r8152: fix tx packets accounting
[linux/fpc-iii.git] / mm / swapfile.c
blobd76b2a18f044a07b8428e463528a91041790d37e
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
52 * Some modules use swappable objects and may try to swap them out under
53 * memory pressure (via the shrinker). Before doing so, they may wish to
54 * check to see if any swap space is available.
56 EXPORT_SYMBOL_GPL(nr_swap_pages);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages;
59 static int least_priority;
61 static const char Bad_file[] = "Bad swap file entry ";
62 static const char Unused_file[] = "Unused swap file entry ";
63 static const char Bad_offset[] = "Bad swap offset entry ";
64 static const char Unused_offset[] = "Unused swap offset entry ";
67 * all active swap_info_structs
68 * protected with swap_lock, and ordered by priority.
70 PLIST_HEAD(swap_active_head);
73 * all available (active, not full) swap_info_structs
74 * protected with swap_avail_lock, ordered by priority.
75 * This is used by get_swap_page() instead of swap_active_head
76 * because swap_active_head includes all swap_info_structs,
77 * but get_swap_page() doesn't need to look at full ones.
78 * This uses its own lock instead of swap_lock because when a
79 * swap_info_struct changes between not-full/full, it needs to
80 * add/remove itself to/from this list, but the swap_info_struct->lock
81 * is held and the locking order requires swap_lock to be taken
82 * before any swap_info_struct->lock.
84 static PLIST_HEAD(swap_avail_head);
85 static DEFINE_SPINLOCK(swap_avail_lock);
87 struct swap_info_struct *swap_info[MAX_SWAPFILES];
89 static DEFINE_MUTEX(swapon_mutex);
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event = ATOMIC_INIT(0);
95 static inline unsigned char swap_count(unsigned char ent)
97 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
100 /* returns 1 if swap entry is freed */
101 static int
102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
104 swp_entry_t entry = swp_entry(si->type, offset);
105 struct page *page;
106 int ret = 0;
108 page = find_get_page(swap_address_space(entry), swp_offset(entry));
109 if (!page)
110 return 0;
112 * This function is called from scan_swap_map() and it's called
113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 * We have to use trylock for avoiding deadlock. This is a special
115 * case and you should use try_to_free_swap() with explicit lock_page()
116 * in usual operations.
118 if (trylock_page(page)) {
119 ret = try_to_free_swap(page);
120 unlock_page(page);
122 put_page(page);
123 return ret;
127 * swapon tell device that all the old swap contents can be discarded,
128 * to allow the swap device to optimize its wear-levelling.
130 static int discard_swap(struct swap_info_struct *si)
132 struct swap_extent *se;
133 sector_t start_block;
134 sector_t nr_blocks;
135 int err = 0;
137 /* Do not discard the swap header page! */
138 se = &si->first_swap_extent;
139 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141 if (nr_blocks) {
142 err = blkdev_issue_discard(si->bdev, start_block,
143 nr_blocks, GFP_KERNEL, 0);
144 if (err)
145 return err;
146 cond_resched();
149 list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 start_block = se->start_block << (PAGE_SHIFT - 9);
151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
153 err = blkdev_issue_discard(si->bdev, start_block,
154 nr_blocks, GFP_KERNEL, 0);
155 if (err)
156 break;
158 cond_resched();
160 return err; /* That will often be -EOPNOTSUPP */
164 * swap allocation tell device that a cluster of swap can now be discarded,
165 * to allow the swap device to optimize its wear-levelling.
167 static void discard_swap_cluster(struct swap_info_struct *si,
168 pgoff_t start_page, pgoff_t nr_pages)
170 struct swap_extent *se = si->curr_swap_extent;
171 int found_extent = 0;
173 while (nr_pages) {
174 if (se->start_page <= start_page &&
175 start_page < se->start_page + se->nr_pages) {
176 pgoff_t offset = start_page - se->start_page;
177 sector_t start_block = se->start_block + offset;
178 sector_t nr_blocks = se->nr_pages - offset;
180 if (nr_blocks > nr_pages)
181 nr_blocks = nr_pages;
182 start_page += nr_blocks;
183 nr_pages -= nr_blocks;
185 if (!found_extent++)
186 si->curr_swap_extent = se;
188 start_block <<= PAGE_SHIFT - 9;
189 nr_blocks <<= PAGE_SHIFT - 9;
190 if (blkdev_issue_discard(si->bdev, start_block,
191 nr_blocks, GFP_NOIO, 0))
192 break;
195 se = list_next_entry(se, list);
199 #define SWAPFILE_CLUSTER 256
200 #define LATENCY_LIMIT 256
202 static inline void cluster_set_flag(struct swap_cluster_info *info,
203 unsigned int flag)
205 info->flags = flag;
208 static inline unsigned int cluster_count(struct swap_cluster_info *info)
210 return info->data;
213 static inline void cluster_set_count(struct swap_cluster_info *info,
214 unsigned int c)
216 info->data = c;
219 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220 unsigned int c, unsigned int f)
222 info->flags = f;
223 info->data = c;
226 static inline unsigned int cluster_next(struct swap_cluster_info *info)
228 return info->data;
231 static inline void cluster_set_next(struct swap_cluster_info *info,
232 unsigned int n)
234 info->data = n;
237 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238 unsigned int n, unsigned int f)
240 info->flags = f;
241 info->data = n;
244 static inline bool cluster_is_free(struct swap_cluster_info *info)
246 return info->flags & CLUSTER_FLAG_FREE;
249 static inline bool cluster_is_null(struct swap_cluster_info *info)
251 return info->flags & CLUSTER_FLAG_NEXT_NULL;
254 static inline void cluster_set_null(struct swap_cluster_info *info)
256 info->flags = CLUSTER_FLAG_NEXT_NULL;
257 info->data = 0;
260 static inline bool cluster_list_empty(struct swap_cluster_list *list)
262 return cluster_is_null(&list->head);
265 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
267 return cluster_next(&list->head);
270 static void cluster_list_init(struct swap_cluster_list *list)
272 cluster_set_null(&list->head);
273 cluster_set_null(&list->tail);
276 static void cluster_list_add_tail(struct swap_cluster_list *list,
277 struct swap_cluster_info *ci,
278 unsigned int idx)
280 if (cluster_list_empty(list)) {
281 cluster_set_next_flag(&list->head, idx, 0);
282 cluster_set_next_flag(&list->tail, idx, 0);
283 } else {
284 unsigned int tail = cluster_next(&list->tail);
286 cluster_set_next(&ci[tail], idx);
287 cluster_set_next_flag(&list->tail, idx, 0);
291 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
292 struct swap_cluster_info *ci)
294 unsigned int idx;
296 idx = cluster_next(&list->head);
297 if (cluster_next(&list->tail) == idx) {
298 cluster_set_null(&list->head);
299 cluster_set_null(&list->tail);
300 } else
301 cluster_set_next_flag(&list->head,
302 cluster_next(&ci[idx]), 0);
304 return idx;
307 /* Add a cluster to discard list and schedule it to do discard */
308 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
309 unsigned int idx)
312 * If scan_swap_map() can't find a free cluster, it will check
313 * si->swap_map directly. To make sure the discarding cluster isn't
314 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
315 * will be cleared after discard
317 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
318 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
320 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
322 schedule_work(&si->discard_work);
326 * Doing discard actually. After a cluster discard is finished, the cluster
327 * will be added to free cluster list. caller should hold si->lock.
329 static void swap_do_scheduled_discard(struct swap_info_struct *si)
331 struct swap_cluster_info *info;
332 unsigned int idx;
334 info = si->cluster_info;
336 while (!cluster_list_empty(&si->discard_clusters)) {
337 idx = cluster_list_del_first(&si->discard_clusters, info);
338 spin_unlock(&si->lock);
340 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
341 SWAPFILE_CLUSTER);
343 spin_lock(&si->lock);
344 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
345 cluster_list_add_tail(&si->free_clusters, info, idx);
346 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
347 0, SWAPFILE_CLUSTER);
351 static void swap_discard_work(struct work_struct *work)
353 struct swap_info_struct *si;
355 si = container_of(work, struct swap_info_struct, discard_work);
357 spin_lock(&si->lock);
358 swap_do_scheduled_discard(si);
359 spin_unlock(&si->lock);
363 * The cluster corresponding to page_nr will be used. The cluster will be
364 * removed from free cluster list and its usage counter will be increased.
366 static void inc_cluster_info_page(struct swap_info_struct *p,
367 struct swap_cluster_info *cluster_info, unsigned long page_nr)
369 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
371 if (!cluster_info)
372 return;
373 if (cluster_is_free(&cluster_info[idx])) {
374 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
375 cluster_list_del_first(&p->free_clusters, cluster_info);
376 cluster_set_count_flag(&cluster_info[idx], 0, 0);
379 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
380 cluster_set_count(&cluster_info[idx],
381 cluster_count(&cluster_info[idx]) + 1);
385 * The cluster corresponding to page_nr decreases one usage. If the usage
386 * counter becomes 0, which means no page in the cluster is in using, we can
387 * optionally discard the cluster and add it to free cluster list.
389 static void dec_cluster_info_page(struct swap_info_struct *p,
390 struct swap_cluster_info *cluster_info, unsigned long page_nr)
392 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
394 if (!cluster_info)
395 return;
397 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
398 cluster_set_count(&cluster_info[idx],
399 cluster_count(&cluster_info[idx]) - 1);
401 if (cluster_count(&cluster_info[idx]) == 0) {
403 * If the swap is discardable, prepare discard the cluster
404 * instead of free it immediately. The cluster will be freed
405 * after discard.
407 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
408 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
409 swap_cluster_schedule_discard(p, idx);
410 return;
413 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
414 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
419 * It's possible scan_swap_map() uses a free cluster in the middle of free
420 * cluster list. Avoiding such abuse to avoid list corruption.
422 static bool
423 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
424 unsigned long offset)
426 struct percpu_cluster *percpu_cluster;
427 bool conflict;
429 offset /= SWAPFILE_CLUSTER;
430 conflict = !cluster_list_empty(&si->free_clusters) &&
431 offset != cluster_list_first(&si->free_clusters) &&
432 cluster_is_free(&si->cluster_info[offset]);
434 if (!conflict)
435 return false;
437 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
438 cluster_set_null(&percpu_cluster->index);
439 return true;
443 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
444 * might involve allocating a new cluster for current CPU too.
446 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
447 unsigned long *offset, unsigned long *scan_base)
449 struct percpu_cluster *cluster;
450 bool found_free;
451 unsigned long tmp;
453 new_cluster:
454 cluster = this_cpu_ptr(si->percpu_cluster);
455 if (cluster_is_null(&cluster->index)) {
456 if (!cluster_list_empty(&si->free_clusters)) {
457 cluster->index = si->free_clusters.head;
458 cluster->next = cluster_next(&cluster->index) *
459 SWAPFILE_CLUSTER;
460 } else if (!cluster_list_empty(&si->discard_clusters)) {
462 * we don't have free cluster but have some clusters in
463 * discarding, do discard now and reclaim them
465 swap_do_scheduled_discard(si);
466 *scan_base = *offset = si->cluster_next;
467 goto new_cluster;
468 } else
469 return;
472 found_free = false;
475 * Other CPUs can use our cluster if they can't find a free cluster,
476 * check if there is still free entry in the cluster
478 tmp = cluster->next;
479 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
480 SWAPFILE_CLUSTER) {
481 if (!si->swap_map[tmp]) {
482 found_free = true;
483 break;
485 tmp++;
487 if (!found_free) {
488 cluster_set_null(&cluster->index);
489 goto new_cluster;
491 cluster->next = tmp + 1;
492 *offset = tmp;
493 *scan_base = tmp;
496 static unsigned long scan_swap_map(struct swap_info_struct *si,
497 unsigned char usage)
499 unsigned long offset;
500 unsigned long scan_base;
501 unsigned long last_in_cluster = 0;
502 int latency_ration = LATENCY_LIMIT;
505 * We try to cluster swap pages by allocating them sequentially
506 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
507 * way, however, we resort to first-free allocation, starting
508 * a new cluster. This prevents us from scattering swap pages
509 * all over the entire swap partition, so that we reduce
510 * overall disk seek times between swap pages. -- sct
511 * But we do now try to find an empty cluster. -Andrea
512 * And we let swap pages go all over an SSD partition. Hugh
515 si->flags += SWP_SCANNING;
516 scan_base = offset = si->cluster_next;
518 /* SSD algorithm */
519 if (si->cluster_info) {
520 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
521 goto checks;
524 if (unlikely(!si->cluster_nr--)) {
525 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
526 si->cluster_nr = SWAPFILE_CLUSTER - 1;
527 goto checks;
530 spin_unlock(&si->lock);
533 * If seek is expensive, start searching for new cluster from
534 * start of partition, to minimize the span of allocated swap.
535 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
536 * case, just handled by scan_swap_map_try_ssd_cluster() above.
538 scan_base = offset = si->lowest_bit;
539 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
541 /* Locate the first empty (unaligned) cluster */
542 for (; last_in_cluster <= si->highest_bit; offset++) {
543 if (si->swap_map[offset])
544 last_in_cluster = offset + SWAPFILE_CLUSTER;
545 else if (offset == last_in_cluster) {
546 spin_lock(&si->lock);
547 offset -= SWAPFILE_CLUSTER - 1;
548 si->cluster_next = offset;
549 si->cluster_nr = SWAPFILE_CLUSTER - 1;
550 goto checks;
552 if (unlikely(--latency_ration < 0)) {
553 cond_resched();
554 latency_ration = LATENCY_LIMIT;
558 offset = scan_base;
559 spin_lock(&si->lock);
560 si->cluster_nr = SWAPFILE_CLUSTER - 1;
563 checks:
564 if (si->cluster_info) {
565 while (scan_swap_map_ssd_cluster_conflict(si, offset))
566 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
568 if (!(si->flags & SWP_WRITEOK))
569 goto no_page;
570 if (!si->highest_bit)
571 goto no_page;
572 if (offset > si->highest_bit)
573 scan_base = offset = si->lowest_bit;
575 /* reuse swap entry of cache-only swap if not busy. */
576 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
577 int swap_was_freed;
578 spin_unlock(&si->lock);
579 swap_was_freed = __try_to_reclaim_swap(si, offset);
580 spin_lock(&si->lock);
581 /* entry was freed successfully, try to use this again */
582 if (swap_was_freed)
583 goto checks;
584 goto scan; /* check next one */
587 if (si->swap_map[offset])
588 goto scan;
590 if (offset == si->lowest_bit)
591 si->lowest_bit++;
592 if (offset == si->highest_bit)
593 si->highest_bit--;
594 si->inuse_pages++;
595 if (si->inuse_pages == si->pages) {
596 si->lowest_bit = si->max;
597 si->highest_bit = 0;
598 spin_lock(&swap_avail_lock);
599 plist_del(&si->avail_list, &swap_avail_head);
600 spin_unlock(&swap_avail_lock);
602 si->swap_map[offset] = usage;
603 inc_cluster_info_page(si, si->cluster_info, offset);
604 si->cluster_next = offset + 1;
605 si->flags -= SWP_SCANNING;
607 return offset;
609 scan:
610 spin_unlock(&si->lock);
611 while (++offset <= si->highest_bit) {
612 if (!si->swap_map[offset]) {
613 spin_lock(&si->lock);
614 goto checks;
616 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
617 spin_lock(&si->lock);
618 goto checks;
620 if (unlikely(--latency_ration < 0)) {
621 cond_resched();
622 latency_ration = LATENCY_LIMIT;
625 offset = si->lowest_bit;
626 while (offset < scan_base) {
627 if (!si->swap_map[offset]) {
628 spin_lock(&si->lock);
629 goto checks;
631 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
632 spin_lock(&si->lock);
633 goto checks;
635 if (unlikely(--latency_ration < 0)) {
636 cond_resched();
637 latency_ration = LATENCY_LIMIT;
639 offset++;
641 spin_lock(&si->lock);
643 no_page:
644 si->flags -= SWP_SCANNING;
645 return 0;
648 swp_entry_t get_swap_page(void)
650 struct swap_info_struct *si, *next;
651 pgoff_t offset;
653 if (atomic_long_read(&nr_swap_pages) <= 0)
654 goto noswap;
655 atomic_long_dec(&nr_swap_pages);
657 spin_lock(&swap_avail_lock);
659 start_over:
660 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
661 /* requeue si to after same-priority siblings */
662 plist_requeue(&si->avail_list, &swap_avail_head);
663 spin_unlock(&swap_avail_lock);
664 spin_lock(&si->lock);
665 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
666 spin_lock(&swap_avail_lock);
667 if (plist_node_empty(&si->avail_list)) {
668 spin_unlock(&si->lock);
669 goto nextsi;
671 WARN(!si->highest_bit,
672 "swap_info %d in list but !highest_bit\n",
673 si->type);
674 WARN(!(si->flags & SWP_WRITEOK),
675 "swap_info %d in list but !SWP_WRITEOK\n",
676 si->type);
677 plist_del(&si->avail_list, &swap_avail_head);
678 spin_unlock(&si->lock);
679 goto nextsi;
682 /* This is called for allocating swap entry for cache */
683 offset = scan_swap_map(si, SWAP_HAS_CACHE);
684 spin_unlock(&si->lock);
685 if (offset)
686 return swp_entry(si->type, offset);
687 pr_debug("scan_swap_map of si %d failed to find offset\n",
688 si->type);
689 spin_lock(&swap_avail_lock);
690 nextsi:
692 * if we got here, it's likely that si was almost full before,
693 * and since scan_swap_map() can drop the si->lock, multiple
694 * callers probably all tried to get a page from the same si
695 * and it filled up before we could get one; or, the si filled
696 * up between us dropping swap_avail_lock and taking si->lock.
697 * Since we dropped the swap_avail_lock, the swap_avail_head
698 * list may have been modified; so if next is still in the
699 * swap_avail_head list then try it, otherwise start over.
701 if (plist_node_empty(&next->avail_list))
702 goto start_over;
705 spin_unlock(&swap_avail_lock);
707 atomic_long_inc(&nr_swap_pages);
708 noswap:
709 return (swp_entry_t) {0};
712 /* The only caller of this function is now suspend routine */
713 swp_entry_t get_swap_page_of_type(int type)
715 struct swap_info_struct *si;
716 pgoff_t offset;
718 si = swap_info[type];
719 spin_lock(&si->lock);
720 if (si && (si->flags & SWP_WRITEOK)) {
721 atomic_long_dec(&nr_swap_pages);
722 /* This is called for allocating swap entry, not cache */
723 offset = scan_swap_map(si, 1);
724 if (offset) {
725 spin_unlock(&si->lock);
726 return swp_entry(type, offset);
728 atomic_long_inc(&nr_swap_pages);
730 spin_unlock(&si->lock);
731 return (swp_entry_t) {0};
734 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
736 struct swap_info_struct *p;
737 unsigned long offset, type;
739 if (!entry.val)
740 goto out;
741 type = swp_type(entry);
742 if (type >= nr_swapfiles)
743 goto bad_nofile;
744 p = swap_info[type];
745 if (!(p->flags & SWP_USED))
746 goto bad_device;
747 offset = swp_offset(entry);
748 if (offset >= p->max)
749 goto bad_offset;
750 if (!p->swap_map[offset])
751 goto bad_free;
752 spin_lock(&p->lock);
753 return p;
755 bad_free:
756 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
757 goto out;
758 bad_offset:
759 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
760 goto out;
761 bad_device:
762 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
763 goto out;
764 bad_nofile:
765 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
766 out:
767 return NULL;
770 static unsigned char swap_entry_free(struct swap_info_struct *p,
771 swp_entry_t entry, unsigned char usage)
773 unsigned long offset = swp_offset(entry);
774 unsigned char count;
775 unsigned char has_cache;
777 count = p->swap_map[offset];
778 has_cache = count & SWAP_HAS_CACHE;
779 count &= ~SWAP_HAS_CACHE;
781 if (usage == SWAP_HAS_CACHE) {
782 VM_BUG_ON(!has_cache);
783 has_cache = 0;
784 } else if (count == SWAP_MAP_SHMEM) {
786 * Or we could insist on shmem.c using a special
787 * swap_shmem_free() and free_shmem_swap_and_cache()...
789 count = 0;
790 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
791 if (count == COUNT_CONTINUED) {
792 if (swap_count_continued(p, offset, count))
793 count = SWAP_MAP_MAX | COUNT_CONTINUED;
794 else
795 count = SWAP_MAP_MAX;
796 } else
797 count--;
800 usage = count | has_cache;
801 p->swap_map[offset] = usage;
803 /* free if no reference */
804 if (!usage) {
805 mem_cgroup_uncharge_swap(entry);
806 dec_cluster_info_page(p, p->cluster_info, offset);
807 if (offset < p->lowest_bit)
808 p->lowest_bit = offset;
809 if (offset > p->highest_bit) {
810 bool was_full = !p->highest_bit;
811 p->highest_bit = offset;
812 if (was_full && (p->flags & SWP_WRITEOK)) {
813 spin_lock(&swap_avail_lock);
814 WARN_ON(!plist_node_empty(&p->avail_list));
815 if (plist_node_empty(&p->avail_list))
816 plist_add(&p->avail_list,
817 &swap_avail_head);
818 spin_unlock(&swap_avail_lock);
821 atomic_long_inc(&nr_swap_pages);
822 p->inuse_pages--;
823 frontswap_invalidate_page(p->type, offset);
824 if (p->flags & SWP_BLKDEV) {
825 struct gendisk *disk = p->bdev->bd_disk;
826 if (disk->fops->swap_slot_free_notify)
827 disk->fops->swap_slot_free_notify(p->bdev,
828 offset);
832 return usage;
836 * Caller has made sure that the swap device corresponding to entry
837 * is still around or has not been recycled.
839 void swap_free(swp_entry_t entry)
841 struct swap_info_struct *p;
843 p = swap_info_get(entry);
844 if (p) {
845 swap_entry_free(p, entry, 1);
846 spin_unlock(&p->lock);
851 * Called after dropping swapcache to decrease refcnt to swap entries.
853 void swapcache_free(swp_entry_t entry)
855 struct swap_info_struct *p;
857 p = swap_info_get(entry);
858 if (p) {
859 swap_entry_free(p, entry, SWAP_HAS_CACHE);
860 spin_unlock(&p->lock);
865 * How many references to page are currently swapped out?
866 * This does not give an exact answer when swap count is continued,
867 * but does include the high COUNT_CONTINUED flag to allow for that.
869 int page_swapcount(struct page *page)
871 int count = 0;
872 struct swap_info_struct *p;
873 swp_entry_t entry;
875 entry.val = page_private(page);
876 p = swap_info_get(entry);
877 if (p) {
878 count = swap_count(p->swap_map[swp_offset(entry)]);
879 spin_unlock(&p->lock);
881 return count;
885 * How many references to @entry are currently swapped out?
886 * This considers COUNT_CONTINUED so it returns exact answer.
888 int swp_swapcount(swp_entry_t entry)
890 int count, tmp_count, n;
891 struct swap_info_struct *p;
892 struct page *page;
893 pgoff_t offset;
894 unsigned char *map;
896 p = swap_info_get(entry);
897 if (!p)
898 return 0;
900 count = swap_count(p->swap_map[swp_offset(entry)]);
901 if (!(count & COUNT_CONTINUED))
902 goto out;
904 count &= ~COUNT_CONTINUED;
905 n = SWAP_MAP_MAX + 1;
907 offset = swp_offset(entry);
908 page = vmalloc_to_page(p->swap_map + offset);
909 offset &= ~PAGE_MASK;
910 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
912 do {
913 page = list_next_entry(page, lru);
914 map = kmap_atomic(page);
915 tmp_count = map[offset];
916 kunmap_atomic(map);
918 count += (tmp_count & ~COUNT_CONTINUED) * n;
919 n *= (SWAP_CONT_MAX + 1);
920 } while (tmp_count & COUNT_CONTINUED);
921 out:
922 spin_unlock(&p->lock);
923 return count;
927 * We can write to an anon page without COW if there are no other references
928 * to it. And as a side-effect, free up its swap: because the old content
929 * on disk will never be read, and seeking back there to write new content
930 * later would only waste time away from clustering.
932 * NOTE: total_mapcount should not be relied upon by the caller if
933 * reuse_swap_page() returns false, but it may be always overwritten
934 * (see the other implementation for CONFIG_SWAP=n).
936 bool reuse_swap_page(struct page *page, int *total_mapcount)
938 int count;
940 VM_BUG_ON_PAGE(!PageLocked(page), page);
941 if (unlikely(PageKsm(page)))
942 return false;
943 count = page_trans_huge_mapcount(page, total_mapcount);
944 if (count <= 1 && PageSwapCache(page)) {
945 count += page_swapcount(page);
946 if (count != 1)
947 goto out;
948 if (!PageWriteback(page)) {
949 delete_from_swap_cache(page);
950 SetPageDirty(page);
951 } else {
952 swp_entry_t entry;
953 struct swap_info_struct *p;
955 entry.val = page_private(page);
956 p = swap_info_get(entry);
957 if (p->flags & SWP_STABLE_WRITES) {
958 spin_unlock(&p->lock);
959 return false;
961 spin_unlock(&p->lock);
964 out:
965 return count <= 1;
969 * If swap is getting full, or if there are no more mappings of this page,
970 * then try_to_free_swap is called to free its swap space.
972 int try_to_free_swap(struct page *page)
974 VM_BUG_ON_PAGE(!PageLocked(page), page);
976 if (!PageSwapCache(page))
977 return 0;
978 if (PageWriteback(page))
979 return 0;
980 if (page_swapcount(page))
981 return 0;
984 * Once hibernation has begun to create its image of memory,
985 * there's a danger that one of the calls to try_to_free_swap()
986 * - most probably a call from __try_to_reclaim_swap() while
987 * hibernation is allocating its own swap pages for the image,
988 * but conceivably even a call from memory reclaim - will free
989 * the swap from a page which has already been recorded in the
990 * image as a clean swapcache page, and then reuse its swap for
991 * another page of the image. On waking from hibernation, the
992 * original page might be freed under memory pressure, then
993 * later read back in from swap, now with the wrong data.
995 * Hibernation suspends storage while it is writing the image
996 * to disk so check that here.
998 if (pm_suspended_storage())
999 return 0;
1001 delete_from_swap_cache(page);
1002 SetPageDirty(page);
1003 return 1;
1007 * Free the swap entry like above, but also try to
1008 * free the page cache entry if it is the last user.
1010 int free_swap_and_cache(swp_entry_t entry)
1012 struct swap_info_struct *p;
1013 struct page *page = NULL;
1015 if (non_swap_entry(entry))
1016 return 1;
1018 p = swap_info_get(entry);
1019 if (p) {
1020 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
1021 page = find_get_page(swap_address_space(entry),
1022 swp_offset(entry));
1023 if (page && !trylock_page(page)) {
1024 put_page(page);
1025 page = NULL;
1028 spin_unlock(&p->lock);
1030 if (page) {
1032 * Not mapped elsewhere, or swap space full? Free it!
1033 * Also recheck PageSwapCache now page is locked (above).
1035 if (PageSwapCache(page) && !PageWriteback(page) &&
1036 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1037 delete_from_swap_cache(page);
1038 SetPageDirty(page);
1040 unlock_page(page);
1041 put_page(page);
1043 return p != NULL;
1046 #ifdef CONFIG_HIBERNATION
1048 * Find the swap type that corresponds to given device (if any).
1050 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1051 * from 0, in which the swap header is expected to be located.
1053 * This is needed for the suspend to disk (aka swsusp).
1055 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1057 struct block_device *bdev = NULL;
1058 int type;
1060 if (device)
1061 bdev = bdget(device);
1063 spin_lock(&swap_lock);
1064 for (type = 0; type < nr_swapfiles; type++) {
1065 struct swap_info_struct *sis = swap_info[type];
1067 if (!(sis->flags & SWP_WRITEOK))
1068 continue;
1070 if (!bdev) {
1071 if (bdev_p)
1072 *bdev_p = bdgrab(sis->bdev);
1074 spin_unlock(&swap_lock);
1075 return type;
1077 if (bdev == sis->bdev) {
1078 struct swap_extent *se = &sis->first_swap_extent;
1080 if (se->start_block == offset) {
1081 if (bdev_p)
1082 *bdev_p = bdgrab(sis->bdev);
1084 spin_unlock(&swap_lock);
1085 bdput(bdev);
1086 return type;
1090 spin_unlock(&swap_lock);
1091 if (bdev)
1092 bdput(bdev);
1094 return -ENODEV;
1098 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1099 * corresponding to given index in swap_info (swap type).
1101 sector_t swapdev_block(int type, pgoff_t offset)
1103 struct block_device *bdev;
1105 if ((unsigned int)type >= nr_swapfiles)
1106 return 0;
1107 if (!(swap_info[type]->flags & SWP_WRITEOK))
1108 return 0;
1109 return map_swap_entry(swp_entry(type, offset), &bdev);
1113 * Return either the total number of swap pages of given type, or the number
1114 * of free pages of that type (depending on @free)
1116 * This is needed for software suspend
1118 unsigned int count_swap_pages(int type, int free)
1120 unsigned int n = 0;
1122 spin_lock(&swap_lock);
1123 if ((unsigned int)type < nr_swapfiles) {
1124 struct swap_info_struct *sis = swap_info[type];
1126 spin_lock(&sis->lock);
1127 if (sis->flags & SWP_WRITEOK) {
1128 n = sis->pages;
1129 if (free)
1130 n -= sis->inuse_pages;
1132 spin_unlock(&sis->lock);
1134 spin_unlock(&swap_lock);
1135 return n;
1137 #endif /* CONFIG_HIBERNATION */
1139 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1141 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1145 * No need to decide whether this PTE shares the swap entry with others,
1146 * just let do_wp_page work it out if a write is requested later - to
1147 * force COW, vm_page_prot omits write permission from any private vma.
1149 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1150 unsigned long addr, swp_entry_t entry, struct page *page)
1152 struct page *swapcache;
1153 struct mem_cgroup *memcg;
1154 spinlock_t *ptl;
1155 pte_t *pte;
1156 int ret = 1;
1158 swapcache = page;
1159 page = ksm_might_need_to_copy(page, vma, addr);
1160 if (unlikely(!page))
1161 return -ENOMEM;
1163 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1164 &memcg, false)) {
1165 ret = -ENOMEM;
1166 goto out_nolock;
1169 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1170 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1171 mem_cgroup_cancel_charge(page, memcg, false);
1172 ret = 0;
1173 goto out;
1176 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1177 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1178 get_page(page);
1179 set_pte_at(vma->vm_mm, addr, pte,
1180 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1181 if (page == swapcache) {
1182 page_add_anon_rmap(page, vma, addr, false);
1183 mem_cgroup_commit_charge(page, memcg, true, false);
1184 } else { /* ksm created a completely new copy */
1185 page_add_new_anon_rmap(page, vma, addr, false);
1186 mem_cgroup_commit_charge(page, memcg, false, false);
1187 lru_cache_add_active_or_unevictable(page, vma);
1189 swap_free(entry);
1191 * Move the page to the active list so it is not
1192 * immediately swapped out again after swapon.
1194 activate_page(page);
1195 out:
1196 pte_unmap_unlock(pte, ptl);
1197 out_nolock:
1198 if (page != swapcache) {
1199 unlock_page(page);
1200 put_page(page);
1202 return ret;
1205 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1206 unsigned long addr, unsigned long end,
1207 swp_entry_t entry, struct page *page)
1209 pte_t swp_pte = swp_entry_to_pte(entry);
1210 pte_t *pte;
1211 int ret = 0;
1214 * We don't actually need pte lock while scanning for swp_pte: since
1215 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1216 * page table while we're scanning; though it could get zapped, and on
1217 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1218 * of unmatched parts which look like swp_pte, so unuse_pte must
1219 * recheck under pte lock. Scanning without pte lock lets it be
1220 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1222 pte = pte_offset_map(pmd, addr);
1223 do {
1225 * swapoff spends a _lot_ of time in this loop!
1226 * Test inline before going to call unuse_pte.
1228 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1229 pte_unmap(pte);
1230 ret = unuse_pte(vma, pmd, addr, entry, page);
1231 if (ret)
1232 goto out;
1233 pte = pte_offset_map(pmd, addr);
1235 } while (pte++, addr += PAGE_SIZE, addr != end);
1236 pte_unmap(pte - 1);
1237 out:
1238 return ret;
1241 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1242 unsigned long addr, unsigned long end,
1243 swp_entry_t entry, struct page *page)
1245 pmd_t *pmd;
1246 unsigned long next;
1247 int ret;
1249 pmd = pmd_offset(pud, addr);
1250 do {
1251 next = pmd_addr_end(addr, end);
1252 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1253 continue;
1254 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1255 if (ret)
1256 return ret;
1257 } while (pmd++, addr = next, addr != end);
1258 return 0;
1261 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1262 unsigned long addr, unsigned long end,
1263 swp_entry_t entry, struct page *page)
1265 pud_t *pud;
1266 unsigned long next;
1267 int ret;
1269 pud = pud_offset(pgd, addr);
1270 do {
1271 next = pud_addr_end(addr, end);
1272 if (pud_none_or_clear_bad(pud))
1273 continue;
1274 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1275 if (ret)
1276 return ret;
1277 } while (pud++, addr = next, addr != end);
1278 return 0;
1281 static int unuse_vma(struct vm_area_struct *vma,
1282 swp_entry_t entry, struct page *page)
1284 pgd_t *pgd;
1285 unsigned long addr, end, next;
1286 int ret;
1288 if (page_anon_vma(page)) {
1289 addr = page_address_in_vma(page, vma);
1290 if (addr == -EFAULT)
1291 return 0;
1292 else
1293 end = addr + PAGE_SIZE;
1294 } else {
1295 addr = vma->vm_start;
1296 end = vma->vm_end;
1299 pgd = pgd_offset(vma->vm_mm, addr);
1300 do {
1301 next = pgd_addr_end(addr, end);
1302 if (pgd_none_or_clear_bad(pgd))
1303 continue;
1304 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1305 if (ret)
1306 return ret;
1307 } while (pgd++, addr = next, addr != end);
1308 return 0;
1311 static int unuse_mm(struct mm_struct *mm,
1312 swp_entry_t entry, struct page *page)
1314 struct vm_area_struct *vma;
1315 int ret = 0;
1317 if (!down_read_trylock(&mm->mmap_sem)) {
1319 * Activate page so shrink_inactive_list is unlikely to unmap
1320 * its ptes while lock is dropped, so swapoff can make progress.
1322 activate_page(page);
1323 unlock_page(page);
1324 down_read(&mm->mmap_sem);
1325 lock_page(page);
1327 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1328 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1329 break;
1331 up_read(&mm->mmap_sem);
1332 return (ret < 0)? ret: 0;
1336 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1337 * from current position to next entry still in use.
1338 * Recycle to start on reaching the end, returning 0 when empty.
1340 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1341 unsigned int prev, bool frontswap)
1343 unsigned int max = si->max;
1344 unsigned int i = prev;
1345 unsigned char count;
1348 * No need for swap_lock here: we're just looking
1349 * for whether an entry is in use, not modifying it; false
1350 * hits are okay, and sys_swapoff() has already prevented new
1351 * allocations from this area (while holding swap_lock).
1353 for (;;) {
1354 if (++i >= max) {
1355 if (!prev) {
1356 i = 0;
1357 break;
1360 * No entries in use at top of swap_map,
1361 * loop back to start and recheck there.
1363 max = prev + 1;
1364 prev = 0;
1365 i = 1;
1367 if (frontswap) {
1368 if (frontswap_test(si, i))
1369 break;
1370 else
1371 continue;
1373 count = READ_ONCE(si->swap_map[i]);
1374 if (count && swap_count(count) != SWAP_MAP_BAD)
1375 break;
1377 return i;
1381 * We completely avoid races by reading each swap page in advance,
1382 * and then search for the process using it. All the necessary
1383 * page table adjustments can then be made atomically.
1385 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1386 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1388 int try_to_unuse(unsigned int type, bool frontswap,
1389 unsigned long pages_to_unuse)
1391 struct swap_info_struct *si = swap_info[type];
1392 struct mm_struct *start_mm;
1393 volatile unsigned char *swap_map; /* swap_map is accessed without
1394 * locking. Mark it as volatile
1395 * to prevent compiler doing
1396 * something odd.
1398 unsigned char swcount;
1399 struct page *page;
1400 swp_entry_t entry;
1401 unsigned int i = 0;
1402 int retval = 0;
1405 * When searching mms for an entry, a good strategy is to
1406 * start at the first mm we freed the previous entry from
1407 * (though actually we don't notice whether we or coincidence
1408 * freed the entry). Initialize this start_mm with a hold.
1410 * A simpler strategy would be to start at the last mm we
1411 * freed the previous entry from; but that would take less
1412 * advantage of mmlist ordering, which clusters forked mms
1413 * together, child after parent. If we race with dup_mmap(), we
1414 * prefer to resolve parent before child, lest we miss entries
1415 * duplicated after we scanned child: using last mm would invert
1416 * that.
1418 start_mm = &init_mm;
1419 atomic_inc(&init_mm.mm_users);
1422 * Keep on scanning until all entries have gone. Usually,
1423 * one pass through swap_map is enough, but not necessarily:
1424 * there are races when an instance of an entry might be missed.
1426 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1427 if (signal_pending(current)) {
1428 retval = -EINTR;
1429 break;
1433 * Get a page for the entry, using the existing swap
1434 * cache page if there is one. Otherwise, get a clean
1435 * page and read the swap into it.
1437 swap_map = &si->swap_map[i];
1438 entry = swp_entry(type, i);
1439 page = read_swap_cache_async(entry,
1440 GFP_HIGHUSER_MOVABLE, NULL, 0);
1441 if (!page) {
1443 * Either swap_duplicate() failed because entry
1444 * has been freed independently, and will not be
1445 * reused since sys_swapoff() already disabled
1446 * allocation from here, or alloc_page() failed.
1448 swcount = *swap_map;
1450 * We don't hold lock here, so the swap entry could be
1451 * SWAP_MAP_BAD (when the cluster is discarding).
1452 * Instead of fail out, We can just skip the swap
1453 * entry because swapoff will wait for discarding
1454 * finish anyway.
1456 if (!swcount || swcount == SWAP_MAP_BAD)
1457 continue;
1458 retval = -ENOMEM;
1459 break;
1463 * Don't hold on to start_mm if it looks like exiting.
1465 if (atomic_read(&start_mm->mm_users) == 1) {
1466 mmput(start_mm);
1467 start_mm = &init_mm;
1468 atomic_inc(&init_mm.mm_users);
1472 * Wait for and lock page. When do_swap_page races with
1473 * try_to_unuse, do_swap_page can handle the fault much
1474 * faster than try_to_unuse can locate the entry. This
1475 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1476 * defer to do_swap_page in such a case - in some tests,
1477 * do_swap_page and try_to_unuse repeatedly compete.
1479 wait_on_page_locked(page);
1480 wait_on_page_writeback(page);
1481 lock_page(page);
1482 wait_on_page_writeback(page);
1485 * Remove all references to entry.
1487 swcount = *swap_map;
1488 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1489 retval = shmem_unuse(entry, page);
1490 /* page has already been unlocked and released */
1491 if (retval < 0)
1492 break;
1493 continue;
1495 if (swap_count(swcount) && start_mm != &init_mm)
1496 retval = unuse_mm(start_mm, entry, page);
1498 if (swap_count(*swap_map)) {
1499 int set_start_mm = (*swap_map >= swcount);
1500 struct list_head *p = &start_mm->mmlist;
1501 struct mm_struct *new_start_mm = start_mm;
1502 struct mm_struct *prev_mm = start_mm;
1503 struct mm_struct *mm;
1505 atomic_inc(&new_start_mm->mm_users);
1506 atomic_inc(&prev_mm->mm_users);
1507 spin_lock(&mmlist_lock);
1508 while (swap_count(*swap_map) && !retval &&
1509 (p = p->next) != &start_mm->mmlist) {
1510 mm = list_entry(p, struct mm_struct, mmlist);
1511 if (!atomic_inc_not_zero(&mm->mm_users))
1512 continue;
1513 spin_unlock(&mmlist_lock);
1514 mmput(prev_mm);
1515 prev_mm = mm;
1517 cond_resched();
1519 swcount = *swap_map;
1520 if (!swap_count(swcount)) /* any usage ? */
1522 else if (mm == &init_mm)
1523 set_start_mm = 1;
1524 else
1525 retval = unuse_mm(mm, entry, page);
1527 if (set_start_mm && *swap_map < swcount) {
1528 mmput(new_start_mm);
1529 atomic_inc(&mm->mm_users);
1530 new_start_mm = mm;
1531 set_start_mm = 0;
1533 spin_lock(&mmlist_lock);
1535 spin_unlock(&mmlist_lock);
1536 mmput(prev_mm);
1537 mmput(start_mm);
1538 start_mm = new_start_mm;
1540 if (retval) {
1541 unlock_page(page);
1542 put_page(page);
1543 break;
1547 * If a reference remains (rare), we would like to leave
1548 * the page in the swap cache; but try_to_unmap could
1549 * then re-duplicate the entry once we drop page lock,
1550 * so we might loop indefinitely; also, that page could
1551 * not be swapped out to other storage meanwhile. So:
1552 * delete from cache even if there's another reference,
1553 * after ensuring that the data has been saved to disk -
1554 * since if the reference remains (rarer), it will be
1555 * read from disk into another page. Splitting into two
1556 * pages would be incorrect if swap supported "shared
1557 * private" pages, but they are handled by tmpfs files.
1559 * Given how unuse_vma() targets one particular offset
1560 * in an anon_vma, once the anon_vma has been determined,
1561 * this splitting happens to be just what is needed to
1562 * handle where KSM pages have been swapped out: re-reading
1563 * is unnecessarily slow, but we can fix that later on.
1565 if (swap_count(*swap_map) &&
1566 PageDirty(page) && PageSwapCache(page)) {
1567 struct writeback_control wbc = {
1568 .sync_mode = WB_SYNC_NONE,
1571 swap_writepage(page, &wbc);
1572 lock_page(page);
1573 wait_on_page_writeback(page);
1577 * It is conceivable that a racing task removed this page from
1578 * swap cache just before we acquired the page lock at the top,
1579 * or while we dropped it in unuse_mm(). The page might even
1580 * be back in swap cache on another swap area: that we must not
1581 * delete, since it may not have been written out to swap yet.
1583 if (PageSwapCache(page) &&
1584 likely(page_private(page) == entry.val))
1585 delete_from_swap_cache(page);
1588 * So we could skip searching mms once swap count went
1589 * to 1, we did not mark any present ptes as dirty: must
1590 * mark page dirty so shrink_page_list will preserve it.
1592 SetPageDirty(page);
1593 unlock_page(page);
1594 put_page(page);
1597 * Make sure that we aren't completely killing
1598 * interactive performance.
1600 cond_resched();
1601 if (frontswap && pages_to_unuse > 0) {
1602 if (!--pages_to_unuse)
1603 break;
1607 mmput(start_mm);
1608 return retval;
1612 * After a successful try_to_unuse, if no swap is now in use, we know
1613 * we can empty the mmlist. swap_lock must be held on entry and exit.
1614 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1615 * added to the mmlist just after page_duplicate - before would be racy.
1617 static void drain_mmlist(void)
1619 struct list_head *p, *next;
1620 unsigned int type;
1622 for (type = 0; type < nr_swapfiles; type++)
1623 if (swap_info[type]->inuse_pages)
1624 return;
1625 spin_lock(&mmlist_lock);
1626 list_for_each_safe(p, next, &init_mm.mmlist)
1627 list_del_init(p);
1628 spin_unlock(&mmlist_lock);
1632 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1633 * corresponds to page offset for the specified swap entry.
1634 * Note that the type of this function is sector_t, but it returns page offset
1635 * into the bdev, not sector offset.
1637 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1639 struct swap_info_struct *sis;
1640 struct swap_extent *start_se;
1641 struct swap_extent *se;
1642 pgoff_t offset;
1644 sis = swap_info[swp_type(entry)];
1645 *bdev = sis->bdev;
1647 offset = swp_offset(entry);
1648 start_se = sis->curr_swap_extent;
1649 se = start_se;
1651 for ( ; ; ) {
1652 if (se->start_page <= offset &&
1653 offset < (se->start_page + se->nr_pages)) {
1654 return se->start_block + (offset - se->start_page);
1656 se = list_next_entry(se, list);
1657 sis->curr_swap_extent = se;
1658 BUG_ON(se == start_se); /* It *must* be present */
1663 * Returns the page offset into bdev for the specified page's swap entry.
1665 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1667 swp_entry_t entry;
1668 entry.val = page_private(page);
1669 return map_swap_entry(entry, bdev);
1673 * Free all of a swapdev's extent information
1675 static void destroy_swap_extents(struct swap_info_struct *sis)
1677 while (!list_empty(&sis->first_swap_extent.list)) {
1678 struct swap_extent *se;
1680 se = list_first_entry(&sis->first_swap_extent.list,
1681 struct swap_extent, list);
1682 list_del(&se->list);
1683 kfree(se);
1686 if (sis->flags & SWP_FILE) {
1687 struct file *swap_file = sis->swap_file;
1688 struct address_space *mapping = swap_file->f_mapping;
1690 sis->flags &= ~SWP_FILE;
1691 mapping->a_ops->swap_deactivate(swap_file);
1696 * Add a block range (and the corresponding page range) into this swapdev's
1697 * extent list. The extent list is kept sorted in page order.
1699 * This function rather assumes that it is called in ascending page order.
1702 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1703 unsigned long nr_pages, sector_t start_block)
1705 struct swap_extent *se;
1706 struct swap_extent *new_se;
1707 struct list_head *lh;
1709 if (start_page == 0) {
1710 se = &sis->first_swap_extent;
1711 sis->curr_swap_extent = se;
1712 se->start_page = 0;
1713 se->nr_pages = nr_pages;
1714 se->start_block = start_block;
1715 return 1;
1716 } else {
1717 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1718 se = list_entry(lh, struct swap_extent, list);
1719 BUG_ON(se->start_page + se->nr_pages != start_page);
1720 if (se->start_block + se->nr_pages == start_block) {
1721 /* Merge it */
1722 se->nr_pages += nr_pages;
1723 return 0;
1728 * No merge. Insert a new extent, preserving ordering.
1730 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1731 if (new_se == NULL)
1732 return -ENOMEM;
1733 new_se->start_page = start_page;
1734 new_se->nr_pages = nr_pages;
1735 new_se->start_block = start_block;
1737 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1738 return 1;
1742 * A `swap extent' is a simple thing which maps a contiguous range of pages
1743 * onto a contiguous range of disk blocks. An ordered list of swap extents
1744 * is built at swapon time and is then used at swap_writepage/swap_readpage
1745 * time for locating where on disk a page belongs.
1747 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1748 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1749 * swap files identically.
1751 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1752 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1753 * swapfiles are handled *identically* after swapon time.
1755 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1756 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1757 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1758 * requirements, they are simply tossed out - we will never use those blocks
1759 * for swapping.
1761 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1762 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1763 * which will scribble on the fs.
1765 * The amount of disk space which a single swap extent represents varies.
1766 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1767 * extents in the list. To avoid much list walking, we cache the previous
1768 * search location in `curr_swap_extent', and start new searches from there.
1769 * This is extremely effective. The average number of iterations in
1770 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1772 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1774 struct file *swap_file = sis->swap_file;
1775 struct address_space *mapping = swap_file->f_mapping;
1776 struct inode *inode = mapping->host;
1777 int ret;
1779 if (S_ISBLK(inode->i_mode)) {
1780 ret = add_swap_extent(sis, 0, sis->max, 0);
1781 *span = sis->pages;
1782 return ret;
1785 if (mapping->a_ops->swap_activate) {
1786 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1787 if (!ret) {
1788 sis->flags |= SWP_FILE;
1789 ret = add_swap_extent(sis, 0, sis->max, 0);
1790 *span = sis->pages;
1792 return ret;
1795 return generic_swapfile_activate(sis, swap_file, span);
1798 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1799 unsigned char *swap_map,
1800 struct swap_cluster_info *cluster_info)
1802 if (prio >= 0)
1803 p->prio = prio;
1804 else
1805 p->prio = --least_priority;
1807 * the plist prio is negated because plist ordering is
1808 * low-to-high, while swap ordering is high-to-low
1810 p->list.prio = -p->prio;
1811 p->avail_list.prio = -p->prio;
1812 p->swap_map = swap_map;
1813 p->cluster_info = cluster_info;
1814 p->flags |= SWP_WRITEOK;
1815 atomic_long_add(p->pages, &nr_swap_pages);
1816 total_swap_pages += p->pages;
1818 assert_spin_locked(&swap_lock);
1820 * both lists are plists, and thus priority ordered.
1821 * swap_active_head needs to be priority ordered for swapoff(),
1822 * which on removal of any swap_info_struct with an auto-assigned
1823 * (i.e. negative) priority increments the auto-assigned priority
1824 * of any lower-priority swap_info_structs.
1825 * swap_avail_head needs to be priority ordered for get_swap_page(),
1826 * which allocates swap pages from the highest available priority
1827 * swap_info_struct.
1829 plist_add(&p->list, &swap_active_head);
1830 spin_lock(&swap_avail_lock);
1831 plist_add(&p->avail_list, &swap_avail_head);
1832 spin_unlock(&swap_avail_lock);
1835 static void enable_swap_info(struct swap_info_struct *p, int prio,
1836 unsigned char *swap_map,
1837 struct swap_cluster_info *cluster_info,
1838 unsigned long *frontswap_map)
1840 frontswap_init(p->type, frontswap_map);
1841 spin_lock(&swap_lock);
1842 spin_lock(&p->lock);
1843 _enable_swap_info(p, prio, swap_map, cluster_info);
1844 spin_unlock(&p->lock);
1845 spin_unlock(&swap_lock);
1848 static void reinsert_swap_info(struct swap_info_struct *p)
1850 spin_lock(&swap_lock);
1851 spin_lock(&p->lock);
1852 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1853 spin_unlock(&p->lock);
1854 spin_unlock(&swap_lock);
1857 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1859 struct swap_info_struct *p = NULL;
1860 unsigned char *swap_map;
1861 struct swap_cluster_info *cluster_info;
1862 unsigned long *frontswap_map;
1863 struct file *swap_file, *victim;
1864 struct address_space *mapping;
1865 struct inode *inode;
1866 struct filename *pathname;
1867 int err, found = 0;
1868 unsigned int old_block_size;
1870 if (!capable(CAP_SYS_ADMIN))
1871 return -EPERM;
1873 BUG_ON(!current->mm);
1875 pathname = getname(specialfile);
1876 if (IS_ERR(pathname))
1877 return PTR_ERR(pathname);
1879 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1880 err = PTR_ERR(victim);
1881 if (IS_ERR(victim))
1882 goto out;
1884 mapping = victim->f_mapping;
1885 spin_lock(&swap_lock);
1886 plist_for_each_entry(p, &swap_active_head, list) {
1887 if (p->flags & SWP_WRITEOK) {
1888 if (p->swap_file->f_mapping == mapping) {
1889 found = 1;
1890 break;
1894 if (!found) {
1895 err = -EINVAL;
1896 spin_unlock(&swap_lock);
1897 goto out_dput;
1899 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1900 vm_unacct_memory(p->pages);
1901 else {
1902 err = -ENOMEM;
1903 spin_unlock(&swap_lock);
1904 goto out_dput;
1906 spin_lock(&swap_avail_lock);
1907 plist_del(&p->avail_list, &swap_avail_head);
1908 spin_unlock(&swap_avail_lock);
1909 spin_lock(&p->lock);
1910 if (p->prio < 0) {
1911 struct swap_info_struct *si = p;
1913 plist_for_each_entry_continue(si, &swap_active_head, list) {
1914 si->prio++;
1915 si->list.prio--;
1916 si->avail_list.prio--;
1918 least_priority++;
1920 plist_del(&p->list, &swap_active_head);
1921 atomic_long_sub(p->pages, &nr_swap_pages);
1922 total_swap_pages -= p->pages;
1923 p->flags &= ~SWP_WRITEOK;
1924 spin_unlock(&p->lock);
1925 spin_unlock(&swap_lock);
1927 set_current_oom_origin();
1928 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1929 clear_current_oom_origin();
1931 if (err) {
1932 /* re-insert swap space back into swap_list */
1933 reinsert_swap_info(p);
1934 goto out_dput;
1937 flush_work(&p->discard_work);
1939 destroy_swap_extents(p);
1940 if (p->flags & SWP_CONTINUED)
1941 free_swap_count_continuations(p);
1943 mutex_lock(&swapon_mutex);
1944 spin_lock(&swap_lock);
1945 spin_lock(&p->lock);
1946 drain_mmlist();
1948 /* wait for anyone still in scan_swap_map */
1949 p->highest_bit = 0; /* cuts scans short */
1950 while (p->flags >= SWP_SCANNING) {
1951 spin_unlock(&p->lock);
1952 spin_unlock(&swap_lock);
1953 schedule_timeout_uninterruptible(1);
1954 spin_lock(&swap_lock);
1955 spin_lock(&p->lock);
1958 swap_file = p->swap_file;
1959 old_block_size = p->old_block_size;
1960 p->swap_file = NULL;
1961 p->max = 0;
1962 swap_map = p->swap_map;
1963 p->swap_map = NULL;
1964 cluster_info = p->cluster_info;
1965 p->cluster_info = NULL;
1966 frontswap_map = frontswap_map_get(p);
1967 spin_unlock(&p->lock);
1968 spin_unlock(&swap_lock);
1969 frontswap_invalidate_area(p->type);
1970 frontswap_map_set(p, NULL);
1971 mutex_unlock(&swapon_mutex);
1972 free_percpu(p->percpu_cluster);
1973 p->percpu_cluster = NULL;
1974 vfree(swap_map);
1975 vfree(cluster_info);
1976 vfree(frontswap_map);
1977 /* Destroy swap account information */
1978 swap_cgroup_swapoff(p->type);
1980 inode = mapping->host;
1981 if (S_ISBLK(inode->i_mode)) {
1982 struct block_device *bdev = I_BDEV(inode);
1983 set_blocksize(bdev, old_block_size);
1984 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1985 } else {
1986 inode_lock(inode);
1987 inode->i_flags &= ~S_SWAPFILE;
1988 inode_unlock(inode);
1990 filp_close(swap_file, NULL);
1993 * Clear the SWP_USED flag after all resources are freed so that swapon
1994 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1995 * not hold p->lock after we cleared its SWP_WRITEOK.
1997 spin_lock(&swap_lock);
1998 p->flags = 0;
1999 spin_unlock(&swap_lock);
2001 err = 0;
2002 atomic_inc(&proc_poll_event);
2003 wake_up_interruptible(&proc_poll_wait);
2005 out_dput:
2006 filp_close(victim, NULL);
2007 out:
2008 putname(pathname);
2009 return err;
2012 #ifdef CONFIG_PROC_FS
2013 static unsigned swaps_poll(struct file *file, poll_table *wait)
2015 struct seq_file *seq = file->private_data;
2017 poll_wait(file, &proc_poll_wait, wait);
2019 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2020 seq->poll_event = atomic_read(&proc_poll_event);
2021 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2024 return POLLIN | POLLRDNORM;
2027 /* iterator */
2028 static void *swap_start(struct seq_file *swap, loff_t *pos)
2030 struct swap_info_struct *si;
2031 int type;
2032 loff_t l = *pos;
2034 mutex_lock(&swapon_mutex);
2036 if (!l)
2037 return SEQ_START_TOKEN;
2039 for (type = 0; type < nr_swapfiles; type++) {
2040 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2041 si = swap_info[type];
2042 if (!(si->flags & SWP_USED) || !si->swap_map)
2043 continue;
2044 if (!--l)
2045 return si;
2048 return NULL;
2051 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2053 struct swap_info_struct *si = v;
2054 int type;
2056 if (v == SEQ_START_TOKEN)
2057 type = 0;
2058 else
2059 type = si->type + 1;
2061 for (; type < nr_swapfiles; type++) {
2062 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2063 si = swap_info[type];
2064 if (!(si->flags & SWP_USED) || !si->swap_map)
2065 continue;
2066 ++*pos;
2067 return si;
2070 return NULL;
2073 static void swap_stop(struct seq_file *swap, void *v)
2075 mutex_unlock(&swapon_mutex);
2078 static int swap_show(struct seq_file *swap, void *v)
2080 struct swap_info_struct *si = v;
2081 struct file *file;
2082 int len;
2084 if (si == SEQ_START_TOKEN) {
2085 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2086 return 0;
2089 file = si->swap_file;
2090 len = seq_file_path(swap, file, " \t\n\\");
2091 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2092 len < 40 ? 40 - len : 1, " ",
2093 S_ISBLK(file_inode(file)->i_mode) ?
2094 "partition" : "file\t",
2095 si->pages << (PAGE_SHIFT - 10),
2096 si->inuse_pages << (PAGE_SHIFT - 10),
2097 si->prio);
2098 return 0;
2101 static const struct seq_operations swaps_op = {
2102 .start = swap_start,
2103 .next = swap_next,
2104 .stop = swap_stop,
2105 .show = swap_show
2108 static int swaps_open(struct inode *inode, struct file *file)
2110 struct seq_file *seq;
2111 int ret;
2113 ret = seq_open(file, &swaps_op);
2114 if (ret)
2115 return ret;
2117 seq = file->private_data;
2118 seq->poll_event = atomic_read(&proc_poll_event);
2119 return 0;
2122 static const struct file_operations proc_swaps_operations = {
2123 .open = swaps_open,
2124 .read = seq_read,
2125 .llseek = seq_lseek,
2126 .release = seq_release,
2127 .poll = swaps_poll,
2130 static int __init procswaps_init(void)
2132 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2133 return 0;
2135 __initcall(procswaps_init);
2136 #endif /* CONFIG_PROC_FS */
2138 #ifdef MAX_SWAPFILES_CHECK
2139 static int __init max_swapfiles_check(void)
2141 MAX_SWAPFILES_CHECK();
2142 return 0;
2144 late_initcall(max_swapfiles_check);
2145 #endif
2147 static struct swap_info_struct *alloc_swap_info(void)
2149 struct swap_info_struct *p;
2150 unsigned int type;
2152 p = kzalloc(sizeof(*p), GFP_KERNEL);
2153 if (!p)
2154 return ERR_PTR(-ENOMEM);
2156 spin_lock(&swap_lock);
2157 for (type = 0; type < nr_swapfiles; type++) {
2158 if (!(swap_info[type]->flags & SWP_USED))
2159 break;
2161 if (type >= MAX_SWAPFILES) {
2162 spin_unlock(&swap_lock);
2163 kfree(p);
2164 return ERR_PTR(-EPERM);
2166 if (type >= nr_swapfiles) {
2167 p->type = type;
2168 swap_info[type] = p;
2170 * Write swap_info[type] before nr_swapfiles, in case a
2171 * racing procfs swap_start() or swap_next() is reading them.
2172 * (We never shrink nr_swapfiles, we never free this entry.)
2174 smp_wmb();
2175 nr_swapfiles++;
2176 } else {
2177 kfree(p);
2178 p = swap_info[type];
2180 * Do not memset this entry: a racing procfs swap_next()
2181 * would be relying on p->type to remain valid.
2184 INIT_LIST_HEAD(&p->first_swap_extent.list);
2185 plist_node_init(&p->list, 0);
2186 plist_node_init(&p->avail_list, 0);
2187 p->flags = SWP_USED;
2188 spin_unlock(&swap_lock);
2189 spin_lock_init(&p->lock);
2191 return p;
2194 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2196 int error;
2198 if (S_ISBLK(inode->i_mode)) {
2199 p->bdev = bdgrab(I_BDEV(inode));
2200 error = blkdev_get(p->bdev,
2201 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2202 if (error < 0) {
2203 p->bdev = NULL;
2204 return error;
2206 p->old_block_size = block_size(p->bdev);
2207 error = set_blocksize(p->bdev, PAGE_SIZE);
2208 if (error < 0)
2209 return error;
2210 p->flags |= SWP_BLKDEV;
2211 } else if (S_ISREG(inode->i_mode)) {
2212 p->bdev = inode->i_sb->s_bdev;
2213 inode_lock(inode);
2214 if (IS_SWAPFILE(inode))
2215 return -EBUSY;
2216 } else
2217 return -EINVAL;
2219 return 0;
2222 static unsigned long read_swap_header(struct swap_info_struct *p,
2223 union swap_header *swap_header,
2224 struct inode *inode)
2226 int i;
2227 unsigned long maxpages;
2228 unsigned long swapfilepages;
2229 unsigned long last_page;
2231 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2232 pr_err("Unable to find swap-space signature\n");
2233 return 0;
2236 /* swap partition endianess hack... */
2237 if (swab32(swap_header->info.version) == 1) {
2238 swab32s(&swap_header->info.version);
2239 swab32s(&swap_header->info.last_page);
2240 swab32s(&swap_header->info.nr_badpages);
2241 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2242 return 0;
2243 for (i = 0; i < swap_header->info.nr_badpages; i++)
2244 swab32s(&swap_header->info.badpages[i]);
2246 /* Check the swap header's sub-version */
2247 if (swap_header->info.version != 1) {
2248 pr_warn("Unable to handle swap header version %d\n",
2249 swap_header->info.version);
2250 return 0;
2253 p->lowest_bit = 1;
2254 p->cluster_next = 1;
2255 p->cluster_nr = 0;
2258 * Find out how many pages are allowed for a single swap
2259 * device. There are two limiting factors: 1) the number
2260 * of bits for the swap offset in the swp_entry_t type, and
2261 * 2) the number of bits in the swap pte as defined by the
2262 * different architectures. In order to find the
2263 * largest possible bit mask, a swap entry with swap type 0
2264 * and swap offset ~0UL is created, encoded to a swap pte,
2265 * decoded to a swp_entry_t again, and finally the swap
2266 * offset is extracted. This will mask all the bits from
2267 * the initial ~0UL mask that can't be encoded in either
2268 * the swp_entry_t or the architecture definition of a
2269 * swap pte.
2271 maxpages = swp_offset(pte_to_swp_entry(
2272 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2273 last_page = swap_header->info.last_page;
2274 if (last_page > maxpages) {
2275 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2276 maxpages << (PAGE_SHIFT - 10),
2277 last_page << (PAGE_SHIFT - 10));
2279 if (maxpages > last_page) {
2280 maxpages = last_page + 1;
2281 /* p->max is an unsigned int: don't overflow it */
2282 if ((unsigned int)maxpages == 0)
2283 maxpages = UINT_MAX;
2285 p->highest_bit = maxpages - 1;
2287 if (!maxpages)
2288 return 0;
2289 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2290 if (swapfilepages && maxpages > swapfilepages) {
2291 pr_warn("Swap area shorter than signature indicates\n");
2292 return 0;
2294 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2295 return 0;
2296 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2297 return 0;
2299 return maxpages;
2302 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2303 union swap_header *swap_header,
2304 unsigned char *swap_map,
2305 struct swap_cluster_info *cluster_info,
2306 unsigned long maxpages,
2307 sector_t *span)
2309 int i;
2310 unsigned int nr_good_pages;
2311 int nr_extents;
2312 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2313 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2315 nr_good_pages = maxpages - 1; /* omit header page */
2317 cluster_list_init(&p->free_clusters);
2318 cluster_list_init(&p->discard_clusters);
2320 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2321 unsigned int page_nr = swap_header->info.badpages[i];
2322 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2323 return -EINVAL;
2324 if (page_nr < maxpages) {
2325 swap_map[page_nr] = SWAP_MAP_BAD;
2326 nr_good_pages--;
2328 * Haven't marked the cluster free yet, no list
2329 * operation involved
2331 inc_cluster_info_page(p, cluster_info, page_nr);
2335 /* Haven't marked the cluster free yet, no list operation involved */
2336 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2337 inc_cluster_info_page(p, cluster_info, i);
2339 if (nr_good_pages) {
2340 swap_map[0] = SWAP_MAP_BAD;
2342 * Not mark the cluster free yet, no list
2343 * operation involved
2345 inc_cluster_info_page(p, cluster_info, 0);
2346 p->max = maxpages;
2347 p->pages = nr_good_pages;
2348 nr_extents = setup_swap_extents(p, span);
2349 if (nr_extents < 0)
2350 return nr_extents;
2351 nr_good_pages = p->pages;
2353 if (!nr_good_pages) {
2354 pr_warn("Empty swap-file\n");
2355 return -EINVAL;
2358 if (!cluster_info)
2359 return nr_extents;
2361 for (i = 0; i < nr_clusters; i++) {
2362 if (!cluster_count(&cluster_info[idx])) {
2363 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2364 cluster_list_add_tail(&p->free_clusters, cluster_info,
2365 idx);
2367 idx++;
2368 if (idx == nr_clusters)
2369 idx = 0;
2371 return nr_extents;
2375 * Helper to sys_swapon determining if a given swap
2376 * backing device queue supports DISCARD operations.
2378 static bool swap_discardable(struct swap_info_struct *si)
2380 struct request_queue *q = bdev_get_queue(si->bdev);
2382 if (!q || !blk_queue_discard(q))
2383 return false;
2385 return true;
2388 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2390 struct swap_info_struct *p;
2391 struct filename *name;
2392 struct file *swap_file = NULL;
2393 struct address_space *mapping;
2394 int prio;
2395 int error;
2396 union swap_header *swap_header;
2397 int nr_extents;
2398 sector_t span;
2399 unsigned long maxpages;
2400 unsigned char *swap_map = NULL;
2401 struct swap_cluster_info *cluster_info = NULL;
2402 unsigned long *frontswap_map = NULL;
2403 struct page *page = NULL;
2404 struct inode *inode = NULL;
2406 if (swap_flags & ~SWAP_FLAGS_VALID)
2407 return -EINVAL;
2409 if (!capable(CAP_SYS_ADMIN))
2410 return -EPERM;
2412 p = alloc_swap_info();
2413 if (IS_ERR(p))
2414 return PTR_ERR(p);
2416 INIT_WORK(&p->discard_work, swap_discard_work);
2418 name = getname(specialfile);
2419 if (IS_ERR(name)) {
2420 error = PTR_ERR(name);
2421 name = NULL;
2422 goto bad_swap;
2424 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2425 if (IS_ERR(swap_file)) {
2426 error = PTR_ERR(swap_file);
2427 swap_file = NULL;
2428 goto bad_swap;
2431 p->swap_file = swap_file;
2432 mapping = swap_file->f_mapping;
2433 inode = mapping->host;
2435 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2436 error = claim_swapfile(p, inode);
2437 if (unlikely(error))
2438 goto bad_swap;
2441 * Read the swap header.
2443 if (!mapping->a_ops->readpage) {
2444 error = -EINVAL;
2445 goto bad_swap;
2447 page = read_mapping_page(mapping, 0, swap_file);
2448 if (IS_ERR(page)) {
2449 error = PTR_ERR(page);
2450 goto bad_swap;
2452 swap_header = kmap(page);
2454 maxpages = read_swap_header(p, swap_header, inode);
2455 if (unlikely(!maxpages)) {
2456 error = -EINVAL;
2457 goto bad_swap;
2460 /* OK, set up the swap map and apply the bad block list */
2461 swap_map = vzalloc(maxpages);
2462 if (!swap_map) {
2463 error = -ENOMEM;
2464 goto bad_swap;
2467 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2468 p->flags |= SWP_STABLE_WRITES;
2470 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2471 int cpu;
2473 p->flags |= SWP_SOLIDSTATE;
2475 * select a random position to start with to help wear leveling
2476 * SSD
2478 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2480 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2481 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2482 if (!cluster_info) {
2483 error = -ENOMEM;
2484 goto bad_swap;
2486 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2487 if (!p->percpu_cluster) {
2488 error = -ENOMEM;
2489 goto bad_swap;
2491 for_each_possible_cpu(cpu) {
2492 struct percpu_cluster *cluster;
2493 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2494 cluster_set_null(&cluster->index);
2498 error = swap_cgroup_swapon(p->type, maxpages);
2499 if (error)
2500 goto bad_swap;
2502 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2503 cluster_info, maxpages, &span);
2504 if (unlikely(nr_extents < 0)) {
2505 error = nr_extents;
2506 goto bad_swap;
2508 /* frontswap enabled? set up bit-per-page map for frontswap */
2509 if (IS_ENABLED(CONFIG_FRONTSWAP))
2510 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2512 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2514 * When discard is enabled for swap with no particular
2515 * policy flagged, we set all swap discard flags here in
2516 * order to sustain backward compatibility with older
2517 * swapon(8) releases.
2519 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2520 SWP_PAGE_DISCARD);
2523 * By flagging sys_swapon, a sysadmin can tell us to
2524 * either do single-time area discards only, or to just
2525 * perform discards for released swap page-clusters.
2526 * Now it's time to adjust the p->flags accordingly.
2528 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2529 p->flags &= ~SWP_PAGE_DISCARD;
2530 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2531 p->flags &= ~SWP_AREA_DISCARD;
2533 /* issue a swapon-time discard if it's still required */
2534 if (p->flags & SWP_AREA_DISCARD) {
2535 int err = discard_swap(p);
2536 if (unlikely(err))
2537 pr_err("swapon: discard_swap(%p): %d\n",
2538 p, err);
2542 mutex_lock(&swapon_mutex);
2543 prio = -1;
2544 if (swap_flags & SWAP_FLAG_PREFER)
2545 prio =
2546 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2547 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2549 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2550 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2551 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2552 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2553 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2554 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2555 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2556 (frontswap_map) ? "FS" : "");
2558 mutex_unlock(&swapon_mutex);
2559 atomic_inc(&proc_poll_event);
2560 wake_up_interruptible(&proc_poll_wait);
2562 if (S_ISREG(inode->i_mode))
2563 inode->i_flags |= S_SWAPFILE;
2564 error = 0;
2565 goto out;
2566 bad_swap:
2567 free_percpu(p->percpu_cluster);
2568 p->percpu_cluster = NULL;
2569 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2570 set_blocksize(p->bdev, p->old_block_size);
2571 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2573 destroy_swap_extents(p);
2574 swap_cgroup_swapoff(p->type);
2575 spin_lock(&swap_lock);
2576 p->swap_file = NULL;
2577 p->flags = 0;
2578 spin_unlock(&swap_lock);
2579 vfree(swap_map);
2580 vfree(cluster_info);
2581 if (swap_file) {
2582 if (inode && S_ISREG(inode->i_mode)) {
2583 inode_unlock(inode);
2584 inode = NULL;
2586 filp_close(swap_file, NULL);
2588 out:
2589 if (page && !IS_ERR(page)) {
2590 kunmap(page);
2591 put_page(page);
2593 if (name)
2594 putname(name);
2595 if (inode && S_ISREG(inode->i_mode))
2596 inode_unlock(inode);
2597 return error;
2600 void si_swapinfo(struct sysinfo *val)
2602 unsigned int type;
2603 unsigned long nr_to_be_unused = 0;
2605 spin_lock(&swap_lock);
2606 for (type = 0; type < nr_swapfiles; type++) {
2607 struct swap_info_struct *si = swap_info[type];
2609 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2610 nr_to_be_unused += si->inuse_pages;
2612 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2613 val->totalswap = total_swap_pages + nr_to_be_unused;
2614 spin_unlock(&swap_lock);
2618 * Verify that a swap entry is valid and increment its swap map count.
2620 * Returns error code in following case.
2621 * - success -> 0
2622 * - swp_entry is invalid -> EINVAL
2623 * - swp_entry is migration entry -> EINVAL
2624 * - swap-cache reference is requested but there is already one. -> EEXIST
2625 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2626 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2628 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2630 struct swap_info_struct *p;
2631 unsigned long offset, type;
2632 unsigned char count;
2633 unsigned char has_cache;
2634 int err = -EINVAL;
2636 if (non_swap_entry(entry))
2637 goto out;
2639 type = swp_type(entry);
2640 if (type >= nr_swapfiles)
2641 goto bad_file;
2642 p = swap_info[type];
2643 offset = swp_offset(entry);
2645 spin_lock(&p->lock);
2646 if (unlikely(offset >= p->max))
2647 goto unlock_out;
2649 count = p->swap_map[offset];
2652 * swapin_readahead() doesn't check if a swap entry is valid, so the
2653 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2655 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2656 err = -ENOENT;
2657 goto unlock_out;
2660 has_cache = count & SWAP_HAS_CACHE;
2661 count &= ~SWAP_HAS_CACHE;
2662 err = 0;
2664 if (usage == SWAP_HAS_CACHE) {
2666 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2667 if (!has_cache && count)
2668 has_cache = SWAP_HAS_CACHE;
2669 else if (has_cache) /* someone else added cache */
2670 err = -EEXIST;
2671 else /* no users remaining */
2672 err = -ENOENT;
2674 } else if (count || has_cache) {
2676 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2677 count += usage;
2678 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2679 err = -EINVAL;
2680 else if (swap_count_continued(p, offset, count))
2681 count = COUNT_CONTINUED;
2682 else
2683 err = -ENOMEM;
2684 } else
2685 err = -ENOENT; /* unused swap entry */
2687 p->swap_map[offset] = count | has_cache;
2689 unlock_out:
2690 spin_unlock(&p->lock);
2691 out:
2692 return err;
2694 bad_file:
2695 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2696 goto out;
2700 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2701 * (in which case its reference count is never incremented).
2703 void swap_shmem_alloc(swp_entry_t entry)
2705 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2709 * Increase reference count of swap entry by 1.
2710 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2711 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2712 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2713 * might occur if a page table entry has got corrupted.
2715 int swap_duplicate(swp_entry_t entry)
2717 int err = 0;
2719 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2720 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2721 return err;
2725 * @entry: swap entry for which we allocate swap cache.
2727 * Called when allocating swap cache for existing swap entry,
2728 * This can return error codes. Returns 0 at success.
2729 * -EBUSY means there is a swap cache.
2730 * Note: return code is different from swap_duplicate().
2732 int swapcache_prepare(swp_entry_t entry)
2734 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2737 struct swap_info_struct *page_swap_info(struct page *page)
2739 swp_entry_t swap = { .val = page_private(page) };
2740 return swap_info[swp_type(swap)];
2744 * out-of-line __page_file_ methods to avoid include hell.
2746 struct address_space *__page_file_mapping(struct page *page)
2748 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2749 return page_swap_info(page)->swap_file->f_mapping;
2751 EXPORT_SYMBOL_GPL(__page_file_mapping);
2753 pgoff_t __page_file_index(struct page *page)
2755 swp_entry_t swap = { .val = page_private(page) };
2756 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2757 return swp_offset(swap);
2759 EXPORT_SYMBOL_GPL(__page_file_index);
2762 * add_swap_count_continuation - called when a swap count is duplicated
2763 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2764 * page of the original vmalloc'ed swap_map, to hold the continuation count
2765 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2766 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2768 * These continuation pages are seldom referenced: the common paths all work
2769 * on the original swap_map, only referring to a continuation page when the
2770 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2772 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2773 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2774 * can be called after dropping locks.
2776 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2778 struct swap_info_struct *si;
2779 struct page *head;
2780 struct page *page;
2781 struct page *list_page;
2782 pgoff_t offset;
2783 unsigned char count;
2786 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2787 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2789 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2791 si = swap_info_get(entry);
2792 if (!si) {
2794 * An acceptable race has occurred since the failing
2795 * __swap_duplicate(): the swap entry has been freed,
2796 * perhaps even the whole swap_map cleared for swapoff.
2798 goto outer;
2801 offset = swp_offset(entry);
2802 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2804 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2806 * The higher the swap count, the more likely it is that tasks
2807 * will race to add swap count continuation: we need to avoid
2808 * over-provisioning.
2810 goto out;
2813 if (!page) {
2814 spin_unlock(&si->lock);
2815 return -ENOMEM;
2819 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2820 * no architecture is using highmem pages for kernel page tables: so it
2821 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2823 head = vmalloc_to_page(si->swap_map + offset);
2824 offset &= ~PAGE_MASK;
2827 * Page allocation does not initialize the page's lru field,
2828 * but it does always reset its private field.
2830 if (!page_private(head)) {
2831 BUG_ON(count & COUNT_CONTINUED);
2832 INIT_LIST_HEAD(&head->lru);
2833 set_page_private(head, SWP_CONTINUED);
2834 si->flags |= SWP_CONTINUED;
2837 list_for_each_entry(list_page, &head->lru, lru) {
2838 unsigned char *map;
2841 * If the previous map said no continuation, but we've found
2842 * a continuation page, free our allocation and use this one.
2844 if (!(count & COUNT_CONTINUED))
2845 goto out;
2847 map = kmap_atomic(list_page) + offset;
2848 count = *map;
2849 kunmap_atomic(map);
2852 * If this continuation count now has some space in it,
2853 * free our allocation and use this one.
2855 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2856 goto out;
2859 list_add_tail(&page->lru, &head->lru);
2860 page = NULL; /* now it's attached, don't free it */
2861 out:
2862 spin_unlock(&si->lock);
2863 outer:
2864 if (page)
2865 __free_page(page);
2866 return 0;
2870 * swap_count_continued - when the original swap_map count is incremented
2871 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2872 * into, carry if so, or else fail until a new continuation page is allocated;
2873 * when the original swap_map count is decremented from 0 with continuation,
2874 * borrow from the continuation and report whether it still holds more.
2875 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2877 static bool swap_count_continued(struct swap_info_struct *si,
2878 pgoff_t offset, unsigned char count)
2880 struct page *head;
2881 struct page *page;
2882 unsigned char *map;
2884 head = vmalloc_to_page(si->swap_map + offset);
2885 if (page_private(head) != SWP_CONTINUED) {
2886 BUG_ON(count & COUNT_CONTINUED);
2887 return false; /* need to add count continuation */
2890 offset &= ~PAGE_MASK;
2891 page = list_entry(head->lru.next, struct page, lru);
2892 map = kmap_atomic(page) + offset;
2894 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2895 goto init_map; /* jump over SWAP_CONT_MAX checks */
2897 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2899 * Think of how you add 1 to 999
2901 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2902 kunmap_atomic(map);
2903 page = list_entry(page->lru.next, struct page, lru);
2904 BUG_ON(page == head);
2905 map = kmap_atomic(page) + offset;
2907 if (*map == SWAP_CONT_MAX) {
2908 kunmap_atomic(map);
2909 page = list_entry(page->lru.next, struct page, lru);
2910 if (page == head)
2911 return false; /* add count continuation */
2912 map = kmap_atomic(page) + offset;
2913 init_map: *map = 0; /* we didn't zero the page */
2915 *map += 1;
2916 kunmap_atomic(map);
2917 page = list_entry(page->lru.prev, struct page, lru);
2918 while (page != head) {
2919 map = kmap_atomic(page) + offset;
2920 *map = COUNT_CONTINUED;
2921 kunmap_atomic(map);
2922 page = list_entry(page->lru.prev, struct page, lru);
2924 return true; /* incremented */
2926 } else { /* decrementing */
2928 * Think of how you subtract 1 from 1000
2930 BUG_ON(count != COUNT_CONTINUED);
2931 while (*map == COUNT_CONTINUED) {
2932 kunmap_atomic(map);
2933 page = list_entry(page->lru.next, struct page, lru);
2934 BUG_ON(page == head);
2935 map = kmap_atomic(page) + offset;
2937 BUG_ON(*map == 0);
2938 *map -= 1;
2939 if (*map == 0)
2940 count = 0;
2941 kunmap_atomic(map);
2942 page = list_entry(page->lru.prev, struct page, lru);
2943 while (page != head) {
2944 map = kmap_atomic(page) + offset;
2945 *map = SWAP_CONT_MAX | count;
2946 count = COUNT_CONTINUED;
2947 kunmap_atomic(map);
2948 page = list_entry(page->lru.prev, struct page, lru);
2950 return count == COUNT_CONTINUED;
2955 * free_swap_count_continuations - swapoff free all the continuation pages
2956 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2958 static void free_swap_count_continuations(struct swap_info_struct *si)
2960 pgoff_t offset;
2962 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2963 struct page *head;
2964 head = vmalloc_to_page(si->swap_map + offset);
2965 if (page_private(head)) {
2966 struct page *page, *next;
2968 list_for_each_entry_safe(page, next, &head->lru, lru) {
2969 list_del(&page->lru);
2970 __free_page(page);