ethtool.h: define INT_MAX for userland
[linux/fpc-iii.git] / fs / f2fs / extent_cache.c
blobccd5c636d3fe026d0c5379d4062ee204fc7faa17
1 /*
2 * f2fs extent cache support
4 * Copyright (c) 2015 Motorola Mobility
5 * Copyright (c) 2015 Samsung Electronics
6 * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
7 * Chao Yu <chao2.yu@samsung.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/fs.h>
15 #include <linux/f2fs_fs.h>
17 #include "f2fs.h"
18 #include "node.h"
19 #include <trace/events/f2fs.h>
21 static struct kmem_cache *extent_tree_slab;
22 static struct kmem_cache *extent_node_slab;
24 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
25 struct extent_tree *et, struct extent_info *ei,
26 struct rb_node *parent, struct rb_node **p)
28 struct extent_node *en;
30 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
31 if (!en)
32 return NULL;
34 en->ei = *ei;
35 INIT_LIST_HEAD(&en->list);
37 rb_link_node(&en->rb_node, parent, p);
38 rb_insert_color(&en->rb_node, &et->root);
39 atomic_inc(&et->node_cnt);
40 atomic_inc(&sbi->total_ext_node);
41 return en;
44 static void __detach_extent_node(struct f2fs_sb_info *sbi,
45 struct extent_tree *et, struct extent_node *en)
47 rb_erase(&en->rb_node, &et->root);
48 atomic_dec(&et->node_cnt);
49 atomic_dec(&sbi->total_ext_node);
51 if (et->cached_en == en)
52 et->cached_en = NULL;
55 static struct extent_tree *__grab_extent_tree(struct inode *inode)
57 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
58 struct extent_tree *et;
59 nid_t ino = inode->i_ino;
61 down_write(&sbi->extent_tree_lock);
62 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
63 if (!et) {
64 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
65 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
66 memset(et, 0, sizeof(struct extent_tree));
67 et->ino = ino;
68 et->root = RB_ROOT;
69 et->cached_en = NULL;
70 rwlock_init(&et->lock);
71 INIT_LIST_HEAD(&et->list);
72 atomic_set(&et->node_cnt, 0);
73 atomic_inc(&sbi->total_ext_tree);
74 } else {
75 atomic_dec(&sbi->total_zombie_tree);
76 list_del_init(&et->list);
78 up_write(&sbi->extent_tree_lock);
80 /* never died until evict_inode */
81 F2FS_I(inode)->extent_tree = et;
83 return et;
86 static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
87 struct extent_tree *et, unsigned int fofs)
89 struct rb_node *node = et->root.rb_node;
90 struct extent_node *en = et->cached_en;
92 if (en) {
93 struct extent_info *cei = &en->ei;
95 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
96 stat_inc_cached_node_hit(sbi);
97 return en;
101 while (node) {
102 en = rb_entry(node, struct extent_node, rb_node);
104 if (fofs < en->ei.fofs) {
105 node = node->rb_left;
106 } else if (fofs >= en->ei.fofs + en->ei.len) {
107 node = node->rb_right;
108 } else {
109 stat_inc_rbtree_node_hit(sbi);
110 return en;
113 return NULL;
116 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
117 struct extent_tree *et, struct extent_info *ei)
119 struct rb_node **p = &et->root.rb_node;
120 struct extent_node *en;
122 en = __attach_extent_node(sbi, et, ei, NULL, p);
123 if (!en)
124 return NULL;
126 et->largest = en->ei;
127 et->cached_en = en;
128 return en;
131 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
132 struct extent_tree *et, bool free_all)
134 struct rb_node *node, *next;
135 struct extent_node *en;
136 unsigned int count = atomic_read(&et->node_cnt);
138 node = rb_first(&et->root);
139 while (node) {
140 next = rb_next(node);
141 en = rb_entry(node, struct extent_node, rb_node);
143 if (free_all) {
144 spin_lock(&sbi->extent_lock);
145 if (!list_empty(&en->list))
146 list_del_init(&en->list);
147 spin_unlock(&sbi->extent_lock);
150 if (free_all || list_empty(&en->list)) {
151 __detach_extent_node(sbi, et, en);
152 kmem_cache_free(extent_node_slab, en);
154 node = next;
157 return count - atomic_read(&et->node_cnt);
160 static void __drop_largest_extent(struct inode *inode,
161 pgoff_t fofs, unsigned int len)
163 struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
165 if (fofs < largest->fofs + largest->len && fofs + len > largest->fofs)
166 largest->len = 0;
169 /* return true, if inode page is changed */
170 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
172 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
173 struct extent_tree *et;
174 struct extent_node *en;
175 struct extent_info ei;
177 if (!f2fs_may_extent_tree(inode)) {
178 /* drop largest extent */
179 if (i_ext && i_ext->len) {
180 i_ext->len = 0;
181 return true;
183 return false;
186 et = __grab_extent_tree(inode);
188 if (!i_ext || !i_ext->len)
189 return false;
191 set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
192 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
194 write_lock(&et->lock);
195 if (atomic_read(&et->node_cnt))
196 goto out;
198 en = __init_extent_tree(sbi, et, &ei);
199 if (en) {
200 spin_lock(&sbi->extent_lock);
201 list_add_tail(&en->list, &sbi->extent_list);
202 spin_unlock(&sbi->extent_lock);
204 out:
205 write_unlock(&et->lock);
206 return false;
209 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
210 struct extent_info *ei)
212 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
213 struct extent_tree *et = F2FS_I(inode)->extent_tree;
214 struct extent_node *en;
215 bool ret = false;
217 f2fs_bug_on(sbi, !et);
219 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
221 read_lock(&et->lock);
223 if (et->largest.fofs <= pgofs &&
224 et->largest.fofs + et->largest.len > pgofs) {
225 *ei = et->largest;
226 ret = true;
227 stat_inc_largest_node_hit(sbi);
228 goto out;
231 en = __lookup_extent_tree(sbi, et, pgofs);
232 if (en) {
233 *ei = en->ei;
234 spin_lock(&sbi->extent_lock);
235 if (!list_empty(&en->list))
236 list_move_tail(&en->list, &sbi->extent_list);
237 et->cached_en = en;
238 spin_unlock(&sbi->extent_lock);
239 ret = true;
241 out:
242 stat_inc_total_hit(sbi);
243 read_unlock(&et->lock);
245 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
246 return ret;
251 * lookup extent at @fofs, if hit, return the extent
252 * if not, return NULL and
253 * @prev_ex: extent before fofs
254 * @next_ex: extent after fofs
255 * @insert_p: insert point for new extent at fofs
256 * in order to simpfy the insertion after.
257 * tree must stay unchanged between lookup and insertion.
259 static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
260 unsigned int fofs,
261 struct extent_node **prev_ex,
262 struct extent_node **next_ex,
263 struct rb_node ***insert_p,
264 struct rb_node **insert_parent)
266 struct rb_node **pnode = &et->root.rb_node;
267 struct rb_node *parent = NULL, *tmp_node;
268 struct extent_node *en = et->cached_en;
270 *insert_p = NULL;
271 *insert_parent = NULL;
272 *prev_ex = NULL;
273 *next_ex = NULL;
275 if (RB_EMPTY_ROOT(&et->root))
276 return NULL;
278 if (en) {
279 struct extent_info *cei = &en->ei;
281 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
282 goto lookup_neighbors;
285 while (*pnode) {
286 parent = *pnode;
287 en = rb_entry(*pnode, struct extent_node, rb_node);
289 if (fofs < en->ei.fofs)
290 pnode = &(*pnode)->rb_left;
291 else if (fofs >= en->ei.fofs + en->ei.len)
292 pnode = &(*pnode)->rb_right;
293 else
294 goto lookup_neighbors;
297 *insert_p = pnode;
298 *insert_parent = parent;
300 en = rb_entry(parent, struct extent_node, rb_node);
301 tmp_node = parent;
302 if (parent && fofs > en->ei.fofs)
303 tmp_node = rb_next(parent);
304 *next_ex = tmp_node ?
305 rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
307 tmp_node = parent;
308 if (parent && fofs < en->ei.fofs)
309 tmp_node = rb_prev(parent);
310 *prev_ex = tmp_node ?
311 rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
312 return NULL;
314 lookup_neighbors:
315 if (fofs == en->ei.fofs) {
316 /* lookup prev node for merging backward later */
317 tmp_node = rb_prev(&en->rb_node);
318 *prev_ex = tmp_node ?
319 rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
321 if (fofs == en->ei.fofs + en->ei.len - 1) {
322 /* lookup next node for merging frontward later */
323 tmp_node = rb_next(&en->rb_node);
324 *next_ex = tmp_node ?
325 rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
327 return en;
330 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
331 struct extent_tree *et, struct extent_info *ei,
332 struct extent_node **den,
333 struct extent_node *prev_ex,
334 struct extent_node *next_ex)
336 struct extent_node *en = NULL;
338 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
339 prev_ex->ei.len += ei->len;
340 ei = &prev_ex->ei;
341 en = prev_ex;
344 if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
345 if (en) {
346 __detach_extent_node(sbi, et, prev_ex);
347 *den = prev_ex;
349 next_ex->ei.fofs = ei->fofs;
350 next_ex->ei.blk = ei->blk;
351 next_ex->ei.len += ei->len;
352 en = next_ex;
355 if (en) {
356 __try_update_largest_extent(et, en);
357 et->cached_en = en;
359 return en;
362 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
363 struct extent_tree *et, struct extent_info *ei,
364 struct rb_node **insert_p,
365 struct rb_node *insert_parent)
367 struct rb_node **p = &et->root.rb_node;
368 struct rb_node *parent = NULL;
369 struct extent_node *en = NULL;
371 if (insert_p && insert_parent) {
372 parent = insert_parent;
373 p = insert_p;
374 goto do_insert;
377 while (*p) {
378 parent = *p;
379 en = rb_entry(parent, struct extent_node, rb_node);
381 if (ei->fofs < en->ei.fofs)
382 p = &(*p)->rb_left;
383 else if (ei->fofs >= en->ei.fofs + en->ei.len)
384 p = &(*p)->rb_right;
385 else
386 f2fs_bug_on(sbi, 1);
388 do_insert:
389 en = __attach_extent_node(sbi, et, ei, parent, p);
390 if (!en)
391 return NULL;
393 __try_update_largest_extent(et, en);
394 et->cached_en = en;
395 return en;
398 static unsigned int f2fs_update_extent_tree_range(struct inode *inode,
399 pgoff_t fofs, block_t blkaddr, unsigned int len)
401 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
402 struct extent_tree *et = F2FS_I(inode)->extent_tree;
403 struct extent_node *en = NULL, *en1 = NULL;
404 struct extent_node *prev_en = NULL, *next_en = NULL;
405 struct extent_info ei, dei, prev;
406 struct rb_node **insert_p = NULL, *insert_parent = NULL;
407 unsigned int end = fofs + len;
408 unsigned int pos = (unsigned int)fofs;
410 if (!et)
411 return false;
413 trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
415 write_lock(&et->lock);
417 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) {
418 write_unlock(&et->lock);
419 return false;
422 prev = et->largest;
423 dei.len = 0;
426 * drop largest extent before lookup, in case it's already
427 * been shrunk from extent tree
429 __drop_largest_extent(inode, fofs, len);
431 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
432 en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en,
433 &insert_p, &insert_parent);
434 if (!en)
435 en = next_en;
437 /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
438 while (en && en->ei.fofs < end) {
439 unsigned int org_end;
440 int parts = 0; /* # of parts current extent split into */
442 next_en = en1 = NULL;
444 dei = en->ei;
445 org_end = dei.fofs + dei.len;
446 f2fs_bug_on(sbi, pos >= org_end);
448 if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
449 en->ei.len = pos - en->ei.fofs;
450 prev_en = en;
451 parts = 1;
454 if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
455 if (parts) {
456 set_extent_info(&ei, end,
457 end - dei.fofs + dei.blk,
458 org_end - end);
459 en1 = __insert_extent_tree(sbi, et, &ei,
460 NULL, NULL);
461 next_en = en1;
462 } else {
463 en->ei.fofs = end;
464 en->ei.blk += end - dei.fofs;
465 en->ei.len -= end - dei.fofs;
466 next_en = en;
468 parts++;
471 if (!next_en) {
472 struct rb_node *node = rb_next(&en->rb_node);
474 next_en = node ?
475 rb_entry(node, struct extent_node, rb_node)
476 : NULL;
479 if (parts)
480 __try_update_largest_extent(et, en);
481 else
482 __detach_extent_node(sbi, et, en);
485 * if original extent is split into zero or two parts, extent
486 * tree has been altered by deletion or insertion, therefore
487 * invalidate pointers regard to tree.
489 if (parts != 1) {
490 insert_p = NULL;
491 insert_parent = NULL;
494 /* update in global extent list */
495 spin_lock(&sbi->extent_lock);
496 if (!parts && !list_empty(&en->list))
497 list_del(&en->list);
498 if (en1)
499 list_add_tail(&en1->list, &sbi->extent_list);
500 spin_unlock(&sbi->extent_lock);
502 /* release extent node */
503 if (!parts)
504 kmem_cache_free(extent_node_slab, en);
506 en = next_en;
509 /* 3. update extent in extent cache */
510 if (blkaddr) {
511 struct extent_node *den = NULL;
513 set_extent_info(&ei, fofs, blkaddr, len);
514 en1 = __try_merge_extent_node(sbi, et, &ei, &den,
515 prev_en, next_en);
516 if (!en1)
517 en1 = __insert_extent_tree(sbi, et, &ei,
518 insert_p, insert_parent);
520 /* give up extent_cache, if split and small updates happen */
521 if (dei.len >= 1 &&
522 prev.len < F2FS_MIN_EXTENT_LEN &&
523 et->largest.len < F2FS_MIN_EXTENT_LEN) {
524 et->largest.len = 0;
525 set_inode_flag(F2FS_I(inode), FI_NO_EXTENT);
528 spin_lock(&sbi->extent_lock);
529 if (en1) {
530 if (list_empty(&en1->list))
531 list_add_tail(&en1->list, &sbi->extent_list);
532 else
533 list_move_tail(&en1->list, &sbi->extent_list);
535 if (den && !list_empty(&den->list))
536 list_del(&den->list);
537 spin_unlock(&sbi->extent_lock);
539 if (den)
540 kmem_cache_free(extent_node_slab, den);
543 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
544 __free_extent_tree(sbi, et, true);
546 write_unlock(&et->lock);
548 return !__is_extent_same(&prev, &et->largest);
551 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
553 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
554 struct extent_tree *et, *next;
555 struct extent_node *en, *tmp;
556 unsigned long ino = F2FS_ROOT_INO(sbi);
557 unsigned int found;
558 unsigned int node_cnt = 0, tree_cnt = 0;
559 int remained;
560 bool do_free = false;
562 if (!test_opt(sbi, EXTENT_CACHE))
563 return 0;
565 if (!atomic_read(&sbi->total_zombie_tree))
566 goto free_node;
568 if (!down_write_trylock(&sbi->extent_tree_lock))
569 goto out;
571 /* 1. remove unreferenced extent tree */
572 list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
573 if (atomic_read(&et->node_cnt)) {
574 write_lock(&et->lock);
575 node_cnt += __free_extent_tree(sbi, et, true);
576 write_unlock(&et->lock);
579 list_del_init(&et->list);
580 radix_tree_delete(&sbi->extent_tree_root, et->ino);
581 kmem_cache_free(extent_tree_slab, et);
582 atomic_dec(&sbi->total_ext_tree);
583 atomic_dec(&sbi->total_zombie_tree);
584 tree_cnt++;
586 if (node_cnt + tree_cnt >= nr_shrink)
587 goto unlock_out;
589 up_write(&sbi->extent_tree_lock);
591 free_node:
592 /* 2. remove LRU extent entries */
593 if (!down_write_trylock(&sbi->extent_tree_lock))
594 goto out;
596 remained = nr_shrink - (node_cnt + tree_cnt);
598 spin_lock(&sbi->extent_lock);
599 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
600 if (!remained--)
601 break;
602 list_del_init(&en->list);
603 do_free = true;
605 spin_unlock(&sbi->extent_lock);
607 if (do_free == false)
608 goto unlock_out;
611 * reset ino for searching victims from beginning of global extent tree.
613 ino = F2FS_ROOT_INO(sbi);
615 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
616 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
617 unsigned i;
619 ino = treevec[found - 1]->ino + 1;
620 for (i = 0; i < found; i++) {
621 struct extent_tree *et = treevec[i];
623 if (!atomic_read(&et->node_cnt))
624 continue;
626 if (write_trylock(&et->lock)) {
627 node_cnt += __free_extent_tree(sbi, et, false);
628 write_unlock(&et->lock);
631 if (node_cnt + tree_cnt >= nr_shrink)
632 goto unlock_out;
635 unlock_out:
636 up_write(&sbi->extent_tree_lock);
637 out:
638 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
640 return node_cnt + tree_cnt;
643 unsigned int f2fs_destroy_extent_node(struct inode *inode)
645 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
646 struct extent_tree *et = F2FS_I(inode)->extent_tree;
647 unsigned int node_cnt = 0;
649 if (!et || !atomic_read(&et->node_cnt))
650 return 0;
652 write_lock(&et->lock);
653 node_cnt = __free_extent_tree(sbi, et, true);
654 write_unlock(&et->lock);
656 return node_cnt;
659 void f2fs_destroy_extent_tree(struct inode *inode)
661 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
662 struct extent_tree *et = F2FS_I(inode)->extent_tree;
663 unsigned int node_cnt = 0;
665 if (!et)
666 return;
668 if (inode->i_nlink && !is_bad_inode(inode) &&
669 atomic_read(&et->node_cnt)) {
670 down_write(&sbi->extent_tree_lock);
671 list_add_tail(&et->list, &sbi->zombie_list);
672 atomic_inc(&sbi->total_zombie_tree);
673 up_write(&sbi->extent_tree_lock);
674 return;
677 /* free all extent info belong to this extent tree */
678 node_cnt = f2fs_destroy_extent_node(inode);
680 /* delete extent tree entry in radix tree */
681 down_write(&sbi->extent_tree_lock);
682 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
683 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
684 kmem_cache_free(extent_tree_slab, et);
685 atomic_dec(&sbi->total_ext_tree);
686 up_write(&sbi->extent_tree_lock);
688 F2FS_I(inode)->extent_tree = NULL;
690 trace_f2fs_destroy_extent_tree(inode, node_cnt);
693 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
694 struct extent_info *ei)
696 if (!f2fs_may_extent_tree(inode))
697 return false;
699 return f2fs_lookup_extent_tree(inode, pgofs, ei);
702 void f2fs_update_extent_cache(struct dnode_of_data *dn)
704 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
705 pgoff_t fofs;
707 if (!f2fs_may_extent_tree(dn->inode))
708 return;
710 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
713 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
714 dn->ofs_in_node;
716 if (f2fs_update_extent_tree_range(dn->inode, fofs, dn->data_blkaddr, 1))
717 sync_inode_page(dn);
720 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
721 pgoff_t fofs, block_t blkaddr, unsigned int len)
724 if (!f2fs_may_extent_tree(dn->inode))
725 return;
727 if (f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len))
728 sync_inode_page(dn);
731 void init_extent_cache_info(struct f2fs_sb_info *sbi)
733 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
734 init_rwsem(&sbi->extent_tree_lock);
735 INIT_LIST_HEAD(&sbi->extent_list);
736 spin_lock_init(&sbi->extent_lock);
737 atomic_set(&sbi->total_ext_tree, 0);
738 INIT_LIST_HEAD(&sbi->zombie_list);
739 atomic_set(&sbi->total_zombie_tree, 0);
740 atomic_set(&sbi->total_ext_node, 0);
743 int __init create_extent_cache(void)
745 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
746 sizeof(struct extent_tree));
747 if (!extent_tree_slab)
748 return -ENOMEM;
749 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
750 sizeof(struct extent_node));
751 if (!extent_node_slab) {
752 kmem_cache_destroy(extent_tree_slab);
753 return -ENOMEM;
755 return 0;
758 void destroy_extent_cache(void)
760 kmem_cache_destroy(extent_node_slab);
761 kmem_cache_destroy(extent_tree_slab);