2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
24 * Please read Documentation/workqueue.txt for details.
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/nmi.h>
53 #include "workqueue_internal.h"
59 * A bound pool is either associated or disassociated with its CPU.
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 * be executing on any CPU. The pool behaves as an unbound one.
68 * Note that DISASSOCIATED should be flipped only while holding
69 * attach_mutex to avoid changing binding state while
70 * worker_attach_to_pool() is in progress.
72 POOL_MANAGER_ACTIVE
= 1 << 0, /* being managed */
73 POOL_DISASSOCIATED
= 1 << 2, /* cpu can't serve workers */
76 WORKER_DIE
= 1 << 1, /* die die die */
77 WORKER_IDLE
= 1 << 2, /* is idle */
78 WORKER_PREP
= 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE
= 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND
= 1 << 7, /* worker is unbound */
81 WORKER_REBOUND
= 1 << 8, /* worker was rebound */
83 WORKER_NOT_RUNNING
= WORKER_PREP
| WORKER_CPU_INTENSIVE
|
84 WORKER_UNBOUND
| WORKER_REBOUND
,
86 NR_STD_WORKER_POOLS
= 2, /* # standard pools per cpu */
88 UNBOUND_POOL_HASH_ORDER
= 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER
= 6, /* 64 pointers */
91 MAX_IDLE_WORKERS_RATIO
= 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT
= 300 * HZ
, /* keep idle ones for 5 mins */
94 MAYDAY_INITIAL_TIMEOUT
= HZ
/ 100 >= 2 ? HZ
/ 100 : 2,
95 /* call for help after 10ms
97 MAYDAY_INTERVAL
= HZ
/ 10, /* and then every 100ms */
98 CREATE_COOLDOWN
= HZ
, /* time to breath after fail */
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give MIN_NICE.
104 RESCUER_NICE_LEVEL
= MIN_NICE
,
105 HIGHPRI_NICE_LEVEL
= MIN_NICE
,
111 * Structure fields follow one of the following exclusion rules.
113 * I: Modifiable by initialization/destruction paths and read-only for
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
119 * L: pool->lock protected. Access with pool->lock held.
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
126 * A: pool->attach_mutex protected.
128 * PL: wq_pool_mutex protected.
130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
137 * WQ: wq->mutex protected.
139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
141 * MD: wq_mayday_lock protected.
144 /* struct worker is defined in workqueue_internal.h */
147 spinlock_t lock
; /* the pool lock */
148 int cpu
; /* I: the associated cpu */
149 int node
; /* I: the associated node ID */
150 int id
; /* I: pool ID */
151 unsigned int flags
; /* X: flags */
153 unsigned long watchdog_ts
; /* L: watchdog timestamp */
155 struct list_head worklist
; /* L: list of pending works */
156 int nr_workers
; /* L: total number of workers */
158 /* nr_idle includes the ones off idle_list for rebinding */
159 int nr_idle
; /* L: currently idle ones */
161 struct list_head idle_list
; /* X: list of idle workers */
162 struct timer_list idle_timer
; /* L: worker idle timeout */
163 struct timer_list mayday_timer
; /* L: SOS timer for workers */
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash
, BUSY_WORKER_HASH_ORDER
);
167 /* L: hash of busy workers */
169 /* see manage_workers() for details on the two manager mutexes */
170 struct worker
*manager
; /* L: purely informational */
171 struct mutex attach_mutex
; /* attach/detach exclusion */
172 struct list_head workers
; /* A: attached workers */
173 struct completion
*detach_completion
; /* all workers detached */
175 struct ida worker_ida
; /* worker IDs for task name */
177 struct workqueue_attrs
*attrs
; /* I: worker attributes */
178 struct hlist_node hash_node
; /* PL: unbound_pool_hash node */
179 int refcnt
; /* PL: refcnt for unbound pools */
182 * The current concurrency level. As it's likely to be accessed
183 * from other CPUs during try_to_wake_up(), put it in a separate
186 atomic_t nr_running ____cacheline_aligned_in_smp
;
189 * Destruction of pool is sched-RCU protected to allow dereferences
190 * from get_work_pool().
193 } ____cacheline_aligned_in_smp
;
196 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
197 * of work_struct->data are used for flags and the remaining high bits
198 * point to the pwq; thus, pwqs need to be aligned at two's power of the
199 * number of flag bits.
201 struct pool_workqueue
{
202 struct worker_pool
*pool
; /* I: the associated pool */
203 struct workqueue_struct
*wq
; /* I: the owning workqueue */
204 int work_color
; /* L: current color */
205 int flush_color
; /* L: flushing color */
206 int refcnt
; /* L: reference count */
207 int nr_in_flight
[WORK_NR_COLORS
];
208 /* L: nr of in_flight works */
209 int nr_active
; /* L: nr of active works */
210 int max_active
; /* L: max active works */
211 struct list_head delayed_works
; /* L: delayed works */
212 struct list_head pwqs_node
; /* WR: node on wq->pwqs */
213 struct list_head mayday_node
; /* MD: node on wq->maydays */
216 * Release of unbound pwq is punted to system_wq. See put_pwq()
217 * and pwq_unbound_release_workfn() for details. pool_workqueue
218 * itself is also sched-RCU protected so that the first pwq can be
219 * determined without grabbing wq->mutex.
221 struct work_struct unbound_release_work
;
223 } __aligned(1 << WORK_STRUCT_FLAG_BITS
);
226 * Structure used to wait for workqueue flush.
229 struct list_head list
; /* WQ: list of flushers */
230 int flush_color
; /* WQ: flush color waiting for */
231 struct completion done
; /* flush completion */
237 * The externally visible workqueue. It relays the issued work items to
238 * the appropriate worker_pool through its pool_workqueues.
240 struct workqueue_struct
{
241 struct list_head pwqs
; /* WR: all pwqs of this wq */
242 struct list_head list
; /* PR: list of all workqueues */
244 struct mutex mutex
; /* protects this wq */
245 int work_color
; /* WQ: current work color */
246 int flush_color
; /* WQ: current flush color */
247 atomic_t nr_pwqs_to_flush
; /* flush in progress */
248 struct wq_flusher
*first_flusher
; /* WQ: first flusher */
249 struct list_head flusher_queue
; /* WQ: flush waiters */
250 struct list_head flusher_overflow
; /* WQ: flush overflow list */
252 struct list_head maydays
; /* MD: pwqs requesting rescue */
253 struct worker
*rescuer
; /* I: rescue worker */
255 int nr_drainers
; /* WQ: drain in progress */
256 int saved_max_active
; /* WQ: saved pwq max_active */
258 struct workqueue_attrs
*unbound_attrs
; /* PW: only for unbound wqs */
259 struct pool_workqueue
*dfl_pwq
; /* PW: only for unbound wqs */
262 struct wq_device
*wq_dev
; /* I: for sysfs interface */
264 #ifdef CONFIG_LOCKDEP
265 struct lockdep_map lockdep_map
;
267 char name
[WQ_NAME_LEN
]; /* I: workqueue name */
270 * Destruction of workqueue_struct is sched-RCU protected to allow
271 * walking the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned
; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu
*cpu_pwqs
; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu
*numa_pwq_tbl
[]; /* PWR: unbound pwqs indexed by node */
282 static struct kmem_cache
*pwq_cache
;
284 static cpumask_var_t
*wq_numa_possible_cpumask
;
285 /* possible CPUs of each node */
287 static bool wq_disable_numa
;
288 module_param_named(disable_numa
, wq_disable_numa
, bool, 0444);
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient
= IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT
);
292 module_param_named(power_efficient
, wq_power_efficient
, bool, 0444);
294 static bool wq_numa_enabled
; /* unbound NUMA affinity enabled */
296 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
297 static struct workqueue_attrs
*wq_update_unbound_numa_attrs_buf
;
299 static DEFINE_MUTEX(wq_pool_mutex
); /* protects pools and workqueues list */
300 static DEFINE_SPINLOCK(wq_mayday_lock
); /* protects wq->maydays list */
301 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait
); /* wait for manager to go away */
303 static LIST_HEAD(workqueues
); /* PR: list of all workqueues */
304 static bool workqueue_freezing
; /* PL: have wqs started freezing? */
306 /* PL: allowable cpus for unbound wqs and work items */
307 static cpumask_var_t wq_unbound_cpumask
;
309 /* CPU where unbound work was last round robin scheduled from this CPU */
310 static DEFINE_PER_CPU(int, wq_rr_cpu_last
);
313 * Local execution of unbound work items is no longer guaranteed. The
314 * following always forces round-robin CPU selection on unbound work items
315 * to uncover usages which depend on it.
317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318 static bool wq_debug_force_rr_cpu
= true;
320 static bool wq_debug_force_rr_cpu
= false;
322 module_param_named(debug_force_rr_cpu
, wq_debug_force_rr_cpu
, bool, 0644);
324 /* the per-cpu worker pools */
325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool
[NR_STD_WORKER_POOLS
], cpu_worker_pools
);
327 static DEFINE_IDR(worker_pool_idr
); /* PR: idr of all pools */
329 /* PL: hash of all unbound pools keyed by pool->attrs */
330 static DEFINE_HASHTABLE(unbound_pool_hash
, UNBOUND_POOL_HASH_ORDER
);
332 /* I: attributes used when instantiating standard unbound pools on demand */
333 static struct workqueue_attrs
*unbound_std_wq_attrs
[NR_STD_WORKER_POOLS
];
335 /* I: attributes used when instantiating ordered pools on demand */
336 static struct workqueue_attrs
*ordered_wq_attrs
[NR_STD_WORKER_POOLS
];
338 struct workqueue_struct
*system_wq __read_mostly
;
339 EXPORT_SYMBOL(system_wq
);
340 struct workqueue_struct
*system_highpri_wq __read_mostly
;
341 EXPORT_SYMBOL_GPL(system_highpri_wq
);
342 struct workqueue_struct
*system_long_wq __read_mostly
;
343 EXPORT_SYMBOL_GPL(system_long_wq
);
344 struct workqueue_struct
*system_unbound_wq __read_mostly
;
345 EXPORT_SYMBOL_GPL(system_unbound_wq
);
346 struct workqueue_struct
*system_freezable_wq __read_mostly
;
347 EXPORT_SYMBOL_GPL(system_freezable_wq
);
348 struct workqueue_struct
*system_power_efficient_wq __read_mostly
;
349 EXPORT_SYMBOL_GPL(system_power_efficient_wq
);
350 struct workqueue_struct
*system_freezable_power_efficient_wq __read_mostly
;
351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq
);
353 static int worker_thread(void *__worker
);
354 static void workqueue_sysfs_unregister(struct workqueue_struct
*wq
);
356 #define CREATE_TRACE_POINTS
357 #include <trace/events/workqueue.h>
359 #define assert_rcu_or_pool_mutex() \
360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
361 !lockdep_is_held(&wq_pool_mutex), \
362 "sched RCU or wq_pool_mutex should be held")
364 #define assert_rcu_or_wq_mutex(wq) \
365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
366 !lockdep_is_held(&wq->mutex), \
367 "sched RCU or wq->mutex should be held")
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
373 "sched RCU, wq->mutex or wq_pool_mutex should be held")
375 #define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
383 * @pi: integer used for iteration
385 * This must be called either with wq_pool_mutex held or sched RCU read
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
389 * The if/else clause exists only for the lockdep assertion and can be
392 #define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
400 * @pool: worker_pool to iterate workers of
402 * This must be called with @pool->attach_mutex.
404 * The if/else clause exists only for the lockdep assertion and can be
407 #define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
409 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
417 * This must be called either with wq->mutex held or sched RCU read locked.
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
421 * The if/else clause exists only for the lockdep assertion and can be
424 #define for_each_pwq(pwq, wq) \
425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
431 static struct debug_obj_descr work_debug_descr
;
433 static void *work_debug_hint(void *addr
)
435 return ((struct work_struct
*) addr
)->func
;
438 static bool work_is_static_object(void *addr
)
440 struct work_struct
*work
= addr
;
442 return test_bit(WORK_STRUCT_STATIC_BIT
, work_data_bits(work
));
446 * fixup_init is called when:
447 * - an active object is initialized
449 static bool work_fixup_init(void *addr
, enum debug_obj_state state
)
451 struct work_struct
*work
= addr
;
454 case ODEBUG_STATE_ACTIVE
:
455 cancel_work_sync(work
);
456 debug_object_init(work
, &work_debug_descr
);
464 * fixup_free is called when:
465 * - an active object is freed
467 static bool work_fixup_free(void *addr
, enum debug_obj_state state
)
469 struct work_struct
*work
= addr
;
472 case ODEBUG_STATE_ACTIVE
:
473 cancel_work_sync(work
);
474 debug_object_free(work
, &work_debug_descr
);
481 static struct debug_obj_descr work_debug_descr
= {
482 .name
= "work_struct",
483 .debug_hint
= work_debug_hint
,
484 .is_static_object
= work_is_static_object
,
485 .fixup_init
= work_fixup_init
,
486 .fixup_free
= work_fixup_free
,
489 static inline void debug_work_activate(struct work_struct
*work
)
491 debug_object_activate(work
, &work_debug_descr
);
494 static inline void debug_work_deactivate(struct work_struct
*work
)
496 debug_object_deactivate(work
, &work_debug_descr
);
499 void __init_work(struct work_struct
*work
, int onstack
)
502 debug_object_init_on_stack(work
, &work_debug_descr
);
504 debug_object_init(work
, &work_debug_descr
);
506 EXPORT_SYMBOL_GPL(__init_work
);
508 void destroy_work_on_stack(struct work_struct
*work
)
510 debug_object_free(work
, &work_debug_descr
);
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack
);
514 void destroy_delayed_work_on_stack(struct delayed_work
*work
)
516 destroy_timer_on_stack(&work
->timer
);
517 debug_object_free(&work
->work
, &work_debug_descr
);
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack
);
522 static inline void debug_work_activate(struct work_struct
*work
) { }
523 static inline void debug_work_deactivate(struct work_struct
*work
) { }
527 * worker_pool_assign_id - allocate ID and assing it to @pool
528 * @pool: the pool pointer of interest
530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531 * successfully, -errno on failure.
533 static int worker_pool_assign_id(struct worker_pool
*pool
)
537 lockdep_assert_held(&wq_pool_mutex
);
539 ret
= idr_alloc(&worker_pool_idr
, pool
, 0, WORK_OFFQ_POOL_NONE
,
549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550 * @wq: the target workqueue
553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
558 * Return: The unbound pool_workqueue for @node.
560 static struct pool_workqueue
*unbound_pwq_by_node(struct workqueue_struct
*wq
,
563 assert_rcu_or_wq_mutex_or_pool_mutex(wq
);
566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 * delayed item is pending. The plan is to keep CPU -> NODE
568 * mapping valid and stable across CPU on/offlines. Once that
569 * happens, this workaround can be removed.
571 if (unlikely(node
== NUMA_NO_NODE
))
574 return rcu_dereference_raw(wq
->numa_pwq_tbl
[node
]);
577 static unsigned int work_color_to_flags(int color
)
579 return color
<< WORK_STRUCT_COLOR_SHIFT
;
582 static int get_work_color(struct work_struct
*work
)
584 return (*work_data_bits(work
) >> WORK_STRUCT_COLOR_SHIFT
) &
585 ((1 << WORK_STRUCT_COLOR_BITS
) - 1);
588 static int work_next_color(int color
)
590 return (color
+ 1) % WORK_NR_COLORS
;
594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595 * contain the pointer to the queued pwq. Once execution starts, the flag
596 * is cleared and the high bits contain OFFQ flags and pool ID.
598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599 * and clear_work_data() can be used to set the pwq, pool or clear
600 * work->data. These functions should only be called while the work is
601 * owned - ie. while the PENDING bit is set.
603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604 * corresponding to a work. Pool is available once the work has been
605 * queued anywhere after initialization until it is sync canceled. pwq is
606 * available only while the work item is queued.
608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609 * canceled. While being canceled, a work item may have its PENDING set
610 * but stay off timer and worklist for arbitrarily long and nobody should
611 * try to steal the PENDING bit.
613 static inline void set_work_data(struct work_struct
*work
, unsigned long data
,
616 WARN_ON_ONCE(!work_pending(work
));
617 atomic_long_set(&work
->data
, data
| flags
| work_static(work
));
620 static void set_work_pwq(struct work_struct
*work
, struct pool_workqueue
*pwq
,
621 unsigned long extra_flags
)
623 set_work_data(work
, (unsigned long)pwq
,
624 WORK_STRUCT_PENDING
| WORK_STRUCT_PWQ
| extra_flags
);
627 static void set_work_pool_and_keep_pending(struct work_struct
*work
,
630 set_work_data(work
, (unsigned long)pool_id
<< WORK_OFFQ_POOL_SHIFT
,
631 WORK_STRUCT_PENDING
);
634 static void set_work_pool_and_clear_pending(struct work_struct
*work
,
638 * The following wmb is paired with the implied mb in
639 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 * here are visible to and precede any updates by the next PENDING
644 set_work_data(work
, (unsigned long)pool_id
<< WORK_OFFQ_POOL_SHIFT
, 0);
646 * The following mb guarantees that previous clear of a PENDING bit
647 * will not be reordered with any speculative LOADS or STORES from
648 * work->current_func, which is executed afterwards. This possible
649 * reordering can lead to a missed execution on attempt to qeueue
650 * the same @work. E.g. consider this case:
653 * ---------------------------- --------------------------------
655 * 1 STORE event_indicated
656 * 2 queue_work_on() {
657 * 3 test_and_set_bit(PENDING)
658 * 4 } set_..._and_clear_pending() {
659 * 5 set_work_data() # clear bit
661 * 7 work->current_func() {
662 * 8 LOAD event_indicated
665 * Without an explicit full barrier speculative LOAD on line 8 can
666 * be executed before CPU#0 does STORE on line 1. If that happens,
667 * CPU#0 observes the PENDING bit is still set and new execution of
668 * a @work is not queued in a hope, that CPU#1 will eventually
669 * finish the queued @work. Meanwhile CPU#1 does not see
670 * event_indicated is set, because speculative LOAD was executed
671 * before actual STORE.
676 static void clear_work_data(struct work_struct
*work
)
678 smp_wmb(); /* see set_work_pool_and_clear_pending() */
679 set_work_data(work
, WORK_STRUCT_NO_POOL
, 0);
682 static struct pool_workqueue
*get_work_pwq(struct work_struct
*work
)
684 unsigned long data
= atomic_long_read(&work
->data
);
686 if (data
& WORK_STRUCT_PWQ
)
687 return (void *)(data
& WORK_STRUCT_WQ_DATA_MASK
);
693 * get_work_pool - return the worker_pool a given work was associated with
694 * @work: the work item of interest
696 * Pools are created and destroyed under wq_pool_mutex, and allows read
697 * access under sched-RCU read lock. As such, this function should be
698 * called under wq_pool_mutex or with preemption disabled.
700 * All fields of the returned pool are accessible as long as the above
701 * mentioned locking is in effect. If the returned pool needs to be used
702 * beyond the critical section, the caller is responsible for ensuring the
703 * returned pool is and stays online.
705 * Return: The worker_pool @work was last associated with. %NULL if none.
707 static struct worker_pool
*get_work_pool(struct work_struct
*work
)
709 unsigned long data
= atomic_long_read(&work
->data
);
712 assert_rcu_or_pool_mutex();
714 if (data
& WORK_STRUCT_PWQ
)
715 return ((struct pool_workqueue
*)
716 (data
& WORK_STRUCT_WQ_DATA_MASK
))->pool
;
718 pool_id
= data
>> WORK_OFFQ_POOL_SHIFT
;
719 if (pool_id
== WORK_OFFQ_POOL_NONE
)
722 return idr_find(&worker_pool_idr
, pool_id
);
726 * get_work_pool_id - return the worker pool ID a given work is associated with
727 * @work: the work item of interest
729 * Return: The worker_pool ID @work was last associated with.
730 * %WORK_OFFQ_POOL_NONE if none.
732 static int get_work_pool_id(struct work_struct
*work
)
734 unsigned long data
= atomic_long_read(&work
->data
);
736 if (data
& WORK_STRUCT_PWQ
)
737 return ((struct pool_workqueue
*)
738 (data
& WORK_STRUCT_WQ_DATA_MASK
))->pool
->id
;
740 return data
>> WORK_OFFQ_POOL_SHIFT
;
743 static void mark_work_canceling(struct work_struct
*work
)
745 unsigned long pool_id
= get_work_pool_id(work
);
747 pool_id
<<= WORK_OFFQ_POOL_SHIFT
;
748 set_work_data(work
, pool_id
| WORK_OFFQ_CANCELING
, WORK_STRUCT_PENDING
);
751 static bool work_is_canceling(struct work_struct
*work
)
753 unsigned long data
= atomic_long_read(&work
->data
);
755 return !(data
& WORK_STRUCT_PWQ
) && (data
& WORK_OFFQ_CANCELING
);
759 * Policy functions. These define the policies on how the global worker
760 * pools are managed. Unless noted otherwise, these functions assume that
761 * they're being called with pool->lock held.
764 static bool __need_more_worker(struct worker_pool
*pool
)
766 return !atomic_read(&pool
->nr_running
);
770 * Need to wake up a worker? Called from anything but currently
773 * Note that, because unbound workers never contribute to nr_running, this
774 * function will always return %true for unbound pools as long as the
775 * worklist isn't empty.
777 static bool need_more_worker(struct worker_pool
*pool
)
779 return !list_empty(&pool
->worklist
) && __need_more_worker(pool
);
782 /* Can I start working? Called from busy but !running workers. */
783 static bool may_start_working(struct worker_pool
*pool
)
785 return pool
->nr_idle
;
788 /* Do I need to keep working? Called from currently running workers. */
789 static bool keep_working(struct worker_pool
*pool
)
791 return !list_empty(&pool
->worklist
) &&
792 atomic_read(&pool
->nr_running
) <= 1;
795 /* Do we need a new worker? Called from manager. */
796 static bool need_to_create_worker(struct worker_pool
*pool
)
798 return need_more_worker(pool
) && !may_start_working(pool
);
801 /* Do we have too many workers and should some go away? */
802 static bool too_many_workers(struct worker_pool
*pool
)
804 bool managing
= pool
->flags
& POOL_MANAGER_ACTIVE
;
805 int nr_idle
= pool
->nr_idle
+ managing
; /* manager is considered idle */
806 int nr_busy
= pool
->nr_workers
- nr_idle
;
808 return nr_idle
> 2 && (nr_idle
- 2) * MAX_IDLE_WORKERS_RATIO
>= nr_busy
;
815 /* Return the first idle worker. Safe with preemption disabled */
816 static struct worker
*first_idle_worker(struct worker_pool
*pool
)
818 if (unlikely(list_empty(&pool
->idle_list
)))
821 return list_first_entry(&pool
->idle_list
, struct worker
, entry
);
825 * wake_up_worker - wake up an idle worker
826 * @pool: worker pool to wake worker from
828 * Wake up the first idle worker of @pool.
831 * spin_lock_irq(pool->lock).
833 static void wake_up_worker(struct worker_pool
*pool
)
835 struct worker
*worker
= first_idle_worker(pool
);
838 wake_up_process(worker
->task
);
842 * wq_worker_waking_up - a worker is waking up
843 * @task: task waking up
844 * @cpu: CPU @task is waking up to
846 * This function is called during try_to_wake_up() when a worker is
850 * spin_lock_irq(rq->lock)
852 void wq_worker_waking_up(struct task_struct
*task
, int cpu
)
854 struct worker
*worker
= kthread_data(task
);
856 if (!(worker
->flags
& WORKER_NOT_RUNNING
)) {
857 WARN_ON_ONCE(worker
->pool
->cpu
!= cpu
);
858 atomic_inc(&worker
->pool
->nr_running
);
863 * wq_worker_sleeping - a worker is going to sleep
864 * @task: task going to sleep
866 * This function is called during schedule() when a busy worker is
867 * going to sleep. Worker on the same cpu can be woken up by
868 * returning pointer to its task.
871 * spin_lock_irq(rq->lock)
874 * Worker task on @cpu to wake up, %NULL if none.
876 struct task_struct
*wq_worker_sleeping(struct task_struct
*task
)
878 struct worker
*worker
= kthread_data(task
), *to_wakeup
= NULL
;
879 struct worker_pool
*pool
;
882 * Rescuers, which may not have all the fields set up like normal
883 * workers, also reach here, let's not access anything before
884 * checking NOT_RUNNING.
886 if (worker
->flags
& WORKER_NOT_RUNNING
)
891 /* this can only happen on the local cpu */
892 if (WARN_ON_ONCE(pool
->cpu
!= raw_smp_processor_id()))
896 * The counterpart of the following dec_and_test, implied mb,
897 * worklist not empty test sequence is in insert_work().
898 * Please read comment there.
900 * NOT_RUNNING is clear. This means that we're bound to and
901 * running on the local cpu w/ rq lock held and preemption
902 * disabled, which in turn means that none else could be
903 * manipulating idle_list, so dereferencing idle_list without pool
906 if (atomic_dec_and_test(&pool
->nr_running
) &&
907 !list_empty(&pool
->worklist
))
908 to_wakeup
= first_idle_worker(pool
);
909 return to_wakeup
? to_wakeup
->task
: NULL
;
913 * worker_set_flags - set worker flags and adjust nr_running accordingly
915 * @flags: flags to set
917 * Set @flags in @worker->flags and adjust nr_running accordingly.
920 * spin_lock_irq(pool->lock)
922 static inline void worker_set_flags(struct worker
*worker
, unsigned int flags
)
924 struct worker_pool
*pool
= worker
->pool
;
926 WARN_ON_ONCE(worker
->task
!= current
);
928 /* If transitioning into NOT_RUNNING, adjust nr_running. */
929 if ((flags
& WORKER_NOT_RUNNING
) &&
930 !(worker
->flags
& WORKER_NOT_RUNNING
)) {
931 atomic_dec(&pool
->nr_running
);
934 worker
->flags
|= flags
;
938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
940 * @flags: flags to clear
942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
945 * spin_lock_irq(pool->lock)
947 static inline void worker_clr_flags(struct worker
*worker
, unsigned int flags
)
949 struct worker_pool
*pool
= worker
->pool
;
950 unsigned int oflags
= worker
->flags
;
952 WARN_ON_ONCE(worker
->task
!= current
);
954 worker
->flags
&= ~flags
;
957 * If transitioning out of NOT_RUNNING, increment nr_running. Note
958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
959 * of multiple flags, not a single flag.
961 if ((flags
& WORKER_NOT_RUNNING
) && (oflags
& WORKER_NOT_RUNNING
))
962 if (!(worker
->flags
& WORKER_NOT_RUNNING
))
963 atomic_inc(&pool
->nr_running
);
967 * find_worker_executing_work - find worker which is executing a work
968 * @pool: pool of interest
969 * @work: work to find worker for
971 * Find a worker which is executing @work on @pool by searching
972 * @pool->busy_hash which is keyed by the address of @work. For a worker
973 * to match, its current execution should match the address of @work and
974 * its work function. This is to avoid unwanted dependency between
975 * unrelated work executions through a work item being recycled while still
978 * This is a bit tricky. A work item may be freed once its execution
979 * starts and nothing prevents the freed area from being recycled for
980 * another work item. If the same work item address ends up being reused
981 * before the original execution finishes, workqueue will identify the
982 * recycled work item as currently executing and make it wait until the
983 * current execution finishes, introducing an unwanted dependency.
985 * This function checks the work item address and work function to avoid
986 * false positives. Note that this isn't complete as one may construct a
987 * work function which can introduce dependency onto itself through a
988 * recycled work item. Well, if somebody wants to shoot oneself in the
989 * foot that badly, there's only so much we can do, and if such deadlock
990 * actually occurs, it should be easy to locate the culprit work function.
993 * spin_lock_irq(pool->lock).
996 * Pointer to worker which is executing @work if found, %NULL
999 static struct worker
*find_worker_executing_work(struct worker_pool
*pool
,
1000 struct work_struct
*work
)
1002 struct worker
*worker
;
1004 hash_for_each_possible(pool
->busy_hash
, worker
, hentry
,
1005 (unsigned long)work
)
1006 if (worker
->current_work
== work
&&
1007 worker
->current_func
== work
->func
)
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
1017 * @nextp: out parameter for nested worklist walking
1019 * Schedule linked works starting from @work to @head. Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work. This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1028 * spin_lock_irq(pool->lock).
1030 static void move_linked_works(struct work_struct
*work
, struct list_head
*head
,
1031 struct work_struct
**nextp
)
1033 struct work_struct
*n
;
1036 * Linked worklist will always end before the end of the list,
1037 * use NULL for list head.
1039 list_for_each_entry_safe_from(work
, n
, NULL
, entry
) {
1040 list_move_tail(&work
->entry
, head
);
1041 if (!(*work_data_bits(work
) & WORK_STRUCT_LINKED
))
1046 * If we're already inside safe list traversal and have moved
1047 * multiple works to the scheduled queue, the next position
1048 * needs to be updated.
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1058 * Obtain an extra reference on @pwq. The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1061 static void get_pwq(struct pool_workqueue
*pwq
)
1063 lockdep_assert_held(&pwq
->pool
->lock
);
1064 WARN_ON_ONCE(pwq
->refcnt
<= 0);
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1073 * destruction. The caller should be holding the matching pool->lock.
1075 static void put_pwq(struct pool_workqueue
*pwq
)
1077 lockdep_assert_held(&pwq
->pool
->lock
);
1078 if (likely(--pwq
->refcnt
))
1080 if (WARN_ON_ONCE(!(pwq
->wq
->flags
& WQ_UNBOUND
)))
1083 * @pwq can't be released under pool->lock, bounce to
1084 * pwq_unbound_release_workfn(). This never recurses on the same
1085 * pool->lock as this path is taken only for unbound workqueues and
1086 * the release work item is scheduled on a per-cpu workqueue. To
1087 * avoid lockdep warning, unbound pool->locks are given lockdep
1088 * subclass of 1 in get_unbound_pool().
1090 schedule_work(&pwq
->unbound_release_work
);
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1097 * put_pwq() with locking. This function also allows %NULL @pwq.
1099 static void put_pwq_unlocked(struct pool_workqueue
*pwq
)
1103 * As both pwqs and pools are sched-RCU protected, the
1104 * following lock operations are safe.
1106 spin_lock_irq(&pwq
->pool
->lock
);
1108 spin_unlock_irq(&pwq
->pool
->lock
);
1112 static void pwq_activate_delayed_work(struct work_struct
*work
)
1114 struct pool_workqueue
*pwq
= get_work_pwq(work
);
1116 trace_workqueue_activate_work(work
);
1117 if (list_empty(&pwq
->pool
->worklist
))
1118 pwq
->pool
->watchdog_ts
= jiffies
;
1119 move_linked_works(work
, &pwq
->pool
->worklist
, NULL
);
1120 __clear_bit(WORK_STRUCT_DELAYED_BIT
, work_data_bits(work
));
1124 static void pwq_activate_first_delayed(struct pool_workqueue
*pwq
)
1126 struct work_struct
*work
= list_first_entry(&pwq
->delayed_works
,
1127 struct work_struct
, entry
);
1129 pwq_activate_delayed_work(work
);
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
1135 * @color: color of work which left the queue
1137 * A work either has completed or is removed from pending queue,
1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1141 * spin_lock_irq(pool->lock).
1143 static void pwq_dec_nr_in_flight(struct pool_workqueue
*pwq
, int color
)
1145 /* uncolored work items don't participate in flushing or nr_active */
1146 if (color
== WORK_NO_COLOR
)
1149 pwq
->nr_in_flight
[color
]--;
1152 if (!list_empty(&pwq
->delayed_works
)) {
1153 /* one down, submit a delayed one */
1154 if (pwq
->nr_active
< pwq
->max_active
)
1155 pwq_activate_first_delayed(pwq
);
1158 /* is flush in progress and are we at the flushing tip? */
1159 if (likely(pwq
->flush_color
!= color
))
1162 /* are there still in-flight works? */
1163 if (pwq
->nr_in_flight
[color
])
1166 /* this pwq is done, clear flush_color */
1167 pwq
->flush_color
= -1;
1170 * If this was the last pwq, wake up the first flusher. It
1171 * will handle the rest.
1173 if (atomic_dec_and_test(&pwq
->wq
->nr_pwqs_to_flush
))
1174 complete(&pwq
->wq
->first_flusher
->done
);
1180 * try_to_grab_pending - steal work item from worklist and disable irq
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
1183 * @flags: place to store irq state
1185 * Try to grab PENDING bit of @work. This function can handle @work in any
1186 * stable state - idle, on timer or on worklist.
1189 * 1 if @work was pending and we successfully stole PENDING
1190 * 0 if @work was idle and we claimed PENDING
1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192 * -ENOENT if someone else is canceling @work, this state may persist
1193 * for arbitrarily long
1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry. This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1204 * This function is safe to call from any context including IRQ handler.
1206 static int try_to_grab_pending(struct work_struct
*work
, bool is_dwork
,
1207 unsigned long *flags
)
1209 struct worker_pool
*pool
;
1210 struct pool_workqueue
*pwq
;
1212 local_irq_save(*flags
);
1214 /* try to steal the timer if it exists */
1216 struct delayed_work
*dwork
= to_delayed_work(work
);
1219 * dwork->timer is irqsafe. If del_timer() fails, it's
1220 * guaranteed that the timer is not queued anywhere and not
1221 * running on the local CPU.
1223 if (likely(del_timer(&dwork
->timer
)))
1227 /* try to claim PENDING the normal way */
1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
)))
1232 * The queueing is in progress, or it is already queued. Try to
1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1235 pool
= get_work_pool(work
);
1239 spin_lock(&pool
->lock
);
1241 * work->data is guaranteed to point to pwq only while the work
1242 * item is queued on pwq->wq, and both updating work->data to point
1243 * to pwq on queueing and to pool on dequeueing are done under
1244 * pwq->pool->lock. This in turn guarantees that, if work->data
1245 * points to pwq which is associated with a locked pool, the work
1246 * item is currently queued on that pool.
1248 pwq
= get_work_pwq(work
);
1249 if (pwq
&& pwq
->pool
== pool
) {
1250 debug_work_deactivate(work
);
1253 * A delayed work item cannot be grabbed directly because
1254 * it might have linked NO_COLOR work items which, if left
1255 * on the delayed_list, will confuse pwq->nr_active
1256 * management later on and cause stall. Make sure the work
1257 * item is activated before grabbing.
1259 if (*work_data_bits(work
) & WORK_STRUCT_DELAYED
)
1260 pwq_activate_delayed_work(work
);
1262 list_del_init(&work
->entry
);
1263 pwq_dec_nr_in_flight(pwq
, get_work_color(work
));
1265 /* work->data points to pwq iff queued, point to pool */
1266 set_work_pool_and_keep_pending(work
, pool
->id
);
1268 spin_unlock(&pool
->lock
);
1271 spin_unlock(&pool
->lock
);
1273 local_irq_restore(*flags
);
1274 if (work_is_canceling(work
))
1281 * insert_work - insert a work into a pool
1282 * @pwq: pwq @work belongs to
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1288 * work_struct flags.
1291 * spin_lock_irq(pool->lock).
1293 static void insert_work(struct pool_workqueue
*pwq
, struct work_struct
*work
,
1294 struct list_head
*head
, unsigned int extra_flags
)
1296 struct worker_pool
*pool
= pwq
->pool
;
1298 /* we own @work, set data and link */
1299 set_work_pwq(work
, pwq
, extra_flags
);
1300 list_add_tail(&work
->entry
, head
);
1304 * Ensure either wq_worker_sleeping() sees the above
1305 * list_add_tail() or we see zero nr_running to avoid workers lying
1306 * around lazily while there are works to be processed.
1310 if (__need_more_worker(pool
))
1311 wake_up_worker(pool
);
1315 * Test whether @work is being queued from another work executing on the
1318 static bool is_chained_work(struct workqueue_struct
*wq
)
1320 struct worker
*worker
;
1322 worker
= current_wq_worker();
1324 * Return %true iff I'm a worker execuing a work item on @wq. If
1325 * I'm @worker, it's safe to dereference it without locking.
1327 return worker
&& worker
->current_pwq
->wq
== wq
;
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1335 static int wq_select_unbound_cpu(int cpu
)
1337 static bool printed_dbg_warning
;
1340 if (likely(!wq_debug_force_rr_cpu
)) {
1341 if (cpumask_test_cpu(cpu
, wq_unbound_cpumask
))
1343 } else if (!printed_dbg_warning
) {
1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345 printed_dbg_warning
= true;
1348 if (cpumask_empty(wq_unbound_cpumask
))
1351 new_cpu
= __this_cpu_read(wq_rr_cpu_last
);
1352 new_cpu
= cpumask_next_and(new_cpu
, wq_unbound_cpumask
, cpu_online_mask
);
1353 if (unlikely(new_cpu
>= nr_cpu_ids
)) {
1354 new_cpu
= cpumask_first_and(wq_unbound_cpumask
, cpu_online_mask
);
1355 if (unlikely(new_cpu
>= nr_cpu_ids
))
1358 __this_cpu_write(wq_rr_cpu_last
, new_cpu
);
1363 static void __queue_work(int cpu
, struct workqueue_struct
*wq
,
1364 struct work_struct
*work
)
1366 struct pool_workqueue
*pwq
;
1367 struct worker_pool
*last_pool
;
1368 struct list_head
*worklist
;
1369 unsigned int work_flags
;
1370 unsigned int req_cpu
= cpu
;
1373 * While a work item is PENDING && off queue, a task trying to
1374 * steal the PENDING will busy-loop waiting for it to either get
1375 * queued or lose PENDING. Grabbing PENDING and queueing should
1376 * happen with IRQ disabled.
1378 WARN_ON_ONCE(!irqs_disabled());
1380 debug_work_activate(work
);
1382 /* if draining, only works from the same workqueue are allowed */
1383 if (unlikely(wq
->flags
& __WQ_DRAINING
) &&
1384 WARN_ON_ONCE(!is_chained_work(wq
)))
1387 if (req_cpu
== WORK_CPU_UNBOUND
)
1388 cpu
= wq_select_unbound_cpu(raw_smp_processor_id());
1390 /* pwq which will be used unless @work is executing elsewhere */
1391 if (!(wq
->flags
& WQ_UNBOUND
))
1392 pwq
= per_cpu_ptr(wq
->cpu_pwqs
, cpu
);
1394 pwq
= unbound_pwq_by_node(wq
, cpu_to_node(cpu
));
1397 * If @work was previously on a different pool, it might still be
1398 * running there, in which case the work needs to be queued on that
1399 * pool to guarantee non-reentrancy.
1401 last_pool
= get_work_pool(work
);
1402 if (last_pool
&& last_pool
!= pwq
->pool
) {
1403 struct worker
*worker
;
1405 spin_lock(&last_pool
->lock
);
1407 worker
= find_worker_executing_work(last_pool
, work
);
1409 if (worker
&& worker
->current_pwq
->wq
== wq
) {
1410 pwq
= worker
->current_pwq
;
1412 /* meh... not running there, queue here */
1413 spin_unlock(&last_pool
->lock
);
1414 spin_lock(&pwq
->pool
->lock
);
1417 spin_lock(&pwq
->pool
->lock
);
1421 * pwq is determined and locked. For unbound pools, we could have
1422 * raced with pwq release and it could already be dead. If its
1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1424 * without another pwq replacing it in the numa_pwq_tbl or while
1425 * work items are executing on it, so the retrying is guaranteed to
1426 * make forward-progress.
1428 if (unlikely(!pwq
->refcnt
)) {
1429 if (wq
->flags
& WQ_UNBOUND
) {
1430 spin_unlock(&pwq
->pool
->lock
);
1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1439 /* pwq determined, queue */
1440 trace_workqueue_queue_work(req_cpu
, pwq
, work
);
1442 if (WARN_ON(!list_empty(&work
->entry
))) {
1443 spin_unlock(&pwq
->pool
->lock
);
1447 pwq
->nr_in_flight
[pwq
->work_color
]++;
1448 work_flags
= work_color_to_flags(pwq
->work_color
);
1450 if (likely(pwq
->nr_active
< pwq
->max_active
)) {
1451 trace_workqueue_activate_work(work
);
1453 worklist
= &pwq
->pool
->worklist
;
1454 if (list_empty(worklist
))
1455 pwq
->pool
->watchdog_ts
= jiffies
;
1457 work_flags
|= WORK_STRUCT_DELAYED
;
1458 worklist
= &pwq
->delayed_works
;
1461 insert_work(pwq
, work
, worklist
, work_flags
);
1463 spin_unlock(&pwq
->pool
->lock
);
1467 * queue_work_on - queue work on specific cpu
1468 * @cpu: CPU number to execute work on
1469 * @wq: workqueue to use
1470 * @work: work to queue
1472 * We queue the work to a specific CPU, the caller must ensure it
1475 * Return: %false if @work was already on a queue, %true otherwise.
1477 bool queue_work_on(int cpu
, struct workqueue_struct
*wq
,
1478 struct work_struct
*work
)
1481 unsigned long flags
;
1483 local_irq_save(flags
);
1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
))) {
1486 __queue_work(cpu
, wq
, work
);
1490 local_irq_restore(flags
);
1493 EXPORT_SYMBOL(queue_work_on
);
1495 void delayed_work_timer_fn(unsigned long __data
)
1497 struct delayed_work
*dwork
= (struct delayed_work
*)__data
;
1499 /* should have been called from irqsafe timer with irq already off */
1500 __queue_work(dwork
->cpu
, dwork
->wq
, &dwork
->work
);
1502 EXPORT_SYMBOL(delayed_work_timer_fn
);
1504 static void __queue_delayed_work(int cpu
, struct workqueue_struct
*wq
,
1505 struct delayed_work
*dwork
, unsigned long delay
)
1507 struct timer_list
*timer
= &dwork
->timer
;
1508 struct work_struct
*work
= &dwork
->work
;
1511 WARN_ON_ONCE(timer
->function
!= delayed_work_timer_fn
||
1512 timer
->data
!= (unsigned long)dwork
);
1513 WARN_ON_ONCE(timer_pending(timer
));
1514 WARN_ON_ONCE(!list_empty(&work
->entry
));
1517 * If @delay is 0, queue @dwork->work immediately. This is for
1518 * both optimization and correctness. The earliest @timer can
1519 * expire is on the closest next tick and delayed_work users depend
1520 * on that there's no such delay when @delay is 0.
1523 __queue_work(cpu
, wq
, &dwork
->work
);
1527 timer_stats_timer_set_start_info(&dwork
->timer
);
1531 timer
->expires
= jiffies
+ delay
;
1533 if (unlikely(cpu
!= WORK_CPU_UNBOUND
))
1534 add_timer_on(timer
, cpu
);
1540 * queue_delayed_work_on - queue work on specific CPU after delay
1541 * @cpu: CPU number to execute work on
1542 * @wq: workqueue to use
1543 * @dwork: work to queue
1544 * @delay: number of jiffies to wait before queueing
1546 * Return: %false if @work was already on a queue, %true otherwise. If
1547 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1550 bool queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
1551 struct delayed_work
*dwork
, unsigned long delay
)
1553 struct work_struct
*work
= &dwork
->work
;
1555 unsigned long flags
;
1557 /* read the comment in __queue_work() */
1558 local_irq_save(flags
);
1560 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
))) {
1561 __queue_delayed_work(cpu
, wq
, dwork
, delay
);
1565 local_irq_restore(flags
);
1568 EXPORT_SYMBOL(queue_delayed_work_on
);
1571 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1572 * @cpu: CPU number to execute work on
1573 * @wq: workqueue to use
1574 * @dwork: work to queue
1575 * @delay: number of jiffies to wait before queueing
1577 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1578 * modify @dwork's timer so that it expires after @delay. If @delay is
1579 * zero, @work is guaranteed to be scheduled immediately regardless of its
1582 * Return: %false if @dwork was idle and queued, %true if @dwork was
1583 * pending and its timer was modified.
1585 * This function is safe to call from any context including IRQ handler.
1586 * See try_to_grab_pending() for details.
1588 bool mod_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
1589 struct delayed_work
*dwork
, unsigned long delay
)
1591 unsigned long flags
;
1595 ret
= try_to_grab_pending(&dwork
->work
, true, &flags
);
1596 } while (unlikely(ret
== -EAGAIN
));
1598 if (likely(ret
>= 0)) {
1599 __queue_delayed_work(cpu
, wq
, dwork
, delay
);
1600 local_irq_restore(flags
);
1603 /* -ENOENT from try_to_grab_pending() becomes %true */
1606 EXPORT_SYMBOL_GPL(mod_delayed_work_on
);
1609 * worker_enter_idle - enter idle state
1610 * @worker: worker which is entering idle state
1612 * @worker is entering idle state. Update stats and idle timer if
1616 * spin_lock_irq(pool->lock).
1618 static void worker_enter_idle(struct worker
*worker
)
1620 struct worker_pool
*pool
= worker
->pool
;
1622 if (WARN_ON_ONCE(worker
->flags
& WORKER_IDLE
) ||
1623 WARN_ON_ONCE(!list_empty(&worker
->entry
) &&
1624 (worker
->hentry
.next
|| worker
->hentry
.pprev
)))
1627 /* can't use worker_set_flags(), also called from create_worker() */
1628 worker
->flags
|= WORKER_IDLE
;
1630 worker
->last_active
= jiffies
;
1632 /* idle_list is LIFO */
1633 list_add(&worker
->entry
, &pool
->idle_list
);
1635 if (too_many_workers(pool
) && !timer_pending(&pool
->idle_timer
))
1636 mod_timer(&pool
->idle_timer
, jiffies
+ IDLE_WORKER_TIMEOUT
);
1639 * Sanity check nr_running. Because wq_unbind_fn() releases
1640 * pool->lock between setting %WORKER_UNBOUND and zapping
1641 * nr_running, the warning may trigger spuriously. Check iff
1642 * unbind is not in progress.
1644 WARN_ON_ONCE(!(pool
->flags
& POOL_DISASSOCIATED
) &&
1645 pool
->nr_workers
== pool
->nr_idle
&&
1646 atomic_read(&pool
->nr_running
));
1650 * worker_leave_idle - leave idle state
1651 * @worker: worker which is leaving idle state
1653 * @worker is leaving idle state. Update stats.
1656 * spin_lock_irq(pool->lock).
1658 static void worker_leave_idle(struct worker
*worker
)
1660 struct worker_pool
*pool
= worker
->pool
;
1662 if (WARN_ON_ONCE(!(worker
->flags
& WORKER_IDLE
)))
1664 worker_clr_flags(worker
, WORKER_IDLE
);
1666 list_del_init(&worker
->entry
);
1669 static struct worker
*alloc_worker(int node
)
1671 struct worker
*worker
;
1673 worker
= kzalloc_node(sizeof(*worker
), GFP_KERNEL
, node
);
1675 INIT_LIST_HEAD(&worker
->entry
);
1676 INIT_LIST_HEAD(&worker
->scheduled
);
1677 INIT_LIST_HEAD(&worker
->node
);
1678 /* on creation a worker is in !idle && prep state */
1679 worker
->flags
= WORKER_PREP
;
1685 * worker_attach_to_pool() - attach a worker to a pool
1686 * @worker: worker to be attached
1687 * @pool: the target pool
1689 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1690 * cpu-binding of @worker are kept coordinated with the pool across
1693 static void worker_attach_to_pool(struct worker
*worker
,
1694 struct worker_pool
*pool
)
1696 mutex_lock(&pool
->attach_mutex
);
1699 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1700 * online CPUs. It'll be re-applied when any of the CPUs come up.
1702 set_cpus_allowed_ptr(worker
->task
, pool
->attrs
->cpumask
);
1705 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1706 * stable across this function. See the comments above the
1707 * flag definition for details.
1709 if (pool
->flags
& POOL_DISASSOCIATED
)
1710 worker
->flags
|= WORKER_UNBOUND
;
1712 list_add_tail(&worker
->node
, &pool
->workers
);
1714 mutex_unlock(&pool
->attach_mutex
);
1718 * worker_detach_from_pool() - detach a worker from its pool
1719 * @worker: worker which is attached to its pool
1720 * @pool: the pool @worker is attached to
1722 * Undo the attaching which had been done in worker_attach_to_pool(). The
1723 * caller worker shouldn't access to the pool after detached except it has
1724 * other reference to the pool.
1726 static void worker_detach_from_pool(struct worker
*worker
,
1727 struct worker_pool
*pool
)
1729 struct completion
*detach_completion
= NULL
;
1731 mutex_lock(&pool
->attach_mutex
);
1732 list_del(&worker
->node
);
1733 if (list_empty(&pool
->workers
))
1734 detach_completion
= pool
->detach_completion
;
1735 mutex_unlock(&pool
->attach_mutex
);
1737 /* clear leftover flags without pool->lock after it is detached */
1738 worker
->flags
&= ~(WORKER_UNBOUND
| WORKER_REBOUND
);
1740 if (detach_completion
)
1741 complete(detach_completion
);
1745 * create_worker - create a new workqueue worker
1746 * @pool: pool the new worker will belong to
1748 * Create and start a new worker which is attached to @pool.
1751 * Might sleep. Does GFP_KERNEL allocations.
1754 * Pointer to the newly created worker.
1756 static struct worker
*create_worker(struct worker_pool
*pool
)
1758 struct worker
*worker
= NULL
;
1762 /* ID is needed to determine kthread name */
1763 id
= ida_simple_get(&pool
->worker_ida
, 0, 0, GFP_KERNEL
);
1767 worker
= alloc_worker(pool
->node
);
1771 worker
->pool
= pool
;
1775 snprintf(id_buf
, sizeof(id_buf
), "%d:%d%s", pool
->cpu
, id
,
1776 pool
->attrs
->nice
< 0 ? "H" : "");
1778 snprintf(id_buf
, sizeof(id_buf
), "u%d:%d", pool
->id
, id
);
1780 worker
->task
= kthread_create_on_node(worker_thread
, worker
, pool
->node
,
1781 "kworker/%s", id_buf
);
1782 if (IS_ERR(worker
->task
))
1785 set_user_nice(worker
->task
, pool
->attrs
->nice
);
1786 kthread_bind_mask(worker
->task
, pool
->attrs
->cpumask
);
1788 /* successful, attach the worker to the pool */
1789 worker_attach_to_pool(worker
, pool
);
1791 /* start the newly created worker */
1792 spin_lock_irq(&pool
->lock
);
1793 worker
->pool
->nr_workers
++;
1794 worker_enter_idle(worker
);
1795 wake_up_process(worker
->task
);
1796 spin_unlock_irq(&pool
->lock
);
1802 ida_simple_remove(&pool
->worker_ida
, id
);
1808 * destroy_worker - destroy a workqueue worker
1809 * @worker: worker to be destroyed
1811 * Destroy @worker and adjust @pool stats accordingly. The worker should
1815 * spin_lock_irq(pool->lock).
1817 static void destroy_worker(struct worker
*worker
)
1819 struct worker_pool
*pool
= worker
->pool
;
1821 lockdep_assert_held(&pool
->lock
);
1823 /* sanity check frenzy */
1824 if (WARN_ON(worker
->current_work
) ||
1825 WARN_ON(!list_empty(&worker
->scheduled
)) ||
1826 WARN_ON(!(worker
->flags
& WORKER_IDLE
)))
1832 list_del_init(&worker
->entry
);
1833 worker
->flags
|= WORKER_DIE
;
1834 wake_up_process(worker
->task
);
1837 static void idle_worker_timeout(unsigned long __pool
)
1839 struct worker_pool
*pool
= (void *)__pool
;
1841 spin_lock_irq(&pool
->lock
);
1843 while (too_many_workers(pool
)) {
1844 struct worker
*worker
;
1845 unsigned long expires
;
1847 /* idle_list is kept in LIFO order, check the last one */
1848 worker
= list_entry(pool
->idle_list
.prev
, struct worker
, entry
);
1849 expires
= worker
->last_active
+ IDLE_WORKER_TIMEOUT
;
1851 if (time_before(jiffies
, expires
)) {
1852 mod_timer(&pool
->idle_timer
, expires
);
1856 destroy_worker(worker
);
1859 spin_unlock_irq(&pool
->lock
);
1862 static void send_mayday(struct work_struct
*work
)
1864 struct pool_workqueue
*pwq
= get_work_pwq(work
);
1865 struct workqueue_struct
*wq
= pwq
->wq
;
1867 lockdep_assert_held(&wq_mayday_lock
);
1872 /* mayday mayday mayday */
1873 if (list_empty(&pwq
->mayday_node
)) {
1875 * If @pwq is for an unbound wq, its base ref may be put at
1876 * any time due to an attribute change. Pin @pwq until the
1877 * rescuer is done with it.
1880 list_add_tail(&pwq
->mayday_node
, &wq
->maydays
);
1881 wake_up_process(wq
->rescuer
->task
);
1885 static void pool_mayday_timeout(unsigned long __pool
)
1887 struct worker_pool
*pool
= (void *)__pool
;
1888 struct work_struct
*work
;
1890 spin_lock_irq(&pool
->lock
);
1891 spin_lock(&wq_mayday_lock
); /* for wq->maydays */
1893 if (need_to_create_worker(pool
)) {
1895 * We've been trying to create a new worker but
1896 * haven't been successful. We might be hitting an
1897 * allocation deadlock. Send distress signals to
1900 list_for_each_entry(work
, &pool
->worklist
, entry
)
1904 spin_unlock(&wq_mayday_lock
);
1905 spin_unlock_irq(&pool
->lock
);
1907 mod_timer(&pool
->mayday_timer
, jiffies
+ MAYDAY_INTERVAL
);
1911 * maybe_create_worker - create a new worker if necessary
1912 * @pool: pool to create a new worker for
1914 * Create a new worker for @pool if necessary. @pool is guaranteed to
1915 * have at least one idle worker on return from this function. If
1916 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1917 * sent to all rescuers with works scheduled on @pool to resolve
1918 * possible allocation deadlock.
1920 * On return, need_to_create_worker() is guaranteed to be %false and
1921 * may_start_working() %true.
1924 * spin_lock_irq(pool->lock) which may be released and regrabbed
1925 * multiple times. Does GFP_KERNEL allocations. Called only from
1928 static void maybe_create_worker(struct worker_pool
*pool
)
1929 __releases(&pool
->lock
)
1930 __acquires(&pool
->lock
)
1933 spin_unlock_irq(&pool
->lock
);
1935 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1936 mod_timer(&pool
->mayday_timer
, jiffies
+ MAYDAY_INITIAL_TIMEOUT
);
1939 if (create_worker(pool
) || !need_to_create_worker(pool
))
1942 schedule_timeout_interruptible(CREATE_COOLDOWN
);
1944 if (!need_to_create_worker(pool
))
1948 del_timer_sync(&pool
->mayday_timer
);
1949 spin_lock_irq(&pool
->lock
);
1951 * This is necessary even after a new worker was just successfully
1952 * created as @pool->lock was dropped and the new worker might have
1953 * already become busy.
1955 if (need_to_create_worker(pool
))
1960 * manage_workers - manage worker pool
1963 * Assume the manager role and manage the worker pool @worker belongs
1964 * to. At any given time, there can be only zero or one manager per
1965 * pool. The exclusion is handled automatically by this function.
1967 * The caller can safely start processing works on false return. On
1968 * true return, it's guaranteed that need_to_create_worker() is false
1969 * and may_start_working() is true.
1972 * spin_lock_irq(pool->lock) which may be released and regrabbed
1973 * multiple times. Does GFP_KERNEL allocations.
1976 * %false if the pool doesn't need management and the caller can safely
1977 * start processing works, %true if management function was performed and
1978 * the conditions that the caller verified before calling the function may
1979 * no longer be true.
1981 static bool manage_workers(struct worker
*worker
)
1983 struct worker_pool
*pool
= worker
->pool
;
1985 if (pool
->flags
& POOL_MANAGER_ACTIVE
)
1988 pool
->flags
|= POOL_MANAGER_ACTIVE
;
1989 pool
->manager
= worker
;
1991 maybe_create_worker(pool
);
1993 pool
->manager
= NULL
;
1994 pool
->flags
&= ~POOL_MANAGER_ACTIVE
;
1995 wake_up(&wq_manager_wait
);
2000 * process_one_work - process single work
2002 * @work: work to process
2004 * Process @work. This function contains all the logics necessary to
2005 * process a single work including synchronization against and
2006 * interaction with other workers on the same cpu, queueing and
2007 * flushing. As long as context requirement is met, any worker can
2008 * call this function to process a work.
2011 * spin_lock_irq(pool->lock) which is released and regrabbed.
2013 static void process_one_work(struct worker
*worker
, struct work_struct
*work
)
2014 __releases(&pool
->lock
)
2015 __acquires(&pool
->lock
)
2017 struct pool_workqueue
*pwq
= get_work_pwq(work
);
2018 struct worker_pool
*pool
= worker
->pool
;
2019 bool cpu_intensive
= pwq
->wq
->flags
& WQ_CPU_INTENSIVE
;
2021 struct worker
*collision
;
2022 #ifdef CONFIG_LOCKDEP
2024 * It is permissible to free the struct work_struct from
2025 * inside the function that is called from it, this we need to
2026 * take into account for lockdep too. To avoid bogus "held
2027 * lock freed" warnings as well as problems when looking into
2028 * work->lockdep_map, make a copy and use that here.
2030 struct lockdep_map lockdep_map
;
2032 lockdep_copy_map(&lockdep_map
, &work
->lockdep_map
);
2034 /* ensure we're on the correct CPU */
2035 WARN_ON_ONCE(!(pool
->flags
& POOL_DISASSOCIATED
) &&
2036 raw_smp_processor_id() != pool
->cpu
);
2039 * A single work shouldn't be executed concurrently by
2040 * multiple workers on a single cpu. Check whether anyone is
2041 * already processing the work. If so, defer the work to the
2042 * currently executing one.
2044 collision
= find_worker_executing_work(pool
, work
);
2045 if (unlikely(collision
)) {
2046 move_linked_works(work
, &collision
->scheduled
, NULL
);
2050 /* claim and dequeue */
2051 debug_work_deactivate(work
);
2052 hash_add(pool
->busy_hash
, &worker
->hentry
, (unsigned long)work
);
2053 worker
->current_work
= work
;
2054 worker
->current_func
= work
->func
;
2055 worker
->current_pwq
= pwq
;
2056 work_color
= get_work_color(work
);
2058 list_del_init(&work
->entry
);
2061 * CPU intensive works don't participate in concurrency management.
2062 * They're the scheduler's responsibility. This takes @worker out
2063 * of concurrency management and the next code block will chain
2064 * execution of the pending work items.
2066 if (unlikely(cpu_intensive
))
2067 worker_set_flags(worker
, WORKER_CPU_INTENSIVE
);
2070 * Wake up another worker if necessary. The condition is always
2071 * false for normal per-cpu workers since nr_running would always
2072 * be >= 1 at this point. This is used to chain execution of the
2073 * pending work items for WORKER_NOT_RUNNING workers such as the
2074 * UNBOUND and CPU_INTENSIVE ones.
2076 if (need_more_worker(pool
))
2077 wake_up_worker(pool
);
2080 * Record the last pool and clear PENDING which should be the last
2081 * update to @work. Also, do this inside @pool->lock so that
2082 * PENDING and queued state changes happen together while IRQ is
2085 set_work_pool_and_clear_pending(work
, pool
->id
);
2087 spin_unlock_irq(&pool
->lock
);
2089 lock_map_acquire_read(&pwq
->wq
->lockdep_map
);
2090 lock_map_acquire(&lockdep_map
);
2091 trace_workqueue_execute_start(work
);
2092 worker
->current_func(work
);
2094 * While we must be careful to not use "work" after this, the trace
2095 * point will only record its address.
2097 trace_workqueue_execute_end(work
);
2098 lock_map_release(&lockdep_map
);
2099 lock_map_release(&pwq
->wq
->lockdep_map
);
2101 if (unlikely(in_atomic() || lockdep_depth(current
) > 0)) {
2102 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2103 " last function: %pf\n",
2104 current
->comm
, preempt_count(), task_pid_nr(current
),
2105 worker
->current_func
);
2106 debug_show_held_locks(current
);
2111 * The following prevents a kworker from hogging CPU on !PREEMPT
2112 * kernels, where a requeueing work item waiting for something to
2113 * happen could deadlock with stop_machine as such work item could
2114 * indefinitely requeue itself while all other CPUs are trapped in
2115 * stop_machine. At the same time, report a quiescent RCU state so
2116 * the same condition doesn't freeze RCU.
2118 cond_resched_rcu_qs();
2120 spin_lock_irq(&pool
->lock
);
2122 /* clear cpu intensive status */
2123 if (unlikely(cpu_intensive
))
2124 worker_clr_flags(worker
, WORKER_CPU_INTENSIVE
);
2126 /* we're done with it, release */
2127 hash_del(&worker
->hentry
);
2128 worker
->current_work
= NULL
;
2129 worker
->current_func
= NULL
;
2130 worker
->current_pwq
= NULL
;
2131 worker
->desc_valid
= false;
2132 pwq_dec_nr_in_flight(pwq
, work_color
);
2136 * process_scheduled_works - process scheduled works
2139 * Process all scheduled works. Please note that the scheduled list
2140 * may change while processing a work, so this function repeatedly
2141 * fetches a work from the top and executes it.
2144 * spin_lock_irq(pool->lock) which may be released and regrabbed
2147 static void process_scheduled_works(struct worker
*worker
)
2149 while (!list_empty(&worker
->scheduled
)) {
2150 struct work_struct
*work
= list_first_entry(&worker
->scheduled
,
2151 struct work_struct
, entry
);
2152 process_one_work(worker
, work
);
2157 * worker_thread - the worker thread function
2160 * The worker thread function. All workers belong to a worker_pool -
2161 * either a per-cpu one or dynamic unbound one. These workers process all
2162 * work items regardless of their specific target workqueue. The only
2163 * exception is work items which belong to workqueues with a rescuer which
2164 * will be explained in rescuer_thread().
2168 static int worker_thread(void *__worker
)
2170 struct worker
*worker
= __worker
;
2171 struct worker_pool
*pool
= worker
->pool
;
2173 /* tell the scheduler that this is a workqueue worker */
2174 worker
->task
->flags
|= PF_WQ_WORKER
;
2176 spin_lock_irq(&pool
->lock
);
2178 /* am I supposed to die? */
2179 if (unlikely(worker
->flags
& WORKER_DIE
)) {
2180 spin_unlock_irq(&pool
->lock
);
2181 WARN_ON_ONCE(!list_empty(&worker
->entry
));
2182 worker
->task
->flags
&= ~PF_WQ_WORKER
;
2184 set_task_comm(worker
->task
, "kworker/dying");
2185 ida_simple_remove(&pool
->worker_ida
, worker
->id
);
2186 worker_detach_from_pool(worker
, pool
);
2191 worker_leave_idle(worker
);
2193 /* no more worker necessary? */
2194 if (!need_more_worker(pool
))
2197 /* do we need to manage? */
2198 if (unlikely(!may_start_working(pool
)) && manage_workers(worker
))
2202 * ->scheduled list can only be filled while a worker is
2203 * preparing to process a work or actually processing it.
2204 * Make sure nobody diddled with it while I was sleeping.
2206 WARN_ON_ONCE(!list_empty(&worker
->scheduled
));
2209 * Finish PREP stage. We're guaranteed to have at least one idle
2210 * worker or that someone else has already assumed the manager
2211 * role. This is where @worker starts participating in concurrency
2212 * management if applicable and concurrency management is restored
2213 * after being rebound. See rebind_workers() for details.
2215 worker_clr_flags(worker
, WORKER_PREP
| WORKER_REBOUND
);
2218 struct work_struct
*work
=
2219 list_first_entry(&pool
->worklist
,
2220 struct work_struct
, entry
);
2222 pool
->watchdog_ts
= jiffies
;
2224 if (likely(!(*work_data_bits(work
) & WORK_STRUCT_LINKED
))) {
2225 /* optimization path, not strictly necessary */
2226 process_one_work(worker
, work
);
2227 if (unlikely(!list_empty(&worker
->scheduled
)))
2228 process_scheduled_works(worker
);
2230 move_linked_works(work
, &worker
->scheduled
, NULL
);
2231 process_scheduled_works(worker
);
2233 } while (keep_working(pool
));
2235 worker_set_flags(worker
, WORKER_PREP
);
2238 * pool->lock is held and there's no work to process and no need to
2239 * manage, sleep. Workers are woken up only while holding
2240 * pool->lock or from local cpu, so setting the current state
2241 * before releasing pool->lock is enough to prevent losing any
2244 worker_enter_idle(worker
);
2245 __set_current_state(TASK_INTERRUPTIBLE
);
2246 spin_unlock_irq(&pool
->lock
);
2252 * rescuer_thread - the rescuer thread function
2255 * Workqueue rescuer thread function. There's one rescuer for each
2256 * workqueue which has WQ_MEM_RECLAIM set.
2258 * Regular work processing on a pool may block trying to create a new
2259 * worker which uses GFP_KERNEL allocation which has slight chance of
2260 * developing into deadlock if some works currently on the same queue
2261 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2262 * the problem rescuer solves.
2264 * When such condition is possible, the pool summons rescuers of all
2265 * workqueues which have works queued on the pool and let them process
2266 * those works so that forward progress can be guaranteed.
2268 * This should happen rarely.
2272 static int rescuer_thread(void *__rescuer
)
2274 struct worker
*rescuer
= __rescuer
;
2275 struct workqueue_struct
*wq
= rescuer
->rescue_wq
;
2276 struct list_head
*scheduled
= &rescuer
->scheduled
;
2279 set_user_nice(current
, RESCUER_NICE_LEVEL
);
2282 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2283 * doesn't participate in concurrency management.
2285 rescuer
->task
->flags
|= PF_WQ_WORKER
;
2287 set_current_state(TASK_INTERRUPTIBLE
);
2290 * By the time the rescuer is requested to stop, the workqueue
2291 * shouldn't have any work pending, but @wq->maydays may still have
2292 * pwq(s) queued. This can happen by non-rescuer workers consuming
2293 * all the work items before the rescuer got to them. Go through
2294 * @wq->maydays processing before acting on should_stop so that the
2295 * list is always empty on exit.
2297 should_stop
= kthread_should_stop();
2299 /* see whether any pwq is asking for help */
2300 spin_lock_irq(&wq_mayday_lock
);
2302 while (!list_empty(&wq
->maydays
)) {
2303 struct pool_workqueue
*pwq
= list_first_entry(&wq
->maydays
,
2304 struct pool_workqueue
, mayday_node
);
2305 struct worker_pool
*pool
= pwq
->pool
;
2306 struct work_struct
*work
, *n
;
2309 __set_current_state(TASK_RUNNING
);
2310 list_del_init(&pwq
->mayday_node
);
2312 spin_unlock_irq(&wq_mayday_lock
);
2314 worker_attach_to_pool(rescuer
, pool
);
2316 spin_lock_irq(&pool
->lock
);
2317 rescuer
->pool
= pool
;
2320 * Slurp in all works issued via this workqueue and
2323 WARN_ON_ONCE(!list_empty(scheduled
));
2324 list_for_each_entry_safe(work
, n
, &pool
->worklist
, entry
) {
2325 if (get_work_pwq(work
) == pwq
) {
2327 pool
->watchdog_ts
= jiffies
;
2328 move_linked_works(work
, scheduled
, &n
);
2333 if (!list_empty(scheduled
)) {
2334 process_scheduled_works(rescuer
);
2337 * The above execution of rescued work items could
2338 * have created more to rescue through
2339 * pwq_activate_first_delayed() or chained
2340 * queueing. Let's put @pwq back on mayday list so
2341 * that such back-to-back work items, which may be
2342 * being used to relieve memory pressure, don't
2343 * incur MAYDAY_INTERVAL delay inbetween.
2345 if (need_to_create_worker(pool
)) {
2346 spin_lock(&wq_mayday_lock
);
2348 list_move_tail(&pwq
->mayday_node
, &wq
->maydays
);
2349 spin_unlock(&wq_mayday_lock
);
2354 * Put the reference grabbed by send_mayday(). @pool won't
2355 * go away while we're still attached to it.
2360 * Leave this pool. If need_more_worker() is %true, notify a
2361 * regular worker; otherwise, we end up with 0 concurrency
2362 * and stalling the execution.
2364 if (need_more_worker(pool
))
2365 wake_up_worker(pool
);
2367 rescuer
->pool
= NULL
;
2368 spin_unlock_irq(&pool
->lock
);
2370 worker_detach_from_pool(rescuer
, pool
);
2372 spin_lock_irq(&wq_mayday_lock
);
2375 spin_unlock_irq(&wq_mayday_lock
);
2378 __set_current_state(TASK_RUNNING
);
2379 rescuer
->task
->flags
&= ~PF_WQ_WORKER
;
2383 /* rescuers should never participate in concurrency management */
2384 WARN_ON_ONCE(!(rescuer
->flags
& WORKER_NOT_RUNNING
));
2390 * check_flush_dependency - check for flush dependency sanity
2391 * @target_wq: workqueue being flushed
2392 * @target_work: work item being flushed (NULL for workqueue flushes)
2394 * %current is trying to flush the whole @target_wq or @target_work on it.
2395 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2396 * reclaiming memory or running on a workqueue which doesn't have
2397 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2400 static void check_flush_dependency(struct workqueue_struct
*target_wq
,
2401 struct work_struct
*target_work
)
2403 work_func_t target_func
= target_work
? target_work
->func
: NULL
;
2404 struct worker
*worker
;
2406 if (target_wq
->flags
& WQ_MEM_RECLAIM
)
2409 worker
= current_wq_worker();
2411 WARN_ONCE(current
->flags
& PF_MEMALLOC
,
2412 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2413 current
->pid
, current
->comm
, target_wq
->name
, target_func
);
2414 WARN_ONCE(worker
&& ((worker
->current_pwq
->wq
->flags
&
2415 (WQ_MEM_RECLAIM
| __WQ_LEGACY
)) == WQ_MEM_RECLAIM
),
2416 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2417 worker
->current_pwq
->wq
->name
, worker
->current_func
,
2418 target_wq
->name
, target_func
);
2422 struct work_struct work
;
2423 struct completion done
;
2424 struct task_struct
*task
; /* purely informational */
2427 static void wq_barrier_func(struct work_struct
*work
)
2429 struct wq_barrier
*barr
= container_of(work
, struct wq_barrier
, work
);
2430 complete(&barr
->done
);
2434 * insert_wq_barrier - insert a barrier work
2435 * @pwq: pwq to insert barrier into
2436 * @barr: wq_barrier to insert
2437 * @target: target work to attach @barr to
2438 * @worker: worker currently executing @target, NULL if @target is not executing
2440 * @barr is linked to @target such that @barr is completed only after
2441 * @target finishes execution. Please note that the ordering
2442 * guarantee is observed only with respect to @target and on the local
2445 * Currently, a queued barrier can't be canceled. This is because
2446 * try_to_grab_pending() can't determine whether the work to be
2447 * grabbed is at the head of the queue and thus can't clear LINKED
2448 * flag of the previous work while there must be a valid next work
2449 * after a work with LINKED flag set.
2451 * Note that when @worker is non-NULL, @target may be modified
2452 * underneath us, so we can't reliably determine pwq from @target.
2455 * spin_lock_irq(pool->lock).
2457 static void insert_wq_barrier(struct pool_workqueue
*pwq
,
2458 struct wq_barrier
*barr
,
2459 struct work_struct
*target
, struct worker
*worker
)
2461 struct list_head
*head
;
2462 unsigned int linked
= 0;
2465 * debugobject calls are safe here even with pool->lock locked
2466 * as we know for sure that this will not trigger any of the
2467 * checks and call back into the fixup functions where we
2470 INIT_WORK_ONSTACK(&barr
->work
, wq_barrier_func
);
2471 __set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(&barr
->work
));
2472 init_completion(&barr
->done
);
2473 barr
->task
= current
;
2476 * If @target is currently being executed, schedule the
2477 * barrier to the worker; otherwise, put it after @target.
2480 head
= worker
->scheduled
.next
;
2482 unsigned long *bits
= work_data_bits(target
);
2484 head
= target
->entry
.next
;
2485 /* there can already be other linked works, inherit and set */
2486 linked
= *bits
& WORK_STRUCT_LINKED
;
2487 __set_bit(WORK_STRUCT_LINKED_BIT
, bits
);
2490 debug_work_activate(&barr
->work
);
2491 insert_work(pwq
, &barr
->work
, head
,
2492 work_color_to_flags(WORK_NO_COLOR
) | linked
);
2496 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2497 * @wq: workqueue being flushed
2498 * @flush_color: new flush color, < 0 for no-op
2499 * @work_color: new work color, < 0 for no-op
2501 * Prepare pwqs for workqueue flushing.
2503 * If @flush_color is non-negative, flush_color on all pwqs should be
2504 * -1. If no pwq has in-flight commands at the specified color, all
2505 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2506 * has in flight commands, its pwq->flush_color is set to
2507 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2508 * wakeup logic is armed and %true is returned.
2510 * The caller should have initialized @wq->first_flusher prior to
2511 * calling this function with non-negative @flush_color. If
2512 * @flush_color is negative, no flush color update is done and %false
2515 * If @work_color is non-negative, all pwqs should have the same
2516 * work_color which is previous to @work_color and all will be
2517 * advanced to @work_color.
2520 * mutex_lock(wq->mutex).
2523 * %true if @flush_color >= 0 and there's something to flush. %false
2526 static bool flush_workqueue_prep_pwqs(struct workqueue_struct
*wq
,
2527 int flush_color
, int work_color
)
2530 struct pool_workqueue
*pwq
;
2532 if (flush_color
>= 0) {
2533 WARN_ON_ONCE(atomic_read(&wq
->nr_pwqs_to_flush
));
2534 atomic_set(&wq
->nr_pwqs_to_flush
, 1);
2537 for_each_pwq(pwq
, wq
) {
2538 struct worker_pool
*pool
= pwq
->pool
;
2540 spin_lock_irq(&pool
->lock
);
2542 if (flush_color
>= 0) {
2543 WARN_ON_ONCE(pwq
->flush_color
!= -1);
2545 if (pwq
->nr_in_flight
[flush_color
]) {
2546 pwq
->flush_color
= flush_color
;
2547 atomic_inc(&wq
->nr_pwqs_to_flush
);
2552 if (work_color
>= 0) {
2553 WARN_ON_ONCE(work_color
!= work_next_color(pwq
->work_color
));
2554 pwq
->work_color
= work_color
;
2557 spin_unlock_irq(&pool
->lock
);
2560 if (flush_color
>= 0 && atomic_dec_and_test(&wq
->nr_pwqs_to_flush
))
2561 complete(&wq
->first_flusher
->done
);
2567 * flush_workqueue - ensure that any scheduled work has run to completion.
2568 * @wq: workqueue to flush
2570 * This function sleeps until all work items which were queued on entry
2571 * have finished execution, but it is not livelocked by new incoming ones.
2573 void flush_workqueue(struct workqueue_struct
*wq
)
2575 struct wq_flusher this_flusher
= {
2576 .list
= LIST_HEAD_INIT(this_flusher
.list
),
2578 .done
= COMPLETION_INITIALIZER_ONSTACK(this_flusher
.done
),
2582 lock_map_acquire(&wq
->lockdep_map
);
2583 lock_map_release(&wq
->lockdep_map
);
2585 mutex_lock(&wq
->mutex
);
2588 * Start-to-wait phase
2590 next_color
= work_next_color(wq
->work_color
);
2592 if (next_color
!= wq
->flush_color
) {
2594 * Color space is not full. The current work_color
2595 * becomes our flush_color and work_color is advanced
2598 WARN_ON_ONCE(!list_empty(&wq
->flusher_overflow
));
2599 this_flusher
.flush_color
= wq
->work_color
;
2600 wq
->work_color
= next_color
;
2602 if (!wq
->first_flusher
) {
2603 /* no flush in progress, become the first flusher */
2604 WARN_ON_ONCE(wq
->flush_color
!= this_flusher
.flush_color
);
2606 wq
->first_flusher
= &this_flusher
;
2608 if (!flush_workqueue_prep_pwqs(wq
, wq
->flush_color
,
2610 /* nothing to flush, done */
2611 wq
->flush_color
= next_color
;
2612 wq
->first_flusher
= NULL
;
2617 WARN_ON_ONCE(wq
->flush_color
== this_flusher
.flush_color
);
2618 list_add_tail(&this_flusher
.list
, &wq
->flusher_queue
);
2619 flush_workqueue_prep_pwqs(wq
, -1, wq
->work_color
);
2623 * Oops, color space is full, wait on overflow queue.
2624 * The next flush completion will assign us
2625 * flush_color and transfer to flusher_queue.
2627 list_add_tail(&this_flusher
.list
, &wq
->flusher_overflow
);
2630 check_flush_dependency(wq
, NULL
);
2632 mutex_unlock(&wq
->mutex
);
2634 wait_for_completion(&this_flusher
.done
);
2637 * Wake-up-and-cascade phase
2639 * First flushers are responsible for cascading flushes and
2640 * handling overflow. Non-first flushers can simply return.
2642 if (wq
->first_flusher
!= &this_flusher
)
2645 mutex_lock(&wq
->mutex
);
2647 /* we might have raced, check again with mutex held */
2648 if (wq
->first_flusher
!= &this_flusher
)
2651 wq
->first_flusher
= NULL
;
2653 WARN_ON_ONCE(!list_empty(&this_flusher
.list
));
2654 WARN_ON_ONCE(wq
->flush_color
!= this_flusher
.flush_color
);
2657 struct wq_flusher
*next
, *tmp
;
2659 /* complete all the flushers sharing the current flush color */
2660 list_for_each_entry_safe(next
, tmp
, &wq
->flusher_queue
, list
) {
2661 if (next
->flush_color
!= wq
->flush_color
)
2663 list_del_init(&next
->list
);
2664 complete(&next
->done
);
2667 WARN_ON_ONCE(!list_empty(&wq
->flusher_overflow
) &&
2668 wq
->flush_color
!= work_next_color(wq
->work_color
));
2670 /* this flush_color is finished, advance by one */
2671 wq
->flush_color
= work_next_color(wq
->flush_color
);
2673 /* one color has been freed, handle overflow queue */
2674 if (!list_empty(&wq
->flusher_overflow
)) {
2676 * Assign the same color to all overflowed
2677 * flushers, advance work_color and append to
2678 * flusher_queue. This is the start-to-wait
2679 * phase for these overflowed flushers.
2681 list_for_each_entry(tmp
, &wq
->flusher_overflow
, list
)
2682 tmp
->flush_color
= wq
->work_color
;
2684 wq
->work_color
= work_next_color(wq
->work_color
);
2686 list_splice_tail_init(&wq
->flusher_overflow
,
2687 &wq
->flusher_queue
);
2688 flush_workqueue_prep_pwqs(wq
, -1, wq
->work_color
);
2691 if (list_empty(&wq
->flusher_queue
)) {
2692 WARN_ON_ONCE(wq
->flush_color
!= wq
->work_color
);
2697 * Need to flush more colors. Make the next flusher
2698 * the new first flusher and arm pwqs.
2700 WARN_ON_ONCE(wq
->flush_color
== wq
->work_color
);
2701 WARN_ON_ONCE(wq
->flush_color
!= next
->flush_color
);
2703 list_del_init(&next
->list
);
2704 wq
->first_flusher
= next
;
2706 if (flush_workqueue_prep_pwqs(wq
, wq
->flush_color
, -1))
2710 * Meh... this color is already done, clear first
2711 * flusher and repeat cascading.
2713 wq
->first_flusher
= NULL
;
2717 mutex_unlock(&wq
->mutex
);
2719 EXPORT_SYMBOL(flush_workqueue
);
2722 * drain_workqueue - drain a workqueue
2723 * @wq: workqueue to drain
2725 * Wait until the workqueue becomes empty. While draining is in progress,
2726 * only chain queueing is allowed. IOW, only currently pending or running
2727 * work items on @wq can queue further work items on it. @wq is flushed
2728 * repeatedly until it becomes empty. The number of flushing is determined
2729 * by the depth of chaining and should be relatively short. Whine if it
2732 void drain_workqueue(struct workqueue_struct
*wq
)
2734 unsigned int flush_cnt
= 0;
2735 struct pool_workqueue
*pwq
;
2738 * __queue_work() needs to test whether there are drainers, is much
2739 * hotter than drain_workqueue() and already looks at @wq->flags.
2740 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2742 mutex_lock(&wq
->mutex
);
2743 if (!wq
->nr_drainers
++)
2744 wq
->flags
|= __WQ_DRAINING
;
2745 mutex_unlock(&wq
->mutex
);
2747 flush_workqueue(wq
);
2749 mutex_lock(&wq
->mutex
);
2751 for_each_pwq(pwq
, wq
) {
2754 spin_lock_irq(&pwq
->pool
->lock
);
2755 drained
= !pwq
->nr_active
&& list_empty(&pwq
->delayed_works
);
2756 spin_unlock_irq(&pwq
->pool
->lock
);
2761 if (++flush_cnt
== 10 ||
2762 (flush_cnt
% 100 == 0 && flush_cnt
<= 1000))
2763 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2764 wq
->name
, flush_cnt
);
2766 mutex_unlock(&wq
->mutex
);
2770 if (!--wq
->nr_drainers
)
2771 wq
->flags
&= ~__WQ_DRAINING
;
2772 mutex_unlock(&wq
->mutex
);
2774 EXPORT_SYMBOL_GPL(drain_workqueue
);
2776 static bool start_flush_work(struct work_struct
*work
, struct wq_barrier
*barr
)
2778 struct worker
*worker
= NULL
;
2779 struct worker_pool
*pool
;
2780 struct pool_workqueue
*pwq
;
2784 local_irq_disable();
2785 pool
= get_work_pool(work
);
2791 spin_lock(&pool
->lock
);
2792 /* see the comment in try_to_grab_pending() with the same code */
2793 pwq
= get_work_pwq(work
);
2795 if (unlikely(pwq
->pool
!= pool
))
2798 worker
= find_worker_executing_work(pool
, work
);
2801 pwq
= worker
->current_pwq
;
2804 check_flush_dependency(pwq
->wq
, work
);
2806 insert_wq_barrier(pwq
, barr
, work
, worker
);
2807 spin_unlock_irq(&pool
->lock
);
2810 * If @max_active is 1 or rescuer is in use, flushing another work
2811 * item on the same workqueue may lead to deadlock. Make sure the
2812 * flusher is not running on the same workqueue by verifying write
2815 if (pwq
->wq
->saved_max_active
== 1 || pwq
->wq
->rescuer
)
2816 lock_map_acquire(&pwq
->wq
->lockdep_map
);
2818 lock_map_acquire_read(&pwq
->wq
->lockdep_map
);
2819 lock_map_release(&pwq
->wq
->lockdep_map
);
2823 spin_unlock_irq(&pool
->lock
);
2828 * flush_work - wait for a work to finish executing the last queueing instance
2829 * @work: the work to flush
2831 * Wait until @work has finished execution. @work is guaranteed to be idle
2832 * on return if it hasn't been requeued since flush started.
2835 * %true if flush_work() waited for the work to finish execution,
2836 * %false if it was already idle.
2838 bool flush_work(struct work_struct
*work
)
2840 struct wq_barrier barr
;
2842 lock_map_acquire(&work
->lockdep_map
);
2843 lock_map_release(&work
->lockdep_map
);
2845 if (start_flush_work(work
, &barr
)) {
2846 wait_for_completion(&barr
.done
);
2847 destroy_work_on_stack(&barr
.work
);
2853 EXPORT_SYMBOL_GPL(flush_work
);
2857 struct work_struct
*work
;
2860 static int cwt_wakefn(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
2862 struct cwt_wait
*cwait
= container_of(wait
, struct cwt_wait
, wait
);
2864 if (cwait
->work
!= key
)
2866 return autoremove_wake_function(wait
, mode
, sync
, key
);
2869 static bool __cancel_work_timer(struct work_struct
*work
, bool is_dwork
)
2871 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq
);
2872 unsigned long flags
;
2876 ret
= try_to_grab_pending(work
, is_dwork
, &flags
);
2878 * If someone else is already canceling, wait for it to
2879 * finish. flush_work() doesn't work for PREEMPT_NONE
2880 * because we may get scheduled between @work's completion
2881 * and the other canceling task resuming and clearing
2882 * CANCELING - flush_work() will return false immediately
2883 * as @work is no longer busy, try_to_grab_pending() will
2884 * return -ENOENT as @work is still being canceled and the
2885 * other canceling task won't be able to clear CANCELING as
2886 * we're hogging the CPU.
2888 * Let's wait for completion using a waitqueue. As this
2889 * may lead to the thundering herd problem, use a custom
2890 * wake function which matches @work along with exclusive
2893 if (unlikely(ret
== -ENOENT
)) {
2894 struct cwt_wait cwait
;
2896 init_wait(&cwait
.wait
);
2897 cwait
.wait
.func
= cwt_wakefn
;
2900 prepare_to_wait_exclusive(&cancel_waitq
, &cwait
.wait
,
2901 TASK_UNINTERRUPTIBLE
);
2902 if (work_is_canceling(work
))
2904 finish_wait(&cancel_waitq
, &cwait
.wait
);
2906 } while (unlikely(ret
< 0));
2908 /* tell other tasks trying to grab @work to back off */
2909 mark_work_canceling(work
);
2910 local_irq_restore(flags
);
2913 clear_work_data(work
);
2916 * Paired with prepare_to_wait() above so that either
2917 * waitqueue_active() is visible here or !work_is_canceling() is
2921 if (waitqueue_active(&cancel_waitq
))
2922 __wake_up(&cancel_waitq
, TASK_NORMAL
, 1, work
);
2928 * cancel_work_sync - cancel a work and wait for it to finish
2929 * @work: the work to cancel
2931 * Cancel @work and wait for its execution to finish. This function
2932 * can be used even if the work re-queues itself or migrates to
2933 * another workqueue. On return from this function, @work is
2934 * guaranteed to be not pending or executing on any CPU.
2936 * cancel_work_sync(&delayed_work->work) must not be used for
2937 * delayed_work's. Use cancel_delayed_work_sync() instead.
2939 * The caller must ensure that the workqueue on which @work was last
2940 * queued can't be destroyed before this function returns.
2943 * %true if @work was pending, %false otherwise.
2945 bool cancel_work_sync(struct work_struct
*work
)
2947 return __cancel_work_timer(work
, false);
2949 EXPORT_SYMBOL_GPL(cancel_work_sync
);
2952 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2953 * @dwork: the delayed work to flush
2955 * Delayed timer is cancelled and the pending work is queued for
2956 * immediate execution. Like flush_work(), this function only
2957 * considers the last queueing instance of @dwork.
2960 * %true if flush_work() waited for the work to finish execution,
2961 * %false if it was already idle.
2963 bool flush_delayed_work(struct delayed_work
*dwork
)
2965 local_irq_disable();
2966 if (del_timer_sync(&dwork
->timer
))
2967 __queue_work(dwork
->cpu
, dwork
->wq
, &dwork
->work
);
2969 return flush_work(&dwork
->work
);
2971 EXPORT_SYMBOL(flush_delayed_work
);
2973 static bool __cancel_work(struct work_struct
*work
, bool is_dwork
)
2975 unsigned long flags
;
2979 ret
= try_to_grab_pending(work
, is_dwork
, &flags
);
2980 } while (unlikely(ret
== -EAGAIN
));
2982 if (unlikely(ret
< 0))
2985 set_work_pool_and_clear_pending(work
, get_work_pool_id(work
));
2986 local_irq_restore(flags
);
2991 * See cancel_delayed_work()
2993 bool cancel_work(struct work_struct
*work
)
2995 return __cancel_work(work
, false);
2999 * cancel_delayed_work - cancel a delayed work
3000 * @dwork: delayed_work to cancel
3002 * Kill off a pending delayed_work.
3004 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3008 * The work callback function may still be running on return, unless
3009 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3010 * use cancel_delayed_work_sync() to wait on it.
3012 * This function is safe to call from any context including IRQ handler.
3014 bool cancel_delayed_work(struct delayed_work
*dwork
)
3016 return __cancel_work(&dwork
->work
, true);
3018 EXPORT_SYMBOL(cancel_delayed_work
);
3021 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3022 * @dwork: the delayed work cancel
3024 * This is cancel_work_sync() for delayed works.
3027 * %true if @dwork was pending, %false otherwise.
3029 bool cancel_delayed_work_sync(struct delayed_work
*dwork
)
3031 return __cancel_work_timer(&dwork
->work
, true);
3033 EXPORT_SYMBOL(cancel_delayed_work_sync
);
3036 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3037 * @func: the function to call
3039 * schedule_on_each_cpu() executes @func on each online CPU using the
3040 * system workqueue and blocks until all CPUs have completed.
3041 * schedule_on_each_cpu() is very slow.
3044 * 0 on success, -errno on failure.
3046 int schedule_on_each_cpu(work_func_t func
)
3049 struct work_struct __percpu
*works
;
3051 works
= alloc_percpu(struct work_struct
);
3057 for_each_online_cpu(cpu
) {
3058 struct work_struct
*work
= per_cpu_ptr(works
, cpu
);
3060 INIT_WORK(work
, func
);
3061 schedule_work_on(cpu
, work
);
3064 for_each_online_cpu(cpu
)
3065 flush_work(per_cpu_ptr(works
, cpu
));
3073 * execute_in_process_context - reliably execute the routine with user context
3074 * @fn: the function to execute
3075 * @ew: guaranteed storage for the execute work structure (must
3076 * be available when the work executes)
3078 * Executes the function immediately if process context is available,
3079 * otherwise schedules the function for delayed execution.
3081 * Return: 0 - function was executed
3082 * 1 - function was scheduled for execution
3084 int execute_in_process_context(work_func_t fn
, struct execute_work
*ew
)
3086 if (!in_interrupt()) {
3091 INIT_WORK(&ew
->work
, fn
);
3092 schedule_work(&ew
->work
);
3096 EXPORT_SYMBOL_GPL(execute_in_process_context
);
3099 * free_workqueue_attrs - free a workqueue_attrs
3100 * @attrs: workqueue_attrs to free
3102 * Undo alloc_workqueue_attrs().
3104 void free_workqueue_attrs(struct workqueue_attrs
*attrs
)
3107 free_cpumask_var(attrs
->cpumask
);
3113 * alloc_workqueue_attrs - allocate a workqueue_attrs
3114 * @gfp_mask: allocation mask to use
3116 * Allocate a new workqueue_attrs, initialize with default settings and
3119 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3121 struct workqueue_attrs
*alloc_workqueue_attrs(gfp_t gfp_mask
)
3123 struct workqueue_attrs
*attrs
;
3125 attrs
= kzalloc(sizeof(*attrs
), gfp_mask
);
3128 if (!alloc_cpumask_var(&attrs
->cpumask
, gfp_mask
))
3131 cpumask_copy(attrs
->cpumask
, cpu_possible_mask
);
3134 free_workqueue_attrs(attrs
);
3138 static void copy_workqueue_attrs(struct workqueue_attrs
*to
,
3139 const struct workqueue_attrs
*from
)
3141 to
->nice
= from
->nice
;
3142 cpumask_copy(to
->cpumask
, from
->cpumask
);
3144 * Unlike hash and equality test, this function doesn't ignore
3145 * ->no_numa as it is used for both pool and wq attrs. Instead,
3146 * get_unbound_pool() explicitly clears ->no_numa after copying.
3148 to
->no_numa
= from
->no_numa
;
3151 /* hash value of the content of @attr */
3152 static u32
wqattrs_hash(const struct workqueue_attrs
*attrs
)
3156 hash
= jhash_1word(attrs
->nice
, hash
);
3157 hash
= jhash(cpumask_bits(attrs
->cpumask
),
3158 BITS_TO_LONGS(nr_cpumask_bits
) * sizeof(long), hash
);
3162 /* content equality test */
3163 static bool wqattrs_equal(const struct workqueue_attrs
*a
,
3164 const struct workqueue_attrs
*b
)
3166 if (a
->nice
!= b
->nice
)
3168 if (!cpumask_equal(a
->cpumask
, b
->cpumask
))
3174 * init_worker_pool - initialize a newly zalloc'd worker_pool
3175 * @pool: worker_pool to initialize
3177 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3179 * Return: 0 on success, -errno on failure. Even on failure, all fields
3180 * inside @pool proper are initialized and put_unbound_pool() can be called
3181 * on @pool safely to release it.
3183 static int init_worker_pool(struct worker_pool
*pool
)
3185 spin_lock_init(&pool
->lock
);
3188 pool
->node
= NUMA_NO_NODE
;
3189 pool
->flags
|= POOL_DISASSOCIATED
;
3190 pool
->watchdog_ts
= jiffies
;
3191 INIT_LIST_HEAD(&pool
->worklist
);
3192 INIT_LIST_HEAD(&pool
->idle_list
);
3193 hash_init(pool
->busy_hash
);
3195 init_timer_deferrable(&pool
->idle_timer
);
3196 pool
->idle_timer
.function
= idle_worker_timeout
;
3197 pool
->idle_timer
.data
= (unsigned long)pool
;
3199 setup_timer(&pool
->mayday_timer
, pool_mayday_timeout
,
3200 (unsigned long)pool
);
3202 mutex_init(&pool
->attach_mutex
);
3203 INIT_LIST_HEAD(&pool
->workers
);
3205 ida_init(&pool
->worker_ida
);
3206 INIT_HLIST_NODE(&pool
->hash_node
);
3209 /* shouldn't fail above this point */
3210 pool
->attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3216 static void rcu_free_wq(struct rcu_head
*rcu
)
3218 struct workqueue_struct
*wq
=
3219 container_of(rcu
, struct workqueue_struct
, rcu
);
3221 if (!(wq
->flags
& WQ_UNBOUND
))
3222 free_percpu(wq
->cpu_pwqs
);
3224 free_workqueue_attrs(wq
->unbound_attrs
);
3230 static void rcu_free_pool(struct rcu_head
*rcu
)
3232 struct worker_pool
*pool
= container_of(rcu
, struct worker_pool
, rcu
);
3234 ida_destroy(&pool
->worker_ida
);
3235 free_workqueue_attrs(pool
->attrs
);
3240 * put_unbound_pool - put a worker_pool
3241 * @pool: worker_pool to put
3243 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3244 * safe manner. get_unbound_pool() calls this function on its failure path
3245 * and this function should be able to release pools which went through,
3246 * successfully or not, init_worker_pool().
3248 * Should be called with wq_pool_mutex held.
3250 static void put_unbound_pool(struct worker_pool
*pool
)
3252 DECLARE_COMPLETION_ONSTACK(detach_completion
);
3253 struct worker
*worker
;
3255 lockdep_assert_held(&wq_pool_mutex
);
3261 if (WARN_ON(!(pool
->cpu
< 0)) ||
3262 WARN_ON(!list_empty(&pool
->worklist
)))
3265 /* release id and unhash */
3267 idr_remove(&worker_pool_idr
, pool
->id
);
3268 hash_del(&pool
->hash_node
);
3271 * Become the manager and destroy all workers. This prevents
3272 * @pool's workers from blocking on attach_mutex. We're the last
3273 * manager and @pool gets freed with the flag set.
3275 spin_lock_irq(&pool
->lock
);
3276 wait_event_lock_irq(wq_manager_wait
,
3277 !(pool
->flags
& POOL_MANAGER_ACTIVE
), pool
->lock
);
3278 pool
->flags
|= POOL_MANAGER_ACTIVE
;
3280 while ((worker
= first_idle_worker(pool
)))
3281 destroy_worker(worker
);
3282 WARN_ON(pool
->nr_workers
|| pool
->nr_idle
);
3283 spin_unlock_irq(&pool
->lock
);
3285 mutex_lock(&pool
->attach_mutex
);
3286 if (!list_empty(&pool
->workers
))
3287 pool
->detach_completion
= &detach_completion
;
3288 mutex_unlock(&pool
->attach_mutex
);
3290 if (pool
->detach_completion
)
3291 wait_for_completion(pool
->detach_completion
);
3293 /* shut down the timers */
3294 del_timer_sync(&pool
->idle_timer
);
3295 del_timer_sync(&pool
->mayday_timer
);
3297 /* sched-RCU protected to allow dereferences from get_work_pool() */
3298 call_rcu_sched(&pool
->rcu
, rcu_free_pool
);
3302 * get_unbound_pool - get a worker_pool with the specified attributes
3303 * @attrs: the attributes of the worker_pool to get
3305 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3306 * reference count and return it. If there already is a matching
3307 * worker_pool, it will be used; otherwise, this function attempts to
3310 * Should be called with wq_pool_mutex held.
3312 * Return: On success, a worker_pool with the same attributes as @attrs.
3313 * On failure, %NULL.
3315 static struct worker_pool
*get_unbound_pool(const struct workqueue_attrs
*attrs
)
3317 u32 hash
= wqattrs_hash(attrs
);
3318 struct worker_pool
*pool
;
3320 int target_node
= NUMA_NO_NODE
;
3322 lockdep_assert_held(&wq_pool_mutex
);
3324 /* do we already have a matching pool? */
3325 hash_for_each_possible(unbound_pool_hash
, pool
, hash_node
, hash
) {
3326 if (wqattrs_equal(pool
->attrs
, attrs
)) {
3332 /* if cpumask is contained inside a NUMA node, we belong to that node */
3333 if (wq_numa_enabled
) {
3334 for_each_node(node
) {
3335 if (cpumask_subset(attrs
->cpumask
,
3336 wq_numa_possible_cpumask
[node
])) {
3343 /* nope, create a new one */
3344 pool
= kzalloc_node(sizeof(*pool
), GFP_KERNEL
, target_node
);
3345 if (!pool
|| init_worker_pool(pool
) < 0)
3348 lockdep_set_subclass(&pool
->lock
, 1); /* see put_pwq() */
3349 copy_workqueue_attrs(pool
->attrs
, attrs
);
3350 pool
->node
= target_node
;
3353 * no_numa isn't a worker_pool attribute, always clear it. See
3354 * 'struct workqueue_attrs' comments for detail.
3356 pool
->attrs
->no_numa
= false;
3358 if (worker_pool_assign_id(pool
) < 0)
3361 /* create and start the initial worker */
3362 if (!create_worker(pool
))
3366 hash_add(unbound_pool_hash
, &pool
->hash_node
, hash
);
3371 put_unbound_pool(pool
);
3375 static void rcu_free_pwq(struct rcu_head
*rcu
)
3377 kmem_cache_free(pwq_cache
,
3378 container_of(rcu
, struct pool_workqueue
, rcu
));
3382 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3383 * and needs to be destroyed.
3385 static void pwq_unbound_release_workfn(struct work_struct
*work
)
3387 struct pool_workqueue
*pwq
= container_of(work
, struct pool_workqueue
,
3388 unbound_release_work
);
3389 struct workqueue_struct
*wq
= pwq
->wq
;
3390 struct worker_pool
*pool
= pwq
->pool
;
3393 if (WARN_ON_ONCE(!(wq
->flags
& WQ_UNBOUND
)))
3396 mutex_lock(&wq
->mutex
);
3397 list_del_rcu(&pwq
->pwqs_node
);
3398 is_last
= list_empty(&wq
->pwqs
);
3399 mutex_unlock(&wq
->mutex
);
3401 mutex_lock(&wq_pool_mutex
);
3402 put_unbound_pool(pool
);
3403 mutex_unlock(&wq_pool_mutex
);
3405 call_rcu_sched(&pwq
->rcu
, rcu_free_pwq
);
3408 * If we're the last pwq going away, @wq is already dead and no one
3409 * is gonna access it anymore. Schedule RCU free.
3412 call_rcu_sched(&wq
->rcu
, rcu_free_wq
);
3416 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3417 * @pwq: target pool_workqueue
3419 * If @pwq isn't freezing, set @pwq->max_active to the associated
3420 * workqueue's saved_max_active and activate delayed work items
3421 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3423 static void pwq_adjust_max_active(struct pool_workqueue
*pwq
)
3425 struct workqueue_struct
*wq
= pwq
->wq
;
3426 bool freezable
= wq
->flags
& WQ_FREEZABLE
;
3428 /* for @wq->saved_max_active */
3429 lockdep_assert_held(&wq
->mutex
);
3431 /* fast exit for non-freezable wqs */
3432 if (!freezable
&& pwq
->max_active
== wq
->saved_max_active
)
3435 spin_lock_irq(&pwq
->pool
->lock
);
3438 * During [un]freezing, the caller is responsible for ensuring that
3439 * this function is called at least once after @workqueue_freezing
3440 * is updated and visible.
3442 if (!freezable
|| !workqueue_freezing
) {
3443 pwq
->max_active
= wq
->saved_max_active
;
3445 while (!list_empty(&pwq
->delayed_works
) &&
3446 pwq
->nr_active
< pwq
->max_active
)
3447 pwq_activate_first_delayed(pwq
);
3450 * Need to kick a worker after thawed or an unbound wq's
3451 * max_active is bumped. It's a slow path. Do it always.
3453 wake_up_worker(pwq
->pool
);
3455 pwq
->max_active
= 0;
3458 spin_unlock_irq(&pwq
->pool
->lock
);
3461 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3462 static void init_pwq(struct pool_workqueue
*pwq
, struct workqueue_struct
*wq
,
3463 struct worker_pool
*pool
)
3465 BUG_ON((unsigned long)pwq
& WORK_STRUCT_FLAG_MASK
);
3467 memset(pwq
, 0, sizeof(*pwq
));
3471 pwq
->flush_color
= -1;
3473 INIT_LIST_HEAD(&pwq
->delayed_works
);
3474 INIT_LIST_HEAD(&pwq
->pwqs_node
);
3475 INIT_LIST_HEAD(&pwq
->mayday_node
);
3476 INIT_WORK(&pwq
->unbound_release_work
, pwq_unbound_release_workfn
);
3479 /* sync @pwq with the current state of its associated wq and link it */
3480 static void link_pwq(struct pool_workqueue
*pwq
)
3482 struct workqueue_struct
*wq
= pwq
->wq
;
3484 lockdep_assert_held(&wq
->mutex
);
3486 /* may be called multiple times, ignore if already linked */
3487 if (!list_empty(&pwq
->pwqs_node
))
3490 /* set the matching work_color */
3491 pwq
->work_color
= wq
->work_color
;
3493 /* sync max_active to the current setting */
3494 pwq_adjust_max_active(pwq
);
3497 list_add_rcu(&pwq
->pwqs_node
, &wq
->pwqs
);
3500 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3501 static struct pool_workqueue
*alloc_unbound_pwq(struct workqueue_struct
*wq
,
3502 const struct workqueue_attrs
*attrs
)
3504 struct worker_pool
*pool
;
3505 struct pool_workqueue
*pwq
;
3507 lockdep_assert_held(&wq_pool_mutex
);
3509 pool
= get_unbound_pool(attrs
);
3513 pwq
= kmem_cache_alloc_node(pwq_cache
, GFP_KERNEL
, pool
->node
);
3515 put_unbound_pool(pool
);
3519 init_pwq(pwq
, wq
, pool
);
3524 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3525 * @attrs: the wq_attrs of the default pwq of the target workqueue
3526 * @node: the target NUMA node
3527 * @cpu_going_down: if >= 0, the CPU to consider as offline
3528 * @cpumask: outarg, the resulting cpumask
3530 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3531 * @cpu_going_down is >= 0, that cpu is considered offline during
3532 * calculation. The result is stored in @cpumask.
3534 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3535 * enabled and @node has online CPUs requested by @attrs, the returned
3536 * cpumask is the intersection of the possible CPUs of @node and
3539 * The caller is responsible for ensuring that the cpumask of @node stays
3542 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3545 static bool wq_calc_node_cpumask(const struct workqueue_attrs
*attrs
, int node
,
3546 int cpu_going_down
, cpumask_t
*cpumask
)
3548 if (!wq_numa_enabled
|| attrs
->no_numa
)
3551 /* does @node have any online CPUs @attrs wants? */
3552 cpumask_and(cpumask
, cpumask_of_node(node
), attrs
->cpumask
);
3553 if (cpu_going_down
>= 0)
3554 cpumask_clear_cpu(cpu_going_down
, cpumask
);
3556 if (cpumask_empty(cpumask
))
3559 /* yeap, return possible CPUs in @node that @attrs wants */
3560 cpumask_and(cpumask
, attrs
->cpumask
, wq_numa_possible_cpumask
[node
]);
3561 return !cpumask_equal(cpumask
, attrs
->cpumask
);
3564 cpumask_copy(cpumask
, attrs
->cpumask
);
3568 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3569 static struct pool_workqueue
*numa_pwq_tbl_install(struct workqueue_struct
*wq
,
3571 struct pool_workqueue
*pwq
)
3573 struct pool_workqueue
*old_pwq
;
3575 lockdep_assert_held(&wq_pool_mutex
);
3576 lockdep_assert_held(&wq
->mutex
);
3578 /* link_pwq() can handle duplicate calls */
3581 old_pwq
= rcu_access_pointer(wq
->numa_pwq_tbl
[node
]);
3582 rcu_assign_pointer(wq
->numa_pwq_tbl
[node
], pwq
);
3586 /* context to store the prepared attrs & pwqs before applying */
3587 struct apply_wqattrs_ctx
{
3588 struct workqueue_struct
*wq
; /* target workqueue */
3589 struct workqueue_attrs
*attrs
; /* attrs to apply */
3590 struct list_head list
; /* queued for batching commit */
3591 struct pool_workqueue
*dfl_pwq
;
3592 struct pool_workqueue
*pwq_tbl
[];
3595 /* free the resources after success or abort */
3596 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx
*ctx
)
3602 put_pwq_unlocked(ctx
->pwq_tbl
[node
]);
3603 put_pwq_unlocked(ctx
->dfl_pwq
);
3605 free_workqueue_attrs(ctx
->attrs
);
3611 /* allocate the attrs and pwqs for later installation */
3612 static struct apply_wqattrs_ctx
*
3613 apply_wqattrs_prepare(struct workqueue_struct
*wq
,
3614 const struct workqueue_attrs
*attrs
)
3616 struct apply_wqattrs_ctx
*ctx
;
3617 struct workqueue_attrs
*new_attrs
, *tmp_attrs
;
3620 lockdep_assert_held(&wq_pool_mutex
);
3622 ctx
= kzalloc(sizeof(*ctx
) + nr_node_ids
* sizeof(ctx
->pwq_tbl
[0]),
3625 new_attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3626 tmp_attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3627 if (!ctx
|| !new_attrs
|| !tmp_attrs
)
3631 * Calculate the attrs of the default pwq.
3632 * If the user configured cpumask doesn't overlap with the
3633 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3635 copy_workqueue_attrs(new_attrs
, attrs
);
3636 cpumask_and(new_attrs
->cpumask
, new_attrs
->cpumask
, wq_unbound_cpumask
);
3637 if (unlikely(cpumask_empty(new_attrs
->cpumask
)))
3638 cpumask_copy(new_attrs
->cpumask
, wq_unbound_cpumask
);
3641 * We may create multiple pwqs with differing cpumasks. Make a
3642 * copy of @new_attrs which will be modified and used to obtain
3645 copy_workqueue_attrs(tmp_attrs
, new_attrs
);
3648 * If something goes wrong during CPU up/down, we'll fall back to
3649 * the default pwq covering whole @attrs->cpumask. Always create
3650 * it even if we don't use it immediately.
3652 ctx
->dfl_pwq
= alloc_unbound_pwq(wq
, new_attrs
);
3656 for_each_node(node
) {
3657 if (wq_calc_node_cpumask(new_attrs
, node
, -1, tmp_attrs
->cpumask
)) {
3658 ctx
->pwq_tbl
[node
] = alloc_unbound_pwq(wq
, tmp_attrs
);
3659 if (!ctx
->pwq_tbl
[node
])
3662 ctx
->dfl_pwq
->refcnt
++;
3663 ctx
->pwq_tbl
[node
] = ctx
->dfl_pwq
;
3667 /* save the user configured attrs and sanitize it. */
3668 copy_workqueue_attrs(new_attrs
, attrs
);
3669 cpumask_and(new_attrs
->cpumask
, new_attrs
->cpumask
, cpu_possible_mask
);
3670 ctx
->attrs
= new_attrs
;
3673 free_workqueue_attrs(tmp_attrs
);
3677 free_workqueue_attrs(tmp_attrs
);
3678 free_workqueue_attrs(new_attrs
);
3679 apply_wqattrs_cleanup(ctx
);
3683 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3684 static void apply_wqattrs_commit(struct apply_wqattrs_ctx
*ctx
)
3688 /* all pwqs have been created successfully, let's install'em */
3689 mutex_lock(&ctx
->wq
->mutex
);
3691 copy_workqueue_attrs(ctx
->wq
->unbound_attrs
, ctx
->attrs
);
3693 /* save the previous pwq and install the new one */
3695 ctx
->pwq_tbl
[node
] = numa_pwq_tbl_install(ctx
->wq
, node
,
3696 ctx
->pwq_tbl
[node
]);
3698 /* @dfl_pwq might not have been used, ensure it's linked */
3699 link_pwq(ctx
->dfl_pwq
);
3700 swap(ctx
->wq
->dfl_pwq
, ctx
->dfl_pwq
);
3702 mutex_unlock(&ctx
->wq
->mutex
);
3705 static void apply_wqattrs_lock(void)
3707 /* CPUs should stay stable across pwq creations and installations */
3709 mutex_lock(&wq_pool_mutex
);
3712 static void apply_wqattrs_unlock(void)
3714 mutex_unlock(&wq_pool_mutex
);
3718 static int apply_workqueue_attrs_locked(struct workqueue_struct
*wq
,
3719 const struct workqueue_attrs
*attrs
)
3721 struct apply_wqattrs_ctx
*ctx
;
3723 /* only unbound workqueues can change attributes */
3724 if (WARN_ON(!(wq
->flags
& WQ_UNBOUND
)))
3727 /* creating multiple pwqs breaks ordering guarantee */
3728 if (!list_empty(&wq
->pwqs
)) {
3729 if (WARN_ON(wq
->flags
& __WQ_ORDERED_EXPLICIT
))
3732 wq
->flags
&= ~__WQ_ORDERED
;
3735 ctx
= apply_wqattrs_prepare(wq
, attrs
);
3739 /* the ctx has been prepared successfully, let's commit it */
3740 apply_wqattrs_commit(ctx
);
3741 apply_wqattrs_cleanup(ctx
);
3747 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3748 * @wq: the target workqueue
3749 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3751 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3752 * machines, this function maps a separate pwq to each NUMA node with
3753 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3754 * NUMA node it was issued on. Older pwqs are released as in-flight work
3755 * items finish. Note that a work item which repeatedly requeues itself
3756 * back-to-back will stay on its current pwq.
3758 * Performs GFP_KERNEL allocations.
3760 * Return: 0 on success and -errno on failure.
3762 int apply_workqueue_attrs(struct workqueue_struct
*wq
,
3763 const struct workqueue_attrs
*attrs
)
3767 apply_wqattrs_lock();
3768 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
3769 apply_wqattrs_unlock();
3775 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3776 * @wq: the target workqueue
3777 * @cpu: the CPU coming up or going down
3778 * @online: whether @cpu is coming up or going down
3780 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3781 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3784 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3785 * falls back to @wq->dfl_pwq which may not be optimal but is always
3788 * Note that when the last allowed CPU of a NUMA node goes offline for a
3789 * workqueue with a cpumask spanning multiple nodes, the workers which were
3790 * already executing the work items for the workqueue will lose their CPU
3791 * affinity and may execute on any CPU. This is similar to how per-cpu
3792 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3793 * affinity, it's the user's responsibility to flush the work item from
3796 static void wq_update_unbound_numa(struct workqueue_struct
*wq
, int cpu
,
3799 int node
= cpu_to_node(cpu
);
3800 int cpu_off
= online
? -1 : cpu
;
3801 struct pool_workqueue
*old_pwq
= NULL
, *pwq
;
3802 struct workqueue_attrs
*target_attrs
;
3805 lockdep_assert_held(&wq_pool_mutex
);
3807 if (!wq_numa_enabled
|| !(wq
->flags
& WQ_UNBOUND
) ||
3808 wq
->unbound_attrs
->no_numa
)
3812 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3813 * Let's use a preallocated one. The following buf is protected by
3814 * CPU hotplug exclusion.
3816 target_attrs
= wq_update_unbound_numa_attrs_buf
;
3817 cpumask
= target_attrs
->cpumask
;
3819 copy_workqueue_attrs(target_attrs
, wq
->unbound_attrs
);
3820 pwq
= unbound_pwq_by_node(wq
, node
);
3823 * Let's determine what needs to be done. If the target cpumask is
3824 * different from the default pwq's, we need to compare it to @pwq's
3825 * and create a new one if they don't match. If the target cpumask
3826 * equals the default pwq's, the default pwq should be used.
3828 if (wq_calc_node_cpumask(wq
->dfl_pwq
->pool
->attrs
, node
, cpu_off
, cpumask
)) {
3829 if (cpumask_equal(cpumask
, pwq
->pool
->attrs
->cpumask
))
3835 /* create a new pwq */
3836 pwq
= alloc_unbound_pwq(wq
, target_attrs
);
3838 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3843 /* Install the new pwq. */
3844 mutex_lock(&wq
->mutex
);
3845 old_pwq
= numa_pwq_tbl_install(wq
, node
, pwq
);
3849 mutex_lock(&wq
->mutex
);
3850 spin_lock_irq(&wq
->dfl_pwq
->pool
->lock
);
3851 get_pwq(wq
->dfl_pwq
);
3852 spin_unlock_irq(&wq
->dfl_pwq
->pool
->lock
);
3853 old_pwq
= numa_pwq_tbl_install(wq
, node
, wq
->dfl_pwq
);
3855 mutex_unlock(&wq
->mutex
);
3856 put_pwq_unlocked(old_pwq
);
3859 static int alloc_and_link_pwqs(struct workqueue_struct
*wq
)
3861 bool highpri
= wq
->flags
& WQ_HIGHPRI
;
3864 if (!(wq
->flags
& WQ_UNBOUND
)) {
3865 wq
->cpu_pwqs
= alloc_percpu(struct pool_workqueue
);
3869 for_each_possible_cpu(cpu
) {
3870 struct pool_workqueue
*pwq
=
3871 per_cpu_ptr(wq
->cpu_pwqs
, cpu
);
3872 struct worker_pool
*cpu_pools
=
3873 per_cpu(cpu_worker_pools
, cpu
);
3875 init_pwq(pwq
, wq
, &cpu_pools
[highpri
]);
3877 mutex_lock(&wq
->mutex
);
3879 mutex_unlock(&wq
->mutex
);
3882 } else if (wq
->flags
& __WQ_ORDERED
) {
3883 ret
= apply_workqueue_attrs(wq
, ordered_wq_attrs
[highpri
]);
3884 /* there should only be single pwq for ordering guarantee */
3885 WARN(!ret
&& (wq
->pwqs
.next
!= &wq
->dfl_pwq
->pwqs_node
||
3886 wq
->pwqs
.prev
!= &wq
->dfl_pwq
->pwqs_node
),
3887 "ordering guarantee broken for workqueue %s\n", wq
->name
);
3890 return apply_workqueue_attrs(wq
, unbound_std_wq_attrs
[highpri
]);
3894 static int wq_clamp_max_active(int max_active
, unsigned int flags
,
3897 int lim
= flags
& WQ_UNBOUND
? WQ_UNBOUND_MAX_ACTIVE
: WQ_MAX_ACTIVE
;
3899 if (max_active
< 1 || max_active
> lim
)
3900 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3901 max_active
, name
, 1, lim
);
3903 return clamp_val(max_active
, 1, lim
);
3906 struct workqueue_struct
*__alloc_workqueue_key(const char *fmt
,
3909 struct lock_class_key
*key
,
3910 const char *lock_name
, ...)
3912 size_t tbl_size
= 0;
3914 struct workqueue_struct
*wq
;
3915 struct pool_workqueue
*pwq
;
3918 * Unbound && max_active == 1 used to imply ordered, which is no
3919 * longer the case on NUMA machines due to per-node pools. While
3920 * alloc_ordered_workqueue() is the right way to create an ordered
3921 * workqueue, keep the previous behavior to avoid subtle breakages
3924 if ((flags
& WQ_UNBOUND
) && max_active
== 1)
3925 flags
|= __WQ_ORDERED
;
3927 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3928 if ((flags
& WQ_POWER_EFFICIENT
) && wq_power_efficient
)
3929 flags
|= WQ_UNBOUND
;
3931 /* allocate wq and format name */
3932 if (flags
& WQ_UNBOUND
)
3933 tbl_size
= nr_node_ids
* sizeof(wq
->numa_pwq_tbl
[0]);
3935 wq
= kzalloc(sizeof(*wq
) + tbl_size
, GFP_KERNEL
);
3939 if (flags
& WQ_UNBOUND
) {
3940 wq
->unbound_attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3941 if (!wq
->unbound_attrs
)
3945 va_start(args
, lock_name
);
3946 vsnprintf(wq
->name
, sizeof(wq
->name
), fmt
, args
);
3949 max_active
= max_active
?: WQ_DFL_ACTIVE
;
3950 max_active
= wq_clamp_max_active(max_active
, flags
, wq
->name
);
3954 wq
->saved_max_active
= max_active
;
3955 mutex_init(&wq
->mutex
);
3956 atomic_set(&wq
->nr_pwqs_to_flush
, 0);
3957 INIT_LIST_HEAD(&wq
->pwqs
);
3958 INIT_LIST_HEAD(&wq
->flusher_queue
);
3959 INIT_LIST_HEAD(&wq
->flusher_overflow
);
3960 INIT_LIST_HEAD(&wq
->maydays
);
3962 lockdep_init_map(&wq
->lockdep_map
, lock_name
, key
, 0);
3963 INIT_LIST_HEAD(&wq
->list
);
3965 if (alloc_and_link_pwqs(wq
) < 0)
3969 * Workqueues which may be used during memory reclaim should
3970 * have a rescuer to guarantee forward progress.
3972 if (flags
& WQ_MEM_RECLAIM
) {
3973 struct worker
*rescuer
;
3975 rescuer
= alloc_worker(NUMA_NO_NODE
);
3979 rescuer
->rescue_wq
= wq
;
3980 rescuer
->task
= kthread_create(rescuer_thread
, rescuer
, "%s",
3982 if (IS_ERR(rescuer
->task
)) {
3987 wq
->rescuer
= rescuer
;
3988 kthread_bind_mask(rescuer
->task
, cpu_possible_mask
);
3989 wake_up_process(rescuer
->task
);
3992 if ((wq
->flags
& WQ_SYSFS
) && workqueue_sysfs_register(wq
))
3996 * wq_pool_mutex protects global freeze state and workqueues list.
3997 * Grab it, adjust max_active and add the new @wq to workqueues
4000 mutex_lock(&wq_pool_mutex
);
4002 mutex_lock(&wq
->mutex
);
4003 for_each_pwq(pwq
, wq
)
4004 pwq_adjust_max_active(pwq
);
4005 mutex_unlock(&wq
->mutex
);
4007 list_add_tail_rcu(&wq
->list
, &workqueues
);
4009 mutex_unlock(&wq_pool_mutex
);
4014 free_workqueue_attrs(wq
->unbound_attrs
);
4018 destroy_workqueue(wq
);
4021 EXPORT_SYMBOL_GPL(__alloc_workqueue_key
);
4024 * destroy_workqueue - safely terminate a workqueue
4025 * @wq: target workqueue
4027 * Safely destroy a workqueue. All work currently pending will be done first.
4029 void destroy_workqueue(struct workqueue_struct
*wq
)
4031 struct pool_workqueue
*pwq
;
4034 /* drain it before proceeding with destruction */
4035 drain_workqueue(wq
);
4038 mutex_lock(&wq
->mutex
);
4039 for_each_pwq(pwq
, wq
) {
4042 for (i
= 0; i
< WORK_NR_COLORS
; i
++) {
4043 if (WARN_ON(pwq
->nr_in_flight
[i
])) {
4044 mutex_unlock(&wq
->mutex
);
4049 if (WARN_ON((pwq
!= wq
->dfl_pwq
) && (pwq
->refcnt
> 1)) ||
4050 WARN_ON(pwq
->nr_active
) ||
4051 WARN_ON(!list_empty(&pwq
->delayed_works
))) {
4052 mutex_unlock(&wq
->mutex
);
4056 mutex_unlock(&wq
->mutex
);
4059 * wq list is used to freeze wq, remove from list after
4060 * flushing is complete in case freeze races us.
4062 mutex_lock(&wq_pool_mutex
);
4063 list_del_rcu(&wq
->list
);
4064 mutex_unlock(&wq_pool_mutex
);
4066 workqueue_sysfs_unregister(wq
);
4069 kthread_stop(wq
->rescuer
->task
);
4071 if (!(wq
->flags
& WQ_UNBOUND
)) {
4073 * The base ref is never dropped on per-cpu pwqs. Directly
4074 * schedule RCU free.
4076 call_rcu_sched(&wq
->rcu
, rcu_free_wq
);
4079 * We're the sole accessor of @wq at this point. Directly
4080 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4081 * @wq will be freed when the last pwq is released.
4083 for_each_node(node
) {
4084 pwq
= rcu_access_pointer(wq
->numa_pwq_tbl
[node
]);
4085 RCU_INIT_POINTER(wq
->numa_pwq_tbl
[node
], NULL
);
4086 put_pwq_unlocked(pwq
);
4090 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4091 * put. Don't access it afterwards.
4095 put_pwq_unlocked(pwq
);
4098 EXPORT_SYMBOL_GPL(destroy_workqueue
);
4101 * workqueue_set_max_active - adjust max_active of a workqueue
4102 * @wq: target workqueue
4103 * @max_active: new max_active value.
4105 * Set max_active of @wq to @max_active.
4108 * Don't call from IRQ context.
4110 void workqueue_set_max_active(struct workqueue_struct
*wq
, int max_active
)
4112 struct pool_workqueue
*pwq
;
4114 /* disallow meddling with max_active for ordered workqueues */
4115 if (WARN_ON(wq
->flags
& __WQ_ORDERED_EXPLICIT
))
4118 max_active
= wq_clamp_max_active(max_active
, wq
->flags
, wq
->name
);
4120 mutex_lock(&wq
->mutex
);
4122 wq
->flags
&= ~__WQ_ORDERED
;
4123 wq
->saved_max_active
= max_active
;
4125 for_each_pwq(pwq
, wq
)
4126 pwq_adjust_max_active(pwq
);
4128 mutex_unlock(&wq
->mutex
);
4130 EXPORT_SYMBOL_GPL(workqueue_set_max_active
);
4133 * current_work - retrieve %current task's work struct
4135 * Determine if %current task is a workqueue worker and what it's working on.
4136 * Useful to find out the context that the %current task is running in.
4138 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4140 struct work_struct
*current_work(void)
4142 struct worker
*worker
= current_wq_worker();
4144 return worker
? worker
->current_work
: NULL
;
4146 EXPORT_SYMBOL(current_work
);
4149 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4151 * Determine whether %current is a workqueue rescuer. Can be used from
4152 * work functions to determine whether it's being run off the rescuer task.
4154 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4156 bool current_is_workqueue_rescuer(void)
4158 struct worker
*worker
= current_wq_worker();
4160 return worker
&& worker
->rescue_wq
;
4164 * workqueue_congested - test whether a workqueue is congested
4165 * @cpu: CPU in question
4166 * @wq: target workqueue
4168 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4169 * no synchronization around this function and the test result is
4170 * unreliable and only useful as advisory hints or for debugging.
4172 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4173 * Note that both per-cpu and unbound workqueues may be associated with
4174 * multiple pool_workqueues which have separate congested states. A
4175 * workqueue being congested on one CPU doesn't mean the workqueue is also
4176 * contested on other CPUs / NUMA nodes.
4179 * %true if congested, %false otherwise.
4181 bool workqueue_congested(int cpu
, struct workqueue_struct
*wq
)
4183 struct pool_workqueue
*pwq
;
4186 rcu_read_lock_sched();
4188 if (cpu
== WORK_CPU_UNBOUND
)
4189 cpu
= smp_processor_id();
4191 if (!(wq
->flags
& WQ_UNBOUND
))
4192 pwq
= per_cpu_ptr(wq
->cpu_pwqs
, cpu
);
4194 pwq
= unbound_pwq_by_node(wq
, cpu_to_node(cpu
));
4196 ret
= !list_empty(&pwq
->delayed_works
);
4197 rcu_read_unlock_sched();
4201 EXPORT_SYMBOL_GPL(workqueue_congested
);
4204 * work_busy - test whether a work is currently pending or running
4205 * @work: the work to be tested
4207 * Test whether @work is currently pending or running. There is no
4208 * synchronization around this function and the test result is
4209 * unreliable and only useful as advisory hints or for debugging.
4212 * OR'd bitmask of WORK_BUSY_* bits.
4214 unsigned int work_busy(struct work_struct
*work
)
4216 struct worker_pool
*pool
;
4217 unsigned long flags
;
4218 unsigned int ret
= 0;
4220 if (work_pending(work
))
4221 ret
|= WORK_BUSY_PENDING
;
4223 local_irq_save(flags
);
4224 pool
= get_work_pool(work
);
4226 spin_lock(&pool
->lock
);
4227 if (find_worker_executing_work(pool
, work
))
4228 ret
|= WORK_BUSY_RUNNING
;
4229 spin_unlock(&pool
->lock
);
4231 local_irq_restore(flags
);
4235 EXPORT_SYMBOL_GPL(work_busy
);
4238 * set_worker_desc - set description for the current work item
4239 * @fmt: printf-style format string
4240 * @...: arguments for the format string
4242 * This function can be called by a running work function to describe what
4243 * the work item is about. If the worker task gets dumped, this
4244 * information will be printed out together to help debugging. The
4245 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4247 void set_worker_desc(const char *fmt
, ...)
4249 struct worker
*worker
= current_wq_worker();
4253 va_start(args
, fmt
);
4254 vsnprintf(worker
->desc
, sizeof(worker
->desc
), fmt
, args
);
4256 worker
->desc_valid
= true;
4261 * print_worker_info - print out worker information and description
4262 * @log_lvl: the log level to use when printing
4263 * @task: target task
4265 * If @task is a worker and currently executing a work item, print out the
4266 * name of the workqueue being serviced and worker description set with
4267 * set_worker_desc() by the currently executing work item.
4269 * This function can be safely called on any task as long as the
4270 * task_struct itself is accessible. While safe, this function isn't
4271 * synchronized and may print out mixups or garbages of limited length.
4273 void print_worker_info(const char *log_lvl
, struct task_struct
*task
)
4275 work_func_t
*fn
= NULL
;
4276 char name
[WQ_NAME_LEN
] = { };
4277 char desc
[WORKER_DESC_LEN
] = { };
4278 struct pool_workqueue
*pwq
= NULL
;
4279 struct workqueue_struct
*wq
= NULL
;
4280 bool desc_valid
= false;
4281 struct worker
*worker
;
4283 if (!(task
->flags
& PF_WQ_WORKER
))
4287 * This function is called without any synchronization and @task
4288 * could be in any state. Be careful with dereferences.
4290 worker
= kthread_probe_data(task
);
4293 * Carefully copy the associated workqueue's workfn and name. Keep
4294 * the original last '\0' in case the original contains garbage.
4296 probe_kernel_read(&fn
, &worker
->current_func
, sizeof(fn
));
4297 probe_kernel_read(&pwq
, &worker
->current_pwq
, sizeof(pwq
));
4298 probe_kernel_read(&wq
, &pwq
->wq
, sizeof(wq
));
4299 probe_kernel_read(name
, wq
->name
, sizeof(name
) - 1);
4301 /* copy worker description */
4302 probe_kernel_read(&desc_valid
, &worker
->desc_valid
, sizeof(desc_valid
));
4304 probe_kernel_read(desc
, worker
->desc
, sizeof(desc
) - 1);
4306 if (fn
|| name
[0] || desc
[0]) {
4307 printk("%sWorkqueue: %s %pf", log_lvl
, name
, fn
);
4309 pr_cont(" (%s)", desc
);
4314 static void pr_cont_pool_info(struct worker_pool
*pool
)
4316 pr_cont(" cpus=%*pbl", nr_cpumask_bits
, pool
->attrs
->cpumask
);
4317 if (pool
->node
!= NUMA_NO_NODE
)
4318 pr_cont(" node=%d", pool
->node
);
4319 pr_cont(" flags=0x%x nice=%d", pool
->flags
, pool
->attrs
->nice
);
4322 static void pr_cont_work(bool comma
, struct work_struct
*work
)
4324 if (work
->func
== wq_barrier_func
) {
4325 struct wq_barrier
*barr
;
4327 barr
= container_of(work
, struct wq_barrier
, work
);
4329 pr_cont("%s BAR(%d)", comma
? "," : "",
4330 task_pid_nr(barr
->task
));
4332 pr_cont("%s %pf", comma
? "," : "", work
->func
);
4336 static void show_pwq(struct pool_workqueue
*pwq
)
4338 struct worker_pool
*pool
= pwq
->pool
;
4339 struct work_struct
*work
;
4340 struct worker
*worker
;
4341 bool has_in_flight
= false, has_pending
= false;
4344 pr_info(" pwq %d:", pool
->id
);
4345 pr_cont_pool_info(pool
);
4347 pr_cont(" active=%d/%d%s\n", pwq
->nr_active
, pwq
->max_active
,
4348 !list_empty(&pwq
->mayday_node
) ? " MAYDAY" : "");
4350 hash_for_each(pool
->busy_hash
, bkt
, worker
, hentry
) {
4351 if (worker
->current_pwq
== pwq
) {
4352 has_in_flight
= true;
4356 if (has_in_flight
) {
4359 pr_info(" in-flight:");
4360 hash_for_each(pool
->busy_hash
, bkt
, worker
, hentry
) {
4361 if (worker
->current_pwq
!= pwq
)
4364 pr_cont("%s %d%s:%pf", comma
? "," : "",
4365 task_pid_nr(worker
->task
),
4366 worker
== pwq
->wq
->rescuer
? "(RESCUER)" : "",
4367 worker
->current_func
);
4368 list_for_each_entry(work
, &worker
->scheduled
, entry
)
4369 pr_cont_work(false, work
);
4375 list_for_each_entry(work
, &pool
->worklist
, entry
) {
4376 if (get_work_pwq(work
) == pwq
) {
4384 pr_info(" pending:");
4385 list_for_each_entry(work
, &pool
->worklist
, entry
) {
4386 if (get_work_pwq(work
) != pwq
)
4389 pr_cont_work(comma
, work
);
4390 comma
= !(*work_data_bits(work
) & WORK_STRUCT_LINKED
);
4395 if (!list_empty(&pwq
->delayed_works
)) {
4398 pr_info(" delayed:");
4399 list_for_each_entry(work
, &pwq
->delayed_works
, entry
) {
4400 pr_cont_work(comma
, work
);
4401 comma
= !(*work_data_bits(work
) & WORK_STRUCT_LINKED
);
4408 * show_workqueue_state - dump workqueue state
4410 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4411 * all busy workqueues and pools.
4413 void show_workqueue_state(void)
4415 struct workqueue_struct
*wq
;
4416 struct worker_pool
*pool
;
4417 unsigned long flags
;
4420 rcu_read_lock_sched();
4422 pr_info("Showing busy workqueues and worker pools:\n");
4424 list_for_each_entry_rcu(wq
, &workqueues
, list
) {
4425 struct pool_workqueue
*pwq
;
4428 for_each_pwq(pwq
, wq
) {
4429 if (pwq
->nr_active
|| !list_empty(&pwq
->delayed_works
)) {
4437 pr_info("workqueue %s: flags=0x%x\n", wq
->name
, wq
->flags
);
4439 for_each_pwq(pwq
, wq
) {
4440 spin_lock_irqsave(&pwq
->pool
->lock
, flags
);
4441 if (pwq
->nr_active
|| !list_empty(&pwq
->delayed_works
))
4443 spin_unlock_irqrestore(&pwq
->pool
->lock
, flags
);
4445 * We could be printing a lot from atomic context, e.g.
4446 * sysrq-t -> show_workqueue_state(). Avoid triggering
4449 touch_nmi_watchdog();
4453 for_each_pool(pool
, pi
) {
4454 struct worker
*worker
;
4457 spin_lock_irqsave(&pool
->lock
, flags
);
4458 if (pool
->nr_workers
== pool
->nr_idle
)
4461 pr_info("pool %d:", pool
->id
);
4462 pr_cont_pool_info(pool
);
4463 pr_cont(" hung=%us workers=%d",
4464 jiffies_to_msecs(jiffies
- pool
->watchdog_ts
) / 1000,
4467 pr_cont(" manager: %d",
4468 task_pid_nr(pool
->manager
->task
));
4469 list_for_each_entry(worker
, &pool
->idle_list
, entry
) {
4470 pr_cont(" %s%d", first
? "idle: " : "",
4471 task_pid_nr(worker
->task
));
4476 spin_unlock_irqrestore(&pool
->lock
, flags
);
4478 * We could be printing a lot from atomic context, e.g.
4479 * sysrq-t -> show_workqueue_state(). Avoid triggering
4482 touch_nmi_watchdog();
4485 rcu_read_unlock_sched();
4491 * There are two challenges in supporting CPU hotplug. Firstly, there
4492 * are a lot of assumptions on strong associations among work, pwq and
4493 * pool which make migrating pending and scheduled works very
4494 * difficult to implement without impacting hot paths. Secondly,
4495 * worker pools serve mix of short, long and very long running works making
4496 * blocked draining impractical.
4498 * This is solved by allowing the pools to be disassociated from the CPU
4499 * running as an unbound one and allowing it to be reattached later if the
4500 * cpu comes back online.
4503 static void wq_unbind_fn(struct work_struct
*work
)
4505 int cpu
= smp_processor_id();
4506 struct worker_pool
*pool
;
4507 struct worker
*worker
;
4509 for_each_cpu_worker_pool(pool
, cpu
) {
4510 mutex_lock(&pool
->attach_mutex
);
4511 spin_lock_irq(&pool
->lock
);
4514 * We've blocked all attach/detach operations. Make all workers
4515 * unbound and set DISASSOCIATED. Before this, all workers
4516 * except for the ones which are still executing works from
4517 * before the last CPU down must be on the cpu. After
4518 * this, they may become diasporas.
4520 for_each_pool_worker(worker
, pool
)
4521 worker
->flags
|= WORKER_UNBOUND
;
4523 pool
->flags
|= POOL_DISASSOCIATED
;
4525 spin_unlock_irq(&pool
->lock
);
4526 mutex_unlock(&pool
->attach_mutex
);
4529 * Call schedule() so that we cross rq->lock and thus can
4530 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4531 * This is necessary as scheduler callbacks may be invoked
4537 * Sched callbacks are disabled now. Zap nr_running.
4538 * After this, nr_running stays zero and need_more_worker()
4539 * and keep_working() are always true as long as the
4540 * worklist is not empty. This pool now behaves as an
4541 * unbound (in terms of concurrency management) pool which
4542 * are served by workers tied to the pool.
4544 atomic_set(&pool
->nr_running
, 0);
4547 * With concurrency management just turned off, a busy
4548 * worker blocking could lead to lengthy stalls. Kick off
4549 * unbound chain execution of currently pending work items.
4551 spin_lock_irq(&pool
->lock
);
4552 wake_up_worker(pool
);
4553 spin_unlock_irq(&pool
->lock
);
4558 * rebind_workers - rebind all workers of a pool to the associated CPU
4559 * @pool: pool of interest
4561 * @pool->cpu is coming online. Rebind all workers to the CPU.
4563 static void rebind_workers(struct worker_pool
*pool
)
4565 struct worker
*worker
;
4567 lockdep_assert_held(&pool
->attach_mutex
);
4570 * Restore CPU affinity of all workers. As all idle workers should
4571 * be on the run-queue of the associated CPU before any local
4572 * wake-ups for concurrency management happen, restore CPU affinity
4573 * of all workers first and then clear UNBOUND. As we're called
4574 * from CPU_ONLINE, the following shouldn't fail.
4576 for_each_pool_worker(worker
, pool
)
4577 WARN_ON_ONCE(set_cpus_allowed_ptr(worker
->task
,
4578 pool
->attrs
->cpumask
) < 0);
4580 spin_lock_irq(&pool
->lock
);
4583 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4584 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4585 * being reworked and this can go away in time.
4587 if (!(pool
->flags
& POOL_DISASSOCIATED
)) {
4588 spin_unlock_irq(&pool
->lock
);
4592 pool
->flags
&= ~POOL_DISASSOCIATED
;
4594 for_each_pool_worker(worker
, pool
) {
4595 unsigned int worker_flags
= worker
->flags
;
4598 * A bound idle worker should actually be on the runqueue
4599 * of the associated CPU for local wake-ups targeting it to
4600 * work. Kick all idle workers so that they migrate to the
4601 * associated CPU. Doing this in the same loop as
4602 * replacing UNBOUND with REBOUND is safe as no worker will
4603 * be bound before @pool->lock is released.
4605 if (worker_flags
& WORKER_IDLE
)
4606 wake_up_process(worker
->task
);
4609 * We want to clear UNBOUND but can't directly call
4610 * worker_clr_flags() or adjust nr_running. Atomically
4611 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4612 * @worker will clear REBOUND using worker_clr_flags() when
4613 * it initiates the next execution cycle thus restoring
4614 * concurrency management. Note that when or whether
4615 * @worker clears REBOUND doesn't affect correctness.
4617 * ACCESS_ONCE() is necessary because @worker->flags may be
4618 * tested without holding any lock in
4619 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4620 * fail incorrectly leading to premature concurrency
4621 * management operations.
4623 WARN_ON_ONCE(!(worker_flags
& WORKER_UNBOUND
));
4624 worker_flags
|= WORKER_REBOUND
;
4625 worker_flags
&= ~WORKER_UNBOUND
;
4626 ACCESS_ONCE(worker
->flags
) = worker_flags
;
4629 spin_unlock_irq(&pool
->lock
);
4633 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4634 * @pool: unbound pool of interest
4635 * @cpu: the CPU which is coming up
4637 * An unbound pool may end up with a cpumask which doesn't have any online
4638 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4639 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4640 * online CPU before, cpus_allowed of all its workers should be restored.
4642 static void restore_unbound_workers_cpumask(struct worker_pool
*pool
, int cpu
)
4644 static cpumask_t cpumask
;
4645 struct worker
*worker
;
4647 lockdep_assert_held(&pool
->attach_mutex
);
4649 /* is @cpu allowed for @pool? */
4650 if (!cpumask_test_cpu(cpu
, pool
->attrs
->cpumask
))
4653 cpumask_and(&cpumask
, pool
->attrs
->cpumask
, cpu_online_mask
);
4655 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4656 for_each_pool_worker(worker
, pool
)
4657 WARN_ON_ONCE(set_cpus_allowed_ptr(worker
->task
, &cpumask
) < 0);
4660 int workqueue_prepare_cpu(unsigned int cpu
)
4662 struct worker_pool
*pool
;
4664 for_each_cpu_worker_pool(pool
, cpu
) {
4665 if (pool
->nr_workers
)
4667 if (!create_worker(pool
))
4673 int workqueue_online_cpu(unsigned int cpu
)
4675 struct worker_pool
*pool
;
4676 struct workqueue_struct
*wq
;
4679 mutex_lock(&wq_pool_mutex
);
4681 for_each_pool(pool
, pi
) {
4682 mutex_lock(&pool
->attach_mutex
);
4684 if (pool
->cpu
== cpu
)
4685 rebind_workers(pool
);
4686 else if (pool
->cpu
< 0)
4687 restore_unbound_workers_cpumask(pool
, cpu
);
4689 mutex_unlock(&pool
->attach_mutex
);
4692 /* update NUMA affinity of unbound workqueues */
4693 list_for_each_entry(wq
, &workqueues
, list
)
4694 wq_update_unbound_numa(wq
, cpu
, true);
4696 mutex_unlock(&wq_pool_mutex
);
4700 int workqueue_offline_cpu(unsigned int cpu
)
4702 struct work_struct unbind_work
;
4703 struct workqueue_struct
*wq
;
4705 /* unbinding per-cpu workers should happen on the local CPU */
4706 INIT_WORK_ONSTACK(&unbind_work
, wq_unbind_fn
);
4707 queue_work_on(cpu
, system_highpri_wq
, &unbind_work
);
4709 /* update NUMA affinity of unbound workqueues */
4710 mutex_lock(&wq_pool_mutex
);
4711 list_for_each_entry(wq
, &workqueues
, list
)
4712 wq_update_unbound_numa(wq
, cpu
, false);
4713 mutex_unlock(&wq_pool_mutex
);
4715 /* wait for per-cpu unbinding to finish */
4716 flush_work(&unbind_work
);
4717 destroy_work_on_stack(&unbind_work
);
4723 struct work_for_cpu
{
4724 struct work_struct work
;
4730 static void work_for_cpu_fn(struct work_struct
*work
)
4732 struct work_for_cpu
*wfc
= container_of(work
, struct work_for_cpu
, work
);
4734 wfc
->ret
= wfc
->fn(wfc
->arg
);
4738 * work_on_cpu - run a function in thread context on a particular cpu
4739 * @cpu: the cpu to run on
4740 * @fn: the function to run
4741 * @arg: the function arg
4743 * It is up to the caller to ensure that the cpu doesn't go offline.
4744 * The caller must not hold any locks which would prevent @fn from completing.
4746 * Return: The value @fn returns.
4748 long work_on_cpu(int cpu
, long (*fn
)(void *), void *arg
)
4750 struct work_for_cpu wfc
= { .fn
= fn
, .arg
= arg
};
4752 INIT_WORK_ONSTACK(&wfc
.work
, work_for_cpu_fn
);
4753 schedule_work_on(cpu
, &wfc
.work
);
4754 flush_work(&wfc
.work
);
4755 destroy_work_on_stack(&wfc
.work
);
4758 EXPORT_SYMBOL_GPL(work_on_cpu
);
4759 #endif /* CONFIG_SMP */
4761 #ifdef CONFIG_FREEZER
4764 * freeze_workqueues_begin - begin freezing workqueues
4766 * Start freezing workqueues. After this function returns, all freezable
4767 * workqueues will queue new works to their delayed_works list instead of
4771 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4773 void freeze_workqueues_begin(void)
4775 struct workqueue_struct
*wq
;
4776 struct pool_workqueue
*pwq
;
4778 mutex_lock(&wq_pool_mutex
);
4780 WARN_ON_ONCE(workqueue_freezing
);
4781 workqueue_freezing
= true;
4783 list_for_each_entry(wq
, &workqueues
, list
) {
4784 mutex_lock(&wq
->mutex
);
4785 for_each_pwq(pwq
, wq
)
4786 pwq_adjust_max_active(pwq
);
4787 mutex_unlock(&wq
->mutex
);
4790 mutex_unlock(&wq_pool_mutex
);
4794 * freeze_workqueues_busy - are freezable workqueues still busy?
4796 * Check whether freezing is complete. This function must be called
4797 * between freeze_workqueues_begin() and thaw_workqueues().
4800 * Grabs and releases wq_pool_mutex.
4803 * %true if some freezable workqueues are still busy. %false if freezing
4806 bool freeze_workqueues_busy(void)
4809 struct workqueue_struct
*wq
;
4810 struct pool_workqueue
*pwq
;
4812 mutex_lock(&wq_pool_mutex
);
4814 WARN_ON_ONCE(!workqueue_freezing
);
4816 list_for_each_entry(wq
, &workqueues
, list
) {
4817 if (!(wq
->flags
& WQ_FREEZABLE
))
4820 * nr_active is monotonically decreasing. It's safe
4821 * to peek without lock.
4823 rcu_read_lock_sched();
4824 for_each_pwq(pwq
, wq
) {
4825 WARN_ON_ONCE(pwq
->nr_active
< 0);
4826 if (pwq
->nr_active
) {
4828 rcu_read_unlock_sched();
4832 rcu_read_unlock_sched();
4835 mutex_unlock(&wq_pool_mutex
);
4840 * thaw_workqueues - thaw workqueues
4842 * Thaw workqueues. Normal queueing is restored and all collected
4843 * frozen works are transferred to their respective pool worklists.
4846 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4848 void thaw_workqueues(void)
4850 struct workqueue_struct
*wq
;
4851 struct pool_workqueue
*pwq
;
4853 mutex_lock(&wq_pool_mutex
);
4855 if (!workqueue_freezing
)
4858 workqueue_freezing
= false;
4860 /* restore max_active and repopulate worklist */
4861 list_for_each_entry(wq
, &workqueues
, list
) {
4862 mutex_lock(&wq
->mutex
);
4863 for_each_pwq(pwq
, wq
)
4864 pwq_adjust_max_active(pwq
);
4865 mutex_unlock(&wq
->mutex
);
4869 mutex_unlock(&wq_pool_mutex
);
4871 #endif /* CONFIG_FREEZER */
4873 static int workqueue_apply_unbound_cpumask(void)
4877 struct workqueue_struct
*wq
;
4878 struct apply_wqattrs_ctx
*ctx
, *n
;
4880 lockdep_assert_held(&wq_pool_mutex
);
4882 list_for_each_entry(wq
, &workqueues
, list
) {
4883 if (!(wq
->flags
& WQ_UNBOUND
))
4885 /* creating multiple pwqs breaks ordering guarantee */
4886 if (wq
->flags
& __WQ_ORDERED
)
4889 ctx
= apply_wqattrs_prepare(wq
, wq
->unbound_attrs
);
4895 list_add_tail(&ctx
->list
, &ctxs
);
4898 list_for_each_entry_safe(ctx
, n
, &ctxs
, list
) {
4900 apply_wqattrs_commit(ctx
);
4901 apply_wqattrs_cleanup(ctx
);
4908 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4909 * @cpumask: the cpumask to set
4911 * The low-level workqueues cpumask is a global cpumask that limits
4912 * the affinity of all unbound workqueues. This function check the @cpumask
4913 * and apply it to all unbound workqueues and updates all pwqs of them.
4915 * Retun: 0 - Success
4916 * -EINVAL - Invalid @cpumask
4917 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4919 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask
)
4922 cpumask_var_t saved_cpumask
;
4924 if (!zalloc_cpumask_var(&saved_cpumask
, GFP_KERNEL
))
4927 cpumask_and(cpumask
, cpumask
, cpu_possible_mask
);
4928 if (!cpumask_empty(cpumask
)) {
4929 apply_wqattrs_lock();
4931 /* save the old wq_unbound_cpumask. */
4932 cpumask_copy(saved_cpumask
, wq_unbound_cpumask
);
4934 /* update wq_unbound_cpumask at first and apply it to wqs. */
4935 cpumask_copy(wq_unbound_cpumask
, cpumask
);
4936 ret
= workqueue_apply_unbound_cpumask();
4938 /* restore the wq_unbound_cpumask when failed. */
4940 cpumask_copy(wq_unbound_cpumask
, saved_cpumask
);
4942 apply_wqattrs_unlock();
4945 free_cpumask_var(saved_cpumask
);
4951 * Workqueues with WQ_SYSFS flag set is visible to userland via
4952 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4953 * following attributes.
4955 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4956 * max_active RW int : maximum number of in-flight work items
4958 * Unbound workqueues have the following extra attributes.
4960 * id RO int : the associated pool ID
4961 * nice RW int : nice value of the workers
4962 * cpumask RW mask : bitmask of allowed CPUs for the workers
4965 struct workqueue_struct
*wq
;
4969 static struct workqueue_struct
*dev_to_wq(struct device
*dev
)
4971 struct wq_device
*wq_dev
= container_of(dev
, struct wq_device
, dev
);
4976 static ssize_t
per_cpu_show(struct device
*dev
, struct device_attribute
*attr
,
4979 struct workqueue_struct
*wq
= dev_to_wq(dev
);
4981 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (bool)!(wq
->flags
& WQ_UNBOUND
));
4983 static DEVICE_ATTR_RO(per_cpu
);
4985 static ssize_t
max_active_show(struct device
*dev
,
4986 struct device_attribute
*attr
, char *buf
)
4988 struct workqueue_struct
*wq
= dev_to_wq(dev
);
4990 return scnprintf(buf
, PAGE_SIZE
, "%d\n", wq
->saved_max_active
);
4993 static ssize_t
max_active_store(struct device
*dev
,
4994 struct device_attribute
*attr
, const char *buf
,
4997 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5000 if (sscanf(buf
, "%d", &val
) != 1 || val
<= 0)
5003 workqueue_set_max_active(wq
, val
);
5006 static DEVICE_ATTR_RW(max_active
);
5008 static struct attribute
*wq_sysfs_attrs
[] = {
5009 &dev_attr_per_cpu
.attr
,
5010 &dev_attr_max_active
.attr
,
5013 ATTRIBUTE_GROUPS(wq_sysfs
);
5015 static ssize_t
wq_pool_ids_show(struct device
*dev
,
5016 struct device_attribute
*attr
, char *buf
)
5018 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5019 const char *delim
= "";
5020 int node
, written
= 0;
5022 rcu_read_lock_sched();
5023 for_each_node(node
) {
5024 written
+= scnprintf(buf
+ written
, PAGE_SIZE
- written
,
5025 "%s%d:%d", delim
, node
,
5026 unbound_pwq_by_node(wq
, node
)->pool
->id
);
5029 written
+= scnprintf(buf
+ written
, PAGE_SIZE
- written
, "\n");
5030 rcu_read_unlock_sched();
5035 static ssize_t
wq_nice_show(struct device
*dev
, struct device_attribute
*attr
,
5038 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5041 mutex_lock(&wq
->mutex
);
5042 written
= scnprintf(buf
, PAGE_SIZE
, "%d\n", wq
->unbound_attrs
->nice
);
5043 mutex_unlock(&wq
->mutex
);
5048 /* prepare workqueue_attrs for sysfs store operations */
5049 static struct workqueue_attrs
*wq_sysfs_prep_attrs(struct workqueue_struct
*wq
)
5051 struct workqueue_attrs
*attrs
;
5053 lockdep_assert_held(&wq_pool_mutex
);
5055 attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
5059 copy_workqueue_attrs(attrs
, wq
->unbound_attrs
);
5063 static ssize_t
wq_nice_store(struct device
*dev
, struct device_attribute
*attr
,
5064 const char *buf
, size_t count
)
5066 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5067 struct workqueue_attrs
*attrs
;
5070 apply_wqattrs_lock();
5072 attrs
= wq_sysfs_prep_attrs(wq
);
5076 if (sscanf(buf
, "%d", &attrs
->nice
) == 1 &&
5077 attrs
->nice
>= MIN_NICE
&& attrs
->nice
<= MAX_NICE
)
5078 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
5083 apply_wqattrs_unlock();
5084 free_workqueue_attrs(attrs
);
5085 return ret
?: count
;
5088 static ssize_t
wq_cpumask_show(struct device
*dev
,
5089 struct device_attribute
*attr
, char *buf
)
5091 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5094 mutex_lock(&wq
->mutex
);
5095 written
= scnprintf(buf
, PAGE_SIZE
, "%*pb\n",
5096 cpumask_pr_args(wq
->unbound_attrs
->cpumask
));
5097 mutex_unlock(&wq
->mutex
);
5101 static ssize_t
wq_cpumask_store(struct device
*dev
,
5102 struct device_attribute
*attr
,
5103 const char *buf
, size_t count
)
5105 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5106 struct workqueue_attrs
*attrs
;
5109 apply_wqattrs_lock();
5111 attrs
= wq_sysfs_prep_attrs(wq
);
5115 ret
= cpumask_parse(buf
, attrs
->cpumask
);
5117 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
5120 apply_wqattrs_unlock();
5121 free_workqueue_attrs(attrs
);
5122 return ret
?: count
;
5125 static ssize_t
wq_numa_show(struct device
*dev
, struct device_attribute
*attr
,
5128 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5131 mutex_lock(&wq
->mutex
);
5132 written
= scnprintf(buf
, PAGE_SIZE
, "%d\n",
5133 !wq
->unbound_attrs
->no_numa
);
5134 mutex_unlock(&wq
->mutex
);
5139 static ssize_t
wq_numa_store(struct device
*dev
, struct device_attribute
*attr
,
5140 const char *buf
, size_t count
)
5142 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5143 struct workqueue_attrs
*attrs
;
5144 int v
, ret
= -ENOMEM
;
5146 apply_wqattrs_lock();
5148 attrs
= wq_sysfs_prep_attrs(wq
);
5153 if (sscanf(buf
, "%d", &v
) == 1) {
5154 attrs
->no_numa
= !v
;
5155 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
5159 apply_wqattrs_unlock();
5160 free_workqueue_attrs(attrs
);
5161 return ret
?: count
;
5164 static struct device_attribute wq_sysfs_unbound_attrs
[] = {
5165 __ATTR(pool_ids
, 0444, wq_pool_ids_show
, NULL
),
5166 __ATTR(nice
, 0644, wq_nice_show
, wq_nice_store
),
5167 __ATTR(cpumask
, 0644, wq_cpumask_show
, wq_cpumask_store
),
5168 __ATTR(numa
, 0644, wq_numa_show
, wq_numa_store
),
5172 static struct bus_type wq_subsys
= {
5173 .name
= "workqueue",
5174 .dev_groups
= wq_sysfs_groups
,
5177 static ssize_t
wq_unbound_cpumask_show(struct device
*dev
,
5178 struct device_attribute
*attr
, char *buf
)
5182 mutex_lock(&wq_pool_mutex
);
5183 written
= scnprintf(buf
, PAGE_SIZE
, "%*pb\n",
5184 cpumask_pr_args(wq_unbound_cpumask
));
5185 mutex_unlock(&wq_pool_mutex
);
5190 static ssize_t
wq_unbound_cpumask_store(struct device
*dev
,
5191 struct device_attribute
*attr
, const char *buf
, size_t count
)
5193 cpumask_var_t cpumask
;
5196 if (!zalloc_cpumask_var(&cpumask
, GFP_KERNEL
))
5199 ret
= cpumask_parse(buf
, cpumask
);
5201 ret
= workqueue_set_unbound_cpumask(cpumask
);
5203 free_cpumask_var(cpumask
);
5204 return ret
? ret
: count
;
5207 static struct device_attribute wq_sysfs_cpumask_attr
=
5208 __ATTR(cpumask
, 0644, wq_unbound_cpumask_show
,
5209 wq_unbound_cpumask_store
);
5211 static int __init
wq_sysfs_init(void)
5215 err
= subsys_virtual_register(&wq_subsys
, NULL
);
5219 return device_create_file(wq_subsys
.dev_root
, &wq_sysfs_cpumask_attr
);
5221 core_initcall(wq_sysfs_init
);
5223 static void wq_device_release(struct device
*dev
)
5225 struct wq_device
*wq_dev
= container_of(dev
, struct wq_device
, dev
);
5231 * workqueue_sysfs_register - make a workqueue visible in sysfs
5232 * @wq: the workqueue to register
5234 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5235 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5236 * which is the preferred method.
5238 * Workqueue user should use this function directly iff it wants to apply
5239 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5240 * apply_workqueue_attrs() may race against userland updating the
5243 * Return: 0 on success, -errno on failure.
5245 int workqueue_sysfs_register(struct workqueue_struct
*wq
)
5247 struct wq_device
*wq_dev
;
5251 * Adjusting max_active or creating new pwqs by applying
5252 * attributes breaks ordering guarantee. Disallow exposing ordered
5255 if (WARN_ON(wq
->flags
& __WQ_ORDERED_EXPLICIT
))
5258 wq
->wq_dev
= wq_dev
= kzalloc(sizeof(*wq_dev
), GFP_KERNEL
);
5263 wq_dev
->dev
.bus
= &wq_subsys
;
5264 wq_dev
->dev
.release
= wq_device_release
;
5265 dev_set_name(&wq_dev
->dev
, "%s", wq
->name
);
5268 * unbound_attrs are created separately. Suppress uevent until
5269 * everything is ready.
5271 dev_set_uevent_suppress(&wq_dev
->dev
, true);
5273 ret
= device_register(&wq_dev
->dev
);
5280 if (wq
->flags
& WQ_UNBOUND
) {
5281 struct device_attribute
*attr
;
5283 for (attr
= wq_sysfs_unbound_attrs
; attr
->attr
.name
; attr
++) {
5284 ret
= device_create_file(&wq_dev
->dev
, attr
);
5286 device_unregister(&wq_dev
->dev
);
5293 dev_set_uevent_suppress(&wq_dev
->dev
, false);
5294 kobject_uevent(&wq_dev
->dev
.kobj
, KOBJ_ADD
);
5299 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5300 * @wq: the workqueue to unregister
5302 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5304 static void workqueue_sysfs_unregister(struct workqueue_struct
*wq
)
5306 struct wq_device
*wq_dev
= wq
->wq_dev
;
5312 device_unregister(&wq_dev
->dev
);
5314 #else /* CONFIG_SYSFS */
5315 static void workqueue_sysfs_unregister(struct workqueue_struct
*wq
) { }
5316 #endif /* CONFIG_SYSFS */
5319 * Workqueue watchdog.
5321 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5322 * flush dependency, a concurrency managed work item which stays RUNNING
5323 * indefinitely. Workqueue stalls can be very difficult to debug as the
5324 * usual warning mechanisms don't trigger and internal workqueue state is
5327 * Workqueue watchdog monitors all worker pools periodically and dumps
5328 * state if some pools failed to make forward progress for a while where
5329 * forward progress is defined as the first item on ->worklist changing.
5331 * This mechanism is controlled through the kernel parameter
5332 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5333 * corresponding sysfs parameter file.
5335 #ifdef CONFIG_WQ_WATCHDOG
5337 static void wq_watchdog_timer_fn(unsigned long data
);
5339 static unsigned long wq_watchdog_thresh
= 30;
5340 static struct timer_list wq_watchdog_timer
=
5341 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn
, 0, 0);
5343 static unsigned long wq_watchdog_touched
= INITIAL_JIFFIES
;
5344 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu
) = INITIAL_JIFFIES
;
5346 static void wq_watchdog_reset_touched(void)
5350 wq_watchdog_touched
= jiffies
;
5351 for_each_possible_cpu(cpu
)
5352 per_cpu(wq_watchdog_touched_cpu
, cpu
) = jiffies
;
5355 static void wq_watchdog_timer_fn(unsigned long data
)
5357 unsigned long thresh
= READ_ONCE(wq_watchdog_thresh
) * HZ
;
5358 bool lockup_detected
= false;
5359 struct worker_pool
*pool
;
5367 for_each_pool(pool
, pi
) {
5368 unsigned long pool_ts
, touched
, ts
;
5370 if (list_empty(&pool
->worklist
))
5373 /* get the latest of pool and touched timestamps */
5374 pool_ts
= READ_ONCE(pool
->watchdog_ts
);
5375 touched
= READ_ONCE(wq_watchdog_touched
);
5377 if (time_after(pool_ts
, touched
))
5382 if (pool
->cpu
>= 0) {
5383 unsigned long cpu_touched
=
5384 READ_ONCE(per_cpu(wq_watchdog_touched_cpu
,
5386 if (time_after(cpu_touched
, ts
))
5391 if (time_after(jiffies
, ts
+ thresh
)) {
5392 lockup_detected
= true;
5393 pr_emerg("BUG: workqueue lockup - pool");
5394 pr_cont_pool_info(pool
);
5395 pr_cont(" stuck for %us!\n",
5396 jiffies_to_msecs(jiffies
- pool_ts
) / 1000);
5402 if (lockup_detected
)
5403 show_workqueue_state();
5405 wq_watchdog_reset_touched();
5406 mod_timer(&wq_watchdog_timer
, jiffies
+ thresh
);
5409 void wq_watchdog_touch(int cpu
)
5412 per_cpu(wq_watchdog_touched_cpu
, cpu
) = jiffies
;
5414 wq_watchdog_touched
= jiffies
;
5417 static void wq_watchdog_set_thresh(unsigned long thresh
)
5419 wq_watchdog_thresh
= 0;
5420 del_timer_sync(&wq_watchdog_timer
);
5423 wq_watchdog_thresh
= thresh
;
5424 wq_watchdog_reset_touched();
5425 mod_timer(&wq_watchdog_timer
, jiffies
+ thresh
* HZ
);
5429 static int wq_watchdog_param_set_thresh(const char *val
,
5430 const struct kernel_param
*kp
)
5432 unsigned long thresh
;
5435 ret
= kstrtoul(val
, 0, &thresh
);
5440 wq_watchdog_set_thresh(thresh
);
5442 wq_watchdog_thresh
= thresh
;
5447 static const struct kernel_param_ops wq_watchdog_thresh_ops
= {
5448 .set
= wq_watchdog_param_set_thresh
,
5449 .get
= param_get_ulong
,
5452 module_param_cb(watchdog_thresh
, &wq_watchdog_thresh_ops
, &wq_watchdog_thresh
,
5455 static void wq_watchdog_init(void)
5457 wq_watchdog_set_thresh(wq_watchdog_thresh
);
5460 #else /* CONFIG_WQ_WATCHDOG */
5462 static inline void wq_watchdog_init(void) { }
5464 #endif /* CONFIG_WQ_WATCHDOG */
5466 static void __init
wq_numa_init(void)
5471 if (num_possible_nodes() <= 1)
5474 if (wq_disable_numa
) {
5475 pr_info("workqueue: NUMA affinity support disabled\n");
5479 wq_update_unbound_numa_attrs_buf
= alloc_workqueue_attrs(GFP_KERNEL
);
5480 BUG_ON(!wq_update_unbound_numa_attrs_buf
);
5483 * We want masks of possible CPUs of each node which isn't readily
5484 * available. Build one from cpu_to_node() which should have been
5485 * fully initialized by now.
5487 tbl
= kzalloc(nr_node_ids
* sizeof(tbl
[0]), GFP_KERNEL
);
5491 BUG_ON(!zalloc_cpumask_var_node(&tbl
[node
], GFP_KERNEL
,
5492 node_online(node
) ? node
: NUMA_NO_NODE
));
5494 for_each_possible_cpu(cpu
) {
5495 node
= cpu_to_node(cpu
);
5496 if (WARN_ON(node
== NUMA_NO_NODE
)) {
5497 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu
);
5498 /* happens iff arch is bonkers, let's just proceed */
5501 cpumask_set_cpu(cpu
, tbl
[node
]);
5504 wq_numa_possible_cpumask
= tbl
;
5505 wq_numa_enabled
= true;
5508 static int __init
init_workqueues(void)
5510 int std_nice
[NR_STD_WORKER_POOLS
] = { 0, HIGHPRI_NICE_LEVEL
};
5513 WARN_ON(__alignof__(struct pool_workqueue
) < __alignof__(long long));
5515 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask
, GFP_KERNEL
));
5516 cpumask_copy(wq_unbound_cpumask
, cpu_possible_mask
);
5518 pwq_cache
= KMEM_CACHE(pool_workqueue
, SLAB_PANIC
);
5522 /* initialize CPU pools */
5523 for_each_possible_cpu(cpu
) {
5524 struct worker_pool
*pool
;
5527 for_each_cpu_worker_pool(pool
, cpu
) {
5528 BUG_ON(init_worker_pool(pool
));
5530 cpumask_copy(pool
->attrs
->cpumask
, cpumask_of(cpu
));
5531 pool
->attrs
->nice
= std_nice
[i
++];
5532 pool
->node
= cpu_to_node(cpu
);
5535 mutex_lock(&wq_pool_mutex
);
5536 BUG_ON(worker_pool_assign_id(pool
));
5537 mutex_unlock(&wq_pool_mutex
);
5541 /* create the initial worker */
5542 for_each_online_cpu(cpu
) {
5543 struct worker_pool
*pool
;
5545 for_each_cpu_worker_pool(pool
, cpu
) {
5546 pool
->flags
&= ~POOL_DISASSOCIATED
;
5547 BUG_ON(!create_worker(pool
));
5551 /* create default unbound and ordered wq attrs */
5552 for (i
= 0; i
< NR_STD_WORKER_POOLS
; i
++) {
5553 struct workqueue_attrs
*attrs
;
5555 BUG_ON(!(attrs
= alloc_workqueue_attrs(GFP_KERNEL
)));
5556 attrs
->nice
= std_nice
[i
];
5557 unbound_std_wq_attrs
[i
] = attrs
;
5560 * An ordered wq should have only one pwq as ordering is
5561 * guaranteed by max_active which is enforced by pwqs.
5562 * Turn off NUMA so that dfl_pwq is used for all nodes.
5564 BUG_ON(!(attrs
= alloc_workqueue_attrs(GFP_KERNEL
)));
5565 attrs
->nice
= std_nice
[i
];
5566 attrs
->no_numa
= true;
5567 ordered_wq_attrs
[i
] = attrs
;
5570 system_wq
= alloc_workqueue("events", 0, 0);
5571 system_highpri_wq
= alloc_workqueue("events_highpri", WQ_HIGHPRI
, 0);
5572 system_long_wq
= alloc_workqueue("events_long", 0, 0);
5573 system_unbound_wq
= alloc_workqueue("events_unbound", WQ_UNBOUND
,
5574 WQ_UNBOUND_MAX_ACTIVE
);
5575 system_freezable_wq
= alloc_workqueue("events_freezable",
5577 system_power_efficient_wq
= alloc_workqueue("events_power_efficient",
5578 WQ_POWER_EFFICIENT
, 0);
5579 system_freezable_power_efficient_wq
= alloc_workqueue("events_freezable_power_efficient",
5580 WQ_FREEZABLE
| WQ_POWER_EFFICIENT
,
5582 BUG_ON(!system_wq
|| !system_highpri_wq
|| !system_long_wq
||
5583 !system_unbound_wq
|| !system_freezable_wq
||
5584 !system_power_efficient_wq
||
5585 !system_freezable_power_efficient_wq
);
5591 early_initcall(init_workqueues
);