2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
29 * ratelimit state to be used in DMXXX_LIMIT().
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state
,
32 DEFAULT_RATELIMIT_INTERVAL
,
33 DEFAULT_RATELIMIT_BURST
);
34 EXPORT_SYMBOL(dm_ratelimit_state
);
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
44 static const char *_name
= DM_NAME
;
46 static unsigned int major
= 0;
47 static unsigned int _major
= 0;
49 static DEFINE_IDR(_minor_idr
);
51 static DEFINE_SPINLOCK(_minor_lock
);
54 * One of these is allocated per bio.
57 struct mapped_device
*md
;
61 unsigned long start_time
;
62 spinlock_t endio_lock
;
66 * For request-based dm.
67 * One of these is allocated per request.
69 struct dm_rq_target_io
{
70 struct mapped_device
*md
;
72 struct request
*orig
, clone
;
78 * For request-based dm - the bio clones we allocate are embedded in these
81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82 * the bioset is created - this means the bio has to come at the end of the
85 struct dm_rq_clone_bio_info
{
87 struct dm_rq_target_io
*tio
;
91 union map_info
*dm_get_mapinfo(struct bio
*bio
)
93 if (bio
&& bio
->bi_private
)
94 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
98 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
100 if (rq
&& rq
->end_io_data
)
101 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
106 #define MINOR_ALLOCED ((void *)-1)
109 * Bits for the md->flags field.
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
120 * Work processed by per-device workqueue.
122 struct mapped_device
{
123 struct rw_semaphore io_lock
;
124 struct mutex suspend_lock
;
131 struct request_queue
*queue
;
133 /* Protect queue and type against concurrent access. */
134 struct mutex type_lock
;
136 struct target_type
*immutable_target_type
;
138 struct gendisk
*disk
;
144 * A list of ios that arrived while we were suspended.
147 wait_queue_head_t wait
;
148 struct work_struct work
;
149 struct bio_list deferred
;
150 spinlock_t deferred_lock
;
153 * Processing queue (flush)
155 struct workqueue_struct
*wq
;
158 * The current mapping.
160 struct dm_table
*map
;
163 * io objects are allocated from here.
173 wait_queue_head_t eventq
;
175 struct list_head uevent_list
;
176 spinlock_t uevent_lock
; /* Protect access to uevent_list */
179 * freeze/thaw support require holding onto a super block
181 struct super_block
*frozen_sb
;
182 struct block_device
*bdev
;
184 /* forced geometry settings */
185 struct hd_geometry geometry
;
190 /* zero-length flush that will be cloned and submitted to targets */
191 struct bio flush_bio
;
195 * For mempools pre-allocation at the table loading time.
197 struct dm_md_mempools
{
203 static struct kmem_cache
*_io_cache
;
204 static struct kmem_cache
*_rq_tio_cache
;
206 static int __init
local_init(void)
210 /* allocate a slab for the dm_ios */
211 _io_cache
= KMEM_CACHE(dm_io
, 0);
215 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
217 goto out_free_io_cache
;
219 r
= dm_uevent_init();
221 goto out_free_rq_tio_cache
;
224 r
= register_blkdev(_major
, _name
);
226 goto out_uevent_exit
;
235 out_free_rq_tio_cache
:
236 kmem_cache_destroy(_rq_tio_cache
);
238 kmem_cache_destroy(_io_cache
);
243 static void local_exit(void)
245 kmem_cache_destroy(_rq_tio_cache
);
246 kmem_cache_destroy(_io_cache
);
247 unregister_blkdev(_major
, _name
);
252 DMINFO("cleaned up");
255 static int (*_inits
[])(void) __initdata
= {
265 static void (*_exits
[])(void) = {
275 static int __init
dm_init(void)
277 const int count
= ARRAY_SIZE(_inits
);
281 for (i
= 0; i
< count
; i
++) {
296 static void __exit
dm_exit(void)
298 int i
= ARRAY_SIZE(_exits
);
304 * Should be empty by this point.
306 idr_destroy(&_minor_idr
);
310 * Block device functions
312 int dm_deleting_md(struct mapped_device
*md
)
314 return test_bit(DMF_DELETING
, &md
->flags
);
317 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
319 struct mapped_device
*md
;
321 spin_lock(&_minor_lock
);
323 md
= bdev
->bd_disk
->private_data
;
327 if (test_bit(DMF_FREEING
, &md
->flags
) ||
328 dm_deleting_md(md
)) {
334 atomic_inc(&md
->open_count
);
337 spin_unlock(&_minor_lock
);
339 return md
? 0 : -ENXIO
;
342 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
344 struct mapped_device
*md
= disk
->private_data
;
346 spin_lock(&_minor_lock
);
348 atomic_dec(&md
->open_count
);
351 spin_unlock(&_minor_lock
);
354 int dm_open_count(struct mapped_device
*md
)
356 return atomic_read(&md
->open_count
);
360 * Guarantees nothing is using the device before it's deleted.
362 int dm_lock_for_deletion(struct mapped_device
*md
)
366 spin_lock(&_minor_lock
);
368 if (dm_open_count(md
))
371 set_bit(DMF_DELETING
, &md
->flags
);
373 spin_unlock(&_minor_lock
);
378 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
380 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
382 return dm_get_geometry(md
, geo
);
385 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
386 unsigned int cmd
, unsigned long arg
)
388 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
389 struct dm_table
*map
;
390 struct dm_target
*tgt
;
394 map
= dm_get_live_table(md
);
395 if (!map
|| !dm_table_get_size(map
))
398 /* We only support devices that have a single target */
399 if (dm_table_get_num_targets(map
) != 1)
402 tgt
= dm_table_get_target(map
, 0);
404 if (dm_suspended_md(md
)) {
409 if (tgt
->type
->ioctl
)
410 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
415 if (r
== -ENOTCONN
) {
423 static struct dm_io
*alloc_io(struct mapped_device
*md
)
425 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
428 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
430 mempool_free(io
, md
->io_pool
);
433 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
435 bio_put(&tio
->clone
);
438 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
,
441 return mempool_alloc(md
->io_pool
, gfp_mask
);
444 static void free_rq_tio(struct dm_rq_target_io
*tio
)
446 mempool_free(tio
, tio
->md
->io_pool
);
449 static int md_in_flight(struct mapped_device
*md
)
451 return atomic_read(&md
->pending
[READ
]) +
452 atomic_read(&md
->pending
[WRITE
]);
455 static void start_io_acct(struct dm_io
*io
)
457 struct mapped_device
*md
= io
->md
;
459 int rw
= bio_data_dir(io
->bio
);
461 io
->start_time
= jiffies
;
463 cpu
= part_stat_lock();
464 part_round_stats(cpu
, &dm_disk(md
)->part0
);
466 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
467 atomic_inc_return(&md
->pending
[rw
]));
470 static void end_io_acct(struct dm_io
*io
)
472 struct mapped_device
*md
= io
->md
;
473 struct bio
*bio
= io
->bio
;
474 unsigned long duration
= jiffies
- io
->start_time
;
476 int rw
= bio_data_dir(bio
);
478 cpu
= part_stat_lock();
479 part_round_stats(cpu
, &dm_disk(md
)->part0
);
480 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
484 * After this is decremented the bio must not be touched if it is
487 pending
= atomic_dec_return(&md
->pending
[rw
]);
488 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
489 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
491 /* nudge anyone waiting on suspend queue */
497 * Add the bio to the list of deferred io.
499 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
503 spin_lock_irqsave(&md
->deferred_lock
, flags
);
504 bio_list_add(&md
->deferred
, bio
);
505 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
506 queue_work(md
->wq
, &md
->work
);
510 * Everyone (including functions in this file), should use this
511 * function to access the md->map field, and make sure they call
512 * dm_table_put() when finished.
514 struct dm_table
*dm_get_live_table(struct mapped_device
*md
)
519 read_lock_irqsave(&md
->map_lock
, flags
);
523 read_unlock_irqrestore(&md
->map_lock
, flags
);
529 * Get the geometry associated with a dm device
531 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
539 * Set the geometry of a device.
541 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
543 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
545 if (geo
->start
> sz
) {
546 DMWARN("Start sector is beyond the geometry limits.");
555 /*-----------------------------------------------------------------
557 * A more elegant soln is in the works that uses the queue
558 * merge fn, unfortunately there are a couple of changes to
559 * the block layer that I want to make for this. So in the
560 * interests of getting something for people to use I give
561 * you this clearly demarcated crap.
562 *---------------------------------------------------------------*/
564 static int __noflush_suspending(struct mapped_device
*md
)
566 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
570 * Decrements the number of outstanding ios that a bio has been
571 * cloned into, completing the original io if necc.
573 static void dec_pending(struct dm_io
*io
, int error
)
578 struct mapped_device
*md
= io
->md
;
580 /* Push-back supersedes any I/O errors */
581 if (unlikely(error
)) {
582 spin_lock_irqsave(&io
->endio_lock
, flags
);
583 if (!(io
->error
> 0 && __noflush_suspending(md
)))
585 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
588 if (atomic_dec_and_test(&io
->io_count
)) {
589 if (io
->error
== DM_ENDIO_REQUEUE
) {
591 * Target requested pushing back the I/O.
593 spin_lock_irqsave(&md
->deferred_lock
, flags
);
594 if (__noflush_suspending(md
))
595 bio_list_add_head(&md
->deferred
, io
->bio
);
597 /* noflush suspend was interrupted. */
599 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
602 io_error
= io
->error
;
607 if (io_error
== DM_ENDIO_REQUEUE
)
610 if ((bio
->bi_rw
& REQ_FLUSH
) && bio
->bi_size
) {
612 * Preflush done for flush with data, reissue
615 bio
->bi_rw
&= ~REQ_FLUSH
;
618 /* done with normal IO or empty flush */
619 trace_block_bio_complete(md
->queue
, bio
, io_error
);
620 bio_endio(bio
, io_error
);
625 static void clone_endio(struct bio
*bio
, int error
)
628 struct dm_target_io
*tio
= bio
->bi_private
;
629 struct dm_io
*io
= tio
->io
;
630 struct mapped_device
*md
= tio
->io
->md
;
631 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
633 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
637 r
= endio(tio
->ti
, bio
, error
);
638 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
640 * error and requeue request are handled
644 else if (r
== DM_ENDIO_INCOMPLETE
)
645 /* The target will handle the io */
648 DMWARN("unimplemented target endio return value: %d", r
);
654 dec_pending(io
, error
);
658 * Partial completion handling for request-based dm
660 static void end_clone_bio(struct bio
*clone
, int error
)
662 struct dm_rq_clone_bio_info
*info
= clone
->bi_private
;
663 struct dm_rq_target_io
*tio
= info
->tio
;
664 struct bio
*bio
= info
->orig
;
665 unsigned int nr_bytes
= info
->orig
->bi_size
;
671 * An error has already been detected on the request.
672 * Once error occurred, just let clone->end_io() handle
678 * Don't notice the error to the upper layer yet.
679 * The error handling decision is made by the target driver,
680 * when the request is completed.
687 * I/O for the bio successfully completed.
688 * Notice the data completion to the upper layer.
692 * bios are processed from the head of the list.
693 * So the completing bio should always be rq->bio.
694 * If it's not, something wrong is happening.
696 if (tio
->orig
->bio
!= bio
)
697 DMERR("bio completion is going in the middle of the request");
700 * Update the original request.
701 * Do not use blk_end_request() here, because it may complete
702 * the original request before the clone, and break the ordering.
704 blk_update_request(tio
->orig
, 0, nr_bytes
);
708 * Don't touch any member of the md after calling this function because
709 * the md may be freed in dm_put() at the end of this function.
710 * Or do dm_get() before calling this function and dm_put() later.
712 static void rq_completed(struct mapped_device
*md
, int rw
, int run_queue
)
714 atomic_dec(&md
->pending
[rw
]);
716 /* nudge anyone waiting on suspend queue */
717 if (!md_in_flight(md
))
721 * Run this off this callpath, as drivers could invoke end_io while
722 * inside their request_fn (and holding the queue lock). Calling
723 * back into ->request_fn() could deadlock attempting to grab the
727 blk_run_queue_async(md
->queue
);
730 * dm_put() must be at the end of this function. See the comment above
735 static void free_rq_clone(struct request
*clone
)
737 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
739 blk_rq_unprep_clone(clone
);
744 * Complete the clone and the original request.
745 * Must be called without queue lock.
747 static void dm_end_request(struct request
*clone
, int error
)
749 int rw
= rq_data_dir(clone
);
750 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
751 struct mapped_device
*md
= tio
->md
;
752 struct request
*rq
= tio
->orig
;
754 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
755 rq
->errors
= clone
->errors
;
756 rq
->resid_len
= clone
->resid_len
;
760 * We are using the sense buffer of the original
762 * So setting the length of the sense data is enough.
764 rq
->sense_len
= clone
->sense_len
;
767 free_rq_clone(clone
);
768 blk_end_request_all(rq
, error
);
769 rq_completed(md
, rw
, true);
772 static void dm_unprep_request(struct request
*rq
)
774 struct request
*clone
= rq
->special
;
777 rq
->cmd_flags
&= ~REQ_DONTPREP
;
779 free_rq_clone(clone
);
783 * Requeue the original request of a clone.
785 void dm_requeue_unmapped_request(struct request
*clone
)
787 int rw
= rq_data_dir(clone
);
788 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
789 struct mapped_device
*md
= tio
->md
;
790 struct request
*rq
= tio
->orig
;
791 struct request_queue
*q
= rq
->q
;
794 dm_unprep_request(rq
);
796 spin_lock_irqsave(q
->queue_lock
, flags
);
797 blk_requeue_request(q
, rq
);
798 spin_unlock_irqrestore(q
->queue_lock
, flags
);
800 rq_completed(md
, rw
, 0);
802 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request
);
804 static void __stop_queue(struct request_queue
*q
)
809 static void stop_queue(struct request_queue
*q
)
813 spin_lock_irqsave(q
->queue_lock
, flags
);
815 spin_unlock_irqrestore(q
->queue_lock
, flags
);
818 static void __start_queue(struct request_queue
*q
)
820 if (blk_queue_stopped(q
))
824 static void start_queue(struct request_queue
*q
)
828 spin_lock_irqsave(q
->queue_lock
, flags
);
830 spin_unlock_irqrestore(q
->queue_lock
, flags
);
833 static void dm_done(struct request
*clone
, int error
, bool mapped
)
836 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
837 dm_request_endio_fn rq_end_io
= NULL
;
840 rq_end_io
= tio
->ti
->type
->rq_end_io
;
842 if (mapped
&& rq_end_io
)
843 r
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
847 /* The target wants to complete the I/O */
848 dm_end_request(clone
, r
);
849 else if (r
== DM_ENDIO_INCOMPLETE
)
850 /* The target will handle the I/O */
852 else if (r
== DM_ENDIO_REQUEUE
)
853 /* The target wants to requeue the I/O */
854 dm_requeue_unmapped_request(clone
);
856 DMWARN("unimplemented target endio return value: %d", r
);
862 * Request completion handler for request-based dm
864 static void dm_softirq_done(struct request
*rq
)
867 struct request
*clone
= rq
->completion_data
;
868 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
870 if (rq
->cmd_flags
& REQ_FAILED
)
873 dm_done(clone
, tio
->error
, mapped
);
877 * Complete the clone and the original request with the error status
878 * through softirq context.
880 static void dm_complete_request(struct request
*clone
, int error
)
882 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
883 struct request
*rq
= tio
->orig
;
886 rq
->completion_data
= clone
;
887 blk_complete_request(rq
);
891 * Complete the not-mapped clone and the original request with the error status
892 * through softirq context.
893 * Target's rq_end_io() function isn't called.
894 * This may be used when the target's map_rq() function fails.
896 void dm_kill_unmapped_request(struct request
*clone
, int error
)
898 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
899 struct request
*rq
= tio
->orig
;
901 rq
->cmd_flags
|= REQ_FAILED
;
902 dm_complete_request(clone
, error
);
904 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request
);
907 * Called with the queue lock held
909 static void end_clone_request(struct request
*clone
, int error
)
912 * For just cleaning up the information of the queue in which
913 * the clone was dispatched.
914 * The clone is *NOT* freed actually here because it is alloced from
915 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
917 __blk_put_request(clone
->q
, clone
);
920 * Actual request completion is done in a softirq context which doesn't
921 * hold the queue lock. Otherwise, deadlock could occur because:
922 * - another request may be submitted by the upper level driver
923 * of the stacking during the completion
924 * - the submission which requires queue lock may be done
927 dm_complete_request(clone
, error
);
931 * Return maximum size of I/O possible at the supplied sector up to the current
934 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
936 sector_t target_offset
= dm_target_offset(ti
, sector
);
938 return ti
->len
- target_offset
;
941 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
943 sector_t len
= max_io_len_target_boundary(sector
, ti
);
944 sector_t offset
, max_len
;
947 * Does the target need to split even further?
949 if (ti
->max_io_len
) {
950 offset
= dm_target_offset(ti
, sector
);
951 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
952 max_len
= sector_div(offset
, ti
->max_io_len
);
954 max_len
= offset
& (ti
->max_io_len
- 1);
955 max_len
= ti
->max_io_len
- max_len
;
964 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
966 if (len
> UINT_MAX
) {
967 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
968 (unsigned long long)len
, UINT_MAX
);
969 ti
->error
= "Maximum size of target IO is too large";
973 ti
->max_io_len
= (uint32_t) len
;
977 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
979 static void __map_bio(struct dm_target_io
*tio
)
983 struct mapped_device
*md
;
984 struct bio
*clone
= &tio
->clone
;
985 struct dm_target
*ti
= tio
->ti
;
987 clone
->bi_end_io
= clone_endio
;
988 clone
->bi_private
= tio
;
991 * Map the clone. If r == 0 we don't need to do
992 * anything, the target has assumed ownership of
995 atomic_inc(&tio
->io
->io_count
);
996 sector
= clone
->bi_sector
;
997 r
= ti
->type
->map(ti
, clone
);
998 if (r
== DM_MAPIO_REMAPPED
) {
999 /* the bio has been remapped so dispatch it */
1001 trace_block_bio_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
1002 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
1004 generic_make_request(clone
);
1005 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
1006 /* error the io and bail out, or requeue it if needed */
1008 dec_pending(tio
->io
, r
);
1011 DMWARN("unimplemented target map return value: %d", r
);
1017 struct mapped_device
*md
;
1018 struct dm_table
*map
;
1022 sector_t sector_count
;
1026 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, sector_t len
)
1028 bio
->bi_sector
= sector
;
1029 bio
->bi_size
= to_bytes(len
);
1032 static void bio_setup_bv(struct bio
*bio
, unsigned short idx
, unsigned short bv_count
)
1035 bio
->bi_vcnt
= idx
+ bv_count
;
1036 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
1039 static void clone_bio_integrity(struct bio
*bio
, struct bio
*clone
,
1040 unsigned short idx
, unsigned len
, unsigned offset
,
1043 if (!bio_integrity(bio
))
1046 bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1049 bio_integrity_trim(clone
, bio_sector_offset(bio
, idx
, offset
), len
);
1053 * Creates a little bio that just does part of a bvec.
1055 static void clone_split_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1056 sector_t sector
, unsigned short idx
,
1057 unsigned offset
, unsigned len
)
1059 struct bio
*clone
= &tio
->clone
;
1060 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
1062 *clone
->bi_io_vec
= *bv
;
1064 bio_setup_sector(clone
, sector
, len
);
1066 clone
->bi_bdev
= bio
->bi_bdev
;
1067 clone
->bi_rw
= bio
->bi_rw
;
1069 clone
->bi_io_vec
->bv_offset
= offset
;
1070 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
1071 clone
->bi_flags
|= 1 << BIO_CLONED
;
1073 clone_bio_integrity(bio
, clone
, idx
, len
, offset
, 1);
1077 * Creates a bio that consists of range of complete bvecs.
1079 static void clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1080 sector_t sector
, unsigned short idx
,
1081 unsigned short bv_count
, unsigned len
)
1083 struct bio
*clone
= &tio
->clone
;
1086 __bio_clone(clone
, bio
);
1087 bio_setup_sector(clone
, sector
, len
);
1088 bio_setup_bv(clone
, idx
, bv_count
);
1090 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
1092 clone_bio_integrity(bio
, clone
, idx
, len
, 0, trim
);
1095 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1096 struct dm_target
*ti
, int nr_iovecs
,
1097 unsigned target_bio_nr
)
1099 struct dm_target_io
*tio
;
1102 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, ci
->md
->bs
);
1103 tio
= container_of(clone
, struct dm_target_io
, clone
);
1107 memset(&tio
->info
, 0, sizeof(tio
->info
));
1108 tio
->target_bio_nr
= target_bio_nr
;
1113 static void __clone_and_map_simple_bio(struct clone_info
*ci
,
1114 struct dm_target
*ti
,
1115 unsigned target_bio_nr
, sector_t len
)
1117 struct dm_target_io
*tio
= alloc_tio(ci
, ti
, ci
->bio
->bi_max_vecs
, target_bio_nr
);
1118 struct bio
*clone
= &tio
->clone
;
1121 * Discard requests require the bio's inline iovecs be initialized.
1122 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1123 * and discard, so no need for concern about wasted bvec allocations.
1125 __bio_clone(clone
, ci
->bio
);
1127 bio_setup_sector(clone
, ci
->sector
, len
);
1132 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1133 unsigned num_bios
, sector_t len
)
1135 unsigned target_bio_nr
;
1137 for (target_bio_nr
= 0; target_bio_nr
< num_bios
; target_bio_nr
++)
1138 __clone_and_map_simple_bio(ci
, ti
, target_bio_nr
, len
);
1141 static int __send_empty_flush(struct clone_info
*ci
)
1143 unsigned target_nr
= 0;
1144 struct dm_target
*ti
;
1146 BUG_ON(bio_has_data(ci
->bio
));
1147 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1148 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, 0);
1153 static void __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1154 sector_t sector
, int nr_iovecs
,
1155 unsigned short idx
, unsigned short bv_count
,
1156 unsigned offset
, unsigned len
,
1157 unsigned split_bvec
)
1159 struct bio
*bio
= ci
->bio
;
1160 struct dm_target_io
*tio
;
1161 unsigned target_bio_nr
;
1162 unsigned num_target_bios
= 1;
1165 * Does the target want to receive duplicate copies of the bio?
1167 if (bio_data_dir(bio
) == WRITE
&& ti
->num_write_bios
)
1168 num_target_bios
= ti
->num_write_bios(ti
, bio
);
1170 for (target_bio_nr
= 0; target_bio_nr
< num_target_bios
; target_bio_nr
++) {
1171 tio
= alloc_tio(ci
, ti
, nr_iovecs
, target_bio_nr
);
1173 clone_split_bio(tio
, bio
, sector
, idx
, offset
, len
);
1175 clone_bio(tio
, bio
, sector
, idx
, bv_count
, len
);
1180 typedef unsigned (*get_num_bios_fn
)(struct dm_target
*ti
);
1182 static unsigned get_num_discard_bios(struct dm_target
*ti
)
1184 return ti
->num_discard_bios
;
1187 static unsigned get_num_write_same_bios(struct dm_target
*ti
)
1189 return ti
->num_write_same_bios
;
1192 typedef bool (*is_split_required_fn
)(struct dm_target
*ti
);
1194 static bool is_split_required_for_discard(struct dm_target
*ti
)
1196 return ti
->split_discard_bios
;
1199 static int __send_changing_extent_only(struct clone_info
*ci
,
1200 get_num_bios_fn get_num_bios
,
1201 is_split_required_fn is_split_required
)
1203 struct dm_target
*ti
;
1208 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1209 if (!dm_target_is_valid(ti
))
1213 * Even though the device advertised support for this type of
1214 * request, that does not mean every target supports it, and
1215 * reconfiguration might also have changed that since the
1216 * check was performed.
1218 num_bios
= get_num_bios
? get_num_bios(ti
) : 0;
1222 if (is_split_required
&& !is_split_required(ti
))
1223 len
= min(ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1225 len
= min(ci
->sector_count
, max_io_len(ci
->sector
, ti
));
1227 __send_duplicate_bios(ci
, ti
, num_bios
, len
);
1230 } while (ci
->sector_count
-= len
);
1235 static int __send_discard(struct clone_info
*ci
)
1237 return __send_changing_extent_only(ci
, get_num_discard_bios
,
1238 is_split_required_for_discard
);
1241 static int __send_write_same(struct clone_info
*ci
)
1243 return __send_changing_extent_only(ci
, get_num_write_same_bios
, NULL
);
1247 * Find maximum number of sectors / bvecs we can process with a single bio.
1249 static sector_t
__len_within_target(struct clone_info
*ci
, sector_t max
, int *idx
)
1251 struct bio
*bio
= ci
->bio
;
1252 sector_t bv_len
, total_len
= 0;
1254 for (*idx
= ci
->idx
; max
&& (*idx
< bio
->bi_vcnt
); (*idx
)++) {
1255 bv_len
= to_sector(bio
->bi_io_vec
[*idx
].bv_len
);
1261 total_len
+= bv_len
;
1267 static int __split_bvec_across_targets(struct clone_info
*ci
,
1268 struct dm_target
*ti
, sector_t max
)
1270 struct bio
*bio
= ci
->bio
;
1271 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
1272 sector_t remaining
= to_sector(bv
->bv_len
);
1273 unsigned offset
= 0;
1278 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1279 if (!dm_target_is_valid(ti
))
1282 max
= max_io_len(ci
->sector
, ti
);
1285 len
= min(remaining
, max
);
1287 __clone_and_map_data_bio(ci
, ti
, ci
->sector
, 1, ci
->idx
, 0,
1288 bv
->bv_offset
+ offset
, len
, 1);
1291 ci
->sector_count
-= len
;
1292 offset
+= to_bytes(len
);
1293 } while (remaining
-= len
);
1301 * Select the correct strategy for processing a non-flush bio.
1303 static int __split_and_process_non_flush(struct clone_info
*ci
)
1305 struct bio
*bio
= ci
->bio
;
1306 struct dm_target
*ti
;
1310 if (unlikely(bio
->bi_rw
& REQ_DISCARD
))
1311 return __send_discard(ci
);
1312 else if (unlikely(bio
->bi_rw
& REQ_WRITE_SAME
))
1313 return __send_write_same(ci
);
1315 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1316 if (!dm_target_is_valid(ti
))
1319 max
= max_io_len(ci
->sector
, ti
);
1322 * Optimise for the simple case where we can do all of
1323 * the remaining io with a single clone.
1325 if (ci
->sector_count
<= max
) {
1326 __clone_and_map_data_bio(ci
, ti
, ci
->sector
, bio
->bi_max_vecs
,
1327 ci
->idx
, bio
->bi_vcnt
- ci
->idx
, 0,
1328 ci
->sector_count
, 0);
1329 ci
->sector_count
= 0;
1334 * There are some bvecs that don't span targets.
1335 * Do as many of these as possible.
1337 if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
1338 len
= __len_within_target(ci
, max
, &idx
);
1340 __clone_and_map_data_bio(ci
, ti
, ci
->sector
, bio
->bi_max_vecs
,
1341 ci
->idx
, idx
- ci
->idx
, 0, len
, 0);
1344 ci
->sector_count
-= len
;
1351 * Handle a bvec that must be split between two or more targets.
1353 return __split_bvec_across_targets(ci
, ti
, max
);
1357 * Entry point to split a bio into clones and submit them to the targets.
1359 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
1361 struct clone_info ci
;
1364 ci
.map
= dm_get_live_table(md
);
1365 if (unlikely(!ci
.map
)) {
1371 ci
.io
= alloc_io(md
);
1373 atomic_set(&ci
.io
->io_count
, 1);
1376 spin_lock_init(&ci
.io
->endio_lock
);
1377 ci
.sector
= bio
->bi_sector
;
1378 ci
.idx
= bio
->bi_idx
;
1380 start_io_acct(ci
.io
);
1382 if (bio
->bi_rw
& REQ_FLUSH
) {
1383 ci
.bio
= &ci
.md
->flush_bio
;
1384 ci
.sector_count
= 0;
1385 error
= __send_empty_flush(&ci
);
1386 /* dec_pending submits any data associated with flush */
1389 ci
.sector_count
= bio_sectors(bio
);
1390 while (ci
.sector_count
&& !error
)
1391 error
= __split_and_process_non_flush(&ci
);
1394 /* drop the extra reference count */
1395 dec_pending(ci
.io
, error
);
1396 dm_table_put(ci
.map
);
1398 /*-----------------------------------------------------------------
1400 *---------------------------------------------------------------*/
1402 static int dm_merge_bvec(struct request_queue
*q
,
1403 struct bvec_merge_data
*bvm
,
1404 struct bio_vec
*biovec
)
1406 struct mapped_device
*md
= q
->queuedata
;
1407 struct dm_table
*map
= dm_get_live_table(md
);
1408 struct dm_target
*ti
;
1409 sector_t max_sectors
;
1415 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1416 if (!dm_target_is_valid(ti
))
1420 * Find maximum amount of I/O that won't need splitting
1422 max_sectors
= min(max_io_len(bvm
->bi_sector
, ti
),
1423 (sector_t
) BIO_MAX_SECTORS
);
1424 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1429 * merge_bvec_fn() returns number of bytes
1430 * it can accept at this offset
1431 * max is precomputed maximal io size
1433 if (max_size
&& ti
->type
->merge
)
1434 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
1436 * If the target doesn't support merge method and some of the devices
1437 * provided their merge_bvec method (we know this by looking at
1438 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1439 * entries. So always set max_size to 0, and the code below allows
1442 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1451 * Always allow an entire first page
1453 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1454 max_size
= biovec
->bv_len
;
1460 * The request function that just remaps the bio built up by
1463 static void _dm_request(struct request_queue
*q
, struct bio
*bio
)
1465 int rw
= bio_data_dir(bio
);
1466 struct mapped_device
*md
= q
->queuedata
;
1469 down_read(&md
->io_lock
);
1471 cpu
= part_stat_lock();
1472 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
1473 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
1476 /* if we're suspended, we have to queue this io for later */
1477 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1478 up_read(&md
->io_lock
);
1480 if (bio_rw(bio
) != READA
)
1487 __split_and_process_bio(md
, bio
);
1488 up_read(&md
->io_lock
);
1492 static int dm_request_based(struct mapped_device
*md
)
1494 return blk_queue_stackable(md
->queue
);
1497 static void dm_request(struct request_queue
*q
, struct bio
*bio
)
1499 struct mapped_device
*md
= q
->queuedata
;
1501 if (dm_request_based(md
))
1502 blk_queue_bio(q
, bio
);
1504 _dm_request(q
, bio
);
1507 void dm_dispatch_request(struct request
*rq
)
1511 if (blk_queue_io_stat(rq
->q
))
1512 rq
->cmd_flags
|= REQ_IO_STAT
;
1514 rq
->start_time
= jiffies
;
1515 r
= blk_insert_cloned_request(rq
->q
, rq
);
1517 dm_complete_request(rq
, r
);
1519 EXPORT_SYMBOL_GPL(dm_dispatch_request
);
1521 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1524 struct dm_rq_target_io
*tio
= data
;
1525 struct dm_rq_clone_bio_info
*info
=
1526 container_of(bio
, struct dm_rq_clone_bio_info
, clone
);
1528 info
->orig
= bio_orig
;
1530 bio
->bi_end_io
= end_clone_bio
;
1531 bio
->bi_private
= info
;
1536 static int setup_clone(struct request
*clone
, struct request
*rq
,
1537 struct dm_rq_target_io
*tio
)
1541 r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, GFP_ATOMIC
,
1542 dm_rq_bio_constructor
, tio
);
1546 clone
->cmd
= rq
->cmd
;
1547 clone
->cmd_len
= rq
->cmd_len
;
1548 clone
->sense
= rq
->sense
;
1549 clone
->buffer
= rq
->buffer
;
1550 clone
->end_io
= end_clone_request
;
1551 clone
->end_io_data
= tio
;
1556 static struct request
*clone_rq(struct request
*rq
, struct mapped_device
*md
,
1559 struct request
*clone
;
1560 struct dm_rq_target_io
*tio
;
1562 tio
= alloc_rq_tio(md
, gfp_mask
);
1570 memset(&tio
->info
, 0, sizeof(tio
->info
));
1572 clone
= &tio
->clone
;
1573 if (setup_clone(clone
, rq
, tio
)) {
1583 * Called with the queue lock held.
1585 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1587 struct mapped_device
*md
= q
->queuedata
;
1588 struct request
*clone
;
1590 if (unlikely(rq
->special
)) {
1591 DMWARN("Already has something in rq->special.");
1592 return BLKPREP_KILL
;
1595 clone
= clone_rq(rq
, md
, GFP_ATOMIC
);
1597 return BLKPREP_DEFER
;
1599 rq
->special
= clone
;
1600 rq
->cmd_flags
|= REQ_DONTPREP
;
1607 * 0 : the request has been processed (not requeued)
1608 * !0 : the request has been requeued
1610 static int map_request(struct dm_target
*ti
, struct request
*clone
,
1611 struct mapped_device
*md
)
1613 int r
, requeued
= 0;
1614 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1617 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1619 case DM_MAPIO_SUBMITTED
:
1620 /* The target has taken the I/O to submit by itself later */
1622 case DM_MAPIO_REMAPPED
:
1623 /* The target has remapped the I/O so dispatch it */
1624 trace_block_rq_remap(clone
->q
, clone
, disk_devt(dm_disk(md
)),
1625 blk_rq_pos(tio
->orig
));
1626 dm_dispatch_request(clone
);
1628 case DM_MAPIO_REQUEUE
:
1629 /* The target wants to requeue the I/O */
1630 dm_requeue_unmapped_request(clone
);
1635 DMWARN("unimplemented target map return value: %d", r
);
1639 /* The target wants to complete the I/O */
1640 dm_kill_unmapped_request(clone
, r
);
1647 static struct request
*dm_start_request(struct mapped_device
*md
, struct request
*orig
)
1649 struct request
*clone
;
1651 blk_start_request(orig
);
1652 clone
= orig
->special
;
1653 atomic_inc(&md
->pending
[rq_data_dir(clone
)]);
1656 * Hold the md reference here for the in-flight I/O.
1657 * We can't rely on the reference count by device opener,
1658 * because the device may be closed during the request completion
1659 * when all bios are completed.
1660 * See the comment in rq_completed() too.
1668 * q->request_fn for request-based dm.
1669 * Called with the queue lock held.
1671 static void dm_request_fn(struct request_queue
*q
)
1673 struct mapped_device
*md
= q
->queuedata
;
1674 struct dm_table
*map
= dm_get_live_table(md
);
1675 struct dm_target
*ti
;
1676 struct request
*rq
, *clone
;
1680 * For suspend, check blk_queue_stopped() and increment
1681 * ->pending within a single queue_lock not to increment the
1682 * number of in-flight I/Os after the queue is stopped in
1685 while (!blk_queue_stopped(q
)) {
1686 rq
= blk_peek_request(q
);
1690 /* always use block 0 to find the target for flushes for now */
1692 if (!(rq
->cmd_flags
& REQ_FLUSH
))
1693 pos
= blk_rq_pos(rq
);
1695 ti
= dm_table_find_target(map
, pos
);
1696 if (!dm_target_is_valid(ti
)) {
1698 * Must perform setup, that dm_done() requires,
1699 * before calling dm_kill_unmapped_request
1701 DMERR_LIMIT("request attempted access beyond the end of device");
1702 clone
= dm_start_request(md
, rq
);
1703 dm_kill_unmapped_request(clone
, -EIO
);
1707 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1710 clone
= dm_start_request(md
, rq
);
1712 spin_unlock(q
->queue_lock
);
1713 if (map_request(ti
, clone
, md
))
1716 BUG_ON(!irqs_disabled());
1717 spin_lock(q
->queue_lock
);
1723 BUG_ON(!irqs_disabled());
1724 spin_lock(q
->queue_lock
);
1727 blk_delay_queue(q
, HZ
/ 10);
1732 int dm_underlying_device_busy(struct request_queue
*q
)
1734 return blk_lld_busy(q
);
1736 EXPORT_SYMBOL_GPL(dm_underlying_device_busy
);
1738 static int dm_lld_busy(struct request_queue
*q
)
1741 struct mapped_device
*md
= q
->queuedata
;
1742 struct dm_table
*map
= dm_get_live_table(md
);
1744 if (!map
|| test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))
1747 r
= dm_table_any_busy_target(map
);
1754 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1757 struct mapped_device
*md
= congested_data
;
1758 struct dm_table
*map
;
1760 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1761 map
= dm_get_live_table(md
);
1764 * Request-based dm cares about only own queue for
1765 * the query about congestion status of request_queue
1767 if (dm_request_based(md
))
1768 r
= md
->queue
->backing_dev_info
.state
&
1771 r
= dm_table_any_congested(map
, bdi_bits
);
1780 /*-----------------------------------------------------------------
1781 * An IDR is used to keep track of allocated minor numbers.
1782 *---------------------------------------------------------------*/
1783 static void free_minor(int minor
)
1785 spin_lock(&_minor_lock
);
1786 idr_remove(&_minor_idr
, minor
);
1787 spin_unlock(&_minor_lock
);
1791 * See if the device with a specific minor # is free.
1793 static int specific_minor(int minor
)
1797 if (minor
>= (1 << MINORBITS
))
1800 idr_preload(GFP_KERNEL
);
1801 spin_lock(&_minor_lock
);
1803 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
1805 spin_unlock(&_minor_lock
);
1808 return r
== -ENOSPC
? -EBUSY
: r
;
1812 static int next_free_minor(int *minor
)
1816 idr_preload(GFP_KERNEL
);
1817 spin_lock(&_minor_lock
);
1819 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
1821 spin_unlock(&_minor_lock
);
1829 static const struct block_device_operations dm_blk_dops
;
1831 static void dm_wq_work(struct work_struct
*work
);
1833 static void dm_init_md_queue(struct mapped_device
*md
)
1836 * Request-based dm devices cannot be stacked on top of bio-based dm
1837 * devices. The type of this dm device has not been decided yet.
1838 * The type is decided at the first table loading time.
1839 * To prevent problematic device stacking, clear the queue flag
1840 * for request stacking support until then.
1842 * This queue is new, so no concurrency on the queue_flags.
1844 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1846 md
->queue
->queuedata
= md
;
1847 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1848 md
->queue
->backing_dev_info
.congested_data
= md
;
1849 blk_queue_make_request(md
->queue
, dm_request
);
1850 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1851 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1855 * Allocate and initialise a blank device with a given minor.
1857 static struct mapped_device
*alloc_dev(int minor
)
1860 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1864 DMWARN("unable to allocate device, out of memory.");
1868 if (!try_module_get(THIS_MODULE
))
1869 goto bad_module_get
;
1871 /* get a minor number for the dev */
1872 if (minor
== DM_ANY_MINOR
)
1873 r
= next_free_minor(&minor
);
1875 r
= specific_minor(minor
);
1879 md
->type
= DM_TYPE_NONE
;
1880 init_rwsem(&md
->io_lock
);
1881 mutex_init(&md
->suspend_lock
);
1882 mutex_init(&md
->type_lock
);
1883 spin_lock_init(&md
->deferred_lock
);
1884 rwlock_init(&md
->map_lock
);
1885 atomic_set(&md
->holders
, 1);
1886 atomic_set(&md
->open_count
, 0);
1887 atomic_set(&md
->event_nr
, 0);
1888 atomic_set(&md
->uevent_seq
, 0);
1889 INIT_LIST_HEAD(&md
->uevent_list
);
1890 spin_lock_init(&md
->uevent_lock
);
1892 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1896 dm_init_md_queue(md
);
1898 md
->disk
= alloc_disk(1);
1902 atomic_set(&md
->pending
[0], 0);
1903 atomic_set(&md
->pending
[1], 0);
1904 init_waitqueue_head(&md
->wait
);
1905 INIT_WORK(&md
->work
, dm_wq_work
);
1906 init_waitqueue_head(&md
->eventq
);
1908 md
->disk
->major
= _major
;
1909 md
->disk
->first_minor
= minor
;
1910 md
->disk
->fops
= &dm_blk_dops
;
1911 md
->disk
->queue
= md
->queue
;
1912 md
->disk
->private_data
= md
;
1913 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1915 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1917 md
->wq
= alloc_workqueue("kdmflush",
1918 WQ_NON_REENTRANT
| WQ_MEM_RECLAIM
, 0);
1922 md
->bdev
= bdget_disk(md
->disk
, 0);
1926 bio_init(&md
->flush_bio
);
1927 md
->flush_bio
.bi_bdev
= md
->bdev
;
1928 md
->flush_bio
.bi_rw
= WRITE_FLUSH
;
1930 /* Populate the mapping, nobody knows we exist yet */
1931 spin_lock(&_minor_lock
);
1932 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1933 spin_unlock(&_minor_lock
);
1935 BUG_ON(old_md
!= MINOR_ALLOCED
);
1940 destroy_workqueue(md
->wq
);
1942 del_gendisk(md
->disk
);
1945 blk_cleanup_queue(md
->queue
);
1949 module_put(THIS_MODULE
);
1955 static void unlock_fs(struct mapped_device
*md
);
1957 static void free_dev(struct mapped_device
*md
)
1959 int minor
= MINOR(disk_devt(md
->disk
));
1963 destroy_workqueue(md
->wq
);
1965 mempool_destroy(md
->io_pool
);
1967 bioset_free(md
->bs
);
1968 blk_integrity_unregister(md
->disk
);
1969 del_gendisk(md
->disk
);
1972 spin_lock(&_minor_lock
);
1973 md
->disk
->private_data
= NULL
;
1974 spin_unlock(&_minor_lock
);
1977 blk_cleanup_queue(md
->queue
);
1978 module_put(THIS_MODULE
);
1982 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1984 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
1986 if (md
->io_pool
&& md
->bs
) {
1987 /* The md already has necessary mempools. */
1988 if (dm_table_get_type(t
) == DM_TYPE_BIO_BASED
) {
1990 * Reload bioset because front_pad may have changed
1991 * because a different table was loaded.
1993 bioset_free(md
->bs
);
1996 } else if (dm_table_get_type(t
) == DM_TYPE_REQUEST_BASED
) {
1998 * There's no need to reload with request-based dm
1999 * because the size of front_pad doesn't change.
2000 * Note for future: If you are to reload bioset,
2001 * prep-ed requests in the queue may refer
2002 * to bio from the old bioset, so you must walk
2003 * through the queue to unprep.
2009 BUG_ON(!p
|| md
->io_pool
|| md
->bs
);
2011 md
->io_pool
= p
->io_pool
;
2017 /* mempool bind completed, now no need any mempools in the table */
2018 dm_table_free_md_mempools(t
);
2022 * Bind a table to the device.
2024 static void event_callback(void *context
)
2026 unsigned long flags
;
2028 struct mapped_device
*md
= (struct mapped_device
*) context
;
2030 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2031 list_splice_init(&md
->uevent_list
, &uevents
);
2032 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2034 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
2036 atomic_inc(&md
->event_nr
);
2037 wake_up(&md
->eventq
);
2041 * Protected by md->suspend_lock obtained by dm_swap_table().
2043 static void __set_size(struct mapped_device
*md
, sector_t size
)
2045 set_capacity(md
->disk
, size
);
2047 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2051 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2053 * If this function returns 0, then the device is either a non-dm
2054 * device without a merge_bvec_fn, or it is a dm device that is
2055 * able to split any bios it receives that are too big.
2057 int dm_queue_merge_is_compulsory(struct request_queue
*q
)
2059 struct mapped_device
*dev_md
;
2061 if (!q
->merge_bvec_fn
)
2064 if (q
->make_request_fn
== dm_request
) {
2065 dev_md
= q
->queuedata
;
2066 if (test_bit(DMF_MERGE_IS_OPTIONAL
, &dev_md
->flags
))
2073 static int dm_device_merge_is_compulsory(struct dm_target
*ti
,
2074 struct dm_dev
*dev
, sector_t start
,
2075 sector_t len
, void *data
)
2077 struct block_device
*bdev
= dev
->bdev
;
2078 struct request_queue
*q
= bdev_get_queue(bdev
);
2080 return dm_queue_merge_is_compulsory(q
);
2084 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2085 * on the properties of the underlying devices.
2087 static int dm_table_merge_is_optional(struct dm_table
*table
)
2090 struct dm_target
*ti
;
2092 while (i
< dm_table_get_num_targets(table
)) {
2093 ti
= dm_table_get_target(table
, i
++);
2095 if (ti
->type
->iterate_devices
&&
2096 ti
->type
->iterate_devices(ti
, dm_device_merge_is_compulsory
, NULL
))
2104 * Returns old map, which caller must destroy.
2106 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2107 struct queue_limits
*limits
)
2109 struct dm_table
*old_map
;
2110 struct request_queue
*q
= md
->queue
;
2112 unsigned long flags
;
2113 int merge_is_optional
;
2115 size
= dm_table_get_size(t
);
2118 * Wipe any geometry if the size of the table changed.
2120 if (size
!= get_capacity(md
->disk
))
2121 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2123 __set_size(md
, size
);
2125 dm_table_event_callback(t
, event_callback
, md
);
2128 * The queue hasn't been stopped yet, if the old table type wasn't
2129 * for request-based during suspension. So stop it to prevent
2130 * I/O mapping before resume.
2131 * This must be done before setting the queue restrictions,
2132 * because request-based dm may be run just after the setting.
2134 if (dm_table_request_based(t
) && !blk_queue_stopped(q
))
2137 __bind_mempools(md
, t
);
2139 merge_is_optional
= dm_table_merge_is_optional(t
);
2141 write_lock_irqsave(&md
->map_lock
, flags
);
2144 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2146 dm_table_set_restrictions(t
, q
, limits
);
2147 if (merge_is_optional
)
2148 set_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2150 clear_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2151 write_unlock_irqrestore(&md
->map_lock
, flags
);
2157 * Returns unbound table for the caller to free.
2159 static struct dm_table
*__unbind(struct mapped_device
*md
)
2161 struct dm_table
*map
= md
->map
;
2162 unsigned long flags
;
2167 dm_table_event_callback(map
, NULL
, NULL
);
2168 write_lock_irqsave(&md
->map_lock
, flags
);
2170 write_unlock_irqrestore(&md
->map_lock
, flags
);
2176 * Constructor for a new device.
2178 int dm_create(int minor
, struct mapped_device
**result
)
2180 struct mapped_device
*md
;
2182 md
= alloc_dev(minor
);
2193 * Functions to manage md->type.
2194 * All are required to hold md->type_lock.
2196 void dm_lock_md_type(struct mapped_device
*md
)
2198 mutex_lock(&md
->type_lock
);
2201 void dm_unlock_md_type(struct mapped_device
*md
)
2203 mutex_unlock(&md
->type_lock
);
2206 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
2211 unsigned dm_get_md_type(struct mapped_device
*md
)
2216 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2218 return md
->immutable_target_type
;
2222 * The queue_limits are only valid as long as you have a reference
2225 struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
2227 BUG_ON(!atomic_read(&md
->holders
));
2228 return &md
->queue
->limits
;
2230 EXPORT_SYMBOL_GPL(dm_get_queue_limits
);
2233 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2235 static int dm_init_request_based_queue(struct mapped_device
*md
)
2237 struct request_queue
*q
= NULL
;
2239 if (md
->queue
->elevator
)
2242 /* Fully initialize the queue */
2243 q
= blk_init_allocated_queue(md
->queue
, dm_request_fn
, NULL
);
2248 dm_init_md_queue(md
);
2249 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
2250 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
2251 blk_queue_lld_busy(md
->queue
, dm_lld_busy
);
2253 elv_register_queue(md
->queue
);
2259 * Setup the DM device's queue based on md's type
2261 int dm_setup_md_queue(struct mapped_device
*md
)
2263 if ((dm_get_md_type(md
) == DM_TYPE_REQUEST_BASED
) &&
2264 !dm_init_request_based_queue(md
)) {
2265 DMWARN("Cannot initialize queue for request-based mapped device");
2272 static struct mapped_device
*dm_find_md(dev_t dev
)
2274 struct mapped_device
*md
;
2275 unsigned minor
= MINOR(dev
);
2277 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2280 spin_lock(&_minor_lock
);
2282 md
= idr_find(&_minor_idr
, minor
);
2283 if (md
&& (md
== MINOR_ALLOCED
||
2284 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2285 dm_deleting_md(md
) ||
2286 test_bit(DMF_FREEING
, &md
->flags
))) {
2292 spin_unlock(&_minor_lock
);
2297 struct mapped_device
*dm_get_md(dev_t dev
)
2299 struct mapped_device
*md
= dm_find_md(dev
);
2306 EXPORT_SYMBOL_GPL(dm_get_md
);
2308 void *dm_get_mdptr(struct mapped_device
*md
)
2310 return md
->interface_ptr
;
2313 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2315 md
->interface_ptr
= ptr
;
2318 void dm_get(struct mapped_device
*md
)
2320 atomic_inc(&md
->holders
);
2321 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2324 const char *dm_device_name(struct mapped_device
*md
)
2328 EXPORT_SYMBOL_GPL(dm_device_name
);
2330 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2332 struct dm_table
*map
;
2336 spin_lock(&_minor_lock
);
2337 map
= dm_get_live_table(md
);
2338 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2339 set_bit(DMF_FREEING
, &md
->flags
);
2340 spin_unlock(&_minor_lock
);
2342 if (!dm_suspended_md(md
)) {
2343 dm_table_presuspend_targets(map
);
2344 dm_table_postsuspend_targets(map
);
2348 * Rare, but there may be I/O requests still going to complete,
2349 * for example. Wait for all references to disappear.
2350 * No one should increment the reference count of the mapped_device,
2351 * after the mapped_device state becomes DMF_FREEING.
2354 while (atomic_read(&md
->holders
))
2356 else if (atomic_read(&md
->holders
))
2357 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2358 dm_device_name(md
), atomic_read(&md
->holders
));
2362 dm_table_destroy(__unbind(md
));
2366 void dm_destroy(struct mapped_device
*md
)
2368 __dm_destroy(md
, true);
2371 void dm_destroy_immediate(struct mapped_device
*md
)
2373 __dm_destroy(md
, false);
2376 void dm_put(struct mapped_device
*md
)
2378 atomic_dec(&md
->holders
);
2380 EXPORT_SYMBOL_GPL(dm_put
);
2382 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2385 DECLARE_WAITQUEUE(wait
, current
);
2387 add_wait_queue(&md
->wait
, &wait
);
2390 set_current_state(interruptible
);
2392 if (!md_in_flight(md
))
2395 if (interruptible
== TASK_INTERRUPTIBLE
&&
2396 signal_pending(current
)) {
2403 set_current_state(TASK_RUNNING
);
2405 remove_wait_queue(&md
->wait
, &wait
);
2411 * Process the deferred bios
2413 static void dm_wq_work(struct work_struct
*work
)
2415 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2419 down_read(&md
->io_lock
);
2421 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2422 spin_lock_irq(&md
->deferred_lock
);
2423 c
= bio_list_pop(&md
->deferred
);
2424 spin_unlock_irq(&md
->deferred_lock
);
2429 up_read(&md
->io_lock
);
2431 if (dm_request_based(md
))
2432 generic_make_request(c
);
2434 __split_and_process_bio(md
, c
);
2436 down_read(&md
->io_lock
);
2439 up_read(&md
->io_lock
);
2442 static void dm_queue_flush(struct mapped_device
*md
)
2444 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2445 smp_mb__after_clear_bit();
2446 queue_work(md
->wq
, &md
->work
);
2450 * Swap in a new table, returning the old one for the caller to destroy.
2452 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2454 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
2455 struct queue_limits limits
;
2458 mutex_lock(&md
->suspend_lock
);
2460 /* device must be suspended */
2461 if (!dm_suspended_md(md
))
2465 * If the new table has no data devices, retain the existing limits.
2466 * This helps multipath with queue_if_no_path if all paths disappear,
2467 * then new I/O is queued based on these limits, and then some paths
2470 if (dm_table_has_no_data_devices(table
)) {
2471 live_map
= dm_get_live_table(md
);
2473 limits
= md
->queue
->limits
;
2474 dm_table_put(live_map
);
2478 r
= dm_calculate_queue_limits(table
, &limits
);
2485 map
= __bind(md
, table
, &limits
);
2488 mutex_unlock(&md
->suspend_lock
);
2493 * Functions to lock and unlock any filesystem running on the
2496 static int lock_fs(struct mapped_device
*md
)
2500 WARN_ON(md
->frozen_sb
);
2502 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2503 if (IS_ERR(md
->frozen_sb
)) {
2504 r
= PTR_ERR(md
->frozen_sb
);
2505 md
->frozen_sb
= NULL
;
2509 set_bit(DMF_FROZEN
, &md
->flags
);
2514 static void unlock_fs(struct mapped_device
*md
)
2516 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2519 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2520 md
->frozen_sb
= NULL
;
2521 clear_bit(DMF_FROZEN
, &md
->flags
);
2525 * We need to be able to change a mapping table under a mounted
2526 * filesystem. For example we might want to move some data in
2527 * the background. Before the table can be swapped with
2528 * dm_bind_table, dm_suspend must be called to flush any in
2529 * flight bios and ensure that any further io gets deferred.
2532 * Suspend mechanism in request-based dm.
2534 * 1. Flush all I/Os by lock_fs() if needed.
2535 * 2. Stop dispatching any I/O by stopping the request_queue.
2536 * 3. Wait for all in-flight I/Os to be completed or requeued.
2538 * To abort suspend, start the request_queue.
2540 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2542 struct dm_table
*map
= NULL
;
2544 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
2545 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
2547 mutex_lock(&md
->suspend_lock
);
2549 if (dm_suspended_md(md
)) {
2554 map
= dm_get_live_table(md
);
2557 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2558 * This flag is cleared before dm_suspend returns.
2561 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2563 /* This does not get reverted if there's an error later. */
2564 dm_table_presuspend_targets(map
);
2567 * Flush I/O to the device.
2568 * Any I/O submitted after lock_fs() may not be flushed.
2569 * noflush takes precedence over do_lockfs.
2570 * (lock_fs() flushes I/Os and waits for them to complete.)
2572 if (!noflush
&& do_lockfs
) {
2579 * Here we must make sure that no processes are submitting requests
2580 * to target drivers i.e. no one may be executing
2581 * __split_and_process_bio. This is called from dm_request and
2584 * To get all processes out of __split_and_process_bio in dm_request,
2585 * we take the write lock. To prevent any process from reentering
2586 * __split_and_process_bio from dm_request and quiesce the thread
2587 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2588 * flush_workqueue(md->wq).
2590 down_write(&md
->io_lock
);
2591 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2592 up_write(&md
->io_lock
);
2595 * Stop md->queue before flushing md->wq in case request-based
2596 * dm defers requests to md->wq from md->queue.
2598 if (dm_request_based(md
))
2599 stop_queue(md
->queue
);
2601 flush_workqueue(md
->wq
);
2604 * At this point no more requests are entering target request routines.
2605 * We call dm_wait_for_completion to wait for all existing requests
2608 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
2610 down_write(&md
->io_lock
);
2612 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2613 up_write(&md
->io_lock
);
2615 /* were we interrupted ? */
2619 if (dm_request_based(md
))
2620 start_queue(md
->queue
);
2623 goto out
; /* pushback list is already flushed, so skip flush */
2627 * If dm_wait_for_completion returned 0, the device is completely
2628 * quiescent now. There is no request-processing activity. All new
2629 * requests are being added to md->deferred list.
2632 set_bit(DMF_SUSPENDED
, &md
->flags
);
2634 dm_table_postsuspend_targets(map
);
2640 mutex_unlock(&md
->suspend_lock
);
2644 int dm_resume(struct mapped_device
*md
)
2647 struct dm_table
*map
= NULL
;
2649 mutex_lock(&md
->suspend_lock
);
2650 if (!dm_suspended_md(md
))
2653 map
= dm_get_live_table(md
);
2654 if (!map
|| !dm_table_get_size(map
))
2657 r
= dm_table_resume_targets(map
);
2664 * Flushing deferred I/Os must be done after targets are resumed
2665 * so that mapping of targets can work correctly.
2666 * Request-based dm is queueing the deferred I/Os in its request_queue.
2668 if (dm_request_based(md
))
2669 start_queue(md
->queue
);
2673 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2678 mutex_unlock(&md
->suspend_lock
);
2683 /*-----------------------------------------------------------------
2684 * Event notification.
2685 *---------------------------------------------------------------*/
2686 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2689 char udev_cookie
[DM_COOKIE_LENGTH
];
2690 char *envp
[] = { udev_cookie
, NULL
};
2693 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2695 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2696 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2697 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2702 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2704 return atomic_add_return(1, &md
->uevent_seq
);
2707 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2709 return atomic_read(&md
->event_nr
);
2712 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2714 return wait_event_interruptible(md
->eventq
,
2715 (event_nr
!= atomic_read(&md
->event_nr
)));
2718 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2720 unsigned long flags
;
2722 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2723 list_add(elist
, &md
->uevent_list
);
2724 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2728 * The gendisk is only valid as long as you have a reference
2731 struct gendisk
*dm_disk(struct mapped_device
*md
)
2736 struct kobject
*dm_kobject(struct mapped_device
*md
)
2742 * struct mapped_device should not be exported outside of dm.c
2743 * so use this check to verify that kobj is part of md structure
2745 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2747 struct mapped_device
*md
;
2749 md
= container_of(kobj
, struct mapped_device
, kobj
);
2750 if (&md
->kobj
!= kobj
)
2753 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2761 int dm_suspended_md(struct mapped_device
*md
)
2763 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2766 int dm_suspended(struct dm_target
*ti
)
2768 return dm_suspended_md(dm_table_get_md(ti
->table
));
2770 EXPORT_SYMBOL_GPL(dm_suspended
);
2772 int dm_noflush_suspending(struct dm_target
*ti
)
2774 return __noflush_suspending(dm_table_get_md(ti
->table
));
2776 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2778 struct dm_md_mempools
*dm_alloc_md_mempools(unsigned type
, unsigned integrity
, unsigned per_bio_data_size
)
2780 struct dm_md_mempools
*pools
= kzalloc(sizeof(*pools
), GFP_KERNEL
);
2781 struct kmem_cache
*cachep
;
2782 unsigned int pool_size
;
2783 unsigned int front_pad
;
2788 if (type
== DM_TYPE_BIO_BASED
) {
2791 front_pad
= roundup(per_bio_data_size
, __alignof__(struct dm_target_io
)) + offsetof(struct dm_target_io
, clone
);
2792 } else if (type
== DM_TYPE_REQUEST_BASED
) {
2793 cachep
= _rq_tio_cache
;
2794 pool_size
= MIN_IOS
;
2795 front_pad
= offsetof(struct dm_rq_clone_bio_info
, clone
);
2796 /* per_bio_data_size is not used. See __bind_mempools(). */
2797 WARN_ON(per_bio_data_size
!= 0);
2801 pools
->io_pool
= mempool_create_slab_pool(MIN_IOS
, cachep
);
2802 if (!pools
->io_pool
)
2805 pools
->bs
= bioset_create(pool_size
, front_pad
);
2809 if (integrity
&& bioset_integrity_create(pools
->bs
, pool_size
))
2815 dm_free_md_mempools(pools
);
2820 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2826 mempool_destroy(pools
->io_pool
);
2829 bioset_free(pools
->bs
);
2834 static const struct block_device_operations dm_blk_dops
= {
2835 .open
= dm_blk_open
,
2836 .release
= dm_blk_close
,
2837 .ioctl
= dm_blk_ioctl
,
2838 .getgeo
= dm_blk_getgeo
,
2839 .owner
= THIS_MODULE
2842 EXPORT_SYMBOL(dm_get_mapinfo
);
2847 module_init(dm_init
);
2848 module_exit(dm_exit
);
2850 module_param(major
, uint
, 0);
2851 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2852 MODULE_DESCRIPTION(DM_NAME
" driver");
2853 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2854 MODULE_LICENSE("GPL");