2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
32 #include "xfs_attr_sf.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
50 #include "xfs_bmap_btree.h"
52 kmem_zone_t
*xfs_inode_zone
;
55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
56 * freed from a file in a single transaction.
58 #define XFS_ITRUNC_MAX_EXTENTS 2
60 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
62 STATIC
int xfs_iunlink_remove(xfs_trans_t
*, xfs_inode_t
*);
65 * helper function to extract extent size hint from inode
71 if ((ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
) && ip
->i_d
.di_extsize
)
72 return ip
->i_d
.di_extsize
;
73 if (XFS_IS_REALTIME_INODE(ip
))
74 return ip
->i_mount
->m_sb
.sb_rextsize
;
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
90 * The functions return a value which should be given to the corresponding
94 xfs_ilock_data_map_shared(
97 uint lock_mode
= XFS_ILOCK_SHARED
;
99 if (ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
&&
100 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) == 0)
101 lock_mode
= XFS_ILOCK_EXCL
;
102 xfs_ilock(ip
, lock_mode
);
107 xfs_ilock_attr_map_shared(
108 struct xfs_inode
*ip
)
110 uint lock_mode
= XFS_ILOCK_SHARED
;
112 if (ip
->i_d
.di_aformat
== XFS_DINODE_FMT_BTREE
&&
113 (ip
->i_afp
->if_flags
& XFS_IFEXTENTS
) == 0)
114 lock_mode
= XFS_ILOCK_EXCL
;
115 xfs_ilock(ip
, lock_mode
);
120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121 * the i_lock. This routine allows various combinations of the locks to be
124 * The 3 locks should always be ordered so that the IO lock is obtained first,
125 * the mmap lock second and the ilock last in order to prevent deadlock.
127 * Basic locking order:
129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
131 * mmap_sem locking order:
133 * i_iolock -> page lock -> mmap_sem
134 * mmap_sem -> i_mmap_lock -> page_lock
136 * The difference in mmap_sem locking order mean that we cannot hold the
137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139 * in get_user_pages() to map the user pages into the kernel address space for
140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141 * page faults already hold the mmap_sem.
143 * Hence to serialise fully against both syscall and mmap based IO, we need to
144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145 * taken in places where we need to invalidate the page cache in a race
146 * free manner (e.g. truncate, hole punch and other extent manipulation
154 trace_xfs_ilock(ip
, lock_flags
, _RET_IP_
);
157 * You can't set both SHARED and EXCL for the same lock,
158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
161 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
162 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
163 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
164 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
165 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
166 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
167 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
169 if (lock_flags
& XFS_IOLOCK_EXCL
)
170 mrupdate_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
171 else if (lock_flags
& XFS_IOLOCK_SHARED
)
172 mraccess_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
174 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
175 mrupdate_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
176 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
177 mraccess_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
179 if (lock_flags
& XFS_ILOCK_EXCL
)
180 mrupdate_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
181 else if (lock_flags
& XFS_ILOCK_SHARED
)
182 mraccess_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
186 * This is just like xfs_ilock(), except that the caller
187 * is guaranteed not to sleep. It returns 1 if it gets
188 * the requested locks and 0 otherwise. If the IO lock is
189 * obtained but the inode lock cannot be, then the IO lock
190 * is dropped before returning.
192 * ip -- the inode being locked
193 * lock_flags -- this parameter indicates the inode's locks to be
194 * to be locked. See the comment for xfs_ilock() for a list
202 trace_xfs_ilock_nowait(ip
, lock_flags
, _RET_IP_
);
205 * You can't set both SHARED and EXCL for the same lock,
206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
209 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
210 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
211 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
212 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
213 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
214 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
215 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
217 if (lock_flags
& XFS_IOLOCK_EXCL
) {
218 if (!mrtryupdate(&ip
->i_iolock
))
220 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
221 if (!mrtryaccess(&ip
->i_iolock
))
225 if (lock_flags
& XFS_MMAPLOCK_EXCL
) {
226 if (!mrtryupdate(&ip
->i_mmaplock
))
227 goto out_undo_iolock
;
228 } else if (lock_flags
& XFS_MMAPLOCK_SHARED
) {
229 if (!mrtryaccess(&ip
->i_mmaplock
))
230 goto out_undo_iolock
;
233 if (lock_flags
& XFS_ILOCK_EXCL
) {
234 if (!mrtryupdate(&ip
->i_lock
))
235 goto out_undo_mmaplock
;
236 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
237 if (!mrtryaccess(&ip
->i_lock
))
238 goto out_undo_mmaplock
;
243 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
244 mrunlock_excl(&ip
->i_mmaplock
);
245 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
246 mrunlock_shared(&ip
->i_mmaplock
);
248 if (lock_flags
& XFS_IOLOCK_EXCL
)
249 mrunlock_excl(&ip
->i_iolock
);
250 else if (lock_flags
& XFS_IOLOCK_SHARED
)
251 mrunlock_shared(&ip
->i_iolock
);
257 * xfs_iunlock() is used to drop the inode locks acquired with
258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260 * that we know which locks to drop.
262 * ip -- the inode being unlocked
263 * lock_flags -- this parameter indicates the inode's locks to be
264 * to be unlocked. See the comment for xfs_ilock() for a list
265 * of valid values for this parameter.
274 * You can't set both SHARED and EXCL for the same lock,
275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
278 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
279 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
280 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
281 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
282 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
283 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
284 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
285 ASSERT(lock_flags
!= 0);
287 if (lock_flags
& XFS_IOLOCK_EXCL
)
288 mrunlock_excl(&ip
->i_iolock
);
289 else if (lock_flags
& XFS_IOLOCK_SHARED
)
290 mrunlock_shared(&ip
->i_iolock
);
292 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
293 mrunlock_excl(&ip
->i_mmaplock
);
294 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
295 mrunlock_shared(&ip
->i_mmaplock
);
297 if (lock_flags
& XFS_ILOCK_EXCL
)
298 mrunlock_excl(&ip
->i_lock
);
299 else if (lock_flags
& XFS_ILOCK_SHARED
)
300 mrunlock_shared(&ip
->i_lock
);
302 trace_xfs_iunlock(ip
, lock_flags
, _RET_IP_
);
306 * give up write locks. the i/o lock cannot be held nested
307 * if it is being demoted.
314 ASSERT(lock_flags
& (XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
));
316 ~(XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
)) == 0);
318 if (lock_flags
& XFS_ILOCK_EXCL
)
319 mrdemote(&ip
->i_lock
);
320 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
321 mrdemote(&ip
->i_mmaplock
);
322 if (lock_flags
& XFS_IOLOCK_EXCL
)
323 mrdemote(&ip
->i_iolock
);
325 trace_xfs_ilock_demote(ip
, lock_flags
, _RET_IP_
);
328 #if defined(DEBUG) || defined(XFS_WARN)
334 if (lock_flags
& (XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
)) {
335 if (!(lock_flags
& XFS_ILOCK_SHARED
))
336 return !!ip
->i_lock
.mr_writer
;
337 return rwsem_is_locked(&ip
->i_lock
.mr_lock
);
340 if (lock_flags
& (XFS_MMAPLOCK_EXCL
|XFS_MMAPLOCK_SHARED
)) {
341 if (!(lock_flags
& XFS_MMAPLOCK_SHARED
))
342 return !!ip
->i_mmaplock
.mr_writer
;
343 return rwsem_is_locked(&ip
->i_mmaplock
.mr_lock
);
346 if (lock_flags
& (XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
)) {
347 if (!(lock_flags
& XFS_IOLOCK_SHARED
))
348 return !!ip
->i_iolock
.mr_writer
;
349 return rwsem_is_locked(&ip
->i_iolock
.mr_lock
);
359 int xfs_small_retries
;
360 int xfs_middle_retries
;
361 int xfs_lots_retries
;
366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
369 * errors and warnings.
371 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
373 xfs_lockdep_subclass_ok(
376 return subclass
< MAX_LOCKDEP_SUBCLASSES
;
379 #define xfs_lockdep_subclass_ok(subclass) (true)
383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
384 * value. This can be called for any type of inode lock combination, including
385 * parent locking. Care must be taken to ensure we don't overrun the subclass
386 * storage fields in the class mask we build.
389 xfs_lock_inumorder(int lock_mode
, int subclass
)
393 ASSERT(!(lock_mode
& (XFS_ILOCK_PARENT
| XFS_ILOCK_RTBITMAP
|
395 ASSERT(xfs_lockdep_subclass_ok(subclass
));
397 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)) {
398 ASSERT(subclass
<= XFS_IOLOCK_MAX_SUBCLASS
);
399 ASSERT(xfs_lockdep_subclass_ok(subclass
+
400 XFS_IOLOCK_PARENT_VAL
));
401 class += subclass
<< XFS_IOLOCK_SHIFT
;
402 if (lock_mode
& XFS_IOLOCK_PARENT
)
403 class += XFS_IOLOCK_PARENT_VAL
<< XFS_IOLOCK_SHIFT
;
406 if (lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) {
407 ASSERT(subclass
<= XFS_MMAPLOCK_MAX_SUBCLASS
);
408 class += subclass
<< XFS_MMAPLOCK_SHIFT
;
411 if (lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)) {
412 ASSERT(subclass
<= XFS_ILOCK_MAX_SUBCLASS
);
413 class += subclass
<< XFS_ILOCK_SHIFT
;
416 return (lock_mode
& ~XFS_LOCK_SUBCLASS_MASK
) | class;
420 * The following routine will lock n inodes in exclusive mode. We assume the
421 * caller calls us with the inodes in i_ino order.
423 * We need to detect deadlock where an inode that we lock is in the AIL and we
424 * start waiting for another inode that is locked by a thread in a long running
425 * transaction (such as truncate). This can result in deadlock since the long
426 * running trans might need to wait for the inode we just locked in order to
427 * push the tail and free space in the log.
429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
431 * lock more than one at a time, lockdep will report false positives saying we
432 * have violated locking orders.
440 int attempts
= 0, i
, j
, try_lock
;
444 * Currently supports between 2 and 5 inodes with exclusive locking. We
445 * support an arbitrary depth of locking here, but absolute limits on
446 * inodes depend on the the type of locking and the limits placed by
447 * lockdep annotations in xfs_lock_inumorder. These are all checked by
450 ASSERT(ips
&& inodes
>= 2 && inodes
<= 5);
451 ASSERT(lock_mode
& (XFS_IOLOCK_EXCL
| XFS_MMAPLOCK_EXCL
|
453 ASSERT(!(lock_mode
& (XFS_IOLOCK_SHARED
| XFS_MMAPLOCK_SHARED
|
455 ASSERT(!(lock_mode
& XFS_IOLOCK_EXCL
) ||
456 inodes
<= XFS_IOLOCK_MAX_SUBCLASS
+ 1);
457 ASSERT(!(lock_mode
& XFS_MMAPLOCK_EXCL
) ||
458 inodes
<= XFS_MMAPLOCK_MAX_SUBCLASS
+ 1);
459 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
) ||
460 inodes
<= XFS_ILOCK_MAX_SUBCLASS
+ 1);
462 if (lock_mode
& XFS_IOLOCK_EXCL
) {
463 ASSERT(!(lock_mode
& (XFS_MMAPLOCK_EXCL
| XFS_ILOCK_EXCL
)));
464 } else if (lock_mode
& XFS_MMAPLOCK_EXCL
)
465 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
));
470 for (; i
< inodes
; i
++) {
473 if (i
&& (ips
[i
] == ips
[i
- 1])) /* Already locked */
477 * If try_lock is not set yet, make sure all locked inodes are
478 * not in the AIL. If any are, set try_lock to be used later.
481 for (j
= (i
- 1); j
>= 0 && !try_lock
; j
--) {
482 lp
= (xfs_log_item_t
*)ips
[j
]->i_itemp
;
483 if (lp
&& (lp
->li_flags
& XFS_LI_IN_AIL
))
489 * If any of the previous locks we have locked is in the AIL,
490 * we must TRY to get the second and subsequent locks. If
491 * we can't get any, we must release all we have
495 xfs_ilock(ips
[i
], xfs_lock_inumorder(lock_mode
, i
));
499 /* try_lock means we have an inode locked that is in the AIL. */
501 if (xfs_ilock_nowait(ips
[i
], xfs_lock_inumorder(lock_mode
, i
)))
505 * Unlock all previous guys and try again. xfs_iunlock will try
506 * to push the tail if the inode is in the AIL.
509 for (j
= i
- 1; j
>= 0; j
--) {
511 * Check to see if we've already unlocked this one. Not
512 * the first one going back, and the inode ptr is the
515 if (j
!= (i
- 1) && ips
[j
] == ips
[j
+ 1])
518 xfs_iunlock(ips
[j
], lock_mode
);
521 if ((attempts
% 5) == 0) {
522 delay(1); /* Don't just spin the CPU */
534 if (attempts
< 5) xfs_small_retries
++;
535 else if (attempts
< 100) xfs_middle_retries
++;
536 else xfs_lots_retries
++;
544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
546 * lock more than one at a time, lockdep will report false positives saying we
547 * have violated locking orders.
559 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)) {
560 ASSERT(!(lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)));
561 ASSERT(!(lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
562 } else if (lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
))
563 ASSERT(!(lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
565 ASSERT(ip0
->i_ino
!= ip1
->i_ino
);
567 if (ip0
->i_ino
> ip1
->i_ino
) {
574 xfs_ilock(ip0
, xfs_lock_inumorder(lock_mode
, 0));
577 * If the first lock we have locked is in the AIL, we must TRY to get
578 * the second lock. If we can't get it, we must release the first one
581 lp
= (xfs_log_item_t
*)ip0
->i_itemp
;
582 if (lp
&& (lp
->li_flags
& XFS_LI_IN_AIL
)) {
583 if (!xfs_ilock_nowait(ip1
, xfs_lock_inumorder(lock_mode
, 1))) {
584 xfs_iunlock(ip0
, lock_mode
);
585 if ((++attempts
% 5) == 0)
586 delay(1); /* Don't just spin the CPU */
590 xfs_ilock(ip1
, xfs_lock_inumorder(lock_mode
, 1));
597 struct xfs_inode
*ip
)
599 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IFLOCK_BIT
);
600 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IFLOCK_BIT
);
603 prepare_to_wait_exclusive(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
604 if (xfs_isiflocked(ip
))
606 } while (!xfs_iflock_nowait(ip
));
608 finish_wait(wq
, &wait
.wait
);
619 if (di_flags
& XFS_DIFLAG_ANY
) {
620 if (di_flags
& XFS_DIFLAG_REALTIME
)
621 flags
|= FS_XFLAG_REALTIME
;
622 if (di_flags
& XFS_DIFLAG_PREALLOC
)
623 flags
|= FS_XFLAG_PREALLOC
;
624 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
625 flags
|= FS_XFLAG_IMMUTABLE
;
626 if (di_flags
& XFS_DIFLAG_APPEND
)
627 flags
|= FS_XFLAG_APPEND
;
628 if (di_flags
& XFS_DIFLAG_SYNC
)
629 flags
|= FS_XFLAG_SYNC
;
630 if (di_flags
& XFS_DIFLAG_NOATIME
)
631 flags
|= FS_XFLAG_NOATIME
;
632 if (di_flags
& XFS_DIFLAG_NODUMP
)
633 flags
|= FS_XFLAG_NODUMP
;
634 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
635 flags
|= FS_XFLAG_RTINHERIT
;
636 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
637 flags
|= FS_XFLAG_PROJINHERIT
;
638 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
639 flags
|= FS_XFLAG_NOSYMLINKS
;
640 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
641 flags
|= FS_XFLAG_EXTSIZE
;
642 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
643 flags
|= FS_XFLAG_EXTSZINHERIT
;
644 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
645 flags
|= FS_XFLAG_NODEFRAG
;
646 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
647 flags
|= FS_XFLAG_FILESTREAM
;
650 if (di_flags2
& XFS_DIFLAG2_ANY
) {
651 if (di_flags2
& XFS_DIFLAG2_DAX
)
652 flags
|= FS_XFLAG_DAX
;
656 flags
|= FS_XFLAG_HASATTR
;
663 struct xfs_inode
*ip
)
665 struct xfs_icdinode
*dic
= &ip
->i_d
;
667 return _xfs_dic2xflags(dic
->di_flags
, dic
->di_flags2
, XFS_IFORK_Q(ip
));
672 struct xfs_dinode
*dip
)
674 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
),
675 be64_to_cpu(dip
->di_flags2
), XFS_DFORK_Q(dip
));
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
687 struct xfs_name
*name
,
689 struct xfs_name
*ci_name
)
694 trace_xfs_lookup(dp
, name
);
696 if (XFS_FORCED_SHUTDOWN(dp
->i_mount
))
699 xfs_ilock(dp
, XFS_IOLOCK_SHARED
);
700 error
= xfs_dir_lookup(NULL
, dp
, name
, &inum
, ci_name
);
704 error
= xfs_iget(dp
->i_mount
, NULL
, inum
, 0, 0, ipp
);
708 xfs_iunlock(dp
, XFS_IOLOCK_SHARED
);
713 kmem_free(ci_name
->name
);
715 xfs_iunlock(dp
, XFS_IOLOCK_SHARED
);
721 * Allocate an inode on disk and return a copy of its in-core version.
722 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
723 * appropriately within the inode. The uid and gid for the inode are
724 * set according to the contents of the given cred structure.
726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
727 * has a free inode available, call xfs_iget() to obtain the in-core
728 * version of the allocated inode. Finally, fill in the inode and
729 * log its initial contents. In this case, ialloc_context would be
732 * If xfs_dialloc() does not have an available inode, it will replenish
733 * its supply by doing an allocation. Since we can only do one
734 * allocation within a transaction without deadlocks, we must commit
735 * the current transaction before returning the inode itself.
736 * In this case, therefore, we will set ialloc_context and return.
737 * The caller should then commit the current transaction, start a new
738 * transaction, and call xfs_ialloc() again to actually get the inode.
740 * To ensure that some other process does not grab the inode that
741 * was allocated during the first call to xfs_ialloc(), this routine
742 * also returns the [locked] bp pointing to the head of the freelist
743 * as ialloc_context. The caller should hold this buffer across
744 * the commit and pass it back into this routine on the second call.
746 * If we are allocating quota inodes, we do not have a parent inode
747 * to attach to or associate with (i.e. pip == NULL) because they
748 * are not linked into the directory structure - they are attached
749 * directly to the superblock - and so have no parent.
760 xfs_buf_t
**ialloc_context
,
763 struct xfs_mount
*mp
= tp
->t_mountp
;
771 * Call the space management code to pick
772 * the on-disk inode to be allocated.
774 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
775 ialloc_context
, &ino
);
778 if (*ialloc_context
|| ino
== NULLFSINO
) {
782 ASSERT(*ialloc_context
== NULL
);
785 * Get the in-core inode with the lock held exclusively.
786 * This is because we're setting fields here we need
787 * to prevent others from looking at until we're done.
789 error
= xfs_iget(mp
, tp
, ino
, XFS_IGET_CREATE
,
790 XFS_ILOCK_EXCL
, &ip
);
796 * We always convert v1 inodes to v2 now - we only support filesystems
797 * with >= v2 inode capability, so there is no reason for ever leaving
798 * an inode in v1 format.
800 if (ip
->i_d
.di_version
== 1)
801 ip
->i_d
.di_version
= 2;
803 ip
->i_d
.di_mode
= mode
;
804 ip
->i_d
.di_onlink
= 0;
805 ip
->i_d
.di_nlink
= nlink
;
806 ASSERT(ip
->i_d
.di_nlink
== nlink
);
807 ip
->i_d
.di_uid
= xfs_kuid_to_uid(current_fsuid());
808 ip
->i_d
.di_gid
= xfs_kgid_to_gid(current_fsgid());
809 xfs_set_projid(ip
, prid
);
810 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
812 if (pip
&& XFS_INHERIT_GID(pip
)) {
813 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
814 if ((pip
->i_d
.di_mode
& S_ISGID
) && S_ISDIR(mode
)) {
815 ip
->i_d
.di_mode
|= S_ISGID
;
820 * If the group ID of the new file does not match the effective group
821 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
822 * (and only if the irix_sgid_inherit compatibility variable is set).
824 if ((irix_sgid_inherit
) &&
825 (ip
->i_d
.di_mode
& S_ISGID
) &&
826 (!in_group_p(xfs_gid_to_kgid(ip
->i_d
.di_gid
)))) {
827 ip
->i_d
.di_mode
&= ~S_ISGID
;
831 ip
->i_d
.di_nextents
= 0;
832 ASSERT(ip
->i_d
.di_nblocks
== 0);
834 tv
= current_fs_time(mp
->m_super
);
835 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
836 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
837 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
838 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
841 * di_gen will have been taken care of in xfs_iread.
843 ip
->i_d
.di_extsize
= 0;
844 ip
->i_d
.di_dmevmask
= 0;
845 ip
->i_d
.di_dmstate
= 0;
846 ip
->i_d
.di_flags
= 0;
848 if (ip
->i_d
.di_version
== 3) {
849 ASSERT(ip
->i_d
.di_ino
== ino
);
850 ASSERT(uuid_equal(&ip
->i_d
.di_uuid
, &mp
->m_sb
.sb_meta_uuid
));
852 ip
->i_d
.di_changecount
= 1;
854 ip
->i_d
.di_flags2
= 0;
855 memset(&(ip
->i_d
.di_pad2
[0]), 0, sizeof(ip
->i_d
.di_pad2
));
856 ip
->i_d
.di_crtime
= ip
->i_d
.di_mtime
;
860 flags
= XFS_ILOG_CORE
;
861 switch (mode
& S_IFMT
) {
866 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
867 ip
->i_df
.if_u2
.if_rdev
= rdev
;
868 ip
->i_df
.if_flags
= 0;
869 flags
|= XFS_ILOG_DEV
;
873 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
874 uint64_t di_flags2
= 0;
878 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
879 di_flags
|= XFS_DIFLAG_RTINHERIT
;
880 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
881 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
882 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
884 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
885 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
886 } else if (S_ISREG(mode
)) {
887 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
888 di_flags
|= XFS_DIFLAG_REALTIME
;
889 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
890 di_flags
|= XFS_DIFLAG_EXTSIZE
;
891 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
894 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
896 di_flags
|= XFS_DIFLAG_NOATIME
;
897 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
899 di_flags
|= XFS_DIFLAG_NODUMP
;
900 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
902 di_flags
|= XFS_DIFLAG_SYNC
;
903 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
904 xfs_inherit_nosymlinks
)
905 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
906 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
907 xfs_inherit_nodefrag
)
908 di_flags
|= XFS_DIFLAG_NODEFRAG
;
909 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
910 di_flags
|= XFS_DIFLAG_FILESTREAM
;
911 if (pip
->i_d
.di_flags2
& XFS_DIFLAG2_DAX
)
912 di_flags2
|= XFS_DIFLAG2_DAX
;
914 ip
->i_d
.di_flags
|= di_flags
;
915 ip
->i_d
.di_flags2
|= di_flags2
;
919 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
920 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
921 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
922 ip
->i_df
.if_u1
.if_extents
= NULL
;
928 * Attribute fork settings for new inode.
930 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
931 ip
->i_d
.di_anextents
= 0;
934 * Log the new values stuffed into the inode.
936 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
937 xfs_trans_log_inode(tp
, ip
, flags
);
939 /* now that we have an i_mode we can setup the inode structure */
947 * Allocates a new inode from disk and return a pointer to the
948 * incore copy. This routine will internally commit the current
949 * transaction and allocate a new one if the Space Manager needed
950 * to do an allocation to replenish the inode free-list.
952 * This routine is designed to be called from xfs_create and
958 xfs_trans_t
**tpp
, /* input: current transaction;
959 output: may be a new transaction. */
960 xfs_inode_t
*dp
, /* directory within whose allocate
965 prid_t prid
, /* project id */
966 int okalloc
, /* ok to allocate new space */
967 xfs_inode_t
**ipp
, /* pointer to inode; it will be
974 xfs_buf_t
*ialloc_context
= NULL
;
980 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
983 * xfs_ialloc will return a pointer to an incore inode if
984 * the Space Manager has an available inode on the free
985 * list. Otherwise, it will do an allocation and replenish
986 * the freelist. Since we can only do one allocation per
987 * transaction without deadlocks, we will need to commit the
988 * current transaction and start a new one. We will then
989 * need to call xfs_ialloc again to get the inode.
991 * If xfs_ialloc did an allocation to replenish the freelist,
992 * it returns the bp containing the head of the freelist as
993 * ialloc_context. We will hold a lock on it across the
994 * transaction commit so that no other process can steal
995 * the inode(s) that we've just allocated.
997 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
, okalloc
,
998 &ialloc_context
, &ip
);
1001 * Return an error if we were unable to allocate a new inode.
1002 * This should only happen if we run out of space on disk or
1003 * encounter a disk error.
1009 if (!ialloc_context
&& !ip
) {
1015 * If the AGI buffer is non-NULL, then we were unable to get an
1016 * inode in one operation. We need to commit the current
1017 * transaction and call xfs_ialloc() again. It is guaranteed
1018 * to succeed the second time.
1020 if (ialloc_context
) {
1022 * Normally, xfs_trans_commit releases all the locks.
1023 * We call bhold to hang on to the ialloc_context across
1024 * the commit. Holding this buffer prevents any other
1025 * processes from doing any allocations in this
1028 xfs_trans_bhold(tp
, ialloc_context
);
1031 * We want the quota changes to be associated with the next
1032 * transaction, NOT this one. So, detach the dqinfo from this
1033 * and attach it to the next transaction.
1038 dqinfo
= (void *)tp
->t_dqinfo
;
1039 tp
->t_dqinfo
= NULL
;
1040 tflags
= tp
->t_flags
& XFS_TRANS_DQ_DIRTY
;
1041 tp
->t_flags
&= ~(XFS_TRANS_DQ_DIRTY
);
1044 code
= xfs_trans_roll(&tp
, 0);
1045 if (committed
!= NULL
)
1049 * Re-attach the quota info that we detached from prev trx.
1052 tp
->t_dqinfo
= dqinfo
;
1053 tp
->t_flags
|= tflags
;
1057 xfs_buf_relse(ialloc_context
);
1062 xfs_trans_bjoin(tp
, ialloc_context
);
1065 * Call ialloc again. Since we've locked out all
1066 * other allocations in this allocation group,
1067 * this call should always succeed.
1069 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
,
1070 okalloc
, &ialloc_context
, &ip
);
1073 * If we get an error at this point, return to the caller
1074 * so that the current transaction can be aborted.
1081 ASSERT(!ialloc_context
&& ip
);
1084 if (committed
!= NULL
)
1095 * Decrement the link count on an inode & log the change.
1096 * If this causes the link count to go to zero, initiate the
1097 * logging activity required to truncate a file.
1106 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1108 ASSERT (ip
->i_d
.di_nlink
> 0);
1110 drop_nlink(VFS_I(ip
));
1111 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1114 if (ip
->i_d
.di_nlink
== 0) {
1116 * We're dropping the last link to this file.
1117 * Move the on-disk inode to the AGI unlinked list.
1118 * From xfs_inactive() we will pull the inode from
1119 * the list and free it.
1121 error
= xfs_iunlink(tp
, ip
);
1127 * Increment the link count on an inode & log the change.
1134 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1136 ASSERT(ip
->i_d
.di_version
> 1);
1137 ASSERT(ip
->i_d
.di_nlink
> 0 || (VFS_I(ip
)->i_state
& I_LINKABLE
));
1139 inc_nlink(VFS_I(ip
));
1140 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1147 struct xfs_name
*name
,
1152 int is_dir
= S_ISDIR(mode
);
1153 struct xfs_mount
*mp
= dp
->i_mount
;
1154 struct xfs_inode
*ip
= NULL
;
1155 struct xfs_trans
*tp
= NULL
;
1157 xfs_bmap_free_t free_list
;
1158 xfs_fsblock_t first_block
;
1159 bool unlock_dp_on_error
= false;
1161 struct xfs_dquot
*udqp
= NULL
;
1162 struct xfs_dquot
*gdqp
= NULL
;
1163 struct xfs_dquot
*pdqp
= NULL
;
1164 struct xfs_trans_res
*tres
;
1167 trace_xfs_create(dp
, name
);
1169 if (XFS_FORCED_SHUTDOWN(mp
))
1172 prid
= xfs_get_initial_prid(dp
);
1175 * Make sure that we have allocated dquot(s) on disk.
1177 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1178 xfs_kgid_to_gid(current_fsgid()), prid
,
1179 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1180 &udqp
, &gdqp
, &pdqp
);
1186 resblks
= XFS_MKDIR_SPACE_RES(mp
, name
->len
);
1187 tres
= &M_RES(mp
)->tr_mkdir
;
1188 tp
= xfs_trans_alloc(mp
, XFS_TRANS_MKDIR
);
1190 resblks
= XFS_CREATE_SPACE_RES(mp
, name
->len
);
1191 tres
= &M_RES(mp
)->tr_create
;
1192 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CREATE
);
1196 * Initially assume that the file does not exist and
1197 * reserve the resources for that case. If that is not
1198 * the case we'll drop the one we have and get a more
1199 * appropriate transaction later.
1201 error
= xfs_trans_reserve(tp
, tres
, resblks
, 0);
1202 if (error
== -ENOSPC
) {
1203 /* flush outstanding delalloc blocks and retry */
1204 xfs_flush_inodes(mp
);
1205 error
= xfs_trans_reserve(tp
, tres
, resblks
, 0);
1207 if (error
== -ENOSPC
) {
1208 /* No space at all so try a "no-allocation" reservation */
1210 error
= xfs_trans_reserve(tp
, tres
, 0, 0);
1213 goto out_trans_cancel
;
1216 xfs_ilock(dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
|
1217 XFS_IOLOCK_PARENT
| XFS_ILOCK_PARENT
);
1218 unlock_dp_on_error
= true;
1220 xfs_bmap_init(&free_list
, &first_block
);
1223 * Reserve disk quota and the inode.
1225 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1226 pdqp
, resblks
, 1, 0);
1228 goto out_trans_cancel
;
1231 error
= xfs_dir_canenter(tp
, dp
, name
);
1233 goto out_trans_cancel
;
1237 * A newly created regular or special file just has one directory
1238 * entry pointing to them, but a directory also the "." entry
1239 * pointing to itself.
1241 error
= xfs_dir_ialloc(&tp
, dp
, mode
, is_dir
? 2 : 1, rdev
,
1242 prid
, resblks
> 0, &ip
, NULL
);
1244 goto out_trans_cancel
;
1247 * Now we join the directory inode to the transaction. We do not do it
1248 * earlier because xfs_dir_ialloc might commit the previous transaction
1249 * (and release all the locks). An error from here on will result in
1250 * the transaction cancel unlocking dp so don't do it explicitly in the
1253 xfs_trans_ijoin(tp
, dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1254 unlock_dp_on_error
= false;
1256 error
= xfs_dir_createname(tp
, dp
, name
, ip
->i_ino
,
1257 &first_block
, &free_list
, resblks
?
1258 resblks
- XFS_IALLOC_SPACE_RES(mp
) : 0);
1260 ASSERT(error
!= -ENOSPC
);
1261 goto out_trans_cancel
;
1263 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1264 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
1267 error
= xfs_dir_init(tp
, ip
, dp
);
1269 goto out_bmap_cancel
;
1271 error
= xfs_bumplink(tp
, dp
);
1273 goto out_bmap_cancel
;
1277 * If this is a synchronous mount, make sure that the
1278 * create transaction goes to disk before returning to
1281 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1282 xfs_trans_set_sync(tp
);
1285 * Attach the dquot(s) to the inodes and modify them incore.
1286 * These ids of the inode couldn't have changed since the new
1287 * inode has been locked ever since it was created.
1289 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1291 error
= xfs_bmap_finish(&tp
, &free_list
, NULL
);
1293 goto out_bmap_cancel
;
1295 error
= xfs_trans_commit(tp
);
1297 goto out_release_inode
;
1299 xfs_qm_dqrele(udqp
);
1300 xfs_qm_dqrele(gdqp
);
1301 xfs_qm_dqrele(pdqp
);
1307 xfs_bmap_cancel(&free_list
);
1309 xfs_trans_cancel(tp
);
1312 * Wait until after the current transaction is aborted to finish the
1313 * setup of the inode and release the inode. This prevents recursive
1314 * transactions and deadlocks from xfs_inactive.
1317 xfs_finish_inode_setup(ip
);
1321 xfs_qm_dqrele(udqp
);
1322 xfs_qm_dqrele(gdqp
);
1323 xfs_qm_dqrele(pdqp
);
1325 if (unlock_dp_on_error
)
1326 xfs_iunlock(dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1332 struct xfs_inode
*dp
,
1333 struct dentry
*dentry
,
1335 struct xfs_inode
**ipp
)
1337 struct xfs_mount
*mp
= dp
->i_mount
;
1338 struct xfs_inode
*ip
= NULL
;
1339 struct xfs_trans
*tp
= NULL
;
1342 struct xfs_dquot
*udqp
= NULL
;
1343 struct xfs_dquot
*gdqp
= NULL
;
1344 struct xfs_dquot
*pdqp
= NULL
;
1345 struct xfs_trans_res
*tres
;
1348 if (XFS_FORCED_SHUTDOWN(mp
))
1351 prid
= xfs_get_initial_prid(dp
);
1354 * Make sure that we have allocated dquot(s) on disk.
1356 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1357 xfs_kgid_to_gid(current_fsgid()), prid
,
1358 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1359 &udqp
, &gdqp
, &pdqp
);
1363 resblks
= XFS_IALLOC_SPACE_RES(mp
);
1364 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CREATE_TMPFILE
);
1366 tres
= &M_RES(mp
)->tr_create_tmpfile
;
1367 error
= xfs_trans_reserve(tp
, tres
, resblks
, 0);
1368 if (error
== -ENOSPC
) {
1369 /* No space at all so try a "no-allocation" reservation */
1371 error
= xfs_trans_reserve(tp
, tres
, 0, 0);
1374 goto out_trans_cancel
;
1376 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1377 pdqp
, resblks
, 1, 0);
1379 goto out_trans_cancel
;
1381 error
= xfs_dir_ialloc(&tp
, dp
, mode
, 1, 0,
1382 prid
, resblks
> 0, &ip
, NULL
);
1384 goto out_trans_cancel
;
1386 if (mp
->m_flags
& XFS_MOUNT_WSYNC
)
1387 xfs_trans_set_sync(tp
);
1390 * Attach the dquot(s) to the inodes and modify them incore.
1391 * These ids of the inode couldn't have changed since the new
1392 * inode has been locked ever since it was created.
1394 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1397 error
= xfs_iunlink(tp
, ip
);
1399 goto out_trans_cancel
;
1401 error
= xfs_trans_commit(tp
);
1403 goto out_release_inode
;
1405 xfs_qm_dqrele(udqp
);
1406 xfs_qm_dqrele(gdqp
);
1407 xfs_qm_dqrele(pdqp
);
1413 xfs_trans_cancel(tp
);
1416 * Wait until after the current transaction is aborted to finish the
1417 * setup of the inode and release the inode. This prevents recursive
1418 * transactions and deadlocks from xfs_inactive.
1421 xfs_finish_inode_setup(ip
);
1425 xfs_qm_dqrele(udqp
);
1426 xfs_qm_dqrele(gdqp
);
1427 xfs_qm_dqrele(pdqp
);
1436 struct xfs_name
*target_name
)
1438 xfs_mount_t
*mp
= tdp
->i_mount
;
1441 xfs_bmap_free_t free_list
;
1442 xfs_fsblock_t first_block
;
1445 trace_xfs_link(tdp
, target_name
);
1447 ASSERT(!S_ISDIR(sip
->i_d
.di_mode
));
1449 if (XFS_FORCED_SHUTDOWN(mp
))
1452 error
= xfs_qm_dqattach(sip
, 0);
1456 error
= xfs_qm_dqattach(tdp
, 0);
1460 tp
= xfs_trans_alloc(mp
, XFS_TRANS_LINK
);
1461 resblks
= XFS_LINK_SPACE_RES(mp
, target_name
->len
);
1462 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_link
, resblks
, 0);
1463 if (error
== -ENOSPC
) {
1465 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_link
, 0, 0);
1470 xfs_ilock(tdp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
1471 xfs_lock_two_inodes(sip
, tdp
, XFS_ILOCK_EXCL
);
1473 xfs_trans_ijoin(tp
, sip
, XFS_ILOCK_EXCL
);
1474 xfs_trans_ijoin(tp
, tdp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1477 * If we are using project inheritance, we only allow hard link
1478 * creation in our tree when the project IDs are the same; else
1479 * the tree quota mechanism could be circumvented.
1481 if (unlikely((tdp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
1482 (xfs_get_projid(tdp
) != xfs_get_projid(sip
)))) {
1488 error
= xfs_dir_canenter(tp
, tdp
, target_name
);
1493 xfs_bmap_init(&free_list
, &first_block
);
1495 if (sip
->i_d
.di_nlink
== 0) {
1496 error
= xfs_iunlink_remove(tp
, sip
);
1501 error
= xfs_dir_createname(tp
, tdp
, target_name
, sip
->i_ino
,
1502 &first_block
, &free_list
, resblks
);
1505 xfs_trans_ichgtime(tp
, tdp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1506 xfs_trans_log_inode(tp
, tdp
, XFS_ILOG_CORE
);
1508 error
= xfs_bumplink(tp
, sip
);
1513 * If this is a synchronous mount, make sure that the
1514 * link transaction goes to disk before returning to
1517 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1518 xfs_trans_set_sync(tp
);
1520 error
= xfs_bmap_finish(&tp
, &free_list
, NULL
);
1522 xfs_bmap_cancel(&free_list
);
1526 return xfs_trans_commit(tp
);
1529 xfs_trans_cancel(tp
);
1535 * Free up the underlying blocks past new_size. The new size must be smaller
1536 * than the current size. This routine can be used both for the attribute and
1537 * data fork, and does not modify the inode size, which is left to the caller.
1539 * The transaction passed to this routine must have made a permanent log
1540 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1541 * given transaction and start new ones, so make sure everything involved in
1542 * the transaction is tidy before calling here. Some transaction will be
1543 * returned to the caller to be committed. The incoming transaction must
1544 * already include the inode, and both inode locks must be held exclusively.
1545 * The inode must also be "held" within the transaction. On return the inode
1546 * will be "held" within the returned transaction. This routine does NOT
1547 * require any disk space to be reserved for it within the transaction.
1549 * If we get an error, we must return with the inode locked and linked into the
1550 * current transaction. This keeps things simple for the higher level code,
1551 * because it always knows that the inode is locked and held in the transaction
1552 * that returns to it whether errors occur or not. We don't mark the inode
1553 * dirty on error so that transactions can be easily aborted if possible.
1556 xfs_itruncate_extents(
1557 struct xfs_trans
**tpp
,
1558 struct xfs_inode
*ip
,
1560 xfs_fsize_t new_size
)
1562 struct xfs_mount
*mp
= ip
->i_mount
;
1563 struct xfs_trans
*tp
= *tpp
;
1564 xfs_bmap_free_t free_list
;
1565 xfs_fsblock_t first_block
;
1566 xfs_fileoff_t first_unmap_block
;
1567 xfs_fileoff_t last_block
;
1568 xfs_filblks_t unmap_len
;
1572 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
1573 ASSERT(!atomic_read(&VFS_I(ip
)->i_count
) ||
1574 xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1575 ASSERT(new_size
<= XFS_ISIZE(ip
));
1576 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1577 ASSERT(ip
->i_itemp
!= NULL
);
1578 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1579 ASSERT(!XFS_NOT_DQATTACHED(mp
, ip
));
1581 trace_xfs_itruncate_extents_start(ip
, new_size
);
1584 * Since it is possible for space to become allocated beyond
1585 * the end of the file (in a crash where the space is allocated
1586 * but the inode size is not yet updated), simply remove any
1587 * blocks which show up between the new EOF and the maximum
1588 * possible file size. If the first block to be removed is
1589 * beyond the maximum file size (ie it is the same as last_block),
1590 * then there is nothing to do.
1592 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1593 last_block
= XFS_B_TO_FSB(mp
, mp
->m_super
->s_maxbytes
);
1594 if (first_unmap_block
== last_block
)
1597 ASSERT(first_unmap_block
< last_block
);
1598 unmap_len
= last_block
- first_unmap_block
+ 1;
1600 xfs_bmap_init(&free_list
, &first_block
);
1601 error
= xfs_bunmapi(tp
, ip
,
1602 first_unmap_block
, unmap_len
,
1603 xfs_bmapi_aflag(whichfork
),
1604 XFS_ITRUNC_MAX_EXTENTS
,
1605 &first_block
, &free_list
,
1608 goto out_bmap_cancel
;
1611 * Duplicate the transaction that has the permanent
1612 * reservation and commit the old transaction.
1614 error
= xfs_bmap_finish(&tp
, &free_list
, ip
);
1616 goto out_bmap_cancel
;
1618 error
= xfs_trans_roll(&tp
, ip
);
1624 * Always re-log the inode so that our permanent transaction can keep
1625 * on rolling it forward in the log.
1627 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1629 trace_xfs_itruncate_extents_end(ip
, new_size
);
1636 * If the bunmapi call encounters an error, return to the caller where
1637 * the transaction can be properly aborted. We just need to make sure
1638 * we're not holding any resources that we were not when we came in.
1640 xfs_bmap_cancel(&free_list
);
1648 xfs_mount_t
*mp
= ip
->i_mount
;
1651 if (!S_ISREG(ip
->i_d
.di_mode
) || (ip
->i_d
.di_mode
== 0))
1654 /* If this is a read-only mount, don't do this (would generate I/O) */
1655 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1658 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1662 * If we previously truncated this file and removed old data
1663 * in the process, we want to initiate "early" writeout on
1664 * the last close. This is an attempt to combat the notorious
1665 * NULL files problem which is particularly noticeable from a
1666 * truncate down, buffered (re-)write (delalloc), followed by
1667 * a crash. What we are effectively doing here is
1668 * significantly reducing the time window where we'd otherwise
1669 * be exposed to that problem.
1671 truncated
= xfs_iflags_test_and_clear(ip
, XFS_ITRUNCATED
);
1673 xfs_iflags_clear(ip
, XFS_IDIRTY_RELEASE
);
1674 if (ip
->i_delayed_blks
> 0) {
1675 error
= filemap_flush(VFS_I(ip
)->i_mapping
);
1682 if (ip
->i_d
.di_nlink
== 0)
1685 if (xfs_can_free_eofblocks(ip
, false)) {
1688 * If we can't get the iolock just skip truncating the blocks
1689 * past EOF because we could deadlock with the mmap_sem
1690 * otherwise. We'll get another chance to drop them once the
1691 * last reference to the inode is dropped, so we'll never leak
1692 * blocks permanently.
1694 * Further, check if the inode is being opened, written and
1695 * closed frequently and we have delayed allocation blocks
1696 * outstanding (e.g. streaming writes from the NFS server),
1697 * truncating the blocks past EOF will cause fragmentation to
1700 * In this case don't do the truncation, either, but we have to
1701 * be careful how we detect this case. Blocks beyond EOF show
1702 * up as i_delayed_blks even when the inode is clean, so we
1703 * need to truncate them away first before checking for a dirty
1704 * release. Hence on the first dirty close we will still remove
1705 * the speculative allocation, but after that we will leave it
1708 if (xfs_iflags_test(ip
, XFS_IDIRTY_RELEASE
))
1711 error
= xfs_free_eofblocks(mp
, ip
, true);
1712 if (error
&& error
!= -EAGAIN
)
1715 /* delalloc blocks after truncation means it really is dirty */
1716 if (ip
->i_delayed_blks
)
1717 xfs_iflags_set(ip
, XFS_IDIRTY_RELEASE
);
1723 * xfs_inactive_truncate
1725 * Called to perform a truncate when an inode becomes unlinked.
1728 xfs_inactive_truncate(
1729 struct xfs_inode
*ip
)
1731 struct xfs_mount
*mp
= ip
->i_mount
;
1732 struct xfs_trans
*tp
;
1735 tp
= xfs_trans_alloc(mp
, XFS_TRANS_INACTIVE
);
1736 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_itruncate
, 0, 0);
1738 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1739 xfs_trans_cancel(tp
);
1743 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1744 xfs_trans_ijoin(tp
, ip
, 0);
1747 * Log the inode size first to prevent stale data exposure in the event
1748 * of a system crash before the truncate completes. See the related
1749 * comment in xfs_setattr_size() for details.
1751 ip
->i_d
.di_size
= 0;
1752 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1754 error
= xfs_itruncate_extents(&tp
, ip
, XFS_DATA_FORK
, 0);
1756 goto error_trans_cancel
;
1758 ASSERT(ip
->i_d
.di_nextents
== 0);
1760 error
= xfs_trans_commit(tp
);
1764 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1768 xfs_trans_cancel(tp
);
1770 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1775 * xfs_inactive_ifree()
1777 * Perform the inode free when an inode is unlinked.
1781 struct xfs_inode
*ip
)
1783 xfs_bmap_free_t free_list
;
1784 xfs_fsblock_t first_block
;
1785 struct xfs_mount
*mp
= ip
->i_mount
;
1786 struct xfs_trans
*tp
;
1789 tp
= xfs_trans_alloc(mp
, XFS_TRANS_INACTIVE
);
1792 * The ifree transaction might need to allocate blocks for record
1793 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1794 * allow ifree to dip into the reserved block pool if necessary.
1796 * Freeing large sets of inodes generally means freeing inode chunks,
1797 * directory and file data blocks, so this should be relatively safe.
1798 * Only under severe circumstances should it be possible to free enough
1799 * inodes to exhaust the reserve block pool via finobt expansion while
1800 * at the same time not creating free space in the filesystem.
1802 * Send a warning if the reservation does happen to fail, as the inode
1803 * now remains allocated and sits on the unlinked list until the fs is
1806 tp
->t_flags
|= XFS_TRANS_RESERVE
;
1807 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_ifree
,
1808 XFS_IFREE_SPACE_RES(mp
), 0);
1810 if (error
== -ENOSPC
) {
1811 xfs_warn_ratelimited(mp
,
1812 "Failed to remove inode(s) from unlinked list. "
1813 "Please free space, unmount and run xfs_repair.");
1815 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1817 xfs_trans_cancel(tp
);
1821 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1822 xfs_trans_ijoin(tp
, ip
, 0);
1824 xfs_bmap_init(&free_list
, &first_block
);
1825 error
= xfs_ifree(tp
, ip
, &free_list
);
1828 * If we fail to free the inode, shut down. The cancel
1829 * might do that, we need to make sure. Otherwise the
1830 * inode might be lost for a long time or forever.
1832 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1833 xfs_notice(mp
, "%s: xfs_ifree returned error %d",
1835 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1837 xfs_trans_cancel(tp
);
1838 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1843 * Credit the quota account(s). The inode is gone.
1845 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_ICOUNT
, -1);
1848 * Just ignore errors at this point. There is nothing we can do except
1849 * to try to keep going. Make sure it's not a silent error.
1851 error
= xfs_bmap_finish(&tp
, &free_list
, NULL
);
1853 xfs_notice(mp
, "%s: xfs_bmap_finish returned error %d",
1855 xfs_bmap_cancel(&free_list
);
1857 error
= xfs_trans_commit(tp
);
1859 xfs_notice(mp
, "%s: xfs_trans_commit returned error %d",
1862 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1869 * This is called when the vnode reference count for the vnode
1870 * goes to zero. If the file has been unlinked, then it must
1871 * now be truncated. Also, we clear all of the read-ahead state
1872 * kept for the inode here since the file is now closed.
1878 struct xfs_mount
*mp
;
1883 * If the inode is already free, then there can be nothing
1886 if (ip
->i_d
.di_mode
== 0) {
1887 ASSERT(ip
->i_df
.if_real_bytes
== 0);
1888 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
1894 /* If this is a read-only mount, don't do this (would generate I/O) */
1895 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1898 if (ip
->i_d
.di_nlink
!= 0) {
1900 * force is true because we are evicting an inode from the
1901 * cache. Post-eof blocks must be freed, lest we end up with
1902 * broken free space accounting.
1904 if (xfs_can_free_eofblocks(ip
, true))
1905 xfs_free_eofblocks(mp
, ip
, false);
1910 if (S_ISREG(ip
->i_d
.di_mode
) &&
1911 (ip
->i_d
.di_size
!= 0 || XFS_ISIZE(ip
) != 0 ||
1912 ip
->i_d
.di_nextents
> 0 || ip
->i_delayed_blks
> 0))
1915 error
= xfs_qm_dqattach(ip
, 0);
1919 if (S_ISLNK(ip
->i_d
.di_mode
))
1920 error
= xfs_inactive_symlink(ip
);
1922 error
= xfs_inactive_truncate(ip
);
1927 * If there are attributes associated with the file then blow them away
1928 * now. The code calls a routine that recursively deconstructs the
1929 * attribute fork. If also blows away the in-core attribute fork.
1931 if (XFS_IFORK_Q(ip
)) {
1932 error
= xfs_attr_inactive(ip
);
1938 ASSERT(ip
->i_d
.di_anextents
== 0);
1939 ASSERT(ip
->i_d
.di_forkoff
== 0);
1944 error
= xfs_inactive_ifree(ip
);
1949 * Release the dquots held by inode, if any.
1951 xfs_qm_dqdetach(ip
);
1955 * This is called when the inode's link count goes to 0.
1956 * We place the on-disk inode on a list in the AGI. It
1957 * will be pulled from this list when the inode is freed.
1974 ASSERT(ip
->i_d
.di_nlink
== 0);
1975 ASSERT(ip
->i_d
.di_mode
!= 0);
1980 * Get the agi buffer first. It ensures lock ordering
1983 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1986 agi
= XFS_BUF_TO_AGI(agibp
);
1989 * Get the index into the agi hash table for the
1990 * list this inode will go on.
1992 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1994 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1995 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1996 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1998 if (agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
)) {
2000 * There is already another inode in the bucket we need
2001 * to add ourselves to. Add us at the front of the list.
2002 * Here we put the head pointer into our next pointer,
2003 * and then we fall through to point the head at us.
2005 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2010 ASSERT(dip
->di_next_unlinked
== cpu_to_be32(NULLAGINO
));
2011 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
2012 offset
= ip
->i_imap
.im_boffset
+
2013 offsetof(xfs_dinode_t
, di_next_unlinked
);
2015 /* need to recalc the inode CRC if appropriate */
2016 xfs_dinode_calc_crc(mp
, dip
);
2018 xfs_trans_inode_buf(tp
, ibp
);
2019 xfs_trans_log_buf(tp
, ibp
, offset
,
2020 (offset
+ sizeof(xfs_agino_t
) - 1));
2021 xfs_inobp_check(mp
, ibp
);
2025 * Point the bucket head pointer at the inode being inserted.
2028 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
2029 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2030 (sizeof(xfs_agino_t
) * bucket_index
);
2031 xfs_trans_buf_set_type(tp
, agibp
, XFS_BLFT_AGI_BUF
);
2032 xfs_trans_log_buf(tp
, agibp
, offset
,
2033 (offset
+ sizeof(xfs_agino_t
) - 1));
2038 * Pull the on-disk inode from the AGI unlinked list.
2051 xfs_agnumber_t agno
;
2053 xfs_agino_t next_agino
;
2054 xfs_buf_t
*last_ibp
;
2055 xfs_dinode_t
*last_dip
= NULL
;
2057 int offset
, last_offset
= 0;
2061 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
2064 * Get the agi buffer first. It ensures lock ordering
2067 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
2071 agi
= XFS_BUF_TO_AGI(agibp
);
2074 * Get the index into the agi hash table for the
2075 * list this inode will go on.
2077 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2079 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2080 ASSERT(agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
));
2081 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2083 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
2085 * We're at the head of the list. Get the inode's on-disk
2086 * buffer to see if there is anyone after us on the list.
2087 * Only modify our next pointer if it is not already NULLAGINO.
2088 * This saves us the overhead of dealing with the buffer when
2089 * there is no need to change it.
2091 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2094 xfs_warn(mp
, "%s: xfs_imap_to_bp returned error %d.",
2098 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2099 ASSERT(next_agino
!= 0);
2100 if (next_agino
!= NULLAGINO
) {
2101 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2102 offset
= ip
->i_imap
.im_boffset
+
2103 offsetof(xfs_dinode_t
, di_next_unlinked
);
2105 /* need to recalc the inode CRC if appropriate */
2106 xfs_dinode_calc_crc(mp
, dip
);
2108 xfs_trans_inode_buf(tp
, ibp
);
2109 xfs_trans_log_buf(tp
, ibp
, offset
,
2110 (offset
+ sizeof(xfs_agino_t
) - 1));
2111 xfs_inobp_check(mp
, ibp
);
2113 xfs_trans_brelse(tp
, ibp
);
2116 * Point the bucket head pointer at the next inode.
2118 ASSERT(next_agino
!= 0);
2119 ASSERT(next_agino
!= agino
);
2120 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2121 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2122 (sizeof(xfs_agino_t
) * bucket_index
);
2123 xfs_trans_buf_set_type(tp
, agibp
, XFS_BLFT_AGI_BUF
);
2124 xfs_trans_log_buf(tp
, agibp
, offset
,
2125 (offset
+ sizeof(xfs_agino_t
) - 1));
2128 * We need to search the list for the inode being freed.
2130 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2132 while (next_agino
!= agino
) {
2133 struct xfs_imap imap
;
2136 xfs_trans_brelse(tp
, last_ibp
);
2139 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2141 error
= xfs_imap(mp
, tp
, next_ino
, &imap
, 0);
2144 "%s: xfs_imap returned error %d.",
2149 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &last_dip
,
2153 "%s: xfs_imap_to_bp returned error %d.",
2158 last_offset
= imap
.im_boffset
;
2159 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
2160 ASSERT(next_agino
!= NULLAGINO
);
2161 ASSERT(next_agino
!= 0);
2165 * Now last_ibp points to the buffer previous to us on the
2166 * unlinked list. Pull us from the list.
2168 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2171 xfs_warn(mp
, "%s: xfs_imap_to_bp(2) returned error %d.",
2175 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2176 ASSERT(next_agino
!= 0);
2177 ASSERT(next_agino
!= agino
);
2178 if (next_agino
!= NULLAGINO
) {
2179 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2180 offset
= ip
->i_imap
.im_boffset
+
2181 offsetof(xfs_dinode_t
, di_next_unlinked
);
2183 /* need to recalc the inode CRC if appropriate */
2184 xfs_dinode_calc_crc(mp
, dip
);
2186 xfs_trans_inode_buf(tp
, ibp
);
2187 xfs_trans_log_buf(tp
, ibp
, offset
,
2188 (offset
+ sizeof(xfs_agino_t
) - 1));
2189 xfs_inobp_check(mp
, ibp
);
2191 xfs_trans_brelse(tp
, ibp
);
2194 * Point the previous inode on the list to the next inode.
2196 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
2197 ASSERT(next_agino
!= 0);
2198 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2200 /* need to recalc the inode CRC if appropriate */
2201 xfs_dinode_calc_crc(mp
, last_dip
);
2203 xfs_trans_inode_buf(tp
, last_ibp
);
2204 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2205 (offset
+ sizeof(xfs_agino_t
) - 1));
2206 xfs_inobp_check(mp
, last_ibp
);
2212 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2213 * inodes that are in memory - they all must be marked stale and attached to
2214 * the cluster buffer.
2218 xfs_inode_t
*free_ip
,
2220 struct xfs_icluster
*xic
)
2222 xfs_mount_t
*mp
= free_ip
->i_mount
;
2223 int blks_per_cluster
;
2224 int inodes_per_cluster
;
2231 xfs_inode_log_item_t
*iip
;
2232 xfs_log_item_t
*lip
;
2233 struct xfs_perag
*pag
;
2236 inum
= xic
->first_ino
;
2237 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
2238 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
2239 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
2240 nbufs
= mp
->m_ialloc_blks
/ blks_per_cluster
;
2242 for (j
= 0; j
< nbufs
; j
++, inum
+= inodes_per_cluster
) {
2244 * The allocation bitmap tells us which inodes of the chunk were
2245 * physically allocated. Skip the cluster if an inode falls into
2248 ioffset
= inum
- xic
->first_ino
;
2249 if ((xic
->alloc
& XFS_INOBT_MASK(ioffset
)) == 0) {
2250 ASSERT(do_mod(ioffset
, inodes_per_cluster
) == 0);
2254 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2255 XFS_INO_TO_AGBNO(mp
, inum
));
2258 * We obtain and lock the backing buffer first in the process
2259 * here, as we have to ensure that any dirty inode that we
2260 * can't get the flush lock on is attached to the buffer.
2261 * If we scan the in-memory inodes first, then buffer IO can
2262 * complete before we get a lock on it, and hence we may fail
2263 * to mark all the active inodes on the buffer stale.
2265 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2266 mp
->m_bsize
* blks_per_cluster
,
2273 * This buffer may not have been correctly initialised as we
2274 * didn't read it from disk. That's not important because we are
2275 * only using to mark the buffer as stale in the log, and to
2276 * attach stale cached inodes on it. That means it will never be
2277 * dispatched for IO. If it is, we want to know about it, and we
2278 * want it to fail. We can acheive this by adding a write
2279 * verifier to the buffer.
2281 bp
->b_ops
= &xfs_inode_buf_ops
;
2284 * Walk the inodes already attached to the buffer and mark them
2285 * stale. These will all have the flush locks held, so an
2286 * in-memory inode walk can't lock them. By marking them all
2287 * stale first, we will not attempt to lock them in the loop
2288 * below as the XFS_ISTALE flag will be set.
2292 if (lip
->li_type
== XFS_LI_INODE
) {
2293 iip
= (xfs_inode_log_item_t
*)lip
;
2294 ASSERT(iip
->ili_logged
== 1);
2295 lip
->li_cb
= xfs_istale_done
;
2296 xfs_trans_ail_copy_lsn(mp
->m_ail
,
2297 &iip
->ili_flush_lsn
,
2298 &iip
->ili_item
.li_lsn
);
2299 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2301 lip
= lip
->li_bio_list
;
2306 * For each inode in memory attempt to add it to the inode
2307 * buffer and set it up for being staled on buffer IO
2308 * completion. This is safe as we've locked out tail pushing
2309 * and flushing by locking the buffer.
2311 * We have already marked every inode that was part of a
2312 * transaction stale above, which means there is no point in
2313 * even trying to lock them.
2315 for (i
= 0; i
< inodes_per_cluster
; i
++) {
2318 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2319 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2321 /* Inode not in memory, nothing to do */
2328 * because this is an RCU protected lookup, we could
2329 * find a recently freed or even reallocated inode
2330 * during the lookup. We need to check under the
2331 * i_flags_lock for a valid inode here. Skip it if it
2332 * is not valid, the wrong inode or stale.
2334 spin_lock(&ip
->i_flags_lock
);
2335 if (ip
->i_ino
!= inum
+ i
||
2336 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
2337 spin_unlock(&ip
->i_flags_lock
);
2341 spin_unlock(&ip
->i_flags_lock
);
2344 * Don't try to lock/unlock the current inode, but we
2345 * _cannot_ skip the other inodes that we did not find
2346 * in the list attached to the buffer and are not
2347 * already marked stale. If we can't lock it, back off
2350 if (ip
!= free_ip
&&
2351 !xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2359 xfs_iflags_set(ip
, XFS_ISTALE
);
2362 * we don't need to attach clean inodes or those only
2363 * with unlogged changes (which we throw away, anyway).
2366 if (!iip
|| xfs_inode_clean(ip
)) {
2367 ASSERT(ip
!= free_ip
);
2369 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2373 iip
->ili_last_fields
= iip
->ili_fields
;
2374 iip
->ili_fields
= 0;
2375 iip
->ili_fsync_fields
= 0;
2376 iip
->ili_logged
= 1;
2377 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2378 &iip
->ili_item
.li_lsn
);
2380 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
2384 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2387 xfs_trans_stale_inode_buf(tp
, bp
);
2388 xfs_trans_binval(tp
, bp
);
2396 * This is called to return an inode to the inode free list.
2397 * The inode should already be truncated to 0 length and have
2398 * no pages associated with it. This routine also assumes that
2399 * the inode is already a part of the transaction.
2401 * The on-disk copy of the inode will have been added to the list
2402 * of unlinked inodes in the AGI. We need to remove the inode from
2403 * that list atomically with respect to freeing it here.
2409 xfs_bmap_free_t
*flist
)
2412 struct xfs_icluster xic
= { 0 };
2414 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2415 ASSERT(ip
->i_d
.di_nlink
== 0);
2416 ASSERT(ip
->i_d
.di_nextents
== 0);
2417 ASSERT(ip
->i_d
.di_anextents
== 0);
2418 ASSERT(ip
->i_d
.di_size
== 0 || !S_ISREG(ip
->i_d
.di_mode
));
2419 ASSERT(ip
->i_d
.di_nblocks
== 0);
2422 * Pull the on-disk inode from the AGI unlinked list.
2424 error
= xfs_iunlink_remove(tp
, ip
);
2428 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &xic
);
2432 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2433 ip
->i_d
.di_flags
= 0;
2434 ip
->i_d
.di_dmevmask
= 0;
2435 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2436 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2437 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2439 * Bump the generation count so no one will be confused
2440 * by reincarnations of this inode.
2443 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2446 error
= xfs_ifree_cluster(ip
, tp
, &xic
);
2452 * This is called to unpin an inode. The caller must have the inode locked
2453 * in at least shared mode so that the buffer cannot be subsequently pinned
2454 * once someone is waiting for it to be unpinned.
2458 struct xfs_inode
*ip
)
2460 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2462 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2464 /* Give the log a push to start the unpinning I/O */
2465 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2471 struct xfs_inode
*ip
)
2473 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IPINNED_BIT
);
2474 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IPINNED_BIT
);
2479 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2480 if (xfs_ipincount(ip
))
2482 } while (xfs_ipincount(ip
));
2483 finish_wait(wq
, &wait
.wait
);
2488 struct xfs_inode
*ip
)
2490 if (xfs_ipincount(ip
))
2491 __xfs_iunpin_wait(ip
);
2495 * Removing an inode from the namespace involves removing the directory entry
2496 * and dropping the link count on the inode. Removing the directory entry can
2497 * result in locking an AGF (directory blocks were freed) and removing a link
2498 * count can result in placing the inode on an unlinked list which results in
2501 * The big problem here is that we have an ordering constraint on AGF and AGI
2502 * locking - inode allocation locks the AGI, then can allocate a new extent for
2503 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2504 * removes the inode from the unlinked list, requiring that we lock the AGI
2505 * first, and then freeing the inode can result in an inode chunk being freed
2506 * and hence freeing disk space requiring that we lock an AGF.
2508 * Hence the ordering that is imposed by other parts of the code is AGI before
2509 * AGF. This means we cannot remove the directory entry before we drop the inode
2510 * reference count and put it on the unlinked list as this results in a lock
2511 * order of AGF then AGI, and this can deadlock against inode allocation and
2512 * freeing. Therefore we must drop the link counts before we remove the
2515 * This is still safe from a transactional point of view - it is not until we
2516 * get to xfs_bmap_finish() that we have the possibility of multiple
2517 * transactions in this operation. Hence as long as we remove the directory
2518 * entry and drop the link count in the first transaction of the remove
2519 * operation, there are no transactional constraints on the ordering here.
2524 struct xfs_name
*name
,
2527 xfs_mount_t
*mp
= dp
->i_mount
;
2528 xfs_trans_t
*tp
= NULL
;
2529 int is_dir
= S_ISDIR(ip
->i_d
.di_mode
);
2531 xfs_bmap_free_t free_list
;
2532 xfs_fsblock_t first_block
;
2535 trace_xfs_remove(dp
, name
);
2537 if (XFS_FORCED_SHUTDOWN(mp
))
2540 error
= xfs_qm_dqattach(dp
, 0);
2544 error
= xfs_qm_dqattach(ip
, 0);
2549 tp
= xfs_trans_alloc(mp
, XFS_TRANS_RMDIR
);
2551 tp
= xfs_trans_alloc(mp
, XFS_TRANS_REMOVE
);
2554 * We try to get the real space reservation first,
2555 * allowing for directory btree deletion(s) implying
2556 * possible bmap insert(s). If we can't get the space
2557 * reservation then we use 0 instead, and avoid the bmap
2558 * btree insert(s) in the directory code by, if the bmap
2559 * insert tries to happen, instead trimming the LAST
2560 * block from the directory.
2562 resblks
= XFS_REMOVE_SPACE_RES(mp
);
2563 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_remove
, resblks
, 0);
2564 if (error
== -ENOSPC
) {
2566 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_remove
, 0, 0);
2569 ASSERT(error
!= -ENOSPC
);
2570 goto out_trans_cancel
;
2573 xfs_ilock(dp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2574 xfs_lock_two_inodes(dp
, ip
, XFS_ILOCK_EXCL
);
2576 xfs_trans_ijoin(tp
, dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2577 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
2580 * If we're removing a directory perform some additional validation.
2583 ASSERT(ip
->i_d
.di_nlink
>= 2);
2584 if (ip
->i_d
.di_nlink
!= 2) {
2586 goto out_trans_cancel
;
2588 if (!xfs_dir_isempty(ip
)) {
2590 goto out_trans_cancel
;
2593 /* Drop the link from ip's "..". */
2594 error
= xfs_droplink(tp
, dp
);
2596 goto out_trans_cancel
;
2598 /* Drop the "." link from ip to self. */
2599 error
= xfs_droplink(tp
, ip
);
2601 goto out_trans_cancel
;
2604 * When removing a non-directory we need to log the parent
2605 * inode here. For a directory this is done implicitly
2606 * by the xfs_droplink call for the ".." entry.
2608 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
2610 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2612 /* Drop the link from dp to ip. */
2613 error
= xfs_droplink(tp
, ip
);
2615 goto out_trans_cancel
;
2617 xfs_bmap_init(&free_list
, &first_block
);
2618 error
= xfs_dir_removename(tp
, dp
, name
, ip
->i_ino
,
2619 &first_block
, &free_list
, resblks
);
2621 ASSERT(error
!= -ENOENT
);
2622 goto out_bmap_cancel
;
2626 * If this is a synchronous mount, make sure that the
2627 * remove transaction goes to disk before returning to
2630 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2631 xfs_trans_set_sync(tp
);
2633 error
= xfs_bmap_finish(&tp
, &free_list
, NULL
);
2635 goto out_bmap_cancel
;
2637 error
= xfs_trans_commit(tp
);
2641 if (is_dir
&& xfs_inode_is_filestream(ip
))
2642 xfs_filestream_deassociate(ip
);
2647 xfs_bmap_cancel(&free_list
);
2649 xfs_trans_cancel(tp
);
2655 * Enter all inodes for a rename transaction into a sorted array.
2657 #define __XFS_SORT_INODES 5
2659 xfs_sort_for_rename(
2660 struct xfs_inode
*dp1
, /* in: old (source) directory inode */
2661 struct xfs_inode
*dp2
, /* in: new (target) directory inode */
2662 struct xfs_inode
*ip1
, /* in: inode of old entry */
2663 struct xfs_inode
*ip2
, /* in: inode of new entry */
2664 struct xfs_inode
*wip
, /* in: whiteout inode */
2665 struct xfs_inode
**i_tab
,/* out: sorted array of inodes */
2666 int *num_inodes
) /* in/out: inodes in array */
2670 ASSERT(*num_inodes
== __XFS_SORT_INODES
);
2671 memset(i_tab
, 0, *num_inodes
* sizeof(struct xfs_inode
*));
2674 * i_tab contains a list of pointers to inodes. We initialize
2675 * the table here & we'll sort it. We will then use it to
2676 * order the acquisition of the inode locks.
2678 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2691 * Sort the elements via bubble sort. (Remember, there are at
2692 * most 5 elements to sort, so this is adequate.)
2694 for (i
= 0; i
< *num_inodes
; i
++) {
2695 for (j
= 1; j
< *num_inodes
; j
++) {
2696 if (i_tab
[j
]->i_ino
< i_tab
[j
-1]->i_ino
) {
2697 struct xfs_inode
*temp
= i_tab
[j
];
2698 i_tab
[j
] = i_tab
[j
-1];
2707 struct xfs_trans
*tp
,
2708 struct xfs_bmap_free
*free_list
)
2713 * If this is a synchronous mount, make sure that the rename transaction
2714 * goes to disk before returning to the user.
2716 if (tp
->t_mountp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2717 xfs_trans_set_sync(tp
);
2719 error
= xfs_bmap_finish(&tp
, free_list
, NULL
);
2721 xfs_bmap_cancel(free_list
);
2722 xfs_trans_cancel(tp
);
2726 return xfs_trans_commit(tp
);
2730 * xfs_cross_rename()
2732 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2736 struct xfs_trans
*tp
,
2737 struct xfs_inode
*dp1
,
2738 struct xfs_name
*name1
,
2739 struct xfs_inode
*ip1
,
2740 struct xfs_inode
*dp2
,
2741 struct xfs_name
*name2
,
2742 struct xfs_inode
*ip2
,
2743 struct xfs_bmap_free
*free_list
,
2744 xfs_fsblock_t
*first_block
,
2752 /* Swap inode number for dirent in first parent */
2753 error
= xfs_dir_replace(tp
, dp1
, name1
,
2755 first_block
, free_list
, spaceres
);
2757 goto out_trans_abort
;
2759 /* Swap inode number for dirent in second parent */
2760 error
= xfs_dir_replace(tp
, dp2
, name2
,
2762 first_block
, free_list
, spaceres
);
2764 goto out_trans_abort
;
2767 * If we're renaming one or more directories across different parents,
2768 * update the respective ".." entries (and link counts) to match the new
2772 dp2_flags
= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2774 if (S_ISDIR(ip2
->i_d
.di_mode
)) {
2775 error
= xfs_dir_replace(tp
, ip2
, &xfs_name_dotdot
,
2776 dp1
->i_ino
, first_block
,
2777 free_list
, spaceres
);
2779 goto out_trans_abort
;
2781 /* transfer ip2 ".." reference to dp1 */
2782 if (!S_ISDIR(ip1
->i_d
.di_mode
)) {
2783 error
= xfs_droplink(tp
, dp2
);
2785 goto out_trans_abort
;
2786 error
= xfs_bumplink(tp
, dp1
);
2788 goto out_trans_abort
;
2792 * Although ip1 isn't changed here, userspace needs
2793 * to be warned about the change, so that applications
2794 * relying on it (like backup ones), will properly
2797 ip1_flags
|= XFS_ICHGTIME_CHG
;
2798 ip2_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2801 if (S_ISDIR(ip1
->i_d
.di_mode
)) {
2802 error
= xfs_dir_replace(tp
, ip1
, &xfs_name_dotdot
,
2803 dp2
->i_ino
, first_block
,
2804 free_list
, spaceres
);
2806 goto out_trans_abort
;
2808 /* transfer ip1 ".." reference to dp2 */
2809 if (!S_ISDIR(ip2
->i_d
.di_mode
)) {
2810 error
= xfs_droplink(tp
, dp1
);
2812 goto out_trans_abort
;
2813 error
= xfs_bumplink(tp
, dp2
);
2815 goto out_trans_abort
;
2819 * Although ip2 isn't changed here, userspace needs
2820 * to be warned about the change, so that applications
2821 * relying on it (like backup ones), will properly
2824 ip1_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2825 ip2_flags
|= XFS_ICHGTIME_CHG
;
2830 xfs_trans_ichgtime(tp
, ip1
, ip1_flags
);
2831 xfs_trans_log_inode(tp
, ip1
, XFS_ILOG_CORE
);
2834 xfs_trans_ichgtime(tp
, ip2
, ip2_flags
);
2835 xfs_trans_log_inode(tp
, ip2
, XFS_ILOG_CORE
);
2838 xfs_trans_ichgtime(tp
, dp2
, dp2_flags
);
2839 xfs_trans_log_inode(tp
, dp2
, XFS_ILOG_CORE
);
2841 xfs_trans_ichgtime(tp
, dp1
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2842 xfs_trans_log_inode(tp
, dp1
, XFS_ILOG_CORE
);
2843 return xfs_finish_rename(tp
, free_list
);
2846 xfs_bmap_cancel(free_list
);
2847 xfs_trans_cancel(tp
);
2852 * xfs_rename_alloc_whiteout()
2854 * Return a referenced, unlinked, unlocked inode that that can be used as a
2855 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2856 * crash between allocating the inode and linking it into the rename transaction
2857 * recovery will free the inode and we won't leak it.
2860 xfs_rename_alloc_whiteout(
2861 struct xfs_inode
*dp
,
2862 struct xfs_inode
**wip
)
2864 struct xfs_inode
*tmpfile
;
2867 error
= xfs_create_tmpfile(dp
, NULL
, S_IFCHR
| WHITEOUT_MODE
, &tmpfile
);
2872 * Prepare the tmpfile inode as if it were created through the VFS.
2873 * Otherwise, the link increment paths will complain about nlink 0->1.
2874 * Drop the link count as done by d_tmpfile(), complete the inode setup
2875 * and flag it as linkable.
2877 drop_nlink(VFS_I(tmpfile
));
2878 xfs_finish_inode_setup(tmpfile
);
2879 VFS_I(tmpfile
)->i_state
|= I_LINKABLE
;
2890 struct xfs_inode
*src_dp
,
2891 struct xfs_name
*src_name
,
2892 struct xfs_inode
*src_ip
,
2893 struct xfs_inode
*target_dp
,
2894 struct xfs_name
*target_name
,
2895 struct xfs_inode
*target_ip
,
2898 struct xfs_mount
*mp
= src_dp
->i_mount
;
2899 struct xfs_trans
*tp
;
2900 struct xfs_bmap_free free_list
;
2901 xfs_fsblock_t first_block
;
2902 struct xfs_inode
*wip
= NULL
; /* whiteout inode */
2903 struct xfs_inode
*inodes
[__XFS_SORT_INODES
];
2904 int num_inodes
= __XFS_SORT_INODES
;
2905 bool new_parent
= (src_dp
!= target_dp
);
2906 bool src_is_directory
= S_ISDIR(src_ip
->i_d
.di_mode
);
2910 trace_xfs_rename(src_dp
, target_dp
, src_name
, target_name
);
2912 if ((flags
& RENAME_EXCHANGE
) && !target_ip
)
2916 * If we are doing a whiteout operation, allocate the whiteout inode
2917 * we will be placing at the target and ensure the type is set
2920 if (flags
& RENAME_WHITEOUT
) {
2921 ASSERT(!(flags
& (RENAME_NOREPLACE
| RENAME_EXCHANGE
)));
2922 error
= xfs_rename_alloc_whiteout(target_dp
, &wip
);
2926 /* setup target dirent info as whiteout */
2927 src_name
->type
= XFS_DIR3_FT_CHRDEV
;
2930 xfs_sort_for_rename(src_dp
, target_dp
, src_ip
, target_ip
, wip
,
2931 inodes
, &num_inodes
);
2933 tp
= xfs_trans_alloc(mp
, XFS_TRANS_RENAME
);
2934 spaceres
= XFS_RENAME_SPACE_RES(mp
, target_name
->len
);
2935 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_rename
, spaceres
, 0);
2936 if (error
== -ENOSPC
) {
2938 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_rename
, 0, 0);
2941 goto out_trans_cancel
;
2944 * Attach the dquots to the inodes
2946 error
= xfs_qm_vop_rename_dqattach(inodes
);
2948 goto out_trans_cancel
;
2951 * Lock all the participating inodes. Depending upon whether
2952 * the target_name exists in the target directory, and
2953 * whether the target directory is the same as the source
2954 * directory, we can lock from 2 to 4 inodes.
2957 xfs_ilock(src_dp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2959 xfs_lock_two_inodes(src_dp
, target_dp
,
2960 XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2962 xfs_lock_inodes(inodes
, num_inodes
, XFS_ILOCK_EXCL
);
2965 * Join all the inodes to the transaction. From this point on,
2966 * we can rely on either trans_commit or trans_cancel to unlock
2969 xfs_trans_ijoin(tp
, src_dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2971 xfs_trans_ijoin(tp
, target_dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2972 xfs_trans_ijoin(tp
, src_ip
, XFS_ILOCK_EXCL
);
2974 xfs_trans_ijoin(tp
, target_ip
, XFS_ILOCK_EXCL
);
2976 xfs_trans_ijoin(tp
, wip
, XFS_ILOCK_EXCL
);
2979 * If we are using project inheritance, we only allow renames
2980 * into our tree when the project IDs are the same; else the
2981 * tree quota mechanism would be circumvented.
2983 if (unlikely((target_dp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
2984 (xfs_get_projid(target_dp
) != xfs_get_projid(src_ip
)))) {
2986 goto out_trans_cancel
;
2989 xfs_bmap_init(&free_list
, &first_block
);
2991 /* RENAME_EXCHANGE is unique from here on. */
2992 if (flags
& RENAME_EXCHANGE
)
2993 return xfs_cross_rename(tp
, src_dp
, src_name
, src_ip
,
2994 target_dp
, target_name
, target_ip
,
2995 &free_list
, &first_block
, spaceres
);
2998 * Set up the target.
3000 if (target_ip
== NULL
) {
3002 * If there's no space reservation, check the entry will
3003 * fit before actually inserting it.
3006 error
= xfs_dir_canenter(tp
, target_dp
, target_name
);
3008 goto out_trans_cancel
;
3011 * If target does not exist and the rename crosses
3012 * directories, adjust the target directory link count
3013 * to account for the ".." reference from the new entry.
3015 error
= xfs_dir_createname(tp
, target_dp
, target_name
,
3016 src_ip
->i_ino
, &first_block
,
3017 &free_list
, spaceres
);
3019 goto out_bmap_cancel
;
3021 xfs_trans_ichgtime(tp
, target_dp
,
3022 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3024 if (new_parent
&& src_is_directory
) {
3025 error
= xfs_bumplink(tp
, target_dp
);
3027 goto out_bmap_cancel
;
3029 } else { /* target_ip != NULL */
3031 * If target exists and it's a directory, check that both
3032 * target and source are directories and that target can be
3033 * destroyed, or that neither is a directory.
3035 if (S_ISDIR(target_ip
->i_d
.di_mode
)) {
3037 * Make sure target dir is empty.
3039 if (!(xfs_dir_isempty(target_ip
)) ||
3040 (target_ip
->i_d
.di_nlink
> 2)) {
3042 goto out_trans_cancel
;
3047 * Link the source inode under the target name.
3048 * If the source inode is a directory and we are moving
3049 * it across directories, its ".." entry will be
3050 * inconsistent until we replace that down below.
3052 * In case there is already an entry with the same
3053 * name at the destination directory, remove it first.
3055 error
= xfs_dir_replace(tp
, target_dp
, target_name
,
3057 &first_block
, &free_list
, spaceres
);
3059 goto out_bmap_cancel
;
3061 xfs_trans_ichgtime(tp
, target_dp
,
3062 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3065 * Decrement the link count on the target since the target
3066 * dir no longer points to it.
3068 error
= xfs_droplink(tp
, target_ip
);
3070 goto out_bmap_cancel
;
3072 if (src_is_directory
) {
3074 * Drop the link from the old "." entry.
3076 error
= xfs_droplink(tp
, target_ip
);
3078 goto out_bmap_cancel
;
3080 } /* target_ip != NULL */
3083 * Remove the source.
3085 if (new_parent
&& src_is_directory
) {
3087 * Rewrite the ".." entry to point to the new
3090 error
= xfs_dir_replace(tp
, src_ip
, &xfs_name_dotdot
,
3092 &first_block
, &free_list
, spaceres
);
3093 ASSERT(error
!= -EEXIST
);
3095 goto out_bmap_cancel
;
3099 * We always want to hit the ctime on the source inode.
3101 * This isn't strictly required by the standards since the source
3102 * inode isn't really being changed, but old unix file systems did
3103 * it and some incremental backup programs won't work without it.
3105 xfs_trans_ichgtime(tp
, src_ip
, XFS_ICHGTIME_CHG
);
3106 xfs_trans_log_inode(tp
, src_ip
, XFS_ILOG_CORE
);
3109 * Adjust the link count on src_dp. This is necessary when
3110 * renaming a directory, either within one parent when
3111 * the target existed, or across two parent directories.
3113 if (src_is_directory
&& (new_parent
|| target_ip
!= NULL
)) {
3116 * Decrement link count on src_directory since the
3117 * entry that's moved no longer points to it.
3119 error
= xfs_droplink(tp
, src_dp
);
3121 goto out_bmap_cancel
;
3125 * For whiteouts, we only need to update the source dirent with the
3126 * inode number of the whiteout inode rather than removing it
3130 error
= xfs_dir_replace(tp
, src_dp
, src_name
, wip
->i_ino
,
3131 &first_block
, &free_list
, spaceres
);
3133 error
= xfs_dir_removename(tp
, src_dp
, src_name
, src_ip
->i_ino
,
3134 &first_block
, &free_list
, spaceres
);
3136 goto out_bmap_cancel
;
3139 * For whiteouts, we need to bump the link count on the whiteout inode.
3140 * This means that failures all the way up to this point leave the inode
3141 * on the unlinked list and so cleanup is a simple matter of dropping
3142 * the remaining reference to it. If we fail here after bumping the link
3143 * count, we're shutting down the filesystem so we'll never see the
3144 * intermediate state on disk.
3147 ASSERT(VFS_I(wip
)->i_nlink
== 0 && wip
->i_d
.di_nlink
== 0);
3148 error
= xfs_bumplink(tp
, wip
);
3150 goto out_bmap_cancel
;
3151 error
= xfs_iunlink_remove(tp
, wip
);
3153 goto out_bmap_cancel
;
3154 xfs_trans_log_inode(tp
, wip
, XFS_ILOG_CORE
);
3157 * Now we have a real link, clear the "I'm a tmpfile" state
3158 * flag from the inode so it doesn't accidentally get misused in
3161 VFS_I(wip
)->i_state
&= ~I_LINKABLE
;
3164 xfs_trans_ichgtime(tp
, src_dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3165 xfs_trans_log_inode(tp
, src_dp
, XFS_ILOG_CORE
);
3167 xfs_trans_log_inode(tp
, target_dp
, XFS_ILOG_CORE
);
3169 error
= xfs_finish_rename(tp
, &free_list
);
3175 xfs_bmap_cancel(&free_list
);
3177 xfs_trans_cancel(tp
);
3188 xfs_mount_t
*mp
= ip
->i_mount
;
3189 struct xfs_perag
*pag
;
3190 unsigned long first_index
, mask
;
3191 unsigned long inodes_per_cluster
;
3193 xfs_inode_t
**ilist
;
3200 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
3202 inodes_per_cluster
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
3203 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
3204 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
3208 mask
= ~(((mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
)) - 1);
3209 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
3211 /* really need a gang lookup range call here */
3212 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
3213 first_index
, inodes_per_cluster
);
3217 for (i
= 0; i
< nr_found
; i
++) {
3223 * because this is an RCU protected lookup, we could find a
3224 * recently freed or even reallocated inode during the lookup.
3225 * We need to check under the i_flags_lock for a valid inode
3226 * here. Skip it if it is not valid or the wrong inode.
3228 spin_lock(&ip
->i_flags_lock
);
3230 (XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
) {
3231 spin_unlock(&ip
->i_flags_lock
);
3234 spin_unlock(&ip
->i_flags_lock
);
3237 * Do an un-protected check to see if the inode is dirty and
3238 * is a candidate for flushing. These checks will be repeated
3239 * later after the appropriate locks are acquired.
3241 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
3245 * Try to get locks. If any are unavailable or it is pinned,
3246 * then this inode cannot be flushed and is skipped.
3249 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
3251 if (!xfs_iflock_nowait(iq
)) {
3252 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3255 if (xfs_ipincount(iq
)) {
3257 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3262 * arriving here means that this inode can be flushed. First
3263 * re-check that it's dirty before flushing.
3265 if (!xfs_inode_clean(iq
)) {
3267 error
= xfs_iflush_int(iq
, bp
);
3269 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3270 goto cluster_corrupt_out
;
3276 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3280 XFS_STATS_INC(mp
, xs_icluster_flushcnt
);
3281 XFS_STATS_ADD(mp
, xs_icluster_flushinode
, clcount
);
3292 cluster_corrupt_out
:
3294 * Corruption detected in the clustering loop. Invalidate the
3295 * inode buffer and shut down the filesystem.
3299 * Clean up the buffer. If it was delwri, just release it --
3300 * brelse can handle it with no problems. If not, shut down the
3301 * filesystem before releasing the buffer.
3303 bufwasdelwri
= (bp
->b_flags
& _XBF_DELWRI_Q
);
3307 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3309 if (!bufwasdelwri
) {
3311 * Just like incore_relse: if we have b_iodone functions,
3312 * mark the buffer as an error and call them. Otherwise
3313 * mark it as stale and brelse.
3318 xfs_buf_ioerror(bp
, -EIO
);
3327 * Unlocks the flush lock
3329 xfs_iflush_abort(iq
, false);
3332 return -EFSCORRUPTED
;
3336 * Flush dirty inode metadata into the backing buffer.
3338 * The caller must have the inode lock and the inode flush lock held. The
3339 * inode lock will still be held upon return to the caller, and the inode
3340 * flush lock will be released after the inode has reached the disk.
3342 * The caller must write out the buffer returned in *bpp and release it.
3346 struct xfs_inode
*ip
,
3347 struct xfs_buf
**bpp
)
3349 struct xfs_mount
*mp
= ip
->i_mount
;
3351 struct xfs_dinode
*dip
;
3354 XFS_STATS_INC(mp
, xs_iflush_count
);
3356 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3357 ASSERT(xfs_isiflocked(ip
));
3358 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3359 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3363 xfs_iunpin_wait(ip
);
3366 * For stale inodes we cannot rely on the backing buffer remaining
3367 * stale in cache for the remaining life of the stale inode and so
3368 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3369 * inodes below. We have to check this after ensuring the inode is
3370 * unpinned so that it is safe to reclaim the stale inode after the
3373 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
3379 * This may have been unpinned because the filesystem is shutting
3380 * down forcibly. If that's the case we must not write this inode
3381 * to disk, because the log record didn't make it to disk.
3383 * We also have to remove the log item from the AIL in this case,
3384 * as we wait for an empty AIL as part of the unmount process.
3386 if (XFS_FORCED_SHUTDOWN(mp
)) {
3392 * Get the buffer containing the on-disk inode.
3394 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &bp
, XBF_TRYLOCK
,
3402 * First flush out the inode that xfs_iflush was called with.
3404 error
= xfs_iflush_int(ip
, bp
);
3409 * If the buffer is pinned then push on the log now so we won't
3410 * get stuck waiting in the write for too long.
3412 if (xfs_buf_ispinned(bp
))
3413 xfs_log_force(mp
, 0);
3417 * see if other inodes can be gathered into this write
3419 error
= xfs_iflush_cluster(ip
, bp
);
3421 goto cluster_corrupt_out
;
3428 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3429 cluster_corrupt_out
:
3430 error
= -EFSCORRUPTED
;
3433 * Unlocks the flush lock
3435 xfs_iflush_abort(ip
, false);
3441 struct xfs_inode
*ip
,
3444 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
3445 struct xfs_dinode
*dip
;
3446 struct xfs_mount
*mp
= ip
->i_mount
;
3448 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3449 ASSERT(xfs_isiflocked(ip
));
3450 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3451 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3452 ASSERT(iip
!= NULL
&& iip
->ili_fields
!= 0);
3453 ASSERT(ip
->i_d
.di_version
> 1);
3455 /* set *dip = inode's place in the buffer */
3456 dip
= xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
3458 if (XFS_TEST_ERROR(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
),
3459 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3460 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3461 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3462 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
3465 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3466 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3467 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3468 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3469 __func__
, ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3472 if (S_ISREG(ip
->i_d
.di_mode
)) {
3474 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3475 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3476 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3477 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3478 "%s: Bad regular inode %Lu, ptr 0x%p",
3479 __func__
, ip
->i_ino
, ip
);
3482 } else if (S_ISDIR(ip
->i_d
.di_mode
)) {
3484 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3485 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3486 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3487 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3488 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3489 "%s: Bad directory inode %Lu, ptr 0x%p",
3490 __func__
, ip
->i_ino
, ip
);
3494 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3495 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3496 XFS_RANDOM_IFLUSH_5
)) {
3497 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3498 "%s: detected corrupt incore inode %Lu, "
3499 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3500 __func__
, ip
->i_ino
,
3501 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3502 ip
->i_d
.di_nblocks
, ip
);
3505 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3506 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3507 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3508 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3509 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3514 * Inode item log recovery for v2 inodes are dependent on the
3515 * di_flushiter count for correct sequencing. We bump the flush
3516 * iteration count so we can detect flushes which postdate a log record
3517 * during recovery. This is redundant as we now log every change and
3518 * hence this can't happen but we need to still do it to ensure
3519 * backwards compatibility with old kernels that predate logging all
3522 if (ip
->i_d
.di_version
< 3)
3523 ip
->i_d
.di_flushiter
++;
3526 * Copy the dirty parts of the inode into the on-disk
3527 * inode. We always copy out the core of the inode,
3528 * because if the inode is dirty at all the core must
3531 xfs_dinode_to_disk(dip
, &ip
->i_d
);
3533 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3534 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3535 ip
->i_d
.di_flushiter
= 0;
3537 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
);
3538 if (XFS_IFORK_Q(ip
))
3539 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
);
3540 xfs_inobp_check(mp
, bp
);
3543 * We've recorded everything logged in the inode, so we'd like to clear
3544 * the ili_fields bits so we don't log and flush things unnecessarily.
3545 * However, we can't stop logging all this information until the data
3546 * we've copied into the disk buffer is written to disk. If we did we
3547 * might overwrite the copy of the inode in the log with all the data
3548 * after re-logging only part of it, and in the face of a crash we
3549 * wouldn't have all the data we need to recover.
3551 * What we do is move the bits to the ili_last_fields field. When
3552 * logging the inode, these bits are moved back to the ili_fields field.
3553 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3554 * know that the information those bits represent is permanently on
3555 * disk. As long as the flush completes before the inode is logged
3556 * again, then both ili_fields and ili_last_fields will be cleared.
3558 * We can play with the ili_fields bits here, because the inode lock
3559 * must be held exclusively in order to set bits there and the flush
3560 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3561 * done routine can tell whether or not to look in the AIL. Also, store
3562 * the current LSN of the inode so that we can tell whether the item has
3563 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3564 * need the AIL lock, because it is a 64 bit value that cannot be read
3567 iip
->ili_last_fields
= iip
->ili_fields
;
3568 iip
->ili_fields
= 0;
3569 iip
->ili_fsync_fields
= 0;
3570 iip
->ili_logged
= 1;
3572 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3573 &iip
->ili_item
.li_lsn
);
3576 * Attach the function xfs_iflush_done to the inode's
3577 * buffer. This will remove the inode from the AIL
3578 * and unlock the inode's flush lock when the inode is
3579 * completely written to disk.
3581 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
3583 /* update the lsn in the on disk inode if required */
3584 if (ip
->i_d
.di_version
== 3)
3585 dip
->di_lsn
= cpu_to_be64(iip
->ili_item
.li_lsn
);
3587 /* generate the checksum. */
3588 xfs_dinode_calc_crc(mp
, dip
);
3590 ASSERT(bp
->b_fspriv
!= NULL
);
3591 ASSERT(bp
->b_iodone
!= NULL
);
3595 return -EFSCORRUPTED
;