2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
37 static struct vfsmount
*shm_mnt
;
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
94 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
95 pgoff_t start
; /* start of range currently being fallocated */
96 pgoff_t next
; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
102 static unsigned long shmem_default_max_blocks(void)
104 return totalram_pages
/ 2;
107 static unsigned long shmem_default_max_inodes(void)
109 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
113 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
114 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
115 struct shmem_inode_info
*info
, pgoff_t index
);
116 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
117 struct page
**pagep
, enum sgp_type sgp
,
118 gfp_t gfp
, struct mm_struct
*fault_mm
, int *fault_type
);
120 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
121 struct page
**pagep
, enum sgp_type sgp
)
123 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
124 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
);
127 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
129 return sb
->s_fs_info
;
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
138 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
140 return (flags
& VM_NORESERVE
) ?
141 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
144 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
146 if (!(flags
& VM_NORESERVE
))
147 vm_unacct_memory(VM_ACCT(size
));
150 static inline int shmem_reacct_size(unsigned long flags
,
151 loff_t oldsize
, loff_t newsize
)
153 if (!(flags
& VM_NORESERVE
)) {
154 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
155 return security_vm_enough_memory_mm(current
->mm
,
156 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
157 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
158 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169 static inline int shmem_acct_block(unsigned long flags
, long pages
)
171 if (!(flags
& VM_NORESERVE
))
174 return security_vm_enough_memory_mm(current
->mm
,
175 pages
* VM_ACCT(PAGE_SIZE
));
178 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
180 if (flags
& VM_NORESERVE
)
181 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
184 static const struct super_operations shmem_ops
;
185 static const struct address_space_operations shmem_aops
;
186 static const struct file_operations shmem_file_operations
;
187 static const struct inode_operations shmem_inode_operations
;
188 static const struct inode_operations shmem_dir_inode_operations
;
189 static const struct inode_operations shmem_special_inode_operations
;
190 static const struct vm_operations_struct shmem_vm_ops
;
191 static struct file_system_type shmem_fs_type
;
193 static LIST_HEAD(shmem_swaplist
);
194 static DEFINE_MUTEX(shmem_swaplist_mutex
);
196 static int shmem_reserve_inode(struct super_block
*sb
)
198 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
199 if (sbinfo
->max_inodes
) {
200 spin_lock(&sbinfo
->stat_lock
);
201 if (!sbinfo
->free_inodes
) {
202 spin_unlock(&sbinfo
->stat_lock
);
205 sbinfo
->free_inodes
--;
206 spin_unlock(&sbinfo
->stat_lock
);
211 static void shmem_free_inode(struct super_block
*sb
)
213 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
214 if (sbinfo
->max_inodes
) {
215 spin_lock(&sbinfo
->stat_lock
);
216 sbinfo
->free_inodes
++;
217 spin_unlock(&sbinfo
->stat_lock
);
222 * shmem_recalc_inode - recalculate the block usage of an inode
223 * @inode: inode to recalc
225 * We have to calculate the free blocks since the mm can drop
226 * undirtied hole pages behind our back.
228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231 * It has to be called with the spinlock held.
233 static void shmem_recalc_inode(struct inode
*inode
)
235 struct shmem_inode_info
*info
= SHMEM_I(inode
);
238 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
240 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
241 if (sbinfo
->max_blocks
)
242 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
243 info
->alloced
-= freed
;
244 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
245 shmem_unacct_blocks(info
->flags
, freed
);
249 bool shmem_charge(struct inode
*inode
, long pages
)
251 struct shmem_inode_info
*info
= SHMEM_I(inode
);
252 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
255 if (shmem_acct_block(info
->flags
, pages
))
257 spin_lock_irqsave(&info
->lock
, flags
);
258 info
->alloced
+= pages
;
259 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
260 shmem_recalc_inode(inode
);
261 spin_unlock_irqrestore(&info
->lock
, flags
);
262 inode
->i_mapping
->nrpages
+= pages
;
264 if (!sbinfo
->max_blocks
)
266 if (percpu_counter_compare(&sbinfo
->used_blocks
,
267 sbinfo
->max_blocks
- pages
) > 0) {
268 inode
->i_mapping
->nrpages
-= pages
;
269 spin_lock_irqsave(&info
->lock
, flags
);
270 info
->alloced
-= pages
;
271 shmem_recalc_inode(inode
);
272 spin_unlock_irqrestore(&info
->lock
, flags
);
273 shmem_unacct_blocks(info
->flags
, pages
);
276 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
280 void shmem_uncharge(struct inode
*inode
, long pages
)
282 struct shmem_inode_info
*info
= SHMEM_I(inode
);
283 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
286 spin_lock_irqsave(&info
->lock
, flags
);
287 info
->alloced
-= pages
;
288 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
289 shmem_recalc_inode(inode
);
290 spin_unlock_irqrestore(&info
->lock
, flags
);
292 if (sbinfo
->max_blocks
)
293 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
294 shmem_unacct_blocks(info
->flags
, pages
);
298 * Replace item expected in radix tree by a new item, while holding tree lock.
300 static int shmem_radix_tree_replace(struct address_space
*mapping
,
301 pgoff_t index
, void *expected
, void *replacement
)
306 VM_BUG_ON(!expected
);
307 VM_BUG_ON(!replacement
);
308 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
311 item
= radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
);
312 if (item
!= expected
)
314 radix_tree_replace_slot(pslot
, replacement
);
319 * Sometimes, before we decide whether to proceed or to fail, we must check
320 * that an entry was not already brought back from swap by a racing thread.
322 * Checking page is not enough: by the time a SwapCache page is locked, it
323 * might be reused, and again be SwapCache, using the same swap as before.
325 static bool shmem_confirm_swap(struct address_space
*mapping
,
326 pgoff_t index
, swp_entry_t swap
)
331 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
333 return item
== swp_to_radix_entry(swap
);
337 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
340 * disables huge pages for the mount;
342 * enables huge pages for the mount;
343 * SHMEM_HUGE_WITHIN_SIZE:
344 * only allocate huge pages if the page will be fully within i_size,
345 * also respect fadvise()/madvise() hints;
347 * only allocate huge pages if requested with fadvise()/madvise();
350 #define SHMEM_HUGE_NEVER 0
351 #define SHMEM_HUGE_ALWAYS 1
352 #define SHMEM_HUGE_WITHIN_SIZE 2
353 #define SHMEM_HUGE_ADVISE 3
357 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
360 * disables huge on shm_mnt and all mounts, for emergency use;
362 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
365 #define SHMEM_HUGE_DENY (-1)
366 #define SHMEM_HUGE_FORCE (-2)
368 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
369 /* ifdef here to avoid bloating shmem.o when not necessary */
371 int shmem_huge __read_mostly
;
373 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
374 static int shmem_parse_huge(const char *str
)
376 if (!strcmp(str
, "never"))
377 return SHMEM_HUGE_NEVER
;
378 if (!strcmp(str
, "always"))
379 return SHMEM_HUGE_ALWAYS
;
380 if (!strcmp(str
, "within_size"))
381 return SHMEM_HUGE_WITHIN_SIZE
;
382 if (!strcmp(str
, "advise"))
383 return SHMEM_HUGE_ADVISE
;
384 if (!strcmp(str
, "deny"))
385 return SHMEM_HUGE_DENY
;
386 if (!strcmp(str
, "force"))
387 return SHMEM_HUGE_FORCE
;
391 static const char *shmem_format_huge(int huge
)
394 case SHMEM_HUGE_NEVER
:
396 case SHMEM_HUGE_ALWAYS
:
398 case SHMEM_HUGE_WITHIN_SIZE
:
399 return "within_size";
400 case SHMEM_HUGE_ADVISE
:
402 case SHMEM_HUGE_DENY
:
404 case SHMEM_HUGE_FORCE
:
413 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
414 struct shrink_control
*sc
, unsigned long nr_to_split
)
416 LIST_HEAD(list
), *pos
, *next
;
417 LIST_HEAD(to_remove
);
419 struct shmem_inode_info
*info
;
421 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
422 int removed
= 0, split
= 0;
424 if (list_empty(&sbinfo
->shrinklist
))
427 spin_lock(&sbinfo
->shrinklist_lock
);
428 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
429 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
432 inode
= igrab(&info
->vfs_inode
);
434 /* inode is about to be evicted */
436 list_del_init(&info
->shrinklist
);
441 /* Check if there's anything to gain */
442 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
443 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
444 list_move(&info
->shrinklist
, &to_remove
);
449 list_move(&info
->shrinklist
, &list
);
454 spin_unlock(&sbinfo
->shrinklist_lock
);
456 list_for_each_safe(pos
, next
, &to_remove
) {
457 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
458 inode
= &info
->vfs_inode
;
459 list_del_init(&info
->shrinklist
);
463 list_for_each_safe(pos
, next
, &list
) {
466 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
467 inode
= &info
->vfs_inode
;
469 if (nr_to_split
&& split
>= nr_to_split
)
472 page
= find_get_page(inode
->i_mapping
,
473 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
477 /* No huge page at the end of the file: nothing to split */
478 if (!PageTransHuge(page
)) {
484 * Leave the inode on the list if we failed to lock
485 * the page at this time.
487 * Waiting for the lock may lead to deadlock in the
490 if (!trylock_page(page
)) {
495 ret
= split_huge_page(page
);
499 /* If split failed leave the inode on the list */
505 list_del_init(&info
->shrinklist
);
511 spin_lock(&sbinfo
->shrinklist_lock
);
512 list_splice_tail(&list
, &sbinfo
->shrinklist
);
513 sbinfo
->shrinklist_len
-= removed
;
514 spin_unlock(&sbinfo
->shrinklist_lock
);
519 static long shmem_unused_huge_scan(struct super_block
*sb
,
520 struct shrink_control
*sc
)
522 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
524 if (!READ_ONCE(sbinfo
->shrinklist_len
))
527 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
530 static long shmem_unused_huge_count(struct super_block
*sb
,
531 struct shrink_control
*sc
)
533 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
534 return READ_ONCE(sbinfo
->shrinklist_len
);
536 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
538 #define shmem_huge SHMEM_HUGE_DENY
540 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
541 struct shrink_control
*sc
, unsigned long nr_to_split
)
545 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
548 * Like add_to_page_cache_locked, but error if expected item has gone.
550 static int shmem_add_to_page_cache(struct page
*page
,
551 struct address_space
*mapping
,
552 pgoff_t index
, void *expected
)
554 int error
, nr
= hpage_nr_pages(page
);
556 VM_BUG_ON_PAGE(PageTail(page
), page
);
557 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
558 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
559 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
560 VM_BUG_ON(expected
&& PageTransHuge(page
));
562 page_ref_add(page
, nr
);
563 page
->mapping
= mapping
;
566 spin_lock_irq(&mapping
->tree_lock
);
567 if (PageTransHuge(page
)) {
568 void __rcu
**results
;
573 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
,
574 &results
, &idx
, index
, 1) &&
575 idx
< index
+ HPAGE_PMD_NR
) {
580 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
581 error
= radix_tree_insert(&mapping
->page_tree
,
582 index
+ i
, page
+ i
);
585 count_vm_event(THP_FILE_ALLOC
);
587 } else if (!expected
) {
588 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
590 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
595 mapping
->nrpages
+= nr
;
596 if (PageTransHuge(page
))
597 __inc_node_page_state(page
, NR_SHMEM_THPS
);
598 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
599 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
600 spin_unlock_irq(&mapping
->tree_lock
);
602 page
->mapping
= NULL
;
603 spin_unlock_irq(&mapping
->tree_lock
);
604 page_ref_sub(page
, nr
);
610 * Like delete_from_page_cache, but substitutes swap for page.
612 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
614 struct address_space
*mapping
= page
->mapping
;
617 VM_BUG_ON_PAGE(PageCompound(page
), page
);
619 spin_lock_irq(&mapping
->tree_lock
);
620 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
621 page
->mapping
= NULL
;
623 __dec_node_page_state(page
, NR_FILE_PAGES
);
624 __dec_node_page_state(page
, NR_SHMEM
);
625 spin_unlock_irq(&mapping
->tree_lock
);
631 * Remove swap entry from radix tree, free the swap and its page cache.
633 static int shmem_free_swap(struct address_space
*mapping
,
634 pgoff_t index
, void *radswap
)
638 spin_lock_irq(&mapping
->tree_lock
);
639 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
640 spin_unlock_irq(&mapping
->tree_lock
);
643 free_swap_and_cache(radix_to_swp_entry(radswap
));
648 * Determine (in bytes) how many of the shmem object's pages mapped by the
649 * given offsets are swapped out.
651 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
652 * as long as the inode doesn't go away and racy results are not a problem.
654 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
655 pgoff_t start
, pgoff_t end
)
657 struct radix_tree_iter iter
;
660 unsigned long swapped
= 0;
664 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
665 if (iter
.index
>= end
)
668 page
= radix_tree_deref_slot(slot
);
670 if (radix_tree_deref_retry(page
)) {
671 slot
= radix_tree_iter_retry(&iter
);
675 if (radix_tree_exceptional_entry(page
))
678 if (need_resched()) {
680 slot
= radix_tree_iter_next(&iter
);
686 return swapped
<< PAGE_SHIFT
;
690 * Determine (in bytes) how many of the shmem object's pages mapped by the
691 * given vma is swapped out.
693 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
694 * as long as the inode doesn't go away and racy results are not a problem.
696 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
698 struct inode
*inode
= file_inode(vma
->vm_file
);
699 struct shmem_inode_info
*info
= SHMEM_I(inode
);
700 struct address_space
*mapping
= inode
->i_mapping
;
701 unsigned long swapped
;
703 /* Be careful as we don't hold info->lock */
704 swapped
= READ_ONCE(info
->swapped
);
707 * The easier cases are when the shmem object has nothing in swap, or
708 * the vma maps it whole. Then we can simply use the stats that we
714 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
715 return swapped
<< PAGE_SHIFT
;
717 /* Here comes the more involved part */
718 return shmem_partial_swap_usage(mapping
,
719 linear_page_index(vma
, vma
->vm_start
),
720 linear_page_index(vma
, vma
->vm_end
));
724 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
726 void shmem_unlock_mapping(struct address_space
*mapping
)
729 pgoff_t indices
[PAGEVEC_SIZE
];
732 pagevec_init(&pvec
, 0);
734 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
736 while (!mapping_unevictable(mapping
)) {
738 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
739 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
741 pvec
.nr
= find_get_entries(mapping
, index
,
742 PAGEVEC_SIZE
, pvec
.pages
, indices
);
745 index
= indices
[pvec
.nr
- 1] + 1;
746 pagevec_remove_exceptionals(&pvec
);
747 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
748 pagevec_release(&pvec
);
754 * Remove range of pages and swap entries from radix tree, and free them.
755 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
757 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
760 struct address_space
*mapping
= inode
->i_mapping
;
761 struct shmem_inode_info
*info
= SHMEM_I(inode
);
762 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
763 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
764 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
765 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
767 pgoff_t indices
[PAGEVEC_SIZE
];
768 long nr_swaps_freed
= 0;
773 end
= -1; /* unsigned, so actually very big */
775 pagevec_init(&pvec
, 0);
777 while (index
< end
) {
778 pvec
.nr
= find_get_entries(mapping
, index
,
779 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
780 pvec
.pages
, indices
);
783 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
784 struct page
*page
= pvec
.pages
[i
];
790 if (radix_tree_exceptional_entry(page
)) {
793 nr_swaps_freed
+= !shmem_free_swap(mapping
,
798 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
800 if (!trylock_page(page
))
803 if (PageTransTail(page
)) {
804 /* Middle of THP: zero out the page */
805 clear_highpage(page
);
808 } else if (PageTransHuge(page
)) {
809 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
811 * Range ends in the middle of THP:
814 clear_highpage(page
);
818 index
+= HPAGE_PMD_NR
- 1;
819 i
+= HPAGE_PMD_NR
- 1;
822 if (!unfalloc
|| !PageUptodate(page
)) {
823 VM_BUG_ON_PAGE(PageTail(page
), page
);
824 if (page_mapping(page
) == mapping
) {
825 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
826 truncate_inode_page(mapping
, page
);
831 pagevec_remove_exceptionals(&pvec
);
832 pagevec_release(&pvec
);
838 struct page
*page
= NULL
;
839 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
841 unsigned int top
= PAGE_SIZE
;
846 zero_user_segment(page
, partial_start
, top
);
847 set_page_dirty(page
);
853 struct page
*page
= NULL
;
854 shmem_getpage(inode
, end
, &page
, SGP_READ
);
856 zero_user_segment(page
, 0, partial_end
);
857 set_page_dirty(page
);
866 while (index
< end
) {
869 pvec
.nr
= find_get_entries(mapping
, index
,
870 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
871 pvec
.pages
, indices
);
873 /* If all gone or hole-punch or unfalloc, we're done */
874 if (index
== start
|| end
!= -1)
876 /* But if truncating, restart to make sure all gone */
880 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
881 struct page
*page
= pvec
.pages
[i
];
887 if (radix_tree_exceptional_entry(page
)) {
890 if (shmem_free_swap(mapping
, index
, page
)) {
891 /* Swap was replaced by page: retry */
901 if (PageTransTail(page
)) {
902 /* Middle of THP: zero out the page */
903 clear_highpage(page
);
906 * Partial thp truncate due 'start' in middle
907 * of THP: don't need to look on these pages
908 * again on !pvec.nr restart.
910 if (index
!= round_down(end
, HPAGE_PMD_NR
))
913 } else if (PageTransHuge(page
)) {
914 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
916 * Range ends in the middle of THP:
919 clear_highpage(page
);
923 index
+= HPAGE_PMD_NR
- 1;
924 i
+= HPAGE_PMD_NR
- 1;
927 if (!unfalloc
|| !PageUptodate(page
)) {
928 VM_BUG_ON_PAGE(PageTail(page
), page
);
929 if (page_mapping(page
) == mapping
) {
930 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
931 truncate_inode_page(mapping
, page
);
933 /* Page was replaced by swap: retry */
941 pagevec_remove_exceptionals(&pvec
);
942 pagevec_release(&pvec
);
946 spin_lock_irq(&info
->lock
);
947 info
->swapped
-= nr_swaps_freed
;
948 shmem_recalc_inode(inode
);
949 spin_unlock_irq(&info
->lock
);
952 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
954 shmem_undo_range(inode
, lstart
, lend
, false);
955 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
957 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
959 static int shmem_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
962 struct inode
*inode
= dentry
->d_inode
;
963 struct shmem_inode_info
*info
= SHMEM_I(inode
);
965 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
966 spin_lock_irq(&info
->lock
);
967 shmem_recalc_inode(inode
);
968 spin_unlock_irq(&info
->lock
);
970 generic_fillattr(inode
, stat
);
974 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
976 struct inode
*inode
= d_inode(dentry
);
977 struct shmem_inode_info
*info
= SHMEM_I(inode
);
978 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
981 error
= setattr_prepare(dentry
, attr
);
985 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
986 loff_t oldsize
= inode
->i_size
;
987 loff_t newsize
= attr
->ia_size
;
989 /* protected by i_mutex */
990 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
991 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
994 if (newsize
!= oldsize
) {
995 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
999 i_size_write(inode
, newsize
);
1000 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1002 if (newsize
<= oldsize
) {
1003 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1004 if (oldsize
> holebegin
)
1005 unmap_mapping_range(inode
->i_mapping
,
1008 shmem_truncate_range(inode
,
1009 newsize
, (loff_t
)-1);
1010 /* unmap again to remove racily COWed private pages */
1011 if (oldsize
> holebegin
)
1012 unmap_mapping_range(inode
->i_mapping
,
1016 * Part of the huge page can be beyond i_size: subject
1017 * to shrink under memory pressure.
1019 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1020 spin_lock(&sbinfo
->shrinklist_lock
);
1022 * _careful to defend against unlocked access to
1023 * ->shrink_list in shmem_unused_huge_shrink()
1025 if (list_empty_careful(&info
->shrinklist
)) {
1026 list_add_tail(&info
->shrinklist
,
1027 &sbinfo
->shrinklist
);
1028 sbinfo
->shrinklist_len
++;
1030 spin_unlock(&sbinfo
->shrinklist_lock
);
1035 setattr_copy(inode
, attr
);
1036 if (attr
->ia_valid
& ATTR_MODE
)
1037 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1041 static void shmem_evict_inode(struct inode
*inode
)
1043 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1044 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1046 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1047 shmem_unacct_size(info
->flags
, inode
->i_size
);
1049 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1050 if (!list_empty(&info
->shrinklist
)) {
1051 spin_lock(&sbinfo
->shrinklist_lock
);
1052 if (!list_empty(&info
->shrinklist
)) {
1053 list_del_init(&info
->shrinklist
);
1054 sbinfo
->shrinklist_len
--;
1056 spin_unlock(&sbinfo
->shrinklist_lock
);
1058 if (!list_empty(&info
->swaplist
)) {
1059 mutex_lock(&shmem_swaplist_mutex
);
1060 list_del_init(&info
->swaplist
);
1061 mutex_unlock(&shmem_swaplist_mutex
);
1065 simple_xattrs_free(&info
->xattrs
);
1066 WARN_ON(inode
->i_blocks
);
1067 shmem_free_inode(inode
->i_sb
);
1072 * If swap found in inode, free it and move page from swapcache to filecache.
1074 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1075 swp_entry_t swap
, struct page
**pagep
)
1077 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1083 radswap
= swp_to_radix_entry(swap
);
1084 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
1086 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1089 * Move _head_ to start search for next from here.
1090 * But be careful: shmem_evict_inode checks list_empty without taking
1091 * mutex, and there's an instant in list_move_tail when info->swaplist
1092 * would appear empty, if it were the only one on shmem_swaplist.
1094 if (shmem_swaplist
.next
!= &info
->swaplist
)
1095 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1097 gfp
= mapping_gfp_mask(mapping
);
1098 if (shmem_should_replace_page(*pagep
, gfp
)) {
1099 mutex_unlock(&shmem_swaplist_mutex
);
1100 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1101 mutex_lock(&shmem_swaplist_mutex
);
1103 * We needed to drop mutex to make that restrictive page
1104 * allocation, but the inode might have been freed while we
1105 * dropped it: although a racing shmem_evict_inode() cannot
1106 * complete without emptying the radix_tree, our page lock
1107 * on this swapcache page is not enough to prevent that -
1108 * free_swap_and_cache() of our swap entry will only
1109 * trylock_page(), removing swap from radix_tree whatever.
1111 * We must not proceed to shmem_add_to_page_cache() if the
1112 * inode has been freed, but of course we cannot rely on
1113 * inode or mapping or info to check that. However, we can
1114 * safely check if our swap entry is still in use (and here
1115 * it can't have got reused for another page): if it's still
1116 * in use, then the inode cannot have been freed yet, and we
1117 * can safely proceed (if it's no longer in use, that tells
1118 * nothing about the inode, but we don't need to unuse swap).
1120 if (!page_swapcount(*pagep
))
1125 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1126 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1127 * beneath us (pagelock doesn't help until the page is in pagecache).
1130 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1132 if (error
!= -ENOMEM
) {
1134 * Truncation and eviction use free_swap_and_cache(), which
1135 * only does trylock page: if we raced, best clean up here.
1137 delete_from_swap_cache(*pagep
);
1138 set_page_dirty(*pagep
);
1140 spin_lock_irq(&info
->lock
);
1142 spin_unlock_irq(&info
->lock
);
1150 * Search through swapped inodes to find and replace swap by page.
1152 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1154 struct list_head
*this, *next
;
1155 struct shmem_inode_info
*info
;
1156 struct mem_cgroup
*memcg
;
1160 * There's a faint possibility that swap page was replaced before
1161 * caller locked it: caller will come back later with the right page.
1163 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1167 * Charge page using GFP_KERNEL while we can wait, before taking
1168 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1169 * Charged back to the user (not to caller) when swap account is used.
1171 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
,
1175 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1178 mutex_lock(&shmem_swaplist_mutex
);
1179 list_for_each_safe(this, next
, &shmem_swaplist
) {
1180 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1182 error
= shmem_unuse_inode(info
, swap
, &page
);
1184 list_del_init(&info
->swaplist
);
1186 if (error
!= -EAGAIN
)
1188 /* found nothing in this: move on to search the next */
1190 mutex_unlock(&shmem_swaplist_mutex
);
1193 if (error
!= -ENOMEM
)
1195 mem_cgroup_cancel_charge(page
, memcg
, false);
1197 mem_cgroup_commit_charge(page
, memcg
, true, false);
1205 * Move the page from the page cache to the swap cache.
1207 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1209 struct shmem_inode_info
*info
;
1210 struct address_space
*mapping
;
1211 struct inode
*inode
;
1215 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1216 BUG_ON(!PageLocked(page
));
1217 mapping
= page
->mapping
;
1218 index
= page
->index
;
1219 inode
= mapping
->host
;
1220 info
= SHMEM_I(inode
);
1221 if (info
->flags
& VM_LOCKED
)
1223 if (!total_swap_pages
)
1227 * Our capabilities prevent regular writeback or sync from ever calling
1228 * shmem_writepage; but a stacking filesystem might use ->writepage of
1229 * its underlying filesystem, in which case tmpfs should write out to
1230 * swap only in response to memory pressure, and not for the writeback
1233 if (!wbc
->for_reclaim
) {
1234 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1239 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1240 * value into swapfile.c, the only way we can correctly account for a
1241 * fallocated page arriving here is now to initialize it and write it.
1243 * That's okay for a page already fallocated earlier, but if we have
1244 * not yet completed the fallocation, then (a) we want to keep track
1245 * of this page in case we have to undo it, and (b) it may not be a
1246 * good idea to continue anyway, once we're pushing into swap. So
1247 * reactivate the page, and let shmem_fallocate() quit when too many.
1249 if (!PageUptodate(page
)) {
1250 if (inode
->i_private
) {
1251 struct shmem_falloc
*shmem_falloc
;
1252 spin_lock(&inode
->i_lock
);
1253 shmem_falloc
= inode
->i_private
;
1255 !shmem_falloc
->waitq
&&
1256 index
>= shmem_falloc
->start
&&
1257 index
< shmem_falloc
->next
)
1258 shmem_falloc
->nr_unswapped
++;
1260 shmem_falloc
= NULL
;
1261 spin_unlock(&inode
->i_lock
);
1265 clear_highpage(page
);
1266 flush_dcache_page(page
);
1267 SetPageUptodate(page
);
1270 swap
= get_swap_page();
1274 if (mem_cgroup_try_charge_swap(page
, swap
))
1278 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1279 * if it's not already there. Do it now before the page is
1280 * moved to swap cache, when its pagelock no longer protects
1281 * the inode from eviction. But don't unlock the mutex until
1282 * we've incremented swapped, because shmem_unuse_inode() will
1283 * prune a !swapped inode from the swaplist under this mutex.
1285 mutex_lock(&shmem_swaplist_mutex
);
1286 if (list_empty(&info
->swaplist
))
1287 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1289 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1290 spin_lock_irq(&info
->lock
);
1291 shmem_recalc_inode(inode
);
1293 spin_unlock_irq(&info
->lock
);
1295 swap_shmem_alloc(swap
);
1296 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1298 mutex_unlock(&shmem_swaplist_mutex
);
1299 BUG_ON(page_mapped(page
));
1300 swap_writepage(page
, wbc
);
1304 mutex_unlock(&shmem_swaplist_mutex
);
1306 swapcache_free(swap
);
1308 set_page_dirty(page
);
1309 if (wbc
->for_reclaim
)
1310 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1315 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1316 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1320 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1321 return; /* show nothing */
1323 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1325 seq_printf(seq
, ",mpol=%s", buffer
);
1328 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1330 struct mempolicy
*mpol
= NULL
;
1332 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1333 mpol
= sbinfo
->mpol
;
1335 spin_unlock(&sbinfo
->stat_lock
);
1339 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1340 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1343 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1347 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1349 #define vm_policy vm_private_data
1352 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1353 struct shmem_inode_info
*info
, pgoff_t index
)
1355 /* Create a pseudo vma that just contains the policy */
1357 /* Bias interleave by inode number to distribute better across nodes */
1358 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1360 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1363 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1365 /* Drop reference taken by mpol_shared_policy_lookup() */
1366 mpol_cond_put(vma
->vm_policy
);
1369 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1370 struct shmem_inode_info
*info
, pgoff_t index
)
1372 struct vm_area_struct pvma
;
1375 shmem_pseudo_vma_init(&pvma
, info
, index
);
1376 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
1377 shmem_pseudo_vma_destroy(&pvma
);
1382 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1383 struct shmem_inode_info
*info
, pgoff_t index
)
1385 struct vm_area_struct pvma
;
1386 struct inode
*inode
= &info
->vfs_inode
;
1387 struct address_space
*mapping
= inode
->i_mapping
;
1388 pgoff_t idx
, hindex
;
1389 void __rcu
**results
;
1392 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1395 hindex
= round_down(index
, HPAGE_PMD_NR
);
1397 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
, &results
, &idx
,
1398 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1404 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1405 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1406 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1407 shmem_pseudo_vma_destroy(&pvma
);
1409 prep_transhuge_page(page
);
1413 static struct page
*shmem_alloc_page(gfp_t gfp
,
1414 struct shmem_inode_info
*info
, pgoff_t index
)
1416 struct vm_area_struct pvma
;
1419 shmem_pseudo_vma_init(&pvma
, info
, index
);
1420 page
= alloc_page_vma(gfp
, &pvma
, 0);
1421 shmem_pseudo_vma_destroy(&pvma
);
1426 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1427 struct shmem_inode_info
*info
, struct shmem_sb_info
*sbinfo
,
1428 pgoff_t index
, bool huge
)
1434 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1436 nr
= huge
? HPAGE_PMD_NR
: 1;
1438 if (shmem_acct_block(info
->flags
, nr
))
1440 if (sbinfo
->max_blocks
) {
1441 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1442 sbinfo
->max_blocks
- nr
) > 0)
1444 percpu_counter_add(&sbinfo
->used_blocks
, nr
);
1448 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1450 page
= shmem_alloc_page(gfp
, info
, index
);
1452 __SetPageLocked(page
);
1453 __SetPageSwapBacked(page
);
1458 if (sbinfo
->max_blocks
)
1459 percpu_counter_add(&sbinfo
->used_blocks
, -nr
);
1461 shmem_unacct_blocks(info
->flags
, nr
);
1463 return ERR_PTR(err
);
1467 * When a page is moved from swapcache to shmem filecache (either by the
1468 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1469 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1470 * ignorance of the mapping it belongs to. If that mapping has special
1471 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1472 * we may need to copy to a suitable page before moving to filecache.
1474 * In a future release, this may well be extended to respect cpuset and
1475 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1476 * but for now it is a simple matter of zone.
1478 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1480 return page_zonenum(page
) > gfp_zone(gfp
);
1483 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1484 struct shmem_inode_info
*info
, pgoff_t index
)
1486 struct page
*oldpage
, *newpage
;
1487 struct address_space
*swap_mapping
;
1492 swap_index
= page_private(oldpage
);
1493 swap_mapping
= page_mapping(oldpage
);
1496 * We have arrived here because our zones are constrained, so don't
1497 * limit chance of success by further cpuset and node constraints.
1499 gfp
&= ~GFP_CONSTRAINT_MASK
;
1500 newpage
= shmem_alloc_page(gfp
, info
, index
);
1505 copy_highpage(newpage
, oldpage
);
1506 flush_dcache_page(newpage
);
1508 __SetPageLocked(newpage
);
1509 __SetPageSwapBacked(newpage
);
1510 SetPageUptodate(newpage
);
1511 set_page_private(newpage
, swap_index
);
1512 SetPageSwapCache(newpage
);
1515 * Our caller will very soon move newpage out of swapcache, but it's
1516 * a nice clean interface for us to replace oldpage by newpage there.
1518 spin_lock_irq(&swap_mapping
->tree_lock
);
1519 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1522 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1523 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1525 spin_unlock_irq(&swap_mapping
->tree_lock
);
1527 if (unlikely(error
)) {
1529 * Is this possible? I think not, now that our callers check
1530 * both PageSwapCache and page_private after getting page lock;
1531 * but be defensive. Reverse old to newpage for clear and free.
1535 mem_cgroup_migrate(oldpage
, newpage
);
1536 lru_cache_add_anon(newpage
);
1540 ClearPageSwapCache(oldpage
);
1541 set_page_private(oldpage
, 0);
1543 unlock_page(oldpage
);
1550 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1552 * If we allocate a new one we do not mark it dirty. That's up to the
1553 * vm. If we swap it in we mark it dirty since we also free the swap
1554 * entry since a page cannot live in both the swap and page cache.
1556 * fault_mm and fault_type are only supplied by shmem_fault:
1557 * otherwise they are NULL.
1559 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1560 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1561 struct mm_struct
*fault_mm
, int *fault_type
)
1563 struct address_space
*mapping
= inode
->i_mapping
;
1564 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1565 struct shmem_sb_info
*sbinfo
;
1566 struct mm_struct
*charge_mm
;
1567 struct mem_cgroup
*memcg
;
1570 enum sgp_type sgp_huge
= sgp
;
1571 pgoff_t hindex
= index
;
1576 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1578 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1582 page
= find_lock_entry(mapping
, index
);
1583 if (radix_tree_exceptional_entry(page
)) {
1584 swap
= radix_to_swp_entry(page
);
1588 if (sgp
<= SGP_CACHE
&&
1589 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1594 if (page
&& sgp
== SGP_WRITE
)
1595 mark_page_accessed(page
);
1597 /* fallocated page? */
1598 if (page
&& !PageUptodate(page
)) {
1599 if (sgp
!= SGP_READ
)
1605 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1611 * Fast cache lookup did not find it:
1612 * bring it back from swap or allocate.
1614 sbinfo
= SHMEM_SB(inode
->i_sb
);
1615 charge_mm
= fault_mm
? : current
->mm
;
1618 /* Look it up and read it in.. */
1619 page
= lookup_swap_cache(swap
);
1621 /* Or update major stats only when swapin succeeds?? */
1623 *fault_type
|= VM_FAULT_MAJOR
;
1624 count_vm_event(PGMAJFAULT
);
1625 mem_cgroup_count_vm_event(fault_mm
, PGMAJFAULT
);
1627 /* Here we actually start the io */
1628 page
= shmem_swapin(swap
, gfp
, info
, index
);
1635 /* We have to do this with page locked to prevent races */
1637 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1638 !shmem_confirm_swap(mapping
, index
, swap
)) {
1639 error
= -EEXIST
; /* try again */
1642 if (!PageUptodate(page
)) {
1646 wait_on_page_writeback(page
);
1648 if (shmem_should_replace_page(page
, gfp
)) {
1649 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1654 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1657 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1658 swp_to_radix_entry(swap
));
1660 * We already confirmed swap under page lock, and make
1661 * no memory allocation here, so usually no possibility
1662 * of error; but free_swap_and_cache() only trylocks a
1663 * page, so it is just possible that the entry has been
1664 * truncated or holepunched since swap was confirmed.
1665 * shmem_undo_range() will have done some of the
1666 * unaccounting, now delete_from_swap_cache() will do
1668 * Reset swap.val? No, leave it so "failed" goes back to
1669 * "repeat": reading a hole and writing should succeed.
1672 mem_cgroup_cancel_charge(page
, memcg
, false);
1673 delete_from_swap_cache(page
);
1679 mem_cgroup_commit_charge(page
, memcg
, true, false);
1681 spin_lock_irq(&info
->lock
);
1683 shmem_recalc_inode(inode
);
1684 spin_unlock_irq(&info
->lock
);
1686 if (sgp
== SGP_WRITE
)
1687 mark_page_accessed(page
);
1689 delete_from_swap_cache(page
);
1690 set_page_dirty(page
);
1694 /* shmem_symlink() */
1695 if (mapping
->a_ops
!= &shmem_aops
)
1697 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1699 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1701 switch (sbinfo
->huge
) {
1704 case SHMEM_HUGE_NEVER
:
1706 case SHMEM_HUGE_WITHIN_SIZE
:
1707 off
= round_up(index
, HPAGE_PMD_NR
);
1708 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1709 if (i_size
>= HPAGE_PMD_SIZE
&&
1710 i_size
>> PAGE_SHIFT
>= off
)
1713 case SHMEM_HUGE_ADVISE
:
1714 if (sgp_huge
== SGP_HUGE
)
1716 /* TODO: implement fadvise() hints */
1721 page
= shmem_alloc_and_acct_page(gfp
, info
, sbinfo
,
1724 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, info
, sbinfo
,
1729 error
= PTR_ERR(page
);
1731 if (error
!= -ENOSPC
)
1734 * Try to reclaim some spece by splitting a huge page
1735 * beyond i_size on the filesystem.
1739 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1740 if (ret
== SHRINK_STOP
)
1748 if (PageTransHuge(page
))
1749 hindex
= round_down(index
, HPAGE_PMD_NR
);
1753 if (sgp
== SGP_WRITE
)
1754 __SetPageReferenced(page
);
1756 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1757 PageTransHuge(page
));
1760 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1761 compound_order(page
));
1763 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1765 radix_tree_preload_end();
1768 mem_cgroup_cancel_charge(page
, memcg
,
1769 PageTransHuge(page
));
1772 mem_cgroup_commit_charge(page
, memcg
, false,
1773 PageTransHuge(page
));
1774 lru_cache_add_anon(page
);
1776 spin_lock_irq(&info
->lock
);
1777 info
->alloced
+= 1 << compound_order(page
);
1778 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1779 shmem_recalc_inode(inode
);
1780 spin_unlock_irq(&info
->lock
);
1783 if (PageTransHuge(page
) &&
1784 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1785 hindex
+ HPAGE_PMD_NR
- 1) {
1787 * Part of the huge page is beyond i_size: subject
1788 * to shrink under memory pressure.
1790 spin_lock(&sbinfo
->shrinklist_lock
);
1792 * _careful to defend against unlocked access to
1793 * ->shrink_list in shmem_unused_huge_shrink()
1795 if (list_empty_careful(&info
->shrinklist
)) {
1796 list_add_tail(&info
->shrinklist
,
1797 &sbinfo
->shrinklist
);
1798 sbinfo
->shrinklist_len
++;
1800 spin_unlock(&sbinfo
->shrinklist_lock
);
1804 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1806 if (sgp
== SGP_FALLOC
)
1810 * Let SGP_WRITE caller clear ends if write does not fill page;
1811 * but SGP_FALLOC on a page fallocated earlier must initialize
1812 * it now, lest undo on failure cancel our earlier guarantee.
1814 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1815 struct page
*head
= compound_head(page
);
1818 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1819 clear_highpage(head
+ i
);
1820 flush_dcache_page(head
+ i
);
1822 SetPageUptodate(head
);
1826 /* Perhaps the file has been truncated since we checked */
1827 if (sgp
<= SGP_CACHE
&&
1828 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1830 ClearPageDirty(page
);
1831 delete_from_page_cache(page
);
1832 spin_lock_irq(&info
->lock
);
1833 shmem_recalc_inode(inode
);
1834 spin_unlock_irq(&info
->lock
);
1839 *pagep
= page
+ index
- hindex
;
1846 if (sbinfo
->max_blocks
)
1847 percpu_counter_sub(&sbinfo
->used_blocks
,
1848 1 << compound_order(page
));
1849 shmem_unacct_blocks(info
->flags
, 1 << compound_order(page
));
1851 if (PageTransHuge(page
)) {
1857 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1864 if (error
== -ENOSPC
&& !once
++) {
1865 spin_lock_irq(&info
->lock
);
1866 shmem_recalc_inode(inode
);
1867 spin_unlock_irq(&info
->lock
);
1870 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1876 * This is like autoremove_wake_function, but it removes the wait queue
1877 * entry unconditionally - even if something else had already woken the
1880 static int synchronous_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
1882 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1883 list_del_init(&wait
->task_list
);
1887 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1889 struct inode
*inode
= file_inode(vma
->vm_file
);
1890 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1893 int ret
= VM_FAULT_LOCKED
;
1896 * Trinity finds that probing a hole which tmpfs is punching can
1897 * prevent the hole-punch from ever completing: which in turn
1898 * locks writers out with its hold on i_mutex. So refrain from
1899 * faulting pages into the hole while it's being punched. Although
1900 * shmem_undo_range() does remove the additions, it may be unable to
1901 * keep up, as each new page needs its own unmap_mapping_range() call,
1902 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1904 * It does not matter if we sometimes reach this check just before the
1905 * hole-punch begins, so that one fault then races with the punch:
1906 * we just need to make racing faults a rare case.
1908 * The implementation below would be much simpler if we just used a
1909 * standard mutex or completion: but we cannot take i_mutex in fault,
1910 * and bloating every shmem inode for this unlikely case would be sad.
1912 if (unlikely(inode
->i_private
)) {
1913 struct shmem_falloc
*shmem_falloc
;
1915 spin_lock(&inode
->i_lock
);
1916 shmem_falloc
= inode
->i_private
;
1918 shmem_falloc
->waitq
&&
1919 vmf
->pgoff
>= shmem_falloc
->start
&&
1920 vmf
->pgoff
< shmem_falloc
->next
) {
1921 wait_queue_head_t
*shmem_falloc_waitq
;
1922 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1924 ret
= VM_FAULT_NOPAGE
;
1925 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1926 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1927 /* It's polite to up mmap_sem if we can */
1928 up_read(&vma
->vm_mm
->mmap_sem
);
1929 ret
= VM_FAULT_RETRY
;
1932 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1933 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1934 TASK_UNINTERRUPTIBLE
);
1935 spin_unlock(&inode
->i_lock
);
1939 * shmem_falloc_waitq points into the shmem_fallocate()
1940 * stack of the hole-punching task: shmem_falloc_waitq
1941 * is usually invalid by the time we reach here, but
1942 * finish_wait() does not dereference it in that case;
1943 * though i_lock needed lest racing with wake_up_all().
1945 spin_lock(&inode
->i_lock
);
1946 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1947 spin_unlock(&inode
->i_lock
);
1950 spin_unlock(&inode
->i_lock
);
1954 if (vma
->vm_flags
& VM_HUGEPAGE
)
1956 else if (vma
->vm_flags
& VM_NOHUGEPAGE
)
1959 error
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
1960 gfp
, vma
->vm_mm
, &ret
);
1962 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1966 unsigned long shmem_get_unmapped_area(struct file
*file
,
1967 unsigned long uaddr
, unsigned long len
,
1968 unsigned long pgoff
, unsigned long flags
)
1970 unsigned long (*get_area
)(struct file
*,
1971 unsigned long, unsigned long, unsigned long, unsigned long);
1973 unsigned long offset
;
1974 unsigned long inflated_len
;
1975 unsigned long inflated_addr
;
1976 unsigned long inflated_offset
;
1978 if (len
> TASK_SIZE
)
1981 get_area
= current
->mm
->get_unmapped_area
;
1982 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
1984 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1986 if (IS_ERR_VALUE(addr
))
1988 if (addr
& ~PAGE_MASK
)
1990 if (addr
> TASK_SIZE
- len
)
1993 if (shmem_huge
== SHMEM_HUGE_DENY
)
1995 if (len
< HPAGE_PMD_SIZE
)
1997 if (flags
& MAP_FIXED
)
2000 * Our priority is to support MAP_SHARED mapped hugely;
2001 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2002 * But if caller specified an address hint, respect that as before.
2007 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2008 struct super_block
*sb
;
2011 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2012 sb
= file_inode(file
)->i_sb
;
2015 * Called directly from mm/mmap.c, or drivers/char/mem.c
2016 * for "/dev/zero", to create a shared anonymous object.
2018 if (IS_ERR(shm_mnt
))
2020 sb
= shm_mnt
->mnt_sb
;
2022 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2026 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2027 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2029 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2032 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2033 if (inflated_len
> TASK_SIZE
)
2035 if (inflated_len
< len
)
2038 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2039 if (IS_ERR_VALUE(inflated_addr
))
2041 if (inflated_addr
& ~PAGE_MASK
)
2044 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2045 inflated_addr
+= offset
- inflated_offset
;
2046 if (inflated_offset
> offset
)
2047 inflated_addr
+= HPAGE_PMD_SIZE
;
2049 if (inflated_addr
> TASK_SIZE
- len
)
2051 return inflated_addr
;
2055 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2057 struct inode
*inode
= file_inode(vma
->vm_file
);
2058 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2061 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2064 struct inode
*inode
= file_inode(vma
->vm_file
);
2067 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2068 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2072 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2074 struct inode
*inode
= file_inode(file
);
2075 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2076 int retval
= -ENOMEM
;
2078 spin_lock_irq(&info
->lock
);
2079 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2080 if (!user_shm_lock(inode
->i_size
, user
))
2082 info
->flags
|= VM_LOCKED
;
2083 mapping_set_unevictable(file
->f_mapping
);
2085 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2086 user_shm_unlock(inode
->i_size
, user
);
2087 info
->flags
&= ~VM_LOCKED
;
2088 mapping_clear_unevictable(file
->f_mapping
);
2093 spin_unlock_irq(&info
->lock
);
2097 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2099 file_accessed(file
);
2100 vma
->vm_ops
= &shmem_vm_ops
;
2101 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2102 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2103 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2104 khugepaged_enter(vma
, vma
->vm_flags
);
2109 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2110 umode_t mode
, dev_t dev
, unsigned long flags
)
2112 struct inode
*inode
;
2113 struct shmem_inode_info
*info
;
2114 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2116 if (shmem_reserve_inode(sb
))
2119 inode
= new_inode(sb
);
2121 inode
->i_ino
= get_next_ino();
2122 inode_init_owner(inode
, dir
, mode
);
2123 inode
->i_blocks
= 0;
2124 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2125 inode
->i_generation
= get_seconds();
2126 info
= SHMEM_I(inode
);
2127 memset(info
, 0, (char *)inode
- (char *)info
);
2128 spin_lock_init(&info
->lock
);
2129 info
->seals
= F_SEAL_SEAL
;
2130 info
->flags
= flags
& VM_NORESERVE
;
2131 INIT_LIST_HEAD(&info
->shrinklist
);
2132 INIT_LIST_HEAD(&info
->swaplist
);
2133 simple_xattrs_init(&info
->xattrs
);
2134 cache_no_acl(inode
);
2136 switch (mode
& S_IFMT
) {
2138 inode
->i_op
= &shmem_special_inode_operations
;
2139 init_special_inode(inode
, mode
, dev
);
2142 inode
->i_mapping
->a_ops
= &shmem_aops
;
2143 inode
->i_op
= &shmem_inode_operations
;
2144 inode
->i_fop
= &shmem_file_operations
;
2145 mpol_shared_policy_init(&info
->policy
,
2146 shmem_get_sbmpol(sbinfo
));
2150 /* Some things misbehave if size == 0 on a directory */
2151 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2152 inode
->i_op
= &shmem_dir_inode_operations
;
2153 inode
->i_fop
= &simple_dir_operations
;
2157 * Must not load anything in the rbtree,
2158 * mpol_free_shared_policy will not be called.
2160 mpol_shared_policy_init(&info
->policy
, NULL
);
2164 shmem_free_inode(sb
);
2168 bool shmem_mapping(struct address_space
*mapping
)
2173 return mapping
->host
->i_sb
->s_op
== &shmem_ops
;
2177 static const struct inode_operations shmem_symlink_inode_operations
;
2178 static const struct inode_operations shmem_short_symlink_operations
;
2180 #ifdef CONFIG_TMPFS_XATTR
2181 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2183 #define shmem_initxattrs NULL
2187 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2188 loff_t pos
, unsigned len
, unsigned flags
,
2189 struct page
**pagep
, void **fsdata
)
2191 struct inode
*inode
= mapping
->host
;
2192 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2193 pgoff_t index
= pos
>> PAGE_SHIFT
;
2195 /* i_mutex is held by caller */
2196 if (unlikely(info
->seals
)) {
2197 if (info
->seals
& F_SEAL_WRITE
)
2199 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2203 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2207 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2208 loff_t pos
, unsigned len
, unsigned copied
,
2209 struct page
*page
, void *fsdata
)
2211 struct inode
*inode
= mapping
->host
;
2213 if (pos
+ copied
> inode
->i_size
)
2214 i_size_write(inode
, pos
+ copied
);
2216 if (!PageUptodate(page
)) {
2217 struct page
*head
= compound_head(page
);
2218 if (PageTransCompound(page
)) {
2221 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2222 if (head
+ i
== page
)
2224 clear_highpage(head
+ i
);
2225 flush_dcache_page(head
+ i
);
2228 if (copied
< PAGE_SIZE
) {
2229 unsigned from
= pos
& (PAGE_SIZE
- 1);
2230 zero_user_segments(page
, 0, from
,
2231 from
+ copied
, PAGE_SIZE
);
2233 SetPageUptodate(head
);
2235 set_page_dirty(page
);
2242 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2244 struct file
*file
= iocb
->ki_filp
;
2245 struct inode
*inode
= file_inode(file
);
2246 struct address_space
*mapping
= inode
->i_mapping
;
2248 unsigned long offset
;
2249 enum sgp_type sgp
= SGP_READ
;
2252 loff_t
*ppos
= &iocb
->ki_pos
;
2255 * Might this read be for a stacking filesystem? Then when reading
2256 * holes of a sparse file, we actually need to allocate those pages,
2257 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2259 if (!iter_is_iovec(to
))
2262 index
= *ppos
>> PAGE_SHIFT
;
2263 offset
= *ppos
& ~PAGE_MASK
;
2266 struct page
*page
= NULL
;
2268 unsigned long nr
, ret
;
2269 loff_t i_size
= i_size_read(inode
);
2271 end_index
= i_size
>> PAGE_SHIFT
;
2272 if (index
> end_index
)
2274 if (index
== end_index
) {
2275 nr
= i_size
& ~PAGE_MASK
;
2280 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2282 if (error
== -EINVAL
)
2287 if (sgp
== SGP_CACHE
)
2288 set_page_dirty(page
);
2293 * We must evaluate after, since reads (unlike writes)
2294 * are called without i_mutex protection against truncate
2297 i_size
= i_size_read(inode
);
2298 end_index
= i_size
>> PAGE_SHIFT
;
2299 if (index
== end_index
) {
2300 nr
= i_size
& ~PAGE_MASK
;
2311 * If users can be writing to this page using arbitrary
2312 * virtual addresses, take care about potential aliasing
2313 * before reading the page on the kernel side.
2315 if (mapping_writably_mapped(mapping
))
2316 flush_dcache_page(page
);
2318 * Mark the page accessed if we read the beginning.
2321 mark_page_accessed(page
);
2323 page
= ZERO_PAGE(0);
2328 * Ok, we have the page, and it's up-to-date, so
2329 * now we can copy it to user space...
2331 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2334 index
+= offset
>> PAGE_SHIFT
;
2335 offset
&= ~PAGE_MASK
;
2338 if (!iov_iter_count(to
))
2347 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2348 file_accessed(file
);
2349 return retval
? retval
: error
;
2353 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2355 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2356 pgoff_t index
, pgoff_t end
, int whence
)
2359 struct pagevec pvec
;
2360 pgoff_t indices
[PAGEVEC_SIZE
];
2364 pagevec_init(&pvec
, 0);
2365 pvec
.nr
= 1; /* start small: we may be there already */
2367 pvec
.nr
= find_get_entries(mapping
, index
,
2368 pvec
.nr
, pvec
.pages
, indices
);
2370 if (whence
== SEEK_DATA
)
2374 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2375 if (index
< indices
[i
]) {
2376 if (whence
== SEEK_HOLE
) {
2382 page
= pvec
.pages
[i
];
2383 if (page
&& !radix_tree_exceptional_entry(page
)) {
2384 if (!PageUptodate(page
))
2388 (page
&& whence
== SEEK_DATA
) ||
2389 (!page
&& whence
== SEEK_HOLE
)) {
2394 pagevec_remove_exceptionals(&pvec
);
2395 pagevec_release(&pvec
);
2396 pvec
.nr
= PAGEVEC_SIZE
;
2402 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2404 struct address_space
*mapping
= file
->f_mapping
;
2405 struct inode
*inode
= mapping
->host
;
2409 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2410 return generic_file_llseek_size(file
, offset
, whence
,
2411 MAX_LFS_FILESIZE
, i_size_read(inode
));
2413 /* We're holding i_mutex so we can access i_size directly */
2417 else if (offset
>= inode
->i_size
)
2420 start
= offset
>> PAGE_SHIFT
;
2421 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2422 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2423 new_offset
<<= PAGE_SHIFT
;
2424 if (new_offset
> offset
) {
2425 if (new_offset
< inode
->i_size
)
2426 offset
= new_offset
;
2427 else if (whence
== SEEK_DATA
)
2430 offset
= inode
->i_size
;
2435 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2436 inode_unlock(inode
);
2441 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2442 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2444 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2445 #define LAST_SCAN 4 /* about 150ms max */
2447 static void shmem_tag_pins(struct address_space
*mapping
)
2449 struct radix_tree_iter iter
;
2458 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
2459 page
= radix_tree_deref_slot(slot
);
2460 if (!page
|| radix_tree_exception(page
)) {
2461 if (radix_tree_deref_retry(page
)) {
2462 slot
= radix_tree_iter_retry(&iter
);
2465 } else if (page_count(page
) - page_mapcount(page
) > 1) {
2466 spin_lock_irq(&mapping
->tree_lock
);
2467 radix_tree_tag_set(&mapping
->page_tree
, iter
.index
,
2469 spin_unlock_irq(&mapping
->tree_lock
);
2472 if (need_resched()) {
2474 slot
= radix_tree_iter_next(&iter
);
2481 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2482 * via get_user_pages(), drivers might have some pending I/O without any active
2483 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2484 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2485 * them to be dropped.
2486 * The caller must guarantee that no new user will acquire writable references
2487 * to those pages to avoid races.
2489 static int shmem_wait_for_pins(struct address_space
*mapping
)
2491 struct radix_tree_iter iter
;
2497 shmem_tag_pins(mapping
);
2500 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
2501 if (!radix_tree_tagged(&mapping
->page_tree
, SHMEM_TAG_PINNED
))
2505 lru_add_drain_all();
2506 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
2511 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
,
2512 start
, SHMEM_TAG_PINNED
) {
2514 page
= radix_tree_deref_slot(slot
);
2515 if (radix_tree_exception(page
)) {
2516 if (radix_tree_deref_retry(page
)) {
2517 slot
= radix_tree_iter_retry(&iter
);
2525 page_count(page
) - page_mapcount(page
) != 1) {
2526 if (scan
< LAST_SCAN
)
2527 goto continue_resched
;
2530 * On the last scan, we clean up all those tags
2531 * we inserted; but make a note that we still
2532 * found pages pinned.
2537 spin_lock_irq(&mapping
->tree_lock
);
2538 radix_tree_tag_clear(&mapping
->page_tree
,
2539 iter
.index
, SHMEM_TAG_PINNED
);
2540 spin_unlock_irq(&mapping
->tree_lock
);
2542 if (need_resched()) {
2544 slot
= radix_tree_iter_next(&iter
);
2553 #define F_ALL_SEALS (F_SEAL_SEAL | \
2558 int shmem_add_seals(struct file
*file
, unsigned int seals
)
2560 struct inode
*inode
= file_inode(file
);
2561 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2566 * Sealing allows multiple parties to share a shmem-file but restrict
2567 * access to a specific subset of file operations. Seals can only be
2568 * added, but never removed. This way, mutually untrusted parties can
2569 * share common memory regions with a well-defined policy. A malicious
2570 * peer can thus never perform unwanted operations on a shared object.
2572 * Seals are only supported on special shmem-files and always affect
2573 * the whole underlying inode. Once a seal is set, it may prevent some
2574 * kinds of access to the file. Currently, the following seals are
2576 * SEAL_SEAL: Prevent further seals from being set on this file
2577 * SEAL_SHRINK: Prevent the file from shrinking
2578 * SEAL_GROW: Prevent the file from growing
2579 * SEAL_WRITE: Prevent write access to the file
2581 * As we don't require any trust relationship between two parties, we
2582 * must prevent seals from being removed. Therefore, sealing a file
2583 * only adds a given set of seals to the file, it never touches
2584 * existing seals. Furthermore, the "setting seals"-operation can be
2585 * sealed itself, which basically prevents any further seal from being
2588 * Semantics of sealing are only defined on volatile files. Only
2589 * anonymous shmem files support sealing. More importantly, seals are
2590 * never written to disk. Therefore, there's no plan to support it on
2594 if (file
->f_op
!= &shmem_file_operations
)
2596 if (!(file
->f_mode
& FMODE_WRITE
))
2598 if (seals
& ~(unsigned int)F_ALL_SEALS
)
2603 if (info
->seals
& F_SEAL_SEAL
) {
2608 if ((seals
& F_SEAL_WRITE
) && !(info
->seals
& F_SEAL_WRITE
)) {
2609 error
= mapping_deny_writable(file
->f_mapping
);
2613 error
= shmem_wait_for_pins(file
->f_mapping
);
2615 mapping_allow_writable(file
->f_mapping
);
2620 info
->seals
|= seals
;
2624 inode_unlock(inode
);
2627 EXPORT_SYMBOL_GPL(shmem_add_seals
);
2629 int shmem_get_seals(struct file
*file
)
2631 if (file
->f_op
!= &shmem_file_operations
)
2634 return SHMEM_I(file_inode(file
))->seals
;
2636 EXPORT_SYMBOL_GPL(shmem_get_seals
);
2638 long shmem_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2644 /* disallow upper 32bit */
2648 error
= shmem_add_seals(file
, arg
);
2651 error
= shmem_get_seals(file
);
2661 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2664 struct inode
*inode
= file_inode(file
);
2665 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2666 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2667 struct shmem_falloc shmem_falloc
;
2668 pgoff_t start
, index
, end
;
2671 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2676 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2677 struct address_space
*mapping
= file
->f_mapping
;
2678 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2679 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2680 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2682 /* protected by i_mutex */
2683 if (info
->seals
& F_SEAL_WRITE
) {
2688 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2689 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2690 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2691 spin_lock(&inode
->i_lock
);
2692 inode
->i_private
= &shmem_falloc
;
2693 spin_unlock(&inode
->i_lock
);
2695 if ((u64
)unmap_end
> (u64
)unmap_start
)
2696 unmap_mapping_range(mapping
, unmap_start
,
2697 1 + unmap_end
- unmap_start
, 0);
2698 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2699 /* No need to unmap again: hole-punching leaves COWed pages */
2701 spin_lock(&inode
->i_lock
);
2702 inode
->i_private
= NULL
;
2703 wake_up_all(&shmem_falloc_waitq
);
2704 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.task_list
));
2705 spin_unlock(&inode
->i_lock
);
2710 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2711 error
= inode_newsize_ok(inode
, offset
+ len
);
2715 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2720 start
= offset
>> PAGE_SHIFT
;
2721 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2722 /* Try to avoid a swapstorm if len is impossible to satisfy */
2723 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2728 shmem_falloc
.waitq
= NULL
;
2729 shmem_falloc
.start
= start
;
2730 shmem_falloc
.next
= start
;
2731 shmem_falloc
.nr_falloced
= 0;
2732 shmem_falloc
.nr_unswapped
= 0;
2733 spin_lock(&inode
->i_lock
);
2734 inode
->i_private
= &shmem_falloc
;
2735 spin_unlock(&inode
->i_lock
);
2737 for (index
= start
; index
< end
; index
++) {
2741 * Good, the fallocate(2) manpage permits EINTR: we may have
2742 * been interrupted because we are using up too much memory.
2744 if (signal_pending(current
))
2746 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2749 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2751 /* Remove the !PageUptodate pages we added */
2752 if (index
> start
) {
2753 shmem_undo_range(inode
,
2754 (loff_t
)start
<< PAGE_SHIFT
,
2755 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2761 * Inform shmem_writepage() how far we have reached.
2762 * No need for lock or barrier: we have the page lock.
2764 shmem_falloc
.next
++;
2765 if (!PageUptodate(page
))
2766 shmem_falloc
.nr_falloced
++;
2769 * If !PageUptodate, leave it that way so that freeable pages
2770 * can be recognized if we need to rollback on error later.
2771 * But set_page_dirty so that memory pressure will swap rather
2772 * than free the pages we are allocating (and SGP_CACHE pages
2773 * might still be clean: we now need to mark those dirty too).
2775 set_page_dirty(page
);
2781 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2782 i_size_write(inode
, offset
+ len
);
2783 inode
->i_ctime
= current_time(inode
);
2785 spin_lock(&inode
->i_lock
);
2786 inode
->i_private
= NULL
;
2787 spin_unlock(&inode
->i_lock
);
2789 inode_unlock(inode
);
2793 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2795 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2797 buf
->f_type
= TMPFS_MAGIC
;
2798 buf
->f_bsize
= PAGE_SIZE
;
2799 buf
->f_namelen
= NAME_MAX
;
2800 if (sbinfo
->max_blocks
) {
2801 buf
->f_blocks
= sbinfo
->max_blocks
;
2803 buf
->f_bfree
= sbinfo
->max_blocks
-
2804 percpu_counter_sum(&sbinfo
->used_blocks
);
2806 if (sbinfo
->max_inodes
) {
2807 buf
->f_files
= sbinfo
->max_inodes
;
2808 buf
->f_ffree
= sbinfo
->free_inodes
;
2810 /* else leave those fields 0 like simple_statfs */
2815 * File creation. Allocate an inode, and we're done..
2818 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2820 struct inode
*inode
;
2821 int error
= -ENOSPC
;
2823 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2825 error
= simple_acl_create(dir
, inode
);
2828 error
= security_inode_init_security(inode
, dir
,
2830 shmem_initxattrs
, NULL
);
2831 if (error
&& error
!= -EOPNOTSUPP
)
2835 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2836 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2837 d_instantiate(dentry
, inode
);
2838 dget(dentry
); /* Extra count - pin the dentry in core */
2847 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2849 struct inode
*inode
;
2850 int error
= -ENOSPC
;
2852 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2854 error
= security_inode_init_security(inode
, dir
,
2856 shmem_initxattrs
, NULL
);
2857 if (error
&& error
!= -EOPNOTSUPP
)
2859 error
= simple_acl_create(dir
, inode
);
2862 d_tmpfile(dentry
, inode
);
2870 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2874 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2880 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2883 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2889 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2891 struct inode
*inode
= d_inode(old_dentry
);
2895 * No ordinary (disk based) filesystem counts links as inodes;
2896 * but each new link needs a new dentry, pinning lowmem, and
2897 * tmpfs dentries cannot be pruned until they are unlinked.
2899 ret
= shmem_reserve_inode(inode
->i_sb
);
2903 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2904 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2906 ihold(inode
); /* New dentry reference */
2907 dget(dentry
); /* Extra pinning count for the created dentry */
2908 d_instantiate(dentry
, inode
);
2913 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2915 struct inode
*inode
= d_inode(dentry
);
2917 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2918 shmem_free_inode(inode
->i_sb
);
2920 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2921 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2923 dput(dentry
); /* Undo the count from "create" - this does all the work */
2927 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2929 if (!simple_empty(dentry
))
2932 drop_nlink(d_inode(dentry
));
2934 return shmem_unlink(dir
, dentry
);
2937 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2939 bool old_is_dir
= d_is_dir(old_dentry
);
2940 bool new_is_dir
= d_is_dir(new_dentry
);
2942 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2944 drop_nlink(old_dir
);
2947 drop_nlink(new_dir
);
2951 old_dir
->i_ctime
= old_dir
->i_mtime
=
2952 new_dir
->i_ctime
= new_dir
->i_mtime
=
2953 d_inode(old_dentry
)->i_ctime
=
2954 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
2959 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2961 struct dentry
*whiteout
;
2964 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2968 error
= shmem_mknod(old_dir
, whiteout
,
2969 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2975 * Cheat and hash the whiteout while the old dentry is still in
2976 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2978 * d_lookup() will consistently find one of them at this point,
2979 * not sure which one, but that isn't even important.
2986 * The VFS layer already does all the dentry stuff for rename,
2987 * we just have to decrement the usage count for the target if
2988 * it exists so that the VFS layer correctly free's it when it
2991 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
2993 struct inode
*inode
= d_inode(old_dentry
);
2994 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2996 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
2999 if (flags
& RENAME_EXCHANGE
)
3000 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
3002 if (!simple_empty(new_dentry
))
3005 if (flags
& RENAME_WHITEOUT
) {
3008 error
= shmem_whiteout(old_dir
, old_dentry
);
3013 if (d_really_is_positive(new_dentry
)) {
3014 (void) shmem_unlink(new_dir
, new_dentry
);
3015 if (they_are_dirs
) {
3016 drop_nlink(d_inode(new_dentry
));
3017 drop_nlink(old_dir
);
3019 } else if (they_are_dirs
) {
3020 drop_nlink(old_dir
);
3024 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3025 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3026 old_dir
->i_ctime
= old_dir
->i_mtime
=
3027 new_dir
->i_ctime
= new_dir
->i_mtime
=
3028 inode
->i_ctime
= current_time(old_dir
);
3032 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3036 struct inode
*inode
;
3038 struct shmem_inode_info
*info
;
3040 len
= strlen(symname
) + 1;
3041 if (len
> PAGE_SIZE
)
3042 return -ENAMETOOLONG
;
3044 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
3048 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3049 shmem_initxattrs
, NULL
);
3051 if (error
!= -EOPNOTSUPP
) {
3058 info
= SHMEM_I(inode
);
3059 inode
->i_size
= len
-1;
3060 if (len
<= SHORT_SYMLINK_LEN
) {
3061 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3062 if (!inode
->i_link
) {
3066 inode
->i_op
= &shmem_short_symlink_operations
;
3068 inode_nohighmem(inode
);
3069 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3074 inode
->i_mapping
->a_ops
= &shmem_aops
;
3075 inode
->i_op
= &shmem_symlink_inode_operations
;
3076 memcpy(page_address(page
), symname
, len
);
3077 SetPageUptodate(page
);
3078 set_page_dirty(page
);
3082 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3083 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3084 d_instantiate(dentry
, inode
);
3089 static void shmem_put_link(void *arg
)
3091 mark_page_accessed(arg
);
3095 static const char *shmem_get_link(struct dentry
*dentry
,
3096 struct inode
*inode
,
3097 struct delayed_call
*done
)
3099 struct page
*page
= NULL
;
3102 page
= find_get_page(inode
->i_mapping
, 0);
3104 return ERR_PTR(-ECHILD
);
3105 if (!PageUptodate(page
)) {
3107 return ERR_PTR(-ECHILD
);
3110 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3112 return ERR_PTR(error
);
3115 set_delayed_call(done
, shmem_put_link
, page
);
3116 return page_address(page
);
3119 #ifdef CONFIG_TMPFS_XATTR
3121 * Superblocks without xattr inode operations may get some security.* xattr
3122 * support from the LSM "for free". As soon as we have any other xattrs
3123 * like ACLs, we also need to implement the security.* handlers at
3124 * filesystem level, though.
3128 * Callback for security_inode_init_security() for acquiring xattrs.
3130 static int shmem_initxattrs(struct inode
*inode
,
3131 const struct xattr
*xattr_array
,
3134 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3135 const struct xattr
*xattr
;
3136 struct simple_xattr
*new_xattr
;
3139 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3140 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3144 len
= strlen(xattr
->name
) + 1;
3145 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3147 if (!new_xattr
->name
) {
3152 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3153 XATTR_SECURITY_PREFIX_LEN
);
3154 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3157 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3163 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3164 struct dentry
*unused
, struct inode
*inode
,
3165 const char *name
, void *buffer
, size_t size
)
3167 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3169 name
= xattr_full_name(handler
, name
);
3170 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3173 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3174 struct dentry
*unused
, struct inode
*inode
,
3175 const char *name
, const void *value
,
3176 size_t size
, int flags
)
3178 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3180 name
= xattr_full_name(handler
, name
);
3181 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3184 static const struct xattr_handler shmem_security_xattr_handler
= {
3185 .prefix
= XATTR_SECURITY_PREFIX
,
3186 .get
= shmem_xattr_handler_get
,
3187 .set
= shmem_xattr_handler_set
,
3190 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3191 .prefix
= XATTR_TRUSTED_PREFIX
,
3192 .get
= shmem_xattr_handler_get
,
3193 .set
= shmem_xattr_handler_set
,
3196 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3197 #ifdef CONFIG_TMPFS_POSIX_ACL
3198 &posix_acl_access_xattr_handler
,
3199 &posix_acl_default_xattr_handler
,
3201 &shmem_security_xattr_handler
,
3202 &shmem_trusted_xattr_handler
,
3206 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3208 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3209 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3211 #endif /* CONFIG_TMPFS_XATTR */
3213 static const struct inode_operations shmem_short_symlink_operations
= {
3214 .readlink
= generic_readlink
,
3215 .get_link
= simple_get_link
,
3216 #ifdef CONFIG_TMPFS_XATTR
3217 .listxattr
= shmem_listxattr
,
3221 static const struct inode_operations shmem_symlink_inode_operations
= {
3222 .readlink
= generic_readlink
,
3223 .get_link
= shmem_get_link
,
3224 #ifdef CONFIG_TMPFS_XATTR
3225 .listxattr
= shmem_listxattr
,
3229 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3231 return ERR_PTR(-ESTALE
);
3234 static int shmem_match(struct inode
*ino
, void *vfh
)
3238 inum
= (inum
<< 32) | fh
[1];
3239 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3242 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3243 struct fid
*fid
, int fh_len
, int fh_type
)
3245 struct inode
*inode
;
3246 struct dentry
*dentry
= NULL
;
3253 inum
= (inum
<< 32) | fid
->raw
[1];
3255 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3256 shmem_match
, fid
->raw
);
3258 dentry
= d_find_alias(inode
);
3265 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3266 struct inode
*parent
)
3270 return FILEID_INVALID
;
3273 if (inode_unhashed(inode
)) {
3274 /* Unfortunately insert_inode_hash is not idempotent,
3275 * so as we hash inodes here rather than at creation
3276 * time, we need a lock to ensure we only try
3279 static DEFINE_SPINLOCK(lock
);
3281 if (inode_unhashed(inode
))
3282 __insert_inode_hash(inode
,
3283 inode
->i_ino
+ inode
->i_generation
);
3287 fh
[0] = inode
->i_generation
;
3288 fh
[1] = inode
->i_ino
;
3289 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3295 static const struct export_operations shmem_export_ops
= {
3296 .get_parent
= shmem_get_parent
,
3297 .encode_fh
= shmem_encode_fh
,
3298 .fh_to_dentry
= shmem_fh_to_dentry
,
3301 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3304 char *this_char
, *value
, *rest
;
3305 struct mempolicy
*mpol
= NULL
;
3309 while (options
!= NULL
) {
3310 this_char
= options
;
3313 * NUL-terminate this option: unfortunately,
3314 * mount options form a comma-separated list,
3315 * but mpol's nodelist may also contain commas.
3317 options
= strchr(options
, ',');
3318 if (options
== NULL
)
3321 if (!isdigit(*options
)) {
3328 if ((value
= strchr(this_char
,'=')) != NULL
) {
3331 pr_err("tmpfs: No value for mount option '%s'\n",
3336 if (!strcmp(this_char
,"size")) {
3337 unsigned long long size
;
3338 size
= memparse(value
,&rest
);
3340 size
<<= PAGE_SHIFT
;
3341 size
*= totalram_pages
;
3347 sbinfo
->max_blocks
=
3348 DIV_ROUND_UP(size
, PAGE_SIZE
);
3349 } else if (!strcmp(this_char
,"nr_blocks")) {
3350 sbinfo
->max_blocks
= memparse(value
, &rest
);
3353 } else if (!strcmp(this_char
,"nr_inodes")) {
3354 sbinfo
->max_inodes
= memparse(value
, &rest
);
3357 } else if (!strcmp(this_char
,"mode")) {
3360 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3363 } else if (!strcmp(this_char
,"uid")) {
3366 uid
= simple_strtoul(value
, &rest
, 0);
3369 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3370 if (!uid_valid(sbinfo
->uid
))
3372 } else if (!strcmp(this_char
,"gid")) {
3375 gid
= simple_strtoul(value
, &rest
, 0);
3378 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3379 if (!gid_valid(sbinfo
->gid
))
3381 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3382 } else if (!strcmp(this_char
, "huge")) {
3384 huge
= shmem_parse_huge(value
);
3387 if (!has_transparent_hugepage() &&
3388 huge
!= SHMEM_HUGE_NEVER
)
3390 sbinfo
->huge
= huge
;
3393 } else if (!strcmp(this_char
,"mpol")) {
3396 if (mpol_parse_str(value
, &mpol
))
3400 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3404 sbinfo
->mpol
= mpol
;
3408 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3416 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3418 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3419 struct shmem_sb_info config
= *sbinfo
;
3420 unsigned long inodes
;
3421 int error
= -EINVAL
;
3424 if (shmem_parse_options(data
, &config
, true))
3427 spin_lock(&sbinfo
->stat_lock
);
3428 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3429 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3431 if (config
.max_inodes
< inodes
)
3434 * Those tests disallow limited->unlimited while any are in use;
3435 * but we must separately disallow unlimited->limited, because
3436 * in that case we have no record of how much is already in use.
3438 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3440 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3444 sbinfo
->huge
= config
.huge
;
3445 sbinfo
->max_blocks
= config
.max_blocks
;
3446 sbinfo
->max_inodes
= config
.max_inodes
;
3447 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3450 * Preserve previous mempolicy unless mpol remount option was specified.
3453 mpol_put(sbinfo
->mpol
);
3454 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3457 spin_unlock(&sbinfo
->stat_lock
);
3461 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3463 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3465 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3466 seq_printf(seq
, ",size=%luk",
3467 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3468 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3469 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3470 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
3471 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3472 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3473 seq_printf(seq
, ",uid=%u",
3474 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3475 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3476 seq_printf(seq
, ",gid=%u",
3477 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3478 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3479 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3481 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3483 shmem_show_mpol(seq
, sbinfo
->mpol
);
3487 #define MFD_NAME_PREFIX "memfd:"
3488 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3489 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3491 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3493 SYSCALL_DEFINE2(memfd_create
,
3494 const char __user
*, uname
,
3495 unsigned int, flags
)
3497 struct shmem_inode_info
*info
;
3503 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
3506 /* length includes terminating zero */
3507 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
3510 if (len
> MFD_NAME_MAX_LEN
+ 1)
3513 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_TEMPORARY
);
3517 strcpy(name
, MFD_NAME_PREFIX
);
3518 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
3523 /* terminating-zero may have changed after strnlen_user() returned */
3524 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
3529 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
3535 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
3537 error
= PTR_ERR(file
);
3540 info
= SHMEM_I(file_inode(file
));
3541 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
3542 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
3543 if (flags
& MFD_ALLOW_SEALING
)
3544 info
->seals
&= ~F_SEAL_SEAL
;
3546 fd_install(fd
, file
);
3557 #endif /* CONFIG_TMPFS */
3559 static void shmem_put_super(struct super_block
*sb
)
3561 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3563 percpu_counter_destroy(&sbinfo
->used_blocks
);
3564 mpol_put(sbinfo
->mpol
);
3566 sb
->s_fs_info
= NULL
;
3569 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3571 struct inode
*inode
;
3572 struct shmem_sb_info
*sbinfo
;
3575 /* Round up to L1_CACHE_BYTES to resist false sharing */
3576 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3577 L1_CACHE_BYTES
), GFP_KERNEL
);
3581 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3582 sbinfo
->uid
= current_fsuid();
3583 sbinfo
->gid
= current_fsgid();
3584 sb
->s_fs_info
= sbinfo
;
3588 * Per default we only allow half of the physical ram per
3589 * tmpfs instance, limiting inodes to one per page of lowmem;
3590 * but the internal instance is left unlimited.
3592 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
3593 sbinfo
->max_blocks
= shmem_default_max_blocks();
3594 sbinfo
->max_inodes
= shmem_default_max_inodes();
3595 if (shmem_parse_options(data
, sbinfo
, false)) {
3600 sb
->s_flags
|= MS_NOUSER
;
3602 sb
->s_export_op
= &shmem_export_ops
;
3603 sb
->s_flags
|= MS_NOSEC
;
3605 sb
->s_flags
|= MS_NOUSER
;
3608 spin_lock_init(&sbinfo
->stat_lock
);
3609 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3611 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3612 spin_lock_init(&sbinfo
->shrinklist_lock
);
3613 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3615 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3616 sb
->s_blocksize
= PAGE_SIZE
;
3617 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3618 sb
->s_magic
= TMPFS_MAGIC
;
3619 sb
->s_op
= &shmem_ops
;
3620 sb
->s_time_gran
= 1;
3621 #ifdef CONFIG_TMPFS_XATTR
3622 sb
->s_xattr
= shmem_xattr_handlers
;
3624 #ifdef CONFIG_TMPFS_POSIX_ACL
3625 sb
->s_flags
|= MS_POSIXACL
;
3628 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3631 inode
->i_uid
= sbinfo
->uid
;
3632 inode
->i_gid
= sbinfo
->gid
;
3633 sb
->s_root
= d_make_root(inode
);
3639 shmem_put_super(sb
);
3643 static struct kmem_cache
*shmem_inode_cachep
;
3645 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3647 struct shmem_inode_info
*info
;
3648 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3651 return &info
->vfs_inode
;
3654 static void shmem_destroy_callback(struct rcu_head
*head
)
3656 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3657 if (S_ISLNK(inode
->i_mode
))
3658 kfree(inode
->i_link
);
3659 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3662 static void shmem_destroy_inode(struct inode
*inode
)
3664 if (S_ISREG(inode
->i_mode
))
3665 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3666 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3669 static void shmem_init_inode(void *foo
)
3671 struct shmem_inode_info
*info
= foo
;
3672 inode_init_once(&info
->vfs_inode
);
3675 static int shmem_init_inodecache(void)
3677 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3678 sizeof(struct shmem_inode_info
),
3679 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3683 static void shmem_destroy_inodecache(void)
3685 kmem_cache_destroy(shmem_inode_cachep
);
3688 static const struct address_space_operations shmem_aops
= {
3689 .writepage
= shmem_writepage
,
3690 .set_page_dirty
= __set_page_dirty_no_writeback
,
3692 .write_begin
= shmem_write_begin
,
3693 .write_end
= shmem_write_end
,
3695 #ifdef CONFIG_MIGRATION
3696 .migratepage
= migrate_page
,
3698 .error_remove_page
= generic_error_remove_page
,
3701 static const struct file_operations shmem_file_operations
= {
3703 .get_unmapped_area
= shmem_get_unmapped_area
,
3705 .llseek
= shmem_file_llseek
,
3706 .read_iter
= shmem_file_read_iter
,
3707 .write_iter
= generic_file_write_iter
,
3708 .fsync
= noop_fsync
,
3709 .splice_read
= generic_file_splice_read
,
3710 .splice_write
= iter_file_splice_write
,
3711 .fallocate
= shmem_fallocate
,
3715 static const struct inode_operations shmem_inode_operations
= {
3716 .getattr
= shmem_getattr
,
3717 .setattr
= shmem_setattr
,
3718 #ifdef CONFIG_TMPFS_XATTR
3719 .listxattr
= shmem_listxattr
,
3720 .set_acl
= simple_set_acl
,
3724 static const struct inode_operations shmem_dir_inode_operations
= {
3726 .create
= shmem_create
,
3727 .lookup
= simple_lookup
,
3729 .unlink
= shmem_unlink
,
3730 .symlink
= shmem_symlink
,
3731 .mkdir
= shmem_mkdir
,
3732 .rmdir
= shmem_rmdir
,
3733 .mknod
= shmem_mknod
,
3734 .rename
= shmem_rename2
,
3735 .tmpfile
= shmem_tmpfile
,
3737 #ifdef CONFIG_TMPFS_XATTR
3738 .listxattr
= shmem_listxattr
,
3740 #ifdef CONFIG_TMPFS_POSIX_ACL
3741 .setattr
= shmem_setattr
,
3742 .set_acl
= simple_set_acl
,
3746 static const struct inode_operations shmem_special_inode_operations
= {
3747 #ifdef CONFIG_TMPFS_XATTR
3748 .listxattr
= shmem_listxattr
,
3750 #ifdef CONFIG_TMPFS_POSIX_ACL
3751 .setattr
= shmem_setattr
,
3752 .set_acl
= simple_set_acl
,
3756 static const struct super_operations shmem_ops
= {
3757 .alloc_inode
= shmem_alloc_inode
,
3758 .destroy_inode
= shmem_destroy_inode
,
3760 .statfs
= shmem_statfs
,
3761 .remount_fs
= shmem_remount_fs
,
3762 .show_options
= shmem_show_options
,
3764 .evict_inode
= shmem_evict_inode
,
3765 .drop_inode
= generic_delete_inode
,
3766 .put_super
= shmem_put_super
,
3767 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3768 .nr_cached_objects
= shmem_unused_huge_count
,
3769 .free_cached_objects
= shmem_unused_huge_scan
,
3773 static const struct vm_operations_struct shmem_vm_ops
= {
3774 .fault
= shmem_fault
,
3775 .map_pages
= filemap_map_pages
,
3777 .set_policy
= shmem_set_policy
,
3778 .get_policy
= shmem_get_policy
,
3782 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3783 int flags
, const char *dev_name
, void *data
)
3785 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3788 static struct file_system_type shmem_fs_type
= {
3789 .owner
= THIS_MODULE
,
3791 .mount
= shmem_mount
,
3792 .kill_sb
= kill_litter_super
,
3793 .fs_flags
= FS_USERNS_MOUNT
,
3796 int __init
shmem_init(void)
3800 /* If rootfs called this, don't re-init */
3801 if (shmem_inode_cachep
)
3804 error
= shmem_init_inodecache();
3808 error
= register_filesystem(&shmem_fs_type
);
3810 pr_err("Could not register tmpfs\n");
3814 shm_mnt
= kern_mount(&shmem_fs_type
);
3815 if (IS_ERR(shm_mnt
)) {
3816 error
= PTR_ERR(shm_mnt
);
3817 pr_err("Could not kern_mount tmpfs\n");
3821 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3822 if (has_transparent_hugepage() && shmem_huge
> SHMEM_HUGE_DENY
)
3823 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3825 shmem_huge
= 0; /* just in case it was patched */
3830 unregister_filesystem(&shmem_fs_type
);
3832 shmem_destroy_inodecache();
3834 shm_mnt
= ERR_PTR(error
);
3838 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3839 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3840 struct kobj_attribute
*attr
, char *buf
)
3844 SHMEM_HUGE_WITHIN_SIZE
,
3852 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3853 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3855 count
+= sprintf(buf
+ count
, fmt
,
3856 shmem_format_huge(values
[i
]));
3858 buf
[count
- 1] = '\n';
3862 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3863 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3868 if (count
+ 1 > sizeof(tmp
))
3870 memcpy(tmp
, buf
, count
);
3872 if (count
&& tmp
[count
- 1] == '\n')
3873 tmp
[count
- 1] = '\0';
3875 huge
= shmem_parse_huge(tmp
);
3876 if (huge
== -EINVAL
)
3878 if (!has_transparent_hugepage() &&
3879 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
3883 if (shmem_huge
> SHMEM_HUGE_DENY
)
3884 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3888 struct kobj_attribute shmem_enabled_attr
=
3889 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
3890 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3892 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3893 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
3895 struct inode
*inode
= file_inode(vma
->vm_file
);
3896 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
3900 if (shmem_huge
== SHMEM_HUGE_FORCE
)
3902 if (shmem_huge
== SHMEM_HUGE_DENY
)
3904 switch (sbinfo
->huge
) {
3905 case SHMEM_HUGE_NEVER
:
3907 case SHMEM_HUGE_ALWAYS
:
3909 case SHMEM_HUGE_WITHIN_SIZE
:
3910 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
3911 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
3912 if (i_size
>= HPAGE_PMD_SIZE
&&
3913 i_size
>> PAGE_SHIFT
>= off
)
3915 case SHMEM_HUGE_ADVISE
:
3916 /* TODO: implement fadvise() hints */
3917 return (vma
->vm_flags
& VM_HUGEPAGE
);
3923 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3925 #else /* !CONFIG_SHMEM */
3928 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3930 * This is intended for small system where the benefits of the full
3931 * shmem code (swap-backed and resource-limited) are outweighed by
3932 * their complexity. On systems without swap this code should be
3933 * effectively equivalent, but much lighter weight.
3936 static struct file_system_type shmem_fs_type
= {
3938 .mount
= ramfs_mount
,
3939 .kill_sb
= kill_litter_super
,
3940 .fs_flags
= FS_USERNS_MOUNT
,
3943 int __init
shmem_init(void)
3945 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3947 shm_mnt
= kern_mount(&shmem_fs_type
);
3948 BUG_ON(IS_ERR(shm_mnt
));
3953 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3958 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3963 void shmem_unlock_mapping(struct address_space
*mapping
)
3968 unsigned long shmem_get_unmapped_area(struct file
*file
,
3969 unsigned long addr
, unsigned long len
,
3970 unsigned long pgoff
, unsigned long flags
)
3972 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
3976 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3978 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3980 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3982 #define shmem_vm_ops generic_file_vm_ops
3983 #define shmem_file_operations ramfs_file_operations
3984 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3985 #define shmem_acct_size(flags, size) 0
3986 #define shmem_unacct_size(flags, size) do {} while (0)
3988 #endif /* CONFIG_SHMEM */
3992 static const struct dentry_operations anon_ops
= {
3993 .d_dname
= simple_dname
3996 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
3997 unsigned long flags
, unsigned int i_flags
)
4000 struct inode
*inode
;
4002 struct super_block
*sb
;
4005 if (IS_ERR(shm_mnt
))
4006 return ERR_CAST(shm_mnt
);
4008 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
4009 return ERR_PTR(-EINVAL
);
4011 if (shmem_acct_size(flags
, size
))
4012 return ERR_PTR(-ENOMEM
);
4014 res
= ERR_PTR(-ENOMEM
);
4016 this.len
= strlen(name
);
4017 this.hash
= 0; /* will go */
4018 sb
= shm_mnt
->mnt_sb
;
4019 path
.mnt
= mntget(shm_mnt
);
4020 path
.dentry
= d_alloc_pseudo(sb
, &this);
4023 d_set_d_op(path
.dentry
, &anon_ops
);
4025 res
= ERR_PTR(-ENOSPC
);
4026 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
4030 inode
->i_flags
|= i_flags
;
4031 d_instantiate(path
.dentry
, inode
);
4032 inode
->i_size
= size
;
4033 clear_nlink(inode
); /* It is unlinked */
4034 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
4038 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
4039 &shmem_file_operations
);
4046 shmem_unacct_size(flags
, size
);
4053 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4054 * kernel internal. There will be NO LSM permission checks against the
4055 * underlying inode. So users of this interface must do LSM checks at a
4056 * higher layer. The users are the big_key and shm implementations. LSM
4057 * checks are provided at the key or shm level rather than the inode.
4058 * @name: name for dentry (to be seen in /proc/<pid>/maps
4059 * @size: size to be set for the file
4060 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4062 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4064 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
4068 * shmem_file_setup - get an unlinked file living in tmpfs
4069 * @name: name for dentry (to be seen in /proc/<pid>/maps
4070 * @size: size to be set for the file
4071 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4073 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4075 return __shmem_file_setup(name
, size
, flags
, 0);
4077 EXPORT_SYMBOL_GPL(shmem_file_setup
);
4080 * shmem_zero_setup - setup a shared anonymous mapping
4081 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4083 int shmem_zero_setup(struct vm_area_struct
*vma
)
4086 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4089 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4090 * between XFS directory reading and selinux: since this file is only
4091 * accessible to the user through its mapping, use S_PRIVATE flag to
4092 * bypass file security, in the same way as shmem_kernel_file_setup().
4094 file
= __shmem_file_setup("dev/zero", size
, vma
->vm_flags
, S_PRIVATE
);
4096 return PTR_ERR(file
);
4100 vma
->vm_file
= file
;
4101 vma
->vm_ops
= &shmem_vm_ops
;
4103 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4104 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4105 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4106 khugepaged_enter(vma
, vma
->vm_flags
);
4113 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4114 * @mapping: the page's address_space
4115 * @index: the page index
4116 * @gfp: the page allocator flags to use if allocating
4118 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4119 * with any new page allocations done using the specified allocation flags.
4120 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4121 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4122 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4124 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4125 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4127 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4128 pgoff_t index
, gfp_t gfp
)
4131 struct inode
*inode
= mapping
->host
;
4135 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4136 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4139 page
= ERR_PTR(error
);
4145 * The tiny !SHMEM case uses ramfs without swap
4147 return read_cache_page_gfp(mapping
, index
, gfp
);
4150 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);