sched-in X
1942 * UNLOCK rq(1)->lock
1945 * BLOCKING -- aka. SLEEP + WAKEUP
1947 * For blocking we (obviously) need to provide the same guarantee as for
1948 * migration. However the means are completely different as there is no lock
1949 * chain to provide order. Instead we do:
1951 * 1) smp_store_release(X->on_cpu, 0)
1952 * 2) smp_cond_load_acquire(!X->on_cpu)
1954 * Example:
1956 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1958 * LOCK rq(0)->lock LOCK X->pi_lock
1959 * dequeue X
1960 * sched-out X
1961 * smp_store_release(X->on_cpu, 0);
1963 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1964 * X->state = WAKING
1965 * set_task_cpu(X,2)
1967 * LOCK rq(2)->lock
1968 * enqueue X
1969 * X->state = RUNNING
1970 * UNLOCK rq(2)->lock
1972 * LOCK rq(2)->lock // orders against CPU1
1973 * sched-out Z
1974 * sched-in X
1975 * UNLOCK rq(2)->lock
1977 * UNLOCK X->pi_lock
1978 * UNLOCK rq(0)->lock
1981 * However; for wakeups there is a second guarantee we must provide, namely we
1982 * must observe the state that lead to our wakeup. That is, not only must our
1983 * task observe its own prior state, it must also observe the stores prior to
1984 * its wakeup.
1986 * This means that any means of doing remote wakeups must order the CPU doing
1987 * the wakeup against the CPU the task is going to end up running on. This,
1988 * however, is already required for the regular Program-Order guarantee above,
1989 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1994 * try_to_wake_up - wake up a thread
1995 * @p: the thread to be awakened
1996 * @state: the mask of task states that can be woken
1997 * @wake_flags: wake modifier flags (WF_*)
1999 * Put it on the run-queue if it's not already there. The "current"
2000 * thread is always on the run-queue (except when the actual
2001 * re-schedule is in progress), and as such you're allowed to do
2002 * the simpler "current->state = TASK_RUNNING" to mark yourself
2003 * runnable without the overhead of this.
2005 * Return: %true if @p was woken up, %false if it was already running.
2006 * or @state didn't match @p's state.
2008 static int
2009 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2011 unsigned long flags;
2012 int cpu, success = 0;
2015 * If we are going to wake up a thread waiting for CONDITION we
2016 * need to ensure that CONDITION=1 done by the caller can not be
2017 * reordered with p->state check below. This pairs with mb() in
2018 * set_current_state() the waiting thread does.
2020 smp_mb__before_spinlock();
2021 raw_spin_lock_irqsave(&p->pi_lock, flags);
2022 if (!(p->state & state))
2023 goto out;
2025 trace_sched_waking(p);
2027 success = 1; /* we're going to change ->state */
2028 cpu = task_cpu(p);
2031 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2032 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2033 * in smp_cond_load_acquire() below.
2035 * sched_ttwu_pending() try_to_wake_up()
2036 * [S] p->on_rq = 1; [L] P->state
2037 * UNLOCK rq->lock -----.
2039 * +--- RMB
2040 * schedule() /
2041 * LOCK rq->lock -----'
2042 * UNLOCK rq->lock
2044 * [task p]
2045 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2047 * Pairs with the UNLOCK+LOCK on rq->lock from the
2048 * last wakeup of our task and the schedule that got our task
2049 * current.
2051 smp_rmb();
2052 if (p->on_rq && ttwu_remote(p, wake_flags))
2053 goto stat;
2055 #ifdef CONFIG_SMP
2057 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2058 * possible to, falsely, observe p->on_cpu == 0.
2060 * One must be running (->on_cpu == 1) in order to remove oneself
2061 * from the runqueue.
2063 * [S] ->on_cpu = 1; [L] ->on_rq
2064 * UNLOCK rq->lock
2065 * RMB
2066 * LOCK rq->lock
2067 * [S] ->on_rq = 0; [L] ->on_cpu
2069 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2070 * from the consecutive calls to schedule(); the first switching to our
2071 * task, the second putting it to sleep.
2073 smp_rmb();
2076 * If the owning (remote) cpu is still in the middle of schedule() with
2077 * this task as prev, wait until its done referencing the task.
2079 * Pairs with the smp_store_release() in finish_lock_switch().
2081 * This ensures that tasks getting woken will be fully ordered against
2082 * their previous state and preserve Program Order.
2084 smp_cond_load_acquire(&p->on_cpu, !VAL);
2086 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2087 p->state = TASK_WAKING;
2089 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2090 if (task_cpu(p) != cpu) {
2091 wake_flags |= WF_MIGRATED;
2092 set_task_cpu(p, cpu);
2094 #endif /* CONFIG_SMP */
2096 ttwu_queue(p, cpu, wake_flags);
2097 stat:
2098 ttwu_stat(p, cpu, wake_flags);
2099 out:
2100 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2102 return success;
2106 * try_to_wake_up_local - try to wake up a local task with rq lock held
2107 * @p: the thread to be awakened
2108 * @cookie: context's cookie for pinning
2110 * Put @p on the run-queue if it's not already there. The caller must
2111 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2112 * the current task.
2114 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2116 struct rq *rq = task_rq(p);
2118 if (WARN_ON_ONCE(rq != this_rq()) ||
2119 WARN_ON_ONCE(p == current))
2120 return;
2122 lockdep_assert_held(&rq->lock);
2124 if (!raw_spin_trylock(&p->pi_lock)) {
2126 * This is OK, because current is on_cpu, which avoids it being
2127 * picked for load-balance and preemption/IRQs are still
2128 * disabled avoiding further scheduler activity on it and we've
2129 * not yet picked a replacement task.
2131 lockdep_unpin_lock(&rq->lock, cookie);
2132 raw_spin_unlock(&rq->lock);
2133 raw_spin_lock(&p->pi_lock);
2134 raw_spin_lock(&rq->lock);
2135 lockdep_repin_lock(&rq->lock, cookie);
2138 if (!(p->state & TASK_NORMAL))
2139 goto out;
2141 trace_sched_waking(p);
2143 if (!task_on_rq_queued(p))
2144 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2146 ttwu_do_wakeup(rq, p, 0, cookie);
2147 ttwu_stat(p, smp_processor_id(), 0);
2148 out:
2149 raw_spin_unlock(&p->pi_lock);
2153 * wake_up_process - Wake up a specific process
2154 * @p: The process to be woken up.
2156 * Attempt to wake up the nominated process and move it to the set of runnable
2157 * processes.
2159 * Return: 1 if the process was woken up, 0 if it was already running.
2161 * It may be assumed that this function implies a write memory barrier before
2162 * changing the task state if and only if any tasks are woken up.
2164 int wake_up_process(struct task_struct *p)
2166 return try_to_wake_up(p, TASK_NORMAL, 0);
2168 EXPORT_SYMBOL(wake_up_process);
2170 int wake_up_state(struct task_struct *p, unsigned int state)
2172 return try_to_wake_up(p, state, 0);
2176 * This function clears the sched_dl_entity static params.
2178 void __dl_clear_params(struct task_struct *p)
2180 struct sched_dl_entity *dl_se = &p->dl;
2182 dl_se->dl_runtime = 0;
2183 dl_se->dl_deadline = 0;
2184 dl_se->dl_period = 0;
2185 dl_se->flags = 0;
2186 dl_se->dl_bw = 0;
2187 dl_se->dl_density = 0;
2189 dl_se->dl_throttled = 0;
2190 dl_se->dl_yielded = 0;
2194 * Perform scheduler related setup for a newly forked process p.
2195 * p is forked by current.
2197 * __sched_fork() is basic setup used by init_idle() too:
2199 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2201 p->on_rq = 0;
2203 p->se.on_rq = 0;
2204 p->se.exec_start = 0;
2205 p->se.sum_exec_runtime = 0;
2206 p->se.prev_sum_exec_runtime = 0;
2207 p->se.nr_migrations = 0;
2208 p->se.vruntime = 0;
2209 INIT_LIST_HEAD(&p->se.group_node);
2211 #ifdef CONFIG_FAIR_GROUP_SCHED
2212 p->se.cfs_rq = NULL;
2213 #endif
2215 #ifdef CONFIG_SCHEDSTATS
2216 /* Even if schedstat is disabled, there should not be garbage */
2217 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2218 #endif
2220 RB_CLEAR_NODE(&p->dl.rb_node);
2221 init_dl_task_timer(&p->dl);
2222 __dl_clear_params(p);
2224 INIT_LIST_HEAD(&p->rt.run_list);
2225 p->rt.timeout = 0;
2226 p->rt.time_slice = sched_rr_timeslice;
2227 p->rt.on_rq = 0;
2228 p->rt.on_list = 0;
2230 #ifdef CONFIG_PREEMPT_NOTIFIERS
2231 INIT_HLIST_HEAD(&p->preempt_notifiers);
2232 #endif
2234 #ifdef CONFIG_NUMA_BALANCING
2235 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2236 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2237 p->mm->numa_scan_seq = 0;
2240 if (clone_flags & CLONE_VM)
2241 p->numa_preferred_nid = current->numa_preferred_nid;
2242 else
2243 p->numa_preferred_nid = -1;
2245 p->node_stamp = 0ULL;
2246 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2247 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2248 p->numa_work.next = &p->numa_work;
2249 p->numa_faults = NULL;
2250 p->last_task_numa_placement = 0;
2251 p->last_sum_exec_runtime = 0;
2253 p->numa_group = NULL;
2254 #endif /* CONFIG_NUMA_BALANCING */
2257 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2259 #ifdef CONFIG_NUMA_BALANCING
2261 void set_numabalancing_state(bool enabled)
2263 if (enabled)
2264 static_branch_enable(&sched_numa_balancing);
2265 else
2266 static_branch_disable(&sched_numa_balancing);
2269 #ifdef CONFIG_PROC_SYSCTL
2270 int sysctl_numa_balancing(struct ctl_table *table, int write,
2271 void __user *buffer, size_t *lenp, loff_t *ppos)
2273 struct ctl_table t;
2274 int err;
2275 int state = static_branch_likely(&sched_numa_balancing);
2277 if (write && !capable(CAP_SYS_ADMIN))
2278 return -EPERM;
2280 t = *table;
2281 t.data = &state;
2282 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2283 if (err < 0)
2284 return err;
2285 if (write)
2286 set_numabalancing_state(state);
2287 return err;
2289 #endif
2290 #endif
2292 #ifdef CONFIG_SCHEDSTATS
2294 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2295 static bool __initdata __sched_schedstats = false;
2297 static void set_schedstats(bool enabled)
2299 if (enabled)
2300 static_branch_enable(&sched_schedstats);
2301 else
2302 static_branch_disable(&sched_schedstats);
2305 void force_schedstat_enabled(void)
2307 if (!schedstat_enabled()) {
2308 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2309 static_branch_enable(&sched_schedstats);
2313 static int __init setup_schedstats(char *str)
2315 int ret = 0;
2316 if (!str)
2317 goto out;
2320 * This code is called before jump labels have been set up, so we can't
2321 * change the static branch directly just yet. Instead set a temporary
2322 * variable so init_schedstats() can do it later.
2324 if (!strcmp(str, "enable")) {
2325 __sched_schedstats = true;
2326 ret = 1;
2327 } else if (!strcmp(str, "disable")) {
2328 __sched_schedstats = false;
2329 ret = 1;
2331 out:
2332 if (!ret)
2333 pr_warn("Unable to parse schedstats=\n");
2335 return ret;
2337 __setup("schedstats=", setup_schedstats);
2339 static void __init init_schedstats(void)
2341 set_schedstats(__sched_schedstats);
2344 #ifdef CONFIG_PROC_SYSCTL
2345 int sysctl_schedstats(struct ctl_table *table, int write,
2346 void __user *buffer, size_t *lenp, loff_t *ppos)
2348 struct ctl_table t;
2349 int err;
2350 int state = static_branch_likely(&sched_schedstats);
2352 if (write && !capable(CAP_SYS_ADMIN))
2353 return -EPERM;
2355 t = *table;
2356 t.data = &state;
2357 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2358 if (err < 0)
2359 return err;
2360 if (write)
2361 set_schedstats(state);
2362 return err;
2364 #endif /* CONFIG_PROC_SYSCTL */
2365 #else /* !CONFIG_SCHEDSTATS */
2366 static inline void init_schedstats(void) {}
2367 #endif /* CONFIG_SCHEDSTATS */
2370 * fork()/clone()-time setup:
2372 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2374 unsigned long flags;
2375 int cpu = get_cpu();
2377 __sched_fork(clone_flags, p);
2379 * We mark the process as NEW here. This guarantees that
2380 * nobody will actually run it, and a signal or other external
2381 * event cannot wake it up and insert it on the runqueue either.
2383 p->state = TASK_NEW;
2386 * Make sure we do not leak PI boosting priority to the child.
2388 p->prio = current->normal_prio;
2391 * Revert to default priority/policy on fork if requested.
2393 if (unlikely(p->sched_reset_on_fork)) {
2394 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2395 p->policy = SCHED_NORMAL;
2396 p->static_prio = NICE_TO_PRIO(0);
2397 p->rt_priority = 0;
2398 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2399 p->static_prio = NICE_TO_PRIO(0);
2401 p->prio = p->normal_prio = __normal_prio(p);
2402 set_load_weight(p);
2405 * We don't need the reset flag anymore after the fork. It has
2406 * fulfilled its duty:
2408 p->sched_reset_on_fork = 0;
2411 if (dl_prio(p->prio)) {
2412 put_cpu();
2413 return -EAGAIN;
2414 } else if (rt_prio(p->prio)) {
2415 p->sched_class = &rt_sched_class;
2416 } else {
2417 p->sched_class = &fair_sched_class;
2420 init_entity_runnable_average(&p->se);
2423 * The child is not yet in the pid-hash so no cgroup attach races,
2424 * and the cgroup is pinned to this child due to cgroup_fork()
2425 * is ran before sched_fork().
2427 * Silence PROVE_RCU.
2429 raw_spin_lock_irqsave(&p->pi_lock, flags);
2431 * We're setting the cpu for the first time, we don't migrate,
2432 * so use __set_task_cpu().
2434 __set_task_cpu(p, cpu);
2435 if (p->sched_class->task_fork)
2436 p->sched_class->task_fork(p);
2437 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2439 #ifdef CONFIG_SCHED_INFO
2440 if (likely(sched_info_on()))
2441 memset(&p->sched_info, 0, sizeof(p->sched_info));
2442 #endif
2443 #if defined(CONFIG_SMP)
2444 p->on_cpu = 0;
2445 #endif
2446 init_task_preempt_count(p);
2447 #ifdef CONFIG_SMP
2448 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2449 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2450 #endif
2452 put_cpu();
2453 return 0;
2456 unsigned long to_ratio(u64 period, u64 runtime)
2458 if (runtime == RUNTIME_INF)
2459 return 1ULL << 20;
2462 * Doing this here saves a lot of checks in all
2463 * the calling paths, and returning zero seems
2464 * safe for them anyway.
2466 if (period == 0)
2467 return 0;
2469 return div64_u64(runtime << 20, period);
2472 #ifdef CONFIG_SMP
2473 inline struct dl_bw *dl_bw_of(int i)
2475 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2476 "sched RCU must be held");
2477 return &cpu_rq(i)->rd->dl_bw;
2480 static inline int dl_bw_cpus(int i)
2482 struct root_domain *rd = cpu_rq(i)->rd;
2483 int cpus = 0;
2485 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2486 "sched RCU must be held");
2487 for_each_cpu_and(i, rd->span, cpu_active_mask)
2488 cpus++;
2490 return cpus;
2492 #else
2493 inline struct dl_bw *dl_bw_of(int i)
2495 return &cpu_rq(i)->dl.dl_bw;
2498 static inline int dl_bw_cpus(int i)
2500 return 1;
2502 #endif
2505 * We must be sure that accepting a new task (or allowing changing the
2506 * parameters of an existing one) is consistent with the bandwidth
2507 * constraints. If yes, this function also accordingly updates the currently
2508 * allocated bandwidth to reflect the new situation.
2510 * This function is called while holding p's rq->lock.
2512 * XXX we should delay bw change until the task's 0-lag point, see
2513 * __setparam_dl().
2515 static int dl_overflow(struct task_struct *p, int policy,
2516 const struct sched_attr *attr)
2519 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2520 u64 period = attr->sched_period ?: attr->sched_deadline;
2521 u64 runtime = attr->sched_runtime;
2522 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2523 int cpus, err = -1;
2525 /* !deadline task may carry old deadline bandwidth */
2526 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2527 return 0;
2530 * Either if a task, enters, leave, or stays -deadline but changes
2531 * its parameters, we may need to update accordingly the total
2532 * allocated bandwidth of the container.
2534 raw_spin_lock(&dl_b->lock);
2535 cpus = dl_bw_cpus(task_cpu(p));
2536 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2537 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2538 __dl_add(dl_b, new_bw);
2539 err = 0;
2540 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2541 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2542 __dl_clear(dl_b, p->dl.dl_bw);
2543 __dl_add(dl_b, new_bw);
2544 err = 0;
2545 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2546 __dl_clear(dl_b, p->dl.dl_bw);
2547 err = 0;
2549 raw_spin_unlock(&dl_b->lock);
2551 return err;
2554 extern void init_dl_bw(struct dl_bw *dl_b);
2557 * wake_up_new_task - wake up a newly created task for the first time.
2559 * This function will do some initial scheduler statistics housekeeping
2560 * that must be done for every newly created context, then puts the task
2561 * on the runqueue and wakes it.
2563 void wake_up_new_task(struct task_struct *p)
2565 struct rq_flags rf;
2566 struct rq *rq;
2568 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2569 p->state = TASK_RUNNING;
2570 #ifdef CONFIG_SMP
2572 * Fork balancing, do it here and not earlier because:
2573 * - cpus_allowed can change in the fork path
2574 * - any previously selected cpu might disappear through hotplug
2576 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2577 * as we're not fully set-up yet.
2579 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2580 #endif
2581 rq = __task_rq_lock(p, &rf);
2582 post_init_entity_util_avg(&p->se);
2584 activate_task(rq, p, 0);
2585 p->on_rq = TASK_ON_RQ_QUEUED;
2586 trace_sched_wakeup_new(p);
2587 check_preempt_curr(rq, p, WF_FORK);
2588 #ifdef CONFIG_SMP
2589 if (p->sched_class->task_woken) {
2591 * Nothing relies on rq->lock after this, so its fine to
2592 * drop it.
2594 lockdep_unpin_lock(&rq->lock, rf.cookie);
2595 p->sched_class->task_woken(rq, p);
2596 lockdep_repin_lock(&rq->lock, rf.cookie);
2598 #endif
2599 task_rq_unlock(rq, p, &rf);
2602 #ifdef CONFIG_PREEMPT_NOTIFIERS
2604 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2606 void preempt_notifier_inc(void)
2608 static_key_slow_inc(&preempt_notifier_key);
2610 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2612 void preempt_notifier_dec(void)
2614 static_key_slow_dec(&preempt_notifier_key);
2616 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2619 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2620 * @notifier: notifier struct to register
2622 void preempt_notifier_register(struct preempt_notifier *notifier)
2624 if (!static_key_false(&preempt_notifier_key))
2625 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2627 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2629 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2632 * preempt_notifier_unregister - no longer interested in preemption notifications
2633 * @notifier: notifier struct to unregister
2635 * This is *not* safe to call from within a preemption notifier.
2637 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2639 hlist_del(&notifier->link);
2641 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2643 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2645 struct preempt_notifier *notifier;
2647 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2648 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2651 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2653 if (static_key_false(&preempt_notifier_key))
2654 __fire_sched_in_preempt_notifiers(curr);
2657 static void
2658 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2659 struct task_struct *next)
2661 struct preempt_notifier *notifier;
2663 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2664 notifier->ops->sched_out(notifier, next);
2667 static __always_inline void
2668 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2669 struct task_struct *next)
2671 if (static_key_false(&preempt_notifier_key))
2672 __fire_sched_out_preempt_notifiers(curr, next);
2675 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2677 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2681 static inline void
2682 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2683 struct task_struct *next)
2687 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2690 * prepare_task_switch - prepare to switch tasks
2691 * @rq: the runqueue preparing to switch
2692 * @prev: the current task that is being switched out
2693 * @next: the task we are going to switch to.
2695 * This is called with the rq lock held and interrupts off. It must
2696 * be paired with a subsequent finish_task_switch after the context
2697 * switch.
2699 * prepare_task_switch sets up locking and calls architecture specific
2700 * hooks.
2702 static inline void
2703 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2704 struct task_struct *next)
2706 sched_info_switch(rq, prev, next);
2707 perf_event_task_sched_out(prev, next);
2708 fire_sched_out_preempt_notifiers(prev, next);
2709 prepare_lock_switch(rq, next);
2710 prepare_arch_switch(next);
2714 * finish_task_switch - clean up after a task-switch
2715 * @prev: the thread we just switched away from.
2717 * finish_task_switch must be called after the context switch, paired
2718 * with a prepare_task_switch call before the context switch.
2719 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2720 * and do any other architecture-specific cleanup actions.
2722 * Note that we may have delayed dropping an mm in context_switch(). If
2723 * so, we finish that here outside of the runqueue lock. (Doing it
2724 * with the lock held can cause deadlocks; see schedule() for
2725 * details.)
2727 * The context switch have flipped the stack from under us and restored the
2728 * local variables which were saved when this task called schedule() in the
2729 * past. prev == current is still correct but we need to recalculate this_rq
2730 * because prev may have moved to another CPU.
2732 static struct rq *finish_task_switch(struct task_struct *prev)
2733 __releases(rq->lock)
2735 struct rq *rq = this_rq();
2736 struct mm_struct *mm = rq->prev_mm;
2737 long prev_state;
2740 * The previous task will have left us with a preempt_count of 2
2741 * because it left us after:
2743 * schedule()
2744 * preempt_disable(); // 1
2745 * __schedule()
2746 * raw_spin_lock_irq(&rq->lock) // 2
2748 * Also, see FORK_PREEMPT_COUNT.
2750 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2751 "corrupted preempt_count: %s/%d/0x%x\n",
2752 current->comm, current->pid, preempt_count()))
2753 preempt_count_set(FORK_PREEMPT_COUNT);
2755 rq->prev_mm = NULL;
2758 * A task struct has one reference for the use as "current".
2759 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2760 * schedule one last time. The schedule call will never return, and
2761 * the scheduled task must drop that reference.
2763 * We must observe prev->state before clearing prev->on_cpu (in
2764 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2765 * running on another CPU and we could rave with its RUNNING -> DEAD
2766 * transition, resulting in a double drop.
2768 prev_state = prev->state;
2769 vtime_task_switch(prev);
2770 perf_event_task_sched_in(prev, current);
2771 finish_lock_switch(rq, prev);
2772 finish_arch_post_lock_switch();
2774 fire_sched_in_preempt_notifiers(current);
2775 if (mm)
2776 mmdrop(mm);
2777 if (unlikely(prev_state == TASK_DEAD)) {
2778 if (prev->sched_class->task_dead)
2779 prev->sched_class->task_dead(prev);
2782 * Remove function-return probe instances associated with this
2783 * task and put them back on the free list.
2785 kprobe_flush_task(prev);
2787 /* Task is done with its stack. */
2788 put_task_stack(prev);
2790 put_task_struct(prev);
2793 tick_nohz_task_switch();
2794 return rq;
2797 #ifdef CONFIG_SMP
2799 /* rq->lock is NOT held, but preemption is disabled */
2800 static void __balance_callback(struct rq *rq)
2802 struct callback_head *head, *next;
2803 void (*func)(struct rq *rq);
2804 unsigned long flags;
2806 raw_spin_lock_irqsave(&rq->lock, flags);
2807 head = rq->balance_callback;
2808 rq->balance_callback = NULL;
2809 while (head) {
2810 func = (void (*)(struct rq *))head->func;
2811 next = head->next;
2812 head->next = NULL;
2813 head = next;
2815 func(rq);
2817 raw_spin_unlock_irqrestore(&rq->lock, flags);
2820 static inline void balance_callback(struct rq *rq)
2822 if (unlikely(rq->balance_callback))
2823 __balance_callback(rq);
2826 #else
2828 static inline void balance_callback(struct rq *rq)
2832 #endif
2835 * schedule_tail - first thing a freshly forked thread must call.
2836 * @prev: the thread we just switched away from.
2838 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2839 __releases(rq->lock)
2841 struct rq *rq;
2844 * New tasks start with FORK_PREEMPT_COUNT, see there and
2845 * finish_task_switch() for details.
2847 * finish_task_switch() will drop rq->lock() and lower preempt_count
2848 * and the preempt_enable() will end up enabling preemption (on
2849 * PREEMPT_COUNT kernels).
2852 rq = finish_task_switch(prev);
2853 balance_callback(rq);
2854 preempt_enable();
2856 if (current->set_child_tid)
2857 put_user(task_pid_vnr(current), current->set_child_tid);
2861 * context_switch - switch to the new MM and the new thread's register state.
2863 static __always_inline struct rq *
2864 context_switch(struct rq *rq, struct task_struct *prev,
2865 struct task_struct *next, struct pin_cookie cookie)
2867 struct mm_struct *mm, *oldmm;
2869 prepare_task_switch(rq, prev, next);
2871 mm = next->mm;
2872 oldmm = prev->active_mm;
2874 * For paravirt, this is coupled with an exit in switch_to to
2875 * combine the page table reload and the switch backend into
2876 * one hypercall.
2878 arch_start_context_switch(prev);
2880 if (!mm) {
2881 next->active_mm = oldmm;
2882 atomic_inc(&oldmm->mm_count);
2883 enter_lazy_tlb(oldmm, next);
2884 } else
2885 switch_mm_irqs_off(oldmm, mm, next);
2887 if (!prev->mm) {
2888 prev->active_mm = NULL;
2889 rq->prev_mm = oldmm;
2892 * Since the runqueue lock will be released by the next
2893 * task (which is an invalid locking op but in the case
2894 * of the scheduler it's an obvious special-case), so we
2895 * do an early lockdep release here:
2897 lockdep_unpin_lock(&rq->lock, cookie);
2898 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2900 /* Here we just switch the register state and the stack. */
2901 switch_to(prev, next, prev);
2902 barrier();
2904 return finish_task_switch(prev);
2908 * nr_running and nr_context_switches:
2910 * externally visible scheduler statistics: current number of runnable
2911 * threads, total number of context switches performed since bootup.
2913 unsigned long nr_running(void)
2915 unsigned long i, sum = 0;
2917 for_each_online_cpu(i)
2918 sum += cpu_rq(i)->nr_running;
2920 return sum;
2924 * Check if only the current task is running on the cpu.
2926 * Caution: this function does not check that the caller has disabled
2927 * preemption, thus the result might have a time-of-check-to-time-of-use
2928 * race. The caller is responsible to use it correctly, for example:
2930 * - from a non-preemptable section (of course)
2932 * - from a thread that is bound to a single CPU
2934 * - in a loop with very short iterations (e.g. a polling loop)
2936 bool single_task_running(void)
2938 return raw_rq()->nr_running == 1;
2940 EXPORT_SYMBOL(single_task_running);
2942 unsigned long long nr_context_switches(void)
2944 int i;
2945 unsigned long long sum = 0;
2947 for_each_possible_cpu(i)
2948 sum += cpu_rq(i)->nr_switches;
2950 return sum;
2953 unsigned long nr_iowait(void)
2955 unsigned long i, sum = 0;
2957 for_each_possible_cpu(i)
2958 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2960 return sum;
2963 unsigned long nr_iowait_cpu(int cpu)
2965 struct rq *this = cpu_rq(cpu);
2966 return atomic_read(&this->nr_iowait);
2969 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2971 struct rq *rq = this_rq();
2972 *nr_waiters = atomic_read(&rq->nr_iowait);
2973 *load = rq->load.weight;
2976 #ifdef CONFIG_SMP
2979 * sched_exec - execve() is a valuable balancing opportunity, because at
2980 * this point the task has the smallest effective memory and cache footprint.
2982 void sched_exec(void)
2984 struct task_struct *p = current;
2985 unsigned long flags;
2986 int dest_cpu;
2988 raw_spin_lock_irqsave(&p->pi_lock, flags);
2989 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2990 if (dest_cpu == smp_processor_id())
2991 goto unlock;
2993 if (likely(cpu_active(dest_cpu))) {
2994 struct migration_arg arg = { p, dest_cpu };
2996 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2997 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2998 return;
3000 unlock:
3001 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3004 #endif
3006 DEFINE_PER_CPU(struct kernel_stat, kstat);
3007 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3009 EXPORT_PER_CPU_SYMBOL(kstat);
3010 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3013 * The function fair_sched_class.update_curr accesses the struct curr
3014 * and its field curr->exec_start; when called from task_sched_runtime(),
3015 * we observe a high rate of cache misses in practice.
3016 * Prefetching this data results in improved performance.
3018 static inline void prefetch_curr_exec_start(struct task_struct *p)
3020 #ifdef CONFIG_FAIR_GROUP_SCHED
3021 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3022 #else
3023 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3024 #endif
3025 prefetch(curr);
3026 prefetch(&curr->exec_start);
3030 * Return accounted runtime for the task.
3031 * In case the task is currently running, return the runtime plus current's
3032 * pending runtime that have not been accounted yet.
3034 unsigned long long task_sched_runtime(struct task_struct *p)
3036 struct rq_flags rf;
3037 struct rq *rq;
3038 u64 ns;
3040 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3042 * 64-bit doesn't need locks to atomically read a 64bit value.
3043 * So we have a optimization chance when the task's delta_exec is 0.
3044 * Reading ->on_cpu is racy, but this is ok.
3046 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3047 * If we race with it entering cpu, unaccounted time is 0. This is
3048 * indistinguishable from the read occurring a few cycles earlier.
3049 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3050 * been accounted, so we're correct here as well.
3052 if (!p->on_cpu || !task_on_rq_queued(p))
3053 return p->se.sum_exec_runtime;
3054 #endif
3056 rq = task_rq_lock(p, &rf);
3058 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3059 * project cycles that may never be accounted to this
3060 * thread, breaking clock_gettime().
3062 if (task_current(rq, p) && task_on_rq_queued(p)) {
3063 prefetch_curr_exec_start(p);
3064 update_rq_clock(rq);
3065 p->sched_class->update_curr(rq);
3067 ns = p->se.sum_exec_runtime;
3068 task_rq_unlock(rq, p, &rf);
3070 return ns;
3074 * This function gets called by the timer code, with HZ frequency.
3075 * We call it with interrupts disabled.
3077 void scheduler_tick(void)
3079 int cpu = smp_processor_id();
3080 struct rq *rq = cpu_rq(cpu);
3081 struct task_struct *curr = rq->curr;
3083 sched_clock_tick();
3085 raw_spin_lock(&rq->lock);
3086 update_rq_clock(rq);
3087 curr->sched_class->task_tick(rq, curr, 0);
3088 cpu_load_update_active(rq);
3089 calc_global_load_tick(rq);
3090 raw_spin_unlock(&rq->lock);
3092 perf_event_task_tick();
3094 #ifdef CONFIG_SMP
3095 rq->idle_balance = idle_cpu(cpu);
3096 trigger_load_balance(rq);
3097 #endif
3098 rq_last_tick_reset(rq);
3101 #ifdef CONFIG_NO_HZ_FULL
3103 * scheduler_tick_max_deferment
3105 * Keep at least one tick per second when a single
3106 * active task is running because the scheduler doesn't
3107 * yet completely support full dynticks environment.
3109 * This makes sure that uptime, CFS vruntime, load
3110 * balancing, etc... continue to move forward, even
3111 * with a very low granularity.
3113 * Return: Maximum deferment in nanoseconds.
3115 u64 scheduler_tick_max_deferment(void)
3117 struct rq *rq = this_rq();
3118 unsigned long next, now = READ_ONCE(jiffies);
3120 next = rq->last_sched_tick + HZ;
3122 if (time_before_eq(next, now))
3123 return 0;
3125 return jiffies_to_nsecs(next - now);
3127 #endif
3129 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3130 defined(CONFIG_PREEMPT_TRACER))
3132 * If the value passed in is equal to the current preempt count
3133 * then we just disabled preemption. Start timing the latency.
3135 static inline void preempt_latency_start(int val)
3137 if (preempt_count() == val) {
3138 unsigned long ip = get_lock_parent_ip();
3139 #ifdef CONFIG_DEBUG_PREEMPT
3140 current->preempt_disable_ip = ip;
3141 #endif
3142 trace_preempt_off(CALLER_ADDR0, ip);
3146 void preempt_count_add(int val)
3148 #ifdef CONFIG_DEBUG_PREEMPT
3150 * Underflow?
3152 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3153 return;
3154 #endif
3155 __preempt_count_add(val);
3156 #ifdef CONFIG_DEBUG_PREEMPT
3158 * Spinlock count overflowing soon?
3160 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3161 PREEMPT_MASK - 10);
3162 #endif
3163 preempt_latency_start(val);
3165 EXPORT_SYMBOL(preempt_count_add);
3166 NOKPROBE_SYMBOL(preempt_count_add);
3169 * If the value passed in equals to the current preempt count
3170 * then we just enabled preemption. Stop timing the latency.
3172 static inline void preempt_latency_stop(int val)
3174 if (preempt_count() == val)
3175 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3178 void preempt_count_sub(int val)
3180 #ifdef CONFIG_DEBUG_PREEMPT
3182 * Underflow?
3184 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3185 return;
3187 * Is the spinlock portion underflowing?
3189 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3190 !(preempt_count() & PREEMPT_MASK)))
3191 return;
3192 #endif
3194 preempt_latency_stop(val);
3195 __preempt_count_sub(val);
3197 EXPORT_SYMBOL(preempt_count_sub);
3198 NOKPROBE_SYMBOL(preempt_count_sub);
3200 #else
3201 static inline void preempt_latency_start(int val) { }
3202 static inline void preempt_latency_stop(int val) { }
3203 #endif
3206 * Print scheduling while atomic bug:
3208 static noinline void __schedule_bug(struct task_struct *prev)
3210 /* Save this before calling printk(), since that will clobber it */
3211 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3213 if (oops_in_progress)
3214 return;
3216 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3217 prev->comm, prev->pid, preempt_count());
3219 debug_show_held_locks(prev);
3220 print_modules();
3221 if (irqs_disabled())
3222 print_irqtrace_events(prev);
3223 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3224 && in_atomic_preempt_off()) {
3225 pr_err("Preemption disabled at:");
3226 print_ip_sym(preempt_disable_ip);
3227 pr_cont("\n");
3229 if (panic_on_warn)
3230 panic("scheduling while atomic\n");
3232 dump_stack();
3233 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3237 * Various schedule()-time debugging checks and statistics:
3239 static inline void schedule_debug(struct task_struct *prev)
3241 #ifdef CONFIG_SCHED_STACK_END_CHECK
3242 if (task_stack_end_corrupted(prev))
3243 panic("corrupted stack end detected inside scheduler\n");
3244 #endif
3246 if (unlikely(in_atomic_preempt_off())) {
3247 __schedule_bug(prev);
3248 preempt_count_set(PREEMPT_DISABLED);
3250 rcu_sleep_check();
3252 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3254 schedstat_inc(this_rq()->sched_count);
3258 * Pick up the highest-prio task:
3260 static inline struct task_struct *
3261 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3263 const struct sched_class *class = &fair_sched_class;
3264 struct task_struct *p;
3267 * Optimization: we know that if all tasks are in
3268 * the fair class we can call that function directly:
3270 if (likely(prev->sched_class == class &&
3271 rq->nr_running == rq->cfs.h_nr_running)) {
3272 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3273 if (unlikely(p == RETRY_TASK))
3274 goto again;
3276 /* assumes fair_sched_class->next == idle_sched_class */
3277 if (unlikely(!p))
3278 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3280 return p;
3283 again:
3284 for_each_class(class) {
3285 p = class->pick_next_task(rq, prev, cookie);
3286 if (p) {
3287 if (unlikely(p == RETRY_TASK))
3288 goto again;
3289 return p;
3293 BUG(); /* the idle class will always have a runnable task */
3297 * __schedule() is the main scheduler function.
3299 * The main means of driving the scheduler and thus entering this function are:
3301 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3303 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3304 * paths. For example, see arch/x86/entry_64.S.
3306 * To drive preemption between tasks, the scheduler sets the flag in timer
3307 * interrupt handler scheduler_tick().
3309 * 3. Wakeups don't really cause entry into schedule(). They add a
3310 * task to the run-queue and that's it.
3312 * Now, if the new task added to the run-queue preempts the current
3313 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3314 * called on the nearest possible occasion:
3316 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3318 * - in syscall or exception context, at the next outmost
3319 * preempt_enable(). (this might be as soon as the wake_up()'s
3320 * spin_unlock()!)
3322 * - in IRQ context, return from interrupt-handler to
3323 * preemptible context
3325 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3326 * then at the next:
3328 * - cond_resched() call
3329 * - explicit schedule() call
3330 * - return from syscall or exception to user-space
3331 * - return from interrupt-handler to user-space
3333 * WARNING: must be called with preemption disabled!
3335 static void __sched notrace __schedule(bool preempt)
3337 struct task_struct *prev, *next;
3338 unsigned long *switch_count;
3339 struct pin_cookie cookie;
3340 struct rq *rq;
3341 int cpu;
3343 cpu = smp_processor_id();
3344 rq = cpu_rq(cpu);
3345 prev = rq->curr;
3347 schedule_debug(prev);
3349 if (sched_feat(HRTICK))
3350 hrtick_clear(rq);
3352 local_irq_disable();
3353 rcu_note_context_switch();
3356 * Make sure that signal_pending_state()->signal_pending() below
3357 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3358 * done by the caller to avoid the race with signal_wake_up().
3360 smp_mb__before_spinlock();
3361 raw_spin_lock(&rq->lock);
3362 cookie = lockdep_pin_lock(&rq->lock);
3364 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3366 switch_count = &prev->nivcsw;
3367 if (!preempt && prev->state) {
3368 if (unlikely(signal_pending_state(prev->state, prev))) {
3369 prev->state = TASK_RUNNING;
3370 } else {
3371 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3372 prev->on_rq = 0;
3375 * If a worker went to sleep, notify and ask workqueue
3376 * whether it wants to wake up a task to maintain
3377 * concurrency.
3379 if (prev->flags & PF_WQ_WORKER) {
3380 struct task_struct *to_wakeup;
3382 to_wakeup = wq_worker_sleeping(prev);
3383 if (to_wakeup)
3384 try_to_wake_up_local(to_wakeup, cookie);
3387 switch_count = &prev->nvcsw;
3390 if (task_on_rq_queued(prev))
3391 update_rq_clock(rq);
3393 next = pick_next_task(rq, prev, cookie);
3394 clear_tsk_need_resched(prev);
3395 clear_preempt_need_resched();
3396 rq->clock_skip_update = 0;
3398 if (likely(prev != next)) {
3399 rq->nr_switches++;
3400 rq->curr = next;
3401 ++*switch_count;
3403 trace_sched_switch(preempt, prev, next);
3404 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3405 } else {
3406 lockdep_unpin_lock(&rq->lock, cookie);
3407 raw_spin_unlock_irq(&rq->lock);
3410 balance_callback(rq);
3413 void __noreturn do_task_dead(void)
3416 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3417 * when the following two conditions become true.
3418 * - There is race condition of mmap_sem (It is acquired by
3419 * exit_mm()), and
3420 * - SMI occurs before setting TASK_RUNINNG.
3421 * (or hypervisor of virtual machine switches to other guest)
3422 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3424 * To avoid it, we have to wait for releasing tsk->pi_lock which
3425 * is held by try_to_wake_up()
3427 smp_mb();
3428 raw_spin_unlock_wait(&current->pi_lock);
3430 /* causes final put_task_struct in finish_task_switch(). */
3431 __set_current_state(TASK_DEAD);
3432 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3433 __schedule(false);
3434 BUG();
3435 /* Avoid "noreturn function does return". */
3436 for (;;)
3437 cpu_relax(); /* For when BUG is null */
3440 static inline void sched_submit_work(struct task_struct *tsk)
3442 if (!tsk->state || tsk_is_pi_blocked(tsk))
3443 return;
3445 * If we are going to sleep and we have plugged IO queued,
3446 * make sure to submit it to avoid deadlocks.
3448 if (blk_needs_flush_plug(tsk))
3449 blk_schedule_flush_plug(tsk);
3452 asmlinkage __visible void __sched schedule(void)
3454 struct task_struct *tsk = current;
3456 sched_submit_work(tsk);
3457 do {
3458 preempt_disable();
3459 __schedule(false);
3460 sched_preempt_enable_no_resched();
3461 } while (need_resched());
3463 EXPORT_SYMBOL(schedule);
3465 #ifdef CONFIG_CONTEXT_TRACKING
3466 asmlinkage __visible void __sched schedule_user(void)
3469 * If we come here after a random call to set_need_resched(),
3470 * or we have been woken up remotely but the IPI has not yet arrived,
3471 * we haven't yet exited the RCU idle mode. Do it here manually until
3472 * we find a better solution.
3474 * NB: There are buggy callers of this function. Ideally we
3475 * should warn if prev_state != CONTEXT_USER, but that will trigger
3476 * too frequently to make sense yet.
3478 enum ctx_state prev_state = exception_enter();
3479 schedule();
3480 exception_exit(prev_state);
3482 #endif
3485 * schedule_preempt_disabled - called with preemption disabled
3487 * Returns with preemption disabled. Note: preempt_count must be 1
3489 void __sched schedule_preempt_disabled(void)
3491 sched_preempt_enable_no_resched();
3492 schedule();
3493 preempt_disable();
3496 static void __sched notrace preempt_schedule_common(void)
3498 do {
3500 * Because the function tracer can trace preempt_count_sub()
3501 * and it also uses preempt_enable/disable_notrace(), if
3502 * NEED_RESCHED is set, the preempt_enable_notrace() called
3503 * by the function tracer will call this function again and
3504 * cause infinite recursion.
3506 * Preemption must be disabled here before the function
3507 * tracer can trace. Break up preempt_disable() into two
3508 * calls. One to disable preemption without fear of being
3509 * traced. The other to still record the preemption latency,
3510 * which can also be traced by the function tracer.
3512 preempt_disable_notrace();
3513 preempt_latency_start(1);
3514 __schedule(true);
3515 preempt_latency_stop(1);
3516 preempt_enable_no_resched_notrace();
3519 * Check again in case we missed a preemption opportunity
3520 * between schedule and now.
3522 } while (need_resched());
3525 #ifdef CONFIG_PREEMPT
3527 * this is the entry point to schedule() from in-kernel preemption
3528 * off of preempt_enable. Kernel preemptions off return from interrupt
3529 * occur there and call schedule directly.
3531 asmlinkage __visible void __sched notrace preempt_schedule(void)
3534 * If there is a non-zero preempt_count or interrupts are disabled,
3535 * we do not want to preempt the current task. Just return..
3537 if (likely(!preemptible()))
3538 return;
3540 preempt_schedule_common();
3542 NOKPROBE_SYMBOL(preempt_schedule);
3543 EXPORT_SYMBOL(preempt_schedule);
3546 * preempt_schedule_notrace - preempt_schedule called by tracing
3548 * The tracing infrastructure uses preempt_enable_notrace to prevent
3549 * recursion and tracing preempt enabling caused by the tracing
3550 * infrastructure itself. But as tracing can happen in areas coming
3551 * from userspace or just about to enter userspace, a preempt enable
3552 * can occur before user_exit() is called. This will cause the scheduler
3553 * to be called when the system is still in usermode.
3555 * To prevent this, the preempt_enable_notrace will use this function
3556 * instead of preempt_schedule() to exit user context if needed before
3557 * calling the scheduler.
3559 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3561 enum ctx_state prev_ctx;
3563 if (likely(!preemptible()))
3564 return;
3566 do {
3568 * Because the function tracer can trace preempt_count_sub()
3569 * and it also uses preempt_enable/disable_notrace(), if
3570 * NEED_RESCHED is set, the preempt_enable_notrace() called
3571 * by the function tracer will call this function again and
3572 * cause infinite recursion.
3574 * Preemption must be disabled here before the function
3575 * tracer can trace. Break up preempt_disable() into two
3576 * calls. One to disable preemption without fear of being
3577 * traced. The other to still record the preemption latency,
3578 * which can also be traced by the function tracer.
3580 preempt_disable_notrace();
3581 preempt_latency_start(1);
3583 * Needs preempt disabled in case user_exit() is traced
3584 * and the tracer calls preempt_enable_notrace() causing
3585 * an infinite recursion.
3587 prev_ctx = exception_enter();
3588 __schedule(true);
3589 exception_exit(prev_ctx);
3591 preempt_latency_stop(1);
3592 preempt_enable_no_resched_notrace();
3593 } while (need_resched());
3595 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3597 #endif /* CONFIG_PREEMPT */
3600 * this is the entry point to schedule() from kernel preemption
3601 * off of irq context.
3602 * Note, that this is called and return with irqs disabled. This will
3603 * protect us against recursive calling from irq.
3605 asmlinkage __visible void __sched preempt_schedule_irq(void)
3607 enum ctx_state prev_state;
3609 /* Catch callers which need to be fixed */
3610 BUG_ON(preempt_count() || !irqs_disabled());
3612 prev_state = exception_enter();
3614 do {
3615 preempt_disable();
3616 local_irq_enable();
3617 __schedule(true);
3618 local_irq_disable();
3619 sched_preempt_enable_no_resched();
3620 } while (need_resched());
3622 exception_exit(prev_state);
3625 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3626 void *key)
3628 return try_to_wake_up(curr->private, mode, wake_flags);
3630 EXPORT_SYMBOL(default_wake_function);
3632 #ifdef CONFIG_RT_MUTEXES
3635 * rt_mutex_setprio - set the current priority of a task
3636 * @p: task
3637 * @prio: prio value (kernel-internal form)
3639 * This function changes the 'effective' priority of a task. It does
3640 * not touch ->normal_prio like __setscheduler().
3642 * Used by the rt_mutex code to implement priority inheritance
3643 * logic. Call site only calls if the priority of the task changed.
3645 void rt_mutex_setprio(struct task_struct *p, int prio)
3647 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3648 const struct sched_class *prev_class;
3649 struct rq_flags rf;
3650 struct rq *rq;
3652 BUG_ON(prio > MAX_PRIO);
3654 rq = __task_rq_lock(p, &rf);
3657 * Idle task boosting is a nono in general. There is one
3658 * exception, when PREEMPT_RT and NOHZ is active:
3660 * The idle task calls get_next_timer_interrupt() and holds
3661 * the timer wheel base->lock on the CPU and another CPU wants
3662 * to access the timer (probably to cancel it). We can safely
3663 * ignore the boosting request, as the idle CPU runs this code
3664 * with interrupts disabled and will complete the lock
3665 * protected section without being interrupted. So there is no
3666 * real need to boost.
3668 if (unlikely(p == rq->idle)) {
3669 WARN_ON(p != rq->curr);
3670 WARN_ON(p->pi_blocked_on);
3671 goto out_unlock;
3674 trace_sched_pi_setprio(p, prio);
3675 oldprio = p->prio;
3677 if (oldprio == prio)
3678 queue_flag &= ~DEQUEUE_MOVE;
3680 prev_class = p->sched_class;
3681 queued = task_on_rq_queued(p);
3682 running = task_current(rq, p);
3683 if (queued)
3684 dequeue_task(rq, p, queue_flag);
3685 if (running)
3686 put_prev_task(rq, p);
3689 * Boosting condition are:
3690 * 1. -rt task is running and holds mutex A
3691 * --> -dl task blocks on mutex A
3693 * 2. -dl task is running and holds mutex A
3694 * --> -dl task blocks on mutex A and could preempt the
3695 * running task
3697 if (dl_prio(prio)) {
3698 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3699 if (!dl_prio(p->normal_prio) ||
3700 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3701 p->dl.dl_boosted = 1;
3702 queue_flag |= ENQUEUE_REPLENISH;
3703 } else
3704 p->dl.dl_boosted = 0;
3705 p->sched_class = &dl_sched_class;
3706 } else if (rt_prio(prio)) {
3707 if (dl_prio(oldprio))
3708 p->dl.dl_boosted = 0;
3709 if (oldprio < prio)
3710 queue_flag |= ENQUEUE_HEAD;
3711 p->sched_class = &rt_sched_class;
3712 } else {
3713 if (dl_prio(oldprio))
3714 p->dl.dl_boosted = 0;
3715 if (rt_prio(oldprio))
3716 p->rt.timeout = 0;
3717 p->sched_class = &fair_sched_class;
3720 p->prio = prio;
3722 if (queued)
3723 enqueue_task(rq, p, queue_flag);
3724 if (running)
3725 set_curr_task(rq, p);
3727 check_class_changed(rq, p, prev_class, oldprio);
3728 out_unlock:
3729 preempt_disable(); /* avoid rq from going away on us */
3730 __task_rq_unlock(rq, &rf);
3732 balance_callback(rq);
3733 preempt_enable();
3735 #endif
3737 void set_user_nice(struct task_struct *p, long nice)
3739 bool queued, running;
3740 int old_prio, delta;
3741 struct rq_flags rf;
3742 struct rq *rq;
3744 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3745 return;
3747 * We have to be careful, if called from sys_setpriority(),
3748 * the task might be in the middle of scheduling on another CPU.
3750 rq = task_rq_lock(p, &rf);
3752 * The RT priorities are set via sched_setscheduler(), but we still
3753 * allow the 'normal' nice value to be set - but as expected
3754 * it wont have any effect on scheduling until the task is
3755 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3757 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3758 p->static_prio = NICE_TO_PRIO(nice);
3759 goto out_unlock;
3761 queued = task_on_rq_queued(p);
3762 running = task_current(rq, p);
3763 if (queued)
3764 dequeue_task(rq, p, DEQUEUE_SAVE);
3765 if (running)
3766 put_prev_task(rq, p);
3768 p->static_prio = NICE_TO_PRIO(nice);
3769 set_load_weight(p);
3770 old_prio = p->prio;
3771 p->prio = effective_prio(p);
3772 delta = p->prio - old_prio;
3774 if (queued) {
3775 enqueue_task(rq, p, ENQUEUE_RESTORE);
3777 * If the task increased its priority or is running and
3778 * lowered its priority, then reschedule its CPU:
3780 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3781 resched_curr(rq);
3783 if (running)
3784 set_curr_task(rq, p);
3785 out_unlock:
3786 task_rq_unlock(rq, p, &rf);
3788 EXPORT_SYMBOL(set_user_nice);
3791 * can_nice - check if a task can reduce its nice value
3792 * @p: task
3793 * @nice: nice value
3795 int can_nice(const struct task_struct *p, const int nice)
3797 /* convert nice value [19,-20] to rlimit style value [1,40] */
3798 int nice_rlim = nice_to_rlimit(nice);
3800 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3801 capable(CAP_SYS_NICE));
3804 #ifdef __ARCH_WANT_SYS_NICE
3807 * sys_nice - change the priority of the current process.
3808 * @increment: priority increment
3810 * sys_setpriority is a more generic, but much slower function that
3811 * does similar things.
3813 SYSCALL_DEFINE1(nice, int, increment)
3815 long nice, retval;
3818 * Setpriority might change our priority at the same moment.
3819 * We don't have to worry. Conceptually one call occurs first
3820 * and we have a single winner.
3822 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3823 nice = task_nice(current) + increment;
3825 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3826 if (increment < 0 && !can_nice(current, nice))
3827 return -EPERM;
3829 retval = security_task_setnice(current, nice);
3830 if (retval)
3831 return retval;
3833 set_user_nice(current, nice);
3834 return 0;
3837 #endif
3840 * task_prio - return the priority value of a given task.
3841 * @p: the task in question.
3843 * Return: The priority value as seen by users in /proc.
3844 * RT tasks are offset by -200. Normal tasks are centered
3845 * around 0, value goes from -16 to +15.
3847 int task_prio(const struct task_struct *p)
3849 return p->prio - MAX_RT_PRIO;
3853 * idle_cpu - is a given cpu idle currently?
3854 * @cpu: the processor in question.
3856 * Return: 1 if the CPU is currently idle. 0 otherwise.
3858 int idle_cpu(int cpu)
3860 struct rq *rq = cpu_rq(cpu);
3862 if (rq->curr != rq->idle)
3863 return 0;
3865 if (rq->nr_running)
3866 return 0;
3868 #ifdef CONFIG_SMP
3869 if (!llist_empty(&rq->wake_list))
3870 return 0;
3871 #endif
3873 return 1;
3877 * idle_task - return the idle task for a given cpu.
3878 * @cpu: the processor in question.
3880 * Return: The idle task for the cpu @cpu.
3882 struct task_struct *idle_task(int cpu)
3884 return cpu_rq(cpu)->idle;
3888 * find_process_by_pid - find a process with a matching PID value.
3889 * @pid: the pid in question.
3891 * The task of @pid, if found. %NULL otherwise.
3893 static struct task_struct *find_process_by_pid(pid_t pid)
3895 return pid ? find_task_by_vpid(pid) : current;
3899 * This function initializes the sched_dl_entity of a newly becoming
3900 * SCHED_DEADLINE task.
3902 * Only the static values are considered here, the actual runtime and the
3903 * absolute deadline will be properly calculated when the task is enqueued
3904 * for the first time with its new policy.
3906 static void
3907 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3909 struct sched_dl_entity *dl_se = &p->dl;
3911 dl_se->dl_runtime = attr->sched_runtime;
3912 dl_se->dl_deadline = attr->sched_deadline;
3913 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3914 dl_se->flags = attr->sched_flags;
3915 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3916 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3919 * Changing the parameters of a task is 'tricky' and we're not doing
3920 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3922 * What we SHOULD do is delay the bandwidth release until the 0-lag
3923 * point. This would include retaining the task_struct until that time
3924 * and change dl_overflow() to not immediately decrement the current
3925 * amount.
3927 * Instead we retain the current runtime/deadline and let the new
3928 * parameters take effect after the current reservation period lapses.
3929 * This is safe (albeit pessimistic) because the 0-lag point is always
3930 * before the current scheduling deadline.
3932 * We can still have temporary overloads because we do not delay the
3933 * change in bandwidth until that time; so admission control is
3934 * not on the safe side. It does however guarantee tasks will never
3935 * consume more than promised.
3940 * sched_setparam() passes in -1 for its policy, to let the functions
3941 * it calls know not to change it.
3943 #define SETPARAM_POLICY -1
3945 static void __setscheduler_params(struct task_struct *p,
3946 const struct sched_attr *attr)
3948 int policy = attr->sched_policy;
3950 if (policy == SETPARAM_POLICY)
3951 policy = p->policy;
3953 p->policy = policy;
3955 if (dl_policy(policy))
3956 __setparam_dl(p, attr);
3957 else if (fair_policy(policy))
3958 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3961 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3962 * !rt_policy. Always setting this ensures that things like
3963 * getparam()/getattr() don't report silly values for !rt tasks.
3965 p->rt_priority = attr->sched_priority;
3966 p->normal_prio = normal_prio(p);
3967 set_load_weight(p);
3970 /* Actually do priority change: must hold pi & rq lock. */
3971 static void __setscheduler(struct rq *rq, struct task_struct *p,
3972 const struct sched_attr *attr, bool keep_boost)
3974 __setscheduler_params(p, attr);
3977 * Keep a potential priority boosting if called from
3978 * sched_setscheduler().
3980 if (keep_boost)
3981 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3982 else
3983 p->prio = normal_prio(p);
3985 if (dl_prio(p->prio))
3986 p->sched_class = &dl_sched_class;
3987 else if (rt_prio(p->prio))
3988 p->sched_class = &rt_sched_class;
3989 else
3990 p->sched_class = &fair_sched_class;
3993 static void
3994 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3996 struct sched_dl_entity *dl_se = &p->dl;
3998 attr->sched_priority = p->rt_priority;
3999 attr->sched_runtime = dl_se->dl_runtime;
4000 attr->sched_deadline = dl_se->dl_deadline;
4001 attr->sched_period = dl_se->dl_period;
4002 attr->sched_flags = dl_se->flags;
4006 * This function validates the new parameters of a -deadline task.
4007 * We ask for the deadline not being zero, and greater or equal
4008 * than the runtime, as well as the period of being zero or
4009 * greater than deadline. Furthermore, we have to be sure that
4010 * user parameters are above the internal resolution of 1us (we
4011 * check sched_runtime only since it is always the smaller one) and
4012 * below 2^63 ns (we have to check both sched_deadline and
4013 * sched_period, as the latter can be zero).
4015 static bool
4016 __checkparam_dl(const struct sched_attr *attr)
4018 /* deadline != 0 */
4019 if (attr->sched_deadline == 0)
4020 return false;
4023 * Since we truncate DL_SCALE bits, make sure we're at least
4024 * that big.
4026 if (attr->sched_runtime < (1ULL << DL_SCALE))
4027 return false;
4030 * Since we use the MSB for wrap-around and sign issues, make
4031 * sure it's not set (mind that period can be equal to zero).
4033 if (attr->sched_deadline & (1ULL << 63) ||
4034 attr->sched_period & (1ULL << 63))
4035 return false;
4037 /* runtime <= deadline <= period (if period != 0) */
4038 if ((attr->sched_period != 0 &&
4039 attr->sched_period < attr->sched_deadline) ||
4040 attr->sched_deadline < attr->sched_runtime)
4041 return false;
4043 return true;
4047 * check the target process has a UID that matches the current process's
4049 static bool check_same_owner(struct task_struct *p)
4051 const struct cred *cred = current_cred(), *pcred;
4052 bool match;
4054 rcu_read_lock();
4055 pcred = __task_cred(p);
4056 match = (uid_eq(cred->euid, pcred->euid) ||
4057 uid_eq(cred->euid, pcred->uid));
4058 rcu_read_unlock();
4059 return match;
4062 static bool dl_param_changed(struct task_struct *p,
4063 const struct sched_attr *attr)
4065 struct sched_dl_entity *dl_se = &p->dl;
4067 if (dl_se->dl_runtime != attr->sched_runtime ||
4068 dl_se->dl_deadline != attr->sched_deadline ||
4069 dl_se->dl_period != attr->sched_period ||
4070 dl_se->flags != attr->sched_flags)
4071 return true;
4073 return false;
4076 static int __sched_setscheduler(struct task_struct *p,
4077 const struct sched_attr *attr,
4078 bool user, bool pi)
4080 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4081 MAX_RT_PRIO - 1 - attr->sched_priority;
4082 int retval, oldprio, oldpolicy = -1, queued, running;
4083 int new_effective_prio, policy = attr->sched_policy;
4084 const struct sched_class *prev_class;
4085 struct rq_flags rf;
4086 int reset_on_fork;
4087 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4088 struct rq *rq;
4090 /* may grab non-irq protected spin_locks */
4091 BUG_ON(in_interrupt());
4092 recheck:
4093 /* double check policy once rq lock held */
4094 if (policy < 0) {
4095 reset_on_fork = p->sched_reset_on_fork;
4096 policy = oldpolicy = p->policy;
4097 } else {
4098 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4100 if (!valid_policy(policy))
4101 return -EINVAL;
4104 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4105 return -EINVAL;
4108 * Valid priorities for SCHED_FIFO and SCHED_RR are
4109 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4110 * SCHED_BATCH and SCHED_IDLE is 0.
4112 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4113 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4114 return -EINVAL;
4115 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4116 (rt_policy(policy) != (attr->sched_priority != 0)))
4117 return -EINVAL;
4120 * Allow unprivileged RT tasks to decrease priority:
4122 if (user && !capable(CAP_SYS_NICE)) {
4123 if (fair_policy(policy)) {
4124 if (attr->sched_nice < task_nice(p) &&
4125 !can_nice(p, attr->sched_nice))
4126 return -EPERM;
4129 if (rt_policy(policy)) {
4130 unsigned long rlim_rtprio =
4131 task_rlimit(p, RLIMIT_RTPRIO);
4133 /* can't set/change the rt policy */
4134 if (policy != p->policy && !rlim_rtprio)
4135 return -EPERM;
4137 /* can't increase priority */
4138 if (attr->sched_priority > p->rt_priority &&
4139 attr->sched_priority > rlim_rtprio)
4140 return -EPERM;
4144 * Can't set/change SCHED_DEADLINE policy at all for now
4145 * (safest behavior); in the future we would like to allow
4146 * unprivileged DL tasks to increase their relative deadline
4147 * or reduce their runtime (both ways reducing utilization)
4149 if (dl_policy(policy))
4150 return -EPERM;
4153 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4154 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4156 if (idle_policy(p->policy) && !idle_policy(policy)) {
4157 if (!can_nice(p, task_nice(p)))
4158 return -EPERM;
4161 /* can't change other user's priorities */
4162 if (!check_same_owner(p))
4163 return -EPERM;
4165 /* Normal users shall not reset the sched_reset_on_fork flag */
4166 if (p->sched_reset_on_fork && !reset_on_fork)
4167 return -EPERM;
4170 if (user) {
4171 retval = security_task_setscheduler(p);
4172 if (retval)
4173 return retval;
4177 * make sure no PI-waiters arrive (or leave) while we are
4178 * changing the priority of the task:
4180 * To be able to change p->policy safely, the appropriate
4181 * runqueue lock must be held.
4183 rq = task_rq_lock(p, &rf);
4186 * Changing the policy of the stop threads its a very bad idea
4188 if (p == rq->stop) {
4189 task_rq_unlock(rq, p, &rf);
4190 return -EINVAL;
4194 * If not changing anything there's no need to proceed further,
4195 * but store a possible modification of reset_on_fork.
4197 if (unlikely(policy == p->policy)) {
4198 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4199 goto change;
4200 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4201 goto change;
4202 if (dl_policy(policy) && dl_param_changed(p, attr))
4203 goto change;
4205 p->sched_reset_on_fork = reset_on_fork;
4206 task_rq_unlock(rq, p, &rf);
4207 return 0;
4209 change:
4211 if (user) {
4212 #ifdef CONFIG_RT_GROUP_SCHED
4214 * Do not allow realtime tasks into groups that have no runtime
4215 * assigned.
4217 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4218 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4219 !task_group_is_autogroup(task_group(p))) {
4220 task_rq_unlock(rq, p, &rf);
4221 return -EPERM;
4223 #endif
4224 #ifdef CONFIG_SMP
4225 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4226 cpumask_t *span = rq->rd->span;
4229 * Don't allow tasks with an affinity mask smaller than
4230 * the entire root_domain to become SCHED_DEADLINE. We
4231 * will also fail if there's no bandwidth available.
4233 if (!cpumask_subset(span, &p->cpus_allowed) ||
4234 rq->rd->dl_bw.bw == 0) {
4235 task_rq_unlock(rq, p, &rf);
4236 return -EPERM;
4239 #endif
4242 /* recheck policy now with rq lock held */
4243 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4244 policy = oldpolicy = -1;
4245 task_rq_unlock(rq, p, &rf);
4246 goto recheck;
4250 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4251 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4252 * is available.
4254 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4255 task_rq_unlock(rq, p, &rf);
4256 return -EBUSY;
4259 p->sched_reset_on_fork = reset_on_fork;
4260 oldprio = p->prio;
4262 if (pi) {
4264 * Take priority boosted tasks into account. If the new
4265 * effective priority is unchanged, we just store the new
4266 * normal parameters and do not touch the scheduler class and
4267 * the runqueue. This will be done when the task deboost
4268 * itself.
4270 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4271 if (new_effective_prio == oldprio)
4272 queue_flags &= ~DEQUEUE_MOVE;
4275 queued = task_on_rq_queued(p);
4276 running = task_current(rq, p);
4277 if (queued)
4278 dequeue_task(rq, p, queue_flags);
4279 if (running)
4280 put_prev_task(rq, p);
4282 prev_class = p->sched_class;
4283 __setscheduler(rq, p, attr, pi);
4285 if (queued) {
4287 * We enqueue to tail when the priority of a task is
4288 * increased (user space view).
4290 if (oldprio < p->prio)
4291 queue_flags |= ENQUEUE_HEAD;
4293 enqueue_task(rq, p, queue_flags);
4295 if (running)
4296 set_curr_task(rq, p);
4298 check_class_changed(rq, p, prev_class, oldprio);
4299 preempt_disable(); /* avoid rq from going away on us */
4300 task_rq_unlock(rq, p, &rf);
4302 if (pi)
4303 rt_mutex_adjust_pi(p);
4306 * Run balance callbacks after we've adjusted the PI chain.
4308 balance_callback(rq);
4309 preempt_enable();
4311 return 0;
4314 static int _sched_setscheduler(struct task_struct *p, int policy,
4315 const struct sched_param *param, bool check)
4317 struct sched_attr attr = {
4318 .sched_policy = policy,
4319 .sched_priority = param->sched_priority,
4320 .sched_nice = PRIO_TO_NICE(p->static_prio),
4323 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4324 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4325 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4326 policy &= ~SCHED_RESET_ON_FORK;
4327 attr.sched_policy = policy;
4330 return __sched_setscheduler(p, &attr, check, true);
4333 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4334 * @p: the task in question.
4335 * @policy: new policy.
4336 * @param: structure containing the new RT priority.
4338 * Return: 0 on success. An error code otherwise.
4340 * NOTE that the task may be already dead.
4342 int sched_setscheduler(struct task_struct *p, int policy,
4343 const struct sched_param *param)
4345 return _sched_setscheduler(p, policy, param, true);
4347 EXPORT_SYMBOL_GPL(sched_setscheduler);
4349 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4351 return __sched_setscheduler(p, attr, true, true);
4353 EXPORT_SYMBOL_GPL(sched_setattr);
4356 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4357 * @p: the task in question.
4358 * @policy: new policy.
4359 * @param: structure containing the new RT priority.
4361 * Just like sched_setscheduler, only don't bother checking if the
4362 * current context has permission. For example, this is needed in
4363 * stop_machine(): we create temporary high priority worker threads,
4364 * but our caller might not have that capability.
4366 * Return: 0 on success. An error code otherwise.
4368 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4369 const struct sched_param *param)
4371 return _sched_setscheduler(p, policy, param, false);
4373 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4375 static int
4376 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4378 struct sched_param lparam;
4379 struct task_struct *p;
4380 int retval;
4382 if (!param || pid < 0)
4383 return -EINVAL;
4384 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4385 return -EFAULT;
4387 rcu_read_lock();
4388 retval = -ESRCH;
4389 p = find_process_by_pid(pid);
4390 if (p != NULL)
4391 retval = sched_setscheduler(p, policy, &lparam);
4392 rcu_read_unlock();
4394 return retval;
4398 * Mimics kernel/events/core.c perf_copy_attr().
4400 static int sched_copy_attr(struct sched_attr __user *uattr,
4401 struct sched_attr *attr)
4403 u32 size;
4404 int ret;
4406 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4407 return -EFAULT;
4410 * zero the full structure, so that a short copy will be nice.
4412 memset(attr, 0, sizeof(*attr));
4414 ret = get_user(size, &uattr->size);
4415 if (ret)
4416 return ret;
4418 if (size > PAGE_SIZE) /* silly large */
4419 goto err_size;
4421 if (!size) /* abi compat */
4422 size = SCHED_ATTR_SIZE_VER0;
4424 if (size < SCHED_ATTR_SIZE_VER0)
4425 goto err_size;
4428 * If we're handed a bigger struct than we know of,
4429 * ensure all the unknown bits are 0 - i.e. new
4430 * user-space does not rely on any kernel feature
4431 * extensions we dont know about yet.
4433 if (size > sizeof(*attr)) {
4434 unsigned char __user *addr;
4435 unsigned char __user *end;
4436 unsigned char val;
4438 addr = (void __user *)uattr + sizeof(*attr);
4439 end = (void __user *)uattr + size;
4441 for (; addr < end; addr++) {
4442 ret = get_user(val, addr);
4443 if (ret)
4444 return ret;
4445 if (val)
4446 goto err_size;
4448 size = sizeof(*attr);
4451 ret = copy_from_user(attr, uattr, size);
4452 if (ret)
4453 return -EFAULT;
4456 * XXX: do we want to be lenient like existing syscalls; or do we want
4457 * to be strict and return an error on out-of-bounds values?
4459 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4461 return 0;
4463 err_size:
4464 put_user(sizeof(*attr), &uattr->size);
4465 return -E2BIG;
4469 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4470 * @pid: the pid in question.
4471 * @policy: new policy.
4472 * @param: structure containing the new RT priority.
4474 * Return: 0 on success. An error code otherwise.
4476 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4477 struct sched_param __user *, param)
4479 /* negative values for policy are not valid */
4480 if (policy < 0)
4481 return -EINVAL;
4483 return do_sched_setscheduler(pid, policy, param);
4487 * sys_sched_setparam - set/change the RT priority of a thread
4488 * @pid: the pid in question.
4489 * @param: structure containing the new RT priority.
4491 * Return: 0 on success. An error code otherwise.
4493 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4495 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4499 * sys_sched_setattr - same as above, but with extended sched_attr
4500 * @pid: the pid in question.
4501 * @uattr: structure containing the extended parameters.
4502 * @flags: for future extension.
4504 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4505 unsigned int, flags)
4507 struct sched_attr attr;
4508 struct task_struct *p;
4509 int retval;
4511 if (!uattr || pid < 0 || flags)
4512 return -EINVAL;
4514 retval = sched_copy_attr(uattr, &attr);
4515 if (retval)
4516 return retval;
4518 if ((int)attr.sched_policy < 0)
4519 return -EINVAL;
4521 rcu_read_lock();
4522 retval = -ESRCH;
4523 p = find_process_by_pid(pid);
4524 if (p != NULL)
4525 retval = sched_setattr(p, &attr);
4526 rcu_read_unlock();
4528 return retval;
4532 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4533 * @pid: the pid in question.
4535 * Return: On success, the policy of the thread. Otherwise, a negative error
4536 * code.
4538 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4540 struct task_struct *p;
4541 int retval;
4543 if (pid < 0)
4544 return -EINVAL;
4546 retval = -ESRCH;
4547 rcu_read_lock();
4548 p = find_process_by_pid(pid);
4549 if (p) {
4550 retval = security_task_getscheduler(p);
4551 if (!retval)
4552 retval = p->policy
4553 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4555 rcu_read_unlock();
4556 return retval;
4560 * sys_sched_getparam - get the RT priority of a thread
4561 * @pid: the pid in question.
4562 * @param: structure containing the RT priority.
4564 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4565 * code.
4567 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4569 struct sched_param lp = { .sched_priority = 0 };
4570 struct task_struct *p;
4571 int retval;
4573 if (!param || pid < 0)
4574 return -EINVAL;
4576 rcu_read_lock();
4577 p = find_process_by_pid(pid);
4578 retval = -ESRCH;
4579 if (!p)
4580 goto out_unlock;
4582 retval = security_task_getscheduler(p);
4583 if (retval)
4584 goto out_unlock;
4586 if (task_has_rt_policy(p))
4587 lp.sched_priority = p->rt_priority;
4588 rcu_read_unlock();
4591 * This one might sleep, we cannot do it with a spinlock held ...
4593 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4595 return retval;
4597 out_unlock:
4598 rcu_read_unlock();
4599 return retval;
4602 static int sched_read_attr(struct sched_attr __user *uattr,
4603 struct sched_attr *attr,
4604 unsigned int usize)
4606 int ret;
4608 if (!access_ok(VERIFY_WRITE, uattr, usize))
4609 return -EFAULT;
4612 * If we're handed a smaller struct than we know of,
4613 * ensure all the unknown bits are 0 - i.e. old
4614 * user-space does not get uncomplete information.
4616 if (usize < sizeof(*attr)) {
4617 unsigned char *addr;
4618 unsigned char *end;
4620 addr = (void *)attr + usize;
4621 end = (void *)attr + sizeof(*attr);
4623 for (; addr < end; addr++) {
4624 if (*addr)
4625 return -EFBIG;
4628 attr->size = usize;
4631 ret = copy_to_user(uattr, attr, attr->size);
4632 if (ret)
4633 return -EFAULT;
4635 return 0;
4639 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4640 * @pid: the pid in question.
4641 * @uattr: structure containing the extended parameters.
4642 * @size: sizeof(attr) for fwd/bwd comp.
4643 * @flags: for future extension.
4645 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4646 unsigned int, size, unsigned int, flags)
4648 struct sched_attr attr = {
4649 .size = sizeof(struct sched_attr),
4651 struct task_struct *p;
4652 int retval;
4654 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4655 size < SCHED_ATTR_SIZE_VER0 || flags)
4656 return -EINVAL;
4658 rcu_read_lock();
4659 p = find_process_by_pid(pid);
4660 retval = -ESRCH;
4661 if (!p)
4662 goto out_unlock;
4664 retval = security_task_getscheduler(p);
4665 if (retval)
4666 goto out_unlock;
4668 attr.sched_policy = p->policy;
4669 if (p->sched_reset_on_fork)
4670 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4671 if (task_has_dl_policy(p))
4672 __getparam_dl(p, &attr);
4673 else if (task_has_rt_policy(p))
4674 attr.sched_priority = p->rt_priority;
4675 else
4676 attr.sched_nice = task_nice(p);
4678 rcu_read_unlock();
4680 retval = sched_read_attr(uattr, &attr, size);
4681 return retval;
4683 out_unlock:
4684 rcu_read_unlock();
4685 return retval;
4688 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4690 cpumask_var_t cpus_allowed, new_mask;
4691 struct task_struct *p;
4692 int retval;
4694 rcu_read_lock();
4696 p = find_process_by_pid(pid);
4697 if (!p) {
4698 rcu_read_unlock();
4699 return -ESRCH;
4702 /* Prevent p going away */
4703 get_task_struct(p);
4704 rcu_read_unlock();
4706 if (p->flags & PF_NO_SETAFFINITY) {
4707 retval = -EINVAL;
4708 goto out_put_task;
4710 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4711 retval = -ENOMEM;
4712 goto out_put_task;
4714 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4715 retval = -ENOMEM;
4716 goto out_free_cpus_allowed;
4718 retval = -EPERM;
4719 if (!check_same_owner(p)) {
4720 rcu_read_lock();
4721 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4722 rcu_read_unlock();
4723 goto out_free_new_mask;
4725 rcu_read_unlock();
4728 retval = security_task_setscheduler(p);
4729 if (retval)
4730 goto out_free_new_mask;
4733 cpuset_cpus_allowed(p, cpus_allowed);
4734 cpumask_and(new_mask, in_mask, cpus_allowed);
4737 * Since bandwidth control happens on root_domain basis,
4738 * if admission test is enabled, we only admit -deadline
4739 * tasks allowed to run on all the CPUs in the task's
4740 * root_domain.
4742 #ifdef CONFIG_SMP
4743 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4744 rcu_read_lock();
4745 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4746 retval = -EBUSY;
4747 rcu_read_unlock();
4748 goto out_free_new_mask;
4750 rcu_read_unlock();
4752 #endif
4753 again:
4754 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4756 if (!retval) {
4757 cpuset_cpus_allowed(p, cpus_allowed);
4758 if (!cpumask_subset(new_mask, cpus_allowed)) {
4760 * We must have raced with a concurrent cpuset
4761 * update. Just reset the cpus_allowed to the
4762 * cpuset's cpus_allowed
4764 cpumask_copy(new_mask, cpus_allowed);
4765 goto again;
4768 out_free_new_mask:
4769 free_cpumask_var(new_mask);
4770 out_free_cpus_allowed:
4771 free_cpumask_var(cpus_allowed);
4772 out_put_task:
4773 put_task_struct(p);
4774 return retval;
4777 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4778 struct cpumask *new_mask)
4780 if (len < cpumask_size())
4781 cpumask_clear(new_mask);
4782 else if (len > cpumask_size())
4783 len = cpumask_size();
4785 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4789 * sys_sched_setaffinity - set the cpu affinity of a process
4790 * @pid: pid of the process
4791 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4792 * @user_mask_ptr: user-space pointer to the new cpu mask
4794 * Return: 0 on success. An error code otherwise.
4796 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4797 unsigned long __user *, user_mask_ptr)
4799 cpumask_var_t new_mask;
4800 int retval;
4802 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4803 return -ENOMEM;
4805 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4806 if (retval == 0)
4807 retval = sched_setaffinity(pid, new_mask);
4808 free_cpumask_var(new_mask);
4809 return retval;
4812 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4814 struct task_struct *p;
4815 unsigned long flags;
4816 int retval;
4818 rcu_read_lock();
4820 retval = -ESRCH;
4821 p = find_process_by_pid(pid);
4822 if (!p)
4823 goto out_unlock;
4825 retval = security_task_getscheduler(p);
4826 if (retval)
4827 goto out_unlock;
4829 raw_spin_lock_irqsave(&p->pi_lock, flags);
4830 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4831 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4833 out_unlock:
4834 rcu_read_unlock();
4836 return retval;
4840 * sys_sched_getaffinity - get the cpu affinity of a process
4841 * @pid: pid of the process
4842 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4843 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4845 * Return: size of CPU mask copied to user_mask_ptr on success. An
4846 * error code otherwise.
4848 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4849 unsigned long __user *, user_mask_ptr)
4851 int ret;
4852 cpumask_var_t mask;
4854 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4855 return -EINVAL;
4856 if (len & (sizeof(unsigned long)-1))
4857 return -EINVAL;
4859 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4860 return -ENOMEM;
4862 ret = sched_getaffinity(pid, mask);
4863 if (ret == 0) {
4864 size_t retlen = min_t(size_t, len, cpumask_size());
4866 if (copy_to_user(user_mask_ptr, mask, retlen))
4867 ret = -EFAULT;
4868 else
4869 ret = retlen;
4871 free_cpumask_var(mask);
4873 return ret;
4877 * sys_sched_yield - yield the current processor to other threads.
4879 * This function yields the current CPU to other tasks. If there are no
4880 * other threads running on this CPU then this function will return.
4882 * Return: 0.
4884 SYSCALL_DEFINE0(sched_yield)
4886 struct rq *rq = this_rq_lock();
4888 schedstat_inc(rq->yld_count);
4889 current->sched_class->yield_task(rq);
4892 * Since we are going to call schedule() anyway, there's
4893 * no need to preempt or enable interrupts:
4895 __release(rq->lock);
4896 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4897 do_raw_spin_unlock(&rq->lock);
4898 sched_preempt_enable_no_resched();
4900 schedule();
4902 return 0;
4905 #ifndef CONFIG_PREEMPT
4906 int __sched _cond_resched(void)
4908 if (should_resched(0)) {
4909 preempt_schedule_common();
4910 return 1;
4912 return 0;
4914 EXPORT_SYMBOL(_cond_resched);
4915 #endif
4918 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4919 * call schedule, and on return reacquire the lock.
4921 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4922 * operations here to prevent schedule() from being called twice (once via
4923 * spin_unlock(), once by hand).
4925 int __cond_resched_lock(spinlock_t *lock)
4927 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4928 int ret = 0;
4930 lockdep_assert_held(lock);
4932 if (spin_needbreak(lock) || resched) {
4933 spin_unlock(lock);
4934 if (resched)
4935 preempt_schedule_common();
4936 else
4937 cpu_relax();
4938 ret = 1;
4939 spin_lock(lock);
4941 return ret;
4943 EXPORT_SYMBOL(__cond_resched_lock);
4945 int __sched __cond_resched_softirq(void)
4947 BUG_ON(!in_softirq());
4949 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4950 local_bh_enable();
4951 preempt_schedule_common();
4952 local_bh_disable();
4953 return 1;
4955 return 0;
4957 EXPORT_SYMBOL(__cond_resched_softirq);
4960 * yield - yield the current processor to other threads.
4962 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4964 * The scheduler is at all times free to pick the calling task as the most
4965 * eligible task to run, if removing the yield() call from your code breaks
4966 * it, its already broken.
4968 * Typical broken usage is:
4970 * while (!event)
4971 * yield();
4973 * where one assumes that yield() will let 'the other' process run that will
4974 * make event true. If the current task is a SCHED_FIFO task that will never
4975 * happen. Never use yield() as a progress guarantee!!
4977 * If you want to use yield() to wait for something, use wait_event().
4978 * If you want to use yield() to be 'nice' for others, use cond_resched().
4979 * If you still want to use yield(), do not!
4981 void __sched yield(void)
4983 set_current_state(TASK_RUNNING);
4984 sys_sched_yield();
4986 EXPORT_SYMBOL(yield);
4989 * yield_to - yield the current processor to another thread in
4990 * your thread group, or accelerate that thread toward the
4991 * processor it's on.
4992 * @p: target task
4993 * @preempt: whether task preemption is allowed or not
4995 * It's the caller's job to ensure that the target task struct
4996 * can't go away on us before we can do any checks.
4998 * Return:
4999 * true (>0) if we indeed boosted the target task.
5000 * false (0) if we failed to boost the target.
5001 * -ESRCH if there's no task to yield to.
5003 int __sched yield_to(struct task_struct *p, bool preempt)
5005 struct task_struct *curr = current;
5006 struct rq *rq, *p_rq;
5007 unsigned long flags;
5008 int yielded = 0;
5010 local_irq_save(flags);
5011 rq = this_rq();
5013 again:
5014 p_rq = task_rq(p);
5016 * If we're the only runnable task on the rq and target rq also
5017 * has only one task, there's absolutely no point in yielding.
5019 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5020 yielded = -ESRCH;
5021 goto out_irq;
5024 double_rq_lock(rq, p_rq);
5025 if (task_rq(p) != p_rq) {
5026 double_rq_unlock(rq, p_rq);
5027 goto again;
5030 if (!curr->sched_class->yield_to_task)
5031 goto out_unlock;
5033 if (curr->sched_class != p->sched_class)
5034 goto out_unlock;
5036 if (task_running(p_rq, p) || p->state)
5037 goto out_unlock;
5039 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5040 if (yielded) {
5041 schedstat_inc(rq->yld_count);
5043 * Make p's CPU reschedule; pick_next_entity takes care of
5044 * fairness.
5046 if (preempt && rq != p_rq)
5047 resched_curr(p_rq);
5050 out_unlock:
5051 double_rq_unlock(rq, p_rq);
5052 out_irq:
5053 local_irq_restore(flags);
5055 if (yielded > 0)
5056 schedule();
5058 return yielded;
5060 EXPORT_SYMBOL_GPL(yield_to);
5063 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5064 * that process accounting knows that this is a task in IO wait state.
5066 long __sched io_schedule_timeout(long timeout)
5068 int old_iowait = current->in_iowait;
5069 struct rq *rq;
5070 long ret;
5072 current->in_iowait = 1;
5073 blk_schedule_flush_plug(current);
5075 delayacct_blkio_start();
5076 rq = raw_rq();
5077 atomic_inc(&rq->nr_iowait);
5078 ret = schedule_timeout(timeout);
5079 current->in_iowait = old_iowait;
5080 atomic_dec(&rq->nr_iowait);
5081 delayacct_blkio_end();
5083 return ret;
5085 EXPORT_SYMBOL(io_schedule_timeout);
5088 * sys_sched_get_priority_max - return maximum RT priority.
5089 * @policy: scheduling class.
5091 * Return: On success, this syscall returns the maximum
5092 * rt_priority that can be used by a given scheduling class.
5093 * On failure, a negative error code is returned.
5095 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5097 int ret = -EINVAL;
5099 switch (policy) {
5100 case SCHED_FIFO:
5101 case SCHED_RR:
5102 ret = MAX_USER_RT_PRIO-1;
5103 break;
5104 case SCHED_DEADLINE:
5105 case SCHED_NORMAL:
5106 case SCHED_BATCH:
5107 case SCHED_IDLE:
5108 ret = 0;
5109 break;
5111 return ret;
5115 * sys_sched_get_priority_min - return minimum RT priority.
5116 * @policy: scheduling class.
5118 * Return: On success, this syscall returns the minimum
5119 * rt_priority that can be used by a given scheduling class.
5120 * On failure, a negative error code is returned.
5122 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5124 int ret = -EINVAL;
5126 switch (policy) {
5127 case SCHED_FIFO:
5128 case SCHED_RR:
5129 ret = 1;
5130 break;
5131 case SCHED_DEADLINE:
5132 case SCHED_NORMAL:
5133 case SCHED_BATCH:
5134 case SCHED_IDLE:
5135 ret = 0;
5137 return ret;
5141 * sys_sched_rr_get_interval - return the default timeslice of a process.
5142 * @pid: pid of the process.
5143 * @interval: userspace pointer to the timeslice value.
5145 * this syscall writes the default timeslice value of a given process
5146 * into the user-space timespec buffer. A value of '0' means infinity.
5148 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5149 * an error code.
5151 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5152 struct timespec __user *, interval)
5154 struct task_struct *p;
5155 unsigned int time_slice;
5156 struct rq_flags rf;
5157 struct timespec t;
5158 struct rq *rq;
5159 int retval;
5161 if (pid < 0)
5162 return -EINVAL;
5164 retval = -ESRCH;
5165 rcu_read_lock();
5166 p = find_process_by_pid(pid);
5167 if (!p)
5168 goto out_unlock;
5170 retval = security_task_getscheduler(p);
5171 if (retval)
5172 goto out_unlock;
5174 rq = task_rq_lock(p, &rf);
5175 time_slice = 0;
5176 if (p->sched_class->get_rr_interval)
5177 time_slice = p->sched_class->get_rr_interval(rq, p);
5178 task_rq_unlock(rq, p, &rf);
5180 rcu_read_unlock();
5181 jiffies_to_timespec(time_slice, &t);
5182 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5183 return retval;
5185 out_unlock:
5186 rcu_read_unlock();
5187 return retval;
5190 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5192 void sched_show_task(struct task_struct *p)
5194 unsigned long free = 0;
5195 int ppid;
5196 unsigned long state = p->state;
5198 if (!try_get_task_stack(p))
5199 return;
5200 if (state)
5201 state = __ffs(state) + 1;
5202 printk(KERN_INFO "%-15.15s %c", p->comm,
5203 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5204 if (state == TASK_RUNNING)
5205 printk(KERN_CONT " running task ");
5206 #ifdef CONFIG_DEBUG_STACK_USAGE
5207 free = stack_not_used(p);
5208 #endif
5209 ppid = 0;
5210 rcu_read_lock();
5211 if (pid_alive(p))
5212 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5213 rcu_read_unlock();
5214 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5215 task_pid_nr(p), ppid,
5216 (unsigned long)task_thread_info(p)->flags);
5218 print_worker_info(KERN_INFO, p);
5219 show_stack(p, NULL);
5220 put_task_stack(p);
5223 void show_state_filter(unsigned long state_filter)
5225 struct task_struct *g, *p;
5227 #if BITS_PER_LONG == 32
5228 printk(KERN_INFO
5229 " task PC stack pid father\n");
5230 #else
5231 printk(KERN_INFO
5232 " task PC stack pid father\n");
5233 #endif
5234 rcu_read_lock();
5235 for_each_process_thread(g, p) {
5237 * reset the NMI-timeout, listing all files on a slow
5238 * console might take a lot of time:
5239 * Also, reset softlockup watchdogs on all CPUs, because
5240 * another CPU might be blocked waiting for us to process
5241 * an IPI.
5243 touch_nmi_watchdog();
5244 touch_all_softlockup_watchdogs();
5245 if (!state_filter || (p->state & state_filter))
5246 sched_show_task(p);
5249 #ifdef CONFIG_SCHED_DEBUG
5250 if (!state_filter)
5251 sysrq_sched_debug_show();
5252 #endif
5253 rcu_read_unlock();
5255 * Only show locks if all tasks are dumped:
5257 if (!state_filter)
5258 debug_show_all_locks();
5261 void init_idle_bootup_task(struct task_struct *idle)
5263 idle->sched_class = &idle_sched_class;
5267 * init_idle - set up an idle thread for a given CPU
5268 * @idle: task in question
5269 * @cpu: cpu the idle task belongs to
5271 * NOTE: this function does not set the idle thread's NEED_RESCHED
5272 * flag, to make booting more robust.
5274 void init_idle(struct task_struct *idle, int cpu)
5276 struct rq *rq = cpu_rq(cpu);
5277 unsigned long flags;
5279 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5280 raw_spin_lock(&rq->lock);
5282 __sched_fork(0, idle);
5283 idle->state = TASK_RUNNING;
5284 idle->se.exec_start = sched_clock();
5286 kasan_unpoison_task_stack(idle);
5288 #ifdef CONFIG_SMP
5290 * Its possible that init_idle() gets called multiple times on a task,
5291 * in that case do_set_cpus_allowed() will not do the right thing.
5293 * And since this is boot we can forgo the serialization.
5295 set_cpus_allowed_common(idle, cpumask_of(cpu));
5296 #endif
5298 * We're having a chicken and egg problem, even though we are
5299 * holding rq->lock, the cpu isn't yet set to this cpu so the
5300 * lockdep check in task_group() will fail.
5302 * Similar case to sched_fork(). / Alternatively we could
5303 * use task_rq_lock() here and obtain the other rq->lock.
5305 * Silence PROVE_RCU
5307 rcu_read_lock();
5308 __set_task_cpu(idle, cpu);
5309 rcu_read_unlock();
5311 rq->curr = rq->idle = idle;
5312 idle->on_rq = TASK_ON_RQ_QUEUED;
5313 #ifdef CONFIG_SMP
5314 idle->on_cpu = 1;
5315 #endif
5316 raw_spin_unlock(&rq->lock);
5317 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5319 /* Set the preempt count _outside_ the spinlocks! */
5320 init_idle_preempt_count(idle, cpu);
5323 * The idle tasks have their own, simple scheduling class:
5325 idle->sched_class = &idle_sched_class;
5326 ftrace_graph_init_idle_task(idle, cpu);
5327 vtime_init_idle(idle, cpu);
5328 #ifdef CONFIG_SMP
5329 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5330 #endif
5333 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5334 const struct cpumask *trial)
5336 int ret = 1, trial_cpus;
5337 struct dl_bw *cur_dl_b;
5338 unsigned long flags;
5340 if (!cpumask_weight(cur))
5341 return ret;
5343 rcu_read_lock_sched();
5344 cur_dl_b = dl_bw_of(cpumask_any(cur));
5345 trial_cpus = cpumask_weight(trial);
5347 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5348 if (cur_dl_b->bw != -1 &&
5349 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5350 ret = 0;
5351 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5352 rcu_read_unlock_sched();
5354 return ret;
5357 int task_can_attach(struct task_struct *p,
5358 const struct cpumask *cs_cpus_allowed)
5360 int ret = 0;
5363 * Kthreads which disallow setaffinity shouldn't be moved
5364 * to a new cpuset; we don't want to change their cpu
5365 * affinity and isolating such threads by their set of
5366 * allowed nodes is unnecessary. Thus, cpusets are not
5367 * applicable for such threads. This prevents checking for
5368 * success of set_cpus_allowed_ptr() on all attached tasks
5369 * before cpus_allowed may be changed.
5371 if (p->flags & PF_NO_SETAFFINITY) {
5372 ret = -EINVAL;
5373 goto out;
5376 #ifdef CONFIG_SMP
5377 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5378 cs_cpus_allowed)) {
5379 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5380 cs_cpus_allowed);
5381 struct dl_bw *dl_b;
5382 bool overflow;
5383 int cpus;
5384 unsigned long flags;
5386 rcu_read_lock_sched();
5387 dl_b = dl_bw_of(dest_cpu);
5388 raw_spin_lock_irqsave(&dl_b->lock, flags);
5389 cpus = dl_bw_cpus(dest_cpu);
5390 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5391 if (overflow)
5392 ret = -EBUSY;
5393 else {
5395 * We reserve space for this task in the destination
5396 * root_domain, as we can't fail after this point.
5397 * We will free resources in the source root_domain
5398 * later on (see set_cpus_allowed_dl()).
5400 __dl_add(dl_b, p->dl.dl_bw);
5402 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5403 rcu_read_unlock_sched();
5406 #endif
5407 out:
5408 return ret;
5411 #ifdef CONFIG_SMP
5413 static bool sched_smp_initialized __read_mostly;
5415 #ifdef CONFIG_NUMA_BALANCING
5416 /* Migrate current task p to target_cpu */
5417 int migrate_task_to(struct task_struct *p, int target_cpu)
5419 struct migration_arg arg = { p, target_cpu };
5420 int curr_cpu = task_cpu(p);
5422 if (curr_cpu == target_cpu)
5423 return 0;
5425 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5426 return -EINVAL;
5428 /* TODO: This is not properly updating schedstats */
5430 trace_sched_move_numa(p, curr_cpu, target_cpu);
5431 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5435 * Requeue a task on a given node and accurately track the number of NUMA
5436 * tasks on the runqueues
5438 void sched_setnuma(struct task_struct *p, int nid)
5440 bool queued, running;
5441 struct rq_flags rf;
5442 struct rq *rq;
5444 rq = task_rq_lock(p, &rf);
5445 queued = task_on_rq_queued(p);
5446 running = task_current(rq, p);
5448 if (queued)
5449 dequeue_task(rq, p, DEQUEUE_SAVE);
5450 if (running)
5451 put_prev_task(rq, p);
5453 p->numa_preferred_nid = nid;
5455 if (queued)
5456 enqueue_task(rq, p, ENQUEUE_RESTORE);
5457 if (running)
5458 set_curr_task(rq, p);
5459 task_rq_unlock(rq, p, &rf);
5461 #endif /* CONFIG_NUMA_BALANCING */
5463 #ifdef CONFIG_HOTPLUG_CPU
5465 * Ensures that the idle task is using init_mm right before its cpu goes
5466 * offline.
5468 void idle_task_exit(void)
5470 struct mm_struct *mm = current->active_mm;
5472 BUG_ON(cpu_online(smp_processor_id()));
5474 if (mm != &init_mm) {
5475 switch_mm(mm, &init_mm, current);
5476 finish_arch_post_lock_switch();
5478 mmdrop(mm);
5482 * Since this CPU is going 'away' for a while, fold any nr_active delta
5483 * we might have. Assumes we're called after migrate_tasks() so that the
5484 * nr_active count is stable. We need to take the teardown thread which
5485 * is calling this into account, so we hand in adjust = 1 to the load
5486 * calculation.
5488 * Also see the comment "Global load-average calculations".
5490 static void calc_load_migrate(struct rq *rq)
5492 long delta = calc_load_fold_active(rq, 1);
5493 if (delta)
5494 atomic_long_add(delta, &calc_load_tasks);
5497 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5501 static const struct sched_class fake_sched_class = {
5502 .put_prev_task = put_prev_task_fake,
5505 static struct task_struct fake_task = {
5507 * Avoid pull_{rt,dl}_task()
5509 .prio = MAX_PRIO + 1,
5510 .sched_class = &fake_sched_class,
5514 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5515 * try_to_wake_up()->select_task_rq().
5517 * Called with rq->lock held even though we'er in stop_machine() and
5518 * there's no concurrency possible, we hold the required locks anyway
5519 * because of lock validation efforts.
5521 static void migrate_tasks(struct rq *dead_rq)
5523 struct rq *rq = dead_rq;
5524 struct task_struct *next, *stop = rq->stop;
5525 struct pin_cookie cookie;
5526 int dest_cpu;
5529 * Fudge the rq selection such that the below task selection loop
5530 * doesn't get stuck on the currently eligible stop task.
5532 * We're currently inside stop_machine() and the rq is either stuck
5533 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5534 * either way we should never end up calling schedule() until we're
5535 * done here.
5537 rq->stop = NULL;
5540 * put_prev_task() and pick_next_task() sched
5541 * class method both need to have an up-to-date
5542 * value of rq->clock[_task]
5544 update_rq_clock(rq);
5546 for (;;) {
5548 * There's this thread running, bail when that's the only
5549 * remaining thread.
5551 if (rq->nr_running == 1)
5552 break;
5555 * pick_next_task assumes pinned rq->lock.
5557 cookie = lockdep_pin_lock(&rq->lock);
5558 next = pick_next_task(rq, &fake_task, cookie);
5559 BUG_ON(!next);
5560 next->sched_class->put_prev_task(rq, next);
5563 * Rules for changing task_struct::cpus_allowed are holding
5564 * both pi_lock and rq->lock, such that holding either
5565 * stabilizes the mask.
5567 * Drop rq->lock is not quite as disastrous as it usually is
5568 * because !cpu_active at this point, which means load-balance
5569 * will not interfere. Also, stop-machine.
5571 lockdep_unpin_lock(&rq->lock, cookie);
5572 raw_spin_unlock(&rq->lock);
5573 raw_spin_lock(&next->pi_lock);
5574 raw_spin_lock(&rq->lock);
5577 * Since we're inside stop-machine, _nothing_ should have
5578 * changed the task, WARN if weird stuff happened, because in
5579 * that case the above rq->lock drop is a fail too.
5581 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5582 raw_spin_unlock(&next->pi_lock);
5583 continue;
5586 /* Find suitable destination for @next, with force if needed. */
5587 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5589 rq = __migrate_task(rq, next, dest_cpu);
5590 if (rq != dead_rq) {
5591 raw_spin_unlock(&rq->lock);
5592 rq = dead_rq;
5593 raw_spin_lock(&rq->lock);
5595 raw_spin_unlock(&next->pi_lock);
5598 rq->stop = stop;
5600 #endif /* CONFIG_HOTPLUG_CPU */
5602 static void set_rq_online(struct rq *rq)
5604 if (!rq->online) {
5605 const struct sched_class *class;
5607 cpumask_set_cpu(rq->cpu, rq->rd->online);
5608 rq->online = 1;
5610 for_each_class(class) {
5611 if (class->rq_online)
5612 class->rq_online(rq);
5617 static void set_rq_offline(struct rq *rq)
5619 if (rq->online) {
5620 const struct sched_class *class;
5622 for_each_class(class) {
5623 if (class->rq_offline)
5624 class->rq_offline(rq);
5627 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5628 rq->online = 0;
5632 static void set_cpu_rq_start_time(unsigned int cpu)
5634 struct rq *rq = cpu_rq(cpu);
5636 rq->age_stamp = sched_clock_cpu(cpu);
5639 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5641 #ifdef CONFIG_SCHED_DEBUG
5643 static __read_mostly int sched_debug_enabled;
5645 static int __init sched_debug_setup(char *str)
5647 sched_debug_enabled = 1;
5649 return 0;
5651 early_param("sched_debug", sched_debug_setup);
5653 static inline bool sched_debug(void)
5655 return sched_debug_enabled;
5658 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5659 struct cpumask *groupmask)
5661 struct sched_group *group = sd->groups;
5663 cpumask_clear(groupmask);
5665 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5667 if (!(sd->flags & SD_LOAD_BALANCE)) {
5668 printk("does not load-balance\n");
5669 if (sd->parent)
5670 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5671 " has parent");
5672 return -1;
5675 printk(KERN_CONT "span %*pbl level %s\n",
5676 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5678 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5679 printk(KERN_ERR "ERROR: domain->span does not contain "
5680 "CPU%d\n", cpu);
5682 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5683 printk(KERN_ERR "ERROR: domain->groups does not contain"
5684 " CPU%d\n", cpu);
5687 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5688 do {
5689 if (!group) {
5690 printk("\n");
5691 printk(KERN_ERR "ERROR: group is NULL\n");
5692 break;
5695 if (!cpumask_weight(sched_group_cpus(group))) {
5696 printk(KERN_CONT "\n");
5697 printk(KERN_ERR "ERROR: empty group\n");
5698 break;
5701 if (!(sd->flags & SD_OVERLAP) &&
5702 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5703 printk(KERN_CONT "\n");
5704 printk(KERN_ERR "ERROR: repeated CPUs\n");
5705 break;
5708 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5710 printk(KERN_CONT " %*pbl",
5711 cpumask_pr_args(sched_group_cpus(group)));
5712 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5713 printk(KERN_CONT " (cpu_capacity = %d)",
5714 group->sgc->capacity);
5717 group = group->next;
5718 } while (group != sd->groups);
5719 printk(KERN_CONT "\n");
5721 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5722 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5724 if (sd->parent &&
5725 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5726 printk(KERN_ERR "ERROR: parent span is not a superset "
5727 "of domain->span\n");
5728 return 0;
5731 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5733 int level = 0;
5735 if (!sched_debug_enabled)
5736 return;
5738 if (!sd) {
5739 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5740 return;
5743 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5745 for (;;) {
5746 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5747 break;
5748 level++;
5749 sd = sd->parent;
5750 if (!sd)
5751 break;
5754 #else /* !CONFIG_SCHED_DEBUG */
5756 # define sched_debug_enabled 0
5757 # define sched_domain_debug(sd, cpu) do { } while (0)
5758 static inline bool sched_debug(void)
5760 return false;
5762 #endif /* CONFIG_SCHED_DEBUG */
5764 static int sd_degenerate(struct sched_domain *sd)
5766 if (cpumask_weight(sched_domain_span(sd)) == 1)
5767 return 1;
5769 /* Following flags need at least 2 groups */
5770 if (sd->flags & (SD_LOAD_BALANCE |
5771 SD_BALANCE_NEWIDLE |
5772 SD_BALANCE_FORK |
5773 SD_BALANCE_EXEC |
5774 SD_SHARE_CPUCAPACITY |
5775 SD_ASYM_CPUCAPACITY |
5776 SD_SHARE_PKG_RESOURCES |
5777 SD_SHARE_POWERDOMAIN)) {
5778 if (sd->groups != sd->groups->next)
5779 return 0;
5782 /* Following flags don't use groups */
5783 if (sd->flags & (SD_WAKE_AFFINE))
5784 return 0;
5786 return 1;
5789 static int
5790 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5792 unsigned long cflags = sd->flags, pflags = parent->flags;
5794 if (sd_degenerate(parent))
5795 return 1;
5797 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5798 return 0;
5800 /* Flags needing groups don't count if only 1 group in parent */
5801 if (parent->groups == parent->groups->next) {
5802 pflags &= ~(SD_LOAD_BALANCE |
5803 SD_BALANCE_NEWIDLE |
5804 SD_BALANCE_FORK |
5805 SD_BALANCE_EXEC |
5806 SD_ASYM_CPUCAPACITY |
5807 SD_SHARE_CPUCAPACITY |
5808 SD_SHARE_PKG_RESOURCES |
5809 SD_PREFER_SIBLING |
5810 SD_SHARE_POWERDOMAIN);
5811 if (nr_node_ids == 1)
5812 pflags &= ~SD_SERIALIZE;
5814 if (~cflags & pflags)
5815 return 0;
5817 return 1;
5820 static void free_rootdomain(struct rcu_head *rcu)
5822 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5824 cpupri_cleanup(&rd->cpupri);
5825 cpudl_cleanup(&rd->cpudl);
5826 free_cpumask_var(rd->dlo_mask);
5827 free_cpumask_var(rd->rto_mask);
5828 free_cpumask_var(rd->online);
5829 free_cpumask_var(rd->span);
5830 kfree(rd);
5833 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5835 struct root_domain *old_rd = NULL;
5836 unsigned long flags;
5838 raw_spin_lock_irqsave(&rq->lock, flags);
5840 if (rq->rd) {
5841 old_rd = rq->rd;
5843 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5844 set_rq_offline(rq);
5846 cpumask_clear_cpu(rq->cpu, old_rd->span);
5849 * If we dont want to free the old_rd yet then
5850 * set old_rd to NULL to skip the freeing later
5851 * in this function:
5853 if (!atomic_dec_and_test(&old_rd->refcount))
5854 old_rd = NULL;
5857 atomic_inc(&rd->refcount);
5858 rq->rd = rd;
5860 cpumask_set_cpu(rq->cpu, rd->span);
5861 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5862 set_rq_online(rq);
5864 raw_spin_unlock_irqrestore(&rq->lock, flags);
5866 if (old_rd)
5867 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5870 void sched_get_rd(struct root_domain *rd)
5872 atomic_inc(&rd->refcount);
5875 void sched_put_rd(struct root_domain *rd)
5877 if (!atomic_dec_and_test(&rd->refcount))
5878 return;
5880 call_rcu_sched(&rd->rcu, free_rootdomain);
5883 static int init_rootdomain(struct root_domain *rd)
5885 memset(rd, 0, sizeof(*rd));
5887 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5888 goto out;
5889 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5890 goto free_span;
5891 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5892 goto free_online;
5893 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5894 goto free_dlo_mask;
5896 #ifdef HAVE_RT_PUSH_IPI
5897 rd->rto_cpu = -1;
5898 raw_spin_lock_init(&rd->rto_lock);
5899 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
5900 #endif
5902 init_dl_bw(&rd->dl_bw);
5903 if (cpudl_init(&rd->cpudl) != 0)
5904 goto free_dlo_mask;
5906 if (cpupri_init(&rd->cpupri) != 0)
5907 goto free_rto_mask;
5908 return 0;
5910 free_rto_mask:
5911 free_cpumask_var(rd->rto_mask);
5912 free_dlo_mask:
5913 free_cpumask_var(rd->dlo_mask);
5914 free_online:
5915 free_cpumask_var(rd->online);
5916 free_span:
5917 free_cpumask_var(rd->span);
5918 out:
5919 return -ENOMEM;
5923 * By default the system creates a single root-domain with all cpus as
5924 * members (mimicking the global state we have today).
5926 struct root_domain def_root_domain;
5928 static void init_defrootdomain(void)
5930 init_rootdomain(&def_root_domain);
5932 atomic_set(&def_root_domain.refcount, 1);
5935 static struct root_domain *alloc_rootdomain(void)
5937 struct root_domain *rd;
5939 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5940 if (!rd)
5941 return NULL;
5943 if (init_rootdomain(rd) != 0) {
5944 kfree(rd);
5945 return NULL;
5948 return rd;
5951 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5953 struct sched_group *tmp, *first;
5955 if (!sg)
5956 return;
5958 first = sg;
5959 do {
5960 tmp = sg->next;
5962 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5963 kfree(sg->sgc);
5965 kfree(sg);
5966 sg = tmp;
5967 } while (sg != first);
5970 static void destroy_sched_domain(struct sched_domain *sd)
5973 * If its an overlapping domain it has private groups, iterate and
5974 * nuke them all.
5976 if (sd->flags & SD_OVERLAP) {
5977 free_sched_groups(sd->groups, 1);
5978 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5979 kfree(sd->groups->sgc);
5980 kfree(sd->groups);
5982 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
5983 kfree(sd->shared);
5984 kfree(sd);
5987 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
5989 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5991 while (sd) {
5992 struct sched_domain *parent = sd->parent;
5993 destroy_sched_domain(sd);
5994 sd = parent;
5998 static void destroy_sched_domains(struct sched_domain *sd)
6000 if (sd)
6001 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
6005 * Keep a special pointer to the highest sched_domain that has
6006 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6007 * allows us to avoid some pointer chasing select_idle_sibling().
6009 * Also keep a unique ID per domain (we use the first cpu number in
6010 * the cpumask of the domain), this allows us to quickly tell if
6011 * two cpus are in the same cache domain, see cpus_share_cache().
6013 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6014 DEFINE_PER_CPU(int, sd_llc_size);
6015 DEFINE_PER_CPU(int, sd_llc_id);
6016 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
6017 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6018 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6020 static void update_top_cache_domain(int cpu)
6022 struct sched_domain_shared *sds = NULL;
6023 struct sched_domain *sd;
6024 int id = cpu;
6025 int size = 1;
6027 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6028 if (sd) {
6029 id = cpumask_first(sched_domain_span(sd));
6030 size = cpumask_weight(sched_domain_span(sd));
6031 sds = sd->shared;
6034 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6035 per_cpu(sd_llc_size, cpu) = size;
6036 per_cpu(sd_llc_id, cpu) = id;
6037 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
6039 sd = lowest_flag_domain(cpu, SD_NUMA);
6040 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6042 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6043 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6047 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6048 * hold the hotplug lock.
6050 static void
6051 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6053 struct rq *rq = cpu_rq(cpu);
6054 struct sched_domain *tmp;
6056 /* Remove the sched domains which do not contribute to scheduling. */
6057 for (tmp = sd; tmp; ) {
6058 struct sched_domain *parent = tmp->parent;
6059 if (!parent)
6060 break;
6062 if (sd_parent_degenerate(tmp, parent)) {
6063 tmp->parent = parent->parent;
6064 if (parent->parent)
6065 parent->parent->child = tmp;
6067 * Transfer SD_PREFER_SIBLING down in case of a
6068 * degenerate parent; the spans match for this
6069 * so the property transfers.
6071 if (parent->flags & SD_PREFER_SIBLING)
6072 tmp->flags |= SD_PREFER_SIBLING;
6073 destroy_sched_domain(parent);
6074 } else
6075 tmp = tmp->parent;
6078 if (sd && sd_degenerate(sd)) {
6079 tmp = sd;
6080 sd = sd->parent;
6081 destroy_sched_domain(tmp);
6082 if (sd)
6083 sd->child = NULL;
6086 sched_domain_debug(sd, cpu);
6088 rq_attach_root(rq, rd);
6089 tmp = rq->sd;
6090 rcu_assign_pointer(rq->sd, sd);
6091 destroy_sched_domains(tmp);
6093 update_top_cache_domain(cpu);
6096 /* Setup the mask of cpus configured for isolated domains */
6097 static int __init isolated_cpu_setup(char *str)
6099 int ret;
6101 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6102 ret = cpulist_parse(str, cpu_isolated_map);
6103 if (ret) {
6104 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6105 return 0;
6107 return 1;
6109 __setup("isolcpus=", isolated_cpu_setup);
6111 struct s_data {
6112 struct sched_domain ** __percpu sd;
6113 struct root_domain *rd;
6116 enum s_alloc {
6117 sa_rootdomain,
6118 sa_sd,
6119 sa_sd_storage,
6120 sa_none,
6124 * Build an iteration mask that can exclude certain CPUs from the upwards
6125 * domain traversal.
6127 * Only CPUs that can arrive at this group should be considered to continue
6128 * balancing.
6130 * Asymmetric node setups can result in situations where the domain tree is of
6131 * unequal depth, make sure to skip domains that already cover the entire
6132 * range.
6134 * In that case build_sched_domains() will have terminated the iteration early
6135 * and our sibling sd spans will be empty. Domains should always include the
6136 * cpu they're built on, so check that.
6139 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6141 const struct cpumask *sg_span = sched_group_cpus(sg);
6142 struct sd_data *sdd = sd->private;
6143 struct sched_domain *sibling;
6144 int i;
6146 for_each_cpu(i, sg_span) {
6147 sibling = *per_cpu_ptr(sdd->sd, i);
6150 * Can happen in the asymmetric case, where these siblings are
6151 * unused. The mask will not be empty because those CPUs that
6152 * do have the top domain _should_ span the domain.
6154 if (!sibling->child)
6155 continue;
6157 /* If we would not end up here, we can't continue from here */
6158 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
6159 continue;
6161 cpumask_set_cpu(i, sched_group_mask(sg));
6164 /* We must not have empty masks here */
6165 WARN_ON_ONCE(cpumask_empty(sched_group_mask(sg)));
6169 * Return the canonical balance cpu for this group, this is the first cpu
6170 * of this group that's also in the iteration mask.
6172 int group_balance_cpu(struct sched_group *sg)
6174 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6177 static int
6178 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6180 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6181 const struct cpumask *span = sched_domain_span(sd);
6182 struct cpumask *covered = sched_domains_tmpmask;
6183 struct sd_data *sdd = sd->private;
6184 struct sched_domain *sibling;
6185 int i;
6187 cpumask_clear(covered);
6189 for_each_cpu_wrap(i, span, cpu) {
6190 struct cpumask *sg_span;
6192 if (cpumask_test_cpu(i, covered))
6193 continue;
6195 sibling = *per_cpu_ptr(sdd->sd, i);
6197 /* See the comment near build_group_mask(). */
6198 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6199 continue;
6201 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6202 GFP_KERNEL, cpu_to_node(cpu));
6204 if (!sg)
6205 goto fail;
6207 sg_span = sched_group_cpus(sg);
6208 if (sibling->child)
6209 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6210 else
6211 cpumask_set_cpu(i, sg_span);
6213 cpumask_or(covered, covered, sg_span);
6215 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6216 if (atomic_inc_return(&sg->sgc->ref) == 1)
6217 build_group_mask(sd, sg);
6220 * Initialize sgc->capacity such that even if we mess up the
6221 * domains and no possible iteration will get us here, we won't
6222 * die on a /0 trap.
6224 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6227 * Make sure the first group of this domain contains the
6228 * canonical balance cpu. Otherwise the sched_domain iteration
6229 * breaks. See update_sg_lb_stats().
6231 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6232 group_balance_cpu(sg) == cpu)
6233 groups = sg;
6235 if (!first)
6236 first = sg;
6237 if (last)
6238 last->next = sg;
6239 last = sg;
6240 last->next = first;
6242 sd->groups = groups;
6244 return 0;
6246 fail:
6247 free_sched_groups(first, 0);
6249 return -ENOMEM;
6252 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6254 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6255 struct sched_domain *child = sd->child;
6257 if (child)
6258 cpu = cpumask_first(sched_domain_span(child));
6260 if (sg) {
6261 *sg = *per_cpu_ptr(sdd->sg, cpu);
6262 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6263 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6266 return cpu;
6270 * build_sched_groups will build a circular linked list of the groups
6271 * covered by the given span, and will set each group's ->cpumask correctly,
6272 * and ->cpu_capacity to 0.
6274 * Assumes the sched_domain tree is fully constructed
6276 static int
6277 build_sched_groups(struct sched_domain *sd, int cpu)
6279 struct sched_group *first = NULL, *last = NULL;
6280 struct sd_data *sdd = sd->private;
6281 const struct cpumask *span = sched_domain_span(sd);
6282 struct cpumask *covered;
6283 int i;
6285 get_group(cpu, sdd, &sd->groups);
6286 atomic_inc(&sd->groups->ref);
6288 if (cpu != cpumask_first(span))
6289 return 0;
6291 lockdep_assert_held(&sched_domains_mutex);
6292 covered = sched_domains_tmpmask;
6294 cpumask_clear(covered);
6296 for_each_cpu(i, span) {
6297 struct sched_group *sg;
6298 int group, j;
6300 if (cpumask_test_cpu(i, covered))
6301 continue;
6303 group = get_group(i, sdd, &sg);
6304 cpumask_setall(sched_group_mask(sg));
6306 for_each_cpu(j, span) {
6307 if (get_group(j, sdd, NULL) != group)
6308 continue;
6310 cpumask_set_cpu(j, covered);
6311 cpumask_set_cpu(j, sched_group_cpus(sg));
6314 if (!first)
6315 first = sg;
6316 if (last)
6317 last->next = sg;
6318 last = sg;
6320 last->next = first;
6322 return 0;
6326 * Initialize sched groups cpu_capacity.
6328 * cpu_capacity indicates the capacity of sched group, which is used while
6329 * distributing the load between different sched groups in a sched domain.
6330 * Typically cpu_capacity for all the groups in a sched domain will be same
6331 * unless there are asymmetries in the topology. If there are asymmetries,
6332 * group having more cpu_capacity will pickup more load compared to the
6333 * group having less cpu_capacity.
6335 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6337 struct sched_group *sg = sd->groups;
6339 WARN_ON(!sg);
6341 do {
6342 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6343 sg = sg->next;
6344 } while (sg != sd->groups);
6346 if (cpu != group_balance_cpu(sg))
6347 return;
6349 update_group_capacity(sd, cpu);
6353 * Initializers for schedule domains
6354 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6357 static int default_relax_domain_level = -1;
6358 int sched_domain_level_max;
6360 static int __init setup_relax_domain_level(char *str)
6362 if (kstrtoint(str, 0, &default_relax_domain_level))
6363 pr_warn("Unable to set relax_domain_level\n");
6365 return 1;
6367 __setup("relax_domain_level=", setup_relax_domain_level);
6369 static void set_domain_attribute(struct sched_domain *sd,
6370 struct sched_domain_attr *attr)
6372 int request;
6374 if (!attr || attr->relax_domain_level < 0) {
6375 if (default_relax_domain_level < 0)
6376 return;
6377 else
6378 request = default_relax_domain_level;
6379 } else
6380 request = attr->relax_domain_level;
6381 if (request < sd->level) {
6382 /* turn off idle balance on this domain */
6383 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6384 } else {
6385 /* turn on idle balance on this domain */
6386 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6390 static void __sdt_free(const struct cpumask *cpu_map);
6391 static int __sdt_alloc(const struct cpumask *cpu_map);
6393 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6394 const struct cpumask *cpu_map)
6396 switch (what) {
6397 case sa_rootdomain:
6398 if (!atomic_read(&d->rd->refcount))
6399 free_rootdomain(&d->rd->rcu); /* fall through */
6400 case sa_sd:
6401 free_percpu(d->sd); /* fall through */
6402 case sa_sd_storage:
6403 __sdt_free(cpu_map); /* fall through */
6404 case sa_none:
6405 break;
6409 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6410 const struct cpumask *cpu_map)
6412 memset(d, 0, sizeof(*d));
6414 if (__sdt_alloc(cpu_map))
6415 return sa_sd_storage;
6416 d->sd = alloc_percpu(struct sched_domain *);
6417 if (!d->sd)
6418 return sa_sd_storage;
6419 d->rd = alloc_rootdomain();
6420 if (!d->rd)
6421 return sa_sd;
6422 return sa_rootdomain;
6426 * NULL the sd_data elements we've used to build the sched_domain and
6427 * sched_group structure so that the subsequent __free_domain_allocs()
6428 * will not free the data we're using.
6430 static void claim_allocations(int cpu, struct sched_domain *sd)
6432 struct sd_data *sdd = sd->private;
6434 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6435 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6437 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6438 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6440 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6441 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6443 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6444 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6447 #ifdef CONFIG_NUMA
6448 static int sched_domains_numa_levels;
6449 enum numa_topology_type sched_numa_topology_type;
6450 static int *sched_domains_numa_distance;
6451 int sched_max_numa_distance;
6452 static struct cpumask ***sched_domains_numa_masks;
6453 static int sched_domains_curr_level;
6454 #endif
6457 * SD_flags allowed in topology descriptions.
6459 * These flags are purely descriptive of the topology and do not prescribe
6460 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6461 * function:
6463 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6464 * SD_SHARE_PKG_RESOURCES - describes shared caches
6465 * SD_NUMA - describes NUMA topologies
6466 * SD_SHARE_POWERDOMAIN - describes shared power domain
6467 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
6469 * Odd one out, which beside describing the topology has a quirk also
6470 * prescribes the desired behaviour that goes along with it:
6472 * SD_ASYM_PACKING - describes SMT quirks
6474 #define TOPOLOGY_SD_FLAGS \
6475 (SD_SHARE_CPUCAPACITY | \
6476 SD_SHARE_PKG_RESOURCES | \
6477 SD_NUMA | \
6478 SD_ASYM_PACKING | \
6479 SD_ASYM_CPUCAPACITY | \
6480 SD_SHARE_POWERDOMAIN)
6482 static struct sched_domain *
6483 sd_init(struct sched_domain_topology_level *tl,
6484 const struct cpumask *cpu_map,
6485 struct sched_domain *child, int cpu)
6487 struct sd_data *sdd = &tl->data;
6488 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6489 int sd_id, sd_weight, sd_flags = 0;
6491 #ifdef CONFIG_NUMA
6493 * Ugly hack to pass state to sd_numa_mask()...
6495 sched_domains_curr_level = tl->numa_level;
6496 #endif
6498 sd_weight = cpumask_weight(tl->mask(cpu));
6500 if (tl->sd_flags)
6501 sd_flags = (*tl->sd_flags)();
6502 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6503 "wrong sd_flags in topology description\n"))
6504 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6506 *sd = (struct sched_domain){
6507 .min_interval = sd_weight,
6508 .max_interval = 2*sd_weight,
6509 .busy_factor = 32,
6510 .imbalance_pct = 125,
6512 .cache_nice_tries = 0,
6513 .busy_idx = 0,
6514 .idle_idx = 0,
6515 .newidle_idx = 0,
6516 .wake_idx = 0,
6517 .forkexec_idx = 0,
6519 .flags = 1*SD_LOAD_BALANCE
6520 | 1*SD_BALANCE_NEWIDLE
6521 | 1*SD_BALANCE_EXEC
6522 | 1*SD_BALANCE_FORK
6523 | 0*SD_BALANCE_WAKE
6524 | 1*SD_WAKE_AFFINE
6525 | 0*SD_SHARE_CPUCAPACITY
6526 | 0*SD_SHARE_PKG_RESOURCES
6527 | 0*SD_SERIALIZE
6528 | 0*SD_PREFER_SIBLING
6529 | 0*SD_NUMA
6530 | sd_flags
6533 .last_balance = jiffies,
6534 .balance_interval = sd_weight,
6535 .smt_gain = 0,
6536 .max_newidle_lb_cost = 0,
6537 .next_decay_max_lb_cost = jiffies,
6538 .child = child,
6539 #ifdef CONFIG_SCHED_DEBUG
6540 .name = tl->name,
6541 #endif
6544 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6545 sd_id = cpumask_first(sched_domain_span(sd));
6548 * Convert topological properties into behaviour.
6551 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6552 struct sched_domain *t = sd;
6554 for_each_lower_domain(t)
6555 t->flags |= SD_BALANCE_WAKE;
6558 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6559 sd->flags |= SD_PREFER_SIBLING;
6560 sd->imbalance_pct = 110;
6561 sd->smt_gain = 1178; /* ~15% */
6563 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6564 sd->imbalance_pct = 117;
6565 sd->cache_nice_tries = 1;
6566 sd->busy_idx = 2;
6568 #ifdef CONFIG_NUMA
6569 } else if (sd->flags & SD_NUMA) {
6570 sd->cache_nice_tries = 2;
6571 sd->busy_idx = 3;
6572 sd->idle_idx = 2;
6574 sd->flags |= SD_SERIALIZE;
6575 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6576 sd->flags &= ~(SD_BALANCE_EXEC |
6577 SD_BALANCE_FORK |
6578 SD_WAKE_AFFINE);
6581 #endif
6582 } else {
6583 sd->flags |= SD_PREFER_SIBLING;
6584 sd->cache_nice_tries = 1;
6585 sd->busy_idx = 2;
6586 sd->idle_idx = 1;
6590 * For all levels sharing cache; connect a sched_domain_shared
6591 * instance.
6593 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6594 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6595 atomic_inc(&sd->shared->ref);
6596 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
6599 sd->private = sdd;
6601 return sd;
6605 * Topology list, bottom-up.
6607 static struct sched_domain_topology_level default_topology[] = {
6608 #ifdef CONFIG_SCHED_SMT
6609 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6610 #endif
6611 #ifdef CONFIG_SCHED_MC
6612 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6613 #endif
6614 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6615 { NULL, },
6618 static struct sched_domain_topology_level *sched_domain_topology =
6619 default_topology;
6621 #define for_each_sd_topology(tl) \
6622 for (tl = sched_domain_topology; tl->mask; tl++)
6624 void set_sched_topology(struct sched_domain_topology_level *tl)
6626 if (WARN_ON_ONCE(sched_smp_initialized))
6627 return;
6629 sched_domain_topology = tl;
6632 #ifdef CONFIG_NUMA
6634 static const struct cpumask *sd_numa_mask(int cpu)
6636 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6639 static void sched_numa_warn(const char *str)
6641 static int done = false;
6642 int i,j;
6644 if (done)
6645 return;
6647 done = true;
6649 printk(KERN_WARNING "ERROR: %s\n\n", str);
6651 for (i = 0; i < nr_node_ids; i++) {
6652 printk(KERN_WARNING " ");
6653 for (j = 0; j < nr_node_ids; j++)
6654 printk(KERN_CONT "%02d ", node_distance(i,j));
6655 printk(KERN_CONT "\n");
6657 printk(KERN_WARNING "\n");
6660 bool find_numa_distance(int distance)
6662 int i;
6664 if (distance == node_distance(0, 0))
6665 return true;
6667 for (i = 0; i < sched_domains_numa_levels; i++) {
6668 if (sched_domains_numa_distance[i] == distance)
6669 return true;
6672 return false;
6676 * A system can have three types of NUMA topology:
6677 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6678 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6679 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6681 * The difference between a glueless mesh topology and a backplane
6682 * topology lies in whether communication between not directly
6683 * connected nodes goes through intermediary nodes (where programs
6684 * could run), or through backplane controllers. This affects
6685 * placement of programs.
6687 * The type of topology can be discerned with the following tests:
6688 * - If the maximum distance between any nodes is 1 hop, the system
6689 * is directly connected.
6690 * - If for two nodes A and B, located N > 1 hops away from each other,
6691 * there is an intermediary node C, which is < N hops away from both
6692 * nodes A and B, the system is a glueless mesh.
6694 static void init_numa_topology_type(void)
6696 int a, b, c, n;
6698 n = sched_max_numa_distance;
6700 if (sched_domains_numa_levels <= 1) {
6701 sched_numa_topology_type = NUMA_DIRECT;
6702 return;
6705 for_each_online_node(a) {
6706 for_each_online_node(b) {
6707 /* Find two nodes furthest removed from each other. */
6708 if (node_distance(a, b) < n)
6709 continue;
6711 /* Is there an intermediary node between a and b? */
6712 for_each_online_node(c) {
6713 if (node_distance(a, c) < n &&
6714 node_distance(b, c) < n) {
6715 sched_numa_topology_type =
6716 NUMA_GLUELESS_MESH;
6717 return;
6721 sched_numa_topology_type = NUMA_BACKPLANE;
6722 return;
6727 static void sched_init_numa(void)
6729 int next_distance, curr_distance = node_distance(0, 0);
6730 struct sched_domain_topology_level *tl;
6731 int level = 0;
6732 int i, j, k;
6734 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6735 if (!sched_domains_numa_distance)
6736 return;
6739 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6740 * unique distances in the node_distance() table.
6742 * Assumes node_distance(0,j) includes all distances in
6743 * node_distance(i,j) in order to avoid cubic time.
6745 next_distance = curr_distance;
6746 for (i = 0; i < nr_node_ids; i++) {
6747 for (j = 0; j < nr_node_ids; j++) {
6748 for (k = 0; k < nr_node_ids; k++) {
6749 int distance = node_distance(i, k);
6751 if (distance > curr_distance &&
6752 (distance < next_distance ||
6753 next_distance == curr_distance))
6754 next_distance = distance;
6757 * While not a strong assumption it would be nice to know
6758 * about cases where if node A is connected to B, B is not
6759 * equally connected to A.
6761 if (sched_debug() && node_distance(k, i) != distance)
6762 sched_numa_warn("Node-distance not symmetric");
6764 if (sched_debug() && i && !find_numa_distance(distance))
6765 sched_numa_warn("Node-0 not representative");
6767 if (next_distance != curr_distance) {
6768 sched_domains_numa_distance[level++] = next_distance;
6769 sched_domains_numa_levels = level;
6770 curr_distance = next_distance;
6771 } else break;
6775 * In case of sched_debug() we verify the above assumption.
6777 if (!sched_debug())
6778 break;
6781 if (!level)
6782 return;
6785 * 'level' contains the number of unique distances, excluding the
6786 * identity distance node_distance(i,i).
6788 * The sched_domains_numa_distance[] array includes the actual distance
6789 * numbers.
6793 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6794 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6795 * the array will contain less then 'level' members. This could be
6796 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6797 * in other functions.
6799 * We reset it to 'level' at the end of this function.
6801 sched_domains_numa_levels = 0;
6803 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6804 if (!sched_domains_numa_masks)
6805 return;
6808 * Now for each level, construct a mask per node which contains all
6809 * cpus of nodes that are that many hops away from us.
6811 for (i = 0; i < level; i++) {
6812 sched_domains_numa_masks[i] =
6813 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6814 if (!sched_domains_numa_masks[i])
6815 return;
6817 for (j = 0; j < nr_node_ids; j++) {
6818 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6819 if (!mask)
6820 return;
6822 sched_domains_numa_masks[i][j] = mask;
6824 for_each_node(k) {
6825 if (node_distance(j, k) > sched_domains_numa_distance[i])
6826 continue;
6828 cpumask_or(mask, mask, cpumask_of_node(k));
6833 /* Compute default topology size */
6834 for (i = 0; sched_domain_topology[i].mask; i++);
6836 tl = kzalloc((i + level + 1) *
6837 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6838 if (!tl)
6839 return;
6842 * Copy the default topology bits..
6844 for (i = 0; sched_domain_topology[i].mask; i++)
6845 tl[i] = sched_domain_topology[i];
6848 * .. and append 'j' levels of NUMA goodness.
6850 for (j = 0; j < level; i++, j++) {
6851 tl[i] = (struct sched_domain_topology_level){
6852 .mask = sd_numa_mask,
6853 .sd_flags = cpu_numa_flags,
6854 .flags = SDTL_OVERLAP,
6855 .numa_level = j,
6856 SD_INIT_NAME(NUMA)
6860 sched_domain_topology = tl;
6862 sched_domains_numa_levels = level;
6863 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6865 init_numa_topology_type();
6868 static void sched_domains_numa_masks_set(unsigned int cpu)
6870 int node = cpu_to_node(cpu);
6871 int i, j;
6873 for (i = 0; i < sched_domains_numa_levels; i++) {
6874 for (j = 0; j < nr_node_ids; j++) {
6875 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6876 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6881 static void sched_domains_numa_masks_clear(unsigned int cpu)
6883 int i, j;
6885 for (i = 0; i < sched_domains_numa_levels; i++) {
6886 for (j = 0; j < nr_node_ids; j++)
6887 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6891 #else
6892 static inline void sched_init_numa(void) { }
6893 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6894 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6895 #endif /* CONFIG_NUMA */
6897 static int __sdt_alloc(const struct cpumask *cpu_map)
6899 struct sched_domain_topology_level *tl;
6900 int j;
6902 for_each_sd_topology(tl) {
6903 struct sd_data *sdd = &tl->data;
6905 sdd->sd = alloc_percpu(struct sched_domain *);
6906 if (!sdd->sd)
6907 return -ENOMEM;
6909 sdd->sds = alloc_percpu(struct sched_domain_shared *);
6910 if (!sdd->sds)
6911 return -ENOMEM;
6913 sdd->sg = alloc_percpu(struct sched_group *);
6914 if (!sdd->sg)
6915 return -ENOMEM;
6917 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6918 if (!sdd->sgc)
6919 return -ENOMEM;
6921 for_each_cpu(j, cpu_map) {
6922 struct sched_domain *sd;
6923 struct sched_domain_shared *sds;
6924 struct sched_group *sg;
6925 struct sched_group_capacity *sgc;
6927 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6928 GFP_KERNEL, cpu_to_node(j));
6929 if (!sd)
6930 return -ENOMEM;
6932 *per_cpu_ptr(sdd->sd, j) = sd;
6934 sds = kzalloc_node(sizeof(struct sched_domain_shared),
6935 GFP_KERNEL, cpu_to_node(j));
6936 if (!sds)
6937 return -ENOMEM;
6939 *per_cpu_ptr(sdd->sds, j) = sds;
6941 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6942 GFP_KERNEL, cpu_to_node(j));
6943 if (!sg)
6944 return -ENOMEM;
6946 sg->next = sg;
6948 *per_cpu_ptr(sdd->sg, j) = sg;
6950 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6951 GFP_KERNEL, cpu_to_node(j));
6952 if (!sgc)
6953 return -ENOMEM;
6955 *per_cpu_ptr(sdd->sgc, j) = sgc;
6959 return 0;
6962 static void __sdt_free(const struct cpumask *cpu_map)
6964 struct sched_domain_topology_level *tl;
6965 int j;
6967 for_each_sd_topology(tl) {
6968 struct sd_data *sdd = &tl->data;
6970 for_each_cpu(j, cpu_map) {
6971 struct sched_domain *sd;
6973 if (sdd->sd) {
6974 sd = *per_cpu_ptr(sdd->sd, j);
6975 if (sd && (sd->flags & SD_OVERLAP))
6976 free_sched_groups(sd->groups, 0);
6977 kfree(*per_cpu_ptr(sdd->sd, j));
6980 if (sdd->sds)
6981 kfree(*per_cpu_ptr(sdd->sds, j));
6982 if (sdd->sg)
6983 kfree(*per_cpu_ptr(sdd->sg, j));
6984 if (sdd->sgc)
6985 kfree(*per_cpu_ptr(sdd->sgc, j));
6987 free_percpu(sdd->sd);
6988 sdd->sd = NULL;
6989 free_percpu(sdd->sds);
6990 sdd->sds = NULL;
6991 free_percpu(sdd->sg);
6992 sdd->sg = NULL;
6993 free_percpu(sdd->sgc);
6994 sdd->sgc = NULL;
6998 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6999 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7000 struct sched_domain *child, int cpu)
7002 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
7004 if (child) {
7005 sd->level = child->level + 1;
7006 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7007 child->parent = sd;
7009 if (!cpumask_subset(sched_domain_span(child),
7010 sched_domain_span(sd))) {
7011 pr_err("BUG: arch topology borken\n");
7012 #ifdef CONFIG_SCHED_DEBUG
7013 pr_err(" the %s domain not a subset of the %s domain\n",
7014 child->name, sd->name);
7015 #endif
7016 /* Fixup, ensure @sd has at least @child cpus. */
7017 cpumask_or(sched_domain_span(sd),
7018 sched_domain_span(sd),
7019 sched_domain_span(child));
7023 set_domain_attribute(sd, attr);
7025 return sd;
7029 * Build sched domains for a given set of cpus and attach the sched domains
7030 * to the individual cpus
7032 static int build_sched_domains(const struct cpumask *cpu_map,
7033 struct sched_domain_attr *attr)
7035 enum s_alloc alloc_state;
7036 struct sched_domain *sd;
7037 struct s_data d;
7038 struct rq *rq = NULL;
7039 int i, ret = -ENOMEM;
7041 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7042 if (alloc_state != sa_rootdomain)
7043 goto error;
7045 /* Set up domains for cpus specified by the cpu_map. */
7046 for_each_cpu(i, cpu_map) {
7047 struct sched_domain_topology_level *tl;
7049 sd = NULL;
7050 for_each_sd_topology(tl) {
7051 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7052 if (tl == sched_domain_topology)
7053 *per_cpu_ptr(d.sd, i) = sd;
7054 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7055 sd->flags |= SD_OVERLAP;
7056 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7057 break;
7061 /* Build the groups for the domains */
7062 for_each_cpu(i, cpu_map) {
7063 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7064 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7065 if (sd->flags & SD_OVERLAP) {
7066 if (build_overlap_sched_groups(sd, i))
7067 goto error;
7068 } else {
7069 if (build_sched_groups(sd, i))
7070 goto error;
7075 /* Calculate CPU capacity for physical packages and nodes */
7076 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7077 if (!cpumask_test_cpu(i, cpu_map))
7078 continue;
7080 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7081 claim_allocations(i, sd);
7082 init_sched_groups_capacity(i, sd);
7086 /* Attach the domains */
7087 rcu_read_lock();
7088 for_each_cpu(i, cpu_map) {
7089 rq = cpu_rq(i);
7090 sd = *per_cpu_ptr(d.sd, i);
7092 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7093 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7094 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7096 cpu_attach_domain(sd, d.rd, i);
7098 rcu_read_unlock();
7100 if (rq && sched_debug_enabled) {
7101 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7102 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7105 ret = 0;
7106 error:
7107 __free_domain_allocs(&d, alloc_state, cpu_map);
7108 return ret;
7111 static cpumask_var_t *doms_cur; /* current sched domains */
7112 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7113 static struct sched_domain_attr *dattr_cur;
7114 /* attribues of custom domains in 'doms_cur' */
7117 * Special case: If a kmalloc of a doms_cur partition (array of
7118 * cpumask) fails, then fallback to a single sched domain,
7119 * as determined by the single cpumask fallback_doms.
7121 static cpumask_var_t fallback_doms;
7124 * arch_update_cpu_topology lets virtualized architectures update the
7125 * cpu core maps. It is supposed to return 1 if the topology changed
7126 * or 0 if it stayed the same.
7128 int __weak arch_update_cpu_topology(void)
7130 return 0;
7133 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7135 int i;
7136 cpumask_var_t *doms;
7138 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7139 if (!doms)
7140 return NULL;
7141 for (i = 0; i < ndoms; i++) {
7142 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7143 free_sched_domains(doms, i);
7144 return NULL;
7147 return doms;
7150 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7152 unsigned int i;
7153 for (i = 0; i < ndoms; i++)
7154 free_cpumask_var(doms[i]);
7155 kfree(doms);
7159 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7160 * For now this just excludes isolated cpus, but could be used to
7161 * exclude other special cases in the future.
7163 static int init_sched_domains(const struct cpumask *cpu_map)
7165 int err;
7167 arch_update_cpu_topology();
7168 ndoms_cur = 1;
7169 doms_cur = alloc_sched_domains(ndoms_cur);
7170 if (!doms_cur)
7171 doms_cur = &fallback_doms;
7172 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7173 err = build_sched_domains(doms_cur[0], NULL);
7174 register_sched_domain_sysctl();
7176 return err;
7180 * Detach sched domains from a group of cpus specified in cpu_map
7181 * These cpus will now be attached to the NULL domain
7183 static void detach_destroy_domains(const struct cpumask *cpu_map)
7185 int i;
7187 rcu_read_lock();
7188 for_each_cpu(i, cpu_map)
7189 cpu_attach_domain(NULL, &def_root_domain, i);
7190 rcu_read_unlock();
7193 /* handle null as "default" */
7194 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7195 struct sched_domain_attr *new, int idx_new)
7197 struct sched_domain_attr tmp;
7199 /* fast path */
7200 if (!new && !cur)
7201 return 1;
7203 tmp = SD_ATTR_INIT;
7204 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7205 new ? (new + idx_new) : &tmp,
7206 sizeof(struct sched_domain_attr));
7210 * Partition sched domains as specified by the 'ndoms_new'
7211 * cpumasks in the array doms_new[] of cpumasks. This compares
7212 * doms_new[] to the current sched domain partitioning, doms_cur[].
7213 * It destroys each deleted domain and builds each new domain.
7215 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7216 * The masks don't intersect (don't overlap.) We should setup one
7217 * sched domain for each mask. CPUs not in any of the cpumasks will
7218 * not be load balanced. If the same cpumask appears both in the
7219 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7220 * it as it is.
7222 * The passed in 'doms_new' should be allocated using
7223 * alloc_sched_domains. This routine takes ownership of it and will
7224 * free_sched_domains it when done with it. If the caller failed the
7225 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7226 * and partition_sched_domains() will fallback to the single partition
7227 * 'fallback_doms', it also forces the domains to be rebuilt.
7229 * If doms_new == NULL it will be replaced with cpu_online_mask.
7230 * ndoms_new == 0 is a special case for destroying existing domains,
7231 * and it will not create the default domain.
7233 * Call with hotplug lock held
7235 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7236 struct sched_domain_attr *dattr_new)
7238 int i, j, n;
7239 int new_topology;
7241 mutex_lock(&sched_domains_mutex);
7243 /* always unregister in case we don't destroy any domains */
7244 unregister_sched_domain_sysctl();
7246 /* Let architecture update cpu core mappings. */
7247 new_topology = arch_update_cpu_topology();
7249 n = doms_new ? ndoms_new : 0;
7251 /* Destroy deleted domains */
7252 for (i = 0; i < ndoms_cur; i++) {
7253 for (j = 0; j < n && !new_topology; j++) {
7254 if (cpumask_equal(doms_cur[i], doms_new[j])
7255 && dattrs_equal(dattr_cur, i, dattr_new, j))
7256 goto match1;
7258 /* no match - a current sched domain not in new doms_new[] */
7259 detach_destroy_domains(doms_cur[i]);
7260 match1:
7264 n = ndoms_cur;
7265 if (doms_new == NULL) {
7266 n = 0;
7267 doms_new = &fallback_doms;
7268 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7269 WARN_ON_ONCE(dattr_new);
7272 /* Build new domains */
7273 for (i = 0; i < ndoms_new; i++) {
7274 for (j = 0; j < n && !new_topology; j++) {
7275 if (cpumask_equal(doms_new[i], doms_cur[j])
7276 && dattrs_equal(dattr_new, i, dattr_cur, j))
7277 goto match2;
7279 /* no match - add a new doms_new */
7280 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7281 match2:
7285 /* Remember the new sched domains */
7286 if (doms_cur != &fallback_doms)
7287 free_sched_domains(doms_cur, ndoms_cur);
7288 kfree(dattr_cur); /* kfree(NULL) is safe */
7289 doms_cur = doms_new;
7290 dattr_cur = dattr_new;
7291 ndoms_cur = ndoms_new;
7293 register_sched_domain_sysctl();
7295 mutex_unlock(&sched_domains_mutex);
7298 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7301 * Update cpusets according to cpu_active mask. If cpusets are
7302 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7303 * around partition_sched_domains().
7305 * If we come here as part of a suspend/resume, don't touch cpusets because we
7306 * want to restore it back to its original state upon resume anyway.
7308 static void cpuset_cpu_active(void)
7310 if (cpuhp_tasks_frozen) {
7312 * num_cpus_frozen tracks how many CPUs are involved in suspend
7313 * resume sequence. As long as this is not the last online
7314 * operation in the resume sequence, just build a single sched
7315 * domain, ignoring cpusets.
7317 partition_sched_domains(1, NULL, NULL);
7318 if (--num_cpus_frozen)
7319 return;
7321 * This is the last CPU online operation. So fall through and
7322 * restore the original sched domains by considering the
7323 * cpuset configurations.
7325 cpuset_force_rebuild();
7327 cpuset_update_active_cpus(true);
7330 static int cpuset_cpu_inactive(unsigned int cpu)
7332 unsigned long flags;
7333 struct dl_bw *dl_b;
7334 bool overflow;
7335 int cpus;
7337 if (!cpuhp_tasks_frozen) {
7338 rcu_read_lock_sched();
7339 dl_b = dl_bw_of(cpu);
7341 raw_spin_lock_irqsave(&dl_b->lock, flags);
7342 cpus = dl_bw_cpus(cpu);
7343 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7344 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7346 rcu_read_unlock_sched();
7348 if (overflow)
7349 return -EBUSY;
7350 cpuset_update_active_cpus(false);
7351 } else {
7352 num_cpus_frozen++;
7353 partition_sched_domains(1, NULL, NULL);
7355 return 0;
7358 int sched_cpu_activate(unsigned int cpu)
7360 struct rq *rq = cpu_rq(cpu);
7361 unsigned long flags;
7363 set_cpu_active(cpu, true);
7365 if (sched_smp_initialized) {
7366 sched_domains_numa_masks_set(cpu);
7367 cpuset_cpu_active();
7371 * Put the rq online, if not already. This happens:
7373 * 1) In the early boot process, because we build the real domains
7374 * after all cpus have been brought up.
7376 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7377 * domains.
7379 raw_spin_lock_irqsave(&rq->lock, flags);
7380 if (rq->rd) {
7381 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7382 set_rq_online(rq);
7384 raw_spin_unlock_irqrestore(&rq->lock, flags);
7386 update_max_interval();
7388 return 0;
7391 int sched_cpu_deactivate(unsigned int cpu)
7393 int ret;
7395 set_cpu_active(cpu, false);
7397 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7398 * users of this state to go away such that all new such users will
7399 * observe it.
7401 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7402 * not imply sync_sched(), so wait for both.
7404 * Do sync before park smpboot threads to take care the rcu boost case.
7406 if (IS_ENABLED(CONFIG_PREEMPT))
7407 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7408 else
7409 synchronize_rcu();
7411 if (!sched_smp_initialized)
7412 return 0;
7414 ret = cpuset_cpu_inactive(cpu);
7415 if (ret) {
7416 set_cpu_active(cpu, true);
7417 return ret;
7419 sched_domains_numa_masks_clear(cpu);
7420 return 0;
7423 static void sched_rq_cpu_starting(unsigned int cpu)
7425 struct rq *rq = cpu_rq(cpu);
7427 rq->calc_load_update = calc_load_update;
7428 update_max_interval();
7431 int sched_cpu_starting(unsigned int cpu)
7433 set_cpu_rq_start_time(cpu);
7434 sched_rq_cpu_starting(cpu);
7435 return 0;
7438 #ifdef CONFIG_HOTPLUG_CPU
7439 int sched_cpu_dying(unsigned int cpu)
7441 struct rq *rq = cpu_rq(cpu);
7442 unsigned long flags;
7444 /* Handle pending wakeups and then migrate everything off */
7445 sched_ttwu_pending();
7446 raw_spin_lock_irqsave(&rq->lock, flags);
7447 if (rq->rd) {
7448 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7449 set_rq_offline(rq);
7451 migrate_tasks(rq);
7452 BUG_ON(rq->nr_running != 1);
7453 raw_spin_unlock_irqrestore(&rq->lock, flags);
7454 calc_load_migrate(rq);
7455 update_max_interval();
7456 nohz_balance_exit_idle(cpu);
7457 hrtick_clear(rq);
7458 return 0;
7460 #endif
7462 void __init sched_init_smp(void)
7464 cpumask_var_t non_isolated_cpus;
7466 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7467 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7469 sched_init_numa();
7472 * There's no userspace yet to cause hotplug operations; hence all the
7473 * cpu masks are stable and all blatant races in the below code cannot
7474 * happen.
7476 mutex_lock(&sched_domains_mutex);
7477 init_sched_domains(cpu_active_mask);
7478 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7479 if (cpumask_empty(non_isolated_cpus))
7480 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7481 mutex_unlock(&sched_domains_mutex);
7483 /* Move init over to a non-isolated CPU */
7484 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7485 BUG();
7486 sched_init_granularity();
7487 free_cpumask_var(non_isolated_cpus);
7489 init_sched_rt_class();
7490 init_sched_dl_class();
7491 sched_smp_initialized = true;
7494 static int __init migration_init(void)
7496 sched_rq_cpu_starting(smp_processor_id());
7497 return 0;
7499 early_initcall(migration_init);
7501 #else
7502 void __init sched_init_smp(void)
7504 sched_init_granularity();
7506 #endif /* CONFIG_SMP */
7508 int in_sched_functions(unsigned long addr)
7510 return in_lock_functions(addr) ||
7511 (addr >= (unsigned long)__sched_text_start
7512 && addr < (unsigned long)__sched_text_end);
7515 #ifdef CONFIG_CGROUP_SCHED
7517 * Default task group.
7518 * Every task in system belongs to this group at bootup.
7520 struct task_group root_task_group;
7521 LIST_HEAD(task_groups);
7523 /* Cacheline aligned slab cache for task_group */
7524 static struct kmem_cache *task_group_cache __read_mostly;
7525 #endif
7527 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7528 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7530 #define WAIT_TABLE_BITS 8
7531 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7532 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7534 wait_queue_head_t *bit_waitqueue(void *word, int bit)
7536 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7537 unsigned long val = (unsigned long)word << shift | bit;
7539 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7541 EXPORT_SYMBOL(bit_waitqueue);
7543 void __init sched_init(void)
7545 int i, j;
7546 unsigned long alloc_size = 0, ptr;
7548 for (i = 0; i < WAIT_TABLE_SIZE; i++)
7549 init_waitqueue_head(bit_wait_table + i);
7551 #ifdef CONFIG_FAIR_GROUP_SCHED
7552 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7553 #endif
7554 #ifdef CONFIG_RT_GROUP_SCHED
7555 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7556 #endif
7557 if (alloc_size) {
7558 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7560 #ifdef CONFIG_FAIR_GROUP_SCHED
7561 root_task_group.se = (struct sched_entity **)ptr;
7562 ptr += nr_cpu_ids * sizeof(void **);
7564 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7565 ptr += nr_cpu_ids * sizeof(void **);
7567 #endif /* CONFIG_FAIR_GROUP_SCHED */
7568 #ifdef CONFIG_RT_GROUP_SCHED
7569 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7570 ptr += nr_cpu_ids * sizeof(void **);
7572 root_task_group.rt_rq = (struct rt_rq **)ptr;
7573 ptr += nr_cpu_ids * sizeof(void **);
7575 #endif /* CONFIG_RT_GROUP_SCHED */
7577 #ifdef CONFIG_CPUMASK_OFFSTACK
7578 for_each_possible_cpu(i) {
7579 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7580 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7581 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7582 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7584 #endif /* CONFIG_CPUMASK_OFFSTACK */
7586 init_rt_bandwidth(&def_rt_bandwidth,
7587 global_rt_period(), global_rt_runtime());
7588 init_dl_bandwidth(&def_dl_bandwidth,
7589 global_rt_period(), global_rt_runtime());
7591 #ifdef CONFIG_SMP
7592 init_defrootdomain();
7593 #endif
7595 #ifdef CONFIG_RT_GROUP_SCHED
7596 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7597 global_rt_period(), global_rt_runtime());
7598 #endif /* CONFIG_RT_GROUP_SCHED */
7600 #ifdef CONFIG_CGROUP_SCHED
7601 task_group_cache = KMEM_CACHE(task_group, 0);
7603 list_add(&root_task_group.list, &task_groups);
7604 INIT_LIST_HEAD(&root_task_group.children);
7605 INIT_LIST_HEAD(&root_task_group.siblings);
7606 autogroup_init(&init_task);
7607 #endif /* CONFIG_CGROUP_SCHED */
7609 for_each_possible_cpu(i) {
7610 struct rq *rq;
7612 rq = cpu_rq(i);
7613 raw_spin_lock_init(&rq->lock);
7614 rq->nr_running = 0;
7615 rq->calc_load_active = 0;
7616 rq->calc_load_update = jiffies + LOAD_FREQ;
7617 init_cfs_rq(&rq->cfs);
7618 init_rt_rq(&rq->rt);
7619 init_dl_rq(&rq->dl);
7620 #ifdef CONFIG_FAIR_GROUP_SCHED
7621 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7622 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7624 * How much cpu bandwidth does root_task_group get?
7626 * In case of task-groups formed thr' the cgroup filesystem, it
7627 * gets 100% of the cpu resources in the system. This overall
7628 * system cpu resource is divided among the tasks of
7629 * root_task_group and its child task-groups in a fair manner,
7630 * based on each entity's (task or task-group's) weight
7631 * (se->load.weight).
7633 * In other words, if root_task_group has 10 tasks of weight
7634 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7635 * then A0's share of the cpu resource is:
7637 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7639 * We achieve this by letting root_task_group's tasks sit
7640 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7642 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7643 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7644 #endif /* CONFIG_FAIR_GROUP_SCHED */
7646 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7647 #ifdef CONFIG_RT_GROUP_SCHED
7648 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7649 #endif
7651 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7652 rq->cpu_load[j] = 0;
7654 #ifdef CONFIG_SMP
7655 rq->sd = NULL;
7656 rq->rd = NULL;
7657 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7658 rq->balance_callback = NULL;
7659 rq->active_balance = 0;
7660 rq->next_balance = jiffies;
7661 rq->push_cpu = 0;
7662 rq->cpu = i;
7663 rq->online = 0;
7664 rq->idle_stamp = 0;
7665 rq->avg_idle = 2*sysctl_sched_migration_cost;
7666 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7668 INIT_LIST_HEAD(&rq->cfs_tasks);
7670 rq_attach_root(rq, &def_root_domain);
7671 #ifdef CONFIG_NO_HZ_COMMON
7672 rq->last_load_update_tick = jiffies;
7673 rq->nohz_flags = 0;
7674 #endif
7675 #ifdef CONFIG_NO_HZ_FULL
7676 rq->last_sched_tick = 0;
7677 #endif
7678 #endif /* CONFIG_SMP */
7679 init_rq_hrtick(rq);
7680 atomic_set(&rq->nr_iowait, 0);
7683 set_load_weight(&init_task);
7686 * The boot idle thread does lazy MMU switching as well:
7688 atomic_inc(&init_mm.mm_count);
7689 enter_lazy_tlb(&init_mm, current);
7692 * Make us the idle thread. Technically, schedule() should not be
7693 * called from this thread, however somewhere below it might be,
7694 * but because we are the idle thread, we just pick up running again
7695 * when this runqueue becomes "idle".
7697 init_idle(current, smp_processor_id());
7699 calc_load_update = jiffies + LOAD_FREQ;
7701 #ifdef CONFIG_SMP
7702 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7703 /* May be allocated at isolcpus cmdline parse time */
7704 if (cpu_isolated_map == NULL)
7705 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7706 idle_thread_set_boot_cpu();
7707 set_cpu_rq_start_time(smp_processor_id());
7708 #endif
7709 init_sched_fair_class();
7711 init_schedstats();
7713 scheduler_running = 1;
7716 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7717 static inline int preempt_count_equals(int preempt_offset)
7719 int nested = preempt_count() + rcu_preempt_depth();
7721 return (nested == preempt_offset);
7724 void __might_sleep(const char *file, int line, int preempt_offset)
7727 * Blocking primitives will set (and therefore destroy) current->state,
7728 * since we will exit with TASK_RUNNING make sure we enter with it,
7729 * otherwise we will destroy state.
7731 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7732 "do not call blocking ops when !TASK_RUNNING; "
7733 "state=%lx set at [<%p>] %pS\n",
7734 current->state,
7735 (void *)current->task_state_change,
7736 (void *)current->task_state_change);
7738 ___might_sleep(file, line, preempt_offset);
7740 EXPORT_SYMBOL(__might_sleep);
7742 void ___might_sleep(const char *file, int line, int preempt_offset)
7744 static unsigned long prev_jiffy; /* ratelimiting */
7745 unsigned long preempt_disable_ip;
7747 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7748 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7749 !is_idle_task(current)) ||
7750 system_state != SYSTEM_RUNNING || oops_in_progress)
7751 return;
7752 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7753 return;
7754 prev_jiffy = jiffies;
7756 /* Save this before calling printk(), since that will clobber it */
7757 preempt_disable_ip = get_preempt_disable_ip(current);
7759 printk(KERN_ERR
7760 "BUG: sleeping function called from invalid context at %s:%d\n",
7761 file, line);
7762 printk(KERN_ERR
7763 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7764 in_atomic(), irqs_disabled(),
7765 current->pid, current->comm);
7767 if (task_stack_end_corrupted(current))
7768 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7770 debug_show_held_locks(current);
7771 if (irqs_disabled())
7772 print_irqtrace_events(current);
7773 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7774 && !preempt_count_equals(preempt_offset)) {
7775 pr_err("Preemption disabled at:");
7776 print_ip_sym(preempt_disable_ip);
7777 pr_cont("\n");
7779 dump_stack();
7780 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7782 EXPORT_SYMBOL(___might_sleep);
7783 #endif
7785 #ifdef CONFIG_MAGIC_SYSRQ
7786 void normalize_rt_tasks(void)
7788 struct task_struct *g, *p;
7789 struct sched_attr attr = {
7790 .sched_policy = SCHED_NORMAL,
7793 read_lock(&tasklist_lock);
7794 for_each_process_thread(g, p) {
7796 * Only normalize user tasks:
7798 if (p->flags & PF_KTHREAD)
7799 continue;
7801 p->se.exec_start = 0;
7802 schedstat_set(p->se.statistics.wait_start, 0);
7803 schedstat_set(p->se.statistics.sleep_start, 0);
7804 schedstat_set(p->se.statistics.block_start, 0);
7806 if (!dl_task(p) && !rt_task(p)) {
7808 * Renice negative nice level userspace
7809 * tasks back to 0:
7811 if (task_nice(p) < 0)
7812 set_user_nice(p, 0);
7813 continue;
7816 __sched_setscheduler(p, &attr, false, false);
7818 read_unlock(&tasklist_lock);
7821 #endif /* CONFIG_MAGIC_SYSRQ */
7823 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7825 * These functions are only useful for the IA64 MCA handling, or kdb.
7827 * They can only be called when the whole system has been
7828 * stopped - every CPU needs to be quiescent, and no scheduling
7829 * activity can take place. Using them for anything else would
7830 * be a serious bug, and as a result, they aren't even visible
7831 * under any other configuration.
7835 * curr_task - return the current task for a given cpu.
7836 * @cpu: the processor in question.
7838 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7840 * Return: The current task for @cpu.
7842 struct task_struct *curr_task(int cpu)
7844 return cpu_curr(cpu);
7847 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7849 #ifdef CONFIG_IA64
7851 * set_curr_task - set the current task for a given cpu.
7852 * @cpu: the processor in question.
7853 * @p: the task pointer to set.
7855 * Description: This function must only be used when non-maskable interrupts
7856 * are serviced on a separate stack. It allows the architecture to switch the
7857 * notion of the current task on a cpu in a non-blocking manner. This function
7858 * must be called with all CPU's synchronized, and interrupts disabled, the
7859 * and caller must save the original value of the current task (see
7860 * curr_task() above) and restore that value before reenabling interrupts and
7861 * re-starting the system.
7863 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7865 void ia64_set_curr_task(int cpu, struct task_struct *p)
7867 cpu_curr(cpu) = p;
7870 #endif
7872 #ifdef CONFIG_CGROUP_SCHED
7873 /* task_group_lock serializes the addition/removal of task groups */
7874 static DEFINE_SPINLOCK(task_group_lock);
7876 static void sched_free_group(struct task_group *tg)
7878 free_fair_sched_group(tg);
7879 free_rt_sched_group(tg);
7880 autogroup_free(tg);
7881 kmem_cache_free(task_group_cache, tg);
7884 /* allocate runqueue etc for a new task group */
7885 struct task_group *sched_create_group(struct task_group *parent)
7887 struct task_group *tg;
7889 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7890 if (!tg)
7891 return ERR_PTR(-ENOMEM);
7893 if (!alloc_fair_sched_group(tg, parent))
7894 goto err;
7896 if (!alloc_rt_sched_group(tg, parent))
7897 goto err;
7899 return tg;
7901 err:
7902 sched_free_group(tg);
7903 return ERR_PTR(-ENOMEM);
7906 void sched_online_group(struct task_group *tg, struct task_group *parent)
7908 unsigned long flags;
7910 spin_lock_irqsave(&task_group_lock, flags);
7911 list_add_rcu(&tg->list, &task_groups);
7913 WARN_ON(!parent); /* root should already exist */
7915 tg->parent = parent;
7916 INIT_LIST_HEAD(&tg->children);
7917 list_add_rcu(&tg->siblings, &parent->children);
7918 spin_unlock_irqrestore(&task_group_lock, flags);
7920 online_fair_sched_group(tg);
7923 /* rcu callback to free various structures associated with a task group */
7924 static void sched_free_group_rcu(struct rcu_head *rhp)
7926 /* now it should be safe to free those cfs_rqs */
7927 sched_free_group(container_of(rhp, struct task_group, rcu));
7930 void sched_destroy_group(struct task_group *tg)
7932 /* wait for possible concurrent references to cfs_rqs complete */
7933 call_rcu(&tg->rcu, sched_free_group_rcu);
7936 void sched_offline_group(struct task_group *tg)
7938 unsigned long flags;
7940 /* end participation in shares distribution */
7941 unregister_fair_sched_group(tg);
7943 spin_lock_irqsave(&task_group_lock, flags);
7944 list_del_rcu(&tg->list);
7945 list_del_rcu(&tg->siblings);
7946 spin_unlock_irqrestore(&task_group_lock, flags);
7949 static void sched_change_group(struct task_struct *tsk, int type)
7951 struct task_group *tg;
7954 * All callers are synchronized by task_rq_lock(); we do not use RCU
7955 * which is pointless here. Thus, we pass "true" to task_css_check()
7956 * to prevent lockdep warnings.
7958 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7959 struct task_group, css);
7960 tg = autogroup_task_group(tsk, tg);
7961 tsk->sched_task_group = tg;
7963 #ifdef CONFIG_FAIR_GROUP_SCHED
7964 if (tsk->sched_class->task_change_group)
7965 tsk->sched_class->task_change_group(tsk, type);
7966 else
7967 #endif
7968 set_task_rq(tsk, task_cpu(tsk));
7972 * Change task's runqueue when it moves between groups.
7974 * The caller of this function should have put the task in its new group by
7975 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7976 * its new group.
7978 void sched_move_task(struct task_struct *tsk)
7980 int queued, running;
7981 struct rq_flags rf;
7982 struct rq *rq;
7984 rq = task_rq_lock(tsk, &rf);
7985 update_rq_clock(rq);
7987 running = task_current(rq, tsk);
7988 queued = task_on_rq_queued(tsk);
7990 if (queued)
7991 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7992 if (unlikely(running))
7993 put_prev_task(rq, tsk);
7995 sched_change_group(tsk, TASK_MOVE_GROUP);
7997 if (queued)
7998 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7999 if (unlikely(running))
8000 set_curr_task(rq, tsk);
8002 task_rq_unlock(rq, tsk, &rf);
8004 #endif /* CONFIG_CGROUP_SCHED */
8006 #ifdef CONFIG_RT_GROUP_SCHED
8008 * Ensure that the real time constraints are schedulable.
8010 static DEFINE_MUTEX(rt_constraints_mutex);
8012 /* Must be called with tasklist_lock held */
8013 static inline int tg_has_rt_tasks(struct task_group *tg)
8015 struct task_struct *g, *p;
8018 * Autogroups do not have RT tasks; see autogroup_create().
8020 if (task_group_is_autogroup(tg))
8021 return 0;
8023 for_each_process_thread(g, p) {
8024 if (rt_task(p) && task_group(p) == tg)
8025 return 1;
8028 return 0;
8031 struct rt_schedulable_data {
8032 struct task_group *tg;
8033 u64 rt_period;
8034 u64 rt_runtime;
8037 static int tg_rt_schedulable(struct task_group *tg, void *data)
8039 struct rt_schedulable_data *d = data;
8040 struct task_group *child;
8041 unsigned long total, sum = 0;
8042 u64 period, runtime;
8044 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8045 runtime = tg->rt_bandwidth.rt_runtime;
8047 if (tg == d->tg) {
8048 period = d->rt_period;
8049 runtime = d->rt_runtime;
8053 * Cannot have more runtime than the period.
8055 if (runtime > period && runtime != RUNTIME_INF)
8056 return -EINVAL;
8059 * Ensure we don't starve existing RT tasks.
8061 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8062 return -EBUSY;
8064 total = to_ratio(period, runtime);
8067 * Nobody can have more than the global setting allows.
8069 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8070 return -EINVAL;
8073 * The sum of our children's runtime should not exceed our own.
8075 list_for_each_entry_rcu(child, &tg->children, siblings) {
8076 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8077 runtime = child->rt_bandwidth.rt_runtime;
8079 if (child == d->tg) {
8080 period = d->rt_period;
8081 runtime = d->rt_runtime;
8084 sum += to_ratio(period, runtime);
8087 if (sum > total)
8088 return -EINVAL;
8090 return 0;
8093 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8095 int ret;
8097 struct rt_schedulable_data data = {
8098 .tg = tg,
8099 .rt_period = period,
8100 .rt_runtime = runtime,
8103 rcu_read_lock();
8104 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8105 rcu_read_unlock();
8107 return ret;
8110 static int tg_set_rt_bandwidth(struct task_group *tg,
8111 u64 rt_period, u64 rt_runtime)
8113 int i, err = 0;
8116 * Disallowing the root group RT runtime is BAD, it would disallow the
8117 * kernel creating (and or operating) RT threads.
8119 if (tg == &root_task_group && rt_runtime == 0)
8120 return -EINVAL;
8122 /* No period doesn't make any sense. */
8123 if (rt_period == 0)
8124 return -EINVAL;
8126 mutex_lock(&rt_constraints_mutex);
8127 read_lock(&tasklist_lock);
8128 err = __rt_schedulable(tg, rt_period, rt_runtime);
8129 if (err)
8130 goto unlock;
8132 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8133 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8134 tg->rt_bandwidth.rt_runtime = rt_runtime;
8136 for_each_possible_cpu(i) {
8137 struct rt_rq *rt_rq = tg->rt_rq[i];
8139 raw_spin_lock(&rt_rq->rt_runtime_lock);
8140 rt_rq->rt_runtime = rt_runtime;
8141 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8143 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8144 unlock:
8145 read_unlock(&tasklist_lock);
8146 mutex_unlock(&rt_constraints_mutex);
8148 return err;
8151 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8153 u64 rt_runtime, rt_period;
8155 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8156 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8157 if (rt_runtime_us < 0)
8158 rt_runtime = RUNTIME_INF;
8160 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8163 static long sched_group_rt_runtime(struct task_group *tg)
8165 u64 rt_runtime_us;
8167 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8168 return -1;
8170 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8171 do_div(rt_runtime_us, NSEC_PER_USEC);
8172 return rt_runtime_us;
8175 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8177 u64 rt_runtime, rt_period;
8179 rt_period = rt_period_us * NSEC_PER_USEC;
8180 rt_runtime = tg->rt_bandwidth.rt_runtime;
8182 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8185 static long sched_group_rt_period(struct task_group *tg)
8187 u64 rt_period_us;
8189 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8190 do_div(rt_period_us, NSEC_PER_USEC);
8191 return rt_period_us;
8193 #endif /* CONFIG_RT_GROUP_SCHED */
8195 #ifdef CONFIG_RT_GROUP_SCHED
8196 static int sched_rt_global_constraints(void)
8198 int ret = 0;
8200 mutex_lock(&rt_constraints_mutex);
8201 read_lock(&tasklist_lock);
8202 ret = __rt_schedulable(NULL, 0, 0);
8203 read_unlock(&tasklist_lock);
8204 mutex_unlock(&rt_constraints_mutex);
8206 return ret;
8209 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8211 /* Don't accept realtime tasks when there is no way for them to run */
8212 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8213 return 0;
8215 return 1;
8218 #else /* !CONFIG_RT_GROUP_SCHED */
8219 static int sched_rt_global_constraints(void)
8221 unsigned long flags;
8222 int i;
8224 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8225 for_each_possible_cpu(i) {
8226 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8228 raw_spin_lock(&rt_rq->rt_runtime_lock);
8229 rt_rq->rt_runtime = global_rt_runtime();
8230 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8232 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8234 return 0;
8236 #endif /* CONFIG_RT_GROUP_SCHED */
8238 static int sched_dl_global_validate(void)
8240 u64 runtime = global_rt_runtime();
8241 u64 period = global_rt_period();
8242 u64 new_bw = to_ratio(period, runtime);
8243 struct dl_bw *dl_b;
8244 int cpu, ret = 0;
8245 unsigned long flags;
8248 * Here we want to check the bandwidth not being set to some
8249 * value smaller than the currently allocated bandwidth in
8250 * any of the root_domains.
8252 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8253 * cycling on root_domains... Discussion on different/better
8254 * solutions is welcome!
8256 for_each_possible_cpu(cpu) {
8257 rcu_read_lock_sched();
8258 dl_b = dl_bw_of(cpu);
8260 raw_spin_lock_irqsave(&dl_b->lock, flags);
8261 if (new_bw < dl_b->total_bw)
8262 ret = -EBUSY;
8263 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8265 rcu_read_unlock_sched();
8267 if (ret)
8268 break;
8271 return ret;
8274 static void sched_dl_do_global(void)
8276 u64 new_bw = -1;
8277 struct dl_bw *dl_b;
8278 int cpu;
8279 unsigned long flags;
8281 def_dl_bandwidth.dl_period = global_rt_period();
8282 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8284 if (global_rt_runtime() != RUNTIME_INF)
8285 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8288 * FIXME: As above...
8290 for_each_possible_cpu(cpu) {
8291 rcu_read_lock_sched();
8292 dl_b = dl_bw_of(cpu);
8294 raw_spin_lock_irqsave(&dl_b->lock, flags);
8295 dl_b->bw = new_bw;
8296 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8298 rcu_read_unlock_sched();
8302 static int sched_rt_global_validate(void)
8304 if (sysctl_sched_rt_period <= 0)
8305 return -EINVAL;
8307 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8308 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8309 return -EINVAL;
8311 return 0;
8314 static void sched_rt_do_global(void)
8316 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8317 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8320 int sched_rt_handler(struct ctl_table *table, int write,
8321 void __user *buffer, size_t *lenp,
8322 loff_t *ppos)
8324 int old_period, old_runtime;
8325 static DEFINE_MUTEX(mutex);
8326 int ret;
8328 mutex_lock(&mutex);
8329 old_period = sysctl_sched_rt_period;
8330 old_runtime = sysctl_sched_rt_runtime;
8332 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8334 if (!ret && write) {
8335 ret = sched_rt_global_validate();
8336 if (ret)
8337 goto undo;
8339 ret = sched_dl_global_validate();
8340 if (ret)
8341 goto undo;
8343 ret = sched_rt_global_constraints();
8344 if (ret)
8345 goto undo;
8347 sched_rt_do_global();
8348 sched_dl_do_global();
8350 if (0) {
8351 undo:
8352 sysctl_sched_rt_period = old_period;
8353 sysctl_sched_rt_runtime = old_runtime;
8355 mutex_unlock(&mutex);
8357 return ret;
8360 int sched_rr_handler(struct ctl_table *table, int write,
8361 void __user *buffer, size_t *lenp,
8362 loff_t *ppos)
8364 int ret;
8365 static DEFINE_MUTEX(mutex);
8367 mutex_lock(&mutex);
8368 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8369 /* make sure that internally we keep jiffies */
8370 /* also, writing zero resets timeslice to default */
8371 if (!ret && write) {
8372 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8373 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8375 mutex_unlock(&mutex);
8376 return ret;
8379 #ifdef CONFIG_CGROUP_SCHED
8381 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8383 return css ? container_of(css, struct task_group, css) : NULL;
8386 static struct cgroup_subsys_state *
8387 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8389 struct task_group *parent = css_tg(parent_css);
8390 struct task_group *tg;
8392 if (!parent) {
8393 /* This is early initialization for the top cgroup */
8394 return &root_task_group.css;
8397 tg = sched_create_group(parent);
8398 if (IS_ERR(tg))
8399 return ERR_PTR(-ENOMEM);
8401 return &tg->css;
8404 /* Expose task group only after completing cgroup initialization */
8405 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8407 struct task_group *tg = css_tg(css);
8408 struct task_group *parent = css_tg(css->parent);
8410 if (parent)
8411 sched_online_group(tg, parent);
8412 return 0;
8415 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8417 struct task_group *tg = css_tg(css);
8419 sched_offline_group(tg);
8422 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8424 struct task_group *tg = css_tg(css);
8427 * Relies on the RCU grace period between css_released() and this.
8429 sched_free_group(tg);
8433 * This is called before wake_up_new_task(), therefore we really only
8434 * have to set its group bits, all the other stuff does not apply.
8436 static void cpu_cgroup_fork(struct task_struct *task)
8438 struct rq_flags rf;
8439 struct rq *rq;
8441 rq = task_rq_lock(task, &rf);
8443 sched_change_group(task, TASK_SET_GROUP);
8445 task_rq_unlock(rq, task, &rf);
8448 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8450 struct task_struct *task;
8451 struct cgroup_subsys_state *css;
8452 int ret = 0;
8454 cgroup_taskset_for_each(task, css, tset) {
8455 #ifdef CONFIG_RT_GROUP_SCHED
8456 if (!sched_rt_can_attach(css_tg(css), task))
8457 return -EINVAL;
8458 #else
8459 /* We don't support RT-tasks being in separate groups */
8460 if (task->sched_class != &fair_sched_class)
8461 return -EINVAL;
8462 #endif
8464 * Serialize against wake_up_new_task() such that if its
8465 * running, we're sure to observe its full state.
8467 raw_spin_lock_irq(&task->pi_lock);
8469 * Avoid calling sched_move_task() before wake_up_new_task()
8470 * has happened. This would lead to problems with PELT, due to
8471 * move wanting to detach+attach while we're not attached yet.
8473 if (task->state == TASK_NEW)
8474 ret = -EINVAL;
8475 raw_spin_unlock_irq(&task->pi_lock);
8477 if (ret)
8478 break;
8480 return ret;
8483 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8485 struct task_struct *task;
8486 struct cgroup_subsys_state *css;
8488 cgroup_taskset_for_each(task, css, tset)
8489 sched_move_task(task);
8492 #ifdef CONFIG_FAIR_GROUP_SCHED
8493 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8494 struct cftype *cftype, u64 shareval)
8496 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8499 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8500 struct cftype *cft)
8502 struct task_group *tg = css_tg(css);
8504 return (u64) scale_load_down(tg->shares);
8507 #ifdef CONFIG_CFS_BANDWIDTH
8508 static DEFINE_MUTEX(cfs_constraints_mutex);
8510 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8511 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8513 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8515 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8517 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8518 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8520 if (tg == &root_task_group)
8521 return -EINVAL;
8524 * Ensure we have at some amount of bandwidth every period. This is
8525 * to prevent reaching a state of large arrears when throttled via
8526 * entity_tick() resulting in prolonged exit starvation.
8528 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8529 return -EINVAL;
8532 * Likewise, bound things on the otherside by preventing insane quota
8533 * periods. This also allows us to normalize in computing quota
8534 * feasibility.
8536 if (period > max_cfs_quota_period)
8537 return -EINVAL;
8540 * Prevent race between setting of cfs_rq->runtime_enabled and
8541 * unthrottle_offline_cfs_rqs().
8543 get_online_cpus();
8544 mutex_lock(&cfs_constraints_mutex);
8545 ret = __cfs_schedulable(tg, period, quota);
8546 if (ret)
8547 goto out_unlock;
8549 runtime_enabled = quota != RUNTIME_INF;
8550 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8552 * If we need to toggle cfs_bandwidth_used, off->on must occur
8553 * before making related changes, and on->off must occur afterwards
8555 if (runtime_enabled && !runtime_was_enabled)
8556 cfs_bandwidth_usage_inc();
8557 raw_spin_lock_irq(&cfs_b->lock);
8558 cfs_b->period = ns_to_ktime(period);
8559 cfs_b->quota = quota;
8561 __refill_cfs_bandwidth_runtime(cfs_b);
8562 /* restart the period timer (if active) to handle new period expiry */
8563 if (runtime_enabled)
8564 start_cfs_bandwidth(cfs_b);
8565 raw_spin_unlock_irq(&cfs_b->lock);
8567 for_each_online_cpu(i) {
8568 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8569 struct rq *rq = cfs_rq->rq;
8571 raw_spin_lock_irq(&rq->lock);
8572 cfs_rq->runtime_enabled = runtime_enabled;
8573 cfs_rq->runtime_remaining = 0;
8575 if (cfs_rq->throttled)
8576 unthrottle_cfs_rq(cfs_rq);
8577 raw_spin_unlock_irq(&rq->lock);
8579 if (runtime_was_enabled && !runtime_enabled)
8580 cfs_bandwidth_usage_dec();
8581 out_unlock:
8582 mutex_unlock(&cfs_constraints_mutex);
8583 put_online_cpus();
8585 return ret;
8588 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8590 u64 quota, period;
8592 period = ktime_to_ns(tg->cfs_bandwidth.period);
8593 if (cfs_quota_us < 0)
8594 quota = RUNTIME_INF;
8595 else
8596 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8598 return tg_set_cfs_bandwidth(tg, period, quota);
8601 long tg_get_cfs_quota(struct task_group *tg)
8603 u64 quota_us;
8605 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8606 return -1;
8608 quota_us = tg->cfs_bandwidth.quota;
8609 do_div(quota_us, NSEC_PER_USEC);
8611 return quota_us;
8614 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8616 u64 quota, period;
8618 period = (u64)cfs_period_us * NSEC_PER_USEC;
8619 quota = tg->cfs_bandwidth.quota;
8621 return tg_set_cfs_bandwidth(tg, period, quota);
8624 long tg_get_cfs_period(struct task_group *tg)
8626 u64 cfs_period_us;
8628 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8629 do_div(cfs_period_us, NSEC_PER_USEC);
8631 return cfs_period_us;
8634 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8635 struct cftype *cft)
8637 return tg_get_cfs_quota(css_tg(css));
8640 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8641 struct cftype *cftype, s64 cfs_quota_us)
8643 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8646 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8647 struct cftype *cft)
8649 return tg_get_cfs_period(css_tg(css));
8652 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8653 struct cftype *cftype, u64 cfs_period_us)
8655 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8658 struct cfs_schedulable_data {
8659 struct task_group *tg;
8660 u64 period, quota;
8664 * normalize group quota/period to be quota/max_period
8665 * note: units are usecs
8667 static u64 normalize_cfs_quota(struct task_group *tg,
8668 struct cfs_schedulable_data *d)
8670 u64 quota, period;
8672 if (tg == d->tg) {
8673 period = d->period;
8674 quota = d->quota;
8675 } else {
8676 period = tg_get_cfs_period(tg);
8677 quota = tg_get_cfs_quota(tg);
8680 /* note: these should typically be equivalent */
8681 if (quota == RUNTIME_INF || quota == -1)
8682 return RUNTIME_INF;
8684 return to_ratio(period, quota);
8687 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8689 struct cfs_schedulable_data *d = data;
8690 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8691 s64 quota = 0, parent_quota = -1;
8693 if (!tg->parent) {
8694 quota = RUNTIME_INF;
8695 } else {
8696 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8698 quota = normalize_cfs_quota(tg, d);
8699 parent_quota = parent_b->hierarchical_quota;
8702 * ensure max(child_quota) <= parent_quota, inherit when no
8703 * limit is set
8705 if (quota == RUNTIME_INF)
8706 quota = parent_quota;
8707 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8708 return -EINVAL;
8710 cfs_b->hierarchical_quota = quota;
8712 return 0;
8715 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8717 int ret;
8718 struct cfs_schedulable_data data = {
8719 .tg = tg,
8720 .period = period,
8721 .quota = quota,
8724 if (quota != RUNTIME_INF) {
8725 do_div(data.period, NSEC_PER_USEC);
8726 do_div(data.quota, NSEC_PER_USEC);
8729 rcu_read_lock();
8730 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8731 rcu_read_unlock();
8733 return ret;
8736 static int cpu_stats_show(struct seq_file *sf, void *v)
8738 struct task_group *tg = css_tg(seq_css(sf));
8739 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8741 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8742 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8743 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8745 return 0;
8747 #endif /* CONFIG_CFS_BANDWIDTH */
8748 #endif /* CONFIG_FAIR_GROUP_SCHED */
8750 #ifdef CONFIG_RT_GROUP_SCHED
8751 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8752 struct cftype *cft, s64 val)
8754 return sched_group_set_rt_runtime(css_tg(css), val);
8757 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8758 struct cftype *cft)
8760 return sched_group_rt_runtime(css_tg(css));
8763 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8764 struct cftype *cftype, u64 rt_period_us)
8766 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8769 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8770 struct cftype *cft)
8772 return sched_group_rt_period(css_tg(css));
8774 #endif /* CONFIG_RT_GROUP_SCHED */
8776 static struct cftype cpu_files[] = {
8777 #ifdef CONFIG_FAIR_GROUP_SCHED
8779 .name = "shares",
8780 .read_u64 = cpu_shares_read_u64,
8781 .write_u64 = cpu_shares_write_u64,
8783 #endif
8784 #ifdef CONFIG_CFS_BANDWIDTH
8786 .name = "cfs_quota_us",
8787 .read_s64 = cpu_cfs_quota_read_s64,
8788 .write_s64 = cpu_cfs_quota_write_s64,
8791 .name = "cfs_period_us",
8792 .read_u64 = cpu_cfs_period_read_u64,
8793 .write_u64 = cpu_cfs_period_write_u64,
8796 .name = "stat",
8797 .seq_show = cpu_stats_show,
8799 #endif
8800 #ifdef CONFIG_RT_GROUP_SCHED
8802 .name = "rt_runtime_us",
8803 .read_s64 = cpu_rt_runtime_read,
8804 .write_s64 = cpu_rt_runtime_write,
8807 .name = "rt_period_us",
8808 .read_u64 = cpu_rt_period_read_uint,
8809 .write_u64 = cpu_rt_period_write_uint,
8811 #endif
8812 { } /* terminate */
8815 struct cgroup_subsys cpu_cgrp_subsys = {
8816 .css_alloc = cpu_cgroup_css_alloc,
8817 .css_online = cpu_cgroup_css_online,
8818 .css_released = cpu_cgroup_css_released,
8819 .css_free = cpu_cgroup_css_free,
8820 .fork = cpu_cgroup_fork,
8821 .can_attach = cpu_cgroup_can_attach,
8822 .attach = cpu_cgroup_attach,
8823 .legacy_cftypes = cpu_files,
8824 .early_init = true,
8827 #endif /* CONFIG_CGROUP_SCHED */
8829 void dump_cpu_task(int cpu)
8831 pr_info("Task dump for CPU %d:\n", cpu);
8832 sched_show_task(cpu_curr(cpu));
8836 * Nice levels are multiplicative, with a gentle 10% change for every
8837 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8838 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8839 * that remained on nice 0.
8841 * The "10% effect" is relative and cumulative: from _any_ nice level,
8842 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8843 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8844 * If a task goes up by ~10% and another task goes down by ~10% then
8845 * the relative distance between them is ~25%.)
8847 const int sched_prio_to_weight[40] = {
8848 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8849 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8850 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8851 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8852 /* 0 */ 1024, 820, 655, 526, 423,
8853 /* 5 */ 335, 272, 215, 172, 137,
8854 /* 10 */ 110, 87, 70, 56, 45,
8855 /* 15 */ 36, 29, 23, 18, 15,
8859 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8861 * In cases where the weight does not change often, we can use the
8862 * precalculated inverse to speed up arithmetics by turning divisions
8863 * into multiplications:
8865 const u32 sched_prio_to_wmult[40] = {
8866 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8867 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8868 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8869 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8870 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8871 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8872 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8873 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,