Linux 2.6.35.4
[linux/fpc-iii.git] / kernel / sys.c
blobe83ddbbaf89d1eb4fed500696c39aa0305ba106e
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
41 #include <linux/compat.h>
42 #include <linux/syscalls.h>
43 #include <linux/kprobes.h>
44 #include <linux/user_namespace.h>
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/unistd.h>
50 #ifndef SET_UNALIGN_CTL
51 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
52 #endif
53 #ifndef GET_UNALIGN_CTL
54 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
55 #endif
56 #ifndef SET_FPEMU_CTL
57 # define SET_FPEMU_CTL(a,b) (-EINVAL)
58 #endif
59 #ifndef GET_FPEMU_CTL
60 # define GET_FPEMU_CTL(a,b) (-EINVAL)
61 #endif
62 #ifndef SET_FPEXC_CTL
63 # define SET_FPEXC_CTL(a,b) (-EINVAL)
64 #endif
65 #ifndef GET_FPEXC_CTL
66 # define GET_FPEXC_CTL(a,b) (-EINVAL)
67 #endif
68 #ifndef GET_ENDIAN
69 # define GET_ENDIAN(a,b) (-EINVAL)
70 #endif
71 #ifndef SET_ENDIAN
72 # define SET_ENDIAN(a,b) (-EINVAL)
73 #endif
74 #ifndef GET_TSC_CTL
75 # define GET_TSC_CTL(a) (-EINVAL)
76 #endif
77 #ifndef SET_TSC_CTL
78 # define SET_TSC_CTL(a) (-EINVAL)
79 #endif
82 * this is where the system-wide overflow UID and GID are defined, for
83 * architectures that now have 32-bit UID/GID but didn't in the past
86 int overflowuid = DEFAULT_OVERFLOWUID;
87 int overflowgid = DEFAULT_OVERFLOWGID;
89 #ifdef CONFIG_UID16
90 EXPORT_SYMBOL(overflowuid);
91 EXPORT_SYMBOL(overflowgid);
92 #endif
95 * the same as above, but for filesystems which can only store a 16-bit
96 * UID and GID. as such, this is needed on all architectures
99 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
100 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
102 EXPORT_SYMBOL(fs_overflowuid);
103 EXPORT_SYMBOL(fs_overflowgid);
106 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
109 int C_A_D = 1;
110 struct pid *cad_pid;
111 EXPORT_SYMBOL(cad_pid);
114 * If set, this is used for preparing the system to power off.
117 void (*pm_power_off_prepare)(void);
120 * set the priority of a task
121 * - the caller must hold the RCU read lock
123 static int set_one_prio(struct task_struct *p, int niceval, int error)
125 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
126 int no_nice;
128 if (pcred->uid != cred->euid &&
129 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
130 error = -EPERM;
131 goto out;
133 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
134 error = -EACCES;
135 goto out;
137 no_nice = security_task_setnice(p, niceval);
138 if (no_nice) {
139 error = no_nice;
140 goto out;
142 if (error == -ESRCH)
143 error = 0;
144 set_user_nice(p, niceval);
145 out:
146 return error;
149 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
151 struct task_struct *g, *p;
152 struct user_struct *user;
153 const struct cred *cred = current_cred();
154 int error = -EINVAL;
155 struct pid *pgrp;
157 if (which > PRIO_USER || which < PRIO_PROCESS)
158 goto out;
160 /* normalize: avoid signed division (rounding problems) */
161 error = -ESRCH;
162 if (niceval < -20)
163 niceval = -20;
164 if (niceval > 19)
165 niceval = 19;
167 rcu_read_lock();
168 read_lock(&tasklist_lock);
169 switch (which) {
170 case PRIO_PROCESS:
171 if (who)
172 p = find_task_by_vpid(who);
173 else
174 p = current;
175 if (p)
176 error = set_one_prio(p, niceval, error);
177 break;
178 case PRIO_PGRP:
179 if (who)
180 pgrp = find_vpid(who);
181 else
182 pgrp = task_pgrp(current);
183 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
184 error = set_one_prio(p, niceval, error);
185 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
186 break;
187 case PRIO_USER:
188 user = (struct user_struct *) cred->user;
189 if (!who)
190 who = cred->uid;
191 else if ((who != cred->uid) &&
192 !(user = find_user(who)))
193 goto out_unlock; /* No processes for this user */
195 do_each_thread(g, p) {
196 if (__task_cred(p)->uid == who)
197 error = set_one_prio(p, niceval, error);
198 } while_each_thread(g, p);
199 if (who != cred->uid)
200 free_uid(user); /* For find_user() */
201 break;
203 out_unlock:
204 read_unlock(&tasklist_lock);
205 rcu_read_unlock();
206 out:
207 return error;
211 * Ugh. To avoid negative return values, "getpriority()" will
212 * not return the normal nice-value, but a negated value that
213 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
214 * to stay compatible.
216 SYSCALL_DEFINE2(getpriority, int, which, int, who)
218 struct task_struct *g, *p;
219 struct user_struct *user;
220 const struct cred *cred = current_cred();
221 long niceval, retval = -ESRCH;
222 struct pid *pgrp;
224 if (which > PRIO_USER || which < PRIO_PROCESS)
225 return -EINVAL;
227 rcu_read_lock();
228 read_lock(&tasklist_lock);
229 switch (which) {
230 case PRIO_PROCESS:
231 if (who)
232 p = find_task_by_vpid(who);
233 else
234 p = current;
235 if (p) {
236 niceval = 20 - task_nice(p);
237 if (niceval > retval)
238 retval = niceval;
240 break;
241 case PRIO_PGRP:
242 if (who)
243 pgrp = find_vpid(who);
244 else
245 pgrp = task_pgrp(current);
246 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
247 niceval = 20 - task_nice(p);
248 if (niceval > retval)
249 retval = niceval;
250 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
251 break;
252 case PRIO_USER:
253 user = (struct user_struct *) cred->user;
254 if (!who)
255 who = cred->uid;
256 else if ((who != cred->uid) &&
257 !(user = find_user(who)))
258 goto out_unlock; /* No processes for this user */
260 do_each_thread(g, p) {
261 if (__task_cred(p)->uid == who) {
262 niceval = 20 - task_nice(p);
263 if (niceval > retval)
264 retval = niceval;
266 } while_each_thread(g, p);
267 if (who != cred->uid)
268 free_uid(user); /* for find_user() */
269 break;
271 out_unlock:
272 read_unlock(&tasklist_lock);
273 rcu_read_unlock();
275 return retval;
279 * emergency_restart - reboot the system
281 * Without shutting down any hardware or taking any locks
282 * reboot the system. This is called when we know we are in
283 * trouble so this is our best effort to reboot. This is
284 * safe to call in interrupt context.
286 void emergency_restart(void)
288 machine_emergency_restart();
290 EXPORT_SYMBOL_GPL(emergency_restart);
292 void kernel_restart_prepare(char *cmd)
294 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
295 system_state = SYSTEM_RESTART;
296 device_shutdown();
297 sysdev_shutdown();
301 * kernel_restart - reboot the system
302 * @cmd: pointer to buffer containing command to execute for restart
303 * or %NULL
305 * Shutdown everything and perform a clean reboot.
306 * This is not safe to call in interrupt context.
308 void kernel_restart(char *cmd)
310 kernel_restart_prepare(cmd);
311 if (!cmd)
312 printk(KERN_EMERG "Restarting system.\n");
313 else
314 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
315 machine_restart(cmd);
317 EXPORT_SYMBOL_GPL(kernel_restart);
319 static void kernel_shutdown_prepare(enum system_states state)
321 blocking_notifier_call_chain(&reboot_notifier_list,
322 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
323 system_state = state;
324 device_shutdown();
327 * kernel_halt - halt the system
329 * Shutdown everything and perform a clean system halt.
331 void kernel_halt(void)
333 kernel_shutdown_prepare(SYSTEM_HALT);
334 sysdev_shutdown();
335 printk(KERN_EMERG "System halted.\n");
336 machine_halt();
339 EXPORT_SYMBOL_GPL(kernel_halt);
342 * kernel_power_off - power_off the system
344 * Shutdown everything and perform a clean system power_off.
346 void kernel_power_off(void)
348 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
349 if (pm_power_off_prepare)
350 pm_power_off_prepare();
351 disable_nonboot_cpus();
352 sysdev_shutdown();
353 printk(KERN_EMERG "Power down.\n");
354 machine_power_off();
356 EXPORT_SYMBOL_GPL(kernel_power_off);
358 static DEFINE_MUTEX(reboot_mutex);
361 * Reboot system call: for obvious reasons only root may call it,
362 * and even root needs to set up some magic numbers in the registers
363 * so that some mistake won't make this reboot the whole machine.
364 * You can also set the meaning of the ctrl-alt-del-key here.
366 * reboot doesn't sync: do that yourself before calling this.
368 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
369 void __user *, arg)
371 char buffer[256];
372 int ret = 0;
374 /* We only trust the superuser with rebooting the system. */
375 if (!capable(CAP_SYS_BOOT))
376 return -EPERM;
378 /* For safety, we require "magic" arguments. */
379 if (magic1 != LINUX_REBOOT_MAGIC1 ||
380 (magic2 != LINUX_REBOOT_MAGIC2 &&
381 magic2 != LINUX_REBOOT_MAGIC2A &&
382 magic2 != LINUX_REBOOT_MAGIC2B &&
383 magic2 != LINUX_REBOOT_MAGIC2C))
384 return -EINVAL;
386 /* Instead of trying to make the power_off code look like
387 * halt when pm_power_off is not set do it the easy way.
389 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
390 cmd = LINUX_REBOOT_CMD_HALT;
392 mutex_lock(&reboot_mutex);
393 switch (cmd) {
394 case LINUX_REBOOT_CMD_RESTART:
395 kernel_restart(NULL);
396 break;
398 case LINUX_REBOOT_CMD_CAD_ON:
399 C_A_D = 1;
400 break;
402 case LINUX_REBOOT_CMD_CAD_OFF:
403 C_A_D = 0;
404 break;
406 case LINUX_REBOOT_CMD_HALT:
407 kernel_halt();
408 do_exit(0);
409 panic("cannot halt");
411 case LINUX_REBOOT_CMD_POWER_OFF:
412 kernel_power_off();
413 do_exit(0);
414 break;
416 case LINUX_REBOOT_CMD_RESTART2:
417 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
418 ret = -EFAULT;
419 break;
421 buffer[sizeof(buffer) - 1] = '\0';
423 kernel_restart(buffer);
424 break;
426 #ifdef CONFIG_KEXEC
427 case LINUX_REBOOT_CMD_KEXEC:
428 ret = kernel_kexec();
429 break;
430 #endif
432 #ifdef CONFIG_HIBERNATION
433 case LINUX_REBOOT_CMD_SW_SUSPEND:
434 ret = hibernate();
435 break;
436 #endif
438 default:
439 ret = -EINVAL;
440 break;
442 mutex_unlock(&reboot_mutex);
443 return ret;
446 static void deferred_cad(struct work_struct *dummy)
448 kernel_restart(NULL);
452 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
453 * As it's called within an interrupt, it may NOT sync: the only choice
454 * is whether to reboot at once, or just ignore the ctrl-alt-del.
456 void ctrl_alt_del(void)
458 static DECLARE_WORK(cad_work, deferred_cad);
460 if (C_A_D)
461 schedule_work(&cad_work);
462 else
463 kill_cad_pid(SIGINT, 1);
467 * Unprivileged users may change the real gid to the effective gid
468 * or vice versa. (BSD-style)
470 * If you set the real gid at all, or set the effective gid to a value not
471 * equal to the real gid, then the saved gid is set to the new effective gid.
473 * This makes it possible for a setgid program to completely drop its
474 * privileges, which is often a useful assertion to make when you are doing
475 * a security audit over a program.
477 * The general idea is that a program which uses just setregid() will be
478 * 100% compatible with BSD. A program which uses just setgid() will be
479 * 100% compatible with POSIX with saved IDs.
481 * SMP: There are not races, the GIDs are checked only by filesystem
482 * operations (as far as semantic preservation is concerned).
484 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
486 const struct cred *old;
487 struct cred *new;
488 int retval;
490 new = prepare_creds();
491 if (!new)
492 return -ENOMEM;
493 old = current_cred();
495 retval = -EPERM;
496 if (rgid != (gid_t) -1) {
497 if (old->gid == rgid ||
498 old->egid == rgid ||
499 capable(CAP_SETGID))
500 new->gid = rgid;
501 else
502 goto error;
504 if (egid != (gid_t) -1) {
505 if (old->gid == egid ||
506 old->egid == egid ||
507 old->sgid == egid ||
508 capable(CAP_SETGID))
509 new->egid = egid;
510 else
511 goto error;
514 if (rgid != (gid_t) -1 ||
515 (egid != (gid_t) -1 && egid != old->gid))
516 new->sgid = new->egid;
517 new->fsgid = new->egid;
519 return commit_creds(new);
521 error:
522 abort_creds(new);
523 return retval;
527 * setgid() is implemented like SysV w/ SAVED_IDS
529 * SMP: Same implicit races as above.
531 SYSCALL_DEFINE1(setgid, gid_t, gid)
533 const struct cred *old;
534 struct cred *new;
535 int retval;
537 new = prepare_creds();
538 if (!new)
539 return -ENOMEM;
540 old = current_cred();
542 retval = -EPERM;
543 if (capable(CAP_SETGID))
544 new->gid = new->egid = new->sgid = new->fsgid = gid;
545 else if (gid == old->gid || gid == old->sgid)
546 new->egid = new->fsgid = gid;
547 else
548 goto error;
550 return commit_creds(new);
552 error:
553 abort_creds(new);
554 return retval;
558 * change the user struct in a credentials set to match the new UID
560 static int set_user(struct cred *new)
562 struct user_struct *new_user;
564 new_user = alloc_uid(current_user_ns(), new->uid);
565 if (!new_user)
566 return -EAGAIN;
568 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
569 new_user != INIT_USER) {
570 free_uid(new_user);
571 return -EAGAIN;
574 free_uid(new->user);
575 new->user = new_user;
576 return 0;
580 * Unprivileged users may change the real uid to the effective uid
581 * or vice versa. (BSD-style)
583 * If you set the real uid at all, or set the effective uid to a value not
584 * equal to the real uid, then the saved uid is set to the new effective uid.
586 * This makes it possible for a setuid program to completely drop its
587 * privileges, which is often a useful assertion to make when you are doing
588 * a security audit over a program.
590 * The general idea is that a program which uses just setreuid() will be
591 * 100% compatible with BSD. A program which uses just setuid() will be
592 * 100% compatible with POSIX with saved IDs.
594 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
596 const struct cred *old;
597 struct cred *new;
598 int retval;
600 new = prepare_creds();
601 if (!new)
602 return -ENOMEM;
603 old = current_cred();
605 retval = -EPERM;
606 if (ruid != (uid_t) -1) {
607 new->uid = ruid;
608 if (old->uid != ruid &&
609 old->euid != ruid &&
610 !capable(CAP_SETUID))
611 goto error;
614 if (euid != (uid_t) -1) {
615 new->euid = euid;
616 if (old->uid != euid &&
617 old->euid != euid &&
618 old->suid != euid &&
619 !capable(CAP_SETUID))
620 goto error;
623 if (new->uid != old->uid) {
624 retval = set_user(new);
625 if (retval < 0)
626 goto error;
628 if (ruid != (uid_t) -1 ||
629 (euid != (uid_t) -1 && euid != old->uid))
630 new->suid = new->euid;
631 new->fsuid = new->euid;
633 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
634 if (retval < 0)
635 goto error;
637 return commit_creds(new);
639 error:
640 abort_creds(new);
641 return retval;
645 * setuid() is implemented like SysV with SAVED_IDS
647 * Note that SAVED_ID's is deficient in that a setuid root program
648 * like sendmail, for example, cannot set its uid to be a normal
649 * user and then switch back, because if you're root, setuid() sets
650 * the saved uid too. If you don't like this, blame the bright people
651 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
652 * will allow a root program to temporarily drop privileges and be able to
653 * regain them by swapping the real and effective uid.
655 SYSCALL_DEFINE1(setuid, uid_t, uid)
657 const struct cred *old;
658 struct cred *new;
659 int retval;
661 new = prepare_creds();
662 if (!new)
663 return -ENOMEM;
664 old = current_cred();
666 retval = -EPERM;
667 if (capable(CAP_SETUID)) {
668 new->suid = new->uid = uid;
669 if (uid != old->uid) {
670 retval = set_user(new);
671 if (retval < 0)
672 goto error;
674 } else if (uid != old->uid && uid != new->suid) {
675 goto error;
678 new->fsuid = new->euid = uid;
680 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
681 if (retval < 0)
682 goto error;
684 return commit_creds(new);
686 error:
687 abort_creds(new);
688 return retval;
693 * This function implements a generic ability to update ruid, euid,
694 * and suid. This allows you to implement the 4.4 compatible seteuid().
696 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
698 const struct cred *old;
699 struct cred *new;
700 int retval;
702 new = prepare_creds();
703 if (!new)
704 return -ENOMEM;
706 old = current_cred();
708 retval = -EPERM;
709 if (!capable(CAP_SETUID)) {
710 if (ruid != (uid_t) -1 && ruid != old->uid &&
711 ruid != old->euid && ruid != old->suid)
712 goto error;
713 if (euid != (uid_t) -1 && euid != old->uid &&
714 euid != old->euid && euid != old->suid)
715 goto error;
716 if (suid != (uid_t) -1 && suid != old->uid &&
717 suid != old->euid && suid != old->suid)
718 goto error;
721 if (ruid != (uid_t) -1) {
722 new->uid = ruid;
723 if (ruid != old->uid) {
724 retval = set_user(new);
725 if (retval < 0)
726 goto error;
729 if (euid != (uid_t) -1)
730 new->euid = euid;
731 if (suid != (uid_t) -1)
732 new->suid = suid;
733 new->fsuid = new->euid;
735 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
736 if (retval < 0)
737 goto error;
739 return commit_creds(new);
741 error:
742 abort_creds(new);
743 return retval;
746 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
748 const struct cred *cred = current_cred();
749 int retval;
751 if (!(retval = put_user(cred->uid, ruid)) &&
752 !(retval = put_user(cred->euid, euid)))
753 retval = put_user(cred->suid, suid);
755 return retval;
759 * Same as above, but for rgid, egid, sgid.
761 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
763 const struct cred *old;
764 struct cred *new;
765 int retval;
767 new = prepare_creds();
768 if (!new)
769 return -ENOMEM;
770 old = current_cred();
772 retval = -EPERM;
773 if (!capable(CAP_SETGID)) {
774 if (rgid != (gid_t) -1 && rgid != old->gid &&
775 rgid != old->egid && rgid != old->sgid)
776 goto error;
777 if (egid != (gid_t) -1 && egid != old->gid &&
778 egid != old->egid && egid != old->sgid)
779 goto error;
780 if (sgid != (gid_t) -1 && sgid != old->gid &&
781 sgid != old->egid && sgid != old->sgid)
782 goto error;
785 if (rgid != (gid_t) -1)
786 new->gid = rgid;
787 if (egid != (gid_t) -1)
788 new->egid = egid;
789 if (sgid != (gid_t) -1)
790 new->sgid = sgid;
791 new->fsgid = new->egid;
793 return commit_creds(new);
795 error:
796 abort_creds(new);
797 return retval;
800 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
802 const struct cred *cred = current_cred();
803 int retval;
805 if (!(retval = put_user(cred->gid, rgid)) &&
806 !(retval = put_user(cred->egid, egid)))
807 retval = put_user(cred->sgid, sgid);
809 return retval;
814 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
815 * is used for "access()" and for the NFS daemon (letting nfsd stay at
816 * whatever uid it wants to). It normally shadows "euid", except when
817 * explicitly set by setfsuid() or for access..
819 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
821 const struct cred *old;
822 struct cred *new;
823 uid_t old_fsuid;
825 new = prepare_creds();
826 if (!new)
827 return current_fsuid();
828 old = current_cred();
829 old_fsuid = old->fsuid;
831 if (uid == old->uid || uid == old->euid ||
832 uid == old->suid || uid == old->fsuid ||
833 capable(CAP_SETUID)) {
834 if (uid != old_fsuid) {
835 new->fsuid = uid;
836 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
837 goto change_okay;
841 abort_creds(new);
842 return old_fsuid;
844 change_okay:
845 commit_creds(new);
846 return old_fsuid;
850 * Samma på svenska..
852 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
854 const struct cred *old;
855 struct cred *new;
856 gid_t old_fsgid;
858 new = prepare_creds();
859 if (!new)
860 return current_fsgid();
861 old = current_cred();
862 old_fsgid = old->fsgid;
864 if (gid == old->gid || gid == old->egid ||
865 gid == old->sgid || gid == old->fsgid ||
866 capable(CAP_SETGID)) {
867 if (gid != old_fsgid) {
868 new->fsgid = gid;
869 goto change_okay;
873 abort_creds(new);
874 return old_fsgid;
876 change_okay:
877 commit_creds(new);
878 return old_fsgid;
881 void do_sys_times(struct tms *tms)
883 cputime_t tgutime, tgstime, cutime, cstime;
885 spin_lock_irq(&current->sighand->siglock);
886 thread_group_times(current, &tgutime, &tgstime);
887 cutime = current->signal->cutime;
888 cstime = current->signal->cstime;
889 spin_unlock_irq(&current->sighand->siglock);
890 tms->tms_utime = cputime_to_clock_t(tgutime);
891 tms->tms_stime = cputime_to_clock_t(tgstime);
892 tms->tms_cutime = cputime_to_clock_t(cutime);
893 tms->tms_cstime = cputime_to_clock_t(cstime);
896 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
898 if (tbuf) {
899 struct tms tmp;
901 do_sys_times(&tmp);
902 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
903 return -EFAULT;
905 force_successful_syscall_return();
906 return (long) jiffies_64_to_clock_t(get_jiffies_64());
910 * This needs some heavy checking ...
911 * I just haven't the stomach for it. I also don't fully
912 * understand sessions/pgrp etc. Let somebody who does explain it.
914 * OK, I think I have the protection semantics right.... this is really
915 * only important on a multi-user system anyway, to make sure one user
916 * can't send a signal to a process owned by another. -TYT, 12/12/91
918 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
919 * LBT 04.03.94
921 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
923 struct task_struct *p;
924 struct task_struct *group_leader = current->group_leader;
925 struct pid *pgrp;
926 int err;
928 if (!pid)
929 pid = task_pid_vnr(group_leader);
930 if (!pgid)
931 pgid = pid;
932 if (pgid < 0)
933 return -EINVAL;
935 /* From this point forward we keep holding onto the tasklist lock
936 * so that our parent does not change from under us. -DaveM
938 write_lock_irq(&tasklist_lock);
940 err = -ESRCH;
941 p = find_task_by_vpid(pid);
942 if (!p)
943 goto out;
945 err = -EINVAL;
946 if (!thread_group_leader(p))
947 goto out;
949 if (same_thread_group(p->real_parent, group_leader)) {
950 err = -EPERM;
951 if (task_session(p) != task_session(group_leader))
952 goto out;
953 err = -EACCES;
954 if (p->did_exec)
955 goto out;
956 } else {
957 err = -ESRCH;
958 if (p != group_leader)
959 goto out;
962 err = -EPERM;
963 if (p->signal->leader)
964 goto out;
966 pgrp = task_pid(p);
967 if (pgid != pid) {
968 struct task_struct *g;
970 pgrp = find_vpid(pgid);
971 g = pid_task(pgrp, PIDTYPE_PGID);
972 if (!g || task_session(g) != task_session(group_leader))
973 goto out;
976 err = security_task_setpgid(p, pgid);
977 if (err)
978 goto out;
980 if (task_pgrp(p) != pgrp)
981 change_pid(p, PIDTYPE_PGID, pgrp);
983 err = 0;
984 out:
985 /* All paths lead to here, thus we are safe. -DaveM */
986 write_unlock_irq(&tasklist_lock);
987 return err;
990 SYSCALL_DEFINE1(getpgid, pid_t, pid)
992 struct task_struct *p;
993 struct pid *grp;
994 int retval;
996 rcu_read_lock();
997 if (!pid)
998 grp = task_pgrp(current);
999 else {
1000 retval = -ESRCH;
1001 p = find_task_by_vpid(pid);
1002 if (!p)
1003 goto out;
1004 grp = task_pgrp(p);
1005 if (!grp)
1006 goto out;
1008 retval = security_task_getpgid(p);
1009 if (retval)
1010 goto out;
1012 retval = pid_vnr(grp);
1013 out:
1014 rcu_read_unlock();
1015 return retval;
1018 #ifdef __ARCH_WANT_SYS_GETPGRP
1020 SYSCALL_DEFINE0(getpgrp)
1022 return sys_getpgid(0);
1025 #endif
1027 SYSCALL_DEFINE1(getsid, pid_t, pid)
1029 struct task_struct *p;
1030 struct pid *sid;
1031 int retval;
1033 rcu_read_lock();
1034 if (!pid)
1035 sid = task_session(current);
1036 else {
1037 retval = -ESRCH;
1038 p = find_task_by_vpid(pid);
1039 if (!p)
1040 goto out;
1041 sid = task_session(p);
1042 if (!sid)
1043 goto out;
1045 retval = security_task_getsid(p);
1046 if (retval)
1047 goto out;
1049 retval = pid_vnr(sid);
1050 out:
1051 rcu_read_unlock();
1052 return retval;
1055 SYSCALL_DEFINE0(setsid)
1057 struct task_struct *group_leader = current->group_leader;
1058 struct pid *sid = task_pid(group_leader);
1059 pid_t session = pid_vnr(sid);
1060 int err = -EPERM;
1062 write_lock_irq(&tasklist_lock);
1063 /* Fail if I am already a session leader */
1064 if (group_leader->signal->leader)
1065 goto out;
1067 /* Fail if a process group id already exists that equals the
1068 * proposed session id.
1070 if (pid_task(sid, PIDTYPE_PGID))
1071 goto out;
1073 group_leader->signal->leader = 1;
1074 __set_special_pids(sid);
1076 proc_clear_tty(group_leader);
1078 err = session;
1079 out:
1080 write_unlock_irq(&tasklist_lock);
1081 if (err > 0)
1082 proc_sid_connector(group_leader);
1083 return err;
1086 DECLARE_RWSEM(uts_sem);
1088 #ifdef COMPAT_UTS_MACHINE
1089 #define override_architecture(name) \
1090 (personality(current->personality) == PER_LINUX32 && \
1091 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1092 sizeof(COMPAT_UTS_MACHINE)))
1093 #else
1094 #define override_architecture(name) 0
1095 #endif
1097 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1099 int errno = 0;
1101 down_read(&uts_sem);
1102 if (copy_to_user(name, utsname(), sizeof *name))
1103 errno = -EFAULT;
1104 up_read(&uts_sem);
1106 if (!errno && override_architecture(name))
1107 errno = -EFAULT;
1108 return errno;
1111 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1113 * Old cruft
1115 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1117 int error = 0;
1119 if (!name)
1120 return -EFAULT;
1122 down_read(&uts_sem);
1123 if (copy_to_user(name, utsname(), sizeof(*name)))
1124 error = -EFAULT;
1125 up_read(&uts_sem);
1127 if (!error && override_architecture(name))
1128 error = -EFAULT;
1129 return error;
1132 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1134 int error;
1136 if (!name)
1137 return -EFAULT;
1138 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1139 return -EFAULT;
1141 down_read(&uts_sem);
1142 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1143 __OLD_UTS_LEN);
1144 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1145 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1146 __OLD_UTS_LEN);
1147 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1148 error |= __copy_to_user(&name->release, &utsname()->release,
1149 __OLD_UTS_LEN);
1150 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1151 error |= __copy_to_user(&name->version, &utsname()->version,
1152 __OLD_UTS_LEN);
1153 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1154 error |= __copy_to_user(&name->machine, &utsname()->machine,
1155 __OLD_UTS_LEN);
1156 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1157 up_read(&uts_sem);
1159 if (!error && override_architecture(name))
1160 error = -EFAULT;
1161 return error ? -EFAULT : 0;
1163 #endif
1165 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1167 int errno;
1168 char tmp[__NEW_UTS_LEN];
1170 if (!capable(CAP_SYS_ADMIN))
1171 return -EPERM;
1172 if (len < 0 || len > __NEW_UTS_LEN)
1173 return -EINVAL;
1174 down_write(&uts_sem);
1175 errno = -EFAULT;
1176 if (!copy_from_user(tmp, name, len)) {
1177 struct new_utsname *u = utsname();
1179 memcpy(u->nodename, tmp, len);
1180 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1181 errno = 0;
1183 up_write(&uts_sem);
1184 return errno;
1187 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1189 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1191 int i, errno;
1192 struct new_utsname *u;
1194 if (len < 0)
1195 return -EINVAL;
1196 down_read(&uts_sem);
1197 u = utsname();
1198 i = 1 + strlen(u->nodename);
1199 if (i > len)
1200 i = len;
1201 errno = 0;
1202 if (copy_to_user(name, u->nodename, i))
1203 errno = -EFAULT;
1204 up_read(&uts_sem);
1205 return errno;
1208 #endif
1211 * Only setdomainname; getdomainname can be implemented by calling
1212 * uname()
1214 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1216 int errno;
1217 char tmp[__NEW_UTS_LEN];
1219 if (!capable(CAP_SYS_ADMIN))
1220 return -EPERM;
1221 if (len < 0 || len > __NEW_UTS_LEN)
1222 return -EINVAL;
1224 down_write(&uts_sem);
1225 errno = -EFAULT;
1226 if (!copy_from_user(tmp, name, len)) {
1227 struct new_utsname *u = utsname();
1229 memcpy(u->domainname, tmp, len);
1230 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1231 errno = 0;
1233 up_write(&uts_sem);
1234 return errno;
1237 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1239 if (resource >= RLIM_NLIMITS)
1240 return -EINVAL;
1241 else {
1242 struct rlimit value;
1243 task_lock(current->group_leader);
1244 value = current->signal->rlim[resource];
1245 task_unlock(current->group_leader);
1246 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1250 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1253 * Back compatibility for getrlimit. Needed for some apps.
1256 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1257 struct rlimit __user *, rlim)
1259 struct rlimit x;
1260 if (resource >= RLIM_NLIMITS)
1261 return -EINVAL;
1263 task_lock(current->group_leader);
1264 x = current->signal->rlim[resource];
1265 task_unlock(current->group_leader);
1266 if (x.rlim_cur > 0x7FFFFFFF)
1267 x.rlim_cur = 0x7FFFFFFF;
1268 if (x.rlim_max > 0x7FFFFFFF)
1269 x.rlim_max = 0x7FFFFFFF;
1270 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1273 #endif
1275 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1277 struct rlimit new_rlim, *old_rlim;
1278 int retval;
1280 if (resource >= RLIM_NLIMITS)
1281 return -EINVAL;
1282 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1283 return -EFAULT;
1284 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1285 return -EINVAL;
1286 old_rlim = current->signal->rlim + resource;
1287 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1288 !capable(CAP_SYS_RESOURCE))
1289 return -EPERM;
1290 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1291 return -EPERM;
1293 retval = security_task_setrlimit(resource, &new_rlim);
1294 if (retval)
1295 return retval;
1297 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1299 * The caller is asking for an immediate RLIMIT_CPU
1300 * expiry. But we use the zero value to mean "it was
1301 * never set". So let's cheat and make it one second
1302 * instead
1304 new_rlim.rlim_cur = 1;
1307 task_lock(current->group_leader);
1308 *old_rlim = new_rlim;
1309 task_unlock(current->group_leader);
1311 if (resource != RLIMIT_CPU)
1312 goto out;
1315 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1316 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1317 * very long-standing error, and fixing it now risks breakage of
1318 * applications, so we live with it
1320 if (new_rlim.rlim_cur == RLIM_INFINITY)
1321 goto out;
1323 update_rlimit_cpu(new_rlim.rlim_cur);
1324 out:
1325 return 0;
1329 * It would make sense to put struct rusage in the task_struct,
1330 * except that would make the task_struct be *really big*. After
1331 * task_struct gets moved into malloc'ed memory, it would
1332 * make sense to do this. It will make moving the rest of the information
1333 * a lot simpler! (Which we're not doing right now because we're not
1334 * measuring them yet).
1336 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1337 * races with threads incrementing their own counters. But since word
1338 * reads are atomic, we either get new values or old values and we don't
1339 * care which for the sums. We always take the siglock to protect reading
1340 * the c* fields from p->signal from races with exit.c updating those
1341 * fields when reaping, so a sample either gets all the additions of a
1342 * given child after it's reaped, or none so this sample is before reaping.
1344 * Locking:
1345 * We need to take the siglock for CHILDEREN, SELF and BOTH
1346 * for the cases current multithreaded, non-current single threaded
1347 * non-current multithreaded. Thread traversal is now safe with
1348 * the siglock held.
1349 * Strictly speaking, we donot need to take the siglock if we are current and
1350 * single threaded, as no one else can take our signal_struct away, no one
1351 * else can reap the children to update signal->c* counters, and no one else
1352 * can race with the signal-> fields. If we do not take any lock, the
1353 * signal-> fields could be read out of order while another thread was just
1354 * exiting. So we should place a read memory barrier when we avoid the lock.
1355 * On the writer side, write memory barrier is implied in __exit_signal
1356 * as __exit_signal releases the siglock spinlock after updating the signal->
1357 * fields. But we don't do this yet to keep things simple.
1361 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1363 r->ru_nvcsw += t->nvcsw;
1364 r->ru_nivcsw += t->nivcsw;
1365 r->ru_minflt += t->min_flt;
1366 r->ru_majflt += t->maj_flt;
1367 r->ru_inblock += task_io_get_inblock(t);
1368 r->ru_oublock += task_io_get_oublock(t);
1371 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1373 struct task_struct *t;
1374 unsigned long flags;
1375 cputime_t tgutime, tgstime, utime, stime;
1376 unsigned long maxrss = 0;
1378 memset((char *) r, 0, sizeof *r);
1379 utime = stime = cputime_zero;
1381 if (who == RUSAGE_THREAD) {
1382 task_times(current, &utime, &stime);
1383 accumulate_thread_rusage(p, r);
1384 maxrss = p->signal->maxrss;
1385 goto out;
1388 if (!lock_task_sighand(p, &flags))
1389 return;
1391 switch (who) {
1392 case RUSAGE_BOTH:
1393 case RUSAGE_CHILDREN:
1394 utime = p->signal->cutime;
1395 stime = p->signal->cstime;
1396 r->ru_nvcsw = p->signal->cnvcsw;
1397 r->ru_nivcsw = p->signal->cnivcsw;
1398 r->ru_minflt = p->signal->cmin_flt;
1399 r->ru_majflt = p->signal->cmaj_flt;
1400 r->ru_inblock = p->signal->cinblock;
1401 r->ru_oublock = p->signal->coublock;
1402 maxrss = p->signal->cmaxrss;
1404 if (who == RUSAGE_CHILDREN)
1405 break;
1407 case RUSAGE_SELF:
1408 thread_group_times(p, &tgutime, &tgstime);
1409 utime = cputime_add(utime, tgutime);
1410 stime = cputime_add(stime, tgstime);
1411 r->ru_nvcsw += p->signal->nvcsw;
1412 r->ru_nivcsw += p->signal->nivcsw;
1413 r->ru_minflt += p->signal->min_flt;
1414 r->ru_majflt += p->signal->maj_flt;
1415 r->ru_inblock += p->signal->inblock;
1416 r->ru_oublock += p->signal->oublock;
1417 if (maxrss < p->signal->maxrss)
1418 maxrss = p->signal->maxrss;
1419 t = p;
1420 do {
1421 accumulate_thread_rusage(t, r);
1422 t = next_thread(t);
1423 } while (t != p);
1424 break;
1426 default:
1427 BUG();
1429 unlock_task_sighand(p, &flags);
1431 out:
1432 cputime_to_timeval(utime, &r->ru_utime);
1433 cputime_to_timeval(stime, &r->ru_stime);
1435 if (who != RUSAGE_CHILDREN) {
1436 struct mm_struct *mm = get_task_mm(p);
1437 if (mm) {
1438 setmax_mm_hiwater_rss(&maxrss, mm);
1439 mmput(mm);
1442 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1445 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1447 struct rusage r;
1448 k_getrusage(p, who, &r);
1449 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1452 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1454 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1455 who != RUSAGE_THREAD)
1456 return -EINVAL;
1457 return getrusage(current, who, ru);
1460 SYSCALL_DEFINE1(umask, int, mask)
1462 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1463 return mask;
1466 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1467 unsigned long, arg4, unsigned long, arg5)
1469 struct task_struct *me = current;
1470 unsigned char comm[sizeof(me->comm)];
1471 long error;
1473 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1474 if (error != -ENOSYS)
1475 return error;
1477 error = 0;
1478 switch (option) {
1479 case PR_SET_PDEATHSIG:
1480 if (!valid_signal(arg2)) {
1481 error = -EINVAL;
1482 break;
1484 me->pdeath_signal = arg2;
1485 error = 0;
1486 break;
1487 case PR_GET_PDEATHSIG:
1488 error = put_user(me->pdeath_signal, (int __user *)arg2);
1489 break;
1490 case PR_GET_DUMPABLE:
1491 error = get_dumpable(me->mm);
1492 break;
1493 case PR_SET_DUMPABLE:
1494 if (arg2 < 0 || arg2 > 1) {
1495 error = -EINVAL;
1496 break;
1498 set_dumpable(me->mm, arg2);
1499 error = 0;
1500 break;
1502 case PR_SET_UNALIGN:
1503 error = SET_UNALIGN_CTL(me, arg2);
1504 break;
1505 case PR_GET_UNALIGN:
1506 error = GET_UNALIGN_CTL(me, arg2);
1507 break;
1508 case PR_SET_FPEMU:
1509 error = SET_FPEMU_CTL(me, arg2);
1510 break;
1511 case PR_GET_FPEMU:
1512 error = GET_FPEMU_CTL(me, arg2);
1513 break;
1514 case PR_SET_FPEXC:
1515 error = SET_FPEXC_CTL(me, arg2);
1516 break;
1517 case PR_GET_FPEXC:
1518 error = GET_FPEXC_CTL(me, arg2);
1519 break;
1520 case PR_GET_TIMING:
1521 error = PR_TIMING_STATISTICAL;
1522 break;
1523 case PR_SET_TIMING:
1524 if (arg2 != PR_TIMING_STATISTICAL)
1525 error = -EINVAL;
1526 else
1527 error = 0;
1528 break;
1530 case PR_SET_NAME:
1531 comm[sizeof(me->comm)-1] = 0;
1532 if (strncpy_from_user(comm, (char __user *)arg2,
1533 sizeof(me->comm) - 1) < 0)
1534 return -EFAULT;
1535 set_task_comm(me, comm);
1536 return 0;
1537 case PR_GET_NAME:
1538 get_task_comm(comm, me);
1539 if (copy_to_user((char __user *)arg2, comm,
1540 sizeof(comm)))
1541 return -EFAULT;
1542 return 0;
1543 case PR_GET_ENDIAN:
1544 error = GET_ENDIAN(me, arg2);
1545 break;
1546 case PR_SET_ENDIAN:
1547 error = SET_ENDIAN(me, arg2);
1548 break;
1550 case PR_GET_SECCOMP:
1551 error = prctl_get_seccomp();
1552 break;
1553 case PR_SET_SECCOMP:
1554 error = prctl_set_seccomp(arg2);
1555 break;
1556 case PR_GET_TSC:
1557 error = GET_TSC_CTL(arg2);
1558 break;
1559 case PR_SET_TSC:
1560 error = SET_TSC_CTL(arg2);
1561 break;
1562 case PR_TASK_PERF_EVENTS_DISABLE:
1563 error = perf_event_task_disable();
1564 break;
1565 case PR_TASK_PERF_EVENTS_ENABLE:
1566 error = perf_event_task_enable();
1567 break;
1568 case PR_GET_TIMERSLACK:
1569 error = current->timer_slack_ns;
1570 break;
1571 case PR_SET_TIMERSLACK:
1572 if (arg2 <= 0)
1573 current->timer_slack_ns =
1574 current->default_timer_slack_ns;
1575 else
1576 current->timer_slack_ns = arg2;
1577 error = 0;
1578 break;
1579 case PR_MCE_KILL:
1580 if (arg4 | arg5)
1581 return -EINVAL;
1582 switch (arg2) {
1583 case PR_MCE_KILL_CLEAR:
1584 if (arg3 != 0)
1585 return -EINVAL;
1586 current->flags &= ~PF_MCE_PROCESS;
1587 break;
1588 case PR_MCE_KILL_SET:
1589 current->flags |= PF_MCE_PROCESS;
1590 if (arg3 == PR_MCE_KILL_EARLY)
1591 current->flags |= PF_MCE_EARLY;
1592 else if (arg3 == PR_MCE_KILL_LATE)
1593 current->flags &= ~PF_MCE_EARLY;
1594 else if (arg3 == PR_MCE_KILL_DEFAULT)
1595 current->flags &=
1596 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1597 else
1598 return -EINVAL;
1599 break;
1600 default:
1601 return -EINVAL;
1603 error = 0;
1604 break;
1605 case PR_MCE_KILL_GET:
1606 if (arg2 | arg3 | arg4 | arg5)
1607 return -EINVAL;
1608 if (current->flags & PF_MCE_PROCESS)
1609 error = (current->flags & PF_MCE_EARLY) ?
1610 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1611 else
1612 error = PR_MCE_KILL_DEFAULT;
1613 break;
1614 default:
1615 error = -EINVAL;
1616 break;
1618 return error;
1621 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1622 struct getcpu_cache __user *, unused)
1624 int err = 0;
1625 int cpu = raw_smp_processor_id();
1626 if (cpup)
1627 err |= put_user(cpu, cpup);
1628 if (nodep)
1629 err |= put_user(cpu_to_node(cpu), nodep);
1630 return err ? -EFAULT : 0;
1633 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1635 static void argv_cleanup(struct subprocess_info *info)
1637 argv_free(info->argv);
1641 * orderly_poweroff - Trigger an orderly system poweroff
1642 * @force: force poweroff if command execution fails
1644 * This may be called from any context to trigger a system shutdown.
1645 * If the orderly shutdown fails, it will force an immediate shutdown.
1647 int orderly_poweroff(bool force)
1649 int argc;
1650 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1651 static char *envp[] = {
1652 "HOME=/",
1653 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1654 NULL
1656 int ret = -ENOMEM;
1657 struct subprocess_info *info;
1659 if (argv == NULL) {
1660 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1661 __func__, poweroff_cmd);
1662 goto out;
1665 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1666 if (info == NULL) {
1667 argv_free(argv);
1668 goto out;
1671 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
1673 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1675 out:
1676 if (ret && force) {
1677 printk(KERN_WARNING "Failed to start orderly shutdown: "
1678 "forcing the issue\n");
1680 /* I guess this should try to kick off some daemon to
1681 sync and poweroff asap. Or not even bother syncing
1682 if we're doing an emergency shutdown? */
1683 emergency_sync();
1684 kernel_power_off();
1687 return ret;
1689 EXPORT_SYMBOL_GPL(orderly_poweroff);