2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
34 #include <trace/events/sched.h>
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
50 unsigned int sysctl_sched_latency
= 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG
;
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
69 unsigned int sysctl_sched_min_granularity
= 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
75 static unsigned int sched_nr_latency
= 8;
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
81 unsigned int sysctl_sched_child_runs_first __read_mostly
;
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
91 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
94 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
97 * The exponential sliding window over which load is averaged for shares
101 unsigned int __read_mostly sysctl_sched_shares_window
= 10000000UL;
103 #ifdef CONFIG_CFS_BANDWIDTH
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
112 * default: 5 msec, units: microseconds
114 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
118 * The margin used when comparing utilization with CPU capacity:
119 * util * 1024 < capacity * margin
121 unsigned int capacity_margin
= 1280; /* ~20% */
123 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
129 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
135 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
142 * Increase the granularity value when there are more CPUs,
143 * because with more CPUs the 'effective latency' as visible
144 * to users decreases. But the relationship is not linear,
145 * so pick a second-best guess by going with the log2 of the
148 * This idea comes from the SD scheduler of Con Kolivas:
150 static unsigned int get_update_sysctl_factor(void)
152 unsigned int cpus
= min_t(unsigned int, num_online_cpus(), 8);
155 switch (sysctl_sched_tunable_scaling
) {
156 case SCHED_TUNABLESCALING_NONE
:
159 case SCHED_TUNABLESCALING_LINEAR
:
162 case SCHED_TUNABLESCALING_LOG
:
164 factor
= 1 + ilog2(cpus
);
171 static void update_sysctl(void)
173 unsigned int factor
= get_update_sysctl_factor();
175 #define SET_SYSCTL(name) \
176 (sysctl_##name = (factor) * normalized_sysctl_##name)
177 SET_SYSCTL(sched_min_granularity
);
178 SET_SYSCTL(sched_latency
);
179 SET_SYSCTL(sched_wakeup_granularity
);
183 void sched_init_granularity(void)
188 #define WMULT_CONST (~0U)
189 #define WMULT_SHIFT 32
191 static void __update_inv_weight(struct load_weight
*lw
)
195 if (likely(lw
->inv_weight
))
198 w
= scale_load_down(lw
->weight
);
200 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
202 else if (unlikely(!w
))
203 lw
->inv_weight
= WMULT_CONST
;
205 lw
->inv_weight
= WMULT_CONST
/ w
;
209 * delta_exec * weight / lw.weight
211 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
213 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
214 * we're guaranteed shift stays positive because inv_weight is guaranteed to
215 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
217 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
218 * weight/lw.weight <= 1, and therefore our shift will also be positive.
220 static u64
__calc_delta(u64 delta_exec
, unsigned long weight
, struct load_weight
*lw
)
222 u64 fact
= scale_load_down(weight
);
223 int shift
= WMULT_SHIFT
;
225 __update_inv_weight(lw
);
227 if (unlikely(fact
>> 32)) {
234 /* hint to use a 32x32->64 mul */
235 fact
= (u64
)(u32
)fact
* lw
->inv_weight
;
242 return mul_u64_u32_shr(delta_exec
, fact
, shift
);
246 const struct sched_class fair_sched_class
;
248 /**************************************************************
249 * CFS operations on generic schedulable entities:
252 #ifdef CONFIG_FAIR_GROUP_SCHED
254 /* cpu runqueue to which this cfs_rq is attached */
255 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
260 /* An entity is a task if it doesn't "own" a runqueue */
261 #define entity_is_task(se) (!se->my_q)
263 static inline struct task_struct
*task_of(struct sched_entity
*se
)
265 SCHED_WARN_ON(!entity_is_task(se
));
266 return container_of(se
, struct task_struct
, se
);
269 /* Walk up scheduling entities hierarchy */
270 #define for_each_sched_entity(se) \
271 for (; se; se = se->parent)
273 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
278 /* runqueue on which this entity is (to be) queued */
279 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
284 /* runqueue "owned" by this group */
285 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
290 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
292 if (!cfs_rq
->on_list
) {
294 * Ensure we either appear before our parent (if already
295 * enqueued) or force our parent to appear after us when it is
296 * enqueued. The fact that we always enqueue bottom-up
297 * reduces this to two cases.
299 if (cfs_rq
->tg
->parent
&&
300 cfs_rq
->tg
->parent
->cfs_rq
[cpu_of(rq_of(cfs_rq
))]->on_list
) {
301 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
302 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
304 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
305 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
314 if (cfs_rq
->on_list
) {
315 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq
*
326 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
328 if (se
->cfs_rq
== pse
->cfs_rq
)
334 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
340 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
342 int se_depth
, pse_depth
;
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
351 /* First walk up until both entities are at same depth */
352 se_depth
= (*se
)->depth
;
353 pse_depth
= (*pse
)->depth
;
355 while (se_depth
> pse_depth
) {
357 *se
= parent_entity(*se
);
360 while (pse_depth
> se_depth
) {
362 *pse
= parent_entity(*pse
);
365 while (!is_same_group(*se
, *pse
)) {
366 *se
= parent_entity(*se
);
367 *pse
= parent_entity(*pse
);
371 #else /* !CONFIG_FAIR_GROUP_SCHED */
373 static inline struct task_struct
*task_of(struct sched_entity
*se
)
375 return container_of(se
, struct task_struct
, se
);
378 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
380 return container_of(cfs_rq
, struct rq
, cfs
);
383 #define entity_is_task(se) 1
385 #define for_each_sched_entity(se) \
386 for (; se; se = NULL)
388 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
390 return &task_rq(p
)->cfs
;
393 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
395 struct task_struct
*p
= task_of(se
);
396 struct rq
*rq
= task_rq(p
);
401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
424 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
428 #endif /* CONFIG_FAIR_GROUP_SCHED */
430 static __always_inline
431 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
);
433 /**************************************************************
434 * Scheduling class tree data structure manipulation methods:
437 static inline u64
max_vruntime(u64 max_vruntime
, u64 vruntime
)
439 s64 delta
= (s64
)(vruntime
- max_vruntime
);
441 max_vruntime
= vruntime
;
446 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
448 s64 delta
= (s64
)(vruntime
- min_vruntime
);
450 min_vruntime
= vruntime
;
455 static inline int entity_before(struct sched_entity
*a
,
456 struct sched_entity
*b
)
458 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
461 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
463 struct sched_entity
*curr
= cfs_rq
->curr
;
465 u64 vruntime
= cfs_rq
->min_vruntime
;
469 vruntime
= curr
->vruntime
;
474 if (cfs_rq
->rb_leftmost
) {
475 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
480 vruntime
= se
->vruntime
;
482 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
485 /* ensure we never gain time by being placed backwards. */
486 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
489 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
494 * Enqueue an entity into the rb-tree:
496 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
498 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
499 struct rb_node
*parent
= NULL
;
500 struct sched_entity
*entry
;
504 * Find the right place in the rbtree:
508 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
510 * We dont care about collisions. Nodes with
511 * the same key stay together.
513 if (entity_before(se
, entry
)) {
514 link
= &parent
->rb_left
;
516 link
= &parent
->rb_right
;
522 * Maintain a cache of leftmost tree entries (it is frequently
526 cfs_rq
->rb_leftmost
= &se
->run_node
;
528 rb_link_node(&se
->run_node
, parent
, link
);
529 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
532 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
534 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
535 struct rb_node
*next_node
;
537 next_node
= rb_next(&se
->run_node
);
538 cfs_rq
->rb_leftmost
= next_node
;
541 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
544 struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
546 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
551 return rb_entry(left
, struct sched_entity
, run_node
);
554 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
556 struct rb_node
*next
= rb_next(&se
->run_node
);
561 return rb_entry(next
, struct sched_entity
, run_node
);
564 #ifdef CONFIG_SCHED_DEBUG
565 struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
567 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
572 return rb_entry(last
, struct sched_entity
, run_node
);
575 /**************************************************************
576 * Scheduling class statistics methods:
579 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
580 void __user
*buffer
, size_t *lenp
,
583 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
584 unsigned int factor
= get_update_sysctl_factor();
589 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
590 sysctl_sched_min_granularity
);
592 #define WRT_SYSCTL(name) \
593 (normalized_sysctl_##name = sysctl_##name / (factor))
594 WRT_SYSCTL(sched_min_granularity
);
595 WRT_SYSCTL(sched_latency
);
596 WRT_SYSCTL(sched_wakeup_granularity
);
606 static inline u64
calc_delta_fair(u64 delta
, struct sched_entity
*se
)
608 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
609 delta
= __calc_delta(delta
, NICE_0_LOAD
, &se
->load
);
615 * The idea is to set a period in which each task runs once.
617 * When there are too many tasks (sched_nr_latency) we have to stretch
618 * this period because otherwise the slices get too small.
620 * p = (nr <= nl) ? l : l*nr/nl
622 static u64
__sched_period(unsigned long nr_running
)
624 if (unlikely(nr_running
> sched_nr_latency
))
625 return nr_running
* sysctl_sched_min_granularity
;
627 return sysctl_sched_latency
;
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
636 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
638 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
640 for_each_sched_entity(se
) {
641 struct load_weight
*load
;
642 struct load_weight lw
;
644 cfs_rq
= cfs_rq_of(se
);
645 load
= &cfs_rq
->load
;
647 if (unlikely(!se
->on_rq
)) {
650 update_load_add(&lw
, se
->load
.weight
);
653 slice
= __calc_delta(slice
, se
->load
.weight
, load
);
659 * We calculate the vruntime slice of a to-be-inserted task.
663 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
665 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
669 static int select_idle_sibling(struct task_struct
*p
, int prev_cpu
, int cpu
);
670 static unsigned long task_h_load(struct task_struct
*p
);
673 * We choose a half-life close to 1 scheduling period.
674 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
675 * dependent on this value.
677 #define LOAD_AVG_PERIOD 32
678 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
679 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
681 /* Give new sched_entity start runnable values to heavy its load in infant time */
682 void init_entity_runnable_average(struct sched_entity
*se
)
684 struct sched_avg
*sa
= &se
->avg
;
686 sa
->last_update_time
= 0;
688 * sched_avg's period_contrib should be strictly less then 1024, so
689 * we give it 1023 to make sure it is almost a period (1024us), and
690 * will definitely be update (after enqueue).
692 sa
->period_contrib
= 1023;
694 * Tasks are intialized with full load to be seen as heavy tasks until
695 * they get a chance to stabilize to their real load level.
696 * Group entities are intialized with zero load to reflect the fact that
697 * nothing has been attached to the task group yet.
699 if (entity_is_task(se
))
700 sa
->load_avg
= scale_load_down(se
->load
.weight
);
701 sa
->load_sum
= sa
->load_avg
* LOAD_AVG_MAX
;
703 * At this point, util_avg won't be used in select_task_rq_fair anyway
707 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
710 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
);
711 static int update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
, bool update_freq
);
712 static void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
);
713 static void attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
);
716 * With new tasks being created, their initial util_avgs are extrapolated
717 * based on the cfs_rq's current util_avg:
719 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
721 * However, in many cases, the above util_avg does not give a desired
722 * value. Moreover, the sum of the util_avgs may be divergent, such
723 * as when the series is a harmonic series.
725 * To solve this problem, we also cap the util_avg of successive tasks to
726 * only 1/2 of the left utilization budget:
728 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
730 * where n denotes the nth task.
732 * For example, a simplest series from the beginning would be like:
734 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
735 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
737 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
738 * if util_avg > util_avg_cap.
740 void post_init_entity_util_avg(struct sched_entity
*se
)
742 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
743 struct sched_avg
*sa
= &se
->avg
;
744 long cap
= (long)(SCHED_CAPACITY_SCALE
- cfs_rq
->avg
.util_avg
) / 2;
745 u64 now
= cfs_rq_clock_task(cfs_rq
);
748 if (cfs_rq
->avg
.util_avg
!= 0) {
749 sa
->util_avg
= cfs_rq
->avg
.util_avg
* se
->load
.weight
;
750 sa
->util_avg
/= (cfs_rq
->avg
.load_avg
+ 1);
752 if (sa
->util_avg
> cap
)
757 sa
->util_sum
= sa
->util_avg
* LOAD_AVG_MAX
;
760 if (entity_is_task(se
)) {
761 struct task_struct
*p
= task_of(se
);
762 if (p
->sched_class
!= &fair_sched_class
) {
764 * For !fair tasks do:
766 update_cfs_rq_load_avg(now, cfs_rq, false);
767 attach_entity_load_avg(cfs_rq, se);
768 switched_from_fair(rq, p);
770 * such that the next switched_to_fair() has the
773 se
->avg
.last_update_time
= now
;
778 update_cfs_rq_load_avg(now
, cfs_rq
, false);
779 attach_entity_load_avg(cfs_rq
, se
);
780 update_tg_load_avg(cfs_rq
, false);
783 #else /* !CONFIG_SMP */
784 void init_entity_runnable_average(struct sched_entity
*se
)
787 void post_init_entity_util_avg(struct sched_entity
*se
)
790 static void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
793 #endif /* CONFIG_SMP */
796 * Update the current task's runtime statistics.
798 static void update_curr(struct cfs_rq
*cfs_rq
)
800 struct sched_entity
*curr
= cfs_rq
->curr
;
801 u64 now
= rq_clock_task(rq_of(cfs_rq
));
807 delta_exec
= now
- curr
->exec_start
;
808 if (unlikely((s64
)delta_exec
<= 0))
811 curr
->exec_start
= now
;
813 schedstat_set(curr
->statistics
.exec_max
,
814 max(delta_exec
, curr
->statistics
.exec_max
));
816 curr
->sum_exec_runtime
+= delta_exec
;
817 schedstat_add(cfs_rq
->exec_clock
, delta_exec
);
819 curr
->vruntime
+= calc_delta_fair(delta_exec
, curr
);
820 update_min_vruntime(cfs_rq
);
822 if (entity_is_task(curr
)) {
823 struct task_struct
*curtask
= task_of(curr
);
825 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
826 cpuacct_charge(curtask
, delta_exec
);
827 account_group_exec_runtime(curtask
, delta_exec
);
830 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
833 static void update_curr_fair(struct rq
*rq
)
835 update_curr(cfs_rq_of(&rq
->curr
->se
));
839 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
841 u64 wait_start
, prev_wait_start
;
843 if (!schedstat_enabled())
846 wait_start
= rq_clock(rq_of(cfs_rq
));
847 prev_wait_start
= schedstat_val(se
->statistics
.wait_start
);
849 if (entity_is_task(se
) && task_on_rq_migrating(task_of(se
)) &&
850 likely(wait_start
> prev_wait_start
))
851 wait_start
-= prev_wait_start
;
853 schedstat_set(se
->statistics
.wait_start
, wait_start
);
857 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
859 struct task_struct
*p
;
862 if (!schedstat_enabled())
865 delta
= rq_clock(rq_of(cfs_rq
)) - schedstat_val(se
->statistics
.wait_start
);
867 if (entity_is_task(se
)) {
869 if (task_on_rq_migrating(p
)) {
871 * Preserve migrating task's wait time so wait_start
872 * time stamp can be adjusted to accumulate wait time
873 * prior to migration.
875 schedstat_set(se
->statistics
.wait_start
, delta
);
878 trace_sched_stat_wait(p
, delta
);
881 schedstat_set(se
->statistics
.wait_max
,
882 max(schedstat_val(se
->statistics
.wait_max
), delta
));
883 schedstat_inc(se
->statistics
.wait_count
);
884 schedstat_add(se
->statistics
.wait_sum
, delta
);
885 schedstat_set(se
->statistics
.wait_start
, 0);
889 update_stats_enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
891 struct task_struct
*tsk
= NULL
;
892 u64 sleep_start
, block_start
;
894 if (!schedstat_enabled())
897 sleep_start
= schedstat_val(se
->statistics
.sleep_start
);
898 block_start
= schedstat_val(se
->statistics
.block_start
);
900 if (entity_is_task(se
))
904 u64 delta
= rq_clock(rq_of(cfs_rq
)) - sleep_start
;
909 if (unlikely(delta
> schedstat_val(se
->statistics
.sleep_max
)))
910 schedstat_set(se
->statistics
.sleep_max
, delta
);
912 schedstat_set(se
->statistics
.sleep_start
, 0);
913 schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
916 account_scheduler_latency(tsk
, delta
>> 10, 1);
917 trace_sched_stat_sleep(tsk
, delta
);
921 u64 delta
= rq_clock(rq_of(cfs_rq
)) - block_start
;
926 if (unlikely(delta
> schedstat_val(se
->statistics
.block_max
)))
927 schedstat_set(se
->statistics
.block_max
, delta
);
929 schedstat_set(se
->statistics
.block_start
, 0);
930 schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
933 if (tsk
->in_iowait
) {
934 schedstat_add(se
->statistics
.iowait_sum
, delta
);
935 schedstat_inc(se
->statistics
.iowait_count
);
936 trace_sched_stat_iowait(tsk
, delta
);
939 trace_sched_stat_blocked(tsk
, delta
);
942 * Blocking time is in units of nanosecs, so shift by
943 * 20 to get a milliseconds-range estimation of the
944 * amount of time that the task spent sleeping:
946 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
947 profile_hits(SLEEP_PROFILING
,
948 (void *)get_wchan(tsk
),
951 account_scheduler_latency(tsk
, delta
>> 10, 0);
957 * Task is being enqueued - update stats:
960 update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
962 if (!schedstat_enabled())
966 * Are we enqueueing a waiting task? (for current tasks
967 * a dequeue/enqueue event is a NOP)
969 if (se
!= cfs_rq
->curr
)
970 update_stats_wait_start(cfs_rq
, se
);
972 if (flags
& ENQUEUE_WAKEUP
)
973 update_stats_enqueue_sleeper(cfs_rq
, se
);
977 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
980 if (!schedstat_enabled())
984 * Mark the end of the wait period if dequeueing a
987 if (se
!= cfs_rq
->curr
)
988 update_stats_wait_end(cfs_rq
, se
);
990 if ((flags
& DEQUEUE_SLEEP
) && entity_is_task(se
)) {
991 struct task_struct
*tsk
= task_of(se
);
993 if (tsk
->state
& TASK_INTERRUPTIBLE
)
994 schedstat_set(se
->statistics
.sleep_start
,
995 rq_clock(rq_of(cfs_rq
)));
996 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
997 schedstat_set(se
->statistics
.block_start
,
998 rq_clock(rq_of(cfs_rq
)));
1003 * We are picking a new current task - update its stats:
1006 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1009 * We are starting a new run period:
1011 se
->exec_start
= rq_clock_task(rq_of(cfs_rq
));
1014 /**************************************************
1015 * Scheduling class queueing methods:
1018 #ifdef CONFIG_NUMA_BALANCING
1020 * Approximate time to scan a full NUMA task in ms. The task scan period is
1021 * calculated based on the tasks virtual memory size and
1022 * numa_balancing_scan_size.
1024 unsigned int sysctl_numa_balancing_scan_period_min
= 1000;
1025 unsigned int sysctl_numa_balancing_scan_period_max
= 60000;
1027 /* Portion of address space to scan in MB */
1028 unsigned int sysctl_numa_balancing_scan_size
= 256;
1030 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1031 unsigned int sysctl_numa_balancing_scan_delay
= 1000;
1033 static unsigned int task_nr_scan_windows(struct task_struct
*p
)
1035 unsigned long rss
= 0;
1036 unsigned long nr_scan_pages
;
1039 * Calculations based on RSS as non-present and empty pages are skipped
1040 * by the PTE scanner and NUMA hinting faults should be trapped based
1043 nr_scan_pages
= sysctl_numa_balancing_scan_size
<< (20 - PAGE_SHIFT
);
1044 rss
= get_mm_rss(p
->mm
);
1046 rss
= nr_scan_pages
;
1048 rss
= round_up(rss
, nr_scan_pages
);
1049 return rss
/ nr_scan_pages
;
1052 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1053 #define MAX_SCAN_WINDOW 2560
1055 static unsigned int task_scan_min(struct task_struct
*p
)
1057 unsigned int scan_size
= READ_ONCE(sysctl_numa_balancing_scan_size
);
1058 unsigned int scan
, floor
;
1059 unsigned int windows
= 1;
1061 if (scan_size
< MAX_SCAN_WINDOW
)
1062 windows
= MAX_SCAN_WINDOW
/ scan_size
;
1063 floor
= 1000 / windows
;
1065 scan
= sysctl_numa_balancing_scan_period_min
/ task_nr_scan_windows(p
);
1066 return max_t(unsigned int, floor
, scan
);
1069 static unsigned int task_scan_max(struct task_struct
*p
)
1071 unsigned int smin
= task_scan_min(p
);
1074 /* Watch for min being lower than max due to floor calculations */
1075 smax
= sysctl_numa_balancing_scan_period_max
/ task_nr_scan_windows(p
);
1076 return max(smin
, smax
);
1079 static void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
1081 rq
->nr_numa_running
+= (p
->numa_preferred_nid
!= -1);
1082 rq
->nr_preferred_running
+= (p
->numa_preferred_nid
== task_node(p
));
1085 static void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
1087 rq
->nr_numa_running
-= (p
->numa_preferred_nid
!= -1);
1088 rq
->nr_preferred_running
-= (p
->numa_preferred_nid
== task_node(p
));
1094 spinlock_t lock
; /* nr_tasks, tasks */
1099 struct rcu_head rcu
;
1100 unsigned long total_faults
;
1101 unsigned long max_faults_cpu
;
1103 * Faults_cpu is used to decide whether memory should move
1104 * towards the CPU. As a consequence, these stats are weighted
1105 * more by CPU use than by memory faults.
1107 unsigned long *faults_cpu
;
1108 unsigned long faults
[0];
1111 /* Shared or private faults. */
1112 #define NR_NUMA_HINT_FAULT_TYPES 2
1114 /* Memory and CPU locality */
1115 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1117 /* Averaged statistics, and temporary buffers. */
1118 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1120 pid_t
task_numa_group_id(struct task_struct
*p
)
1122 return p
->numa_group
? p
->numa_group
->gid
: 0;
1126 * The averaged statistics, shared & private, memory & cpu,
1127 * occupy the first half of the array. The second half of the
1128 * array is for current counters, which are averaged into the
1129 * first set by task_numa_placement.
1131 static inline int task_faults_idx(enum numa_faults_stats s
, int nid
, int priv
)
1133 return NR_NUMA_HINT_FAULT_TYPES
* (s
* nr_node_ids
+ nid
) + priv
;
1136 static inline unsigned long task_faults(struct task_struct
*p
, int nid
)
1138 if (!p
->numa_faults
)
1141 return p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1142 p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1145 static inline unsigned long group_faults(struct task_struct
*p
, int nid
)
1150 return p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1151 p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1154 static inline unsigned long group_faults_cpu(struct numa_group
*group
, int nid
)
1156 return group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1157 group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1161 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1162 * considered part of a numa group's pseudo-interleaving set. Migrations
1163 * between these nodes are slowed down, to allow things to settle down.
1165 #define ACTIVE_NODE_FRACTION 3
1167 static bool numa_is_active_node(int nid
, struct numa_group
*ng
)
1169 return group_faults_cpu(ng
, nid
) * ACTIVE_NODE_FRACTION
> ng
->max_faults_cpu
;
1172 /* Handle placement on systems where not all nodes are directly connected. */
1173 static unsigned long score_nearby_nodes(struct task_struct
*p
, int nid
,
1174 int maxdist
, bool task
)
1176 unsigned long score
= 0;
1180 * All nodes are directly connected, and the same distance
1181 * from each other. No need for fancy placement algorithms.
1183 if (sched_numa_topology_type
== NUMA_DIRECT
)
1187 * This code is called for each node, introducing N^2 complexity,
1188 * which should be ok given the number of nodes rarely exceeds 8.
1190 for_each_online_node(node
) {
1191 unsigned long faults
;
1192 int dist
= node_distance(nid
, node
);
1195 * The furthest away nodes in the system are not interesting
1196 * for placement; nid was already counted.
1198 if (dist
== sched_max_numa_distance
|| node
== nid
)
1202 * On systems with a backplane NUMA topology, compare groups
1203 * of nodes, and move tasks towards the group with the most
1204 * memory accesses. When comparing two nodes at distance
1205 * "hoplimit", only nodes closer by than "hoplimit" are part
1206 * of each group. Skip other nodes.
1208 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1212 /* Add up the faults from nearby nodes. */
1214 faults
= task_faults(p
, node
);
1216 faults
= group_faults(p
, node
);
1219 * On systems with a glueless mesh NUMA topology, there are
1220 * no fixed "groups of nodes". Instead, nodes that are not
1221 * directly connected bounce traffic through intermediate
1222 * nodes; a numa_group can occupy any set of nodes.
1223 * The further away a node is, the less the faults count.
1224 * This seems to result in good task placement.
1226 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
1227 faults
*= (sched_max_numa_distance
- dist
);
1228 faults
/= (sched_max_numa_distance
- LOCAL_DISTANCE
);
1238 * These return the fraction of accesses done by a particular task, or
1239 * task group, on a particular numa node. The group weight is given a
1240 * larger multiplier, in order to group tasks together that are almost
1241 * evenly spread out between numa nodes.
1243 static inline unsigned long task_weight(struct task_struct
*p
, int nid
,
1246 unsigned long faults
, total_faults
;
1248 if (!p
->numa_faults
)
1251 total_faults
= p
->total_numa_faults
;
1256 faults
= task_faults(p
, nid
);
1257 faults
+= score_nearby_nodes(p
, nid
, dist
, true);
1259 return 1000 * faults
/ total_faults
;
1262 static inline unsigned long group_weight(struct task_struct
*p
, int nid
,
1265 unsigned long faults
, total_faults
;
1270 total_faults
= p
->numa_group
->total_faults
;
1275 faults
= group_faults(p
, nid
);
1276 faults
+= score_nearby_nodes(p
, nid
, dist
, false);
1278 return 1000 * faults
/ total_faults
;
1281 bool should_numa_migrate_memory(struct task_struct
*p
, struct page
* page
,
1282 int src_nid
, int dst_cpu
)
1284 struct numa_group
*ng
= p
->numa_group
;
1285 int dst_nid
= cpu_to_node(dst_cpu
);
1286 int last_cpupid
, this_cpupid
;
1288 this_cpupid
= cpu_pid_to_cpupid(dst_cpu
, current
->pid
);
1291 * Multi-stage node selection is used in conjunction with a periodic
1292 * migration fault to build a temporal task<->page relation. By using
1293 * a two-stage filter we remove short/unlikely relations.
1295 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1296 * a task's usage of a particular page (n_p) per total usage of this
1297 * page (n_t) (in a given time-span) to a probability.
1299 * Our periodic faults will sample this probability and getting the
1300 * same result twice in a row, given these samples are fully
1301 * independent, is then given by P(n)^2, provided our sample period
1302 * is sufficiently short compared to the usage pattern.
1304 * This quadric squishes small probabilities, making it less likely we
1305 * act on an unlikely task<->page relation.
1307 last_cpupid
= page_cpupid_xchg_last(page
, this_cpupid
);
1308 if (!cpupid_pid_unset(last_cpupid
) &&
1309 cpupid_to_nid(last_cpupid
) != dst_nid
)
1312 /* Always allow migrate on private faults */
1313 if (cpupid_match_pid(p
, last_cpupid
))
1316 /* A shared fault, but p->numa_group has not been set up yet. */
1321 * Destination node is much more heavily used than the source
1322 * node? Allow migration.
1324 if (group_faults_cpu(ng
, dst_nid
) > group_faults_cpu(ng
, src_nid
) *
1325 ACTIVE_NODE_FRACTION
)
1329 * Distribute memory according to CPU & memory use on each node,
1330 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1332 * faults_cpu(dst) 3 faults_cpu(src)
1333 * --------------- * - > ---------------
1334 * faults_mem(dst) 4 faults_mem(src)
1336 return group_faults_cpu(ng
, dst_nid
) * group_faults(p
, src_nid
) * 3 >
1337 group_faults_cpu(ng
, src_nid
) * group_faults(p
, dst_nid
) * 4;
1340 static unsigned long weighted_cpuload(const int cpu
);
1341 static unsigned long source_load(int cpu
, int type
);
1342 static unsigned long target_load(int cpu
, int type
);
1343 static unsigned long capacity_of(int cpu
);
1344 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
);
1346 /* Cached statistics for all CPUs within a node */
1348 unsigned long nr_running
;
1351 /* Total compute capacity of CPUs on a node */
1352 unsigned long compute_capacity
;
1354 /* Approximate capacity in terms of runnable tasks on a node */
1355 unsigned long task_capacity
;
1356 int has_free_capacity
;
1360 * XXX borrowed from update_sg_lb_stats
1362 static void update_numa_stats(struct numa_stats
*ns
, int nid
)
1364 int smt
, cpu
, cpus
= 0;
1365 unsigned long capacity
;
1367 memset(ns
, 0, sizeof(*ns
));
1368 for_each_cpu(cpu
, cpumask_of_node(nid
)) {
1369 struct rq
*rq
= cpu_rq(cpu
);
1371 ns
->nr_running
+= rq
->nr_running
;
1372 ns
->load
+= weighted_cpuload(cpu
);
1373 ns
->compute_capacity
+= capacity_of(cpu
);
1379 * If we raced with hotplug and there are no CPUs left in our mask
1380 * the @ns structure is NULL'ed and task_numa_compare() will
1381 * not find this node attractive.
1383 * We'll either bail at !has_free_capacity, or we'll detect a huge
1384 * imbalance and bail there.
1389 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1390 smt
= DIV_ROUND_UP(SCHED_CAPACITY_SCALE
* cpus
, ns
->compute_capacity
);
1391 capacity
= cpus
/ smt
; /* cores */
1393 ns
->task_capacity
= min_t(unsigned, capacity
,
1394 DIV_ROUND_CLOSEST(ns
->compute_capacity
, SCHED_CAPACITY_SCALE
));
1395 ns
->has_free_capacity
= (ns
->nr_running
< ns
->task_capacity
);
1398 struct task_numa_env
{
1399 struct task_struct
*p
;
1401 int src_cpu
, src_nid
;
1402 int dst_cpu
, dst_nid
;
1404 struct numa_stats src_stats
, dst_stats
;
1409 struct task_struct
*best_task
;
1414 static void task_numa_assign(struct task_numa_env
*env
,
1415 struct task_struct
*p
, long imp
)
1418 put_task_struct(env
->best_task
);
1423 env
->best_imp
= imp
;
1424 env
->best_cpu
= env
->dst_cpu
;
1427 static bool load_too_imbalanced(long src_load
, long dst_load
,
1428 struct task_numa_env
*env
)
1431 long orig_src_load
, orig_dst_load
;
1432 long src_capacity
, dst_capacity
;
1435 * The load is corrected for the CPU capacity available on each node.
1438 * ------------ vs ---------
1439 * src_capacity dst_capacity
1441 src_capacity
= env
->src_stats
.compute_capacity
;
1442 dst_capacity
= env
->dst_stats
.compute_capacity
;
1444 /* We care about the slope of the imbalance, not the direction. */
1445 if (dst_load
< src_load
)
1446 swap(dst_load
, src_load
);
1448 /* Is the difference below the threshold? */
1449 imb
= dst_load
* src_capacity
* 100 -
1450 src_load
* dst_capacity
* env
->imbalance_pct
;
1455 * The imbalance is above the allowed threshold.
1456 * Compare it with the old imbalance.
1458 orig_src_load
= env
->src_stats
.load
;
1459 orig_dst_load
= env
->dst_stats
.load
;
1461 if (orig_dst_load
< orig_src_load
)
1462 swap(orig_dst_load
, orig_src_load
);
1464 old_imb
= orig_dst_load
* src_capacity
* 100 -
1465 orig_src_load
* dst_capacity
* env
->imbalance_pct
;
1467 /* Would this change make things worse? */
1468 return (imb
> old_imb
);
1472 * This checks if the overall compute and NUMA accesses of the system would
1473 * be improved if the source tasks was migrated to the target dst_cpu taking
1474 * into account that it might be best if task running on the dst_cpu should
1475 * be exchanged with the source task
1477 static void task_numa_compare(struct task_numa_env
*env
,
1478 long taskimp
, long groupimp
)
1480 struct rq
*src_rq
= cpu_rq(env
->src_cpu
);
1481 struct rq
*dst_rq
= cpu_rq(env
->dst_cpu
);
1482 struct task_struct
*cur
;
1483 long src_load
, dst_load
;
1485 long imp
= env
->p
->numa_group
? groupimp
: taskimp
;
1487 int dist
= env
->dist
;
1490 cur
= task_rcu_dereference(&dst_rq
->curr
);
1491 if (cur
&& ((cur
->flags
& PF_EXITING
) || is_idle_task(cur
)))
1495 * Because we have preemption enabled we can get migrated around and
1496 * end try selecting ourselves (current == env->p) as a swap candidate.
1502 * "imp" is the fault differential for the source task between the
1503 * source and destination node. Calculate the total differential for
1504 * the source task and potential destination task. The more negative
1505 * the value is, the more rmeote accesses that would be expected to
1506 * be incurred if the tasks were swapped.
1509 /* Skip this swap candidate if cannot move to the source cpu */
1510 if (!cpumask_test_cpu(env
->src_cpu
, tsk_cpus_allowed(cur
)))
1514 * If dst and source tasks are in the same NUMA group, or not
1515 * in any group then look only at task weights.
1517 if (cur
->numa_group
== env
->p
->numa_group
) {
1518 imp
= taskimp
+ task_weight(cur
, env
->src_nid
, dist
) -
1519 task_weight(cur
, env
->dst_nid
, dist
);
1521 * Add some hysteresis to prevent swapping the
1522 * tasks within a group over tiny differences.
1524 if (cur
->numa_group
)
1528 * Compare the group weights. If a task is all by
1529 * itself (not part of a group), use the task weight
1532 if (cur
->numa_group
)
1533 imp
+= group_weight(cur
, env
->src_nid
, dist
) -
1534 group_weight(cur
, env
->dst_nid
, dist
);
1536 imp
+= task_weight(cur
, env
->src_nid
, dist
) -
1537 task_weight(cur
, env
->dst_nid
, dist
);
1541 if (imp
<= env
->best_imp
&& moveimp
<= env
->best_imp
)
1545 /* Is there capacity at our destination? */
1546 if (env
->src_stats
.nr_running
<= env
->src_stats
.task_capacity
&&
1547 !env
->dst_stats
.has_free_capacity
)
1553 /* Balance doesn't matter much if we're running a task per cpu */
1554 if (imp
> env
->best_imp
&& src_rq
->nr_running
== 1 &&
1555 dst_rq
->nr_running
== 1)
1559 * In the overloaded case, try and keep the load balanced.
1562 load
= task_h_load(env
->p
);
1563 dst_load
= env
->dst_stats
.load
+ load
;
1564 src_load
= env
->src_stats
.load
- load
;
1566 if (moveimp
> imp
&& moveimp
> env
->best_imp
) {
1568 * If the improvement from just moving env->p direction is
1569 * better than swapping tasks around, check if a move is
1570 * possible. Store a slightly smaller score than moveimp,
1571 * so an actually idle CPU will win.
1573 if (!load_too_imbalanced(src_load
, dst_load
, env
)) {
1580 if (imp
<= env
->best_imp
)
1584 load
= task_h_load(cur
);
1589 if (load_too_imbalanced(src_load
, dst_load
, env
))
1593 * One idle CPU per node is evaluated for a task numa move.
1594 * Call select_idle_sibling to maybe find a better one.
1598 * select_idle_siblings() uses an per-cpu cpumask that
1599 * can be used from IRQ context.
1601 local_irq_disable();
1602 env
->dst_cpu
= select_idle_sibling(env
->p
, env
->src_cpu
,
1608 task_numa_assign(env
, cur
, imp
);
1613 static void task_numa_find_cpu(struct task_numa_env
*env
,
1614 long taskimp
, long groupimp
)
1618 for_each_cpu(cpu
, cpumask_of_node(env
->dst_nid
)) {
1619 /* Skip this CPU if the source task cannot migrate */
1620 if (!cpumask_test_cpu(cpu
, tsk_cpus_allowed(env
->p
)))
1624 task_numa_compare(env
, taskimp
, groupimp
);
1628 /* Only move tasks to a NUMA node less busy than the current node. */
1629 static bool numa_has_capacity(struct task_numa_env
*env
)
1631 struct numa_stats
*src
= &env
->src_stats
;
1632 struct numa_stats
*dst
= &env
->dst_stats
;
1634 if (src
->has_free_capacity
&& !dst
->has_free_capacity
)
1638 * Only consider a task move if the source has a higher load
1639 * than the destination, corrected for CPU capacity on each node.
1641 * src->load dst->load
1642 * --------------------- vs ---------------------
1643 * src->compute_capacity dst->compute_capacity
1645 if (src
->load
* dst
->compute_capacity
* env
->imbalance_pct
>
1647 dst
->load
* src
->compute_capacity
* 100)
1653 static int task_numa_migrate(struct task_struct
*p
)
1655 struct task_numa_env env
= {
1658 .src_cpu
= task_cpu(p
),
1659 .src_nid
= task_node(p
),
1661 .imbalance_pct
= 112,
1667 struct sched_domain
*sd
;
1668 unsigned long taskweight
, groupweight
;
1670 long taskimp
, groupimp
;
1673 * Pick the lowest SD_NUMA domain, as that would have the smallest
1674 * imbalance and would be the first to start moving tasks about.
1676 * And we want to avoid any moving of tasks about, as that would create
1677 * random movement of tasks -- counter the numa conditions we're trying
1681 sd
= rcu_dereference(per_cpu(sd_numa
, env
.src_cpu
));
1683 env
.imbalance_pct
= 100 + (sd
->imbalance_pct
- 100) / 2;
1687 * Cpusets can break the scheduler domain tree into smaller
1688 * balance domains, some of which do not cross NUMA boundaries.
1689 * Tasks that are "trapped" in such domains cannot be migrated
1690 * elsewhere, so there is no point in (re)trying.
1692 if (unlikely(!sd
)) {
1693 p
->numa_preferred_nid
= task_node(p
);
1697 env
.dst_nid
= p
->numa_preferred_nid
;
1698 dist
= env
.dist
= node_distance(env
.src_nid
, env
.dst_nid
);
1699 taskweight
= task_weight(p
, env
.src_nid
, dist
);
1700 groupweight
= group_weight(p
, env
.src_nid
, dist
);
1701 update_numa_stats(&env
.src_stats
, env
.src_nid
);
1702 taskimp
= task_weight(p
, env
.dst_nid
, dist
) - taskweight
;
1703 groupimp
= group_weight(p
, env
.dst_nid
, dist
) - groupweight
;
1704 update_numa_stats(&env
.dst_stats
, env
.dst_nid
);
1706 /* Try to find a spot on the preferred nid. */
1707 if (numa_has_capacity(&env
))
1708 task_numa_find_cpu(&env
, taskimp
, groupimp
);
1711 * Look at other nodes in these cases:
1712 * - there is no space available on the preferred_nid
1713 * - the task is part of a numa_group that is interleaved across
1714 * multiple NUMA nodes; in order to better consolidate the group,
1715 * we need to check other locations.
1717 if (env
.best_cpu
== -1 || (p
->numa_group
&& p
->numa_group
->active_nodes
> 1)) {
1718 for_each_online_node(nid
) {
1719 if (nid
== env
.src_nid
|| nid
== p
->numa_preferred_nid
)
1722 dist
= node_distance(env
.src_nid
, env
.dst_nid
);
1723 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1725 taskweight
= task_weight(p
, env
.src_nid
, dist
);
1726 groupweight
= group_weight(p
, env
.src_nid
, dist
);
1729 /* Only consider nodes where both task and groups benefit */
1730 taskimp
= task_weight(p
, nid
, dist
) - taskweight
;
1731 groupimp
= group_weight(p
, nid
, dist
) - groupweight
;
1732 if (taskimp
< 0 && groupimp
< 0)
1737 update_numa_stats(&env
.dst_stats
, env
.dst_nid
);
1738 if (numa_has_capacity(&env
))
1739 task_numa_find_cpu(&env
, taskimp
, groupimp
);
1744 * If the task is part of a workload that spans multiple NUMA nodes,
1745 * and is migrating into one of the workload's active nodes, remember
1746 * this node as the task's preferred numa node, so the workload can
1748 * A task that migrated to a second choice node will be better off
1749 * trying for a better one later. Do not set the preferred node here.
1751 if (p
->numa_group
) {
1752 struct numa_group
*ng
= p
->numa_group
;
1754 if (env
.best_cpu
== -1)
1759 if (ng
->active_nodes
> 1 && numa_is_active_node(env
.dst_nid
, ng
))
1760 sched_setnuma(p
, env
.dst_nid
);
1763 /* No better CPU than the current one was found. */
1764 if (env
.best_cpu
== -1)
1768 * Reset the scan period if the task is being rescheduled on an
1769 * alternative node to recheck if the tasks is now properly placed.
1771 p
->numa_scan_period
= task_scan_min(p
);
1773 if (env
.best_task
== NULL
) {
1774 ret
= migrate_task_to(p
, env
.best_cpu
);
1776 trace_sched_stick_numa(p
, env
.src_cpu
, env
.best_cpu
);
1780 ret
= migrate_swap(p
, env
.best_task
);
1782 trace_sched_stick_numa(p
, env
.src_cpu
, task_cpu(env
.best_task
));
1783 put_task_struct(env
.best_task
);
1787 /* Attempt to migrate a task to a CPU on the preferred node. */
1788 static void numa_migrate_preferred(struct task_struct
*p
)
1790 unsigned long interval
= HZ
;
1792 /* This task has no NUMA fault statistics yet */
1793 if (unlikely(p
->numa_preferred_nid
== -1 || !p
->numa_faults
))
1796 /* Periodically retry migrating the task to the preferred node */
1797 interval
= min(interval
, msecs_to_jiffies(p
->numa_scan_period
) / 16);
1798 p
->numa_migrate_retry
= jiffies
+ interval
;
1800 /* Success if task is already running on preferred CPU */
1801 if (task_node(p
) == p
->numa_preferred_nid
)
1804 /* Otherwise, try migrate to a CPU on the preferred node */
1805 task_numa_migrate(p
);
1809 * Find out how many nodes on the workload is actively running on. Do this by
1810 * tracking the nodes from which NUMA hinting faults are triggered. This can
1811 * be different from the set of nodes where the workload's memory is currently
1814 static void numa_group_count_active_nodes(struct numa_group
*numa_group
)
1816 unsigned long faults
, max_faults
= 0;
1817 int nid
, active_nodes
= 0;
1819 for_each_online_node(nid
) {
1820 faults
= group_faults_cpu(numa_group
, nid
);
1821 if (faults
> max_faults
)
1822 max_faults
= faults
;
1825 for_each_online_node(nid
) {
1826 faults
= group_faults_cpu(numa_group
, nid
);
1827 if (faults
* ACTIVE_NODE_FRACTION
> max_faults
)
1831 numa_group
->max_faults_cpu
= max_faults
;
1832 numa_group
->active_nodes
= active_nodes
;
1836 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1837 * increments. The more local the fault statistics are, the higher the scan
1838 * period will be for the next scan window. If local/(local+remote) ratio is
1839 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1840 * the scan period will decrease. Aim for 70% local accesses.
1842 #define NUMA_PERIOD_SLOTS 10
1843 #define NUMA_PERIOD_THRESHOLD 7
1846 * Increase the scan period (slow down scanning) if the majority of
1847 * our memory is already on our local node, or if the majority of
1848 * the page accesses are shared with other processes.
1849 * Otherwise, decrease the scan period.
1851 static void update_task_scan_period(struct task_struct
*p
,
1852 unsigned long shared
, unsigned long private)
1854 unsigned int period_slot
;
1858 unsigned long remote
= p
->numa_faults_locality
[0];
1859 unsigned long local
= p
->numa_faults_locality
[1];
1862 * If there were no record hinting faults then either the task is
1863 * completely idle or all activity is areas that are not of interest
1864 * to automatic numa balancing. Related to that, if there were failed
1865 * migration then it implies we are migrating too quickly or the local
1866 * node is overloaded. In either case, scan slower
1868 if (local
+ shared
== 0 || p
->numa_faults_locality
[2]) {
1869 p
->numa_scan_period
= min(p
->numa_scan_period_max
,
1870 p
->numa_scan_period
<< 1);
1872 p
->mm
->numa_next_scan
= jiffies
+
1873 msecs_to_jiffies(p
->numa_scan_period
);
1879 * Prepare to scale scan period relative to the current period.
1880 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1881 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1882 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1884 period_slot
= DIV_ROUND_UP(p
->numa_scan_period
, NUMA_PERIOD_SLOTS
);
1885 ratio
= (local
* NUMA_PERIOD_SLOTS
) / (local
+ remote
);
1886 if (ratio
>= NUMA_PERIOD_THRESHOLD
) {
1887 int slot
= ratio
- NUMA_PERIOD_THRESHOLD
;
1890 diff
= slot
* period_slot
;
1892 diff
= -(NUMA_PERIOD_THRESHOLD
- ratio
) * period_slot
;
1895 * Scale scan rate increases based on sharing. There is an
1896 * inverse relationship between the degree of sharing and
1897 * the adjustment made to the scanning period. Broadly
1898 * speaking the intent is that there is little point
1899 * scanning faster if shared accesses dominate as it may
1900 * simply bounce migrations uselessly
1902 ratio
= DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS
, (private + shared
+ 1));
1903 diff
= (diff
* ratio
) / NUMA_PERIOD_SLOTS
;
1906 p
->numa_scan_period
= clamp(p
->numa_scan_period
+ diff
,
1907 task_scan_min(p
), task_scan_max(p
));
1908 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
1912 * Get the fraction of time the task has been running since the last
1913 * NUMA placement cycle. The scheduler keeps similar statistics, but
1914 * decays those on a 32ms period, which is orders of magnitude off
1915 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1916 * stats only if the task is so new there are no NUMA statistics yet.
1918 static u64
numa_get_avg_runtime(struct task_struct
*p
, u64
*period
)
1920 u64 runtime
, delta
, now
;
1921 /* Use the start of this time slice to avoid calculations. */
1922 now
= p
->se
.exec_start
;
1923 runtime
= p
->se
.sum_exec_runtime
;
1925 if (p
->last_task_numa_placement
) {
1926 delta
= runtime
- p
->last_sum_exec_runtime
;
1927 *period
= now
- p
->last_task_numa_placement
;
1929 delta
= p
->se
.avg
.load_sum
/ p
->se
.load
.weight
;
1930 *period
= LOAD_AVG_MAX
;
1933 p
->last_sum_exec_runtime
= runtime
;
1934 p
->last_task_numa_placement
= now
;
1940 * Determine the preferred nid for a task in a numa_group. This needs to
1941 * be done in a way that produces consistent results with group_weight,
1942 * otherwise workloads might not converge.
1944 static int preferred_group_nid(struct task_struct
*p
, int nid
)
1949 /* Direct connections between all NUMA nodes. */
1950 if (sched_numa_topology_type
== NUMA_DIRECT
)
1954 * On a system with glueless mesh NUMA topology, group_weight
1955 * scores nodes according to the number of NUMA hinting faults on
1956 * both the node itself, and on nearby nodes.
1958 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
1959 unsigned long score
, max_score
= 0;
1960 int node
, max_node
= nid
;
1962 dist
= sched_max_numa_distance
;
1964 for_each_online_node(node
) {
1965 score
= group_weight(p
, node
, dist
);
1966 if (score
> max_score
) {
1975 * Finding the preferred nid in a system with NUMA backplane
1976 * interconnect topology is more involved. The goal is to locate
1977 * tasks from numa_groups near each other in the system, and
1978 * untangle workloads from different sides of the system. This requires
1979 * searching down the hierarchy of node groups, recursively searching
1980 * inside the highest scoring group of nodes. The nodemask tricks
1981 * keep the complexity of the search down.
1983 nodes
= node_online_map
;
1984 for (dist
= sched_max_numa_distance
; dist
> LOCAL_DISTANCE
; dist
--) {
1985 unsigned long max_faults
= 0;
1986 nodemask_t max_group
= NODE_MASK_NONE
;
1989 /* Are there nodes at this distance from each other? */
1990 if (!find_numa_distance(dist
))
1993 for_each_node_mask(a
, nodes
) {
1994 unsigned long faults
= 0;
1995 nodemask_t this_group
;
1996 nodes_clear(this_group
);
1998 /* Sum group's NUMA faults; includes a==b case. */
1999 for_each_node_mask(b
, nodes
) {
2000 if (node_distance(a
, b
) < dist
) {
2001 faults
+= group_faults(p
, b
);
2002 node_set(b
, this_group
);
2003 node_clear(b
, nodes
);
2007 /* Remember the top group. */
2008 if (faults
> max_faults
) {
2009 max_faults
= faults
;
2010 max_group
= this_group
;
2012 * subtle: at the smallest distance there is
2013 * just one node left in each "group", the
2014 * winner is the preferred nid.
2019 /* Next round, evaluate the nodes within max_group. */
2027 static void task_numa_placement(struct task_struct
*p
)
2029 int seq
, nid
, max_nid
= -1, max_group_nid
= -1;
2030 unsigned long max_faults
= 0, max_group_faults
= 0;
2031 unsigned long fault_types
[2] = { 0, 0 };
2032 unsigned long total_faults
;
2033 u64 runtime
, period
;
2034 spinlock_t
*group_lock
= NULL
;
2037 * The p->mm->numa_scan_seq field gets updated without
2038 * exclusive access. Use READ_ONCE() here to ensure
2039 * that the field is read in a single access:
2041 seq
= READ_ONCE(p
->mm
->numa_scan_seq
);
2042 if (p
->numa_scan_seq
== seq
)
2044 p
->numa_scan_seq
= seq
;
2045 p
->numa_scan_period_max
= task_scan_max(p
);
2047 total_faults
= p
->numa_faults_locality
[0] +
2048 p
->numa_faults_locality
[1];
2049 runtime
= numa_get_avg_runtime(p
, &period
);
2051 /* If the task is part of a group prevent parallel updates to group stats */
2052 if (p
->numa_group
) {
2053 group_lock
= &p
->numa_group
->lock
;
2054 spin_lock_irq(group_lock
);
2057 /* Find the node with the highest number of faults */
2058 for_each_online_node(nid
) {
2059 /* Keep track of the offsets in numa_faults array */
2060 int mem_idx
, membuf_idx
, cpu_idx
, cpubuf_idx
;
2061 unsigned long faults
= 0, group_faults
= 0;
2064 for (priv
= 0; priv
< NR_NUMA_HINT_FAULT_TYPES
; priv
++) {
2065 long diff
, f_diff
, f_weight
;
2067 mem_idx
= task_faults_idx(NUMA_MEM
, nid
, priv
);
2068 membuf_idx
= task_faults_idx(NUMA_MEMBUF
, nid
, priv
);
2069 cpu_idx
= task_faults_idx(NUMA_CPU
, nid
, priv
);
2070 cpubuf_idx
= task_faults_idx(NUMA_CPUBUF
, nid
, priv
);
2072 /* Decay existing window, copy faults since last scan */
2073 diff
= p
->numa_faults
[membuf_idx
] - p
->numa_faults
[mem_idx
] / 2;
2074 fault_types
[priv
] += p
->numa_faults
[membuf_idx
];
2075 p
->numa_faults
[membuf_idx
] = 0;
2078 * Normalize the faults_from, so all tasks in a group
2079 * count according to CPU use, instead of by the raw
2080 * number of faults. Tasks with little runtime have
2081 * little over-all impact on throughput, and thus their
2082 * faults are less important.
2084 f_weight
= div64_u64(runtime
<< 16, period
+ 1);
2085 f_weight
= (f_weight
* p
->numa_faults
[cpubuf_idx
]) /
2087 f_diff
= f_weight
- p
->numa_faults
[cpu_idx
] / 2;
2088 p
->numa_faults
[cpubuf_idx
] = 0;
2090 p
->numa_faults
[mem_idx
] += diff
;
2091 p
->numa_faults
[cpu_idx
] += f_diff
;
2092 faults
+= p
->numa_faults
[mem_idx
];
2093 p
->total_numa_faults
+= diff
;
2094 if (p
->numa_group
) {
2096 * safe because we can only change our own group
2098 * mem_idx represents the offset for a given
2099 * nid and priv in a specific region because it
2100 * is at the beginning of the numa_faults array.
2102 p
->numa_group
->faults
[mem_idx
] += diff
;
2103 p
->numa_group
->faults_cpu
[mem_idx
] += f_diff
;
2104 p
->numa_group
->total_faults
+= diff
;
2105 group_faults
+= p
->numa_group
->faults
[mem_idx
];
2109 if (faults
> max_faults
) {
2110 max_faults
= faults
;
2114 if (group_faults
> max_group_faults
) {
2115 max_group_faults
= group_faults
;
2116 max_group_nid
= nid
;
2120 update_task_scan_period(p
, fault_types
[0], fault_types
[1]);
2122 if (p
->numa_group
) {
2123 numa_group_count_active_nodes(p
->numa_group
);
2124 spin_unlock_irq(group_lock
);
2125 max_nid
= preferred_group_nid(p
, max_group_nid
);
2129 /* Set the new preferred node */
2130 if (max_nid
!= p
->numa_preferred_nid
)
2131 sched_setnuma(p
, max_nid
);
2133 if (task_node(p
) != p
->numa_preferred_nid
)
2134 numa_migrate_preferred(p
);
2138 static inline int get_numa_group(struct numa_group
*grp
)
2140 return atomic_inc_not_zero(&grp
->refcount
);
2143 static inline void put_numa_group(struct numa_group
*grp
)
2145 if (atomic_dec_and_test(&grp
->refcount
))
2146 kfree_rcu(grp
, rcu
);
2149 static void task_numa_group(struct task_struct
*p
, int cpupid
, int flags
,
2152 struct numa_group
*grp
, *my_grp
;
2153 struct task_struct
*tsk
;
2155 int cpu
= cpupid_to_cpu(cpupid
);
2158 if (unlikely(!p
->numa_group
)) {
2159 unsigned int size
= sizeof(struct numa_group
) +
2160 4*nr_node_ids
*sizeof(unsigned long);
2162 grp
= kzalloc(size
, GFP_KERNEL
| __GFP_NOWARN
);
2166 atomic_set(&grp
->refcount
, 1);
2167 grp
->active_nodes
= 1;
2168 grp
->max_faults_cpu
= 0;
2169 spin_lock_init(&grp
->lock
);
2171 /* Second half of the array tracks nids where faults happen */
2172 grp
->faults_cpu
= grp
->faults
+ NR_NUMA_HINT_FAULT_TYPES
*
2175 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2176 grp
->faults
[i
] = p
->numa_faults
[i
];
2178 grp
->total_faults
= p
->total_numa_faults
;
2181 rcu_assign_pointer(p
->numa_group
, grp
);
2185 tsk
= READ_ONCE(cpu_rq(cpu
)->curr
);
2187 if (!cpupid_match_pid(tsk
, cpupid
))
2190 grp
= rcu_dereference(tsk
->numa_group
);
2194 my_grp
= p
->numa_group
;
2199 * Only join the other group if its bigger; if we're the bigger group,
2200 * the other task will join us.
2202 if (my_grp
->nr_tasks
> grp
->nr_tasks
)
2206 * Tie-break on the grp address.
2208 if (my_grp
->nr_tasks
== grp
->nr_tasks
&& my_grp
> grp
)
2211 /* Always join threads in the same process. */
2212 if (tsk
->mm
== current
->mm
)
2215 /* Simple filter to avoid false positives due to PID collisions */
2216 if (flags
& TNF_SHARED
)
2219 /* Update priv based on whether false sharing was detected */
2222 if (join
&& !get_numa_group(grp
))
2230 BUG_ON(irqs_disabled());
2231 double_lock_irq(&my_grp
->lock
, &grp
->lock
);
2233 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++) {
2234 my_grp
->faults
[i
] -= p
->numa_faults
[i
];
2235 grp
->faults
[i
] += p
->numa_faults
[i
];
2237 my_grp
->total_faults
-= p
->total_numa_faults
;
2238 grp
->total_faults
+= p
->total_numa_faults
;
2243 spin_unlock(&my_grp
->lock
);
2244 spin_unlock_irq(&grp
->lock
);
2246 rcu_assign_pointer(p
->numa_group
, grp
);
2248 put_numa_group(my_grp
);
2256 void task_numa_free(struct task_struct
*p
)
2258 struct numa_group
*grp
= p
->numa_group
;
2259 void *numa_faults
= p
->numa_faults
;
2260 unsigned long flags
;
2264 spin_lock_irqsave(&grp
->lock
, flags
);
2265 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2266 grp
->faults
[i
] -= p
->numa_faults
[i
];
2267 grp
->total_faults
-= p
->total_numa_faults
;
2270 spin_unlock_irqrestore(&grp
->lock
, flags
);
2271 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2272 put_numa_group(grp
);
2275 p
->numa_faults
= NULL
;
2280 * Got a PROT_NONE fault for a page on @node.
2282 void task_numa_fault(int last_cpupid
, int mem_node
, int pages
, int flags
)
2284 struct task_struct
*p
= current
;
2285 bool migrated
= flags
& TNF_MIGRATED
;
2286 int cpu_node
= task_node(current
);
2287 int local
= !!(flags
& TNF_FAULT_LOCAL
);
2288 struct numa_group
*ng
;
2291 if (!static_branch_likely(&sched_numa_balancing
))
2294 /* for example, ksmd faulting in a user's mm */
2298 /* Allocate buffer to track faults on a per-node basis */
2299 if (unlikely(!p
->numa_faults
)) {
2300 int size
= sizeof(*p
->numa_faults
) *
2301 NR_NUMA_HINT_FAULT_BUCKETS
* nr_node_ids
;
2303 p
->numa_faults
= kzalloc(size
, GFP_KERNEL
|__GFP_NOWARN
);
2304 if (!p
->numa_faults
)
2307 p
->total_numa_faults
= 0;
2308 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2312 * First accesses are treated as private, otherwise consider accesses
2313 * to be private if the accessing pid has not changed
2315 if (unlikely(last_cpupid
== (-1 & LAST_CPUPID_MASK
))) {
2318 priv
= cpupid_match_pid(p
, last_cpupid
);
2319 if (!priv
&& !(flags
& TNF_NO_GROUP
))
2320 task_numa_group(p
, last_cpupid
, flags
, &priv
);
2324 * If a workload spans multiple NUMA nodes, a shared fault that
2325 * occurs wholly within the set of nodes that the workload is
2326 * actively using should be counted as local. This allows the
2327 * scan rate to slow down when a workload has settled down.
2330 if (!priv
&& !local
&& ng
&& ng
->active_nodes
> 1 &&
2331 numa_is_active_node(cpu_node
, ng
) &&
2332 numa_is_active_node(mem_node
, ng
))
2335 task_numa_placement(p
);
2338 * Retry task to preferred node migration periodically, in case it
2339 * case it previously failed, or the scheduler moved us.
2341 if (time_after(jiffies
, p
->numa_migrate_retry
))
2342 numa_migrate_preferred(p
);
2345 p
->numa_pages_migrated
+= pages
;
2346 if (flags
& TNF_MIGRATE_FAIL
)
2347 p
->numa_faults_locality
[2] += pages
;
2349 p
->numa_faults
[task_faults_idx(NUMA_MEMBUF
, mem_node
, priv
)] += pages
;
2350 p
->numa_faults
[task_faults_idx(NUMA_CPUBUF
, cpu_node
, priv
)] += pages
;
2351 p
->numa_faults_locality
[local
] += pages
;
2354 static void reset_ptenuma_scan(struct task_struct
*p
)
2357 * We only did a read acquisition of the mmap sem, so
2358 * p->mm->numa_scan_seq is written to without exclusive access
2359 * and the update is not guaranteed to be atomic. That's not
2360 * much of an issue though, since this is just used for
2361 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2362 * expensive, to avoid any form of compiler optimizations:
2364 WRITE_ONCE(p
->mm
->numa_scan_seq
, READ_ONCE(p
->mm
->numa_scan_seq
) + 1);
2365 p
->mm
->numa_scan_offset
= 0;
2369 * The expensive part of numa migration is done from task_work context.
2370 * Triggered from task_tick_numa().
2372 void task_numa_work(struct callback_head
*work
)
2374 unsigned long migrate
, next_scan
, now
= jiffies
;
2375 struct task_struct
*p
= current
;
2376 struct mm_struct
*mm
= p
->mm
;
2377 u64 runtime
= p
->se
.sum_exec_runtime
;
2378 struct vm_area_struct
*vma
;
2379 unsigned long start
, end
;
2380 unsigned long nr_pte_updates
= 0;
2381 long pages
, virtpages
;
2383 SCHED_WARN_ON(p
!= container_of(work
, struct task_struct
, numa_work
));
2385 work
->next
= work
; /* protect against double add */
2387 * Who cares about NUMA placement when they're dying.
2389 * NOTE: make sure not to dereference p->mm before this check,
2390 * exit_task_work() happens _after_ exit_mm() so we could be called
2391 * without p->mm even though we still had it when we enqueued this
2394 if (p
->flags
& PF_EXITING
)
2397 if (!mm
->numa_next_scan
) {
2398 mm
->numa_next_scan
= now
+
2399 msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2403 * Enforce maximal scan/migration frequency..
2405 migrate
= mm
->numa_next_scan
;
2406 if (time_before(now
, migrate
))
2409 if (p
->numa_scan_period
== 0) {
2410 p
->numa_scan_period_max
= task_scan_max(p
);
2411 p
->numa_scan_period
= task_scan_min(p
);
2414 next_scan
= now
+ msecs_to_jiffies(p
->numa_scan_period
);
2415 if (cmpxchg(&mm
->numa_next_scan
, migrate
, next_scan
) != migrate
)
2419 * Delay this task enough that another task of this mm will likely win
2420 * the next time around.
2422 p
->node_stamp
+= 2 * TICK_NSEC
;
2424 start
= mm
->numa_scan_offset
;
2425 pages
= sysctl_numa_balancing_scan_size
;
2426 pages
<<= 20 - PAGE_SHIFT
; /* MB in pages */
2427 virtpages
= pages
* 8; /* Scan up to this much virtual space */
2432 if (!down_read_trylock(&mm
->mmap_sem
))
2434 vma
= find_vma(mm
, start
);
2436 reset_ptenuma_scan(p
);
2440 for (; vma
; vma
= vma
->vm_next
) {
2441 if (!vma_migratable(vma
) || !vma_policy_mof(vma
) ||
2442 is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_MIXEDMAP
)) {
2447 * Shared library pages mapped by multiple processes are not
2448 * migrated as it is expected they are cache replicated. Avoid
2449 * hinting faults in read-only file-backed mappings or the vdso
2450 * as migrating the pages will be of marginal benefit.
2453 (vma
->vm_file
&& (vma
->vm_flags
& (VM_READ
|VM_WRITE
)) == (VM_READ
)))
2457 * Skip inaccessible VMAs to avoid any confusion between
2458 * PROT_NONE and NUMA hinting ptes
2460 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
2464 start
= max(start
, vma
->vm_start
);
2465 end
= ALIGN(start
+ (pages
<< PAGE_SHIFT
), HPAGE_SIZE
);
2466 end
= min(end
, vma
->vm_end
);
2467 nr_pte_updates
= change_prot_numa(vma
, start
, end
);
2470 * Try to scan sysctl_numa_balancing_size worth of
2471 * hpages that have at least one present PTE that
2472 * is not already pte-numa. If the VMA contains
2473 * areas that are unused or already full of prot_numa
2474 * PTEs, scan up to virtpages, to skip through those
2478 pages
-= (end
- start
) >> PAGE_SHIFT
;
2479 virtpages
-= (end
- start
) >> PAGE_SHIFT
;
2482 if (pages
<= 0 || virtpages
<= 0)
2486 } while (end
!= vma
->vm_end
);
2491 * It is possible to reach the end of the VMA list but the last few
2492 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2493 * would find the !migratable VMA on the next scan but not reset the
2494 * scanner to the start so check it now.
2497 mm
->numa_scan_offset
= start
;
2499 reset_ptenuma_scan(p
);
2500 up_read(&mm
->mmap_sem
);
2503 * Make sure tasks use at least 32x as much time to run other code
2504 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2505 * Usually update_task_scan_period slows down scanning enough; on an
2506 * overloaded system we need to limit overhead on a per task basis.
2508 if (unlikely(p
->se
.sum_exec_runtime
!= runtime
)) {
2509 u64 diff
= p
->se
.sum_exec_runtime
- runtime
;
2510 p
->node_stamp
+= 32 * diff
;
2515 * Drive the periodic memory faults..
2517 void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2519 struct callback_head
*work
= &curr
->numa_work
;
2523 * We don't care about NUMA placement if we don't have memory.
2525 if (!curr
->mm
|| (curr
->flags
& PF_EXITING
) || work
->next
!= work
)
2529 * Using runtime rather than walltime has the dual advantage that
2530 * we (mostly) drive the selection from busy threads and that the
2531 * task needs to have done some actual work before we bother with
2534 now
= curr
->se
.sum_exec_runtime
;
2535 period
= (u64
)curr
->numa_scan_period
* NSEC_PER_MSEC
;
2537 if (now
> curr
->node_stamp
+ period
) {
2538 if (!curr
->node_stamp
)
2539 curr
->numa_scan_period
= task_scan_min(curr
);
2540 curr
->node_stamp
+= period
;
2542 if (!time_before(jiffies
, curr
->mm
->numa_next_scan
)) {
2543 init_task_work(work
, task_numa_work
); /* TODO: move this into sched_fork() */
2544 task_work_add(curr
, work
, true);
2549 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2553 static inline void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
2557 static inline void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
2560 #endif /* CONFIG_NUMA_BALANCING */
2563 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2565 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
2566 if (!parent_entity(se
))
2567 update_load_add(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
2569 if (entity_is_task(se
)) {
2570 struct rq
*rq
= rq_of(cfs_rq
);
2572 account_numa_enqueue(rq
, task_of(se
));
2573 list_add(&se
->group_node
, &rq
->cfs_tasks
);
2576 cfs_rq
->nr_running
++;
2580 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2582 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
2583 if (!parent_entity(se
))
2584 update_load_sub(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
2586 if (entity_is_task(se
)) {
2587 account_numa_dequeue(rq_of(cfs_rq
), task_of(se
));
2588 list_del_init(&se
->group_node
);
2591 cfs_rq
->nr_running
--;
2594 #ifdef CONFIG_FAIR_GROUP_SCHED
2596 static long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
2598 long tg_weight
, load
, shares
;
2601 * This really should be: cfs_rq->avg.load_avg, but instead we use
2602 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2603 * the shares for small weight interactive tasks.
2605 load
= scale_load_down(cfs_rq
->load
.weight
);
2607 tg_weight
= atomic_long_read(&tg
->load_avg
);
2609 /* Ensure tg_weight >= load */
2610 tg_weight
-= cfs_rq
->tg_load_avg_contrib
;
2613 shares
= (tg
->shares
* load
);
2615 shares
/= tg_weight
;
2617 if (shares
< MIN_SHARES
)
2618 shares
= MIN_SHARES
;
2619 if (shares
> tg
->shares
)
2620 shares
= tg
->shares
;
2624 # else /* CONFIG_SMP */
2625 static inline long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
2629 # endif /* CONFIG_SMP */
2631 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
2632 unsigned long weight
)
2635 /* commit outstanding execution time */
2636 if (cfs_rq
->curr
== se
)
2637 update_curr(cfs_rq
);
2638 account_entity_dequeue(cfs_rq
, se
);
2641 update_load_set(&se
->load
, weight
);
2644 account_entity_enqueue(cfs_rq
, se
);
2647 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
2649 static void update_cfs_shares(struct cfs_rq
*cfs_rq
)
2651 struct task_group
*tg
;
2652 struct sched_entity
*se
;
2656 se
= tg
->se
[cpu_of(rq_of(cfs_rq
))];
2657 if (!se
|| throttled_hierarchy(cfs_rq
))
2660 if (likely(se
->load
.weight
== tg
->shares
))
2663 shares
= calc_cfs_shares(cfs_rq
, tg
);
2665 reweight_entity(cfs_rq_of(se
), se
, shares
);
2667 #else /* CONFIG_FAIR_GROUP_SCHED */
2668 static inline void update_cfs_shares(struct cfs_rq
*cfs_rq
)
2671 #endif /* CONFIG_FAIR_GROUP_SCHED */
2674 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2675 static const u32 runnable_avg_yN_inv
[] = {
2676 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2677 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2678 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2679 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2680 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2681 0x85aac367, 0x82cd8698,
2685 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2686 * over-estimates when re-combining.
2688 static const u32 runnable_avg_yN_sum
[] = {
2689 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2690 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2691 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2695 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2696 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2699 static const u32 __accumulated_sum_N32
[] = {
2700 0, 23371, 35056, 40899, 43820, 45281,
2701 46011, 46376, 46559, 46650, 46696, 46719,
2706 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2708 static __always_inline u64
decay_load(u64 val
, u64 n
)
2710 unsigned int local_n
;
2714 else if (unlikely(n
> LOAD_AVG_PERIOD
* 63))
2717 /* after bounds checking we can collapse to 32-bit */
2721 * As y^PERIOD = 1/2, we can combine
2722 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2723 * With a look-up table which covers y^n (n<PERIOD)
2725 * To achieve constant time decay_load.
2727 if (unlikely(local_n
>= LOAD_AVG_PERIOD
)) {
2728 val
>>= local_n
/ LOAD_AVG_PERIOD
;
2729 local_n
%= LOAD_AVG_PERIOD
;
2732 val
= mul_u64_u32_shr(val
, runnable_avg_yN_inv
[local_n
], 32);
2737 * For updates fully spanning n periods, the contribution to runnable
2738 * average will be: \Sum 1024*y^n
2740 * We can compute this reasonably efficiently by combining:
2741 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2743 static u32
__compute_runnable_contrib(u64 n
)
2747 if (likely(n
<= LOAD_AVG_PERIOD
))
2748 return runnable_avg_yN_sum
[n
];
2749 else if (unlikely(n
>= LOAD_AVG_MAX_N
))
2750 return LOAD_AVG_MAX
;
2752 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2753 contrib
= __accumulated_sum_N32
[n
/LOAD_AVG_PERIOD
];
2754 n
%= LOAD_AVG_PERIOD
;
2755 contrib
= decay_load(contrib
, n
);
2756 return contrib
+ runnable_avg_yN_sum
[n
];
2759 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2762 * We can represent the historical contribution to runnable average as the
2763 * coefficients of a geometric series. To do this we sub-divide our runnable
2764 * history into segments of approximately 1ms (1024us); label the segment that
2765 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2767 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2769 * (now) (~1ms ago) (~2ms ago)
2771 * Let u_i denote the fraction of p_i that the entity was runnable.
2773 * We then designate the fractions u_i as our co-efficients, yielding the
2774 * following representation of historical load:
2775 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2777 * We choose y based on the with of a reasonably scheduling period, fixing:
2780 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2781 * approximately half as much as the contribution to load within the last ms
2784 * When a period "rolls over" and we have new u_0`, multiplying the previous
2785 * sum again by y is sufficient to update:
2786 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2787 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2789 static __always_inline
int
2790 __update_load_avg(u64 now
, int cpu
, struct sched_avg
*sa
,
2791 unsigned long weight
, int running
, struct cfs_rq
*cfs_rq
)
2793 u64 delta
, scaled_delta
, periods
;
2795 unsigned int delta_w
, scaled_delta_w
, decayed
= 0;
2796 unsigned long scale_freq
, scale_cpu
;
2798 delta
= now
- sa
->last_update_time
;
2800 * This should only happen when time goes backwards, which it
2801 * unfortunately does during sched clock init when we swap over to TSC.
2803 if ((s64
)delta
< 0) {
2804 sa
->last_update_time
= now
;
2809 * Use 1024ns as the unit of measurement since it's a reasonable
2810 * approximation of 1us and fast to compute.
2815 sa
->last_update_time
= now
;
2817 scale_freq
= arch_scale_freq_capacity(NULL
, cpu
);
2818 scale_cpu
= arch_scale_cpu_capacity(NULL
, cpu
);
2820 /* delta_w is the amount already accumulated against our next period */
2821 delta_w
= sa
->period_contrib
;
2822 if (delta
+ delta_w
>= 1024) {
2825 /* how much left for next period will start over, we don't know yet */
2826 sa
->period_contrib
= 0;
2829 * Now that we know we're crossing a period boundary, figure
2830 * out how much from delta we need to complete the current
2831 * period and accrue it.
2833 delta_w
= 1024 - delta_w
;
2834 scaled_delta_w
= cap_scale(delta_w
, scale_freq
);
2836 sa
->load_sum
+= weight
* scaled_delta_w
;
2838 cfs_rq
->runnable_load_sum
+=
2839 weight
* scaled_delta_w
;
2843 sa
->util_sum
+= scaled_delta_w
* scale_cpu
;
2847 /* Figure out how many additional periods this update spans */
2848 periods
= delta
/ 1024;
2851 sa
->load_sum
= decay_load(sa
->load_sum
, periods
+ 1);
2853 cfs_rq
->runnable_load_sum
=
2854 decay_load(cfs_rq
->runnable_load_sum
, periods
+ 1);
2856 sa
->util_sum
= decay_load((u64
)(sa
->util_sum
), periods
+ 1);
2858 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2859 contrib
= __compute_runnable_contrib(periods
);
2860 contrib
= cap_scale(contrib
, scale_freq
);
2862 sa
->load_sum
+= weight
* contrib
;
2864 cfs_rq
->runnable_load_sum
+= weight
* contrib
;
2867 sa
->util_sum
+= contrib
* scale_cpu
;
2870 /* Remainder of delta accrued against u_0` */
2871 scaled_delta
= cap_scale(delta
, scale_freq
);
2873 sa
->load_sum
+= weight
* scaled_delta
;
2875 cfs_rq
->runnable_load_sum
+= weight
* scaled_delta
;
2878 sa
->util_sum
+= scaled_delta
* scale_cpu
;
2880 sa
->period_contrib
+= delta
;
2883 sa
->load_avg
= div_u64(sa
->load_sum
, LOAD_AVG_MAX
);
2885 cfs_rq
->runnable_load_avg
=
2886 div_u64(cfs_rq
->runnable_load_sum
, LOAD_AVG_MAX
);
2888 sa
->util_avg
= sa
->util_sum
/ LOAD_AVG_MAX
;
2894 #ifdef CONFIG_FAIR_GROUP_SCHED
2896 * update_tg_load_avg - update the tg's load avg
2897 * @cfs_rq: the cfs_rq whose avg changed
2898 * @force: update regardless of how small the difference
2900 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2901 * However, because tg->load_avg is a global value there are performance
2904 * In order to avoid having to look at the other cfs_rq's, we use a
2905 * differential update where we store the last value we propagated. This in
2906 * turn allows skipping updates if the differential is 'small'.
2908 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2909 * done) and effective_load() (which is not done because it is too costly).
2911 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
2913 long delta
= cfs_rq
->avg
.load_avg
- cfs_rq
->tg_load_avg_contrib
;
2916 * No need to update load_avg for root_task_group as it is not used.
2918 if (cfs_rq
->tg
== &root_task_group
)
2921 if (force
|| abs(delta
) > cfs_rq
->tg_load_avg_contrib
/ 64) {
2922 atomic_long_add(delta
, &cfs_rq
->tg
->load_avg
);
2923 cfs_rq
->tg_load_avg_contrib
= cfs_rq
->avg
.load_avg
;
2928 * Called within set_task_rq() right before setting a task's cpu. The
2929 * caller only guarantees p->pi_lock is held; no other assumptions,
2930 * including the state of rq->lock, should be made.
2932 void set_task_rq_fair(struct sched_entity
*se
,
2933 struct cfs_rq
*prev
, struct cfs_rq
*next
)
2935 if (!sched_feat(ATTACH_AGE_LOAD
))
2939 * We are supposed to update the task to "current" time, then its up to
2940 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2941 * getting what current time is, so simply throw away the out-of-date
2942 * time. This will result in the wakee task is less decayed, but giving
2943 * the wakee more load sounds not bad.
2945 if (se
->avg
.last_update_time
&& prev
) {
2946 u64 p_last_update_time
;
2947 u64 n_last_update_time
;
2949 #ifndef CONFIG_64BIT
2950 u64 p_last_update_time_copy
;
2951 u64 n_last_update_time_copy
;
2954 p_last_update_time_copy
= prev
->load_last_update_time_copy
;
2955 n_last_update_time_copy
= next
->load_last_update_time_copy
;
2959 p_last_update_time
= prev
->avg
.last_update_time
;
2960 n_last_update_time
= next
->avg
.last_update_time
;
2962 } while (p_last_update_time
!= p_last_update_time_copy
||
2963 n_last_update_time
!= n_last_update_time_copy
);
2965 p_last_update_time
= prev
->avg
.last_update_time
;
2966 n_last_update_time
= next
->avg
.last_update_time
;
2968 __update_load_avg(p_last_update_time
, cpu_of(rq_of(prev
)),
2969 &se
->avg
, 0, 0, NULL
);
2970 se
->avg
.last_update_time
= n_last_update_time
;
2973 #else /* CONFIG_FAIR_GROUP_SCHED */
2974 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
) {}
2975 #endif /* CONFIG_FAIR_GROUP_SCHED */
2977 static inline void cfs_rq_util_change(struct cfs_rq
*cfs_rq
)
2979 if (&this_rq()->cfs
== cfs_rq
) {
2981 * There are a few boundary cases this might miss but it should
2982 * get called often enough that that should (hopefully) not be
2983 * a real problem -- added to that it only calls on the local
2984 * CPU, so if we enqueue remotely we'll miss an update, but
2985 * the next tick/schedule should update.
2987 * It will not get called when we go idle, because the idle
2988 * thread is a different class (!fair), nor will the utilization
2989 * number include things like RT tasks.
2991 * As is, the util number is not freq-invariant (we'd have to
2992 * implement arch_scale_freq_capacity() for that).
2996 cpufreq_update_util(rq_of(cfs_rq
), 0);
3001 * Unsigned subtract and clamp on underflow.
3003 * Explicitly do a load-store to ensure the intermediate value never hits
3004 * memory. This allows lockless observations without ever seeing the negative
3007 #define sub_positive(_ptr, _val) do { \
3008 typeof(_ptr) ptr = (_ptr); \
3009 typeof(*ptr) val = (_val); \
3010 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3014 WRITE_ONCE(*ptr, res); \
3018 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3019 * @now: current time, as per cfs_rq_clock_task()
3020 * @cfs_rq: cfs_rq to update
3021 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3023 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3024 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3025 * post_init_entity_util_avg().
3027 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3029 * Returns true if the load decayed or we removed load.
3031 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3032 * call update_tg_load_avg() when this function returns true.
3035 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
, bool update_freq
)
3037 struct sched_avg
*sa
= &cfs_rq
->avg
;
3038 int decayed
, removed_load
= 0, removed_util
= 0;
3040 if (atomic_long_read(&cfs_rq
->removed_load_avg
)) {
3041 s64 r
= atomic_long_xchg(&cfs_rq
->removed_load_avg
, 0);
3042 sub_positive(&sa
->load_avg
, r
);
3043 sub_positive(&sa
->load_sum
, r
* LOAD_AVG_MAX
);
3047 if (atomic_long_read(&cfs_rq
->removed_util_avg
)) {
3048 long r
= atomic_long_xchg(&cfs_rq
->removed_util_avg
, 0);
3049 sub_positive(&sa
->util_avg
, r
);
3050 sub_positive(&sa
->util_sum
, r
* LOAD_AVG_MAX
);
3054 decayed
= __update_load_avg(now
, cpu_of(rq_of(cfs_rq
)), sa
,
3055 scale_load_down(cfs_rq
->load
.weight
), cfs_rq
->curr
!= NULL
, cfs_rq
);
3057 #ifndef CONFIG_64BIT
3059 cfs_rq
->load_last_update_time_copy
= sa
->last_update_time
;
3062 if (update_freq
&& (decayed
|| removed_util
))
3063 cfs_rq_util_change(cfs_rq
);
3065 return decayed
|| removed_load
;
3068 /* Update task and its cfs_rq load average */
3069 static inline void update_load_avg(struct sched_entity
*se
, int update_tg
)
3071 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3072 u64 now
= cfs_rq_clock_task(cfs_rq
);
3073 struct rq
*rq
= rq_of(cfs_rq
);
3074 int cpu
= cpu_of(rq
);
3077 * Track task load average for carrying it to new CPU after migrated, and
3078 * track group sched_entity load average for task_h_load calc in migration
3080 __update_load_avg(now
, cpu
, &se
->avg
,
3081 se
->on_rq
* scale_load_down(se
->load
.weight
),
3082 cfs_rq
->curr
== se
, NULL
);
3084 if (update_cfs_rq_load_avg(now
, cfs_rq
, true) && update_tg
)
3085 update_tg_load_avg(cfs_rq
, 0);
3089 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3090 * @cfs_rq: cfs_rq to attach to
3091 * @se: sched_entity to attach
3093 * Must call update_cfs_rq_load_avg() before this, since we rely on
3094 * cfs_rq->avg.last_update_time being current.
3096 static void attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3098 if (!sched_feat(ATTACH_AGE_LOAD
))
3102 * If we got migrated (either between CPUs or between cgroups) we'll
3103 * have aged the average right before clearing @last_update_time.
3105 * Or we're fresh through post_init_entity_util_avg().
3107 if (se
->avg
.last_update_time
) {
3108 __update_load_avg(cfs_rq
->avg
.last_update_time
, cpu_of(rq_of(cfs_rq
)),
3109 &se
->avg
, 0, 0, NULL
);
3112 * XXX: we could have just aged the entire load away if we've been
3113 * absent from the fair class for too long.
3118 se
->avg
.last_update_time
= cfs_rq
->avg
.last_update_time
;
3119 cfs_rq
->avg
.load_avg
+= se
->avg
.load_avg
;
3120 cfs_rq
->avg
.load_sum
+= se
->avg
.load_sum
;
3121 cfs_rq
->avg
.util_avg
+= se
->avg
.util_avg
;
3122 cfs_rq
->avg
.util_sum
+= se
->avg
.util_sum
;
3124 cfs_rq_util_change(cfs_rq
);
3128 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3129 * @cfs_rq: cfs_rq to detach from
3130 * @se: sched_entity to detach
3132 * Must call update_cfs_rq_load_avg() before this, since we rely on
3133 * cfs_rq->avg.last_update_time being current.
3135 static void detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3137 __update_load_avg(cfs_rq
->avg
.last_update_time
, cpu_of(rq_of(cfs_rq
)),
3138 &se
->avg
, se
->on_rq
* scale_load_down(se
->load
.weight
),
3139 cfs_rq
->curr
== se
, NULL
);
3141 sub_positive(&cfs_rq
->avg
.load_avg
, se
->avg
.load_avg
);
3142 sub_positive(&cfs_rq
->avg
.load_sum
, se
->avg
.load_sum
);
3143 sub_positive(&cfs_rq
->avg
.util_avg
, se
->avg
.util_avg
);
3144 sub_positive(&cfs_rq
->avg
.util_sum
, se
->avg
.util_sum
);
3146 cfs_rq_util_change(cfs_rq
);
3149 /* Add the load generated by se into cfs_rq's load average */
3151 enqueue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3153 struct sched_avg
*sa
= &se
->avg
;
3154 u64 now
= cfs_rq_clock_task(cfs_rq
);
3155 int migrated
, decayed
;
3157 migrated
= !sa
->last_update_time
;
3159 __update_load_avg(now
, cpu_of(rq_of(cfs_rq
)), sa
,
3160 se
->on_rq
* scale_load_down(se
->load
.weight
),
3161 cfs_rq
->curr
== se
, NULL
);
3164 decayed
= update_cfs_rq_load_avg(now
, cfs_rq
, !migrated
);
3166 cfs_rq
->runnable_load_avg
+= sa
->load_avg
;
3167 cfs_rq
->runnable_load_sum
+= sa
->load_sum
;
3170 attach_entity_load_avg(cfs_rq
, se
);
3172 if (decayed
|| migrated
)
3173 update_tg_load_avg(cfs_rq
, 0);
3176 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3178 dequeue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3180 update_load_avg(se
, 1);
3182 cfs_rq
->runnable_load_avg
=
3183 max_t(long, cfs_rq
->runnable_load_avg
- se
->avg
.load_avg
, 0);
3184 cfs_rq
->runnable_load_sum
=
3185 max_t(s64
, cfs_rq
->runnable_load_sum
- se
->avg
.load_sum
, 0);
3188 #ifndef CONFIG_64BIT
3189 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3191 u64 last_update_time_copy
;
3192 u64 last_update_time
;
3195 last_update_time_copy
= cfs_rq
->load_last_update_time_copy
;
3197 last_update_time
= cfs_rq
->avg
.last_update_time
;
3198 } while (last_update_time
!= last_update_time_copy
);
3200 return last_update_time
;
3203 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3205 return cfs_rq
->avg
.last_update_time
;
3210 * Task first catches up with cfs_rq, and then subtract
3211 * itself from the cfs_rq (task must be off the queue now).
3213 void remove_entity_load_avg(struct sched_entity
*se
)
3215 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3216 u64 last_update_time
;
3219 * tasks cannot exit without having gone through wake_up_new_task() ->
3220 * post_init_entity_util_avg() which will have added things to the
3221 * cfs_rq, so we can remove unconditionally.
3223 * Similarly for groups, they will have passed through
3224 * post_init_entity_util_avg() before unregister_sched_fair_group()
3228 last_update_time
= cfs_rq_last_update_time(cfs_rq
);
3230 __update_load_avg(last_update_time
, cpu_of(rq_of(cfs_rq
)), &se
->avg
, 0, 0, NULL
);
3231 atomic_long_add(se
->avg
.load_avg
, &cfs_rq
->removed_load_avg
);
3232 atomic_long_add(se
->avg
.util_avg
, &cfs_rq
->removed_util_avg
);
3235 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq
*cfs_rq
)
3237 return cfs_rq
->runnable_load_avg
;
3240 static inline unsigned long cfs_rq_load_avg(struct cfs_rq
*cfs_rq
)
3242 return cfs_rq
->avg
.load_avg
;
3245 static int idle_balance(struct rq
*this_rq
);
3247 #else /* CONFIG_SMP */
3250 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
, bool update_freq
)
3255 static inline void update_load_avg(struct sched_entity
*se
, int not_used
)
3257 cpufreq_update_util(rq_of(cfs_rq_of(se
)), 0);
3261 enqueue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3263 dequeue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3264 static inline void remove_entity_load_avg(struct sched_entity
*se
) {}
3267 attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3269 detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3271 static inline int idle_balance(struct rq
*rq
)
3276 #endif /* CONFIG_SMP */
3278 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3280 #ifdef CONFIG_SCHED_DEBUG
3281 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
3286 if (d
> 3*sysctl_sched_latency
)
3287 schedstat_inc(cfs_rq
->nr_spread_over
);
3292 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
3294 u64 vruntime
= cfs_rq
->min_vruntime
;
3297 * The 'current' period is already promised to the current tasks,
3298 * however the extra weight of the new task will slow them down a
3299 * little, place the new task so that it fits in the slot that
3300 * stays open at the end.
3302 if (initial
&& sched_feat(START_DEBIT
))
3303 vruntime
+= sched_vslice(cfs_rq
, se
);
3305 /* sleeps up to a single latency don't count. */
3307 unsigned long thresh
= sysctl_sched_latency
;
3310 * Halve their sleep time's effect, to allow
3311 * for a gentler effect of sleepers:
3313 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
3319 /* ensure we never gain time by being placed backwards. */
3320 se
->vruntime
= max_vruntime(se
->vruntime
, vruntime
);
3323 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
3325 static inline void check_schedstat_required(void)
3327 #ifdef CONFIG_SCHEDSTATS
3328 if (schedstat_enabled())
3331 /* Force schedstat enabled if a dependent tracepoint is active */
3332 if (trace_sched_stat_wait_enabled() ||
3333 trace_sched_stat_sleep_enabled() ||
3334 trace_sched_stat_iowait_enabled() ||
3335 trace_sched_stat_blocked_enabled() ||
3336 trace_sched_stat_runtime_enabled()) {
3337 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3338 "stat_blocked and stat_runtime require the "
3339 "kernel parameter schedstats=enabled or "
3340 "kernel.sched_schedstats=1\n");
3351 * update_min_vruntime()
3352 * vruntime -= min_vruntime
3356 * update_min_vruntime()
3357 * vruntime += min_vruntime
3359 * this way the vruntime transition between RQs is done when both
3360 * min_vruntime are up-to-date.
3364 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3365 * vruntime -= min_vruntime
3369 * update_min_vruntime()
3370 * vruntime += min_vruntime
3372 * this way we don't have the most up-to-date min_vruntime on the originating
3373 * CPU and an up-to-date min_vruntime on the destination CPU.
3377 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3379 bool renorm
= !(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_MIGRATED
);
3380 bool curr
= cfs_rq
->curr
== se
;
3383 * If we're the current task, we must renormalise before calling
3387 se
->vruntime
+= cfs_rq
->min_vruntime
;
3389 update_curr(cfs_rq
);
3392 * Otherwise, renormalise after, such that we're placed at the current
3393 * moment in time, instead of some random moment in the past. Being
3394 * placed in the past could significantly boost this task to the
3395 * fairness detriment of existing tasks.
3397 if (renorm
&& !curr
)
3398 se
->vruntime
+= cfs_rq
->min_vruntime
;
3400 enqueue_entity_load_avg(cfs_rq
, se
);
3401 account_entity_enqueue(cfs_rq
, se
);
3402 update_cfs_shares(cfs_rq
);
3404 if (flags
& ENQUEUE_WAKEUP
)
3405 place_entity(cfs_rq
, se
, 0);
3407 check_schedstat_required();
3408 update_stats_enqueue(cfs_rq
, se
, flags
);
3409 check_spread(cfs_rq
, se
);
3411 __enqueue_entity(cfs_rq
, se
);
3414 if (cfs_rq
->nr_running
== 1) {
3415 list_add_leaf_cfs_rq(cfs_rq
);
3416 check_enqueue_throttle(cfs_rq
);
3420 static void __clear_buddies_last(struct sched_entity
*se
)
3422 for_each_sched_entity(se
) {
3423 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3424 if (cfs_rq
->last
!= se
)
3427 cfs_rq
->last
= NULL
;
3431 static void __clear_buddies_next(struct sched_entity
*se
)
3433 for_each_sched_entity(se
) {
3434 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3435 if (cfs_rq
->next
!= se
)
3438 cfs_rq
->next
= NULL
;
3442 static void __clear_buddies_skip(struct sched_entity
*se
)
3444 for_each_sched_entity(se
) {
3445 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3446 if (cfs_rq
->skip
!= se
)
3449 cfs_rq
->skip
= NULL
;
3453 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3455 if (cfs_rq
->last
== se
)
3456 __clear_buddies_last(se
);
3458 if (cfs_rq
->next
== se
)
3459 __clear_buddies_next(se
);
3461 if (cfs_rq
->skip
== se
)
3462 __clear_buddies_skip(se
);
3465 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
3468 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3471 * Update run-time statistics of the 'current'.
3473 update_curr(cfs_rq
);
3474 dequeue_entity_load_avg(cfs_rq
, se
);
3476 update_stats_dequeue(cfs_rq
, se
, flags
);
3478 clear_buddies(cfs_rq
, se
);
3480 if (se
!= cfs_rq
->curr
)
3481 __dequeue_entity(cfs_rq
, se
);
3483 account_entity_dequeue(cfs_rq
, se
);
3486 * Normalize after update_curr(); which will also have moved
3487 * min_vruntime if @se is the one holding it back. But before doing
3488 * update_min_vruntime() again, which will discount @se's position and
3489 * can move min_vruntime forward still more.
3491 if (!(flags
& DEQUEUE_SLEEP
))
3492 se
->vruntime
-= cfs_rq
->min_vruntime
;
3494 /* return excess runtime on last dequeue */
3495 return_cfs_rq_runtime(cfs_rq
);
3497 update_cfs_shares(cfs_rq
);
3500 * Now advance min_vruntime if @se was the entity holding it back,
3501 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3502 * put back on, and if we advance min_vruntime, we'll be placed back
3503 * further than we started -- ie. we'll be penalized.
3505 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) == DEQUEUE_SAVE
)
3506 update_min_vruntime(cfs_rq
);
3510 * Preempt the current task with a newly woken task if needed:
3513 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
3515 unsigned long ideal_runtime
, delta_exec
;
3516 struct sched_entity
*se
;
3519 ideal_runtime
= sched_slice(cfs_rq
, curr
);
3520 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
3521 if (delta_exec
> ideal_runtime
) {
3522 resched_curr(rq_of(cfs_rq
));
3524 * The current task ran long enough, ensure it doesn't get
3525 * re-elected due to buddy favours.
3527 clear_buddies(cfs_rq
, curr
);
3532 * Ensure that a task that missed wakeup preemption by a
3533 * narrow margin doesn't have to wait for a full slice.
3534 * This also mitigates buddy induced latencies under load.
3536 if (delta_exec
< sysctl_sched_min_granularity
)
3539 se
= __pick_first_entity(cfs_rq
);
3540 delta
= curr
->vruntime
- se
->vruntime
;
3545 if (delta
> ideal_runtime
)
3546 resched_curr(rq_of(cfs_rq
));
3550 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3552 /* 'current' is not kept within the tree. */
3555 * Any task has to be enqueued before it get to execute on
3556 * a CPU. So account for the time it spent waiting on the
3559 update_stats_wait_end(cfs_rq
, se
);
3560 __dequeue_entity(cfs_rq
, se
);
3561 update_load_avg(se
, 1);
3564 update_stats_curr_start(cfs_rq
, se
);
3568 * Track our maximum slice length, if the CPU's load is at
3569 * least twice that of our own weight (i.e. dont track it
3570 * when there are only lesser-weight tasks around):
3572 if (schedstat_enabled() && rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
3573 schedstat_set(se
->statistics
.slice_max
,
3574 max((u64
)schedstat_val(se
->statistics
.slice_max
),
3575 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
));
3578 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
3582 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
3585 * Pick the next process, keeping these things in mind, in this order:
3586 * 1) keep things fair between processes/task groups
3587 * 2) pick the "next" process, since someone really wants that to run
3588 * 3) pick the "last" process, for cache locality
3589 * 4) do not run the "skip" process, if something else is available
3591 static struct sched_entity
*
3592 pick_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
3594 struct sched_entity
*left
= __pick_first_entity(cfs_rq
);
3595 struct sched_entity
*se
;
3598 * If curr is set we have to see if its left of the leftmost entity
3599 * still in the tree, provided there was anything in the tree at all.
3601 if (!left
|| (curr
&& entity_before(curr
, left
)))
3604 se
= left
; /* ideally we run the leftmost entity */
3607 * Avoid running the skip buddy, if running something else can
3608 * be done without getting too unfair.
3610 if (cfs_rq
->skip
== se
) {
3611 struct sched_entity
*second
;
3614 second
= __pick_first_entity(cfs_rq
);
3616 second
= __pick_next_entity(se
);
3617 if (!second
|| (curr
&& entity_before(curr
, second
)))
3621 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
3626 * Prefer last buddy, try to return the CPU to a preempted task.
3628 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
3632 * Someone really wants this to run. If it's not unfair, run it.
3634 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
3637 clear_buddies(cfs_rq
, se
);
3642 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
3644 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
3647 * If still on the runqueue then deactivate_task()
3648 * was not called and update_curr() has to be done:
3651 update_curr(cfs_rq
);
3653 /* throttle cfs_rqs exceeding runtime */
3654 check_cfs_rq_runtime(cfs_rq
);
3656 check_spread(cfs_rq
, prev
);
3659 update_stats_wait_start(cfs_rq
, prev
);
3660 /* Put 'current' back into the tree. */
3661 __enqueue_entity(cfs_rq
, prev
);
3662 /* in !on_rq case, update occurred at dequeue */
3663 update_load_avg(prev
, 0);
3665 cfs_rq
->curr
= NULL
;
3669 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
3672 * Update run-time statistics of the 'current'.
3674 update_curr(cfs_rq
);
3677 * Ensure that runnable average is periodically updated.
3679 update_load_avg(curr
, 1);
3680 update_cfs_shares(cfs_rq
);
3682 #ifdef CONFIG_SCHED_HRTICK
3684 * queued ticks are scheduled to match the slice, so don't bother
3685 * validating it and just reschedule.
3688 resched_curr(rq_of(cfs_rq
));
3692 * don't let the period tick interfere with the hrtick preemption
3694 if (!sched_feat(DOUBLE_TICK
) &&
3695 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
3699 if (cfs_rq
->nr_running
> 1)
3700 check_preempt_tick(cfs_rq
, curr
);
3704 /**************************************************
3705 * CFS bandwidth control machinery
3708 #ifdef CONFIG_CFS_BANDWIDTH
3710 #ifdef HAVE_JUMP_LABEL
3711 static struct static_key __cfs_bandwidth_used
;
3713 static inline bool cfs_bandwidth_used(void)
3715 return static_key_false(&__cfs_bandwidth_used
);
3718 void cfs_bandwidth_usage_inc(void)
3720 static_key_slow_inc(&__cfs_bandwidth_used
);
3723 void cfs_bandwidth_usage_dec(void)
3725 static_key_slow_dec(&__cfs_bandwidth_used
);
3727 #else /* HAVE_JUMP_LABEL */
3728 static bool cfs_bandwidth_used(void)
3733 void cfs_bandwidth_usage_inc(void) {}
3734 void cfs_bandwidth_usage_dec(void) {}
3735 #endif /* HAVE_JUMP_LABEL */
3738 * default period for cfs group bandwidth.
3739 * default: 0.1s, units: nanoseconds
3741 static inline u64
default_cfs_period(void)
3743 return 100000000ULL;
3746 static inline u64
sched_cfs_bandwidth_slice(void)
3748 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
3752 * Replenish runtime according to assigned quota and update expiration time.
3753 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3754 * additional synchronization around rq->lock.
3756 * requires cfs_b->lock
3758 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
3762 if (cfs_b
->quota
== RUNTIME_INF
)
3765 now
= sched_clock_cpu(smp_processor_id());
3766 cfs_b
->runtime
= cfs_b
->quota
;
3767 cfs_b
->runtime_expires
= now
+ ktime_to_ns(cfs_b
->period
);
3770 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
3772 return &tg
->cfs_bandwidth
;
3775 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3776 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
)
3778 if (unlikely(cfs_rq
->throttle_count
))
3779 return cfs_rq
->throttled_clock_task
- cfs_rq
->throttled_clock_task_time
;
3781 return rq_clock_task(rq_of(cfs_rq
)) - cfs_rq
->throttled_clock_task_time
;
3784 /* returns 0 on failure to allocate runtime */
3785 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
3787 struct task_group
*tg
= cfs_rq
->tg
;
3788 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
3789 u64 amount
= 0, min_amount
, expires
;
3791 /* note: this is a positive sum as runtime_remaining <= 0 */
3792 min_amount
= sched_cfs_bandwidth_slice() - cfs_rq
->runtime_remaining
;
3794 raw_spin_lock(&cfs_b
->lock
);
3795 if (cfs_b
->quota
== RUNTIME_INF
)
3796 amount
= min_amount
;
3798 start_cfs_bandwidth(cfs_b
);
3800 if (cfs_b
->runtime
> 0) {
3801 amount
= min(cfs_b
->runtime
, min_amount
);
3802 cfs_b
->runtime
-= amount
;
3806 expires
= cfs_b
->runtime_expires
;
3807 raw_spin_unlock(&cfs_b
->lock
);
3809 cfs_rq
->runtime_remaining
+= amount
;
3811 * we may have advanced our local expiration to account for allowed
3812 * spread between our sched_clock and the one on which runtime was
3815 if ((s64
)(expires
- cfs_rq
->runtime_expires
) > 0)
3816 cfs_rq
->runtime_expires
= expires
;
3818 return cfs_rq
->runtime_remaining
> 0;
3822 * Note: This depends on the synchronization provided by sched_clock and the
3823 * fact that rq->clock snapshots this value.
3825 static void expire_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
3827 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
3829 /* if the deadline is ahead of our clock, nothing to do */
3830 if (likely((s64
)(rq_clock(rq_of(cfs_rq
)) - cfs_rq
->runtime_expires
) < 0))
3833 if (cfs_rq
->runtime_remaining
< 0)
3837 * If the local deadline has passed we have to consider the
3838 * possibility that our sched_clock is 'fast' and the global deadline
3839 * has not truly expired.
3841 * Fortunately we can check determine whether this the case by checking
3842 * whether the global deadline has advanced. It is valid to compare
3843 * cfs_b->runtime_expires without any locks since we only care about
3844 * exact equality, so a partial write will still work.
3847 if (cfs_rq
->runtime_expires
!= cfs_b
->runtime_expires
) {
3848 /* extend local deadline, drift is bounded above by 2 ticks */
3849 cfs_rq
->runtime_expires
+= TICK_NSEC
;
3851 /* global deadline is ahead, expiration has passed */
3852 cfs_rq
->runtime_remaining
= 0;
3856 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
3858 /* dock delta_exec before expiring quota (as it could span periods) */
3859 cfs_rq
->runtime_remaining
-= delta_exec
;
3860 expire_cfs_rq_runtime(cfs_rq
);
3862 if (likely(cfs_rq
->runtime_remaining
> 0))
3866 * if we're unable to extend our runtime we resched so that the active
3867 * hierarchy can be throttled
3869 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
3870 resched_curr(rq_of(cfs_rq
));
3873 static __always_inline
3874 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
3876 if (!cfs_bandwidth_used() || !cfs_rq
->runtime_enabled
)
3879 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
3882 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
3884 return cfs_bandwidth_used() && cfs_rq
->throttled
;
3887 /* check whether cfs_rq, or any parent, is throttled */
3888 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
3890 return cfs_bandwidth_used() && cfs_rq
->throttle_count
;
3894 * Ensure that neither of the group entities corresponding to src_cpu or
3895 * dest_cpu are members of a throttled hierarchy when performing group
3896 * load-balance operations.
3898 static inline int throttled_lb_pair(struct task_group
*tg
,
3899 int src_cpu
, int dest_cpu
)
3901 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
3903 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
3904 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
3906 return throttled_hierarchy(src_cfs_rq
) ||
3907 throttled_hierarchy(dest_cfs_rq
);
3910 /* updated child weight may affect parent so we have to do this bottom up */
3911 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
3913 struct rq
*rq
= data
;
3914 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
3916 cfs_rq
->throttle_count
--;
3917 if (!cfs_rq
->throttle_count
) {
3918 /* adjust cfs_rq_clock_task() */
3919 cfs_rq
->throttled_clock_task_time
+= rq_clock_task(rq
) -
3920 cfs_rq
->throttled_clock_task
;
3926 static int tg_throttle_down(struct task_group
*tg
, void *data
)
3928 struct rq
*rq
= data
;
3929 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
3931 /* group is entering throttled state, stop time */
3932 if (!cfs_rq
->throttle_count
)
3933 cfs_rq
->throttled_clock_task
= rq_clock_task(rq
);
3934 cfs_rq
->throttle_count
++;
3939 static void throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
3941 struct rq
*rq
= rq_of(cfs_rq
);
3942 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
3943 struct sched_entity
*se
;
3944 long task_delta
, dequeue
= 1;
3947 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
3949 /* freeze hierarchy runnable averages while throttled */
3951 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
3954 task_delta
= cfs_rq
->h_nr_running
;
3955 for_each_sched_entity(se
) {
3956 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
3957 /* throttled entity or throttle-on-deactivate */
3962 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
3963 qcfs_rq
->h_nr_running
-= task_delta
;
3965 if (qcfs_rq
->load
.weight
)
3970 sub_nr_running(rq
, task_delta
);
3972 cfs_rq
->throttled
= 1;
3973 cfs_rq
->throttled_clock
= rq_clock(rq
);
3974 raw_spin_lock(&cfs_b
->lock
);
3975 empty
= list_empty(&cfs_b
->throttled_cfs_rq
);
3978 * Add to the _head_ of the list, so that an already-started
3979 * distribute_cfs_runtime will not see us
3981 list_add_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
3984 * If we're the first throttled task, make sure the bandwidth
3988 start_cfs_bandwidth(cfs_b
);
3990 raw_spin_unlock(&cfs_b
->lock
);
3993 void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
3995 struct rq
*rq
= rq_of(cfs_rq
);
3996 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
3997 struct sched_entity
*se
;
4001 se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
4003 cfs_rq
->throttled
= 0;
4005 update_rq_clock(rq
);
4007 raw_spin_lock(&cfs_b
->lock
);
4008 cfs_b
->throttled_time
+= rq_clock(rq
) - cfs_rq
->throttled_clock
;
4009 list_del_rcu(&cfs_rq
->throttled_list
);
4010 raw_spin_unlock(&cfs_b
->lock
);
4012 /* update hierarchical throttle state */
4013 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
4015 if (!cfs_rq
->load
.weight
)
4018 task_delta
= cfs_rq
->h_nr_running
;
4019 for_each_sched_entity(se
) {
4023 cfs_rq
= cfs_rq_of(se
);
4025 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
4026 cfs_rq
->h_nr_running
+= task_delta
;
4028 if (cfs_rq_throttled(cfs_rq
))
4033 add_nr_running(rq
, task_delta
);
4035 /* determine whether we need to wake up potentially idle cpu */
4036 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
4040 static u64
distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
,
4041 u64 remaining
, u64 expires
)
4043 struct cfs_rq
*cfs_rq
;
4045 u64 starting_runtime
= remaining
;
4048 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
4050 struct rq
*rq
= rq_of(cfs_rq
);
4052 raw_spin_lock(&rq
->lock
);
4053 if (!cfs_rq_throttled(cfs_rq
))
4056 runtime
= -cfs_rq
->runtime_remaining
+ 1;
4057 if (runtime
> remaining
)
4058 runtime
= remaining
;
4059 remaining
-= runtime
;
4061 cfs_rq
->runtime_remaining
+= runtime
;
4062 cfs_rq
->runtime_expires
= expires
;
4064 /* we check whether we're throttled above */
4065 if (cfs_rq
->runtime_remaining
> 0)
4066 unthrottle_cfs_rq(cfs_rq
);
4069 raw_spin_unlock(&rq
->lock
);
4076 return starting_runtime
- remaining
;
4080 * Responsible for refilling a task_group's bandwidth and unthrottling its
4081 * cfs_rqs as appropriate. If there has been no activity within the last
4082 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4083 * used to track this state.
4085 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
)
4087 u64 runtime
, runtime_expires
;
4090 /* no need to continue the timer with no bandwidth constraint */
4091 if (cfs_b
->quota
== RUNTIME_INF
)
4092 goto out_deactivate
;
4094 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4095 cfs_b
->nr_periods
+= overrun
;
4098 * idle depends on !throttled (for the case of a large deficit), and if
4099 * we're going inactive then everything else can be deferred
4101 if (cfs_b
->idle
&& !throttled
)
4102 goto out_deactivate
;
4104 __refill_cfs_bandwidth_runtime(cfs_b
);
4107 /* mark as potentially idle for the upcoming period */
4112 /* account preceding periods in which throttling occurred */
4113 cfs_b
->nr_throttled
+= overrun
;
4115 runtime_expires
= cfs_b
->runtime_expires
;
4118 * This check is repeated as we are holding onto the new bandwidth while
4119 * we unthrottle. This can potentially race with an unthrottled group
4120 * trying to acquire new bandwidth from the global pool. This can result
4121 * in us over-using our runtime if it is all used during this loop, but
4122 * only by limited amounts in that extreme case.
4124 while (throttled
&& cfs_b
->runtime
> 0) {
4125 runtime
= cfs_b
->runtime
;
4126 raw_spin_unlock(&cfs_b
->lock
);
4127 /* we can't nest cfs_b->lock while distributing bandwidth */
4128 runtime
= distribute_cfs_runtime(cfs_b
, runtime
,
4130 raw_spin_lock(&cfs_b
->lock
);
4132 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4134 cfs_b
->runtime
-= min(runtime
, cfs_b
->runtime
);
4138 * While we are ensured activity in the period following an
4139 * unthrottle, this also covers the case in which the new bandwidth is
4140 * insufficient to cover the existing bandwidth deficit. (Forcing the
4141 * timer to remain active while there are any throttled entities.)
4151 /* a cfs_rq won't donate quota below this amount */
4152 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
4153 /* minimum remaining period time to redistribute slack quota */
4154 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
4155 /* how long we wait to gather additional slack before distributing */
4156 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
4159 * Are we near the end of the current quota period?
4161 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4162 * hrtimer base being cleared by hrtimer_start. In the case of
4163 * migrate_hrtimers, base is never cleared, so we are fine.
4165 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
4167 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
4170 /* if the call-back is running a quota refresh is already occurring */
4171 if (hrtimer_callback_running(refresh_timer
))
4174 /* is a quota refresh about to occur? */
4175 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
4176 if (remaining
< min_expire
)
4182 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
4184 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
4186 /* if there's a quota refresh soon don't bother with slack */
4187 if (runtime_refresh_within(cfs_b
, min_left
))
4190 hrtimer_start(&cfs_b
->slack_timer
,
4191 ns_to_ktime(cfs_bandwidth_slack_period
),
4195 /* we know any runtime found here is valid as update_curr() precedes return */
4196 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4198 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4199 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
4201 if (slack_runtime
<= 0)
4204 raw_spin_lock(&cfs_b
->lock
);
4205 if (cfs_b
->quota
!= RUNTIME_INF
&&
4206 cfs_rq
->runtime_expires
== cfs_b
->runtime_expires
) {
4207 cfs_b
->runtime
+= slack_runtime
;
4209 /* we are under rq->lock, defer unthrottling using a timer */
4210 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
4211 !list_empty(&cfs_b
->throttled_cfs_rq
))
4212 start_cfs_slack_bandwidth(cfs_b
);
4214 raw_spin_unlock(&cfs_b
->lock
);
4216 /* even if it's not valid for return we don't want to try again */
4217 cfs_rq
->runtime_remaining
-= slack_runtime
;
4220 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4222 if (!cfs_bandwidth_used())
4225 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
4228 __return_cfs_rq_runtime(cfs_rq
);
4232 * This is done with a timer (instead of inline with bandwidth return) since
4233 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4235 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
4237 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
4240 /* confirm we're still not at a refresh boundary */
4241 raw_spin_lock(&cfs_b
->lock
);
4242 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
)) {
4243 raw_spin_unlock(&cfs_b
->lock
);
4247 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
)
4248 runtime
= cfs_b
->runtime
;
4250 expires
= cfs_b
->runtime_expires
;
4251 raw_spin_unlock(&cfs_b
->lock
);
4256 runtime
= distribute_cfs_runtime(cfs_b
, runtime
, expires
);
4258 raw_spin_lock(&cfs_b
->lock
);
4259 if (expires
== cfs_b
->runtime_expires
)
4260 cfs_b
->runtime
-= min(runtime
, cfs_b
->runtime
);
4261 raw_spin_unlock(&cfs_b
->lock
);
4265 * When a group wakes up we want to make sure that its quota is not already
4266 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4267 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4269 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
4271 if (!cfs_bandwidth_used())
4274 /* an active group must be handled by the update_curr()->put() path */
4275 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
4278 /* ensure the group is not already throttled */
4279 if (cfs_rq_throttled(cfs_rq
))
4282 /* update runtime allocation */
4283 account_cfs_rq_runtime(cfs_rq
, 0);
4284 if (cfs_rq
->runtime_remaining
<= 0)
4285 throttle_cfs_rq(cfs_rq
);
4288 static void sync_throttle(struct task_group
*tg
, int cpu
)
4290 struct cfs_rq
*pcfs_rq
, *cfs_rq
;
4292 if (!cfs_bandwidth_used())
4298 cfs_rq
= tg
->cfs_rq
[cpu
];
4299 pcfs_rq
= tg
->parent
->cfs_rq
[cpu
];
4301 cfs_rq
->throttle_count
= pcfs_rq
->throttle_count
;
4302 cfs_rq
->throttled_clock_task
= rq_clock_task(cpu_rq(cpu
));
4305 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4306 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4308 if (!cfs_bandwidth_used())
4311 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
4315 * it's possible for a throttled entity to be forced into a running
4316 * state (e.g. set_curr_task), in this case we're finished.
4318 if (cfs_rq_throttled(cfs_rq
))
4321 throttle_cfs_rq(cfs_rq
);
4325 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
4327 struct cfs_bandwidth
*cfs_b
=
4328 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
4330 do_sched_cfs_slack_timer(cfs_b
);
4332 return HRTIMER_NORESTART
;
4335 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
4337 struct cfs_bandwidth
*cfs_b
=
4338 container_of(timer
, struct cfs_bandwidth
, period_timer
);
4342 raw_spin_lock(&cfs_b
->lock
);
4344 overrun
= hrtimer_forward_now(timer
, cfs_b
->period
);
4348 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
);
4351 cfs_b
->period_active
= 0;
4352 raw_spin_unlock(&cfs_b
->lock
);
4354 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
4357 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4359 raw_spin_lock_init(&cfs_b
->lock
);
4361 cfs_b
->quota
= RUNTIME_INF
;
4362 cfs_b
->period
= ns_to_ktime(default_cfs_period());
4364 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
4365 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
4366 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
4367 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4368 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
4371 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4373 cfs_rq
->runtime_enabled
= 0;
4374 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
4377 void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4379 lockdep_assert_held(&cfs_b
->lock
);
4381 if (!cfs_b
->period_active
) {
4382 cfs_b
->period_active
= 1;
4383 hrtimer_forward_now(&cfs_b
->period_timer
, cfs_b
->period
);
4384 hrtimer_start_expires(&cfs_b
->period_timer
, HRTIMER_MODE_ABS_PINNED
);
4388 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4390 /* init_cfs_bandwidth() was not called */
4391 if (!cfs_b
->throttled_cfs_rq
.next
)
4394 hrtimer_cancel(&cfs_b
->period_timer
);
4395 hrtimer_cancel(&cfs_b
->slack_timer
);
4398 static void __maybe_unused
update_runtime_enabled(struct rq
*rq
)
4400 struct cfs_rq
*cfs_rq
;
4402 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
4403 struct cfs_bandwidth
*cfs_b
= &cfs_rq
->tg
->cfs_bandwidth
;
4405 raw_spin_lock(&cfs_b
->lock
);
4406 cfs_rq
->runtime_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
4407 raw_spin_unlock(&cfs_b
->lock
);
4411 static void __maybe_unused
unthrottle_offline_cfs_rqs(struct rq
*rq
)
4413 struct cfs_rq
*cfs_rq
;
4415 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
4416 if (!cfs_rq
->runtime_enabled
)
4420 * clock_task is not advancing so we just need to make sure
4421 * there's some valid quota amount
4423 cfs_rq
->runtime_remaining
= 1;
4425 * Offline rq is schedulable till cpu is completely disabled
4426 * in take_cpu_down(), so we prevent new cfs throttling here.
4428 cfs_rq
->runtime_enabled
= 0;
4430 if (cfs_rq_throttled(cfs_rq
))
4431 unthrottle_cfs_rq(cfs_rq
);
4435 #else /* CONFIG_CFS_BANDWIDTH */
4436 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
)
4438 return rq_clock_task(rq_of(cfs_rq
));
4441 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
) {}
4442 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) { return false; }
4443 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
4444 static inline void sync_throttle(struct task_group
*tg
, int cpu
) {}
4445 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
4447 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
4452 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
4457 static inline int throttled_lb_pair(struct task_group
*tg
,
4458 int src_cpu
, int dest_cpu
)
4463 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
4465 #ifdef CONFIG_FAIR_GROUP_SCHED
4466 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
4469 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
4473 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
4474 static inline void update_runtime_enabled(struct rq
*rq
) {}
4475 static inline void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
4477 #endif /* CONFIG_CFS_BANDWIDTH */
4479 /**************************************************
4480 * CFS operations on tasks:
4483 #ifdef CONFIG_SCHED_HRTICK
4484 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
4486 struct sched_entity
*se
= &p
->se
;
4487 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4489 SCHED_WARN_ON(task_rq(p
) != rq
);
4491 if (rq
->cfs
.h_nr_running
> 1) {
4492 u64 slice
= sched_slice(cfs_rq
, se
);
4493 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
4494 s64 delta
= slice
- ran
;
4501 hrtick_start(rq
, delta
);
4506 * called from enqueue/dequeue and updates the hrtick when the
4507 * current task is from our class and nr_running is low enough
4510 static void hrtick_update(struct rq
*rq
)
4512 struct task_struct
*curr
= rq
->curr
;
4514 if (!hrtick_enabled(rq
) || curr
->sched_class
!= &fair_sched_class
)
4517 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
4518 hrtick_start_fair(rq
, curr
);
4520 #else /* !CONFIG_SCHED_HRTICK */
4522 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
4526 static inline void hrtick_update(struct rq
*rq
)
4532 * The enqueue_task method is called before nr_running is
4533 * increased. Here we update the fair scheduling stats and
4534 * then put the task into the rbtree:
4537 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
4539 struct cfs_rq
*cfs_rq
;
4540 struct sched_entity
*se
= &p
->se
;
4543 * If in_iowait is set, the code below may not trigger any cpufreq
4544 * utilization updates, so do it here explicitly with the IOWAIT flag
4548 cpufreq_update_this_cpu(rq
, SCHED_CPUFREQ_IOWAIT
);
4550 for_each_sched_entity(se
) {
4553 cfs_rq
= cfs_rq_of(se
);
4554 enqueue_entity(cfs_rq
, se
, flags
);
4557 * end evaluation on encountering a throttled cfs_rq
4559 * note: in the case of encountering a throttled cfs_rq we will
4560 * post the final h_nr_running increment below.
4562 if (cfs_rq_throttled(cfs_rq
))
4564 cfs_rq
->h_nr_running
++;
4566 flags
= ENQUEUE_WAKEUP
;
4569 for_each_sched_entity(se
) {
4570 cfs_rq
= cfs_rq_of(se
);
4571 cfs_rq
->h_nr_running
++;
4573 if (cfs_rq_throttled(cfs_rq
))
4576 update_load_avg(se
, 1);
4577 update_cfs_shares(cfs_rq
);
4581 add_nr_running(rq
, 1);
4586 static void set_next_buddy(struct sched_entity
*se
);
4589 * The dequeue_task method is called before nr_running is
4590 * decreased. We remove the task from the rbtree and
4591 * update the fair scheduling stats:
4593 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
4595 struct cfs_rq
*cfs_rq
;
4596 struct sched_entity
*se
= &p
->se
;
4597 int task_sleep
= flags
& DEQUEUE_SLEEP
;
4599 for_each_sched_entity(se
) {
4600 cfs_rq
= cfs_rq_of(se
);
4601 dequeue_entity(cfs_rq
, se
, flags
);
4604 * end evaluation on encountering a throttled cfs_rq
4606 * note: in the case of encountering a throttled cfs_rq we will
4607 * post the final h_nr_running decrement below.
4609 if (cfs_rq_throttled(cfs_rq
))
4611 cfs_rq
->h_nr_running
--;
4613 /* Don't dequeue parent if it has other entities besides us */
4614 if (cfs_rq
->load
.weight
) {
4615 /* Avoid re-evaluating load for this entity: */
4616 se
= parent_entity(se
);
4618 * Bias pick_next to pick a task from this cfs_rq, as
4619 * p is sleeping when it is within its sched_slice.
4621 if (task_sleep
&& se
&& !throttled_hierarchy(cfs_rq
))
4625 flags
|= DEQUEUE_SLEEP
;
4628 for_each_sched_entity(se
) {
4629 cfs_rq
= cfs_rq_of(se
);
4630 cfs_rq
->h_nr_running
--;
4632 if (cfs_rq_throttled(cfs_rq
))
4635 update_load_avg(se
, 1);
4636 update_cfs_shares(cfs_rq
);
4640 sub_nr_running(rq
, 1);
4647 /* Working cpumask for: load_balance, load_balance_newidle. */
4648 DEFINE_PER_CPU(cpumask_var_t
, load_balance_mask
);
4649 DEFINE_PER_CPU(cpumask_var_t
, select_idle_mask
);
4651 #ifdef CONFIG_NO_HZ_COMMON
4653 * per rq 'load' arrray crap; XXX kill this.
4657 * The exact cpuload calculated at every tick would be:
4659 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4661 * If a cpu misses updates for n ticks (as it was idle) and update gets
4662 * called on the n+1-th tick when cpu may be busy, then we have:
4664 * load_n = (1 - 1/2^i)^n * load_0
4665 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4667 * decay_load_missed() below does efficient calculation of
4669 * load' = (1 - 1/2^i)^n * load
4671 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4672 * This allows us to precompute the above in said factors, thereby allowing the
4673 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4674 * fixed_power_int())
4676 * The calculation is approximated on a 128 point scale.
4678 #define DEGRADE_SHIFT 7
4680 static const u8 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
4681 static const u8 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
4682 { 0, 0, 0, 0, 0, 0, 0, 0 },
4683 { 64, 32, 8, 0, 0, 0, 0, 0 },
4684 { 96, 72, 40, 12, 1, 0, 0, 0 },
4685 { 112, 98, 75, 43, 15, 1, 0, 0 },
4686 { 120, 112, 98, 76, 45, 16, 2, 0 }
4690 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4691 * would be when CPU is idle and so we just decay the old load without
4692 * adding any new load.
4694 static unsigned long
4695 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
4699 if (!missed_updates
)
4702 if (missed_updates
>= degrade_zero_ticks
[idx
])
4706 return load
>> missed_updates
;
4708 while (missed_updates
) {
4709 if (missed_updates
% 2)
4710 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
4712 missed_updates
>>= 1;
4717 #endif /* CONFIG_NO_HZ_COMMON */
4720 * __cpu_load_update - update the rq->cpu_load[] statistics
4721 * @this_rq: The rq to update statistics for
4722 * @this_load: The current load
4723 * @pending_updates: The number of missed updates
4725 * Update rq->cpu_load[] statistics. This function is usually called every
4726 * scheduler tick (TICK_NSEC).
4728 * This function computes a decaying average:
4730 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4732 * Because of NOHZ it might not get called on every tick which gives need for
4733 * the @pending_updates argument.
4735 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4736 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4737 * = A * (A * load[i]_n-2 + B) + B
4738 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4739 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4740 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4741 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4742 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4744 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4745 * any change in load would have resulted in the tick being turned back on.
4747 * For regular NOHZ, this reduces to:
4749 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4751 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4754 static void cpu_load_update(struct rq
*this_rq
, unsigned long this_load
,
4755 unsigned long pending_updates
)
4757 unsigned long __maybe_unused tickless_load
= this_rq
->cpu_load
[0];
4760 this_rq
->nr_load_updates
++;
4762 /* Update our load: */
4763 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
4764 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
4765 unsigned long old_load
, new_load
;
4767 /* scale is effectively 1 << i now, and >> i divides by scale */
4769 old_load
= this_rq
->cpu_load
[i
];
4770 #ifdef CONFIG_NO_HZ_COMMON
4771 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
4772 if (tickless_load
) {
4773 old_load
-= decay_load_missed(tickless_load
, pending_updates
- 1, i
);
4775 * old_load can never be a negative value because a
4776 * decayed tickless_load cannot be greater than the
4777 * original tickless_load.
4779 old_load
+= tickless_load
;
4782 new_load
= this_load
;
4784 * Round up the averaging division if load is increasing. This
4785 * prevents us from getting stuck on 9 if the load is 10, for
4788 if (new_load
> old_load
)
4789 new_load
+= scale
- 1;
4791 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
4794 sched_avg_update(this_rq
);
4797 /* Used instead of source_load when we know the type == 0 */
4798 static unsigned long weighted_cpuload(const int cpu
)
4800 return cfs_rq_runnable_load_avg(&cpu_rq(cpu
)->cfs
);
4803 #ifdef CONFIG_NO_HZ_COMMON
4805 * There is no sane way to deal with nohz on smp when using jiffies because the
4806 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4807 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4809 * Therefore we need to avoid the delta approach from the regular tick when
4810 * possible since that would seriously skew the load calculation. This is why we
4811 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4812 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4813 * loop exit, nohz_idle_balance, nohz full exit...)
4815 * This means we might still be one tick off for nohz periods.
4818 static void cpu_load_update_nohz(struct rq
*this_rq
,
4819 unsigned long curr_jiffies
,
4822 unsigned long pending_updates
;
4824 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
4825 if (pending_updates
) {
4826 this_rq
->last_load_update_tick
= curr_jiffies
;
4828 * In the regular NOHZ case, we were idle, this means load 0.
4829 * In the NOHZ_FULL case, we were non-idle, we should consider
4830 * its weighted load.
4832 cpu_load_update(this_rq
, load
, pending_updates
);
4837 * Called from nohz_idle_balance() to update the load ratings before doing the
4840 static void cpu_load_update_idle(struct rq
*this_rq
)
4843 * bail if there's load or we're actually up-to-date.
4845 if (weighted_cpuload(cpu_of(this_rq
)))
4848 cpu_load_update_nohz(this_rq
, READ_ONCE(jiffies
), 0);
4852 * Record CPU load on nohz entry so we know the tickless load to account
4853 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4854 * than other cpu_load[idx] but it should be fine as cpu_load readers
4855 * shouldn't rely into synchronized cpu_load[*] updates.
4857 void cpu_load_update_nohz_start(void)
4859 struct rq
*this_rq
= this_rq();
4862 * This is all lockless but should be fine. If weighted_cpuload changes
4863 * concurrently we'll exit nohz. And cpu_load write can race with
4864 * cpu_load_update_idle() but both updater would be writing the same.
4866 this_rq
->cpu_load
[0] = weighted_cpuload(cpu_of(this_rq
));
4870 * Account the tickless load in the end of a nohz frame.
4872 void cpu_load_update_nohz_stop(void)
4874 unsigned long curr_jiffies
= READ_ONCE(jiffies
);
4875 struct rq
*this_rq
= this_rq();
4878 if (curr_jiffies
== this_rq
->last_load_update_tick
)
4881 load
= weighted_cpuload(cpu_of(this_rq
));
4882 raw_spin_lock(&this_rq
->lock
);
4883 update_rq_clock(this_rq
);
4884 cpu_load_update_nohz(this_rq
, curr_jiffies
, load
);
4885 raw_spin_unlock(&this_rq
->lock
);
4887 #else /* !CONFIG_NO_HZ_COMMON */
4888 static inline void cpu_load_update_nohz(struct rq
*this_rq
,
4889 unsigned long curr_jiffies
,
4890 unsigned long load
) { }
4891 #endif /* CONFIG_NO_HZ_COMMON */
4893 static void cpu_load_update_periodic(struct rq
*this_rq
, unsigned long load
)
4895 #ifdef CONFIG_NO_HZ_COMMON
4896 /* See the mess around cpu_load_update_nohz(). */
4897 this_rq
->last_load_update_tick
= READ_ONCE(jiffies
);
4899 cpu_load_update(this_rq
, load
, 1);
4903 * Called from scheduler_tick()
4905 void cpu_load_update_active(struct rq
*this_rq
)
4907 unsigned long load
= weighted_cpuload(cpu_of(this_rq
));
4909 if (tick_nohz_tick_stopped())
4910 cpu_load_update_nohz(this_rq
, READ_ONCE(jiffies
), load
);
4912 cpu_load_update_periodic(this_rq
, load
);
4916 * Return a low guess at the load of a migration-source cpu weighted
4917 * according to the scheduling class and "nice" value.
4919 * We want to under-estimate the load of migration sources, to
4920 * balance conservatively.
4922 static unsigned long source_load(int cpu
, int type
)
4924 struct rq
*rq
= cpu_rq(cpu
);
4925 unsigned long total
= weighted_cpuload(cpu
);
4927 if (type
== 0 || !sched_feat(LB_BIAS
))
4930 return min(rq
->cpu_load
[type
-1], total
);
4934 * Return a high guess at the load of a migration-target cpu weighted
4935 * according to the scheduling class and "nice" value.
4937 static unsigned long target_load(int cpu
, int type
)
4939 struct rq
*rq
= cpu_rq(cpu
);
4940 unsigned long total
= weighted_cpuload(cpu
);
4942 if (type
== 0 || !sched_feat(LB_BIAS
))
4945 return max(rq
->cpu_load
[type
-1], total
);
4948 static unsigned long capacity_of(int cpu
)
4950 return cpu_rq(cpu
)->cpu_capacity
;
4953 static unsigned long capacity_orig_of(int cpu
)
4955 return cpu_rq(cpu
)->cpu_capacity_orig
;
4958 static unsigned long cpu_avg_load_per_task(int cpu
)
4960 struct rq
*rq
= cpu_rq(cpu
);
4961 unsigned long nr_running
= READ_ONCE(rq
->cfs
.h_nr_running
);
4962 unsigned long load_avg
= weighted_cpuload(cpu
);
4965 return load_avg
/ nr_running
;
4970 #ifdef CONFIG_FAIR_GROUP_SCHED
4972 * effective_load() calculates the load change as seen from the root_task_group
4974 * Adding load to a group doesn't make a group heavier, but can cause movement
4975 * of group shares between cpus. Assuming the shares were perfectly aligned one
4976 * can calculate the shift in shares.
4978 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4979 * on this @cpu and results in a total addition (subtraction) of @wg to the
4980 * total group weight.
4982 * Given a runqueue weight distribution (rw_i) we can compute a shares
4983 * distribution (s_i) using:
4985 * s_i = rw_i / \Sum rw_j (1)
4987 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4988 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4989 * shares distribution (s_i):
4991 * rw_i = { 2, 4, 1, 0 }
4992 * s_i = { 2/7, 4/7, 1/7, 0 }
4994 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4995 * task used to run on and the CPU the waker is running on), we need to
4996 * compute the effect of waking a task on either CPU and, in case of a sync
4997 * wakeup, compute the effect of the current task going to sleep.
4999 * So for a change of @wl to the local @cpu with an overall group weight change
5000 * of @wl we can compute the new shares distribution (s'_i) using:
5002 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5004 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5005 * differences in waking a task to CPU 0. The additional task changes the
5006 * weight and shares distributions like:
5008 * rw'_i = { 3, 4, 1, 0 }
5009 * s'_i = { 3/8, 4/8, 1/8, 0 }
5011 * We can then compute the difference in effective weight by using:
5013 * dw_i = S * (s'_i - s_i) (3)
5015 * Where 'S' is the group weight as seen by its parent.
5017 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5018 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5019 * 4/7) times the weight of the group.
5021 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
5023 struct sched_entity
*se
= tg
->se
[cpu
];
5025 if (!tg
->parent
) /* the trivial, non-cgroup case */
5028 for_each_sched_entity(se
) {
5029 struct cfs_rq
*cfs_rq
= se
->my_q
;
5030 long W
, w
= cfs_rq_load_avg(cfs_rq
);
5035 * W = @wg + \Sum rw_j
5037 W
= wg
+ atomic_long_read(&tg
->load_avg
);
5039 /* Ensure \Sum rw_j >= rw_i */
5040 W
-= cfs_rq
->tg_load_avg_contrib
;
5049 * wl = S * s'_i; see (2)
5052 wl
= (w
* (long)scale_load_down(tg
->shares
)) / W
;
5054 wl
= scale_load_down(tg
->shares
);
5057 * Per the above, wl is the new se->load.weight value; since
5058 * those are clipped to [MIN_SHARES, ...) do so now. See
5059 * calc_cfs_shares().
5061 if (wl
< MIN_SHARES
)
5065 * wl = dw_i = S * (s'_i - s_i); see (3)
5067 wl
-= se
->avg
.load_avg
;
5070 * Recursively apply this logic to all parent groups to compute
5071 * the final effective load change on the root group. Since
5072 * only the @tg group gets extra weight, all parent groups can
5073 * only redistribute existing shares. @wl is the shift in shares
5074 * resulting from this level per the above.
5083 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
5090 static void record_wakee(struct task_struct
*p
)
5093 * Only decay a single time; tasks that have less then 1 wakeup per
5094 * jiffy will not have built up many flips.
5096 if (time_after(jiffies
, current
->wakee_flip_decay_ts
+ HZ
)) {
5097 current
->wakee_flips
>>= 1;
5098 current
->wakee_flip_decay_ts
= jiffies
;
5101 if (current
->last_wakee
!= p
) {
5102 current
->last_wakee
= p
;
5103 current
->wakee_flips
++;
5108 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5110 * A waker of many should wake a different task than the one last awakened
5111 * at a frequency roughly N times higher than one of its wakees.
5113 * In order to determine whether we should let the load spread vs consolidating
5114 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5115 * partner, and a factor of lls_size higher frequency in the other.
5117 * With both conditions met, we can be relatively sure that the relationship is
5118 * non-monogamous, with partner count exceeding socket size.
5120 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5121 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5124 static int wake_wide(struct task_struct
*p
)
5126 unsigned int master
= current
->wakee_flips
;
5127 unsigned int slave
= p
->wakee_flips
;
5128 int factor
= this_cpu_read(sd_llc_size
);
5131 swap(master
, slave
);
5132 if (slave
< factor
|| master
< slave
* factor
)
5137 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
,
5138 int prev_cpu
, int sync
)
5140 s64 this_load
, load
;
5141 s64 this_eff_load
, prev_eff_load
;
5143 struct task_group
*tg
;
5144 unsigned long weight
;
5148 this_cpu
= smp_processor_id();
5149 load
= source_load(prev_cpu
, idx
);
5150 this_load
= target_load(this_cpu
, idx
);
5153 * If sync wakeup then subtract the (maximum possible)
5154 * effect of the currently running task from the load
5155 * of the current CPU:
5158 tg
= task_group(current
);
5159 weight
= current
->se
.avg
.load_avg
;
5161 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
5162 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
5166 weight
= p
->se
.avg
.load_avg
;
5169 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5170 * due to the sync cause above having dropped this_load to 0, we'll
5171 * always have an imbalance, but there's really nothing you can do
5172 * about that, so that's good too.
5174 * Otherwise check if either cpus are near enough in load to allow this
5175 * task to be woken on this_cpu.
5177 this_eff_load
= 100;
5178 this_eff_load
*= capacity_of(prev_cpu
);
5180 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
5181 prev_eff_load
*= capacity_of(this_cpu
);
5183 if (this_load
> 0) {
5184 this_eff_load
*= this_load
+
5185 effective_load(tg
, this_cpu
, weight
, weight
);
5187 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
5190 balanced
= this_eff_load
<= prev_eff_load
;
5192 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine_attempts
);
5197 schedstat_inc(sd
->ttwu_move_affine
);
5198 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine
);
5204 * find_idlest_group finds and returns the least busy CPU group within the
5207 static struct sched_group
*
5208 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
5209 int this_cpu
, int sd_flag
)
5211 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
5212 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
5213 int load_idx
= sd
->forkexec_idx
;
5214 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
5216 if (sd_flag
& SD_BALANCE_WAKE
)
5217 load_idx
= sd
->wake_idx
;
5220 unsigned long load
, avg_load
;
5224 /* Skip over this group if it has no CPUs allowed */
5225 if (!cpumask_intersects(sched_group_cpus(group
),
5226 tsk_cpus_allowed(p
)))
5229 local_group
= cpumask_test_cpu(this_cpu
,
5230 sched_group_cpus(group
));
5232 /* Tally up the load of all CPUs in the group */
5235 for_each_cpu(i
, sched_group_cpus(group
)) {
5236 /* Bias balancing toward cpus of our domain */
5238 load
= source_load(i
, load_idx
);
5240 load
= target_load(i
, load_idx
);
5245 /* Adjust by relative CPU capacity of the group */
5246 avg_load
= (avg_load
* SCHED_CAPACITY_SCALE
) / group
->sgc
->capacity
;
5249 this_load
= avg_load
;
5250 } else if (avg_load
< min_load
) {
5251 min_load
= avg_load
;
5254 } while (group
= group
->next
, group
!= sd
->groups
);
5256 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
5262 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5265 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
5267 unsigned long load
, min_load
= ULONG_MAX
;
5268 unsigned int min_exit_latency
= UINT_MAX
;
5269 u64 latest_idle_timestamp
= 0;
5270 int least_loaded_cpu
= this_cpu
;
5271 int shallowest_idle_cpu
= -1;
5274 /* Check if we have any choice: */
5275 if (group
->group_weight
== 1)
5276 return cpumask_first(sched_group_cpus(group
));
5278 /* Traverse only the allowed CPUs */
5279 for_each_cpu_and(i
, sched_group_cpus(group
), tsk_cpus_allowed(p
)) {
5281 struct rq
*rq
= cpu_rq(i
);
5282 struct cpuidle_state
*idle
= idle_get_state(rq
);
5283 if (idle
&& idle
->exit_latency
< min_exit_latency
) {
5285 * We give priority to a CPU whose idle state
5286 * has the smallest exit latency irrespective
5287 * of any idle timestamp.
5289 min_exit_latency
= idle
->exit_latency
;
5290 latest_idle_timestamp
= rq
->idle_stamp
;
5291 shallowest_idle_cpu
= i
;
5292 } else if ((!idle
|| idle
->exit_latency
== min_exit_latency
) &&
5293 rq
->idle_stamp
> latest_idle_timestamp
) {
5295 * If equal or no active idle state, then
5296 * the most recently idled CPU might have
5299 latest_idle_timestamp
= rq
->idle_stamp
;
5300 shallowest_idle_cpu
= i
;
5302 } else if (shallowest_idle_cpu
== -1) {
5303 load
= weighted_cpuload(i
);
5304 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
5306 least_loaded_cpu
= i
;
5311 return shallowest_idle_cpu
!= -1 ? shallowest_idle_cpu
: least_loaded_cpu
;
5314 #ifdef CONFIG_SCHED_SMT
5316 static inline void set_idle_cores(int cpu
, int val
)
5318 struct sched_domain_shared
*sds
;
5320 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5322 WRITE_ONCE(sds
->has_idle_cores
, val
);
5325 static inline bool test_idle_cores(int cpu
, bool def
)
5327 struct sched_domain_shared
*sds
;
5329 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5331 return READ_ONCE(sds
->has_idle_cores
);
5337 * Scans the local SMT mask to see if the entire core is idle, and records this
5338 * information in sd_llc_shared->has_idle_cores.
5340 * Since SMT siblings share all cache levels, inspecting this limited remote
5341 * state should be fairly cheap.
5343 void update_idle_core(struct rq
*rq
)
5345 int core
= cpu_of(rq
);
5349 if (test_idle_cores(core
, true))
5352 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
5360 set_idle_cores(core
, 1);
5366 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5367 * there are no idle cores left in the system; tracked through
5368 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5370 static int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5372 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
5375 if (!test_idle_cores(target
, false))
5378 cpumask_and(cpus
, sched_domain_span(sd
), tsk_cpus_allowed(p
));
5380 for_each_cpu_wrap(core
, cpus
, target
) {
5383 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
5384 cpumask_clear_cpu(cpu
, cpus
);
5394 * Failed to find an idle core; stop looking for one.
5396 set_idle_cores(target
, 0);
5402 * Scan the local SMT mask for idle CPUs.
5404 static int select_idle_smt(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5408 for_each_cpu(cpu
, cpu_smt_mask(target
)) {
5409 if (!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
5418 #else /* CONFIG_SCHED_SMT */
5420 static inline int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5425 static inline int select_idle_smt(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5430 #endif /* CONFIG_SCHED_SMT */
5433 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5434 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5435 * average idle time for this rq (as found in rq->avg_idle).
5437 static int select_idle_cpu(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5439 struct sched_domain
*this_sd
;
5440 u64 avg_cost
, avg_idle
= this_rq()->avg_idle
;
5445 this_sd
= rcu_dereference(*this_cpu_ptr(&sd_llc
));
5449 avg_cost
= this_sd
->avg_scan_cost
;
5452 * Due to large variance we need a large fuzz factor; hackbench in
5453 * particularly is sensitive here.
5455 if (sched_feat(SIS_AVG_CPU
) && (avg_idle
/ 512) < avg_cost
)
5458 time
= local_clock();
5460 for_each_cpu_wrap(cpu
, sched_domain_span(sd
), target
) {
5461 if (!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
5467 time
= local_clock() - time
;
5468 cost
= this_sd
->avg_scan_cost
;
5469 delta
= (s64
)(time
- cost
) / 8;
5470 this_sd
->avg_scan_cost
+= delta
;
5476 * Try and locate an idle core/thread in the LLC cache domain.
5478 static int select_idle_sibling(struct task_struct
*p
, int prev
, int target
)
5480 struct sched_domain
*sd
;
5483 if (idle_cpu(target
))
5487 * If the previous cpu is cache affine and idle, don't be stupid.
5489 if (prev
!= target
&& cpus_share_cache(prev
, target
) && idle_cpu(prev
))
5492 sd
= rcu_dereference(per_cpu(sd_llc
, target
));
5496 i
= select_idle_core(p
, sd
, target
);
5497 if ((unsigned)i
< nr_cpumask_bits
)
5500 i
= select_idle_cpu(p
, sd
, target
);
5501 if ((unsigned)i
< nr_cpumask_bits
)
5504 i
= select_idle_smt(p
, sd
, target
);
5505 if ((unsigned)i
< nr_cpumask_bits
)
5512 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5513 * tasks. The unit of the return value must be the one of capacity so we can
5514 * compare the utilization with the capacity of the CPU that is available for
5515 * CFS task (ie cpu_capacity).
5517 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5518 * recent utilization of currently non-runnable tasks on a CPU. It represents
5519 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5520 * capacity_orig is the cpu_capacity available at the highest frequency
5521 * (arch_scale_freq_capacity()).
5522 * The utilization of a CPU converges towards a sum equal to or less than the
5523 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5524 * the running time on this CPU scaled by capacity_curr.
5526 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5527 * higher than capacity_orig because of unfortunate rounding in
5528 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5529 * the average stabilizes with the new running time. We need to check that the
5530 * utilization stays within the range of [0..capacity_orig] and cap it if
5531 * necessary. Without utilization capping, a group could be seen as overloaded
5532 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5533 * available capacity. We allow utilization to overshoot capacity_curr (but not
5534 * capacity_orig) as it useful for predicting the capacity required after task
5535 * migrations (scheduler-driven DVFS).
5537 static int cpu_util(int cpu
)
5539 unsigned long util
= cpu_rq(cpu
)->cfs
.avg
.util_avg
;
5540 unsigned long capacity
= capacity_orig_of(cpu
);
5542 return (util
>= capacity
) ? capacity
: util
;
5545 static inline int task_util(struct task_struct
*p
)
5547 return p
->se
.avg
.util_avg
;
5551 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5552 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5554 * In that case WAKE_AFFINE doesn't make sense and we'll let
5555 * BALANCE_WAKE sort things out.
5557 static int wake_cap(struct task_struct
*p
, int cpu
, int prev_cpu
)
5559 long min_cap
, max_cap
;
5561 min_cap
= min(capacity_orig_of(prev_cpu
), capacity_orig_of(cpu
));
5562 max_cap
= cpu_rq(cpu
)->rd
->max_cpu_capacity
;
5564 /* Minimum capacity is close to max, no need to abort wake_affine */
5565 if (max_cap
- min_cap
< max_cap
>> 3)
5568 return min_cap
* 1024 < task_util(p
) * capacity_margin
;
5572 * select_task_rq_fair: Select target runqueue for the waking task in domains
5573 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5574 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5576 * Balances load by selecting the idlest cpu in the idlest group, or under
5577 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5579 * Returns the target cpu number.
5581 * preempt must be disabled.
5584 select_task_rq_fair(struct task_struct
*p
, int prev_cpu
, int sd_flag
, int wake_flags
)
5586 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
5587 int cpu
= smp_processor_id();
5588 int new_cpu
= prev_cpu
;
5589 int want_affine
= 0;
5590 int sync
= wake_flags
& WF_SYNC
;
5592 if (sd_flag
& SD_BALANCE_WAKE
) {
5594 want_affine
= !wake_wide(p
) && !wake_cap(p
, cpu
, prev_cpu
)
5595 && cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
));
5599 for_each_domain(cpu
, tmp
) {
5600 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
5604 * If both cpu and prev_cpu are part of this domain,
5605 * cpu is a valid SD_WAKE_AFFINE target.
5607 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
5608 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
5613 if (tmp
->flags
& sd_flag
)
5615 else if (!want_affine
)
5620 sd
= NULL
; /* Prefer wake_affine over balance flags */
5621 if (cpu
!= prev_cpu
&& wake_affine(affine_sd
, p
, prev_cpu
, sync
))
5626 if (sd_flag
& SD_BALANCE_WAKE
) /* XXX always ? */
5627 new_cpu
= select_idle_sibling(p
, prev_cpu
, new_cpu
);
5630 struct sched_group
*group
;
5633 if (!(sd
->flags
& sd_flag
)) {
5638 group
= find_idlest_group(sd
, p
, cpu
, sd_flag
);
5644 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
5645 if (new_cpu
== -1 || new_cpu
== cpu
) {
5646 /* Now try balancing at a lower domain level of cpu */
5651 /* Now try balancing at a lower domain level of new_cpu */
5653 weight
= sd
->span_weight
;
5655 for_each_domain(cpu
, tmp
) {
5656 if (weight
<= tmp
->span_weight
)
5658 if (tmp
->flags
& sd_flag
)
5661 /* while loop will break here if sd == NULL */
5669 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5670 * cfs_rq_of(p) references at time of call are still valid and identify the
5671 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5673 static void migrate_task_rq_fair(struct task_struct
*p
)
5676 * As blocked tasks retain absolute vruntime the migration needs to
5677 * deal with this by subtracting the old and adding the new
5678 * min_vruntime -- the latter is done by enqueue_entity() when placing
5679 * the task on the new runqueue.
5681 if (p
->state
== TASK_WAKING
) {
5682 struct sched_entity
*se
= &p
->se
;
5683 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
5686 #ifndef CONFIG_64BIT
5687 u64 min_vruntime_copy
;
5690 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
5692 min_vruntime
= cfs_rq
->min_vruntime
;
5693 } while (min_vruntime
!= min_vruntime_copy
);
5695 min_vruntime
= cfs_rq
->min_vruntime
;
5698 se
->vruntime
-= min_vruntime
;
5702 * We are supposed to update the task to "current" time, then its up to date
5703 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5704 * what current time is, so simply throw away the out-of-date time. This
5705 * will result in the wakee task is less decayed, but giving the wakee more
5706 * load sounds not bad.
5708 remove_entity_load_avg(&p
->se
);
5710 /* Tell new CPU we are migrated */
5711 p
->se
.avg
.last_update_time
= 0;
5713 /* We have migrated, no longer consider this task hot */
5714 p
->se
.exec_start
= 0;
5717 static void task_dead_fair(struct task_struct
*p
)
5719 remove_entity_load_avg(&p
->se
);
5721 #endif /* CONFIG_SMP */
5723 static unsigned long
5724 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
5726 unsigned long gran
= sysctl_sched_wakeup_granularity
;
5729 * Since its curr running now, convert the gran from real-time
5730 * to virtual-time in his units.
5732 * By using 'se' instead of 'curr' we penalize light tasks, so
5733 * they get preempted easier. That is, if 'se' < 'curr' then
5734 * the resulting gran will be larger, therefore penalizing the
5735 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5736 * be smaller, again penalizing the lighter task.
5738 * This is especially important for buddies when the leftmost
5739 * task is higher priority than the buddy.
5741 return calc_delta_fair(gran
, se
);
5745 * Should 'se' preempt 'curr'.
5759 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
5761 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
5766 gran
= wakeup_gran(curr
, se
);
5773 static void set_last_buddy(struct sched_entity
*se
)
5775 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
5778 for_each_sched_entity(se
)
5779 cfs_rq_of(se
)->last
= se
;
5782 static void set_next_buddy(struct sched_entity
*se
)
5784 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
5787 for_each_sched_entity(se
)
5788 cfs_rq_of(se
)->next
= se
;
5791 static void set_skip_buddy(struct sched_entity
*se
)
5793 for_each_sched_entity(se
)
5794 cfs_rq_of(se
)->skip
= se
;
5798 * Preempt the current task with a newly woken task if needed:
5800 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
5802 struct task_struct
*curr
= rq
->curr
;
5803 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
5804 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
5805 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
5806 int next_buddy_marked
= 0;
5808 if (unlikely(se
== pse
))
5812 * This is possible from callers such as attach_tasks(), in which we
5813 * unconditionally check_prempt_curr() after an enqueue (which may have
5814 * lead to a throttle). This both saves work and prevents false
5815 * next-buddy nomination below.
5817 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
5820 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
5821 set_next_buddy(pse
);
5822 next_buddy_marked
= 1;
5826 * We can come here with TIF_NEED_RESCHED already set from new task
5829 * Note: this also catches the edge-case of curr being in a throttled
5830 * group (e.g. via set_curr_task), since update_curr() (in the
5831 * enqueue of curr) will have resulted in resched being set. This
5832 * prevents us from potentially nominating it as a false LAST_BUDDY
5835 if (test_tsk_need_resched(curr
))
5838 /* Idle tasks are by definition preempted by non-idle tasks. */
5839 if (unlikely(curr
->policy
== SCHED_IDLE
) &&
5840 likely(p
->policy
!= SCHED_IDLE
))
5844 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5845 * is driven by the tick):
5847 if (unlikely(p
->policy
!= SCHED_NORMAL
) || !sched_feat(WAKEUP_PREEMPTION
))
5850 find_matching_se(&se
, &pse
);
5851 update_curr(cfs_rq_of(se
));
5853 if (wakeup_preempt_entity(se
, pse
) == 1) {
5855 * Bias pick_next to pick the sched entity that is
5856 * triggering this preemption.
5858 if (!next_buddy_marked
)
5859 set_next_buddy(pse
);
5868 * Only set the backward buddy when the current task is still
5869 * on the rq. This can happen when a wakeup gets interleaved
5870 * with schedule on the ->pre_schedule() or idle_balance()
5871 * point, either of which can * drop the rq lock.
5873 * Also, during early boot the idle thread is in the fair class,
5874 * for obvious reasons its a bad idea to schedule back to it.
5876 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
5879 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
5883 static struct task_struct
*
5884 pick_next_task_fair(struct rq
*rq
, struct task_struct
*prev
, struct pin_cookie cookie
)
5886 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
5887 struct sched_entity
*se
;
5888 struct task_struct
*p
;
5892 #ifdef CONFIG_FAIR_GROUP_SCHED
5893 if (!cfs_rq
->nr_running
)
5896 if (prev
->sched_class
!= &fair_sched_class
)
5900 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5901 * likely that a next task is from the same cgroup as the current.
5903 * Therefore attempt to avoid putting and setting the entire cgroup
5904 * hierarchy, only change the part that actually changes.
5908 struct sched_entity
*curr
= cfs_rq
->curr
;
5911 * Since we got here without doing put_prev_entity() we also
5912 * have to consider cfs_rq->curr. If it is still a runnable
5913 * entity, update_curr() will update its vruntime, otherwise
5914 * forget we've ever seen it.
5918 update_curr(cfs_rq
);
5923 * This call to check_cfs_rq_runtime() will do the
5924 * throttle and dequeue its entity in the parent(s).
5925 * Therefore the 'simple' nr_running test will indeed
5928 if (unlikely(check_cfs_rq_runtime(cfs_rq
)))
5932 se
= pick_next_entity(cfs_rq
, curr
);
5933 cfs_rq
= group_cfs_rq(se
);
5939 * Since we haven't yet done put_prev_entity and if the selected task
5940 * is a different task than we started out with, try and touch the
5941 * least amount of cfs_rqs.
5944 struct sched_entity
*pse
= &prev
->se
;
5946 while (!(cfs_rq
= is_same_group(se
, pse
))) {
5947 int se_depth
= se
->depth
;
5948 int pse_depth
= pse
->depth
;
5950 if (se_depth
<= pse_depth
) {
5951 put_prev_entity(cfs_rq_of(pse
), pse
);
5952 pse
= parent_entity(pse
);
5954 if (se_depth
>= pse_depth
) {
5955 set_next_entity(cfs_rq_of(se
), se
);
5956 se
= parent_entity(se
);
5960 put_prev_entity(cfs_rq
, pse
);
5961 set_next_entity(cfs_rq
, se
);
5964 if (hrtick_enabled(rq
))
5965 hrtick_start_fair(rq
, p
);
5972 if (!cfs_rq
->nr_running
)
5975 put_prev_task(rq
, prev
);
5978 se
= pick_next_entity(cfs_rq
, NULL
);
5979 set_next_entity(cfs_rq
, se
);
5980 cfs_rq
= group_cfs_rq(se
);
5985 if (hrtick_enabled(rq
))
5986 hrtick_start_fair(rq
, p
);
5992 * This is OK, because current is on_cpu, which avoids it being picked
5993 * for load-balance and preemption/IRQs are still disabled avoiding
5994 * further scheduler activity on it and we're being very careful to
5995 * re-start the picking loop.
5997 lockdep_unpin_lock(&rq
->lock
, cookie
);
5998 new_tasks
= idle_balance(rq
);
5999 lockdep_repin_lock(&rq
->lock
, cookie
);
6001 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6002 * possible for any higher priority task to appear. In that case we
6003 * must re-start the pick_next_entity() loop.
6015 * Account for a descheduled task:
6017 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
6019 struct sched_entity
*se
= &prev
->se
;
6020 struct cfs_rq
*cfs_rq
;
6022 for_each_sched_entity(se
) {
6023 cfs_rq
= cfs_rq_of(se
);
6024 put_prev_entity(cfs_rq
, se
);
6029 * sched_yield() is very simple
6031 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6033 static void yield_task_fair(struct rq
*rq
)
6035 struct task_struct
*curr
= rq
->curr
;
6036 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
6037 struct sched_entity
*se
= &curr
->se
;
6040 * Are we the only task in the tree?
6042 if (unlikely(rq
->nr_running
== 1))
6045 clear_buddies(cfs_rq
, se
);
6047 if (curr
->policy
!= SCHED_BATCH
) {
6048 update_rq_clock(rq
);
6050 * Update run-time statistics of the 'current'.
6052 update_curr(cfs_rq
);
6054 * Tell update_rq_clock() that we've just updated,
6055 * so we don't do microscopic update in schedule()
6056 * and double the fastpath cost.
6058 rq_clock_skip_update(rq
, true);
6064 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
6066 struct sched_entity
*se
= &p
->se
;
6068 /* throttled hierarchies are not runnable */
6069 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
6072 /* Tell the scheduler that we'd really like pse to run next. */
6075 yield_task_fair(rq
);
6081 /**************************************************
6082 * Fair scheduling class load-balancing methods.
6086 * The purpose of load-balancing is to achieve the same basic fairness the
6087 * per-cpu scheduler provides, namely provide a proportional amount of compute
6088 * time to each task. This is expressed in the following equation:
6090 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6092 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6093 * W_i,0 is defined as:
6095 * W_i,0 = \Sum_j w_i,j (2)
6097 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6098 * is derived from the nice value as per sched_prio_to_weight[].
6100 * The weight average is an exponential decay average of the instantaneous
6103 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6105 * C_i is the compute capacity of cpu i, typically it is the
6106 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6107 * can also include other factors [XXX].
6109 * To achieve this balance we define a measure of imbalance which follows
6110 * directly from (1):
6112 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6114 * We them move tasks around to minimize the imbalance. In the continuous
6115 * function space it is obvious this converges, in the discrete case we get
6116 * a few fun cases generally called infeasible weight scenarios.
6119 * - infeasible weights;
6120 * - local vs global optima in the discrete case. ]
6125 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6126 * for all i,j solution, we create a tree of cpus that follows the hardware
6127 * topology where each level pairs two lower groups (or better). This results
6128 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6129 * tree to only the first of the previous level and we decrease the frequency
6130 * of load-balance at each level inv. proportional to the number of cpus in
6136 * \Sum { --- * --- * 2^i } = O(n) (5)
6138 * `- size of each group
6139 * | | `- number of cpus doing load-balance
6141 * `- sum over all levels
6143 * Coupled with a limit on how many tasks we can migrate every balance pass,
6144 * this makes (5) the runtime complexity of the balancer.
6146 * An important property here is that each CPU is still (indirectly) connected
6147 * to every other cpu in at most O(log n) steps:
6149 * The adjacency matrix of the resulting graph is given by:
6152 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6155 * And you'll find that:
6157 * A^(log_2 n)_i,j != 0 for all i,j (7)
6159 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6160 * The task movement gives a factor of O(m), giving a convergence complexity
6163 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6168 * In order to avoid CPUs going idle while there's still work to do, new idle
6169 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6170 * tree itself instead of relying on other CPUs to bring it work.
6172 * This adds some complexity to both (5) and (8) but it reduces the total idle
6180 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6183 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6188 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6190 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6192 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6195 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6196 * rewrite all of this once again.]
6199 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
6201 enum fbq_type
{ regular
, remote
, all
};
6203 #define LBF_ALL_PINNED 0x01
6204 #define LBF_NEED_BREAK 0x02
6205 #define LBF_DST_PINNED 0x04
6206 #define LBF_SOME_PINNED 0x08
6209 struct sched_domain
*sd
;
6217 struct cpumask
*dst_grpmask
;
6219 enum cpu_idle_type idle
;
6221 /* The set of CPUs under consideration for load-balancing */
6222 struct cpumask
*cpus
;
6227 unsigned int loop_break
;
6228 unsigned int loop_max
;
6230 enum fbq_type fbq_type
;
6231 struct list_head tasks
;
6235 * Is this task likely cache-hot:
6237 static int task_hot(struct task_struct
*p
, struct lb_env
*env
)
6241 lockdep_assert_held(&env
->src_rq
->lock
);
6243 if (p
->sched_class
!= &fair_sched_class
)
6246 if (unlikely(p
->policy
== SCHED_IDLE
))
6250 * Buddy candidates are cache hot:
6252 if (sched_feat(CACHE_HOT_BUDDY
) && env
->dst_rq
->nr_running
&&
6253 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
6254 &p
->se
== cfs_rq_of(&p
->se
)->last
))
6257 if (sysctl_sched_migration_cost
== -1)
6259 if (sysctl_sched_migration_cost
== 0)
6262 delta
= rq_clock_task(env
->src_rq
) - p
->se
.exec_start
;
6264 return delta
< (s64
)sysctl_sched_migration_cost
;
6267 #ifdef CONFIG_NUMA_BALANCING
6269 * Returns 1, if task migration degrades locality
6270 * Returns 0, if task migration improves locality i.e migration preferred.
6271 * Returns -1, if task migration is not affected by locality.
6273 static int migrate_degrades_locality(struct task_struct
*p
, struct lb_env
*env
)
6275 struct numa_group
*numa_group
= rcu_dereference(p
->numa_group
);
6276 unsigned long src_faults
, dst_faults
;
6277 int src_nid
, dst_nid
;
6279 if (!static_branch_likely(&sched_numa_balancing
))
6282 if (!p
->numa_faults
|| !(env
->sd
->flags
& SD_NUMA
))
6285 src_nid
= cpu_to_node(env
->src_cpu
);
6286 dst_nid
= cpu_to_node(env
->dst_cpu
);
6288 if (src_nid
== dst_nid
)
6291 /* Migrating away from the preferred node is always bad. */
6292 if (src_nid
== p
->numa_preferred_nid
) {
6293 if (env
->src_rq
->nr_running
> env
->src_rq
->nr_preferred_running
)
6299 /* Encourage migration to the preferred node. */
6300 if (dst_nid
== p
->numa_preferred_nid
)
6304 src_faults
= group_faults(p
, src_nid
);
6305 dst_faults
= group_faults(p
, dst_nid
);
6307 src_faults
= task_faults(p
, src_nid
);
6308 dst_faults
= task_faults(p
, dst_nid
);
6311 return dst_faults
< src_faults
;
6315 static inline int migrate_degrades_locality(struct task_struct
*p
,
6323 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6326 int can_migrate_task(struct task_struct
*p
, struct lb_env
*env
)
6330 lockdep_assert_held(&env
->src_rq
->lock
);
6333 * We do not migrate tasks that are:
6334 * 1) throttled_lb_pair, or
6335 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6336 * 3) running (obviously), or
6337 * 4) are cache-hot on their current CPU.
6339 if (throttled_lb_pair(task_group(p
), env
->src_cpu
, env
->dst_cpu
))
6342 if (!cpumask_test_cpu(env
->dst_cpu
, tsk_cpus_allowed(p
))) {
6345 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_affine
);
6347 env
->flags
|= LBF_SOME_PINNED
;
6350 * Remember if this task can be migrated to any other cpu in
6351 * our sched_group. We may want to revisit it if we couldn't
6352 * meet load balance goals by pulling other tasks on src_cpu.
6354 * Also avoid computing new_dst_cpu if we have already computed
6355 * one in current iteration.
6357 if (!env
->dst_grpmask
|| (env
->flags
& LBF_DST_PINNED
))
6360 /* Prevent to re-select dst_cpu via env's cpus */
6361 for_each_cpu_and(cpu
, env
->dst_grpmask
, env
->cpus
) {
6362 if (cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
))) {
6363 env
->flags
|= LBF_DST_PINNED
;
6364 env
->new_dst_cpu
= cpu
;
6372 /* Record that we found atleast one task that could run on dst_cpu */
6373 env
->flags
&= ~LBF_ALL_PINNED
;
6375 if (task_running(env
->src_rq
, p
)) {
6376 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_running
);
6381 * Aggressive migration if:
6382 * 1) destination numa is preferred
6383 * 2) task is cache cold, or
6384 * 3) too many balance attempts have failed.
6386 tsk_cache_hot
= migrate_degrades_locality(p
, env
);
6387 if (tsk_cache_hot
== -1)
6388 tsk_cache_hot
= task_hot(p
, env
);
6390 if (tsk_cache_hot
<= 0 ||
6391 env
->sd
->nr_balance_failed
> env
->sd
->cache_nice_tries
) {
6392 if (tsk_cache_hot
== 1) {
6393 schedstat_inc(env
->sd
->lb_hot_gained
[env
->idle
]);
6394 schedstat_inc(p
->se
.statistics
.nr_forced_migrations
);
6399 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_hot
);
6404 * detach_task() -- detach the task for the migration specified in env
6406 static void detach_task(struct task_struct
*p
, struct lb_env
*env
)
6408 lockdep_assert_held(&env
->src_rq
->lock
);
6410 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
6411 deactivate_task(env
->src_rq
, p
, 0);
6412 set_task_cpu(p
, env
->dst_cpu
);
6416 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6417 * part of active balancing operations within "domain".
6419 * Returns a task if successful and NULL otherwise.
6421 static struct task_struct
*detach_one_task(struct lb_env
*env
)
6423 struct task_struct
*p
, *n
;
6425 lockdep_assert_held(&env
->src_rq
->lock
);
6427 list_for_each_entry_safe(p
, n
, &env
->src_rq
->cfs_tasks
, se
.group_node
) {
6428 if (!can_migrate_task(p
, env
))
6431 detach_task(p
, env
);
6434 * Right now, this is only the second place where
6435 * lb_gained[env->idle] is updated (other is detach_tasks)
6436 * so we can safely collect stats here rather than
6437 * inside detach_tasks().
6439 schedstat_inc(env
->sd
->lb_gained
[env
->idle
]);
6445 static const unsigned int sched_nr_migrate_break
= 32;
6448 * detach_tasks() -- tries to detach up to imbalance weighted load from
6449 * busiest_rq, as part of a balancing operation within domain "sd".
6451 * Returns number of detached tasks if successful and 0 otherwise.
6453 static int detach_tasks(struct lb_env
*env
)
6455 struct list_head
*tasks
= &env
->src_rq
->cfs_tasks
;
6456 struct task_struct
*p
;
6460 lockdep_assert_held(&env
->src_rq
->lock
);
6462 if (env
->imbalance
<= 0)
6465 while (!list_empty(tasks
)) {
6467 * We don't want to steal all, otherwise we may be treated likewise,
6468 * which could at worst lead to a livelock crash.
6470 if (env
->idle
!= CPU_NOT_IDLE
&& env
->src_rq
->nr_running
<= 1)
6473 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
6476 /* We've more or less seen every task there is, call it quits */
6477 if (env
->loop
> env
->loop_max
)
6480 /* take a breather every nr_migrate tasks */
6481 if (env
->loop
> env
->loop_break
) {
6482 env
->loop_break
+= sched_nr_migrate_break
;
6483 env
->flags
|= LBF_NEED_BREAK
;
6487 if (!can_migrate_task(p
, env
))
6490 load
= task_h_load(p
);
6492 if (sched_feat(LB_MIN
) && load
< 16 && !env
->sd
->nr_balance_failed
)
6495 if ((load
/ 2) > env
->imbalance
)
6498 detach_task(p
, env
);
6499 list_add(&p
->se
.group_node
, &env
->tasks
);
6502 env
->imbalance
-= load
;
6504 #ifdef CONFIG_PREEMPT
6506 * NEWIDLE balancing is a source of latency, so preemptible
6507 * kernels will stop after the first task is detached to minimize
6508 * the critical section.
6510 if (env
->idle
== CPU_NEWLY_IDLE
)
6515 * We only want to steal up to the prescribed amount of
6518 if (env
->imbalance
<= 0)
6523 list_move_tail(&p
->se
.group_node
, tasks
);
6527 * Right now, this is one of only two places we collect this stat
6528 * so we can safely collect detach_one_task() stats here rather
6529 * than inside detach_one_task().
6531 schedstat_add(env
->sd
->lb_gained
[env
->idle
], detached
);
6537 * attach_task() -- attach the task detached by detach_task() to its new rq.
6539 static void attach_task(struct rq
*rq
, struct task_struct
*p
)
6541 lockdep_assert_held(&rq
->lock
);
6543 BUG_ON(task_rq(p
) != rq
);
6544 activate_task(rq
, p
, 0);
6545 p
->on_rq
= TASK_ON_RQ_QUEUED
;
6546 check_preempt_curr(rq
, p
, 0);
6550 * attach_one_task() -- attaches the task returned from detach_one_task() to
6553 static void attach_one_task(struct rq
*rq
, struct task_struct
*p
)
6555 raw_spin_lock(&rq
->lock
);
6557 raw_spin_unlock(&rq
->lock
);
6561 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6564 static void attach_tasks(struct lb_env
*env
)
6566 struct list_head
*tasks
= &env
->tasks
;
6567 struct task_struct
*p
;
6569 raw_spin_lock(&env
->dst_rq
->lock
);
6571 while (!list_empty(tasks
)) {
6572 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
6573 list_del_init(&p
->se
.group_node
);
6575 attach_task(env
->dst_rq
, p
);
6578 raw_spin_unlock(&env
->dst_rq
->lock
);
6581 #ifdef CONFIG_FAIR_GROUP_SCHED
6582 static void update_blocked_averages(int cpu
)
6584 struct rq
*rq
= cpu_rq(cpu
);
6585 struct cfs_rq
*cfs_rq
;
6586 unsigned long flags
;
6588 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6589 update_rq_clock(rq
);
6592 * Iterates the task_group tree in a bottom up fashion, see
6593 * list_add_leaf_cfs_rq() for details.
6595 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
6596 /* throttled entities do not contribute to load */
6597 if (throttled_hierarchy(cfs_rq
))
6600 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq
), cfs_rq
, true))
6601 update_tg_load_avg(cfs_rq
, 0);
6603 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6607 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6608 * This needs to be done in a top-down fashion because the load of a child
6609 * group is a fraction of its parents load.
6611 static void update_cfs_rq_h_load(struct cfs_rq
*cfs_rq
)
6613 struct rq
*rq
= rq_of(cfs_rq
);
6614 struct sched_entity
*se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
6615 unsigned long now
= jiffies
;
6618 if (cfs_rq
->last_h_load_update
== now
)
6621 cfs_rq
->h_load_next
= NULL
;
6622 for_each_sched_entity(se
) {
6623 cfs_rq
= cfs_rq_of(se
);
6624 cfs_rq
->h_load_next
= se
;
6625 if (cfs_rq
->last_h_load_update
== now
)
6630 cfs_rq
->h_load
= cfs_rq_load_avg(cfs_rq
);
6631 cfs_rq
->last_h_load_update
= now
;
6634 while ((se
= cfs_rq
->h_load_next
) != NULL
) {
6635 load
= cfs_rq
->h_load
;
6636 load
= div64_ul(load
* se
->avg
.load_avg
,
6637 cfs_rq_load_avg(cfs_rq
) + 1);
6638 cfs_rq
= group_cfs_rq(se
);
6639 cfs_rq
->h_load
= load
;
6640 cfs_rq
->last_h_load_update
= now
;
6644 static unsigned long task_h_load(struct task_struct
*p
)
6646 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
6648 update_cfs_rq_h_load(cfs_rq
);
6649 return div64_ul(p
->se
.avg
.load_avg
* cfs_rq
->h_load
,
6650 cfs_rq_load_avg(cfs_rq
) + 1);
6653 static inline void update_blocked_averages(int cpu
)
6655 struct rq
*rq
= cpu_rq(cpu
);
6656 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
6657 unsigned long flags
;
6659 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6660 update_rq_clock(rq
);
6661 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq
), cfs_rq
, true);
6662 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6665 static unsigned long task_h_load(struct task_struct
*p
)
6667 return p
->se
.avg
.load_avg
;
6671 /********** Helpers for find_busiest_group ************************/
6680 * sg_lb_stats - stats of a sched_group required for load_balancing
6682 struct sg_lb_stats
{
6683 unsigned long avg_load
; /*Avg load across the CPUs of the group */
6684 unsigned long group_load
; /* Total load over the CPUs of the group */
6685 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
6686 unsigned long load_per_task
;
6687 unsigned long group_capacity
;
6688 unsigned long group_util
; /* Total utilization of the group */
6689 unsigned int sum_nr_running
; /* Nr tasks running in the group */
6690 unsigned int idle_cpus
;
6691 unsigned int group_weight
;
6692 enum group_type group_type
;
6693 int group_no_capacity
;
6694 #ifdef CONFIG_NUMA_BALANCING
6695 unsigned int nr_numa_running
;
6696 unsigned int nr_preferred_running
;
6701 * sd_lb_stats - Structure to store the statistics of a sched_domain
6702 * during load balancing.
6704 struct sd_lb_stats
{
6705 struct sched_group
*busiest
; /* Busiest group in this sd */
6706 struct sched_group
*local
; /* Local group in this sd */
6707 unsigned long total_load
; /* Total load of all groups in sd */
6708 unsigned long total_capacity
; /* Total capacity of all groups in sd */
6709 unsigned long avg_load
; /* Average load across all groups in sd */
6711 struct sg_lb_stats busiest_stat
;/* Statistics of the busiest group */
6712 struct sg_lb_stats local_stat
; /* Statistics of the local group */
6715 static inline void init_sd_lb_stats(struct sd_lb_stats
*sds
)
6718 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6719 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6720 * We must however clear busiest_stat::avg_load because
6721 * update_sd_pick_busiest() reads this before assignment.
6723 *sds
= (struct sd_lb_stats
){
6727 .total_capacity
= 0UL,
6730 .sum_nr_running
= 0,
6731 .group_type
= group_other
,
6737 * get_sd_load_idx - Obtain the load index for a given sched domain.
6738 * @sd: The sched_domain whose load_idx is to be obtained.
6739 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6741 * Return: The load index.
6743 static inline int get_sd_load_idx(struct sched_domain
*sd
,
6744 enum cpu_idle_type idle
)
6750 load_idx
= sd
->busy_idx
;
6753 case CPU_NEWLY_IDLE
:
6754 load_idx
= sd
->newidle_idx
;
6757 load_idx
= sd
->idle_idx
;
6764 static unsigned long scale_rt_capacity(int cpu
)
6766 struct rq
*rq
= cpu_rq(cpu
);
6767 u64 total
, used
, age_stamp
, avg
;
6771 * Since we're reading these variables without serialization make sure
6772 * we read them once before doing sanity checks on them.
6774 age_stamp
= READ_ONCE(rq
->age_stamp
);
6775 avg
= READ_ONCE(rq
->rt_avg
);
6776 delta
= __rq_clock_broken(rq
) - age_stamp
;
6778 if (unlikely(delta
< 0))
6781 total
= sched_avg_period() + delta
;
6783 used
= div_u64(avg
, total
);
6785 if (likely(used
< SCHED_CAPACITY_SCALE
))
6786 return SCHED_CAPACITY_SCALE
- used
;
6791 static void update_cpu_capacity(struct sched_domain
*sd
, int cpu
)
6793 unsigned long capacity
= arch_scale_cpu_capacity(sd
, cpu
);
6794 struct sched_group
*sdg
= sd
->groups
;
6796 cpu_rq(cpu
)->cpu_capacity_orig
= capacity
;
6798 capacity
*= scale_rt_capacity(cpu
);
6799 capacity
>>= SCHED_CAPACITY_SHIFT
;
6804 cpu_rq(cpu
)->cpu_capacity
= capacity
;
6805 sdg
->sgc
->capacity
= capacity
;
6808 void update_group_capacity(struct sched_domain
*sd
, int cpu
)
6810 struct sched_domain
*child
= sd
->child
;
6811 struct sched_group
*group
, *sdg
= sd
->groups
;
6812 unsigned long capacity
;
6813 unsigned long interval
;
6815 interval
= msecs_to_jiffies(sd
->balance_interval
);
6816 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
6817 sdg
->sgc
->next_update
= jiffies
+ interval
;
6820 update_cpu_capacity(sd
, cpu
);
6826 if (child
->flags
& SD_OVERLAP
) {
6828 * SD_OVERLAP domains cannot assume that child groups
6829 * span the current group.
6832 for_each_cpu(cpu
, sched_group_cpus(sdg
)) {
6833 struct sched_group_capacity
*sgc
;
6834 struct rq
*rq
= cpu_rq(cpu
);
6837 * build_sched_domains() -> init_sched_groups_capacity()
6838 * gets here before we've attached the domains to the
6841 * Use capacity_of(), which is set irrespective of domains
6842 * in update_cpu_capacity().
6844 * This avoids capacity from being 0 and
6845 * causing divide-by-zero issues on boot.
6847 if (unlikely(!rq
->sd
)) {
6848 capacity
+= capacity_of(cpu
);
6852 sgc
= rq
->sd
->groups
->sgc
;
6853 capacity
+= sgc
->capacity
;
6857 * !SD_OVERLAP domains can assume that child groups
6858 * span the current group.
6861 group
= child
->groups
;
6863 capacity
+= group
->sgc
->capacity
;
6864 group
= group
->next
;
6865 } while (group
!= child
->groups
);
6868 sdg
->sgc
->capacity
= capacity
;
6872 * Check whether the capacity of the rq has been noticeably reduced by side
6873 * activity. The imbalance_pct is used for the threshold.
6874 * Return true is the capacity is reduced
6877 check_cpu_capacity(struct rq
*rq
, struct sched_domain
*sd
)
6879 return ((rq
->cpu_capacity
* sd
->imbalance_pct
) <
6880 (rq
->cpu_capacity_orig
* 100));
6884 * Group imbalance indicates (and tries to solve) the problem where balancing
6885 * groups is inadequate due to tsk_cpus_allowed() constraints.
6887 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6888 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6891 * { 0 1 2 3 } { 4 5 6 7 }
6894 * If we were to balance group-wise we'd place two tasks in the first group and
6895 * two tasks in the second group. Clearly this is undesired as it will overload
6896 * cpu 3 and leave one of the cpus in the second group unused.
6898 * The current solution to this issue is detecting the skew in the first group
6899 * by noticing the lower domain failed to reach balance and had difficulty
6900 * moving tasks due to affinity constraints.
6902 * When this is so detected; this group becomes a candidate for busiest; see
6903 * update_sd_pick_busiest(). And calculate_imbalance() and
6904 * find_busiest_group() avoid some of the usual balance conditions to allow it
6905 * to create an effective group imbalance.
6907 * This is a somewhat tricky proposition since the next run might not find the
6908 * group imbalance and decide the groups need to be balanced again. A most
6909 * subtle and fragile situation.
6912 static inline int sg_imbalanced(struct sched_group
*group
)
6914 return group
->sgc
->imbalance
;
6918 * group_has_capacity returns true if the group has spare capacity that could
6919 * be used by some tasks.
6920 * We consider that a group has spare capacity if the * number of task is
6921 * smaller than the number of CPUs or if the utilization is lower than the
6922 * available capacity for CFS tasks.
6923 * For the latter, we use a threshold to stabilize the state, to take into
6924 * account the variance of the tasks' load and to return true if the available
6925 * capacity in meaningful for the load balancer.
6926 * As an example, an available capacity of 1% can appear but it doesn't make
6927 * any benefit for the load balance.
6930 group_has_capacity(struct lb_env
*env
, struct sg_lb_stats
*sgs
)
6932 if (sgs
->sum_nr_running
< sgs
->group_weight
)
6935 if ((sgs
->group_capacity
* 100) >
6936 (sgs
->group_util
* env
->sd
->imbalance_pct
))
6943 * group_is_overloaded returns true if the group has more tasks than it can
6945 * group_is_overloaded is not equals to !group_has_capacity because a group
6946 * with the exact right number of tasks, has no more spare capacity but is not
6947 * overloaded so both group_has_capacity and group_is_overloaded return
6951 group_is_overloaded(struct lb_env
*env
, struct sg_lb_stats
*sgs
)
6953 if (sgs
->sum_nr_running
<= sgs
->group_weight
)
6956 if ((sgs
->group_capacity
* 100) <
6957 (sgs
->group_util
* env
->sd
->imbalance_pct
))
6964 group_type
group_classify(struct sched_group
*group
,
6965 struct sg_lb_stats
*sgs
)
6967 if (sgs
->group_no_capacity
)
6968 return group_overloaded
;
6970 if (sg_imbalanced(group
))
6971 return group_imbalanced
;
6977 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6978 * @env: The load balancing environment.
6979 * @group: sched_group whose statistics are to be updated.
6980 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6981 * @local_group: Does group contain this_cpu.
6982 * @sgs: variable to hold the statistics for this group.
6983 * @overload: Indicate more than one runnable task for any CPU.
6985 static inline void update_sg_lb_stats(struct lb_env
*env
,
6986 struct sched_group
*group
, int load_idx
,
6987 int local_group
, struct sg_lb_stats
*sgs
,
6993 memset(sgs
, 0, sizeof(*sgs
));
6995 for_each_cpu_and(i
, sched_group_cpus(group
), env
->cpus
) {
6996 struct rq
*rq
= cpu_rq(i
);
6998 /* Bias balancing toward cpus of our domain */
7000 load
= target_load(i
, load_idx
);
7002 load
= source_load(i
, load_idx
);
7004 sgs
->group_load
+= load
;
7005 sgs
->group_util
+= cpu_util(i
);
7006 sgs
->sum_nr_running
+= rq
->cfs
.h_nr_running
;
7008 nr_running
= rq
->nr_running
;
7012 #ifdef CONFIG_NUMA_BALANCING
7013 sgs
->nr_numa_running
+= rq
->nr_numa_running
;
7014 sgs
->nr_preferred_running
+= rq
->nr_preferred_running
;
7016 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
7018 * No need to call idle_cpu() if nr_running is not 0
7020 if (!nr_running
&& idle_cpu(i
))
7024 /* Adjust by relative CPU capacity of the group */
7025 sgs
->group_capacity
= group
->sgc
->capacity
;
7026 sgs
->avg_load
= (sgs
->group_load
*SCHED_CAPACITY_SCALE
) / sgs
->group_capacity
;
7028 if (sgs
->sum_nr_running
)
7029 sgs
->load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
7031 sgs
->group_weight
= group
->group_weight
;
7033 sgs
->group_no_capacity
= group_is_overloaded(env
, sgs
);
7034 sgs
->group_type
= group_classify(group
, sgs
);
7038 * update_sd_pick_busiest - return 1 on busiest group
7039 * @env: The load balancing environment.
7040 * @sds: sched_domain statistics
7041 * @sg: sched_group candidate to be checked for being the busiest
7042 * @sgs: sched_group statistics
7044 * Determine if @sg is a busier group than the previously selected
7047 * Return: %true if @sg is a busier group than the previously selected
7048 * busiest group. %false otherwise.
7050 static bool update_sd_pick_busiest(struct lb_env
*env
,
7051 struct sd_lb_stats
*sds
,
7052 struct sched_group
*sg
,
7053 struct sg_lb_stats
*sgs
)
7055 struct sg_lb_stats
*busiest
= &sds
->busiest_stat
;
7057 if (sgs
->group_type
> busiest
->group_type
)
7060 if (sgs
->group_type
< busiest
->group_type
)
7063 if (sgs
->avg_load
<= busiest
->avg_load
)
7066 /* This is the busiest node in its class. */
7067 if (!(env
->sd
->flags
& SD_ASYM_PACKING
))
7070 /* No ASYM_PACKING if target cpu is already busy */
7071 if (env
->idle
== CPU_NOT_IDLE
)
7074 * ASYM_PACKING needs to move all the work to the lowest
7075 * numbered CPUs in the group, therefore mark all groups
7076 * higher than ourself as busy.
7078 if (sgs
->sum_nr_running
&& env
->dst_cpu
< group_first_cpu(sg
)) {
7082 /* Prefer to move from highest possible cpu's work */
7083 if (group_first_cpu(sds
->busiest
) < group_first_cpu(sg
))
7090 #ifdef CONFIG_NUMA_BALANCING
7091 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
7093 if (sgs
->sum_nr_running
> sgs
->nr_numa_running
)
7095 if (sgs
->sum_nr_running
> sgs
->nr_preferred_running
)
7100 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
7102 if (rq
->nr_running
> rq
->nr_numa_running
)
7104 if (rq
->nr_running
> rq
->nr_preferred_running
)
7109 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
7114 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
7118 #endif /* CONFIG_NUMA_BALANCING */
7121 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7122 * @env: The load balancing environment.
7123 * @sds: variable to hold the statistics for this sched_domain.
7125 static inline void update_sd_lb_stats(struct lb_env
*env
, struct sd_lb_stats
*sds
)
7127 struct sched_domain
*child
= env
->sd
->child
;
7128 struct sched_group
*sg
= env
->sd
->groups
;
7129 struct sg_lb_stats tmp_sgs
;
7130 int load_idx
, prefer_sibling
= 0;
7131 bool overload
= false;
7133 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
7136 load_idx
= get_sd_load_idx(env
->sd
, env
->idle
);
7139 struct sg_lb_stats
*sgs
= &tmp_sgs
;
7142 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_cpus(sg
));
7145 sgs
= &sds
->local_stat
;
7147 if (env
->idle
!= CPU_NEWLY_IDLE
||
7148 time_after_eq(jiffies
, sg
->sgc
->next_update
))
7149 update_group_capacity(env
->sd
, env
->dst_cpu
);
7152 update_sg_lb_stats(env
, sg
, load_idx
, local_group
, sgs
,
7159 * In case the child domain prefers tasks go to siblings
7160 * first, lower the sg capacity so that we'll try
7161 * and move all the excess tasks away. We lower the capacity
7162 * of a group only if the local group has the capacity to fit
7163 * these excess tasks. The extra check prevents the case where
7164 * you always pull from the heaviest group when it is already
7165 * under-utilized (possible with a large weight task outweighs
7166 * the tasks on the system).
7168 if (prefer_sibling
&& sds
->local
&&
7169 group_has_capacity(env
, &sds
->local_stat
) &&
7170 (sgs
->sum_nr_running
> 1)) {
7171 sgs
->group_no_capacity
= 1;
7172 sgs
->group_type
= group_classify(sg
, sgs
);
7175 if (update_sd_pick_busiest(env
, sds
, sg
, sgs
)) {
7177 sds
->busiest_stat
= *sgs
;
7181 /* Now, start updating sd_lb_stats */
7182 sds
->total_load
+= sgs
->group_load
;
7183 sds
->total_capacity
+= sgs
->group_capacity
;
7186 } while (sg
!= env
->sd
->groups
);
7188 if (env
->sd
->flags
& SD_NUMA
)
7189 env
->fbq_type
= fbq_classify_group(&sds
->busiest_stat
);
7191 if (!env
->sd
->parent
) {
7192 /* update overload indicator if we are at root domain */
7193 if (env
->dst_rq
->rd
->overload
!= overload
)
7194 env
->dst_rq
->rd
->overload
= overload
;
7200 * check_asym_packing - Check to see if the group is packed into the
7203 * This is primarily intended to used at the sibling level. Some
7204 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7205 * case of POWER7, it can move to lower SMT modes only when higher
7206 * threads are idle. When in lower SMT modes, the threads will
7207 * perform better since they share less core resources. Hence when we
7208 * have idle threads, we want them to be the higher ones.
7210 * This packing function is run on idle threads. It checks to see if
7211 * the busiest CPU in this domain (core in the P7 case) has a higher
7212 * CPU number than the packing function is being run on. Here we are
7213 * assuming lower CPU number will be equivalent to lower a SMT thread
7216 * Return: 1 when packing is required and a task should be moved to
7217 * this CPU. The amount of the imbalance is returned in *imbalance.
7219 * @env: The load balancing environment.
7220 * @sds: Statistics of the sched_domain which is to be packed
7222 static int check_asym_packing(struct lb_env
*env
, struct sd_lb_stats
*sds
)
7226 if (!(env
->sd
->flags
& SD_ASYM_PACKING
))
7229 if (env
->idle
== CPU_NOT_IDLE
)
7235 busiest_cpu
= group_first_cpu(sds
->busiest
);
7236 if (env
->dst_cpu
> busiest_cpu
)
7239 env
->imbalance
= DIV_ROUND_CLOSEST(
7240 sds
->busiest_stat
.avg_load
* sds
->busiest_stat
.group_capacity
,
7241 SCHED_CAPACITY_SCALE
);
7247 * fix_small_imbalance - Calculate the minor imbalance that exists
7248 * amongst the groups of a sched_domain, during
7250 * @env: The load balancing environment.
7251 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7254 void fix_small_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
7256 unsigned long tmp
, capa_now
= 0, capa_move
= 0;
7257 unsigned int imbn
= 2;
7258 unsigned long scaled_busy_load_per_task
;
7259 struct sg_lb_stats
*local
, *busiest
;
7261 local
= &sds
->local_stat
;
7262 busiest
= &sds
->busiest_stat
;
7264 if (!local
->sum_nr_running
)
7265 local
->load_per_task
= cpu_avg_load_per_task(env
->dst_cpu
);
7266 else if (busiest
->load_per_task
> local
->load_per_task
)
7269 scaled_busy_load_per_task
=
7270 (busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) /
7271 busiest
->group_capacity
;
7273 if (busiest
->avg_load
+ scaled_busy_load_per_task
>=
7274 local
->avg_load
+ (scaled_busy_load_per_task
* imbn
)) {
7275 env
->imbalance
= busiest
->load_per_task
;
7280 * OK, we don't have enough imbalance to justify moving tasks,
7281 * however we may be able to increase total CPU capacity used by
7285 capa_now
+= busiest
->group_capacity
*
7286 min(busiest
->load_per_task
, busiest
->avg_load
);
7287 capa_now
+= local
->group_capacity
*
7288 min(local
->load_per_task
, local
->avg_load
);
7289 capa_now
/= SCHED_CAPACITY_SCALE
;
7291 /* Amount of load we'd subtract */
7292 if (busiest
->avg_load
> scaled_busy_load_per_task
) {
7293 capa_move
+= busiest
->group_capacity
*
7294 min(busiest
->load_per_task
,
7295 busiest
->avg_load
- scaled_busy_load_per_task
);
7298 /* Amount of load we'd add */
7299 if (busiest
->avg_load
* busiest
->group_capacity
<
7300 busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) {
7301 tmp
= (busiest
->avg_load
* busiest
->group_capacity
) /
7302 local
->group_capacity
;
7304 tmp
= (busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) /
7305 local
->group_capacity
;
7307 capa_move
+= local
->group_capacity
*
7308 min(local
->load_per_task
, local
->avg_load
+ tmp
);
7309 capa_move
/= SCHED_CAPACITY_SCALE
;
7311 /* Move if we gain throughput */
7312 if (capa_move
> capa_now
)
7313 env
->imbalance
= busiest
->load_per_task
;
7317 * calculate_imbalance - Calculate the amount of imbalance present within the
7318 * groups of a given sched_domain during load balance.
7319 * @env: load balance environment
7320 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7322 static inline void calculate_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
7324 unsigned long max_pull
, load_above_capacity
= ~0UL;
7325 struct sg_lb_stats
*local
, *busiest
;
7327 local
= &sds
->local_stat
;
7328 busiest
= &sds
->busiest_stat
;
7330 if (busiest
->group_type
== group_imbalanced
) {
7332 * In the group_imb case we cannot rely on group-wide averages
7333 * to ensure cpu-load equilibrium, look at wider averages. XXX
7335 busiest
->load_per_task
=
7336 min(busiest
->load_per_task
, sds
->avg_load
);
7340 * Avg load of busiest sg can be less and avg load of local sg can
7341 * be greater than avg load across all sgs of sd because avg load
7342 * factors in sg capacity and sgs with smaller group_type are
7343 * skipped when updating the busiest sg:
7345 if (busiest
->avg_load
<= sds
->avg_load
||
7346 local
->avg_load
>= sds
->avg_load
) {
7348 return fix_small_imbalance(env
, sds
);
7352 * If there aren't any idle cpus, avoid creating some.
7354 if (busiest
->group_type
== group_overloaded
&&
7355 local
->group_type
== group_overloaded
) {
7356 load_above_capacity
= busiest
->sum_nr_running
* SCHED_CAPACITY_SCALE
;
7357 if (load_above_capacity
> busiest
->group_capacity
) {
7358 load_above_capacity
-= busiest
->group_capacity
;
7359 load_above_capacity
*= scale_load_down(NICE_0_LOAD
);
7360 load_above_capacity
/= busiest
->group_capacity
;
7362 load_above_capacity
= ~0UL;
7366 * We're trying to get all the cpus to the average_load, so we don't
7367 * want to push ourselves above the average load, nor do we wish to
7368 * reduce the max loaded cpu below the average load. At the same time,
7369 * we also don't want to reduce the group load below the group
7370 * capacity. Thus we look for the minimum possible imbalance.
7372 max_pull
= min(busiest
->avg_load
- sds
->avg_load
, load_above_capacity
);
7374 /* How much load to actually move to equalise the imbalance */
7375 env
->imbalance
= min(
7376 max_pull
* busiest
->group_capacity
,
7377 (sds
->avg_load
- local
->avg_load
) * local
->group_capacity
7378 ) / SCHED_CAPACITY_SCALE
;
7381 * if *imbalance is less than the average load per runnable task
7382 * there is no guarantee that any tasks will be moved so we'll have
7383 * a think about bumping its value to force at least one task to be
7386 if (env
->imbalance
< busiest
->load_per_task
)
7387 return fix_small_imbalance(env
, sds
);
7390 /******* find_busiest_group() helpers end here *********************/
7393 * find_busiest_group - Returns the busiest group within the sched_domain
7394 * if there is an imbalance.
7396 * Also calculates the amount of weighted load which should be moved
7397 * to restore balance.
7399 * @env: The load balancing environment.
7401 * Return: - The busiest group if imbalance exists.
7403 static struct sched_group
*find_busiest_group(struct lb_env
*env
)
7405 struct sg_lb_stats
*local
, *busiest
;
7406 struct sd_lb_stats sds
;
7408 init_sd_lb_stats(&sds
);
7411 * Compute the various statistics relavent for load balancing at
7414 update_sd_lb_stats(env
, &sds
);
7415 local
= &sds
.local_stat
;
7416 busiest
= &sds
.busiest_stat
;
7418 /* ASYM feature bypasses nice load balance check */
7419 if (check_asym_packing(env
, &sds
))
7422 /* There is no busy sibling group to pull tasks from */
7423 if (!sds
.busiest
|| busiest
->sum_nr_running
== 0)
7426 sds
.avg_load
= (SCHED_CAPACITY_SCALE
* sds
.total_load
)
7427 / sds
.total_capacity
;
7430 * If the busiest group is imbalanced the below checks don't
7431 * work because they assume all things are equal, which typically
7432 * isn't true due to cpus_allowed constraints and the like.
7434 if (busiest
->group_type
== group_imbalanced
)
7437 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7438 if (env
->idle
== CPU_NEWLY_IDLE
&& group_has_capacity(env
, local
) &&
7439 busiest
->group_no_capacity
)
7443 * If the local group is busier than the selected busiest group
7444 * don't try and pull any tasks.
7446 if (local
->avg_load
>= busiest
->avg_load
)
7450 * Don't pull any tasks if this group is already above the domain
7453 if (local
->avg_load
>= sds
.avg_load
)
7456 if (env
->idle
== CPU_IDLE
) {
7458 * This cpu is idle. If the busiest group is not overloaded
7459 * and there is no imbalance between this and busiest group
7460 * wrt idle cpus, it is balanced. The imbalance becomes
7461 * significant if the diff is greater than 1 otherwise we
7462 * might end up to just move the imbalance on another group
7464 if ((busiest
->group_type
!= group_overloaded
) &&
7465 (local
->idle_cpus
<= (busiest
->idle_cpus
+ 1)))
7469 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7470 * imbalance_pct to be conservative.
7472 if (100 * busiest
->avg_load
<=
7473 env
->sd
->imbalance_pct
* local
->avg_load
)
7478 /* Looks like there is an imbalance. Compute it */
7479 calculate_imbalance(env
, &sds
);
7488 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7490 static struct rq
*find_busiest_queue(struct lb_env
*env
,
7491 struct sched_group
*group
)
7493 struct rq
*busiest
= NULL
, *rq
;
7494 unsigned long busiest_load
= 0, busiest_capacity
= 1;
7497 for_each_cpu_and(i
, sched_group_cpus(group
), env
->cpus
) {
7498 unsigned long capacity
, wl
;
7502 rt
= fbq_classify_rq(rq
);
7505 * We classify groups/runqueues into three groups:
7506 * - regular: there are !numa tasks
7507 * - remote: there are numa tasks that run on the 'wrong' node
7508 * - all: there is no distinction
7510 * In order to avoid migrating ideally placed numa tasks,
7511 * ignore those when there's better options.
7513 * If we ignore the actual busiest queue to migrate another
7514 * task, the next balance pass can still reduce the busiest
7515 * queue by moving tasks around inside the node.
7517 * If we cannot move enough load due to this classification
7518 * the next pass will adjust the group classification and
7519 * allow migration of more tasks.
7521 * Both cases only affect the total convergence complexity.
7523 if (rt
> env
->fbq_type
)
7526 capacity
= capacity_of(i
);
7528 wl
= weighted_cpuload(i
);
7531 * When comparing with imbalance, use weighted_cpuload()
7532 * which is not scaled with the cpu capacity.
7535 if (rq
->nr_running
== 1 && wl
> env
->imbalance
&&
7536 !check_cpu_capacity(rq
, env
->sd
))
7540 * For the load comparisons with the other cpu's, consider
7541 * the weighted_cpuload() scaled with the cpu capacity, so
7542 * that the load can be moved away from the cpu that is
7543 * potentially running at a lower capacity.
7545 * Thus we're looking for max(wl_i / capacity_i), crosswise
7546 * multiplication to rid ourselves of the division works out
7547 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7548 * our previous maximum.
7550 if (wl
* busiest_capacity
> busiest_load
* capacity
) {
7552 busiest_capacity
= capacity
;
7561 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7562 * so long as it is large enough.
7564 #define MAX_PINNED_INTERVAL 512
7566 static int need_active_balance(struct lb_env
*env
)
7568 struct sched_domain
*sd
= env
->sd
;
7570 if (env
->idle
== CPU_NEWLY_IDLE
) {
7573 * ASYM_PACKING needs to force migrate tasks from busy but
7574 * higher numbered CPUs in order to pack all tasks in the
7575 * lowest numbered CPUs.
7577 if ((sd
->flags
& SD_ASYM_PACKING
) && env
->src_cpu
> env
->dst_cpu
)
7582 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7583 * It's worth migrating the task if the src_cpu's capacity is reduced
7584 * because of other sched_class or IRQs if more capacity stays
7585 * available on dst_cpu.
7587 if ((env
->idle
!= CPU_NOT_IDLE
) &&
7588 (env
->src_rq
->cfs
.h_nr_running
== 1)) {
7589 if ((check_cpu_capacity(env
->src_rq
, sd
)) &&
7590 (capacity_of(env
->src_cpu
)*sd
->imbalance_pct
< capacity_of(env
->dst_cpu
)*100))
7594 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
7597 static int active_load_balance_cpu_stop(void *data
);
7599 static int should_we_balance(struct lb_env
*env
)
7601 struct sched_group
*sg
= env
->sd
->groups
;
7602 struct cpumask
*sg_cpus
, *sg_mask
;
7603 int cpu
, balance_cpu
= -1;
7606 * In the newly idle case, we will allow all the cpu's
7607 * to do the newly idle load balance.
7609 if (env
->idle
== CPU_NEWLY_IDLE
)
7612 sg_cpus
= sched_group_cpus(sg
);
7613 sg_mask
= sched_group_mask(sg
);
7614 /* Try to find first idle cpu */
7615 for_each_cpu_and(cpu
, sg_cpus
, env
->cpus
) {
7616 if (!cpumask_test_cpu(cpu
, sg_mask
) || !idle_cpu(cpu
))
7623 if (balance_cpu
== -1)
7624 balance_cpu
= group_balance_cpu(sg
);
7627 * First idle cpu or the first cpu(busiest) in this sched group
7628 * is eligible for doing load balancing at this and above domains.
7630 return balance_cpu
== env
->dst_cpu
;
7634 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7635 * tasks if there is an imbalance.
7637 static int load_balance(int this_cpu
, struct rq
*this_rq
,
7638 struct sched_domain
*sd
, enum cpu_idle_type idle
,
7639 int *continue_balancing
)
7641 int ld_moved
, cur_ld_moved
, active_balance
= 0;
7642 struct sched_domain
*sd_parent
= sd
->parent
;
7643 struct sched_group
*group
;
7645 unsigned long flags
;
7646 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(load_balance_mask
);
7648 struct lb_env env
= {
7650 .dst_cpu
= this_cpu
,
7652 .dst_grpmask
= sched_group_cpus(sd
->groups
),
7654 .loop_break
= sched_nr_migrate_break
,
7657 .tasks
= LIST_HEAD_INIT(env
.tasks
),
7661 * For NEWLY_IDLE load_balancing, we don't need to consider
7662 * other cpus in our group
7664 if (idle
== CPU_NEWLY_IDLE
)
7665 env
.dst_grpmask
= NULL
;
7667 cpumask_copy(cpus
, cpu_active_mask
);
7669 schedstat_inc(sd
->lb_count
[idle
]);
7672 if (!should_we_balance(&env
)) {
7673 *continue_balancing
= 0;
7677 group
= find_busiest_group(&env
);
7679 schedstat_inc(sd
->lb_nobusyg
[idle
]);
7683 busiest
= find_busiest_queue(&env
, group
);
7685 schedstat_inc(sd
->lb_nobusyq
[idle
]);
7689 BUG_ON(busiest
== env
.dst_rq
);
7691 schedstat_add(sd
->lb_imbalance
[idle
], env
.imbalance
);
7693 env
.src_cpu
= busiest
->cpu
;
7694 env
.src_rq
= busiest
;
7697 if (busiest
->nr_running
> 1) {
7699 * Attempt to move tasks. If find_busiest_group has found
7700 * an imbalance but busiest->nr_running <= 1, the group is
7701 * still unbalanced. ld_moved simply stays zero, so it is
7702 * correctly treated as an imbalance.
7704 env
.flags
|= LBF_ALL_PINNED
;
7705 env
.loop_max
= min(sysctl_sched_nr_migrate
, busiest
->nr_running
);
7708 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
7711 * cur_ld_moved - load moved in current iteration
7712 * ld_moved - cumulative load moved across iterations
7714 cur_ld_moved
= detach_tasks(&env
);
7717 * We've detached some tasks from busiest_rq. Every
7718 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7719 * unlock busiest->lock, and we are able to be sure
7720 * that nobody can manipulate the tasks in parallel.
7721 * See task_rq_lock() family for the details.
7724 raw_spin_unlock(&busiest
->lock
);
7728 ld_moved
+= cur_ld_moved
;
7731 local_irq_restore(flags
);
7733 if (env
.flags
& LBF_NEED_BREAK
) {
7734 env
.flags
&= ~LBF_NEED_BREAK
;
7739 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7740 * us and move them to an alternate dst_cpu in our sched_group
7741 * where they can run. The upper limit on how many times we
7742 * iterate on same src_cpu is dependent on number of cpus in our
7745 * This changes load balance semantics a bit on who can move
7746 * load to a given_cpu. In addition to the given_cpu itself
7747 * (or a ilb_cpu acting on its behalf where given_cpu is
7748 * nohz-idle), we now have balance_cpu in a position to move
7749 * load to given_cpu. In rare situations, this may cause
7750 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7751 * _independently_ and at _same_ time to move some load to
7752 * given_cpu) causing exceess load to be moved to given_cpu.
7753 * This however should not happen so much in practice and
7754 * moreover subsequent load balance cycles should correct the
7755 * excess load moved.
7757 if ((env
.flags
& LBF_DST_PINNED
) && env
.imbalance
> 0) {
7759 /* Prevent to re-select dst_cpu via env's cpus */
7760 cpumask_clear_cpu(env
.dst_cpu
, env
.cpus
);
7762 env
.dst_rq
= cpu_rq(env
.new_dst_cpu
);
7763 env
.dst_cpu
= env
.new_dst_cpu
;
7764 env
.flags
&= ~LBF_DST_PINNED
;
7766 env
.loop_break
= sched_nr_migrate_break
;
7769 * Go back to "more_balance" rather than "redo" since we
7770 * need to continue with same src_cpu.
7776 * We failed to reach balance because of affinity.
7779 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
7781 if ((env
.flags
& LBF_SOME_PINNED
) && env
.imbalance
> 0)
7782 *group_imbalance
= 1;
7785 /* All tasks on this runqueue were pinned by CPU affinity */
7786 if (unlikely(env
.flags
& LBF_ALL_PINNED
)) {
7787 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
7788 if (!cpumask_empty(cpus
)) {
7790 env
.loop_break
= sched_nr_migrate_break
;
7793 goto out_all_pinned
;
7798 schedstat_inc(sd
->lb_failed
[idle
]);
7800 * Increment the failure counter only on periodic balance.
7801 * We do not want newidle balance, which can be very
7802 * frequent, pollute the failure counter causing
7803 * excessive cache_hot migrations and active balances.
7805 if (idle
!= CPU_NEWLY_IDLE
)
7806 sd
->nr_balance_failed
++;
7808 if (need_active_balance(&env
)) {
7809 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
7811 /* don't kick the active_load_balance_cpu_stop,
7812 * if the curr task on busiest cpu can't be
7815 if (!cpumask_test_cpu(this_cpu
,
7816 tsk_cpus_allowed(busiest
->curr
))) {
7817 raw_spin_unlock_irqrestore(&busiest
->lock
,
7819 env
.flags
|= LBF_ALL_PINNED
;
7820 goto out_one_pinned
;
7824 * ->active_balance synchronizes accesses to
7825 * ->active_balance_work. Once set, it's cleared
7826 * only after active load balance is finished.
7828 if (!busiest
->active_balance
) {
7829 busiest
->active_balance
= 1;
7830 busiest
->push_cpu
= this_cpu
;
7833 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
7835 if (active_balance
) {
7836 stop_one_cpu_nowait(cpu_of(busiest
),
7837 active_load_balance_cpu_stop
, busiest
,
7838 &busiest
->active_balance_work
);
7841 /* We've kicked active balancing, force task migration. */
7842 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
7845 sd
->nr_balance_failed
= 0;
7847 if (likely(!active_balance
)) {
7848 /* We were unbalanced, so reset the balancing interval */
7849 sd
->balance_interval
= sd
->min_interval
;
7852 * If we've begun active balancing, start to back off. This
7853 * case may not be covered by the all_pinned logic if there
7854 * is only 1 task on the busy runqueue (because we don't call
7857 if (sd
->balance_interval
< sd
->max_interval
)
7858 sd
->balance_interval
*= 2;
7865 * We reach balance although we may have faced some affinity
7866 * constraints. Clear the imbalance flag if it was set.
7869 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
7871 if (*group_imbalance
)
7872 *group_imbalance
= 0;
7877 * We reach balance because all tasks are pinned at this level so
7878 * we can't migrate them. Let the imbalance flag set so parent level
7879 * can try to migrate them.
7881 schedstat_inc(sd
->lb_balanced
[idle
]);
7883 sd
->nr_balance_failed
= 0;
7886 /* tune up the balancing interval */
7887 if (((env
.flags
& LBF_ALL_PINNED
) &&
7888 sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
7889 (sd
->balance_interval
< sd
->max_interval
))
7890 sd
->balance_interval
*= 2;
7897 static inline unsigned long
7898 get_sd_balance_interval(struct sched_domain
*sd
, int cpu_busy
)
7900 unsigned long interval
= sd
->balance_interval
;
7903 interval
*= sd
->busy_factor
;
7905 /* scale ms to jiffies */
7906 interval
= msecs_to_jiffies(interval
);
7907 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
7913 update_next_balance(struct sched_domain
*sd
, unsigned long *next_balance
)
7915 unsigned long interval
, next
;
7917 /* used by idle balance, so cpu_busy = 0 */
7918 interval
= get_sd_balance_interval(sd
, 0);
7919 next
= sd
->last_balance
+ interval
;
7921 if (time_after(*next_balance
, next
))
7922 *next_balance
= next
;
7926 * idle_balance is called by schedule() if this_cpu is about to become
7927 * idle. Attempts to pull tasks from other CPUs.
7929 static int idle_balance(struct rq
*this_rq
)
7931 unsigned long next_balance
= jiffies
+ HZ
;
7932 int this_cpu
= this_rq
->cpu
;
7933 struct sched_domain
*sd
;
7934 int pulled_task
= 0;
7938 * We must set idle_stamp _before_ calling idle_balance(), such that we
7939 * measure the duration of idle_balance() as idle time.
7941 this_rq
->idle_stamp
= rq_clock(this_rq
);
7943 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
||
7944 !this_rq
->rd
->overload
) {
7946 sd
= rcu_dereference_check_sched_domain(this_rq
->sd
);
7948 update_next_balance(sd
, &next_balance
);
7954 raw_spin_unlock(&this_rq
->lock
);
7956 update_blocked_averages(this_cpu
);
7958 for_each_domain(this_cpu
, sd
) {
7959 int continue_balancing
= 1;
7960 u64 t0
, domain_cost
;
7962 if (!(sd
->flags
& SD_LOAD_BALANCE
))
7965 if (this_rq
->avg_idle
< curr_cost
+ sd
->max_newidle_lb_cost
) {
7966 update_next_balance(sd
, &next_balance
);
7970 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
7971 t0
= sched_clock_cpu(this_cpu
);
7973 pulled_task
= load_balance(this_cpu
, this_rq
,
7975 &continue_balancing
);
7977 domain_cost
= sched_clock_cpu(this_cpu
) - t0
;
7978 if (domain_cost
> sd
->max_newidle_lb_cost
)
7979 sd
->max_newidle_lb_cost
= domain_cost
;
7981 curr_cost
+= domain_cost
;
7984 update_next_balance(sd
, &next_balance
);
7987 * Stop searching for tasks to pull if there are
7988 * now runnable tasks on this rq.
7990 if (pulled_task
|| this_rq
->nr_running
> 0)
7995 raw_spin_lock(&this_rq
->lock
);
7997 if (curr_cost
> this_rq
->max_idle_balance_cost
)
7998 this_rq
->max_idle_balance_cost
= curr_cost
;
8001 * While browsing the domains, we released the rq lock, a task could
8002 * have been enqueued in the meantime. Since we're not going idle,
8003 * pretend we pulled a task.
8005 if (this_rq
->cfs
.h_nr_running
&& !pulled_task
)
8009 /* Move the next balance forward */
8010 if (time_after(this_rq
->next_balance
, next_balance
))
8011 this_rq
->next_balance
= next_balance
;
8013 /* Is there a task of a high priority class? */
8014 if (this_rq
->nr_running
!= this_rq
->cfs
.h_nr_running
)
8018 this_rq
->idle_stamp
= 0;
8024 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8025 * running tasks off the busiest CPU onto idle CPUs. It requires at
8026 * least 1 task to be running on each physical CPU where possible, and
8027 * avoids physical / logical imbalances.
8029 static int active_load_balance_cpu_stop(void *data
)
8031 struct rq
*busiest_rq
= data
;
8032 int busiest_cpu
= cpu_of(busiest_rq
);
8033 int target_cpu
= busiest_rq
->push_cpu
;
8034 struct rq
*target_rq
= cpu_rq(target_cpu
);
8035 struct sched_domain
*sd
;
8036 struct task_struct
*p
= NULL
;
8038 raw_spin_lock_irq(&busiest_rq
->lock
);
8040 /* make sure the requested cpu hasn't gone down in the meantime */
8041 if (unlikely(busiest_cpu
!= smp_processor_id() ||
8042 !busiest_rq
->active_balance
))
8045 /* Is there any task to move? */
8046 if (busiest_rq
->nr_running
<= 1)
8050 * This condition is "impossible", if it occurs
8051 * we need to fix it. Originally reported by
8052 * Bjorn Helgaas on a 128-cpu setup.
8054 BUG_ON(busiest_rq
== target_rq
);
8056 /* Search for an sd spanning us and the target CPU. */
8058 for_each_domain(target_cpu
, sd
) {
8059 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
8060 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
8065 struct lb_env env
= {
8067 .dst_cpu
= target_cpu
,
8068 .dst_rq
= target_rq
,
8069 .src_cpu
= busiest_rq
->cpu
,
8070 .src_rq
= busiest_rq
,
8074 schedstat_inc(sd
->alb_count
);
8076 p
= detach_one_task(&env
);
8078 schedstat_inc(sd
->alb_pushed
);
8079 /* Active balancing done, reset the failure counter. */
8080 sd
->nr_balance_failed
= 0;
8082 schedstat_inc(sd
->alb_failed
);
8087 busiest_rq
->active_balance
= 0;
8088 raw_spin_unlock(&busiest_rq
->lock
);
8091 attach_one_task(target_rq
, p
);
8098 static inline int on_null_domain(struct rq
*rq
)
8100 return unlikely(!rcu_dereference_sched(rq
->sd
));
8103 #ifdef CONFIG_NO_HZ_COMMON
8105 * idle load balancing details
8106 * - When one of the busy CPUs notice that there may be an idle rebalancing
8107 * needed, they will kick the idle load balancer, which then does idle
8108 * load balancing for all the idle CPUs.
8111 cpumask_var_t idle_cpus_mask
;
8113 unsigned long next_balance
; /* in jiffy units */
8114 } nohz ____cacheline_aligned
;
8116 static inline int find_new_ilb(void)
8118 int ilb
= cpumask_first(nohz
.idle_cpus_mask
);
8120 if (ilb
< nr_cpu_ids
&& idle_cpu(ilb
))
8127 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8128 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8129 * CPU (if there is one).
8131 static void nohz_balancer_kick(void)
8135 nohz
.next_balance
++;
8137 ilb_cpu
= find_new_ilb();
8139 if (ilb_cpu
>= nr_cpu_ids
)
8142 if (test_and_set_bit(NOHZ_BALANCE_KICK
, nohz_flags(ilb_cpu
)))
8145 * Use smp_send_reschedule() instead of resched_cpu().
8146 * This way we generate a sched IPI on the target cpu which
8147 * is idle. And the softirq performing nohz idle load balance
8148 * will be run before returning from the IPI.
8150 smp_send_reschedule(ilb_cpu
);
8154 void nohz_balance_exit_idle(unsigned int cpu
)
8156 if (unlikely(test_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
)))) {
8158 * Completely isolated CPUs don't ever set, so we must test.
8160 if (likely(cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))) {
8161 cpumask_clear_cpu(cpu
, nohz
.idle_cpus_mask
);
8162 atomic_dec(&nohz
.nr_cpus
);
8164 clear_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
));
8168 static inline void set_cpu_sd_state_busy(void)
8170 struct sched_domain
*sd
;
8171 int cpu
= smp_processor_id();
8174 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
8176 if (!sd
|| !sd
->nohz_idle
)
8180 atomic_inc(&sd
->shared
->nr_busy_cpus
);
8185 void set_cpu_sd_state_idle(void)
8187 struct sched_domain
*sd
;
8188 int cpu
= smp_processor_id();
8191 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
8193 if (!sd
|| sd
->nohz_idle
)
8197 atomic_dec(&sd
->shared
->nr_busy_cpus
);
8203 * This routine will record that the cpu is going idle with tick stopped.
8204 * This info will be used in performing idle load balancing in the future.
8206 void nohz_balance_enter_idle(int cpu
)
8209 * If this cpu is going down, then nothing needs to be done.
8211 if (!cpu_active(cpu
))
8214 if (test_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
)))
8218 * If we're a completely isolated CPU, we don't play.
8220 if (on_null_domain(cpu_rq(cpu
)))
8223 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
8224 atomic_inc(&nohz
.nr_cpus
);
8225 set_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
));
8229 static DEFINE_SPINLOCK(balancing
);
8232 * Scale the max load_balance interval with the number of CPUs in the system.
8233 * This trades load-balance latency on larger machines for less cross talk.
8235 void update_max_interval(void)
8237 max_load_balance_interval
= HZ
*num_online_cpus()/10;
8241 * It checks each scheduling domain to see if it is due to be balanced,
8242 * and initiates a balancing operation if so.
8244 * Balancing parameters are set up in init_sched_domains.
8246 static void rebalance_domains(struct rq
*rq
, enum cpu_idle_type idle
)
8248 int continue_balancing
= 1;
8250 unsigned long interval
;
8251 struct sched_domain
*sd
;
8252 /* Earliest time when we have to do rebalance again */
8253 unsigned long next_balance
= jiffies
+ 60*HZ
;
8254 int update_next_balance
= 0;
8255 int need_serialize
, need_decay
= 0;
8258 update_blocked_averages(cpu
);
8261 for_each_domain(cpu
, sd
) {
8263 * Decay the newidle max times here because this is a regular
8264 * visit to all the domains. Decay ~1% per second.
8266 if (time_after(jiffies
, sd
->next_decay_max_lb_cost
)) {
8267 sd
->max_newidle_lb_cost
=
8268 (sd
->max_newidle_lb_cost
* 253) / 256;
8269 sd
->next_decay_max_lb_cost
= jiffies
+ HZ
;
8272 max_cost
+= sd
->max_newidle_lb_cost
;
8274 if (!(sd
->flags
& SD_LOAD_BALANCE
))
8278 * Stop the load balance at this level. There is another
8279 * CPU in our sched group which is doing load balancing more
8282 if (!continue_balancing
) {
8288 interval
= get_sd_balance_interval(sd
, idle
!= CPU_IDLE
);
8290 need_serialize
= sd
->flags
& SD_SERIALIZE
;
8291 if (need_serialize
) {
8292 if (!spin_trylock(&balancing
))
8296 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
8297 if (load_balance(cpu
, rq
, sd
, idle
, &continue_balancing
)) {
8299 * The LBF_DST_PINNED logic could have changed
8300 * env->dst_cpu, so we can't know our idle
8301 * state even if we migrated tasks. Update it.
8303 idle
= idle_cpu(cpu
) ? CPU_IDLE
: CPU_NOT_IDLE
;
8305 sd
->last_balance
= jiffies
;
8306 interval
= get_sd_balance_interval(sd
, idle
!= CPU_IDLE
);
8309 spin_unlock(&balancing
);
8311 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
8312 next_balance
= sd
->last_balance
+ interval
;
8313 update_next_balance
= 1;
8318 * Ensure the rq-wide value also decays but keep it at a
8319 * reasonable floor to avoid funnies with rq->avg_idle.
8321 rq
->max_idle_balance_cost
=
8322 max((u64
)sysctl_sched_migration_cost
, max_cost
);
8327 * next_balance will be updated only when there is a need.
8328 * When the cpu is attached to null domain for ex, it will not be
8331 if (likely(update_next_balance
)) {
8332 rq
->next_balance
= next_balance
;
8334 #ifdef CONFIG_NO_HZ_COMMON
8336 * If this CPU has been elected to perform the nohz idle
8337 * balance. Other idle CPUs have already rebalanced with
8338 * nohz_idle_balance() and nohz.next_balance has been
8339 * updated accordingly. This CPU is now running the idle load
8340 * balance for itself and we need to update the
8341 * nohz.next_balance accordingly.
8343 if ((idle
== CPU_IDLE
) && time_after(nohz
.next_balance
, rq
->next_balance
))
8344 nohz
.next_balance
= rq
->next_balance
;
8349 #ifdef CONFIG_NO_HZ_COMMON
8351 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8352 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8354 static void nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
8356 int this_cpu
= this_rq
->cpu
;
8359 /* Earliest time when we have to do rebalance again */
8360 unsigned long next_balance
= jiffies
+ 60*HZ
;
8361 int update_next_balance
= 0;
8363 if (idle
!= CPU_IDLE
||
8364 !test_bit(NOHZ_BALANCE_KICK
, nohz_flags(this_cpu
)))
8367 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
8368 if (balance_cpu
== this_cpu
|| !idle_cpu(balance_cpu
))
8372 * If this cpu gets work to do, stop the load balancing
8373 * work being done for other cpus. Next load
8374 * balancing owner will pick it up.
8379 rq
= cpu_rq(balance_cpu
);
8382 * If time for next balance is due,
8385 if (time_after_eq(jiffies
, rq
->next_balance
)) {
8386 raw_spin_lock_irq(&rq
->lock
);
8387 update_rq_clock(rq
);
8388 cpu_load_update_idle(rq
);
8389 raw_spin_unlock_irq(&rq
->lock
);
8390 rebalance_domains(rq
, CPU_IDLE
);
8393 if (time_after(next_balance
, rq
->next_balance
)) {
8394 next_balance
= rq
->next_balance
;
8395 update_next_balance
= 1;
8400 * next_balance will be updated only when there is a need.
8401 * When the CPU is attached to null domain for ex, it will not be
8404 if (likely(update_next_balance
))
8405 nohz
.next_balance
= next_balance
;
8407 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(this_cpu
));
8411 * Current heuristic for kicking the idle load balancer in the presence
8412 * of an idle cpu in the system.
8413 * - This rq has more than one task.
8414 * - This rq has at least one CFS task and the capacity of the CPU is
8415 * significantly reduced because of RT tasks or IRQs.
8416 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8417 * multiple busy cpu.
8418 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8419 * domain span are idle.
8421 static inline bool nohz_kick_needed(struct rq
*rq
)
8423 unsigned long now
= jiffies
;
8424 struct sched_domain_shared
*sds
;
8425 struct sched_domain
*sd
;
8426 int nr_busy
, cpu
= rq
->cpu
;
8429 if (unlikely(rq
->idle_balance
))
8433 * We may be recently in ticked or tickless idle mode. At the first
8434 * busy tick after returning from idle, we will update the busy stats.
8436 set_cpu_sd_state_busy();
8437 nohz_balance_exit_idle(cpu
);
8440 * None are in tickless mode and hence no need for NOHZ idle load
8443 if (likely(!atomic_read(&nohz
.nr_cpus
)))
8446 if (time_before(now
, nohz
.next_balance
))
8449 if (rq
->nr_running
>= 2)
8453 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
8456 * XXX: write a coherent comment on why we do this.
8457 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8459 nr_busy
= atomic_read(&sds
->nr_busy_cpus
);
8467 sd
= rcu_dereference(rq
->sd
);
8469 if ((rq
->cfs
.h_nr_running
>= 1) &&
8470 check_cpu_capacity(rq
, sd
)) {
8476 sd
= rcu_dereference(per_cpu(sd_asym
, cpu
));
8477 if (sd
&& (cpumask_first_and(nohz
.idle_cpus_mask
,
8478 sched_domain_span(sd
)) < cpu
)) {
8488 static void nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
) { }
8492 * run_rebalance_domains is triggered when needed from the scheduler tick.
8493 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8495 static __latent_entropy
void run_rebalance_domains(struct softirq_action
*h
)
8497 struct rq
*this_rq
= this_rq();
8498 enum cpu_idle_type idle
= this_rq
->idle_balance
?
8499 CPU_IDLE
: CPU_NOT_IDLE
;
8502 * If this cpu has a pending nohz_balance_kick, then do the
8503 * balancing on behalf of the other idle cpus whose ticks are
8504 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8505 * give the idle cpus a chance to load balance. Else we may
8506 * load balance only within the local sched_domain hierarchy
8507 * and abort nohz_idle_balance altogether if we pull some load.
8509 nohz_idle_balance(this_rq
, idle
);
8510 rebalance_domains(this_rq
, idle
);
8514 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8516 void trigger_load_balance(struct rq
*rq
)
8518 /* Don't need to rebalance while attached to NULL domain */
8519 if (unlikely(on_null_domain(rq
)))
8522 if (time_after_eq(jiffies
, rq
->next_balance
))
8523 raise_softirq(SCHED_SOFTIRQ
);
8524 #ifdef CONFIG_NO_HZ_COMMON
8525 if (nohz_kick_needed(rq
))
8526 nohz_balancer_kick();
8530 static void rq_online_fair(struct rq
*rq
)
8534 update_runtime_enabled(rq
);
8537 static void rq_offline_fair(struct rq
*rq
)
8541 /* Ensure any throttled groups are reachable by pick_next_task */
8542 unthrottle_offline_cfs_rqs(rq
);
8545 #endif /* CONFIG_SMP */
8548 * scheduler tick hitting a task of our scheduling class:
8550 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
8552 struct cfs_rq
*cfs_rq
;
8553 struct sched_entity
*se
= &curr
->se
;
8555 for_each_sched_entity(se
) {
8556 cfs_rq
= cfs_rq_of(se
);
8557 entity_tick(cfs_rq
, se
, queued
);
8560 if (static_branch_unlikely(&sched_numa_balancing
))
8561 task_tick_numa(rq
, curr
);
8565 * called on fork with the child task as argument from the parent's context
8566 * - child not yet on the tasklist
8567 * - preemption disabled
8569 static void task_fork_fair(struct task_struct
*p
)
8571 struct cfs_rq
*cfs_rq
;
8572 struct sched_entity
*se
= &p
->se
, *curr
;
8573 struct rq
*rq
= this_rq();
8575 raw_spin_lock(&rq
->lock
);
8576 update_rq_clock(rq
);
8578 cfs_rq
= task_cfs_rq(current
);
8579 curr
= cfs_rq
->curr
;
8581 update_curr(cfs_rq
);
8582 se
->vruntime
= curr
->vruntime
;
8584 place_entity(cfs_rq
, se
, 1);
8586 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
8588 * Upon rescheduling, sched_class::put_prev_task() will place
8589 * 'current' within the tree based on its new key value.
8591 swap(curr
->vruntime
, se
->vruntime
);
8595 se
->vruntime
-= cfs_rq
->min_vruntime
;
8596 raw_spin_unlock(&rq
->lock
);
8600 * Priority of the task has changed. Check to see if we preempt
8604 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
8606 if (!task_on_rq_queued(p
))
8610 * Reschedule if we are currently running on this runqueue and
8611 * our priority decreased, or if we are not currently running on
8612 * this runqueue and our priority is higher than the current's
8614 if (rq
->curr
== p
) {
8615 if (p
->prio
> oldprio
)
8618 check_preempt_curr(rq
, p
, 0);
8621 static inline bool vruntime_normalized(struct task_struct
*p
)
8623 struct sched_entity
*se
= &p
->se
;
8626 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8627 * the dequeue_entity(.flags=0) will already have normalized the
8634 * When !on_rq, vruntime of the task has usually NOT been normalized.
8635 * But there are some cases where it has already been normalized:
8637 * - A forked child which is waiting for being woken up by
8638 * wake_up_new_task().
8639 * - A task which has been woken up by try_to_wake_up() and
8640 * waiting for actually being woken up by sched_ttwu_pending().
8642 if (!se
->sum_exec_runtime
|| p
->state
== TASK_WAKING
)
8648 static void detach_task_cfs_rq(struct task_struct
*p
)
8650 struct sched_entity
*se
= &p
->se
;
8651 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
8652 u64 now
= cfs_rq_clock_task(cfs_rq
);
8654 if (!vruntime_normalized(p
)) {
8656 * Fix up our vruntime so that the current sleep doesn't
8657 * cause 'unlimited' sleep bonus.
8659 place_entity(cfs_rq
, se
, 0);
8660 se
->vruntime
-= cfs_rq
->min_vruntime
;
8663 /* Catch up with the cfs_rq and remove our load when we leave */
8664 update_cfs_rq_load_avg(now
, cfs_rq
, false);
8665 detach_entity_load_avg(cfs_rq
, se
);
8666 update_tg_load_avg(cfs_rq
, false);
8669 static void attach_task_cfs_rq(struct task_struct
*p
)
8671 struct sched_entity
*se
= &p
->se
;
8672 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
8673 u64 now
= cfs_rq_clock_task(cfs_rq
);
8675 #ifdef CONFIG_FAIR_GROUP_SCHED
8677 * Since the real-depth could have been changed (only FAIR
8678 * class maintain depth value), reset depth properly.
8680 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
8683 /* Synchronize task with its cfs_rq */
8684 update_cfs_rq_load_avg(now
, cfs_rq
, false);
8685 attach_entity_load_avg(cfs_rq
, se
);
8686 update_tg_load_avg(cfs_rq
, false);
8688 if (!vruntime_normalized(p
))
8689 se
->vruntime
+= cfs_rq
->min_vruntime
;
8692 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
8694 detach_task_cfs_rq(p
);
8697 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
8699 attach_task_cfs_rq(p
);
8701 if (task_on_rq_queued(p
)) {
8703 * We were most likely switched from sched_rt, so
8704 * kick off the schedule if running, otherwise just see
8705 * if we can still preempt the current task.
8710 check_preempt_curr(rq
, p
, 0);
8714 /* Account for a task changing its policy or group.
8716 * This routine is mostly called to set cfs_rq->curr field when a task
8717 * migrates between groups/classes.
8719 static void set_curr_task_fair(struct rq
*rq
)
8721 struct sched_entity
*se
= &rq
->curr
->se
;
8723 for_each_sched_entity(se
) {
8724 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
8726 set_next_entity(cfs_rq
, se
);
8727 /* ensure bandwidth has been allocated on our new cfs_rq */
8728 account_cfs_rq_runtime(cfs_rq
, 0);
8732 void init_cfs_rq(struct cfs_rq
*cfs_rq
)
8734 cfs_rq
->tasks_timeline
= RB_ROOT
;
8735 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8736 #ifndef CONFIG_64BIT
8737 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
8740 atomic_long_set(&cfs_rq
->removed_load_avg
, 0);
8741 atomic_long_set(&cfs_rq
->removed_util_avg
, 0);
8745 #ifdef CONFIG_FAIR_GROUP_SCHED
8746 static void task_set_group_fair(struct task_struct
*p
)
8748 struct sched_entity
*se
= &p
->se
;
8750 set_task_rq(p
, task_cpu(p
));
8751 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
8754 static void task_move_group_fair(struct task_struct
*p
)
8756 detach_task_cfs_rq(p
);
8757 set_task_rq(p
, task_cpu(p
));
8760 /* Tell se's cfs_rq has been changed -- migrated */
8761 p
->se
.avg
.last_update_time
= 0;
8763 attach_task_cfs_rq(p
);
8766 static void task_change_group_fair(struct task_struct
*p
, int type
)
8769 case TASK_SET_GROUP
:
8770 task_set_group_fair(p
);
8773 case TASK_MOVE_GROUP
:
8774 task_move_group_fair(p
);
8779 void free_fair_sched_group(struct task_group
*tg
)
8783 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
8785 for_each_possible_cpu(i
) {
8787 kfree(tg
->cfs_rq
[i
]);
8796 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8798 struct sched_entity
*se
;
8799 struct cfs_rq
*cfs_rq
;
8802 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8805 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8809 tg
->shares
= NICE_0_LOAD
;
8811 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
8813 for_each_possible_cpu(i
) {
8814 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8815 GFP_KERNEL
, cpu_to_node(i
));
8819 se
= kzalloc_node(sizeof(struct sched_entity
),
8820 GFP_KERNEL
, cpu_to_node(i
));
8824 init_cfs_rq(cfs_rq
);
8825 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8826 init_entity_runnable_average(se
);
8837 void online_fair_sched_group(struct task_group
*tg
)
8839 struct sched_entity
*se
;
8843 for_each_possible_cpu(i
) {
8847 raw_spin_lock_irq(&rq
->lock
);
8848 post_init_entity_util_avg(se
);
8849 sync_throttle(tg
, i
);
8850 raw_spin_unlock_irq(&rq
->lock
);
8854 void unregister_fair_sched_group(struct task_group
*tg
)
8856 unsigned long flags
;
8860 for_each_possible_cpu(cpu
) {
8862 remove_entity_load_avg(tg
->se
[cpu
]);
8865 * Only empty task groups can be destroyed; so we can speculatively
8866 * check on_list without danger of it being re-added.
8868 if (!tg
->cfs_rq
[cpu
]->on_list
)
8873 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8874 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8875 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8879 void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8880 struct sched_entity
*se
, int cpu
,
8881 struct sched_entity
*parent
)
8883 struct rq
*rq
= cpu_rq(cpu
);
8887 init_cfs_rq_runtime(cfs_rq
);
8889 tg
->cfs_rq
[cpu
] = cfs_rq
;
8892 /* se could be NULL for root_task_group */
8897 se
->cfs_rq
= &rq
->cfs
;
8900 se
->cfs_rq
= parent
->my_q
;
8901 se
->depth
= parent
->depth
+ 1;
8905 /* guarantee group entities always have weight */
8906 update_load_set(&se
->load
, NICE_0_LOAD
);
8907 se
->parent
= parent
;
8910 static DEFINE_MUTEX(shares_mutex
);
8912 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8915 unsigned long flags
;
8918 * We can't change the weight of the root cgroup.
8923 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
8925 mutex_lock(&shares_mutex
);
8926 if (tg
->shares
== shares
)
8929 tg
->shares
= shares
;
8930 for_each_possible_cpu(i
) {
8931 struct rq
*rq
= cpu_rq(i
);
8932 struct sched_entity
*se
;
8935 /* Propagate contribution to hierarchy */
8936 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8938 /* Possible calls to update_curr() need rq clock */
8939 update_rq_clock(rq
);
8940 for_each_sched_entity(se
)
8941 update_cfs_shares(group_cfs_rq(se
));
8942 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8946 mutex_unlock(&shares_mutex
);
8949 #else /* CONFIG_FAIR_GROUP_SCHED */
8951 void free_fair_sched_group(struct task_group
*tg
) { }
8953 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8958 void online_fair_sched_group(struct task_group
*tg
) { }
8960 void unregister_fair_sched_group(struct task_group
*tg
) { }
8962 #endif /* CONFIG_FAIR_GROUP_SCHED */
8965 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
8967 struct sched_entity
*se
= &task
->se
;
8968 unsigned int rr_interval
= 0;
8971 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8974 if (rq
->cfs
.load
.weight
)
8975 rr_interval
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
8981 * All the scheduling class methods:
8983 const struct sched_class fair_sched_class
= {
8984 .next
= &idle_sched_class
,
8985 .enqueue_task
= enqueue_task_fair
,
8986 .dequeue_task
= dequeue_task_fair
,
8987 .yield_task
= yield_task_fair
,
8988 .yield_to_task
= yield_to_task_fair
,
8990 .check_preempt_curr
= check_preempt_wakeup
,
8992 .pick_next_task
= pick_next_task_fair
,
8993 .put_prev_task
= put_prev_task_fair
,
8996 .select_task_rq
= select_task_rq_fair
,
8997 .migrate_task_rq
= migrate_task_rq_fair
,
8999 .rq_online
= rq_online_fair
,
9000 .rq_offline
= rq_offline_fair
,
9002 .task_dead
= task_dead_fair
,
9003 .set_cpus_allowed
= set_cpus_allowed_common
,
9006 .set_curr_task
= set_curr_task_fair
,
9007 .task_tick
= task_tick_fair
,
9008 .task_fork
= task_fork_fair
,
9010 .prio_changed
= prio_changed_fair
,
9011 .switched_from
= switched_from_fair
,
9012 .switched_to
= switched_to_fair
,
9014 .get_rr_interval
= get_rr_interval_fair
,
9016 .update_curr
= update_curr_fair
,
9018 #ifdef CONFIG_FAIR_GROUP_SCHED
9019 .task_change_group
= task_change_group_fair
,
9023 #ifdef CONFIG_SCHED_DEBUG
9024 void print_cfs_stats(struct seq_file
*m
, int cpu
)
9026 struct cfs_rq
*cfs_rq
;
9029 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
9030 print_cfs_rq(m
, cpu
, cfs_rq
);
9034 #ifdef CONFIG_NUMA_BALANCING
9035 void show_numa_stats(struct task_struct
*p
, struct seq_file
*m
)
9038 unsigned long tsf
= 0, tpf
= 0, gsf
= 0, gpf
= 0;
9040 for_each_online_node(node
) {
9041 if (p
->numa_faults
) {
9042 tsf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
9043 tpf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
9045 if (p
->numa_group
) {
9046 gsf
= p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)],
9047 gpf
= p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
9049 print_numa_stats(m
, node
, tsf
, tpf
, gsf
, gpf
);
9052 #endif /* CONFIG_NUMA_BALANCING */
9053 #endif /* CONFIG_SCHED_DEBUG */
9055 __init
void init_sched_fair_class(void)
9058 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
9060 #ifdef CONFIG_NO_HZ_COMMON
9061 nohz
.next_balance
= jiffies
;
9062 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);