r8152: fix tx packets accounting
[linux/fpc-iii.git] / mm / shmem.c
blob42ca5df2c0e30a7941ed76d25b79128d6488ad20
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
37 static struct vfsmount *shm_mnt;
39 #ifdef CONFIG_SHMEM
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
77 #include "internal.h"
79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
93 struct shmem_falloc {
94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 pgoff_t start; /* start of range currently being fallocated */
96 pgoff_t next; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
104 return totalram_pages / 2;
107 static unsigned long shmem_default_max_inodes(void)
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
111 #endif
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 struct page **pagep, enum sgp_type sgp,
118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121 struct page **pagep, enum sgp_type sgp)
123 return shmem_getpage_gfp(inode, index, pagep, sgp,
124 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 return sb->s_fs_info;
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 return (flags & VM_NORESERVE) ?
141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 if (!(flags & VM_NORESERVE))
147 vm_unacct_memory(VM_ACCT(size));
150 static inline int shmem_reacct_size(unsigned long flags,
151 loff_t oldsize, loff_t newsize)
153 if (!(flags & VM_NORESERVE)) {
154 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 return security_vm_enough_memory_mm(current->mm,
156 VM_ACCT(newsize) - VM_ACCT(oldsize));
157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
160 return 0;
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169 static inline int shmem_acct_block(unsigned long flags, long pages)
171 if (!(flags & VM_NORESERVE))
172 return 0;
174 return security_vm_enough_memory_mm(current->mm,
175 pages * VM_ACCT(PAGE_SIZE));
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
180 if (flags & VM_NORESERVE)
181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
191 static struct file_system_type shmem_fs_type;
193 static LIST_HEAD(shmem_swaplist);
194 static DEFINE_MUTEX(shmem_swaplist_mutex);
196 static int shmem_reserve_inode(struct super_block *sb)
198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 if (sbinfo->max_inodes) {
200 spin_lock(&sbinfo->stat_lock);
201 if (!sbinfo->free_inodes) {
202 spin_unlock(&sbinfo->stat_lock);
203 return -ENOSPC;
205 sbinfo->free_inodes--;
206 spin_unlock(&sbinfo->stat_lock);
208 return 0;
211 static void shmem_free_inode(struct super_block *sb)
213 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 if (sbinfo->max_inodes) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_inodes++;
217 spin_unlock(&sbinfo->stat_lock);
222 * shmem_recalc_inode - recalculate the block usage of an inode
223 * @inode: inode to recalc
225 * We have to calculate the free blocks since the mm can drop
226 * undirtied hole pages behind our back.
228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231 * It has to be called with the spinlock held.
233 static void shmem_recalc_inode(struct inode *inode)
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 long freed;
238 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 if (freed > 0) {
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 if (sbinfo->max_blocks)
242 percpu_counter_add(&sbinfo->used_blocks, -freed);
243 info->alloced -= freed;
244 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245 shmem_unacct_blocks(info->flags, freed);
249 bool shmem_charge(struct inode *inode, long pages)
251 struct shmem_inode_info *info = SHMEM_I(inode);
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 unsigned long flags;
255 if (shmem_acct_block(info->flags, pages))
256 return false;
257 spin_lock_irqsave(&info->lock, flags);
258 info->alloced += pages;
259 inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 shmem_recalc_inode(inode);
261 spin_unlock_irqrestore(&info->lock, flags);
262 inode->i_mapping->nrpages += pages;
264 if (!sbinfo->max_blocks)
265 return true;
266 if (percpu_counter_compare(&sbinfo->used_blocks,
267 sbinfo->max_blocks - pages) > 0) {
268 inode->i_mapping->nrpages -= pages;
269 spin_lock_irqsave(&info->lock, flags);
270 info->alloced -= pages;
271 shmem_recalc_inode(inode);
272 spin_unlock_irqrestore(&info->lock, flags);
273 shmem_unacct_blocks(info->flags, pages);
274 return false;
276 percpu_counter_add(&sbinfo->used_blocks, pages);
277 return true;
280 void shmem_uncharge(struct inode *inode, long pages)
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284 unsigned long flags;
286 spin_lock_irqsave(&info->lock, flags);
287 info->alloced -= pages;
288 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 shmem_recalc_inode(inode);
290 spin_unlock_irqrestore(&info->lock, flags);
292 if (sbinfo->max_blocks)
293 percpu_counter_sub(&sbinfo->used_blocks, pages);
294 shmem_unacct_blocks(info->flags, pages);
298 * Replace item expected in radix tree by a new item, while holding tree lock.
300 static int shmem_radix_tree_replace(struct address_space *mapping,
301 pgoff_t index, void *expected, void *replacement)
303 void **pslot;
304 void *item;
306 VM_BUG_ON(!expected);
307 VM_BUG_ON(!replacement);
308 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
309 if (!pslot)
310 return -ENOENT;
311 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
312 if (item != expected)
313 return -ENOENT;
314 radix_tree_replace_slot(pslot, replacement);
315 return 0;
319 * Sometimes, before we decide whether to proceed or to fail, we must check
320 * that an entry was not already brought back from swap by a racing thread.
322 * Checking page is not enough: by the time a SwapCache page is locked, it
323 * might be reused, and again be SwapCache, using the same swap as before.
325 static bool shmem_confirm_swap(struct address_space *mapping,
326 pgoff_t index, swp_entry_t swap)
328 void *item;
330 rcu_read_lock();
331 item = radix_tree_lookup(&mapping->page_tree, index);
332 rcu_read_unlock();
333 return item == swp_to_radix_entry(swap);
337 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
339 * SHMEM_HUGE_NEVER:
340 * disables huge pages for the mount;
341 * SHMEM_HUGE_ALWAYS:
342 * enables huge pages for the mount;
343 * SHMEM_HUGE_WITHIN_SIZE:
344 * only allocate huge pages if the page will be fully within i_size,
345 * also respect fadvise()/madvise() hints;
346 * SHMEM_HUGE_ADVISE:
347 * only allocate huge pages if requested with fadvise()/madvise();
350 #define SHMEM_HUGE_NEVER 0
351 #define SHMEM_HUGE_ALWAYS 1
352 #define SHMEM_HUGE_WITHIN_SIZE 2
353 #define SHMEM_HUGE_ADVISE 3
356 * Special values.
357 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
359 * SHMEM_HUGE_DENY:
360 * disables huge on shm_mnt and all mounts, for emergency use;
361 * SHMEM_HUGE_FORCE:
362 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
365 #define SHMEM_HUGE_DENY (-1)
366 #define SHMEM_HUGE_FORCE (-2)
368 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
369 /* ifdef here to avoid bloating shmem.o when not necessary */
371 int shmem_huge __read_mostly;
373 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
374 static int shmem_parse_huge(const char *str)
376 if (!strcmp(str, "never"))
377 return SHMEM_HUGE_NEVER;
378 if (!strcmp(str, "always"))
379 return SHMEM_HUGE_ALWAYS;
380 if (!strcmp(str, "within_size"))
381 return SHMEM_HUGE_WITHIN_SIZE;
382 if (!strcmp(str, "advise"))
383 return SHMEM_HUGE_ADVISE;
384 if (!strcmp(str, "deny"))
385 return SHMEM_HUGE_DENY;
386 if (!strcmp(str, "force"))
387 return SHMEM_HUGE_FORCE;
388 return -EINVAL;
391 static const char *shmem_format_huge(int huge)
393 switch (huge) {
394 case SHMEM_HUGE_NEVER:
395 return "never";
396 case SHMEM_HUGE_ALWAYS:
397 return "always";
398 case SHMEM_HUGE_WITHIN_SIZE:
399 return "within_size";
400 case SHMEM_HUGE_ADVISE:
401 return "advise";
402 case SHMEM_HUGE_DENY:
403 return "deny";
404 case SHMEM_HUGE_FORCE:
405 return "force";
406 default:
407 VM_BUG_ON(1);
408 return "bad_val";
411 #endif
413 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
414 struct shrink_control *sc, unsigned long nr_to_split)
416 LIST_HEAD(list), *pos, *next;
417 LIST_HEAD(to_remove);
418 struct inode *inode;
419 struct shmem_inode_info *info;
420 struct page *page;
421 unsigned long batch = sc ? sc->nr_to_scan : 128;
422 int removed = 0, split = 0;
424 if (list_empty(&sbinfo->shrinklist))
425 return SHRINK_STOP;
427 spin_lock(&sbinfo->shrinklist_lock);
428 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
429 info = list_entry(pos, struct shmem_inode_info, shrinklist);
431 /* pin the inode */
432 inode = igrab(&info->vfs_inode);
434 /* inode is about to be evicted */
435 if (!inode) {
436 list_del_init(&info->shrinklist);
437 removed++;
438 goto next;
441 /* Check if there's anything to gain */
442 if (round_up(inode->i_size, PAGE_SIZE) ==
443 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
444 list_move(&info->shrinklist, &to_remove);
445 removed++;
446 goto next;
449 list_move(&info->shrinklist, &list);
450 next:
451 if (!--batch)
452 break;
454 spin_unlock(&sbinfo->shrinklist_lock);
456 list_for_each_safe(pos, next, &to_remove) {
457 info = list_entry(pos, struct shmem_inode_info, shrinklist);
458 inode = &info->vfs_inode;
459 list_del_init(&info->shrinklist);
460 iput(inode);
463 list_for_each_safe(pos, next, &list) {
464 int ret;
466 info = list_entry(pos, struct shmem_inode_info, shrinklist);
467 inode = &info->vfs_inode;
469 if (nr_to_split && split >= nr_to_split)
470 goto leave;
472 page = find_get_page(inode->i_mapping,
473 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
474 if (!page)
475 goto drop;
477 /* No huge page at the end of the file: nothing to split */
478 if (!PageTransHuge(page)) {
479 put_page(page);
480 goto drop;
484 * Leave the inode on the list if we failed to lock
485 * the page at this time.
487 * Waiting for the lock may lead to deadlock in the
488 * reclaim path.
490 if (!trylock_page(page)) {
491 put_page(page);
492 goto leave;
495 ret = split_huge_page(page);
496 unlock_page(page);
497 put_page(page);
499 /* If split failed leave the inode on the list */
500 if (ret)
501 goto leave;
503 split++;
504 drop:
505 list_del_init(&info->shrinklist);
506 removed++;
507 leave:
508 iput(inode);
511 spin_lock(&sbinfo->shrinklist_lock);
512 list_splice_tail(&list, &sbinfo->shrinklist);
513 sbinfo->shrinklist_len -= removed;
514 spin_unlock(&sbinfo->shrinklist_lock);
516 return split;
519 static long shmem_unused_huge_scan(struct super_block *sb,
520 struct shrink_control *sc)
522 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
524 if (!READ_ONCE(sbinfo->shrinklist_len))
525 return SHRINK_STOP;
527 return shmem_unused_huge_shrink(sbinfo, sc, 0);
530 static long shmem_unused_huge_count(struct super_block *sb,
531 struct shrink_control *sc)
533 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
534 return READ_ONCE(sbinfo->shrinklist_len);
536 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
538 #define shmem_huge SHMEM_HUGE_DENY
540 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
541 struct shrink_control *sc, unsigned long nr_to_split)
543 return 0;
545 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
548 * Like add_to_page_cache_locked, but error if expected item has gone.
550 static int shmem_add_to_page_cache(struct page *page,
551 struct address_space *mapping,
552 pgoff_t index, void *expected)
554 int error, nr = hpage_nr_pages(page);
556 VM_BUG_ON_PAGE(PageTail(page), page);
557 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
558 VM_BUG_ON_PAGE(!PageLocked(page), page);
559 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
560 VM_BUG_ON(expected && PageTransHuge(page));
562 page_ref_add(page, nr);
563 page->mapping = mapping;
564 page->index = index;
566 spin_lock_irq(&mapping->tree_lock);
567 if (PageTransHuge(page)) {
568 void __rcu **results;
569 pgoff_t idx;
570 int i;
572 error = 0;
573 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
574 &results, &idx, index, 1) &&
575 idx < index + HPAGE_PMD_NR) {
576 error = -EEXIST;
579 if (!error) {
580 for (i = 0; i < HPAGE_PMD_NR; i++) {
581 error = radix_tree_insert(&mapping->page_tree,
582 index + i, page + i);
583 VM_BUG_ON(error);
585 count_vm_event(THP_FILE_ALLOC);
587 } else if (!expected) {
588 error = radix_tree_insert(&mapping->page_tree, index, page);
589 } else {
590 error = shmem_radix_tree_replace(mapping, index, expected,
591 page);
594 if (!error) {
595 mapping->nrpages += nr;
596 if (PageTransHuge(page))
597 __inc_node_page_state(page, NR_SHMEM_THPS);
598 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
599 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
600 spin_unlock_irq(&mapping->tree_lock);
601 } else {
602 page->mapping = NULL;
603 spin_unlock_irq(&mapping->tree_lock);
604 page_ref_sub(page, nr);
606 return error;
610 * Like delete_from_page_cache, but substitutes swap for page.
612 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
614 struct address_space *mapping = page->mapping;
615 int error;
617 VM_BUG_ON_PAGE(PageCompound(page), page);
619 spin_lock_irq(&mapping->tree_lock);
620 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
621 page->mapping = NULL;
622 mapping->nrpages--;
623 __dec_node_page_state(page, NR_FILE_PAGES);
624 __dec_node_page_state(page, NR_SHMEM);
625 spin_unlock_irq(&mapping->tree_lock);
626 put_page(page);
627 BUG_ON(error);
631 * Remove swap entry from radix tree, free the swap and its page cache.
633 static int shmem_free_swap(struct address_space *mapping,
634 pgoff_t index, void *radswap)
636 void *old;
638 spin_lock_irq(&mapping->tree_lock);
639 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
640 spin_unlock_irq(&mapping->tree_lock);
641 if (old != radswap)
642 return -ENOENT;
643 free_swap_and_cache(radix_to_swp_entry(radswap));
644 return 0;
648 * Determine (in bytes) how many of the shmem object's pages mapped by the
649 * given offsets are swapped out.
651 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
652 * as long as the inode doesn't go away and racy results are not a problem.
654 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
655 pgoff_t start, pgoff_t end)
657 struct radix_tree_iter iter;
658 void **slot;
659 struct page *page;
660 unsigned long swapped = 0;
662 rcu_read_lock();
664 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
665 if (iter.index >= end)
666 break;
668 page = radix_tree_deref_slot(slot);
670 if (radix_tree_deref_retry(page)) {
671 slot = radix_tree_iter_retry(&iter);
672 continue;
675 if (radix_tree_exceptional_entry(page))
676 swapped++;
678 if (need_resched()) {
679 cond_resched_rcu();
680 slot = radix_tree_iter_next(&iter);
684 rcu_read_unlock();
686 return swapped << PAGE_SHIFT;
690 * Determine (in bytes) how many of the shmem object's pages mapped by the
691 * given vma is swapped out.
693 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
694 * as long as the inode doesn't go away and racy results are not a problem.
696 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
698 struct inode *inode = file_inode(vma->vm_file);
699 struct shmem_inode_info *info = SHMEM_I(inode);
700 struct address_space *mapping = inode->i_mapping;
701 unsigned long swapped;
703 /* Be careful as we don't hold info->lock */
704 swapped = READ_ONCE(info->swapped);
707 * The easier cases are when the shmem object has nothing in swap, or
708 * the vma maps it whole. Then we can simply use the stats that we
709 * already track.
711 if (!swapped)
712 return 0;
714 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
715 return swapped << PAGE_SHIFT;
717 /* Here comes the more involved part */
718 return shmem_partial_swap_usage(mapping,
719 linear_page_index(vma, vma->vm_start),
720 linear_page_index(vma, vma->vm_end));
724 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
726 void shmem_unlock_mapping(struct address_space *mapping)
728 struct pagevec pvec;
729 pgoff_t indices[PAGEVEC_SIZE];
730 pgoff_t index = 0;
732 pagevec_init(&pvec, 0);
734 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
736 while (!mapping_unevictable(mapping)) {
738 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
739 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
741 pvec.nr = find_get_entries(mapping, index,
742 PAGEVEC_SIZE, pvec.pages, indices);
743 if (!pvec.nr)
744 break;
745 index = indices[pvec.nr - 1] + 1;
746 pagevec_remove_exceptionals(&pvec);
747 check_move_unevictable_pages(pvec.pages, pvec.nr);
748 pagevec_release(&pvec);
749 cond_resched();
754 * Remove range of pages and swap entries from radix tree, and free them.
755 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
757 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
758 bool unfalloc)
760 struct address_space *mapping = inode->i_mapping;
761 struct shmem_inode_info *info = SHMEM_I(inode);
762 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
763 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
764 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
765 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
766 struct pagevec pvec;
767 pgoff_t indices[PAGEVEC_SIZE];
768 long nr_swaps_freed = 0;
769 pgoff_t index;
770 int i;
772 if (lend == -1)
773 end = -1; /* unsigned, so actually very big */
775 pagevec_init(&pvec, 0);
776 index = start;
777 while (index < end) {
778 pvec.nr = find_get_entries(mapping, index,
779 min(end - index, (pgoff_t)PAGEVEC_SIZE),
780 pvec.pages, indices);
781 if (!pvec.nr)
782 break;
783 for (i = 0; i < pagevec_count(&pvec); i++) {
784 struct page *page = pvec.pages[i];
786 index = indices[i];
787 if (index >= end)
788 break;
790 if (radix_tree_exceptional_entry(page)) {
791 if (unfalloc)
792 continue;
793 nr_swaps_freed += !shmem_free_swap(mapping,
794 index, page);
795 continue;
798 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
800 if (!trylock_page(page))
801 continue;
803 if (PageTransTail(page)) {
804 /* Middle of THP: zero out the page */
805 clear_highpage(page);
806 unlock_page(page);
807 continue;
808 } else if (PageTransHuge(page)) {
809 if (index == round_down(end, HPAGE_PMD_NR)) {
811 * Range ends in the middle of THP:
812 * zero out the page
814 clear_highpage(page);
815 unlock_page(page);
816 continue;
818 index += HPAGE_PMD_NR - 1;
819 i += HPAGE_PMD_NR - 1;
822 if (!unfalloc || !PageUptodate(page)) {
823 VM_BUG_ON_PAGE(PageTail(page), page);
824 if (page_mapping(page) == mapping) {
825 VM_BUG_ON_PAGE(PageWriteback(page), page);
826 truncate_inode_page(mapping, page);
829 unlock_page(page);
831 pagevec_remove_exceptionals(&pvec);
832 pagevec_release(&pvec);
833 cond_resched();
834 index++;
837 if (partial_start) {
838 struct page *page = NULL;
839 shmem_getpage(inode, start - 1, &page, SGP_READ);
840 if (page) {
841 unsigned int top = PAGE_SIZE;
842 if (start > end) {
843 top = partial_end;
844 partial_end = 0;
846 zero_user_segment(page, partial_start, top);
847 set_page_dirty(page);
848 unlock_page(page);
849 put_page(page);
852 if (partial_end) {
853 struct page *page = NULL;
854 shmem_getpage(inode, end, &page, SGP_READ);
855 if (page) {
856 zero_user_segment(page, 0, partial_end);
857 set_page_dirty(page);
858 unlock_page(page);
859 put_page(page);
862 if (start >= end)
863 return;
865 index = start;
866 while (index < end) {
867 cond_resched();
869 pvec.nr = find_get_entries(mapping, index,
870 min(end - index, (pgoff_t)PAGEVEC_SIZE),
871 pvec.pages, indices);
872 if (!pvec.nr) {
873 /* If all gone or hole-punch or unfalloc, we're done */
874 if (index == start || end != -1)
875 break;
876 /* But if truncating, restart to make sure all gone */
877 index = start;
878 continue;
880 for (i = 0; i < pagevec_count(&pvec); i++) {
881 struct page *page = pvec.pages[i];
883 index = indices[i];
884 if (index >= end)
885 break;
887 if (radix_tree_exceptional_entry(page)) {
888 if (unfalloc)
889 continue;
890 if (shmem_free_swap(mapping, index, page)) {
891 /* Swap was replaced by page: retry */
892 index--;
893 break;
895 nr_swaps_freed++;
896 continue;
899 lock_page(page);
901 if (PageTransTail(page)) {
902 /* Middle of THP: zero out the page */
903 clear_highpage(page);
904 unlock_page(page);
906 * Partial thp truncate due 'start' in middle
907 * of THP: don't need to look on these pages
908 * again on !pvec.nr restart.
910 if (index != round_down(end, HPAGE_PMD_NR))
911 start++;
912 continue;
913 } else if (PageTransHuge(page)) {
914 if (index == round_down(end, HPAGE_PMD_NR)) {
916 * Range ends in the middle of THP:
917 * zero out the page
919 clear_highpage(page);
920 unlock_page(page);
921 continue;
923 index += HPAGE_PMD_NR - 1;
924 i += HPAGE_PMD_NR - 1;
927 if (!unfalloc || !PageUptodate(page)) {
928 VM_BUG_ON_PAGE(PageTail(page), page);
929 if (page_mapping(page) == mapping) {
930 VM_BUG_ON_PAGE(PageWriteback(page), page);
931 truncate_inode_page(mapping, page);
932 } else {
933 /* Page was replaced by swap: retry */
934 unlock_page(page);
935 index--;
936 break;
939 unlock_page(page);
941 pagevec_remove_exceptionals(&pvec);
942 pagevec_release(&pvec);
943 index++;
946 spin_lock_irq(&info->lock);
947 info->swapped -= nr_swaps_freed;
948 shmem_recalc_inode(inode);
949 spin_unlock_irq(&info->lock);
952 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
954 shmem_undo_range(inode, lstart, lend, false);
955 inode->i_ctime = inode->i_mtime = current_time(inode);
957 EXPORT_SYMBOL_GPL(shmem_truncate_range);
959 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
960 struct kstat *stat)
962 struct inode *inode = dentry->d_inode;
963 struct shmem_inode_info *info = SHMEM_I(inode);
965 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
966 spin_lock_irq(&info->lock);
967 shmem_recalc_inode(inode);
968 spin_unlock_irq(&info->lock);
970 generic_fillattr(inode, stat);
971 return 0;
974 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
976 struct inode *inode = d_inode(dentry);
977 struct shmem_inode_info *info = SHMEM_I(inode);
978 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
979 int error;
981 error = setattr_prepare(dentry, attr);
982 if (error)
983 return error;
985 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
986 loff_t oldsize = inode->i_size;
987 loff_t newsize = attr->ia_size;
989 /* protected by i_mutex */
990 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
991 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
992 return -EPERM;
994 if (newsize != oldsize) {
995 error = shmem_reacct_size(SHMEM_I(inode)->flags,
996 oldsize, newsize);
997 if (error)
998 return error;
999 i_size_write(inode, newsize);
1000 inode->i_ctime = inode->i_mtime = current_time(inode);
1002 if (newsize <= oldsize) {
1003 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1004 if (oldsize > holebegin)
1005 unmap_mapping_range(inode->i_mapping,
1006 holebegin, 0, 1);
1007 if (info->alloced)
1008 shmem_truncate_range(inode,
1009 newsize, (loff_t)-1);
1010 /* unmap again to remove racily COWed private pages */
1011 if (oldsize > holebegin)
1012 unmap_mapping_range(inode->i_mapping,
1013 holebegin, 0, 1);
1016 * Part of the huge page can be beyond i_size: subject
1017 * to shrink under memory pressure.
1019 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1020 spin_lock(&sbinfo->shrinklist_lock);
1022 * _careful to defend against unlocked access to
1023 * ->shrink_list in shmem_unused_huge_shrink()
1025 if (list_empty_careful(&info->shrinklist)) {
1026 list_add_tail(&info->shrinklist,
1027 &sbinfo->shrinklist);
1028 sbinfo->shrinklist_len++;
1030 spin_unlock(&sbinfo->shrinklist_lock);
1035 setattr_copy(inode, attr);
1036 if (attr->ia_valid & ATTR_MODE)
1037 error = posix_acl_chmod(inode, inode->i_mode);
1038 return error;
1041 static void shmem_evict_inode(struct inode *inode)
1043 struct shmem_inode_info *info = SHMEM_I(inode);
1044 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1046 if (inode->i_mapping->a_ops == &shmem_aops) {
1047 shmem_unacct_size(info->flags, inode->i_size);
1048 inode->i_size = 0;
1049 shmem_truncate_range(inode, 0, (loff_t)-1);
1050 if (!list_empty(&info->shrinklist)) {
1051 spin_lock(&sbinfo->shrinklist_lock);
1052 if (!list_empty(&info->shrinklist)) {
1053 list_del_init(&info->shrinklist);
1054 sbinfo->shrinklist_len--;
1056 spin_unlock(&sbinfo->shrinklist_lock);
1058 if (!list_empty(&info->swaplist)) {
1059 mutex_lock(&shmem_swaplist_mutex);
1060 list_del_init(&info->swaplist);
1061 mutex_unlock(&shmem_swaplist_mutex);
1065 simple_xattrs_free(&info->xattrs);
1066 WARN_ON(inode->i_blocks);
1067 shmem_free_inode(inode->i_sb);
1068 clear_inode(inode);
1072 * If swap found in inode, free it and move page from swapcache to filecache.
1074 static int shmem_unuse_inode(struct shmem_inode_info *info,
1075 swp_entry_t swap, struct page **pagep)
1077 struct address_space *mapping = info->vfs_inode.i_mapping;
1078 void *radswap;
1079 pgoff_t index;
1080 gfp_t gfp;
1081 int error = 0;
1083 radswap = swp_to_radix_entry(swap);
1084 index = radix_tree_locate_item(&mapping->page_tree, radswap);
1085 if (index == -1)
1086 return -EAGAIN; /* tell shmem_unuse we found nothing */
1089 * Move _head_ to start search for next from here.
1090 * But be careful: shmem_evict_inode checks list_empty without taking
1091 * mutex, and there's an instant in list_move_tail when info->swaplist
1092 * would appear empty, if it were the only one on shmem_swaplist.
1094 if (shmem_swaplist.next != &info->swaplist)
1095 list_move_tail(&shmem_swaplist, &info->swaplist);
1097 gfp = mapping_gfp_mask(mapping);
1098 if (shmem_should_replace_page(*pagep, gfp)) {
1099 mutex_unlock(&shmem_swaplist_mutex);
1100 error = shmem_replace_page(pagep, gfp, info, index);
1101 mutex_lock(&shmem_swaplist_mutex);
1103 * We needed to drop mutex to make that restrictive page
1104 * allocation, but the inode might have been freed while we
1105 * dropped it: although a racing shmem_evict_inode() cannot
1106 * complete without emptying the radix_tree, our page lock
1107 * on this swapcache page is not enough to prevent that -
1108 * free_swap_and_cache() of our swap entry will only
1109 * trylock_page(), removing swap from radix_tree whatever.
1111 * We must not proceed to shmem_add_to_page_cache() if the
1112 * inode has been freed, but of course we cannot rely on
1113 * inode or mapping or info to check that. However, we can
1114 * safely check if our swap entry is still in use (and here
1115 * it can't have got reused for another page): if it's still
1116 * in use, then the inode cannot have been freed yet, and we
1117 * can safely proceed (if it's no longer in use, that tells
1118 * nothing about the inode, but we don't need to unuse swap).
1120 if (!page_swapcount(*pagep))
1121 error = -ENOENT;
1125 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1126 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1127 * beneath us (pagelock doesn't help until the page is in pagecache).
1129 if (!error)
1130 error = shmem_add_to_page_cache(*pagep, mapping, index,
1131 radswap);
1132 if (error != -ENOMEM) {
1134 * Truncation and eviction use free_swap_and_cache(), which
1135 * only does trylock page: if we raced, best clean up here.
1137 delete_from_swap_cache(*pagep);
1138 set_page_dirty(*pagep);
1139 if (!error) {
1140 spin_lock_irq(&info->lock);
1141 info->swapped--;
1142 spin_unlock_irq(&info->lock);
1143 swap_free(swap);
1146 return error;
1150 * Search through swapped inodes to find and replace swap by page.
1152 int shmem_unuse(swp_entry_t swap, struct page *page)
1154 struct list_head *this, *next;
1155 struct shmem_inode_info *info;
1156 struct mem_cgroup *memcg;
1157 int error = 0;
1160 * There's a faint possibility that swap page was replaced before
1161 * caller locked it: caller will come back later with the right page.
1163 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1164 goto out;
1167 * Charge page using GFP_KERNEL while we can wait, before taking
1168 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1169 * Charged back to the user (not to caller) when swap account is used.
1171 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1172 false);
1173 if (error)
1174 goto out;
1175 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1176 error = -EAGAIN;
1178 mutex_lock(&shmem_swaplist_mutex);
1179 list_for_each_safe(this, next, &shmem_swaplist) {
1180 info = list_entry(this, struct shmem_inode_info, swaplist);
1181 if (info->swapped)
1182 error = shmem_unuse_inode(info, swap, &page);
1183 else
1184 list_del_init(&info->swaplist);
1185 cond_resched();
1186 if (error != -EAGAIN)
1187 break;
1188 /* found nothing in this: move on to search the next */
1190 mutex_unlock(&shmem_swaplist_mutex);
1192 if (error) {
1193 if (error != -ENOMEM)
1194 error = 0;
1195 mem_cgroup_cancel_charge(page, memcg, false);
1196 } else
1197 mem_cgroup_commit_charge(page, memcg, true, false);
1198 out:
1199 unlock_page(page);
1200 put_page(page);
1201 return error;
1205 * Move the page from the page cache to the swap cache.
1207 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1209 struct shmem_inode_info *info;
1210 struct address_space *mapping;
1211 struct inode *inode;
1212 swp_entry_t swap;
1213 pgoff_t index;
1215 VM_BUG_ON_PAGE(PageCompound(page), page);
1216 BUG_ON(!PageLocked(page));
1217 mapping = page->mapping;
1218 index = page->index;
1219 inode = mapping->host;
1220 info = SHMEM_I(inode);
1221 if (info->flags & VM_LOCKED)
1222 goto redirty;
1223 if (!total_swap_pages)
1224 goto redirty;
1227 * Our capabilities prevent regular writeback or sync from ever calling
1228 * shmem_writepage; but a stacking filesystem might use ->writepage of
1229 * its underlying filesystem, in which case tmpfs should write out to
1230 * swap only in response to memory pressure, and not for the writeback
1231 * threads or sync.
1233 if (!wbc->for_reclaim) {
1234 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1235 goto redirty;
1239 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1240 * value into swapfile.c, the only way we can correctly account for a
1241 * fallocated page arriving here is now to initialize it and write it.
1243 * That's okay for a page already fallocated earlier, but if we have
1244 * not yet completed the fallocation, then (a) we want to keep track
1245 * of this page in case we have to undo it, and (b) it may not be a
1246 * good idea to continue anyway, once we're pushing into swap. So
1247 * reactivate the page, and let shmem_fallocate() quit when too many.
1249 if (!PageUptodate(page)) {
1250 if (inode->i_private) {
1251 struct shmem_falloc *shmem_falloc;
1252 spin_lock(&inode->i_lock);
1253 shmem_falloc = inode->i_private;
1254 if (shmem_falloc &&
1255 !shmem_falloc->waitq &&
1256 index >= shmem_falloc->start &&
1257 index < shmem_falloc->next)
1258 shmem_falloc->nr_unswapped++;
1259 else
1260 shmem_falloc = NULL;
1261 spin_unlock(&inode->i_lock);
1262 if (shmem_falloc)
1263 goto redirty;
1265 clear_highpage(page);
1266 flush_dcache_page(page);
1267 SetPageUptodate(page);
1270 swap = get_swap_page();
1271 if (!swap.val)
1272 goto redirty;
1274 if (mem_cgroup_try_charge_swap(page, swap))
1275 goto free_swap;
1278 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1279 * if it's not already there. Do it now before the page is
1280 * moved to swap cache, when its pagelock no longer protects
1281 * the inode from eviction. But don't unlock the mutex until
1282 * we've incremented swapped, because shmem_unuse_inode() will
1283 * prune a !swapped inode from the swaplist under this mutex.
1285 mutex_lock(&shmem_swaplist_mutex);
1286 if (list_empty(&info->swaplist))
1287 list_add_tail(&info->swaplist, &shmem_swaplist);
1289 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1290 spin_lock_irq(&info->lock);
1291 shmem_recalc_inode(inode);
1292 info->swapped++;
1293 spin_unlock_irq(&info->lock);
1295 swap_shmem_alloc(swap);
1296 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1298 mutex_unlock(&shmem_swaplist_mutex);
1299 BUG_ON(page_mapped(page));
1300 swap_writepage(page, wbc);
1301 return 0;
1304 mutex_unlock(&shmem_swaplist_mutex);
1305 free_swap:
1306 swapcache_free(swap);
1307 redirty:
1308 set_page_dirty(page);
1309 if (wbc->for_reclaim)
1310 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1311 unlock_page(page);
1312 return 0;
1315 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1316 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1318 char buffer[64];
1320 if (!mpol || mpol->mode == MPOL_DEFAULT)
1321 return; /* show nothing */
1323 mpol_to_str(buffer, sizeof(buffer), mpol);
1325 seq_printf(seq, ",mpol=%s", buffer);
1328 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1330 struct mempolicy *mpol = NULL;
1331 if (sbinfo->mpol) {
1332 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1333 mpol = sbinfo->mpol;
1334 mpol_get(mpol);
1335 spin_unlock(&sbinfo->stat_lock);
1337 return mpol;
1339 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1340 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1343 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1345 return NULL;
1347 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1348 #ifndef CONFIG_NUMA
1349 #define vm_policy vm_private_data
1350 #endif
1352 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1353 struct shmem_inode_info *info, pgoff_t index)
1355 /* Create a pseudo vma that just contains the policy */
1356 vma->vm_start = 0;
1357 /* Bias interleave by inode number to distribute better across nodes */
1358 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1359 vma->vm_ops = NULL;
1360 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1363 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1365 /* Drop reference taken by mpol_shared_policy_lookup() */
1366 mpol_cond_put(vma->vm_policy);
1369 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1370 struct shmem_inode_info *info, pgoff_t index)
1372 struct vm_area_struct pvma;
1373 struct page *page;
1375 shmem_pseudo_vma_init(&pvma, info, index);
1376 page = swapin_readahead(swap, gfp, &pvma, 0);
1377 shmem_pseudo_vma_destroy(&pvma);
1379 return page;
1382 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1383 struct shmem_inode_info *info, pgoff_t index)
1385 struct vm_area_struct pvma;
1386 struct inode *inode = &info->vfs_inode;
1387 struct address_space *mapping = inode->i_mapping;
1388 pgoff_t idx, hindex;
1389 void __rcu **results;
1390 struct page *page;
1392 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1393 return NULL;
1395 hindex = round_down(index, HPAGE_PMD_NR);
1396 rcu_read_lock();
1397 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1398 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1399 rcu_read_unlock();
1400 return NULL;
1402 rcu_read_unlock();
1404 shmem_pseudo_vma_init(&pvma, info, hindex);
1405 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1406 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1407 shmem_pseudo_vma_destroy(&pvma);
1408 if (page)
1409 prep_transhuge_page(page);
1410 return page;
1413 static struct page *shmem_alloc_page(gfp_t gfp,
1414 struct shmem_inode_info *info, pgoff_t index)
1416 struct vm_area_struct pvma;
1417 struct page *page;
1419 shmem_pseudo_vma_init(&pvma, info, index);
1420 page = alloc_page_vma(gfp, &pvma, 0);
1421 shmem_pseudo_vma_destroy(&pvma);
1423 return page;
1426 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1427 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1428 pgoff_t index, bool huge)
1430 struct page *page;
1431 int nr;
1432 int err = -ENOSPC;
1434 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1435 huge = false;
1436 nr = huge ? HPAGE_PMD_NR : 1;
1438 if (shmem_acct_block(info->flags, nr))
1439 goto failed;
1440 if (sbinfo->max_blocks) {
1441 if (percpu_counter_compare(&sbinfo->used_blocks,
1442 sbinfo->max_blocks - nr) > 0)
1443 goto unacct;
1444 percpu_counter_add(&sbinfo->used_blocks, nr);
1447 if (huge)
1448 page = shmem_alloc_hugepage(gfp, info, index);
1449 else
1450 page = shmem_alloc_page(gfp, info, index);
1451 if (page) {
1452 __SetPageLocked(page);
1453 __SetPageSwapBacked(page);
1454 return page;
1457 err = -ENOMEM;
1458 if (sbinfo->max_blocks)
1459 percpu_counter_add(&sbinfo->used_blocks, -nr);
1460 unacct:
1461 shmem_unacct_blocks(info->flags, nr);
1462 failed:
1463 return ERR_PTR(err);
1467 * When a page is moved from swapcache to shmem filecache (either by the
1468 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1469 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1470 * ignorance of the mapping it belongs to. If that mapping has special
1471 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1472 * we may need to copy to a suitable page before moving to filecache.
1474 * In a future release, this may well be extended to respect cpuset and
1475 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1476 * but for now it is a simple matter of zone.
1478 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1480 return page_zonenum(page) > gfp_zone(gfp);
1483 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1484 struct shmem_inode_info *info, pgoff_t index)
1486 struct page *oldpage, *newpage;
1487 struct address_space *swap_mapping;
1488 pgoff_t swap_index;
1489 int error;
1491 oldpage = *pagep;
1492 swap_index = page_private(oldpage);
1493 swap_mapping = page_mapping(oldpage);
1496 * We have arrived here because our zones are constrained, so don't
1497 * limit chance of success by further cpuset and node constraints.
1499 gfp &= ~GFP_CONSTRAINT_MASK;
1500 newpage = shmem_alloc_page(gfp, info, index);
1501 if (!newpage)
1502 return -ENOMEM;
1504 get_page(newpage);
1505 copy_highpage(newpage, oldpage);
1506 flush_dcache_page(newpage);
1508 __SetPageLocked(newpage);
1509 __SetPageSwapBacked(newpage);
1510 SetPageUptodate(newpage);
1511 set_page_private(newpage, swap_index);
1512 SetPageSwapCache(newpage);
1515 * Our caller will very soon move newpage out of swapcache, but it's
1516 * a nice clean interface for us to replace oldpage by newpage there.
1518 spin_lock_irq(&swap_mapping->tree_lock);
1519 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1520 newpage);
1521 if (!error) {
1522 __inc_node_page_state(newpage, NR_FILE_PAGES);
1523 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1525 spin_unlock_irq(&swap_mapping->tree_lock);
1527 if (unlikely(error)) {
1529 * Is this possible? I think not, now that our callers check
1530 * both PageSwapCache and page_private after getting page lock;
1531 * but be defensive. Reverse old to newpage for clear and free.
1533 oldpage = newpage;
1534 } else {
1535 mem_cgroup_migrate(oldpage, newpage);
1536 lru_cache_add_anon(newpage);
1537 *pagep = newpage;
1540 ClearPageSwapCache(oldpage);
1541 set_page_private(oldpage, 0);
1543 unlock_page(oldpage);
1544 put_page(oldpage);
1545 put_page(oldpage);
1546 return error;
1550 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1552 * If we allocate a new one we do not mark it dirty. That's up to the
1553 * vm. If we swap it in we mark it dirty since we also free the swap
1554 * entry since a page cannot live in both the swap and page cache.
1556 * fault_mm and fault_type are only supplied by shmem_fault:
1557 * otherwise they are NULL.
1559 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1560 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1561 struct mm_struct *fault_mm, int *fault_type)
1563 struct address_space *mapping = inode->i_mapping;
1564 struct shmem_inode_info *info = SHMEM_I(inode);
1565 struct shmem_sb_info *sbinfo;
1566 struct mm_struct *charge_mm;
1567 struct mem_cgroup *memcg;
1568 struct page *page;
1569 swp_entry_t swap;
1570 enum sgp_type sgp_huge = sgp;
1571 pgoff_t hindex = index;
1572 int error;
1573 int once = 0;
1574 int alloced = 0;
1576 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1577 return -EFBIG;
1578 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1579 sgp = SGP_CACHE;
1580 repeat:
1581 swap.val = 0;
1582 page = find_lock_entry(mapping, index);
1583 if (radix_tree_exceptional_entry(page)) {
1584 swap = radix_to_swp_entry(page);
1585 page = NULL;
1588 if (sgp <= SGP_CACHE &&
1589 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1590 error = -EINVAL;
1591 goto unlock;
1594 if (page && sgp == SGP_WRITE)
1595 mark_page_accessed(page);
1597 /* fallocated page? */
1598 if (page && !PageUptodate(page)) {
1599 if (sgp != SGP_READ)
1600 goto clear;
1601 unlock_page(page);
1602 put_page(page);
1603 page = NULL;
1605 if (page || (sgp == SGP_READ && !swap.val)) {
1606 *pagep = page;
1607 return 0;
1611 * Fast cache lookup did not find it:
1612 * bring it back from swap or allocate.
1614 sbinfo = SHMEM_SB(inode->i_sb);
1615 charge_mm = fault_mm ? : current->mm;
1617 if (swap.val) {
1618 /* Look it up and read it in.. */
1619 page = lookup_swap_cache(swap);
1620 if (!page) {
1621 /* Or update major stats only when swapin succeeds?? */
1622 if (fault_type) {
1623 *fault_type |= VM_FAULT_MAJOR;
1624 count_vm_event(PGMAJFAULT);
1625 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1627 /* Here we actually start the io */
1628 page = shmem_swapin(swap, gfp, info, index);
1629 if (!page) {
1630 error = -ENOMEM;
1631 goto failed;
1635 /* We have to do this with page locked to prevent races */
1636 lock_page(page);
1637 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1638 !shmem_confirm_swap(mapping, index, swap)) {
1639 error = -EEXIST; /* try again */
1640 goto unlock;
1642 if (!PageUptodate(page)) {
1643 error = -EIO;
1644 goto failed;
1646 wait_on_page_writeback(page);
1648 if (shmem_should_replace_page(page, gfp)) {
1649 error = shmem_replace_page(&page, gfp, info, index);
1650 if (error)
1651 goto failed;
1654 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1655 false);
1656 if (!error) {
1657 error = shmem_add_to_page_cache(page, mapping, index,
1658 swp_to_radix_entry(swap));
1660 * We already confirmed swap under page lock, and make
1661 * no memory allocation here, so usually no possibility
1662 * of error; but free_swap_and_cache() only trylocks a
1663 * page, so it is just possible that the entry has been
1664 * truncated or holepunched since swap was confirmed.
1665 * shmem_undo_range() will have done some of the
1666 * unaccounting, now delete_from_swap_cache() will do
1667 * the rest.
1668 * Reset swap.val? No, leave it so "failed" goes back to
1669 * "repeat": reading a hole and writing should succeed.
1671 if (error) {
1672 mem_cgroup_cancel_charge(page, memcg, false);
1673 delete_from_swap_cache(page);
1676 if (error)
1677 goto failed;
1679 mem_cgroup_commit_charge(page, memcg, true, false);
1681 spin_lock_irq(&info->lock);
1682 info->swapped--;
1683 shmem_recalc_inode(inode);
1684 spin_unlock_irq(&info->lock);
1686 if (sgp == SGP_WRITE)
1687 mark_page_accessed(page);
1689 delete_from_swap_cache(page);
1690 set_page_dirty(page);
1691 swap_free(swap);
1693 } else {
1694 /* shmem_symlink() */
1695 if (mapping->a_ops != &shmem_aops)
1696 goto alloc_nohuge;
1697 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1698 goto alloc_nohuge;
1699 if (shmem_huge == SHMEM_HUGE_FORCE)
1700 goto alloc_huge;
1701 switch (sbinfo->huge) {
1702 loff_t i_size;
1703 pgoff_t off;
1704 case SHMEM_HUGE_NEVER:
1705 goto alloc_nohuge;
1706 case SHMEM_HUGE_WITHIN_SIZE:
1707 off = round_up(index, HPAGE_PMD_NR);
1708 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1709 if (i_size >= HPAGE_PMD_SIZE &&
1710 i_size >> PAGE_SHIFT >= off)
1711 goto alloc_huge;
1712 /* fallthrough */
1713 case SHMEM_HUGE_ADVISE:
1714 if (sgp_huge == SGP_HUGE)
1715 goto alloc_huge;
1716 /* TODO: implement fadvise() hints */
1717 goto alloc_nohuge;
1720 alloc_huge:
1721 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1722 index, true);
1723 if (IS_ERR(page)) {
1724 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1725 index, false);
1727 if (IS_ERR(page)) {
1728 int retry = 5;
1729 error = PTR_ERR(page);
1730 page = NULL;
1731 if (error != -ENOSPC)
1732 goto failed;
1734 * Try to reclaim some spece by splitting a huge page
1735 * beyond i_size on the filesystem.
1737 while (retry--) {
1738 int ret;
1739 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1740 if (ret == SHRINK_STOP)
1741 break;
1742 if (ret)
1743 goto alloc_nohuge;
1745 goto failed;
1748 if (PageTransHuge(page))
1749 hindex = round_down(index, HPAGE_PMD_NR);
1750 else
1751 hindex = index;
1753 if (sgp == SGP_WRITE)
1754 __SetPageReferenced(page);
1756 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1757 PageTransHuge(page));
1758 if (error)
1759 goto unacct;
1760 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1761 compound_order(page));
1762 if (!error) {
1763 error = shmem_add_to_page_cache(page, mapping, hindex,
1764 NULL);
1765 radix_tree_preload_end();
1767 if (error) {
1768 mem_cgroup_cancel_charge(page, memcg,
1769 PageTransHuge(page));
1770 goto unacct;
1772 mem_cgroup_commit_charge(page, memcg, false,
1773 PageTransHuge(page));
1774 lru_cache_add_anon(page);
1776 spin_lock_irq(&info->lock);
1777 info->alloced += 1 << compound_order(page);
1778 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1779 shmem_recalc_inode(inode);
1780 spin_unlock_irq(&info->lock);
1781 alloced = true;
1783 if (PageTransHuge(page) &&
1784 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1785 hindex + HPAGE_PMD_NR - 1) {
1787 * Part of the huge page is beyond i_size: subject
1788 * to shrink under memory pressure.
1790 spin_lock(&sbinfo->shrinklist_lock);
1792 * _careful to defend against unlocked access to
1793 * ->shrink_list in shmem_unused_huge_shrink()
1795 if (list_empty_careful(&info->shrinklist)) {
1796 list_add_tail(&info->shrinklist,
1797 &sbinfo->shrinklist);
1798 sbinfo->shrinklist_len++;
1800 spin_unlock(&sbinfo->shrinklist_lock);
1804 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1806 if (sgp == SGP_FALLOC)
1807 sgp = SGP_WRITE;
1808 clear:
1810 * Let SGP_WRITE caller clear ends if write does not fill page;
1811 * but SGP_FALLOC on a page fallocated earlier must initialize
1812 * it now, lest undo on failure cancel our earlier guarantee.
1814 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1815 struct page *head = compound_head(page);
1816 int i;
1818 for (i = 0; i < (1 << compound_order(head)); i++) {
1819 clear_highpage(head + i);
1820 flush_dcache_page(head + i);
1822 SetPageUptodate(head);
1826 /* Perhaps the file has been truncated since we checked */
1827 if (sgp <= SGP_CACHE &&
1828 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1829 if (alloced) {
1830 ClearPageDirty(page);
1831 delete_from_page_cache(page);
1832 spin_lock_irq(&info->lock);
1833 shmem_recalc_inode(inode);
1834 spin_unlock_irq(&info->lock);
1836 error = -EINVAL;
1837 goto unlock;
1839 *pagep = page + index - hindex;
1840 return 0;
1843 * Error recovery.
1845 unacct:
1846 if (sbinfo->max_blocks)
1847 percpu_counter_sub(&sbinfo->used_blocks,
1848 1 << compound_order(page));
1849 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1851 if (PageTransHuge(page)) {
1852 unlock_page(page);
1853 put_page(page);
1854 goto alloc_nohuge;
1856 failed:
1857 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1858 error = -EEXIST;
1859 unlock:
1860 if (page) {
1861 unlock_page(page);
1862 put_page(page);
1864 if (error == -ENOSPC && !once++) {
1865 spin_lock_irq(&info->lock);
1866 shmem_recalc_inode(inode);
1867 spin_unlock_irq(&info->lock);
1868 goto repeat;
1870 if (error == -EEXIST) /* from above or from radix_tree_insert */
1871 goto repeat;
1872 return error;
1876 * This is like autoremove_wake_function, but it removes the wait queue
1877 * entry unconditionally - even if something else had already woken the
1878 * target.
1880 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1882 int ret = default_wake_function(wait, mode, sync, key);
1883 list_del_init(&wait->task_list);
1884 return ret;
1887 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1889 struct inode *inode = file_inode(vma->vm_file);
1890 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1891 enum sgp_type sgp;
1892 int error;
1893 int ret = VM_FAULT_LOCKED;
1896 * Trinity finds that probing a hole which tmpfs is punching can
1897 * prevent the hole-punch from ever completing: which in turn
1898 * locks writers out with its hold on i_mutex. So refrain from
1899 * faulting pages into the hole while it's being punched. Although
1900 * shmem_undo_range() does remove the additions, it may be unable to
1901 * keep up, as each new page needs its own unmap_mapping_range() call,
1902 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1904 * It does not matter if we sometimes reach this check just before the
1905 * hole-punch begins, so that one fault then races with the punch:
1906 * we just need to make racing faults a rare case.
1908 * The implementation below would be much simpler if we just used a
1909 * standard mutex or completion: but we cannot take i_mutex in fault,
1910 * and bloating every shmem inode for this unlikely case would be sad.
1912 if (unlikely(inode->i_private)) {
1913 struct shmem_falloc *shmem_falloc;
1915 spin_lock(&inode->i_lock);
1916 shmem_falloc = inode->i_private;
1917 if (shmem_falloc &&
1918 shmem_falloc->waitq &&
1919 vmf->pgoff >= shmem_falloc->start &&
1920 vmf->pgoff < shmem_falloc->next) {
1921 wait_queue_head_t *shmem_falloc_waitq;
1922 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1924 ret = VM_FAULT_NOPAGE;
1925 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1926 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1927 /* It's polite to up mmap_sem if we can */
1928 up_read(&vma->vm_mm->mmap_sem);
1929 ret = VM_FAULT_RETRY;
1932 shmem_falloc_waitq = shmem_falloc->waitq;
1933 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1934 TASK_UNINTERRUPTIBLE);
1935 spin_unlock(&inode->i_lock);
1936 schedule();
1939 * shmem_falloc_waitq points into the shmem_fallocate()
1940 * stack of the hole-punching task: shmem_falloc_waitq
1941 * is usually invalid by the time we reach here, but
1942 * finish_wait() does not dereference it in that case;
1943 * though i_lock needed lest racing with wake_up_all().
1945 spin_lock(&inode->i_lock);
1946 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1947 spin_unlock(&inode->i_lock);
1948 return ret;
1950 spin_unlock(&inode->i_lock);
1953 sgp = SGP_CACHE;
1954 if (vma->vm_flags & VM_HUGEPAGE)
1955 sgp = SGP_HUGE;
1956 else if (vma->vm_flags & VM_NOHUGEPAGE)
1957 sgp = SGP_NOHUGE;
1959 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1960 gfp, vma->vm_mm, &ret);
1961 if (error)
1962 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1963 return ret;
1966 unsigned long shmem_get_unmapped_area(struct file *file,
1967 unsigned long uaddr, unsigned long len,
1968 unsigned long pgoff, unsigned long flags)
1970 unsigned long (*get_area)(struct file *,
1971 unsigned long, unsigned long, unsigned long, unsigned long);
1972 unsigned long addr;
1973 unsigned long offset;
1974 unsigned long inflated_len;
1975 unsigned long inflated_addr;
1976 unsigned long inflated_offset;
1978 if (len > TASK_SIZE)
1979 return -ENOMEM;
1981 get_area = current->mm->get_unmapped_area;
1982 addr = get_area(file, uaddr, len, pgoff, flags);
1984 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1985 return addr;
1986 if (IS_ERR_VALUE(addr))
1987 return addr;
1988 if (addr & ~PAGE_MASK)
1989 return addr;
1990 if (addr > TASK_SIZE - len)
1991 return addr;
1993 if (shmem_huge == SHMEM_HUGE_DENY)
1994 return addr;
1995 if (len < HPAGE_PMD_SIZE)
1996 return addr;
1997 if (flags & MAP_FIXED)
1998 return addr;
2000 * Our priority is to support MAP_SHARED mapped hugely;
2001 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2002 * But if caller specified an address hint, respect that as before.
2004 if (uaddr)
2005 return addr;
2007 if (shmem_huge != SHMEM_HUGE_FORCE) {
2008 struct super_block *sb;
2010 if (file) {
2011 VM_BUG_ON(file->f_op != &shmem_file_operations);
2012 sb = file_inode(file)->i_sb;
2013 } else {
2015 * Called directly from mm/mmap.c, or drivers/char/mem.c
2016 * for "/dev/zero", to create a shared anonymous object.
2018 if (IS_ERR(shm_mnt))
2019 return addr;
2020 sb = shm_mnt->mnt_sb;
2022 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2023 return addr;
2026 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2027 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2028 return addr;
2029 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2030 return addr;
2032 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2033 if (inflated_len > TASK_SIZE)
2034 return addr;
2035 if (inflated_len < len)
2036 return addr;
2038 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2039 if (IS_ERR_VALUE(inflated_addr))
2040 return addr;
2041 if (inflated_addr & ~PAGE_MASK)
2042 return addr;
2044 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2045 inflated_addr += offset - inflated_offset;
2046 if (inflated_offset > offset)
2047 inflated_addr += HPAGE_PMD_SIZE;
2049 if (inflated_addr > TASK_SIZE - len)
2050 return addr;
2051 return inflated_addr;
2054 #ifdef CONFIG_NUMA
2055 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2057 struct inode *inode = file_inode(vma->vm_file);
2058 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2061 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2062 unsigned long addr)
2064 struct inode *inode = file_inode(vma->vm_file);
2065 pgoff_t index;
2067 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2068 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2070 #endif
2072 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2074 struct inode *inode = file_inode(file);
2075 struct shmem_inode_info *info = SHMEM_I(inode);
2076 int retval = -ENOMEM;
2078 spin_lock_irq(&info->lock);
2079 if (lock && !(info->flags & VM_LOCKED)) {
2080 if (!user_shm_lock(inode->i_size, user))
2081 goto out_nomem;
2082 info->flags |= VM_LOCKED;
2083 mapping_set_unevictable(file->f_mapping);
2085 if (!lock && (info->flags & VM_LOCKED) && user) {
2086 user_shm_unlock(inode->i_size, user);
2087 info->flags &= ~VM_LOCKED;
2088 mapping_clear_unevictable(file->f_mapping);
2090 retval = 0;
2092 out_nomem:
2093 spin_unlock_irq(&info->lock);
2094 return retval;
2097 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2099 file_accessed(file);
2100 vma->vm_ops = &shmem_vm_ops;
2101 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2102 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2103 (vma->vm_end & HPAGE_PMD_MASK)) {
2104 khugepaged_enter(vma, vma->vm_flags);
2106 return 0;
2109 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2110 umode_t mode, dev_t dev, unsigned long flags)
2112 struct inode *inode;
2113 struct shmem_inode_info *info;
2114 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2116 if (shmem_reserve_inode(sb))
2117 return NULL;
2119 inode = new_inode(sb);
2120 if (inode) {
2121 inode->i_ino = get_next_ino();
2122 inode_init_owner(inode, dir, mode);
2123 inode->i_blocks = 0;
2124 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2125 inode->i_generation = get_seconds();
2126 info = SHMEM_I(inode);
2127 memset(info, 0, (char *)inode - (char *)info);
2128 spin_lock_init(&info->lock);
2129 info->seals = F_SEAL_SEAL;
2130 info->flags = flags & VM_NORESERVE;
2131 INIT_LIST_HEAD(&info->shrinklist);
2132 INIT_LIST_HEAD(&info->swaplist);
2133 simple_xattrs_init(&info->xattrs);
2134 cache_no_acl(inode);
2136 switch (mode & S_IFMT) {
2137 default:
2138 inode->i_op = &shmem_special_inode_operations;
2139 init_special_inode(inode, mode, dev);
2140 break;
2141 case S_IFREG:
2142 inode->i_mapping->a_ops = &shmem_aops;
2143 inode->i_op = &shmem_inode_operations;
2144 inode->i_fop = &shmem_file_operations;
2145 mpol_shared_policy_init(&info->policy,
2146 shmem_get_sbmpol(sbinfo));
2147 break;
2148 case S_IFDIR:
2149 inc_nlink(inode);
2150 /* Some things misbehave if size == 0 on a directory */
2151 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2152 inode->i_op = &shmem_dir_inode_operations;
2153 inode->i_fop = &simple_dir_operations;
2154 break;
2155 case S_IFLNK:
2157 * Must not load anything in the rbtree,
2158 * mpol_free_shared_policy will not be called.
2160 mpol_shared_policy_init(&info->policy, NULL);
2161 break;
2163 } else
2164 shmem_free_inode(sb);
2165 return inode;
2168 bool shmem_mapping(struct address_space *mapping)
2170 if (!mapping->host)
2171 return false;
2173 return mapping->host->i_sb->s_op == &shmem_ops;
2176 #ifdef CONFIG_TMPFS
2177 static const struct inode_operations shmem_symlink_inode_operations;
2178 static const struct inode_operations shmem_short_symlink_operations;
2180 #ifdef CONFIG_TMPFS_XATTR
2181 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2182 #else
2183 #define shmem_initxattrs NULL
2184 #endif
2186 static int
2187 shmem_write_begin(struct file *file, struct address_space *mapping,
2188 loff_t pos, unsigned len, unsigned flags,
2189 struct page **pagep, void **fsdata)
2191 struct inode *inode = mapping->host;
2192 struct shmem_inode_info *info = SHMEM_I(inode);
2193 pgoff_t index = pos >> PAGE_SHIFT;
2195 /* i_mutex is held by caller */
2196 if (unlikely(info->seals)) {
2197 if (info->seals & F_SEAL_WRITE)
2198 return -EPERM;
2199 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2200 return -EPERM;
2203 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2206 static int
2207 shmem_write_end(struct file *file, struct address_space *mapping,
2208 loff_t pos, unsigned len, unsigned copied,
2209 struct page *page, void *fsdata)
2211 struct inode *inode = mapping->host;
2213 if (pos + copied > inode->i_size)
2214 i_size_write(inode, pos + copied);
2216 if (!PageUptodate(page)) {
2217 struct page *head = compound_head(page);
2218 if (PageTransCompound(page)) {
2219 int i;
2221 for (i = 0; i < HPAGE_PMD_NR; i++) {
2222 if (head + i == page)
2223 continue;
2224 clear_highpage(head + i);
2225 flush_dcache_page(head + i);
2228 if (copied < PAGE_SIZE) {
2229 unsigned from = pos & (PAGE_SIZE - 1);
2230 zero_user_segments(page, 0, from,
2231 from + copied, PAGE_SIZE);
2233 SetPageUptodate(head);
2235 set_page_dirty(page);
2236 unlock_page(page);
2237 put_page(page);
2239 return copied;
2242 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2244 struct file *file = iocb->ki_filp;
2245 struct inode *inode = file_inode(file);
2246 struct address_space *mapping = inode->i_mapping;
2247 pgoff_t index;
2248 unsigned long offset;
2249 enum sgp_type sgp = SGP_READ;
2250 int error = 0;
2251 ssize_t retval = 0;
2252 loff_t *ppos = &iocb->ki_pos;
2255 * Might this read be for a stacking filesystem? Then when reading
2256 * holes of a sparse file, we actually need to allocate those pages,
2257 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2259 if (!iter_is_iovec(to))
2260 sgp = SGP_CACHE;
2262 index = *ppos >> PAGE_SHIFT;
2263 offset = *ppos & ~PAGE_MASK;
2265 for (;;) {
2266 struct page *page = NULL;
2267 pgoff_t end_index;
2268 unsigned long nr, ret;
2269 loff_t i_size = i_size_read(inode);
2271 end_index = i_size >> PAGE_SHIFT;
2272 if (index > end_index)
2273 break;
2274 if (index == end_index) {
2275 nr = i_size & ~PAGE_MASK;
2276 if (nr <= offset)
2277 break;
2280 error = shmem_getpage(inode, index, &page, sgp);
2281 if (error) {
2282 if (error == -EINVAL)
2283 error = 0;
2284 break;
2286 if (page) {
2287 if (sgp == SGP_CACHE)
2288 set_page_dirty(page);
2289 unlock_page(page);
2293 * We must evaluate after, since reads (unlike writes)
2294 * are called without i_mutex protection against truncate
2296 nr = PAGE_SIZE;
2297 i_size = i_size_read(inode);
2298 end_index = i_size >> PAGE_SHIFT;
2299 if (index == end_index) {
2300 nr = i_size & ~PAGE_MASK;
2301 if (nr <= offset) {
2302 if (page)
2303 put_page(page);
2304 break;
2307 nr -= offset;
2309 if (page) {
2311 * If users can be writing to this page using arbitrary
2312 * virtual addresses, take care about potential aliasing
2313 * before reading the page on the kernel side.
2315 if (mapping_writably_mapped(mapping))
2316 flush_dcache_page(page);
2318 * Mark the page accessed if we read the beginning.
2320 if (!offset)
2321 mark_page_accessed(page);
2322 } else {
2323 page = ZERO_PAGE(0);
2324 get_page(page);
2328 * Ok, we have the page, and it's up-to-date, so
2329 * now we can copy it to user space...
2331 ret = copy_page_to_iter(page, offset, nr, to);
2332 retval += ret;
2333 offset += ret;
2334 index += offset >> PAGE_SHIFT;
2335 offset &= ~PAGE_MASK;
2337 put_page(page);
2338 if (!iov_iter_count(to))
2339 break;
2340 if (ret < nr) {
2341 error = -EFAULT;
2342 break;
2344 cond_resched();
2347 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2348 file_accessed(file);
2349 return retval ? retval : error;
2353 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2355 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2356 pgoff_t index, pgoff_t end, int whence)
2358 struct page *page;
2359 struct pagevec pvec;
2360 pgoff_t indices[PAGEVEC_SIZE];
2361 bool done = false;
2362 int i;
2364 pagevec_init(&pvec, 0);
2365 pvec.nr = 1; /* start small: we may be there already */
2366 while (!done) {
2367 pvec.nr = find_get_entries(mapping, index,
2368 pvec.nr, pvec.pages, indices);
2369 if (!pvec.nr) {
2370 if (whence == SEEK_DATA)
2371 index = end;
2372 break;
2374 for (i = 0; i < pvec.nr; i++, index++) {
2375 if (index < indices[i]) {
2376 if (whence == SEEK_HOLE) {
2377 done = true;
2378 break;
2380 index = indices[i];
2382 page = pvec.pages[i];
2383 if (page && !radix_tree_exceptional_entry(page)) {
2384 if (!PageUptodate(page))
2385 page = NULL;
2387 if (index >= end ||
2388 (page && whence == SEEK_DATA) ||
2389 (!page && whence == SEEK_HOLE)) {
2390 done = true;
2391 break;
2394 pagevec_remove_exceptionals(&pvec);
2395 pagevec_release(&pvec);
2396 pvec.nr = PAGEVEC_SIZE;
2397 cond_resched();
2399 return index;
2402 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2404 struct address_space *mapping = file->f_mapping;
2405 struct inode *inode = mapping->host;
2406 pgoff_t start, end;
2407 loff_t new_offset;
2409 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2410 return generic_file_llseek_size(file, offset, whence,
2411 MAX_LFS_FILESIZE, i_size_read(inode));
2412 inode_lock(inode);
2413 /* We're holding i_mutex so we can access i_size directly */
2415 if (offset < 0)
2416 offset = -EINVAL;
2417 else if (offset >= inode->i_size)
2418 offset = -ENXIO;
2419 else {
2420 start = offset >> PAGE_SHIFT;
2421 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2422 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2423 new_offset <<= PAGE_SHIFT;
2424 if (new_offset > offset) {
2425 if (new_offset < inode->i_size)
2426 offset = new_offset;
2427 else if (whence == SEEK_DATA)
2428 offset = -ENXIO;
2429 else
2430 offset = inode->i_size;
2434 if (offset >= 0)
2435 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2436 inode_unlock(inode);
2437 return offset;
2441 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2442 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2444 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2445 #define LAST_SCAN 4 /* about 150ms max */
2447 static void shmem_tag_pins(struct address_space *mapping)
2449 struct radix_tree_iter iter;
2450 void **slot;
2451 pgoff_t start;
2452 struct page *page;
2454 lru_add_drain();
2455 start = 0;
2456 rcu_read_lock();
2458 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2459 page = radix_tree_deref_slot(slot);
2460 if (!page || radix_tree_exception(page)) {
2461 if (radix_tree_deref_retry(page)) {
2462 slot = radix_tree_iter_retry(&iter);
2463 continue;
2465 } else if (page_count(page) - page_mapcount(page) > 1) {
2466 spin_lock_irq(&mapping->tree_lock);
2467 radix_tree_tag_set(&mapping->page_tree, iter.index,
2468 SHMEM_TAG_PINNED);
2469 spin_unlock_irq(&mapping->tree_lock);
2472 if (need_resched()) {
2473 cond_resched_rcu();
2474 slot = radix_tree_iter_next(&iter);
2477 rcu_read_unlock();
2481 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2482 * via get_user_pages(), drivers might have some pending I/O without any active
2483 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2484 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2485 * them to be dropped.
2486 * The caller must guarantee that no new user will acquire writable references
2487 * to those pages to avoid races.
2489 static int shmem_wait_for_pins(struct address_space *mapping)
2491 struct radix_tree_iter iter;
2492 void **slot;
2493 pgoff_t start;
2494 struct page *page;
2495 int error, scan;
2497 shmem_tag_pins(mapping);
2499 error = 0;
2500 for (scan = 0; scan <= LAST_SCAN; scan++) {
2501 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2502 break;
2504 if (!scan)
2505 lru_add_drain_all();
2506 else if (schedule_timeout_killable((HZ << scan) / 200))
2507 scan = LAST_SCAN;
2509 start = 0;
2510 rcu_read_lock();
2511 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2512 start, SHMEM_TAG_PINNED) {
2514 page = radix_tree_deref_slot(slot);
2515 if (radix_tree_exception(page)) {
2516 if (radix_tree_deref_retry(page)) {
2517 slot = radix_tree_iter_retry(&iter);
2518 continue;
2521 page = NULL;
2524 if (page &&
2525 page_count(page) - page_mapcount(page) != 1) {
2526 if (scan < LAST_SCAN)
2527 goto continue_resched;
2530 * On the last scan, we clean up all those tags
2531 * we inserted; but make a note that we still
2532 * found pages pinned.
2534 error = -EBUSY;
2537 spin_lock_irq(&mapping->tree_lock);
2538 radix_tree_tag_clear(&mapping->page_tree,
2539 iter.index, SHMEM_TAG_PINNED);
2540 spin_unlock_irq(&mapping->tree_lock);
2541 continue_resched:
2542 if (need_resched()) {
2543 cond_resched_rcu();
2544 slot = radix_tree_iter_next(&iter);
2547 rcu_read_unlock();
2550 return error;
2553 #define F_ALL_SEALS (F_SEAL_SEAL | \
2554 F_SEAL_SHRINK | \
2555 F_SEAL_GROW | \
2556 F_SEAL_WRITE)
2558 int shmem_add_seals(struct file *file, unsigned int seals)
2560 struct inode *inode = file_inode(file);
2561 struct shmem_inode_info *info = SHMEM_I(inode);
2562 int error;
2565 * SEALING
2566 * Sealing allows multiple parties to share a shmem-file but restrict
2567 * access to a specific subset of file operations. Seals can only be
2568 * added, but never removed. This way, mutually untrusted parties can
2569 * share common memory regions with a well-defined policy. A malicious
2570 * peer can thus never perform unwanted operations on a shared object.
2572 * Seals are only supported on special shmem-files and always affect
2573 * the whole underlying inode. Once a seal is set, it may prevent some
2574 * kinds of access to the file. Currently, the following seals are
2575 * defined:
2576 * SEAL_SEAL: Prevent further seals from being set on this file
2577 * SEAL_SHRINK: Prevent the file from shrinking
2578 * SEAL_GROW: Prevent the file from growing
2579 * SEAL_WRITE: Prevent write access to the file
2581 * As we don't require any trust relationship between two parties, we
2582 * must prevent seals from being removed. Therefore, sealing a file
2583 * only adds a given set of seals to the file, it never touches
2584 * existing seals. Furthermore, the "setting seals"-operation can be
2585 * sealed itself, which basically prevents any further seal from being
2586 * added.
2588 * Semantics of sealing are only defined on volatile files. Only
2589 * anonymous shmem files support sealing. More importantly, seals are
2590 * never written to disk. Therefore, there's no plan to support it on
2591 * other file types.
2594 if (file->f_op != &shmem_file_operations)
2595 return -EINVAL;
2596 if (!(file->f_mode & FMODE_WRITE))
2597 return -EPERM;
2598 if (seals & ~(unsigned int)F_ALL_SEALS)
2599 return -EINVAL;
2601 inode_lock(inode);
2603 if (info->seals & F_SEAL_SEAL) {
2604 error = -EPERM;
2605 goto unlock;
2608 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2609 error = mapping_deny_writable(file->f_mapping);
2610 if (error)
2611 goto unlock;
2613 error = shmem_wait_for_pins(file->f_mapping);
2614 if (error) {
2615 mapping_allow_writable(file->f_mapping);
2616 goto unlock;
2620 info->seals |= seals;
2621 error = 0;
2623 unlock:
2624 inode_unlock(inode);
2625 return error;
2627 EXPORT_SYMBOL_GPL(shmem_add_seals);
2629 int shmem_get_seals(struct file *file)
2631 if (file->f_op != &shmem_file_operations)
2632 return -EINVAL;
2634 return SHMEM_I(file_inode(file))->seals;
2636 EXPORT_SYMBOL_GPL(shmem_get_seals);
2638 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2640 long error;
2642 switch (cmd) {
2643 case F_ADD_SEALS:
2644 /* disallow upper 32bit */
2645 if (arg > UINT_MAX)
2646 return -EINVAL;
2648 error = shmem_add_seals(file, arg);
2649 break;
2650 case F_GET_SEALS:
2651 error = shmem_get_seals(file);
2652 break;
2653 default:
2654 error = -EINVAL;
2655 break;
2658 return error;
2661 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2662 loff_t len)
2664 struct inode *inode = file_inode(file);
2665 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2666 struct shmem_inode_info *info = SHMEM_I(inode);
2667 struct shmem_falloc shmem_falloc;
2668 pgoff_t start, index, end;
2669 int error;
2671 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2672 return -EOPNOTSUPP;
2674 inode_lock(inode);
2676 if (mode & FALLOC_FL_PUNCH_HOLE) {
2677 struct address_space *mapping = file->f_mapping;
2678 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2679 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2680 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2682 /* protected by i_mutex */
2683 if (info->seals & F_SEAL_WRITE) {
2684 error = -EPERM;
2685 goto out;
2688 shmem_falloc.waitq = &shmem_falloc_waitq;
2689 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2690 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2691 spin_lock(&inode->i_lock);
2692 inode->i_private = &shmem_falloc;
2693 spin_unlock(&inode->i_lock);
2695 if ((u64)unmap_end > (u64)unmap_start)
2696 unmap_mapping_range(mapping, unmap_start,
2697 1 + unmap_end - unmap_start, 0);
2698 shmem_truncate_range(inode, offset, offset + len - 1);
2699 /* No need to unmap again: hole-punching leaves COWed pages */
2701 spin_lock(&inode->i_lock);
2702 inode->i_private = NULL;
2703 wake_up_all(&shmem_falloc_waitq);
2704 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2705 spin_unlock(&inode->i_lock);
2706 error = 0;
2707 goto out;
2710 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2711 error = inode_newsize_ok(inode, offset + len);
2712 if (error)
2713 goto out;
2715 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2716 error = -EPERM;
2717 goto out;
2720 start = offset >> PAGE_SHIFT;
2721 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2722 /* Try to avoid a swapstorm if len is impossible to satisfy */
2723 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2724 error = -ENOSPC;
2725 goto out;
2728 shmem_falloc.waitq = NULL;
2729 shmem_falloc.start = start;
2730 shmem_falloc.next = start;
2731 shmem_falloc.nr_falloced = 0;
2732 shmem_falloc.nr_unswapped = 0;
2733 spin_lock(&inode->i_lock);
2734 inode->i_private = &shmem_falloc;
2735 spin_unlock(&inode->i_lock);
2737 for (index = start; index < end; index++) {
2738 struct page *page;
2741 * Good, the fallocate(2) manpage permits EINTR: we may have
2742 * been interrupted because we are using up too much memory.
2744 if (signal_pending(current))
2745 error = -EINTR;
2746 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2747 error = -ENOMEM;
2748 else
2749 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2750 if (error) {
2751 /* Remove the !PageUptodate pages we added */
2752 if (index > start) {
2753 shmem_undo_range(inode,
2754 (loff_t)start << PAGE_SHIFT,
2755 ((loff_t)index << PAGE_SHIFT) - 1, true);
2757 goto undone;
2761 * Inform shmem_writepage() how far we have reached.
2762 * No need for lock or barrier: we have the page lock.
2764 shmem_falloc.next++;
2765 if (!PageUptodate(page))
2766 shmem_falloc.nr_falloced++;
2769 * If !PageUptodate, leave it that way so that freeable pages
2770 * can be recognized if we need to rollback on error later.
2771 * But set_page_dirty so that memory pressure will swap rather
2772 * than free the pages we are allocating (and SGP_CACHE pages
2773 * might still be clean: we now need to mark those dirty too).
2775 set_page_dirty(page);
2776 unlock_page(page);
2777 put_page(page);
2778 cond_resched();
2781 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2782 i_size_write(inode, offset + len);
2783 inode->i_ctime = current_time(inode);
2784 undone:
2785 spin_lock(&inode->i_lock);
2786 inode->i_private = NULL;
2787 spin_unlock(&inode->i_lock);
2788 out:
2789 inode_unlock(inode);
2790 return error;
2793 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2795 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2797 buf->f_type = TMPFS_MAGIC;
2798 buf->f_bsize = PAGE_SIZE;
2799 buf->f_namelen = NAME_MAX;
2800 if (sbinfo->max_blocks) {
2801 buf->f_blocks = sbinfo->max_blocks;
2802 buf->f_bavail =
2803 buf->f_bfree = sbinfo->max_blocks -
2804 percpu_counter_sum(&sbinfo->used_blocks);
2806 if (sbinfo->max_inodes) {
2807 buf->f_files = sbinfo->max_inodes;
2808 buf->f_ffree = sbinfo->free_inodes;
2810 /* else leave those fields 0 like simple_statfs */
2811 return 0;
2815 * File creation. Allocate an inode, and we're done..
2817 static int
2818 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2820 struct inode *inode;
2821 int error = -ENOSPC;
2823 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2824 if (inode) {
2825 error = simple_acl_create(dir, inode);
2826 if (error)
2827 goto out_iput;
2828 error = security_inode_init_security(inode, dir,
2829 &dentry->d_name,
2830 shmem_initxattrs, NULL);
2831 if (error && error != -EOPNOTSUPP)
2832 goto out_iput;
2834 error = 0;
2835 dir->i_size += BOGO_DIRENT_SIZE;
2836 dir->i_ctime = dir->i_mtime = current_time(dir);
2837 d_instantiate(dentry, inode);
2838 dget(dentry); /* Extra count - pin the dentry in core */
2840 return error;
2841 out_iput:
2842 iput(inode);
2843 return error;
2846 static int
2847 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2849 struct inode *inode;
2850 int error = -ENOSPC;
2852 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2853 if (inode) {
2854 error = security_inode_init_security(inode, dir,
2855 NULL,
2856 shmem_initxattrs, NULL);
2857 if (error && error != -EOPNOTSUPP)
2858 goto out_iput;
2859 error = simple_acl_create(dir, inode);
2860 if (error)
2861 goto out_iput;
2862 d_tmpfile(dentry, inode);
2864 return error;
2865 out_iput:
2866 iput(inode);
2867 return error;
2870 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2872 int error;
2874 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2875 return error;
2876 inc_nlink(dir);
2877 return 0;
2880 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2881 bool excl)
2883 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2887 * Link a file..
2889 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2891 struct inode *inode = d_inode(old_dentry);
2892 int ret;
2895 * No ordinary (disk based) filesystem counts links as inodes;
2896 * but each new link needs a new dentry, pinning lowmem, and
2897 * tmpfs dentries cannot be pruned until they are unlinked.
2899 ret = shmem_reserve_inode(inode->i_sb);
2900 if (ret)
2901 goto out;
2903 dir->i_size += BOGO_DIRENT_SIZE;
2904 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2905 inc_nlink(inode);
2906 ihold(inode); /* New dentry reference */
2907 dget(dentry); /* Extra pinning count for the created dentry */
2908 d_instantiate(dentry, inode);
2909 out:
2910 return ret;
2913 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2915 struct inode *inode = d_inode(dentry);
2917 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2918 shmem_free_inode(inode->i_sb);
2920 dir->i_size -= BOGO_DIRENT_SIZE;
2921 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2922 drop_nlink(inode);
2923 dput(dentry); /* Undo the count from "create" - this does all the work */
2924 return 0;
2927 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2929 if (!simple_empty(dentry))
2930 return -ENOTEMPTY;
2932 drop_nlink(d_inode(dentry));
2933 drop_nlink(dir);
2934 return shmem_unlink(dir, dentry);
2937 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2939 bool old_is_dir = d_is_dir(old_dentry);
2940 bool new_is_dir = d_is_dir(new_dentry);
2942 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2943 if (old_is_dir) {
2944 drop_nlink(old_dir);
2945 inc_nlink(new_dir);
2946 } else {
2947 drop_nlink(new_dir);
2948 inc_nlink(old_dir);
2951 old_dir->i_ctime = old_dir->i_mtime =
2952 new_dir->i_ctime = new_dir->i_mtime =
2953 d_inode(old_dentry)->i_ctime =
2954 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2956 return 0;
2959 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2961 struct dentry *whiteout;
2962 int error;
2964 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2965 if (!whiteout)
2966 return -ENOMEM;
2968 error = shmem_mknod(old_dir, whiteout,
2969 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2970 dput(whiteout);
2971 if (error)
2972 return error;
2975 * Cheat and hash the whiteout while the old dentry is still in
2976 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2978 * d_lookup() will consistently find one of them at this point,
2979 * not sure which one, but that isn't even important.
2981 d_rehash(whiteout);
2982 return 0;
2986 * The VFS layer already does all the dentry stuff for rename,
2987 * we just have to decrement the usage count for the target if
2988 * it exists so that the VFS layer correctly free's it when it
2989 * gets overwritten.
2991 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2993 struct inode *inode = d_inode(old_dentry);
2994 int they_are_dirs = S_ISDIR(inode->i_mode);
2996 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2997 return -EINVAL;
2999 if (flags & RENAME_EXCHANGE)
3000 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3002 if (!simple_empty(new_dentry))
3003 return -ENOTEMPTY;
3005 if (flags & RENAME_WHITEOUT) {
3006 int error;
3008 error = shmem_whiteout(old_dir, old_dentry);
3009 if (error)
3010 return error;
3013 if (d_really_is_positive(new_dentry)) {
3014 (void) shmem_unlink(new_dir, new_dentry);
3015 if (they_are_dirs) {
3016 drop_nlink(d_inode(new_dentry));
3017 drop_nlink(old_dir);
3019 } else if (they_are_dirs) {
3020 drop_nlink(old_dir);
3021 inc_nlink(new_dir);
3024 old_dir->i_size -= BOGO_DIRENT_SIZE;
3025 new_dir->i_size += BOGO_DIRENT_SIZE;
3026 old_dir->i_ctime = old_dir->i_mtime =
3027 new_dir->i_ctime = new_dir->i_mtime =
3028 inode->i_ctime = current_time(old_dir);
3029 return 0;
3032 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3034 int error;
3035 int len;
3036 struct inode *inode;
3037 struct page *page;
3038 struct shmem_inode_info *info;
3040 len = strlen(symname) + 1;
3041 if (len > PAGE_SIZE)
3042 return -ENAMETOOLONG;
3044 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3045 if (!inode)
3046 return -ENOSPC;
3048 error = security_inode_init_security(inode, dir, &dentry->d_name,
3049 shmem_initxattrs, NULL);
3050 if (error) {
3051 if (error != -EOPNOTSUPP) {
3052 iput(inode);
3053 return error;
3055 error = 0;
3058 info = SHMEM_I(inode);
3059 inode->i_size = len-1;
3060 if (len <= SHORT_SYMLINK_LEN) {
3061 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3062 if (!inode->i_link) {
3063 iput(inode);
3064 return -ENOMEM;
3066 inode->i_op = &shmem_short_symlink_operations;
3067 } else {
3068 inode_nohighmem(inode);
3069 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3070 if (error) {
3071 iput(inode);
3072 return error;
3074 inode->i_mapping->a_ops = &shmem_aops;
3075 inode->i_op = &shmem_symlink_inode_operations;
3076 memcpy(page_address(page), symname, len);
3077 SetPageUptodate(page);
3078 set_page_dirty(page);
3079 unlock_page(page);
3080 put_page(page);
3082 dir->i_size += BOGO_DIRENT_SIZE;
3083 dir->i_ctime = dir->i_mtime = current_time(dir);
3084 d_instantiate(dentry, inode);
3085 dget(dentry);
3086 return 0;
3089 static void shmem_put_link(void *arg)
3091 mark_page_accessed(arg);
3092 put_page(arg);
3095 static const char *shmem_get_link(struct dentry *dentry,
3096 struct inode *inode,
3097 struct delayed_call *done)
3099 struct page *page = NULL;
3100 int error;
3101 if (!dentry) {
3102 page = find_get_page(inode->i_mapping, 0);
3103 if (!page)
3104 return ERR_PTR(-ECHILD);
3105 if (!PageUptodate(page)) {
3106 put_page(page);
3107 return ERR_PTR(-ECHILD);
3109 } else {
3110 error = shmem_getpage(inode, 0, &page, SGP_READ);
3111 if (error)
3112 return ERR_PTR(error);
3113 unlock_page(page);
3115 set_delayed_call(done, shmem_put_link, page);
3116 return page_address(page);
3119 #ifdef CONFIG_TMPFS_XATTR
3121 * Superblocks without xattr inode operations may get some security.* xattr
3122 * support from the LSM "for free". As soon as we have any other xattrs
3123 * like ACLs, we also need to implement the security.* handlers at
3124 * filesystem level, though.
3128 * Callback for security_inode_init_security() for acquiring xattrs.
3130 static int shmem_initxattrs(struct inode *inode,
3131 const struct xattr *xattr_array,
3132 void *fs_info)
3134 struct shmem_inode_info *info = SHMEM_I(inode);
3135 const struct xattr *xattr;
3136 struct simple_xattr *new_xattr;
3137 size_t len;
3139 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3140 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3141 if (!new_xattr)
3142 return -ENOMEM;
3144 len = strlen(xattr->name) + 1;
3145 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3146 GFP_KERNEL);
3147 if (!new_xattr->name) {
3148 kfree(new_xattr);
3149 return -ENOMEM;
3152 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3153 XATTR_SECURITY_PREFIX_LEN);
3154 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3155 xattr->name, len);
3157 simple_xattr_list_add(&info->xattrs, new_xattr);
3160 return 0;
3163 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3164 struct dentry *unused, struct inode *inode,
3165 const char *name, void *buffer, size_t size)
3167 struct shmem_inode_info *info = SHMEM_I(inode);
3169 name = xattr_full_name(handler, name);
3170 return simple_xattr_get(&info->xattrs, name, buffer, size);
3173 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3174 struct dentry *unused, struct inode *inode,
3175 const char *name, const void *value,
3176 size_t size, int flags)
3178 struct shmem_inode_info *info = SHMEM_I(inode);
3180 name = xattr_full_name(handler, name);
3181 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3184 static const struct xattr_handler shmem_security_xattr_handler = {
3185 .prefix = XATTR_SECURITY_PREFIX,
3186 .get = shmem_xattr_handler_get,
3187 .set = shmem_xattr_handler_set,
3190 static const struct xattr_handler shmem_trusted_xattr_handler = {
3191 .prefix = XATTR_TRUSTED_PREFIX,
3192 .get = shmem_xattr_handler_get,
3193 .set = shmem_xattr_handler_set,
3196 static const struct xattr_handler *shmem_xattr_handlers[] = {
3197 #ifdef CONFIG_TMPFS_POSIX_ACL
3198 &posix_acl_access_xattr_handler,
3199 &posix_acl_default_xattr_handler,
3200 #endif
3201 &shmem_security_xattr_handler,
3202 &shmem_trusted_xattr_handler,
3203 NULL
3206 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3208 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3209 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3211 #endif /* CONFIG_TMPFS_XATTR */
3213 static const struct inode_operations shmem_short_symlink_operations = {
3214 .readlink = generic_readlink,
3215 .get_link = simple_get_link,
3216 #ifdef CONFIG_TMPFS_XATTR
3217 .listxattr = shmem_listxattr,
3218 #endif
3221 static const struct inode_operations shmem_symlink_inode_operations = {
3222 .readlink = generic_readlink,
3223 .get_link = shmem_get_link,
3224 #ifdef CONFIG_TMPFS_XATTR
3225 .listxattr = shmem_listxattr,
3226 #endif
3229 static struct dentry *shmem_get_parent(struct dentry *child)
3231 return ERR_PTR(-ESTALE);
3234 static int shmem_match(struct inode *ino, void *vfh)
3236 __u32 *fh = vfh;
3237 __u64 inum = fh[2];
3238 inum = (inum << 32) | fh[1];
3239 return ino->i_ino == inum && fh[0] == ino->i_generation;
3242 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3243 struct fid *fid, int fh_len, int fh_type)
3245 struct inode *inode;
3246 struct dentry *dentry = NULL;
3247 u64 inum;
3249 if (fh_len < 3)
3250 return NULL;
3252 inum = fid->raw[2];
3253 inum = (inum << 32) | fid->raw[1];
3255 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3256 shmem_match, fid->raw);
3257 if (inode) {
3258 dentry = d_find_alias(inode);
3259 iput(inode);
3262 return dentry;
3265 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3266 struct inode *parent)
3268 if (*len < 3) {
3269 *len = 3;
3270 return FILEID_INVALID;
3273 if (inode_unhashed(inode)) {
3274 /* Unfortunately insert_inode_hash is not idempotent,
3275 * so as we hash inodes here rather than at creation
3276 * time, we need a lock to ensure we only try
3277 * to do it once
3279 static DEFINE_SPINLOCK(lock);
3280 spin_lock(&lock);
3281 if (inode_unhashed(inode))
3282 __insert_inode_hash(inode,
3283 inode->i_ino + inode->i_generation);
3284 spin_unlock(&lock);
3287 fh[0] = inode->i_generation;
3288 fh[1] = inode->i_ino;
3289 fh[2] = ((__u64)inode->i_ino) >> 32;
3291 *len = 3;
3292 return 1;
3295 static const struct export_operations shmem_export_ops = {
3296 .get_parent = shmem_get_parent,
3297 .encode_fh = shmem_encode_fh,
3298 .fh_to_dentry = shmem_fh_to_dentry,
3301 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3302 bool remount)
3304 char *this_char, *value, *rest;
3305 struct mempolicy *mpol = NULL;
3306 uid_t uid;
3307 gid_t gid;
3309 while (options != NULL) {
3310 this_char = options;
3311 for (;;) {
3313 * NUL-terminate this option: unfortunately,
3314 * mount options form a comma-separated list,
3315 * but mpol's nodelist may also contain commas.
3317 options = strchr(options, ',');
3318 if (options == NULL)
3319 break;
3320 options++;
3321 if (!isdigit(*options)) {
3322 options[-1] = '\0';
3323 break;
3326 if (!*this_char)
3327 continue;
3328 if ((value = strchr(this_char,'=')) != NULL) {
3329 *value++ = 0;
3330 } else {
3331 pr_err("tmpfs: No value for mount option '%s'\n",
3332 this_char);
3333 goto error;
3336 if (!strcmp(this_char,"size")) {
3337 unsigned long long size;
3338 size = memparse(value,&rest);
3339 if (*rest == '%') {
3340 size <<= PAGE_SHIFT;
3341 size *= totalram_pages;
3342 do_div(size, 100);
3343 rest++;
3345 if (*rest)
3346 goto bad_val;
3347 sbinfo->max_blocks =
3348 DIV_ROUND_UP(size, PAGE_SIZE);
3349 } else if (!strcmp(this_char,"nr_blocks")) {
3350 sbinfo->max_blocks = memparse(value, &rest);
3351 if (*rest)
3352 goto bad_val;
3353 } else if (!strcmp(this_char,"nr_inodes")) {
3354 sbinfo->max_inodes = memparse(value, &rest);
3355 if (*rest)
3356 goto bad_val;
3357 } else if (!strcmp(this_char,"mode")) {
3358 if (remount)
3359 continue;
3360 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3361 if (*rest)
3362 goto bad_val;
3363 } else if (!strcmp(this_char,"uid")) {
3364 if (remount)
3365 continue;
3366 uid = simple_strtoul(value, &rest, 0);
3367 if (*rest)
3368 goto bad_val;
3369 sbinfo->uid = make_kuid(current_user_ns(), uid);
3370 if (!uid_valid(sbinfo->uid))
3371 goto bad_val;
3372 } else if (!strcmp(this_char,"gid")) {
3373 if (remount)
3374 continue;
3375 gid = simple_strtoul(value, &rest, 0);
3376 if (*rest)
3377 goto bad_val;
3378 sbinfo->gid = make_kgid(current_user_ns(), gid);
3379 if (!gid_valid(sbinfo->gid))
3380 goto bad_val;
3381 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3382 } else if (!strcmp(this_char, "huge")) {
3383 int huge;
3384 huge = shmem_parse_huge(value);
3385 if (huge < 0)
3386 goto bad_val;
3387 if (!has_transparent_hugepage() &&
3388 huge != SHMEM_HUGE_NEVER)
3389 goto bad_val;
3390 sbinfo->huge = huge;
3391 #endif
3392 #ifdef CONFIG_NUMA
3393 } else if (!strcmp(this_char,"mpol")) {
3394 mpol_put(mpol);
3395 mpol = NULL;
3396 if (mpol_parse_str(value, &mpol))
3397 goto bad_val;
3398 #endif
3399 } else {
3400 pr_err("tmpfs: Bad mount option %s\n", this_char);
3401 goto error;
3404 sbinfo->mpol = mpol;
3405 return 0;
3407 bad_val:
3408 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3409 value, this_char);
3410 error:
3411 mpol_put(mpol);
3412 return 1;
3416 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3418 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3419 struct shmem_sb_info config = *sbinfo;
3420 unsigned long inodes;
3421 int error = -EINVAL;
3423 config.mpol = NULL;
3424 if (shmem_parse_options(data, &config, true))
3425 return error;
3427 spin_lock(&sbinfo->stat_lock);
3428 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3429 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3430 goto out;
3431 if (config.max_inodes < inodes)
3432 goto out;
3434 * Those tests disallow limited->unlimited while any are in use;
3435 * but we must separately disallow unlimited->limited, because
3436 * in that case we have no record of how much is already in use.
3438 if (config.max_blocks && !sbinfo->max_blocks)
3439 goto out;
3440 if (config.max_inodes && !sbinfo->max_inodes)
3441 goto out;
3443 error = 0;
3444 sbinfo->huge = config.huge;
3445 sbinfo->max_blocks = config.max_blocks;
3446 sbinfo->max_inodes = config.max_inodes;
3447 sbinfo->free_inodes = config.max_inodes - inodes;
3450 * Preserve previous mempolicy unless mpol remount option was specified.
3452 if (config.mpol) {
3453 mpol_put(sbinfo->mpol);
3454 sbinfo->mpol = config.mpol; /* transfers initial ref */
3456 out:
3457 spin_unlock(&sbinfo->stat_lock);
3458 return error;
3461 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3463 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3465 if (sbinfo->max_blocks != shmem_default_max_blocks())
3466 seq_printf(seq, ",size=%luk",
3467 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3468 if (sbinfo->max_inodes != shmem_default_max_inodes())
3469 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3470 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3471 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3472 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3473 seq_printf(seq, ",uid=%u",
3474 from_kuid_munged(&init_user_ns, sbinfo->uid));
3475 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3476 seq_printf(seq, ",gid=%u",
3477 from_kgid_munged(&init_user_ns, sbinfo->gid));
3478 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3479 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3480 if (sbinfo->huge)
3481 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3482 #endif
3483 shmem_show_mpol(seq, sbinfo->mpol);
3484 return 0;
3487 #define MFD_NAME_PREFIX "memfd:"
3488 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3489 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3491 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3493 SYSCALL_DEFINE2(memfd_create,
3494 const char __user *, uname,
3495 unsigned int, flags)
3497 struct shmem_inode_info *info;
3498 struct file *file;
3499 int fd, error;
3500 char *name;
3501 long len;
3503 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3504 return -EINVAL;
3506 /* length includes terminating zero */
3507 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3508 if (len <= 0)
3509 return -EFAULT;
3510 if (len > MFD_NAME_MAX_LEN + 1)
3511 return -EINVAL;
3513 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3514 if (!name)
3515 return -ENOMEM;
3517 strcpy(name, MFD_NAME_PREFIX);
3518 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3519 error = -EFAULT;
3520 goto err_name;
3523 /* terminating-zero may have changed after strnlen_user() returned */
3524 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3525 error = -EFAULT;
3526 goto err_name;
3529 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3530 if (fd < 0) {
3531 error = fd;
3532 goto err_name;
3535 file = shmem_file_setup(name, 0, VM_NORESERVE);
3536 if (IS_ERR(file)) {
3537 error = PTR_ERR(file);
3538 goto err_fd;
3540 info = SHMEM_I(file_inode(file));
3541 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3542 file->f_flags |= O_RDWR | O_LARGEFILE;
3543 if (flags & MFD_ALLOW_SEALING)
3544 info->seals &= ~F_SEAL_SEAL;
3546 fd_install(fd, file);
3547 kfree(name);
3548 return fd;
3550 err_fd:
3551 put_unused_fd(fd);
3552 err_name:
3553 kfree(name);
3554 return error;
3557 #endif /* CONFIG_TMPFS */
3559 static void shmem_put_super(struct super_block *sb)
3561 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3563 percpu_counter_destroy(&sbinfo->used_blocks);
3564 mpol_put(sbinfo->mpol);
3565 kfree(sbinfo);
3566 sb->s_fs_info = NULL;
3569 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3571 struct inode *inode;
3572 struct shmem_sb_info *sbinfo;
3573 int err = -ENOMEM;
3575 /* Round up to L1_CACHE_BYTES to resist false sharing */
3576 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3577 L1_CACHE_BYTES), GFP_KERNEL);
3578 if (!sbinfo)
3579 return -ENOMEM;
3581 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3582 sbinfo->uid = current_fsuid();
3583 sbinfo->gid = current_fsgid();
3584 sb->s_fs_info = sbinfo;
3586 #ifdef CONFIG_TMPFS
3588 * Per default we only allow half of the physical ram per
3589 * tmpfs instance, limiting inodes to one per page of lowmem;
3590 * but the internal instance is left unlimited.
3592 if (!(sb->s_flags & MS_KERNMOUNT)) {
3593 sbinfo->max_blocks = shmem_default_max_blocks();
3594 sbinfo->max_inodes = shmem_default_max_inodes();
3595 if (shmem_parse_options(data, sbinfo, false)) {
3596 err = -EINVAL;
3597 goto failed;
3599 } else {
3600 sb->s_flags |= MS_NOUSER;
3602 sb->s_export_op = &shmem_export_ops;
3603 sb->s_flags |= MS_NOSEC;
3604 #else
3605 sb->s_flags |= MS_NOUSER;
3606 #endif
3608 spin_lock_init(&sbinfo->stat_lock);
3609 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3610 goto failed;
3611 sbinfo->free_inodes = sbinfo->max_inodes;
3612 spin_lock_init(&sbinfo->shrinklist_lock);
3613 INIT_LIST_HEAD(&sbinfo->shrinklist);
3615 sb->s_maxbytes = MAX_LFS_FILESIZE;
3616 sb->s_blocksize = PAGE_SIZE;
3617 sb->s_blocksize_bits = PAGE_SHIFT;
3618 sb->s_magic = TMPFS_MAGIC;
3619 sb->s_op = &shmem_ops;
3620 sb->s_time_gran = 1;
3621 #ifdef CONFIG_TMPFS_XATTR
3622 sb->s_xattr = shmem_xattr_handlers;
3623 #endif
3624 #ifdef CONFIG_TMPFS_POSIX_ACL
3625 sb->s_flags |= MS_POSIXACL;
3626 #endif
3628 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3629 if (!inode)
3630 goto failed;
3631 inode->i_uid = sbinfo->uid;
3632 inode->i_gid = sbinfo->gid;
3633 sb->s_root = d_make_root(inode);
3634 if (!sb->s_root)
3635 goto failed;
3636 return 0;
3638 failed:
3639 shmem_put_super(sb);
3640 return err;
3643 static struct kmem_cache *shmem_inode_cachep;
3645 static struct inode *shmem_alloc_inode(struct super_block *sb)
3647 struct shmem_inode_info *info;
3648 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3649 if (!info)
3650 return NULL;
3651 return &info->vfs_inode;
3654 static void shmem_destroy_callback(struct rcu_head *head)
3656 struct inode *inode = container_of(head, struct inode, i_rcu);
3657 if (S_ISLNK(inode->i_mode))
3658 kfree(inode->i_link);
3659 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3662 static void shmem_destroy_inode(struct inode *inode)
3664 if (S_ISREG(inode->i_mode))
3665 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3666 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3669 static void shmem_init_inode(void *foo)
3671 struct shmem_inode_info *info = foo;
3672 inode_init_once(&info->vfs_inode);
3675 static int shmem_init_inodecache(void)
3677 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3678 sizeof(struct shmem_inode_info),
3679 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3680 return 0;
3683 static void shmem_destroy_inodecache(void)
3685 kmem_cache_destroy(shmem_inode_cachep);
3688 static const struct address_space_operations shmem_aops = {
3689 .writepage = shmem_writepage,
3690 .set_page_dirty = __set_page_dirty_no_writeback,
3691 #ifdef CONFIG_TMPFS
3692 .write_begin = shmem_write_begin,
3693 .write_end = shmem_write_end,
3694 #endif
3695 #ifdef CONFIG_MIGRATION
3696 .migratepage = migrate_page,
3697 #endif
3698 .error_remove_page = generic_error_remove_page,
3701 static const struct file_operations shmem_file_operations = {
3702 .mmap = shmem_mmap,
3703 .get_unmapped_area = shmem_get_unmapped_area,
3704 #ifdef CONFIG_TMPFS
3705 .llseek = shmem_file_llseek,
3706 .read_iter = shmem_file_read_iter,
3707 .write_iter = generic_file_write_iter,
3708 .fsync = noop_fsync,
3709 .splice_read = generic_file_splice_read,
3710 .splice_write = iter_file_splice_write,
3711 .fallocate = shmem_fallocate,
3712 #endif
3715 static const struct inode_operations shmem_inode_operations = {
3716 .getattr = shmem_getattr,
3717 .setattr = shmem_setattr,
3718 #ifdef CONFIG_TMPFS_XATTR
3719 .listxattr = shmem_listxattr,
3720 .set_acl = simple_set_acl,
3721 #endif
3724 static const struct inode_operations shmem_dir_inode_operations = {
3725 #ifdef CONFIG_TMPFS
3726 .create = shmem_create,
3727 .lookup = simple_lookup,
3728 .link = shmem_link,
3729 .unlink = shmem_unlink,
3730 .symlink = shmem_symlink,
3731 .mkdir = shmem_mkdir,
3732 .rmdir = shmem_rmdir,
3733 .mknod = shmem_mknod,
3734 .rename = shmem_rename2,
3735 .tmpfile = shmem_tmpfile,
3736 #endif
3737 #ifdef CONFIG_TMPFS_XATTR
3738 .listxattr = shmem_listxattr,
3739 #endif
3740 #ifdef CONFIG_TMPFS_POSIX_ACL
3741 .setattr = shmem_setattr,
3742 .set_acl = simple_set_acl,
3743 #endif
3746 static const struct inode_operations shmem_special_inode_operations = {
3747 #ifdef CONFIG_TMPFS_XATTR
3748 .listxattr = shmem_listxattr,
3749 #endif
3750 #ifdef CONFIG_TMPFS_POSIX_ACL
3751 .setattr = shmem_setattr,
3752 .set_acl = simple_set_acl,
3753 #endif
3756 static const struct super_operations shmem_ops = {
3757 .alloc_inode = shmem_alloc_inode,
3758 .destroy_inode = shmem_destroy_inode,
3759 #ifdef CONFIG_TMPFS
3760 .statfs = shmem_statfs,
3761 .remount_fs = shmem_remount_fs,
3762 .show_options = shmem_show_options,
3763 #endif
3764 .evict_inode = shmem_evict_inode,
3765 .drop_inode = generic_delete_inode,
3766 .put_super = shmem_put_super,
3767 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3768 .nr_cached_objects = shmem_unused_huge_count,
3769 .free_cached_objects = shmem_unused_huge_scan,
3770 #endif
3773 static const struct vm_operations_struct shmem_vm_ops = {
3774 .fault = shmem_fault,
3775 .map_pages = filemap_map_pages,
3776 #ifdef CONFIG_NUMA
3777 .set_policy = shmem_set_policy,
3778 .get_policy = shmem_get_policy,
3779 #endif
3782 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3783 int flags, const char *dev_name, void *data)
3785 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3788 static struct file_system_type shmem_fs_type = {
3789 .owner = THIS_MODULE,
3790 .name = "tmpfs",
3791 .mount = shmem_mount,
3792 .kill_sb = kill_litter_super,
3793 .fs_flags = FS_USERNS_MOUNT,
3796 int __init shmem_init(void)
3798 int error;
3800 /* If rootfs called this, don't re-init */
3801 if (shmem_inode_cachep)
3802 return 0;
3804 error = shmem_init_inodecache();
3805 if (error)
3806 goto out3;
3808 error = register_filesystem(&shmem_fs_type);
3809 if (error) {
3810 pr_err("Could not register tmpfs\n");
3811 goto out2;
3814 shm_mnt = kern_mount(&shmem_fs_type);
3815 if (IS_ERR(shm_mnt)) {
3816 error = PTR_ERR(shm_mnt);
3817 pr_err("Could not kern_mount tmpfs\n");
3818 goto out1;
3821 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3822 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3823 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3824 else
3825 shmem_huge = 0; /* just in case it was patched */
3826 #endif
3827 return 0;
3829 out1:
3830 unregister_filesystem(&shmem_fs_type);
3831 out2:
3832 shmem_destroy_inodecache();
3833 out3:
3834 shm_mnt = ERR_PTR(error);
3835 return error;
3838 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3839 static ssize_t shmem_enabled_show(struct kobject *kobj,
3840 struct kobj_attribute *attr, char *buf)
3842 int values[] = {
3843 SHMEM_HUGE_ALWAYS,
3844 SHMEM_HUGE_WITHIN_SIZE,
3845 SHMEM_HUGE_ADVISE,
3846 SHMEM_HUGE_NEVER,
3847 SHMEM_HUGE_DENY,
3848 SHMEM_HUGE_FORCE,
3850 int i, count;
3852 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3853 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3855 count += sprintf(buf + count, fmt,
3856 shmem_format_huge(values[i]));
3858 buf[count - 1] = '\n';
3859 return count;
3862 static ssize_t shmem_enabled_store(struct kobject *kobj,
3863 struct kobj_attribute *attr, const char *buf, size_t count)
3865 char tmp[16];
3866 int huge;
3868 if (count + 1 > sizeof(tmp))
3869 return -EINVAL;
3870 memcpy(tmp, buf, count);
3871 tmp[count] = '\0';
3872 if (count && tmp[count - 1] == '\n')
3873 tmp[count - 1] = '\0';
3875 huge = shmem_parse_huge(tmp);
3876 if (huge == -EINVAL)
3877 return -EINVAL;
3878 if (!has_transparent_hugepage() &&
3879 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3880 return -EINVAL;
3882 shmem_huge = huge;
3883 if (shmem_huge > SHMEM_HUGE_DENY)
3884 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3885 return count;
3888 struct kobj_attribute shmem_enabled_attr =
3889 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3890 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3892 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3893 bool shmem_huge_enabled(struct vm_area_struct *vma)
3895 struct inode *inode = file_inode(vma->vm_file);
3896 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3897 loff_t i_size;
3898 pgoff_t off;
3900 if (shmem_huge == SHMEM_HUGE_FORCE)
3901 return true;
3902 if (shmem_huge == SHMEM_HUGE_DENY)
3903 return false;
3904 switch (sbinfo->huge) {
3905 case SHMEM_HUGE_NEVER:
3906 return false;
3907 case SHMEM_HUGE_ALWAYS:
3908 return true;
3909 case SHMEM_HUGE_WITHIN_SIZE:
3910 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3911 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3912 if (i_size >= HPAGE_PMD_SIZE &&
3913 i_size >> PAGE_SHIFT >= off)
3914 return true;
3915 case SHMEM_HUGE_ADVISE:
3916 /* TODO: implement fadvise() hints */
3917 return (vma->vm_flags & VM_HUGEPAGE);
3918 default:
3919 VM_BUG_ON(1);
3920 return false;
3923 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3925 #else /* !CONFIG_SHMEM */
3928 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3930 * This is intended for small system where the benefits of the full
3931 * shmem code (swap-backed and resource-limited) are outweighed by
3932 * their complexity. On systems without swap this code should be
3933 * effectively equivalent, but much lighter weight.
3936 static struct file_system_type shmem_fs_type = {
3937 .name = "tmpfs",
3938 .mount = ramfs_mount,
3939 .kill_sb = kill_litter_super,
3940 .fs_flags = FS_USERNS_MOUNT,
3943 int __init shmem_init(void)
3945 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3947 shm_mnt = kern_mount(&shmem_fs_type);
3948 BUG_ON(IS_ERR(shm_mnt));
3950 return 0;
3953 int shmem_unuse(swp_entry_t swap, struct page *page)
3955 return 0;
3958 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3960 return 0;
3963 void shmem_unlock_mapping(struct address_space *mapping)
3967 #ifdef CONFIG_MMU
3968 unsigned long shmem_get_unmapped_area(struct file *file,
3969 unsigned long addr, unsigned long len,
3970 unsigned long pgoff, unsigned long flags)
3972 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3974 #endif
3976 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3978 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3980 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3982 #define shmem_vm_ops generic_file_vm_ops
3983 #define shmem_file_operations ramfs_file_operations
3984 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3985 #define shmem_acct_size(flags, size) 0
3986 #define shmem_unacct_size(flags, size) do {} while (0)
3988 #endif /* CONFIG_SHMEM */
3990 /* common code */
3992 static const struct dentry_operations anon_ops = {
3993 .d_dname = simple_dname
3996 static struct file *__shmem_file_setup(const char *name, loff_t size,
3997 unsigned long flags, unsigned int i_flags)
3999 struct file *res;
4000 struct inode *inode;
4001 struct path path;
4002 struct super_block *sb;
4003 struct qstr this;
4005 if (IS_ERR(shm_mnt))
4006 return ERR_CAST(shm_mnt);
4008 if (size < 0 || size > MAX_LFS_FILESIZE)
4009 return ERR_PTR(-EINVAL);
4011 if (shmem_acct_size(flags, size))
4012 return ERR_PTR(-ENOMEM);
4014 res = ERR_PTR(-ENOMEM);
4015 this.name = name;
4016 this.len = strlen(name);
4017 this.hash = 0; /* will go */
4018 sb = shm_mnt->mnt_sb;
4019 path.mnt = mntget(shm_mnt);
4020 path.dentry = d_alloc_pseudo(sb, &this);
4021 if (!path.dentry)
4022 goto put_memory;
4023 d_set_d_op(path.dentry, &anon_ops);
4025 res = ERR_PTR(-ENOSPC);
4026 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4027 if (!inode)
4028 goto put_memory;
4030 inode->i_flags |= i_flags;
4031 d_instantiate(path.dentry, inode);
4032 inode->i_size = size;
4033 clear_nlink(inode); /* It is unlinked */
4034 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4035 if (IS_ERR(res))
4036 goto put_path;
4038 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4039 &shmem_file_operations);
4040 if (IS_ERR(res))
4041 goto put_path;
4043 return res;
4045 put_memory:
4046 shmem_unacct_size(flags, size);
4047 put_path:
4048 path_put(&path);
4049 return res;
4053 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4054 * kernel internal. There will be NO LSM permission checks against the
4055 * underlying inode. So users of this interface must do LSM checks at a
4056 * higher layer. The users are the big_key and shm implementations. LSM
4057 * checks are provided at the key or shm level rather than the inode.
4058 * @name: name for dentry (to be seen in /proc/<pid>/maps
4059 * @size: size to be set for the file
4060 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4062 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4064 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4068 * shmem_file_setup - get an unlinked file living in tmpfs
4069 * @name: name for dentry (to be seen in /proc/<pid>/maps
4070 * @size: size to be set for the file
4071 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4073 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4075 return __shmem_file_setup(name, size, flags, 0);
4077 EXPORT_SYMBOL_GPL(shmem_file_setup);
4080 * shmem_zero_setup - setup a shared anonymous mapping
4081 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4083 int shmem_zero_setup(struct vm_area_struct *vma)
4085 struct file *file;
4086 loff_t size = vma->vm_end - vma->vm_start;
4089 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4090 * between XFS directory reading and selinux: since this file is only
4091 * accessible to the user through its mapping, use S_PRIVATE flag to
4092 * bypass file security, in the same way as shmem_kernel_file_setup().
4094 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4095 if (IS_ERR(file))
4096 return PTR_ERR(file);
4098 if (vma->vm_file)
4099 fput(vma->vm_file);
4100 vma->vm_file = file;
4101 vma->vm_ops = &shmem_vm_ops;
4103 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4104 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4105 (vma->vm_end & HPAGE_PMD_MASK)) {
4106 khugepaged_enter(vma, vma->vm_flags);
4109 return 0;
4113 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4114 * @mapping: the page's address_space
4115 * @index: the page index
4116 * @gfp: the page allocator flags to use if allocating
4118 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4119 * with any new page allocations done using the specified allocation flags.
4120 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4121 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4122 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4124 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4125 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4127 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4128 pgoff_t index, gfp_t gfp)
4130 #ifdef CONFIG_SHMEM
4131 struct inode *inode = mapping->host;
4132 struct page *page;
4133 int error;
4135 BUG_ON(mapping->a_ops != &shmem_aops);
4136 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4137 gfp, NULL, NULL);
4138 if (error)
4139 page = ERR_PTR(error);
4140 else
4141 unlock_page(page);
4142 return page;
4143 #else
4145 * The tiny !SHMEM case uses ramfs without swap
4147 return read_cache_page_gfp(mapping, index, gfp);
4148 #endif
4150 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);