Linux 2.6.35.4
[linux/fpc-iii.git] / mm / memory.c
blob53cf85d44449ed41cb6af277983cd5ef8dc56ab8
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
138 task->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
165 long val = 0;
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val = atomic_long_read(&mm->rss_stat.count[member]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 __sync_task_rss_stat(task, mm);
185 #else
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct *task)
194 #endif
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none. Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
202 void pgd_clear_bad(pgd_t *pgd)
204 pgd_ERROR(*pgd);
205 pgd_clear(pgd);
208 void pud_clear_bad(pud_t *pud)
210 pud_ERROR(*pud);
211 pud_clear(pud);
214 void pmd_clear_bad(pmd_t *pmd)
216 pmd_ERROR(*pmd);
217 pmd_clear(pmd);
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225 unsigned long addr)
227 pgtable_t token = pmd_pgtable(*pmd);
228 pmd_clear(pmd);
229 pte_free_tlb(tlb, token, addr);
230 tlb->mm->nr_ptes--;
233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
237 pmd_t *pmd;
238 unsigned long next;
239 unsigned long start;
241 start = addr;
242 pmd = pmd_offset(pud, addr);
243 do {
244 next = pmd_addr_end(addr, end);
245 if (pmd_none_or_clear_bad(pmd))
246 continue;
247 free_pte_range(tlb, pmd, addr);
248 } while (pmd++, addr = next, addr != end);
250 start &= PUD_MASK;
251 if (start < floor)
252 return;
253 if (ceiling) {
254 ceiling &= PUD_MASK;
255 if (!ceiling)
256 return;
258 if (end - 1 > ceiling - 1)
259 return;
261 pmd = pmd_offset(pud, start);
262 pud_clear(pud);
263 pmd_free_tlb(tlb, pmd, start);
266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
270 pud_t *pud;
271 unsigned long next;
272 unsigned long start;
274 start = addr;
275 pud = pud_offset(pgd, addr);
276 do {
277 next = pud_addr_end(addr, end);
278 if (pud_none_or_clear_bad(pud))
279 continue;
280 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281 } while (pud++, addr = next, addr != end);
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
291 if (end - 1 > ceiling - 1)
292 return;
294 pud = pud_offset(pgd, start);
295 pgd_clear(pgd);
296 pud_free_tlb(tlb, pud, start);
300 * This function frees user-level page tables of a process.
302 * Must be called with pagetable lock held.
304 void free_pgd_range(struct mmu_gather *tlb,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
308 pgd_t *pgd;
309 unsigned long next;
310 unsigned long start;
313 * The next few lines have given us lots of grief...
315 * Why are we testing PMD* at this top level? Because often
316 * there will be no work to do at all, and we'd prefer not to
317 * go all the way down to the bottom just to discover that.
319 * Why all these "- 1"s? Because 0 represents both the bottom
320 * of the address space and the top of it (using -1 for the
321 * top wouldn't help much: the masks would do the wrong thing).
322 * The rule is that addr 0 and floor 0 refer to the bottom of
323 * the address space, but end 0 and ceiling 0 refer to the top
324 * Comparisons need to use "end - 1" and "ceiling - 1" (though
325 * that end 0 case should be mythical).
327 * Wherever addr is brought up or ceiling brought down, we must
328 * be careful to reject "the opposite 0" before it confuses the
329 * subsequent tests. But what about where end is brought down
330 * by PMD_SIZE below? no, end can't go down to 0 there.
332 * Whereas we round start (addr) and ceiling down, by different
333 * masks at different levels, in order to test whether a table
334 * now has no other vmas using it, so can be freed, we don't
335 * bother to round floor or end up - the tests don't need that.
338 addr &= PMD_MASK;
339 if (addr < floor) {
340 addr += PMD_SIZE;
341 if (!addr)
342 return;
344 if (ceiling) {
345 ceiling &= PMD_MASK;
346 if (!ceiling)
347 return;
349 if (end - 1 > ceiling - 1)
350 end -= PMD_SIZE;
351 if (addr > end - 1)
352 return;
354 start = addr;
355 pgd = pgd_offset(tlb->mm, addr);
356 do {
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
359 continue;
360 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
361 } while (pgd++, addr = next, addr != end);
364 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
365 unsigned long floor, unsigned long ceiling)
367 while (vma) {
368 struct vm_area_struct *next = vma->vm_next;
369 unsigned long addr = vma->vm_start;
372 * Hide vma from rmap and truncate_pagecache before freeing
373 * pgtables
375 unlink_anon_vmas(vma);
376 unlink_file_vma(vma);
378 if (is_vm_hugetlb_page(vma)) {
379 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
380 floor, next? next->vm_start: ceiling);
381 } else {
383 * Optimization: gather nearby vmas into one call down
385 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
386 && !is_vm_hugetlb_page(next)) {
387 vma = next;
388 next = vma->vm_next;
389 unlink_anon_vmas(vma);
390 unlink_file_vma(vma);
392 free_pgd_range(tlb, addr, vma->vm_end,
393 floor, next? next->vm_start: ceiling);
395 vma = next;
399 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
401 pgtable_t new = pte_alloc_one(mm, address);
402 if (!new)
403 return -ENOMEM;
406 * Ensure all pte setup (eg. pte page lock and page clearing) are
407 * visible before the pte is made visible to other CPUs by being
408 * put into page tables.
410 * The other side of the story is the pointer chasing in the page
411 * table walking code (when walking the page table without locking;
412 * ie. most of the time). Fortunately, these data accesses consist
413 * of a chain of data-dependent loads, meaning most CPUs (alpha
414 * being the notable exception) will already guarantee loads are
415 * seen in-order. See the alpha page table accessors for the
416 * smp_read_barrier_depends() barriers in page table walking code.
418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
420 spin_lock(&mm->page_table_lock);
421 if (!pmd_present(*pmd)) { /* Has another populated it ? */
422 mm->nr_ptes++;
423 pmd_populate(mm, pmd, new);
424 new = NULL;
426 spin_unlock(&mm->page_table_lock);
427 if (new)
428 pte_free(mm, new);
429 return 0;
432 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
434 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
435 if (!new)
436 return -ENOMEM;
438 smp_wmb(); /* See comment in __pte_alloc */
440 spin_lock(&init_mm.page_table_lock);
441 if (!pmd_present(*pmd)) { /* Has another populated it ? */
442 pmd_populate_kernel(&init_mm, pmd, new);
443 new = NULL;
445 spin_unlock(&init_mm.page_table_lock);
446 if (new)
447 pte_free_kernel(&init_mm, new);
448 return 0;
451 static inline void init_rss_vec(int *rss)
453 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
456 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
458 int i;
460 if (current->mm == mm)
461 sync_mm_rss(current, mm);
462 for (i = 0; i < NR_MM_COUNTERS; i++)
463 if (rss[i])
464 add_mm_counter(mm, i, rss[i]);
468 * This function is called to print an error when a bad pte
469 * is found. For example, we might have a PFN-mapped pte in
470 * a region that doesn't allow it.
472 * The calling function must still handle the error.
474 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
475 pte_t pte, struct page *page)
477 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
478 pud_t *pud = pud_offset(pgd, addr);
479 pmd_t *pmd = pmd_offset(pud, addr);
480 struct address_space *mapping;
481 pgoff_t index;
482 static unsigned long resume;
483 static unsigned long nr_shown;
484 static unsigned long nr_unshown;
487 * Allow a burst of 60 reports, then keep quiet for that minute;
488 * or allow a steady drip of one report per second.
490 if (nr_shown == 60) {
491 if (time_before(jiffies, resume)) {
492 nr_unshown++;
493 return;
495 if (nr_unshown) {
496 printk(KERN_ALERT
497 "BUG: Bad page map: %lu messages suppressed\n",
498 nr_unshown);
499 nr_unshown = 0;
501 nr_shown = 0;
503 if (nr_shown++ == 0)
504 resume = jiffies + 60 * HZ;
506 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
507 index = linear_page_index(vma, addr);
509 printk(KERN_ALERT
510 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
511 current->comm,
512 (long long)pte_val(pte), (long long)pmd_val(*pmd));
513 if (page)
514 dump_page(page);
515 printk(KERN_ALERT
516 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
517 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
519 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
521 if (vma->vm_ops)
522 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
523 (unsigned long)vma->vm_ops->fault);
524 if (vma->vm_file && vma->vm_file->f_op)
525 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
526 (unsigned long)vma->vm_file->f_op->mmap);
527 dump_stack();
528 add_taint(TAINT_BAD_PAGE);
531 static inline int is_cow_mapping(unsigned int flags)
533 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
536 #ifndef is_zero_pfn
537 static inline int is_zero_pfn(unsigned long pfn)
539 return pfn == zero_pfn;
541 #endif
543 #ifndef my_zero_pfn
544 static inline unsigned long my_zero_pfn(unsigned long addr)
546 return zero_pfn;
548 #endif
551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
560 * described below.
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 * And for normal mappings this is false.
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
592 #ifdef __HAVE_ARCH_PTE_SPECIAL
593 # define HAVE_PTE_SPECIAL 1
594 #else
595 # define HAVE_PTE_SPECIAL 0
596 #endif
597 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
598 pte_t pte)
600 unsigned long pfn = pte_pfn(pte);
602 if (HAVE_PTE_SPECIAL) {
603 if (likely(!pte_special(pte)))
604 goto check_pfn;
605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 return NULL;
607 if (!is_zero_pfn(pfn))
608 print_bad_pte(vma, addr, pte, NULL);
609 return NULL;
612 /* !HAVE_PTE_SPECIAL case follows: */
614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 if (vma->vm_flags & VM_MIXEDMAP) {
616 if (!pfn_valid(pfn))
617 return NULL;
618 goto out;
619 } else {
620 unsigned long off;
621 off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 if (pfn == vma->vm_pgoff + off)
623 return NULL;
624 if (!is_cow_mapping(vma->vm_flags))
625 return NULL;
629 if (is_zero_pfn(pfn))
630 return NULL;
631 check_pfn:
632 if (unlikely(pfn > highest_memmap_pfn)) {
633 print_bad_pte(vma, addr, pte, NULL);
634 return NULL;
638 * NOTE! We still have PageReserved() pages in the page tables.
639 * eg. VDSO mappings can cause them to exist.
641 out:
642 return pfn_to_page(pfn);
646 * copy one vm_area from one task to the other. Assumes the page tables
647 * already present in the new task to be cleared in the whole range
648 * covered by this vma.
651 static inline unsigned long
652 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
653 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
654 unsigned long addr, int *rss)
656 unsigned long vm_flags = vma->vm_flags;
657 pte_t pte = *src_pte;
658 struct page *page;
660 /* pte contains position in swap or file, so copy. */
661 if (unlikely(!pte_present(pte))) {
662 if (!pte_file(pte)) {
663 swp_entry_t entry = pte_to_swp_entry(pte);
665 if (swap_duplicate(entry) < 0)
666 return entry.val;
668 /* make sure dst_mm is on swapoff's mmlist. */
669 if (unlikely(list_empty(&dst_mm->mmlist))) {
670 spin_lock(&mmlist_lock);
671 if (list_empty(&dst_mm->mmlist))
672 list_add(&dst_mm->mmlist,
673 &src_mm->mmlist);
674 spin_unlock(&mmlist_lock);
676 if (likely(!non_swap_entry(entry)))
677 rss[MM_SWAPENTS]++;
678 else if (is_write_migration_entry(entry) &&
679 is_cow_mapping(vm_flags)) {
681 * COW mappings require pages in both parent
682 * and child to be set to read.
684 make_migration_entry_read(&entry);
685 pte = swp_entry_to_pte(entry);
686 set_pte_at(src_mm, addr, src_pte, pte);
689 goto out_set_pte;
693 * If it's a COW mapping, write protect it both
694 * in the parent and the child
696 if (is_cow_mapping(vm_flags)) {
697 ptep_set_wrprotect(src_mm, addr, src_pte);
698 pte = pte_wrprotect(pte);
702 * If it's a shared mapping, mark it clean in
703 * the child
705 if (vm_flags & VM_SHARED)
706 pte = pte_mkclean(pte);
707 pte = pte_mkold(pte);
709 page = vm_normal_page(vma, addr, pte);
710 if (page) {
711 get_page(page);
712 page_dup_rmap(page);
713 if (PageAnon(page))
714 rss[MM_ANONPAGES]++;
715 else
716 rss[MM_FILEPAGES]++;
719 out_set_pte:
720 set_pte_at(dst_mm, addr, dst_pte, pte);
721 return 0;
724 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
725 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
726 unsigned long addr, unsigned long end)
728 pte_t *orig_src_pte, *orig_dst_pte;
729 pte_t *src_pte, *dst_pte;
730 spinlock_t *src_ptl, *dst_ptl;
731 int progress = 0;
732 int rss[NR_MM_COUNTERS];
733 swp_entry_t entry = (swp_entry_t){0};
735 again:
736 init_rss_vec(rss);
738 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
739 if (!dst_pte)
740 return -ENOMEM;
741 src_pte = pte_offset_map_nested(src_pmd, addr);
742 src_ptl = pte_lockptr(src_mm, src_pmd);
743 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
744 orig_src_pte = src_pte;
745 orig_dst_pte = dst_pte;
746 arch_enter_lazy_mmu_mode();
748 do {
750 * We are holding two locks at this point - either of them
751 * could generate latencies in another task on another CPU.
753 if (progress >= 32) {
754 progress = 0;
755 if (need_resched() ||
756 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
757 break;
759 if (pte_none(*src_pte)) {
760 progress++;
761 continue;
763 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
764 vma, addr, rss);
765 if (entry.val)
766 break;
767 progress += 8;
768 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
770 arch_leave_lazy_mmu_mode();
771 spin_unlock(src_ptl);
772 pte_unmap_nested(orig_src_pte);
773 add_mm_rss_vec(dst_mm, rss);
774 pte_unmap_unlock(orig_dst_pte, dst_ptl);
775 cond_resched();
777 if (entry.val) {
778 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
779 return -ENOMEM;
780 progress = 0;
782 if (addr != end)
783 goto again;
784 return 0;
787 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
788 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
789 unsigned long addr, unsigned long end)
791 pmd_t *src_pmd, *dst_pmd;
792 unsigned long next;
794 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
795 if (!dst_pmd)
796 return -ENOMEM;
797 src_pmd = pmd_offset(src_pud, addr);
798 do {
799 next = pmd_addr_end(addr, end);
800 if (pmd_none_or_clear_bad(src_pmd))
801 continue;
802 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
803 vma, addr, next))
804 return -ENOMEM;
805 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
806 return 0;
809 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
810 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
811 unsigned long addr, unsigned long end)
813 pud_t *src_pud, *dst_pud;
814 unsigned long next;
816 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
817 if (!dst_pud)
818 return -ENOMEM;
819 src_pud = pud_offset(src_pgd, addr);
820 do {
821 next = pud_addr_end(addr, end);
822 if (pud_none_or_clear_bad(src_pud))
823 continue;
824 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
825 vma, addr, next))
826 return -ENOMEM;
827 } while (dst_pud++, src_pud++, addr = next, addr != end);
828 return 0;
831 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
832 struct vm_area_struct *vma)
834 pgd_t *src_pgd, *dst_pgd;
835 unsigned long next;
836 unsigned long addr = vma->vm_start;
837 unsigned long end = vma->vm_end;
838 int ret;
841 * Don't copy ptes where a page fault will fill them correctly.
842 * Fork becomes much lighter when there are big shared or private
843 * readonly mappings. The tradeoff is that copy_page_range is more
844 * efficient than faulting.
846 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
847 if (!vma->anon_vma)
848 return 0;
851 if (is_vm_hugetlb_page(vma))
852 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
854 if (unlikely(is_pfn_mapping(vma))) {
856 * We do not free on error cases below as remove_vma
857 * gets called on error from higher level routine
859 ret = track_pfn_vma_copy(vma);
860 if (ret)
861 return ret;
865 * We need to invalidate the secondary MMU mappings only when
866 * there could be a permission downgrade on the ptes of the
867 * parent mm. And a permission downgrade will only happen if
868 * is_cow_mapping() returns true.
870 if (is_cow_mapping(vma->vm_flags))
871 mmu_notifier_invalidate_range_start(src_mm, addr, end);
873 ret = 0;
874 dst_pgd = pgd_offset(dst_mm, addr);
875 src_pgd = pgd_offset(src_mm, addr);
876 do {
877 next = pgd_addr_end(addr, end);
878 if (pgd_none_or_clear_bad(src_pgd))
879 continue;
880 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
881 vma, addr, next))) {
882 ret = -ENOMEM;
883 break;
885 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
887 if (is_cow_mapping(vma->vm_flags))
888 mmu_notifier_invalidate_range_end(src_mm,
889 vma->vm_start, end);
890 return ret;
893 static unsigned long zap_pte_range(struct mmu_gather *tlb,
894 struct vm_area_struct *vma, pmd_t *pmd,
895 unsigned long addr, unsigned long end,
896 long *zap_work, struct zap_details *details)
898 struct mm_struct *mm = tlb->mm;
899 pte_t *pte;
900 spinlock_t *ptl;
901 int rss[NR_MM_COUNTERS];
903 init_rss_vec(rss);
905 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
906 arch_enter_lazy_mmu_mode();
907 do {
908 pte_t ptent = *pte;
909 if (pte_none(ptent)) {
910 (*zap_work)--;
911 continue;
914 (*zap_work) -= PAGE_SIZE;
916 if (pte_present(ptent)) {
917 struct page *page;
919 page = vm_normal_page(vma, addr, ptent);
920 if (unlikely(details) && page) {
922 * unmap_shared_mapping_pages() wants to
923 * invalidate cache without truncating:
924 * unmap shared but keep private pages.
926 if (details->check_mapping &&
927 details->check_mapping != page->mapping)
928 continue;
930 * Each page->index must be checked when
931 * invalidating or truncating nonlinear.
933 if (details->nonlinear_vma &&
934 (page->index < details->first_index ||
935 page->index > details->last_index))
936 continue;
938 ptent = ptep_get_and_clear_full(mm, addr, pte,
939 tlb->fullmm);
940 tlb_remove_tlb_entry(tlb, pte, addr);
941 if (unlikely(!page))
942 continue;
943 if (unlikely(details) && details->nonlinear_vma
944 && linear_page_index(details->nonlinear_vma,
945 addr) != page->index)
946 set_pte_at(mm, addr, pte,
947 pgoff_to_pte(page->index));
948 if (PageAnon(page))
949 rss[MM_ANONPAGES]--;
950 else {
951 if (pte_dirty(ptent))
952 set_page_dirty(page);
953 if (pte_young(ptent) &&
954 likely(!VM_SequentialReadHint(vma)))
955 mark_page_accessed(page);
956 rss[MM_FILEPAGES]--;
958 page_remove_rmap(page);
959 if (unlikely(page_mapcount(page) < 0))
960 print_bad_pte(vma, addr, ptent, page);
961 tlb_remove_page(tlb, page);
962 continue;
965 * If details->check_mapping, we leave swap entries;
966 * if details->nonlinear_vma, we leave file entries.
968 if (unlikely(details))
969 continue;
970 if (pte_file(ptent)) {
971 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
972 print_bad_pte(vma, addr, ptent, NULL);
973 } else {
974 swp_entry_t entry = pte_to_swp_entry(ptent);
976 if (!non_swap_entry(entry))
977 rss[MM_SWAPENTS]--;
978 if (unlikely(!free_swap_and_cache(entry)))
979 print_bad_pte(vma, addr, ptent, NULL);
981 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
982 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
984 add_mm_rss_vec(mm, rss);
985 arch_leave_lazy_mmu_mode();
986 pte_unmap_unlock(pte - 1, ptl);
988 return addr;
991 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
992 struct vm_area_struct *vma, pud_t *pud,
993 unsigned long addr, unsigned long end,
994 long *zap_work, struct zap_details *details)
996 pmd_t *pmd;
997 unsigned long next;
999 pmd = pmd_offset(pud, addr);
1000 do {
1001 next = pmd_addr_end(addr, end);
1002 if (pmd_none_or_clear_bad(pmd)) {
1003 (*zap_work)--;
1004 continue;
1006 next = zap_pte_range(tlb, vma, pmd, addr, next,
1007 zap_work, details);
1008 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1010 return addr;
1013 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1014 struct vm_area_struct *vma, pgd_t *pgd,
1015 unsigned long addr, unsigned long end,
1016 long *zap_work, struct zap_details *details)
1018 pud_t *pud;
1019 unsigned long next;
1021 pud = pud_offset(pgd, addr);
1022 do {
1023 next = pud_addr_end(addr, end);
1024 if (pud_none_or_clear_bad(pud)) {
1025 (*zap_work)--;
1026 continue;
1028 next = zap_pmd_range(tlb, vma, pud, addr, next,
1029 zap_work, details);
1030 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1032 return addr;
1035 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1036 struct vm_area_struct *vma,
1037 unsigned long addr, unsigned long end,
1038 long *zap_work, struct zap_details *details)
1040 pgd_t *pgd;
1041 unsigned long next;
1043 if (details && !details->check_mapping && !details->nonlinear_vma)
1044 details = NULL;
1046 BUG_ON(addr >= end);
1047 mem_cgroup_uncharge_start();
1048 tlb_start_vma(tlb, vma);
1049 pgd = pgd_offset(vma->vm_mm, addr);
1050 do {
1051 next = pgd_addr_end(addr, end);
1052 if (pgd_none_or_clear_bad(pgd)) {
1053 (*zap_work)--;
1054 continue;
1056 next = zap_pud_range(tlb, vma, pgd, addr, next,
1057 zap_work, details);
1058 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1059 tlb_end_vma(tlb, vma);
1060 mem_cgroup_uncharge_end();
1062 return addr;
1065 #ifdef CONFIG_PREEMPT
1066 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1067 #else
1068 /* No preempt: go for improved straight-line efficiency */
1069 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1070 #endif
1073 * unmap_vmas - unmap a range of memory covered by a list of vma's
1074 * @tlbp: address of the caller's struct mmu_gather
1075 * @vma: the starting vma
1076 * @start_addr: virtual address at which to start unmapping
1077 * @end_addr: virtual address at which to end unmapping
1078 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1079 * @details: details of nonlinear truncation or shared cache invalidation
1081 * Returns the end address of the unmapping (restart addr if interrupted).
1083 * Unmap all pages in the vma list.
1085 * We aim to not hold locks for too long (for scheduling latency reasons).
1086 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1087 * return the ending mmu_gather to the caller.
1089 * Only addresses between `start' and `end' will be unmapped.
1091 * The VMA list must be sorted in ascending virtual address order.
1093 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1094 * range after unmap_vmas() returns. So the only responsibility here is to
1095 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1096 * drops the lock and schedules.
1098 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1099 struct vm_area_struct *vma, unsigned long start_addr,
1100 unsigned long end_addr, unsigned long *nr_accounted,
1101 struct zap_details *details)
1103 long zap_work = ZAP_BLOCK_SIZE;
1104 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1105 int tlb_start_valid = 0;
1106 unsigned long start = start_addr;
1107 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1108 int fullmm = (*tlbp)->fullmm;
1109 struct mm_struct *mm = vma->vm_mm;
1111 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1112 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1113 unsigned long end;
1115 start = max(vma->vm_start, start_addr);
1116 if (start >= vma->vm_end)
1117 continue;
1118 end = min(vma->vm_end, end_addr);
1119 if (end <= vma->vm_start)
1120 continue;
1122 if (vma->vm_flags & VM_ACCOUNT)
1123 *nr_accounted += (end - start) >> PAGE_SHIFT;
1125 if (unlikely(is_pfn_mapping(vma)))
1126 untrack_pfn_vma(vma, 0, 0);
1128 while (start != end) {
1129 if (!tlb_start_valid) {
1130 tlb_start = start;
1131 tlb_start_valid = 1;
1134 if (unlikely(is_vm_hugetlb_page(vma))) {
1136 * It is undesirable to test vma->vm_file as it
1137 * should be non-null for valid hugetlb area.
1138 * However, vm_file will be NULL in the error
1139 * cleanup path of do_mmap_pgoff. When
1140 * hugetlbfs ->mmap method fails,
1141 * do_mmap_pgoff() nullifies vma->vm_file
1142 * before calling this function to clean up.
1143 * Since no pte has actually been setup, it is
1144 * safe to do nothing in this case.
1146 if (vma->vm_file) {
1147 unmap_hugepage_range(vma, start, end, NULL);
1148 zap_work -= (end - start) /
1149 pages_per_huge_page(hstate_vma(vma));
1152 start = end;
1153 } else
1154 start = unmap_page_range(*tlbp, vma,
1155 start, end, &zap_work, details);
1157 if (zap_work > 0) {
1158 BUG_ON(start != end);
1159 break;
1162 tlb_finish_mmu(*tlbp, tlb_start, start);
1164 if (need_resched() ||
1165 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1166 if (i_mmap_lock) {
1167 *tlbp = NULL;
1168 goto out;
1170 cond_resched();
1173 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1174 tlb_start_valid = 0;
1175 zap_work = ZAP_BLOCK_SIZE;
1178 out:
1179 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1180 return start; /* which is now the end (or restart) address */
1184 * zap_page_range - remove user pages in a given range
1185 * @vma: vm_area_struct holding the applicable pages
1186 * @address: starting address of pages to zap
1187 * @size: number of bytes to zap
1188 * @details: details of nonlinear truncation or shared cache invalidation
1190 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1191 unsigned long size, struct zap_details *details)
1193 struct mm_struct *mm = vma->vm_mm;
1194 struct mmu_gather *tlb;
1195 unsigned long end = address + size;
1196 unsigned long nr_accounted = 0;
1198 lru_add_drain();
1199 tlb = tlb_gather_mmu(mm, 0);
1200 update_hiwater_rss(mm);
1201 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1202 if (tlb)
1203 tlb_finish_mmu(tlb, address, end);
1204 return end;
1208 * zap_vma_ptes - remove ptes mapping the vma
1209 * @vma: vm_area_struct holding ptes to be zapped
1210 * @address: starting address of pages to zap
1211 * @size: number of bytes to zap
1213 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1215 * The entire address range must be fully contained within the vma.
1217 * Returns 0 if successful.
1219 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1220 unsigned long size)
1222 if (address < vma->vm_start || address + size > vma->vm_end ||
1223 !(vma->vm_flags & VM_PFNMAP))
1224 return -1;
1225 zap_page_range(vma, address, size, NULL);
1226 return 0;
1228 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1231 * follow_page - look up a page descriptor from a user-virtual address
1232 * @vma: vm_area_struct mapping @address
1233 * @address: virtual address to look up
1234 * @flags: flags modifying lookup behaviour
1236 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1238 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1239 * an error pointer if there is a mapping to something not represented
1240 * by a page descriptor (see also vm_normal_page()).
1242 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1243 unsigned int flags)
1245 pgd_t *pgd;
1246 pud_t *pud;
1247 pmd_t *pmd;
1248 pte_t *ptep, pte;
1249 spinlock_t *ptl;
1250 struct page *page;
1251 struct mm_struct *mm = vma->vm_mm;
1253 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1254 if (!IS_ERR(page)) {
1255 BUG_ON(flags & FOLL_GET);
1256 goto out;
1259 page = NULL;
1260 pgd = pgd_offset(mm, address);
1261 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1262 goto no_page_table;
1264 pud = pud_offset(pgd, address);
1265 if (pud_none(*pud))
1266 goto no_page_table;
1267 if (pud_huge(*pud)) {
1268 BUG_ON(flags & FOLL_GET);
1269 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1270 goto out;
1272 if (unlikely(pud_bad(*pud)))
1273 goto no_page_table;
1275 pmd = pmd_offset(pud, address);
1276 if (pmd_none(*pmd))
1277 goto no_page_table;
1278 if (pmd_huge(*pmd)) {
1279 BUG_ON(flags & FOLL_GET);
1280 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1281 goto out;
1283 if (unlikely(pmd_bad(*pmd)))
1284 goto no_page_table;
1286 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1288 pte = *ptep;
1289 if (!pte_present(pte))
1290 goto no_page;
1291 if ((flags & FOLL_WRITE) && !pte_write(pte))
1292 goto unlock;
1294 page = vm_normal_page(vma, address, pte);
1295 if (unlikely(!page)) {
1296 if ((flags & FOLL_DUMP) ||
1297 !is_zero_pfn(pte_pfn(pte)))
1298 goto bad_page;
1299 page = pte_page(pte);
1302 if (flags & FOLL_GET)
1303 get_page(page);
1304 if (flags & FOLL_TOUCH) {
1305 if ((flags & FOLL_WRITE) &&
1306 !pte_dirty(pte) && !PageDirty(page))
1307 set_page_dirty(page);
1309 * pte_mkyoung() would be more correct here, but atomic care
1310 * is needed to avoid losing the dirty bit: it is easier to use
1311 * mark_page_accessed().
1313 mark_page_accessed(page);
1315 unlock:
1316 pte_unmap_unlock(ptep, ptl);
1317 out:
1318 return page;
1320 bad_page:
1321 pte_unmap_unlock(ptep, ptl);
1322 return ERR_PTR(-EFAULT);
1324 no_page:
1325 pte_unmap_unlock(ptep, ptl);
1326 if (!pte_none(pte))
1327 return page;
1329 no_page_table:
1331 * When core dumping an enormous anonymous area that nobody
1332 * has touched so far, we don't want to allocate unnecessary pages or
1333 * page tables. Return error instead of NULL to skip handle_mm_fault,
1334 * then get_dump_page() will return NULL to leave a hole in the dump.
1335 * But we can only make this optimization where a hole would surely
1336 * be zero-filled if handle_mm_fault() actually did handle it.
1338 if ((flags & FOLL_DUMP) &&
1339 (!vma->vm_ops || !vma->vm_ops->fault))
1340 return ERR_PTR(-EFAULT);
1341 return page;
1344 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1345 unsigned long start, int nr_pages, unsigned int gup_flags,
1346 struct page **pages, struct vm_area_struct **vmas)
1348 int i;
1349 unsigned long vm_flags;
1351 if (nr_pages <= 0)
1352 return 0;
1354 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1357 * Require read or write permissions.
1358 * If FOLL_FORCE is set, we only require the "MAY" flags.
1360 vm_flags = (gup_flags & FOLL_WRITE) ?
1361 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1362 vm_flags &= (gup_flags & FOLL_FORCE) ?
1363 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1364 i = 0;
1366 do {
1367 struct vm_area_struct *vma;
1369 vma = find_extend_vma(mm, start);
1370 if (!vma && in_gate_area(tsk, start)) {
1371 unsigned long pg = start & PAGE_MASK;
1372 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1373 pgd_t *pgd;
1374 pud_t *pud;
1375 pmd_t *pmd;
1376 pte_t *pte;
1378 /* user gate pages are read-only */
1379 if (gup_flags & FOLL_WRITE)
1380 return i ? : -EFAULT;
1381 if (pg > TASK_SIZE)
1382 pgd = pgd_offset_k(pg);
1383 else
1384 pgd = pgd_offset_gate(mm, pg);
1385 BUG_ON(pgd_none(*pgd));
1386 pud = pud_offset(pgd, pg);
1387 BUG_ON(pud_none(*pud));
1388 pmd = pmd_offset(pud, pg);
1389 if (pmd_none(*pmd))
1390 return i ? : -EFAULT;
1391 pte = pte_offset_map(pmd, pg);
1392 if (pte_none(*pte)) {
1393 pte_unmap(pte);
1394 return i ? : -EFAULT;
1396 if (pages) {
1397 struct page *page;
1399 page = vm_normal_page(gate_vma, start, *pte);
1400 if (!page) {
1401 if (!(gup_flags & FOLL_DUMP) &&
1402 is_zero_pfn(pte_pfn(*pte)))
1403 page = pte_page(*pte);
1404 else {
1405 pte_unmap(pte);
1406 return i ? : -EFAULT;
1409 pages[i] = page;
1410 get_page(page);
1412 pte_unmap(pte);
1413 if (vmas)
1414 vmas[i] = gate_vma;
1415 i++;
1416 start += PAGE_SIZE;
1417 nr_pages--;
1418 continue;
1421 if (!vma ||
1422 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1423 !(vm_flags & vma->vm_flags))
1424 return i ? : -EFAULT;
1426 if (is_vm_hugetlb_page(vma)) {
1427 i = follow_hugetlb_page(mm, vma, pages, vmas,
1428 &start, &nr_pages, i, gup_flags);
1429 continue;
1432 do {
1433 struct page *page;
1434 unsigned int foll_flags = gup_flags;
1437 * If we have a pending SIGKILL, don't keep faulting
1438 * pages and potentially allocating memory.
1440 if (unlikely(fatal_signal_pending(current)))
1441 return i ? i : -ERESTARTSYS;
1443 cond_resched();
1444 while (!(page = follow_page(vma, start, foll_flags))) {
1445 int ret;
1447 ret = handle_mm_fault(mm, vma, start,
1448 (foll_flags & FOLL_WRITE) ?
1449 FAULT_FLAG_WRITE : 0);
1451 if (ret & VM_FAULT_ERROR) {
1452 if (ret & VM_FAULT_OOM)
1453 return i ? i : -ENOMEM;
1454 if (ret &
1455 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1456 return i ? i : -EFAULT;
1457 BUG();
1459 if (ret & VM_FAULT_MAJOR)
1460 tsk->maj_flt++;
1461 else
1462 tsk->min_flt++;
1465 * The VM_FAULT_WRITE bit tells us that
1466 * do_wp_page has broken COW when necessary,
1467 * even if maybe_mkwrite decided not to set
1468 * pte_write. We can thus safely do subsequent
1469 * page lookups as if they were reads. But only
1470 * do so when looping for pte_write is futile:
1471 * in some cases userspace may also be wanting
1472 * to write to the gotten user page, which a
1473 * read fault here might prevent (a readonly
1474 * page might get reCOWed by userspace write).
1476 if ((ret & VM_FAULT_WRITE) &&
1477 !(vma->vm_flags & VM_WRITE))
1478 foll_flags &= ~FOLL_WRITE;
1480 cond_resched();
1482 if (IS_ERR(page))
1483 return i ? i : PTR_ERR(page);
1484 if (pages) {
1485 pages[i] = page;
1487 flush_anon_page(vma, page, start);
1488 flush_dcache_page(page);
1490 if (vmas)
1491 vmas[i] = vma;
1492 i++;
1493 start += PAGE_SIZE;
1494 nr_pages--;
1495 } while (nr_pages && start < vma->vm_end);
1496 } while (nr_pages);
1497 return i;
1501 * get_user_pages() - pin user pages in memory
1502 * @tsk: task_struct of target task
1503 * @mm: mm_struct of target mm
1504 * @start: starting user address
1505 * @nr_pages: number of pages from start to pin
1506 * @write: whether pages will be written to by the caller
1507 * @force: whether to force write access even if user mapping is
1508 * readonly. This will result in the page being COWed even
1509 * in MAP_SHARED mappings. You do not want this.
1510 * @pages: array that receives pointers to the pages pinned.
1511 * Should be at least nr_pages long. Or NULL, if caller
1512 * only intends to ensure the pages are faulted in.
1513 * @vmas: array of pointers to vmas corresponding to each page.
1514 * Or NULL if the caller does not require them.
1516 * Returns number of pages pinned. This may be fewer than the number
1517 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1518 * were pinned, returns -errno. Each page returned must be released
1519 * with a put_page() call when it is finished with. vmas will only
1520 * remain valid while mmap_sem is held.
1522 * Must be called with mmap_sem held for read or write.
1524 * get_user_pages walks a process's page tables and takes a reference to
1525 * each struct page that each user address corresponds to at a given
1526 * instant. That is, it takes the page that would be accessed if a user
1527 * thread accesses the given user virtual address at that instant.
1529 * This does not guarantee that the page exists in the user mappings when
1530 * get_user_pages returns, and there may even be a completely different
1531 * page there in some cases (eg. if mmapped pagecache has been invalidated
1532 * and subsequently re faulted). However it does guarantee that the page
1533 * won't be freed completely. And mostly callers simply care that the page
1534 * contains data that was valid *at some point in time*. Typically, an IO
1535 * or similar operation cannot guarantee anything stronger anyway because
1536 * locks can't be held over the syscall boundary.
1538 * If write=0, the page must not be written to. If the page is written to,
1539 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1540 * after the page is finished with, and before put_page is called.
1542 * get_user_pages is typically used for fewer-copy IO operations, to get a
1543 * handle on the memory by some means other than accesses via the user virtual
1544 * addresses. The pages may be submitted for DMA to devices or accessed via
1545 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1546 * use the correct cache flushing APIs.
1548 * See also get_user_pages_fast, for performance critical applications.
1550 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1551 unsigned long start, int nr_pages, int write, int force,
1552 struct page **pages, struct vm_area_struct **vmas)
1554 int flags = FOLL_TOUCH;
1556 if (pages)
1557 flags |= FOLL_GET;
1558 if (write)
1559 flags |= FOLL_WRITE;
1560 if (force)
1561 flags |= FOLL_FORCE;
1563 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1565 EXPORT_SYMBOL(get_user_pages);
1568 * get_dump_page() - pin user page in memory while writing it to core dump
1569 * @addr: user address
1571 * Returns struct page pointer of user page pinned for dump,
1572 * to be freed afterwards by page_cache_release() or put_page().
1574 * Returns NULL on any kind of failure - a hole must then be inserted into
1575 * the corefile, to preserve alignment with its headers; and also returns
1576 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1577 * allowing a hole to be left in the corefile to save diskspace.
1579 * Called without mmap_sem, but after all other threads have been killed.
1581 #ifdef CONFIG_ELF_CORE
1582 struct page *get_dump_page(unsigned long addr)
1584 struct vm_area_struct *vma;
1585 struct page *page;
1587 if (__get_user_pages(current, current->mm, addr, 1,
1588 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1589 return NULL;
1590 flush_cache_page(vma, addr, page_to_pfn(page));
1591 return page;
1593 #endif /* CONFIG_ELF_CORE */
1595 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1596 spinlock_t **ptl)
1598 pgd_t * pgd = pgd_offset(mm, addr);
1599 pud_t * pud = pud_alloc(mm, pgd, addr);
1600 if (pud) {
1601 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1602 if (pmd)
1603 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1605 return NULL;
1609 * This is the old fallback for page remapping.
1611 * For historical reasons, it only allows reserved pages. Only
1612 * old drivers should use this, and they needed to mark their
1613 * pages reserved for the old functions anyway.
1615 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1616 struct page *page, pgprot_t prot)
1618 struct mm_struct *mm = vma->vm_mm;
1619 int retval;
1620 pte_t *pte;
1621 spinlock_t *ptl;
1623 retval = -EINVAL;
1624 if (PageAnon(page))
1625 goto out;
1626 retval = -ENOMEM;
1627 flush_dcache_page(page);
1628 pte = get_locked_pte(mm, addr, &ptl);
1629 if (!pte)
1630 goto out;
1631 retval = -EBUSY;
1632 if (!pte_none(*pte))
1633 goto out_unlock;
1635 /* Ok, finally just insert the thing.. */
1636 get_page(page);
1637 inc_mm_counter_fast(mm, MM_FILEPAGES);
1638 page_add_file_rmap(page);
1639 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1641 retval = 0;
1642 pte_unmap_unlock(pte, ptl);
1643 return retval;
1644 out_unlock:
1645 pte_unmap_unlock(pte, ptl);
1646 out:
1647 return retval;
1651 * vm_insert_page - insert single page into user vma
1652 * @vma: user vma to map to
1653 * @addr: target user address of this page
1654 * @page: source kernel page
1656 * This allows drivers to insert individual pages they've allocated
1657 * into a user vma.
1659 * The page has to be a nice clean _individual_ kernel allocation.
1660 * If you allocate a compound page, you need to have marked it as
1661 * such (__GFP_COMP), or manually just split the page up yourself
1662 * (see split_page()).
1664 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1665 * took an arbitrary page protection parameter. This doesn't allow
1666 * that. Your vma protection will have to be set up correctly, which
1667 * means that if you want a shared writable mapping, you'd better
1668 * ask for a shared writable mapping!
1670 * The page does not need to be reserved.
1672 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1673 struct page *page)
1675 if (addr < vma->vm_start || addr >= vma->vm_end)
1676 return -EFAULT;
1677 if (!page_count(page))
1678 return -EINVAL;
1679 vma->vm_flags |= VM_INSERTPAGE;
1680 return insert_page(vma, addr, page, vma->vm_page_prot);
1682 EXPORT_SYMBOL(vm_insert_page);
1684 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1685 unsigned long pfn, pgprot_t prot)
1687 struct mm_struct *mm = vma->vm_mm;
1688 int retval;
1689 pte_t *pte, entry;
1690 spinlock_t *ptl;
1692 retval = -ENOMEM;
1693 pte = get_locked_pte(mm, addr, &ptl);
1694 if (!pte)
1695 goto out;
1696 retval = -EBUSY;
1697 if (!pte_none(*pte))
1698 goto out_unlock;
1700 /* Ok, finally just insert the thing.. */
1701 entry = pte_mkspecial(pfn_pte(pfn, prot));
1702 set_pte_at(mm, addr, pte, entry);
1703 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1705 retval = 0;
1706 out_unlock:
1707 pte_unmap_unlock(pte, ptl);
1708 out:
1709 return retval;
1713 * vm_insert_pfn - insert single pfn into user vma
1714 * @vma: user vma to map to
1715 * @addr: target user address of this page
1716 * @pfn: source kernel pfn
1718 * Similar to vm_inert_page, this allows drivers to insert individual pages
1719 * they've allocated into a user vma. Same comments apply.
1721 * This function should only be called from a vm_ops->fault handler, and
1722 * in that case the handler should return NULL.
1724 * vma cannot be a COW mapping.
1726 * As this is called only for pages that do not currently exist, we
1727 * do not need to flush old virtual caches or the TLB.
1729 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1730 unsigned long pfn)
1732 int ret;
1733 pgprot_t pgprot = vma->vm_page_prot;
1735 * Technically, architectures with pte_special can avoid all these
1736 * restrictions (same for remap_pfn_range). However we would like
1737 * consistency in testing and feature parity among all, so we should
1738 * try to keep these invariants in place for everybody.
1740 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1741 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1742 (VM_PFNMAP|VM_MIXEDMAP));
1743 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1744 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1746 if (addr < vma->vm_start || addr >= vma->vm_end)
1747 return -EFAULT;
1748 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1749 return -EINVAL;
1751 ret = insert_pfn(vma, addr, pfn, pgprot);
1753 if (ret)
1754 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1756 return ret;
1758 EXPORT_SYMBOL(vm_insert_pfn);
1760 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1761 unsigned long pfn)
1763 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1765 if (addr < vma->vm_start || addr >= vma->vm_end)
1766 return -EFAULT;
1769 * If we don't have pte special, then we have to use the pfn_valid()
1770 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1771 * refcount the page if pfn_valid is true (hence insert_page rather
1772 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1773 * without pte special, it would there be refcounted as a normal page.
1775 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1776 struct page *page;
1778 page = pfn_to_page(pfn);
1779 return insert_page(vma, addr, page, vma->vm_page_prot);
1781 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1783 EXPORT_SYMBOL(vm_insert_mixed);
1786 * maps a range of physical memory into the requested pages. the old
1787 * mappings are removed. any references to nonexistent pages results
1788 * in null mappings (currently treated as "copy-on-access")
1790 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1791 unsigned long addr, unsigned long end,
1792 unsigned long pfn, pgprot_t prot)
1794 pte_t *pte;
1795 spinlock_t *ptl;
1797 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1798 if (!pte)
1799 return -ENOMEM;
1800 arch_enter_lazy_mmu_mode();
1801 do {
1802 BUG_ON(!pte_none(*pte));
1803 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1804 pfn++;
1805 } while (pte++, addr += PAGE_SIZE, addr != end);
1806 arch_leave_lazy_mmu_mode();
1807 pte_unmap_unlock(pte - 1, ptl);
1808 return 0;
1811 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1812 unsigned long addr, unsigned long end,
1813 unsigned long pfn, pgprot_t prot)
1815 pmd_t *pmd;
1816 unsigned long next;
1818 pfn -= addr >> PAGE_SHIFT;
1819 pmd = pmd_alloc(mm, pud, addr);
1820 if (!pmd)
1821 return -ENOMEM;
1822 do {
1823 next = pmd_addr_end(addr, end);
1824 if (remap_pte_range(mm, pmd, addr, next,
1825 pfn + (addr >> PAGE_SHIFT), prot))
1826 return -ENOMEM;
1827 } while (pmd++, addr = next, addr != end);
1828 return 0;
1831 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1832 unsigned long addr, unsigned long end,
1833 unsigned long pfn, pgprot_t prot)
1835 pud_t *pud;
1836 unsigned long next;
1838 pfn -= addr >> PAGE_SHIFT;
1839 pud = pud_alloc(mm, pgd, addr);
1840 if (!pud)
1841 return -ENOMEM;
1842 do {
1843 next = pud_addr_end(addr, end);
1844 if (remap_pmd_range(mm, pud, addr, next,
1845 pfn + (addr >> PAGE_SHIFT), prot))
1846 return -ENOMEM;
1847 } while (pud++, addr = next, addr != end);
1848 return 0;
1852 * remap_pfn_range - remap kernel memory to userspace
1853 * @vma: user vma to map to
1854 * @addr: target user address to start at
1855 * @pfn: physical address of kernel memory
1856 * @size: size of map area
1857 * @prot: page protection flags for this mapping
1859 * Note: this is only safe if the mm semaphore is held when called.
1861 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1862 unsigned long pfn, unsigned long size, pgprot_t prot)
1864 pgd_t *pgd;
1865 unsigned long next;
1866 unsigned long end = addr + PAGE_ALIGN(size);
1867 struct mm_struct *mm = vma->vm_mm;
1868 int err;
1871 * Physically remapped pages are special. Tell the
1872 * rest of the world about it:
1873 * VM_IO tells people not to look at these pages
1874 * (accesses can have side effects).
1875 * VM_RESERVED is specified all over the place, because
1876 * in 2.4 it kept swapout's vma scan off this vma; but
1877 * in 2.6 the LRU scan won't even find its pages, so this
1878 * flag means no more than count its pages in reserved_vm,
1879 * and omit it from core dump, even when VM_IO turned off.
1880 * VM_PFNMAP tells the core MM that the base pages are just
1881 * raw PFN mappings, and do not have a "struct page" associated
1882 * with them.
1884 * There's a horrible special case to handle copy-on-write
1885 * behaviour that some programs depend on. We mark the "original"
1886 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1888 if (addr == vma->vm_start && end == vma->vm_end) {
1889 vma->vm_pgoff = pfn;
1890 vma->vm_flags |= VM_PFN_AT_MMAP;
1891 } else if (is_cow_mapping(vma->vm_flags))
1892 return -EINVAL;
1894 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1896 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1897 if (err) {
1899 * To indicate that track_pfn related cleanup is not
1900 * needed from higher level routine calling unmap_vmas
1902 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1903 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1904 return -EINVAL;
1907 BUG_ON(addr >= end);
1908 pfn -= addr >> PAGE_SHIFT;
1909 pgd = pgd_offset(mm, addr);
1910 flush_cache_range(vma, addr, end);
1911 do {
1912 next = pgd_addr_end(addr, end);
1913 err = remap_pud_range(mm, pgd, addr, next,
1914 pfn + (addr >> PAGE_SHIFT), prot);
1915 if (err)
1916 break;
1917 } while (pgd++, addr = next, addr != end);
1919 if (err)
1920 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1922 return err;
1924 EXPORT_SYMBOL(remap_pfn_range);
1926 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1927 unsigned long addr, unsigned long end,
1928 pte_fn_t fn, void *data)
1930 pte_t *pte;
1931 int err;
1932 pgtable_t token;
1933 spinlock_t *uninitialized_var(ptl);
1935 pte = (mm == &init_mm) ?
1936 pte_alloc_kernel(pmd, addr) :
1937 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1938 if (!pte)
1939 return -ENOMEM;
1941 BUG_ON(pmd_huge(*pmd));
1943 arch_enter_lazy_mmu_mode();
1945 token = pmd_pgtable(*pmd);
1947 do {
1948 err = fn(pte++, token, addr, data);
1949 if (err)
1950 break;
1951 } while (addr += PAGE_SIZE, addr != end);
1953 arch_leave_lazy_mmu_mode();
1955 if (mm != &init_mm)
1956 pte_unmap_unlock(pte-1, ptl);
1957 return err;
1960 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1961 unsigned long addr, unsigned long end,
1962 pte_fn_t fn, void *data)
1964 pmd_t *pmd;
1965 unsigned long next;
1966 int err;
1968 BUG_ON(pud_huge(*pud));
1970 pmd = pmd_alloc(mm, pud, addr);
1971 if (!pmd)
1972 return -ENOMEM;
1973 do {
1974 next = pmd_addr_end(addr, end);
1975 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1976 if (err)
1977 break;
1978 } while (pmd++, addr = next, addr != end);
1979 return err;
1982 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1983 unsigned long addr, unsigned long end,
1984 pte_fn_t fn, void *data)
1986 pud_t *pud;
1987 unsigned long next;
1988 int err;
1990 pud = pud_alloc(mm, pgd, addr);
1991 if (!pud)
1992 return -ENOMEM;
1993 do {
1994 next = pud_addr_end(addr, end);
1995 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1996 if (err)
1997 break;
1998 } while (pud++, addr = next, addr != end);
1999 return err;
2003 * Scan a region of virtual memory, filling in page tables as necessary
2004 * and calling a provided function on each leaf page table.
2006 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2007 unsigned long size, pte_fn_t fn, void *data)
2009 pgd_t *pgd;
2010 unsigned long next;
2011 unsigned long start = addr, end = addr + size;
2012 int err;
2014 BUG_ON(addr >= end);
2015 mmu_notifier_invalidate_range_start(mm, start, end);
2016 pgd = pgd_offset(mm, addr);
2017 do {
2018 next = pgd_addr_end(addr, end);
2019 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2020 if (err)
2021 break;
2022 } while (pgd++, addr = next, addr != end);
2023 mmu_notifier_invalidate_range_end(mm, start, end);
2024 return err;
2026 EXPORT_SYMBOL_GPL(apply_to_page_range);
2029 * handle_pte_fault chooses page fault handler according to an entry
2030 * which was read non-atomically. Before making any commitment, on
2031 * those architectures or configurations (e.g. i386 with PAE) which
2032 * might give a mix of unmatched parts, do_swap_page and do_file_page
2033 * must check under lock before unmapping the pte and proceeding
2034 * (but do_wp_page is only called after already making such a check;
2035 * and do_anonymous_page and do_no_page can safely check later on).
2037 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2038 pte_t *page_table, pte_t orig_pte)
2040 int same = 1;
2041 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2042 if (sizeof(pte_t) > sizeof(unsigned long)) {
2043 spinlock_t *ptl = pte_lockptr(mm, pmd);
2044 spin_lock(ptl);
2045 same = pte_same(*page_table, orig_pte);
2046 spin_unlock(ptl);
2048 #endif
2049 pte_unmap(page_table);
2050 return same;
2054 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
2055 * servicing faults for write access. In the normal case, do always want
2056 * pte_mkwrite. But get_user_pages can cause write faults for mappings
2057 * that do not have writing enabled, when used by access_process_vm.
2059 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2061 if (likely(vma->vm_flags & VM_WRITE))
2062 pte = pte_mkwrite(pte);
2063 return pte;
2066 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2069 * If the source page was a PFN mapping, we don't have
2070 * a "struct page" for it. We do a best-effort copy by
2071 * just copying from the original user address. If that
2072 * fails, we just zero-fill it. Live with it.
2074 if (unlikely(!src)) {
2075 void *kaddr = kmap_atomic(dst, KM_USER0);
2076 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2079 * This really shouldn't fail, because the page is there
2080 * in the page tables. But it might just be unreadable,
2081 * in which case we just give up and fill the result with
2082 * zeroes.
2084 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2085 memset(kaddr, 0, PAGE_SIZE);
2086 kunmap_atomic(kaddr, KM_USER0);
2087 flush_dcache_page(dst);
2088 } else
2089 copy_user_highpage(dst, src, va, vma);
2093 * This routine handles present pages, when users try to write
2094 * to a shared page. It is done by copying the page to a new address
2095 * and decrementing the shared-page counter for the old page.
2097 * Note that this routine assumes that the protection checks have been
2098 * done by the caller (the low-level page fault routine in most cases).
2099 * Thus we can safely just mark it writable once we've done any necessary
2100 * COW.
2102 * We also mark the page dirty at this point even though the page will
2103 * change only once the write actually happens. This avoids a few races,
2104 * and potentially makes it more efficient.
2106 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2107 * but allow concurrent faults), with pte both mapped and locked.
2108 * We return with mmap_sem still held, but pte unmapped and unlocked.
2110 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2111 unsigned long address, pte_t *page_table, pmd_t *pmd,
2112 spinlock_t *ptl, pte_t orig_pte)
2114 struct page *old_page, *new_page;
2115 pte_t entry;
2116 int reuse = 0, ret = 0;
2117 int page_mkwrite = 0;
2118 struct page *dirty_page = NULL;
2120 old_page = vm_normal_page(vma, address, orig_pte);
2121 if (!old_page) {
2123 * VM_MIXEDMAP !pfn_valid() case
2125 * We should not cow pages in a shared writeable mapping.
2126 * Just mark the pages writable as we can't do any dirty
2127 * accounting on raw pfn maps.
2129 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2130 (VM_WRITE|VM_SHARED))
2131 goto reuse;
2132 goto gotten;
2136 * Take out anonymous pages first, anonymous shared vmas are
2137 * not dirty accountable.
2139 if (PageAnon(old_page) && !PageKsm(old_page)) {
2140 if (!trylock_page(old_page)) {
2141 page_cache_get(old_page);
2142 pte_unmap_unlock(page_table, ptl);
2143 lock_page(old_page);
2144 page_table = pte_offset_map_lock(mm, pmd, address,
2145 &ptl);
2146 if (!pte_same(*page_table, orig_pte)) {
2147 unlock_page(old_page);
2148 page_cache_release(old_page);
2149 goto unlock;
2151 page_cache_release(old_page);
2153 reuse = reuse_swap_page(old_page);
2154 if (reuse)
2156 * The page is all ours. Move it to our anon_vma so
2157 * the rmap code will not search our parent or siblings.
2158 * Protected against the rmap code by the page lock.
2160 page_move_anon_rmap(old_page, vma, address);
2161 unlock_page(old_page);
2162 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2163 (VM_WRITE|VM_SHARED))) {
2165 * Only catch write-faults on shared writable pages,
2166 * read-only shared pages can get COWed by
2167 * get_user_pages(.write=1, .force=1).
2169 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2170 struct vm_fault vmf;
2171 int tmp;
2173 vmf.virtual_address = (void __user *)(address &
2174 PAGE_MASK);
2175 vmf.pgoff = old_page->index;
2176 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2177 vmf.page = old_page;
2180 * Notify the address space that the page is about to
2181 * become writable so that it can prohibit this or wait
2182 * for the page to get into an appropriate state.
2184 * We do this without the lock held, so that it can
2185 * sleep if it needs to.
2187 page_cache_get(old_page);
2188 pte_unmap_unlock(page_table, ptl);
2190 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2191 if (unlikely(tmp &
2192 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2193 ret = tmp;
2194 goto unwritable_page;
2196 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2197 lock_page(old_page);
2198 if (!old_page->mapping) {
2199 ret = 0; /* retry the fault */
2200 unlock_page(old_page);
2201 goto unwritable_page;
2203 } else
2204 VM_BUG_ON(!PageLocked(old_page));
2207 * Since we dropped the lock we need to revalidate
2208 * the PTE as someone else may have changed it. If
2209 * they did, we just return, as we can count on the
2210 * MMU to tell us if they didn't also make it writable.
2212 page_table = pte_offset_map_lock(mm, pmd, address,
2213 &ptl);
2214 if (!pte_same(*page_table, orig_pte)) {
2215 unlock_page(old_page);
2216 page_cache_release(old_page);
2217 goto unlock;
2220 page_mkwrite = 1;
2222 dirty_page = old_page;
2223 get_page(dirty_page);
2224 reuse = 1;
2227 if (reuse) {
2228 reuse:
2229 flush_cache_page(vma, address, pte_pfn(orig_pte));
2230 entry = pte_mkyoung(orig_pte);
2231 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2232 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2233 update_mmu_cache(vma, address, page_table);
2234 ret |= VM_FAULT_WRITE;
2235 goto unlock;
2239 * Ok, we need to copy. Oh, well..
2241 page_cache_get(old_page);
2242 gotten:
2243 pte_unmap_unlock(page_table, ptl);
2245 if (unlikely(anon_vma_prepare(vma)))
2246 goto oom;
2248 if (is_zero_pfn(pte_pfn(orig_pte))) {
2249 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2250 if (!new_page)
2251 goto oom;
2252 } else {
2253 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2254 if (!new_page)
2255 goto oom;
2256 cow_user_page(new_page, old_page, address, vma);
2258 __SetPageUptodate(new_page);
2261 * Don't let another task, with possibly unlocked vma,
2262 * keep the mlocked page.
2264 if ((vma->vm_flags & VM_LOCKED) && old_page) {
2265 lock_page(old_page); /* for LRU manipulation */
2266 clear_page_mlock(old_page);
2267 unlock_page(old_page);
2270 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2271 goto oom_free_new;
2274 * Re-check the pte - we dropped the lock
2276 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2277 if (likely(pte_same(*page_table, orig_pte))) {
2278 if (old_page) {
2279 if (!PageAnon(old_page)) {
2280 dec_mm_counter_fast(mm, MM_FILEPAGES);
2281 inc_mm_counter_fast(mm, MM_ANONPAGES);
2283 } else
2284 inc_mm_counter_fast(mm, MM_ANONPAGES);
2285 flush_cache_page(vma, address, pte_pfn(orig_pte));
2286 entry = mk_pte(new_page, vma->vm_page_prot);
2287 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2289 * Clear the pte entry and flush it first, before updating the
2290 * pte with the new entry. This will avoid a race condition
2291 * seen in the presence of one thread doing SMC and another
2292 * thread doing COW.
2294 ptep_clear_flush(vma, address, page_table);
2295 page_add_new_anon_rmap(new_page, vma, address);
2297 * We call the notify macro here because, when using secondary
2298 * mmu page tables (such as kvm shadow page tables), we want the
2299 * new page to be mapped directly into the secondary page table.
2301 set_pte_at_notify(mm, address, page_table, entry);
2302 update_mmu_cache(vma, address, page_table);
2303 if (old_page) {
2305 * Only after switching the pte to the new page may
2306 * we remove the mapcount here. Otherwise another
2307 * process may come and find the rmap count decremented
2308 * before the pte is switched to the new page, and
2309 * "reuse" the old page writing into it while our pte
2310 * here still points into it and can be read by other
2311 * threads.
2313 * The critical issue is to order this
2314 * page_remove_rmap with the ptp_clear_flush above.
2315 * Those stores are ordered by (if nothing else,)
2316 * the barrier present in the atomic_add_negative
2317 * in page_remove_rmap.
2319 * Then the TLB flush in ptep_clear_flush ensures that
2320 * no process can access the old page before the
2321 * decremented mapcount is visible. And the old page
2322 * cannot be reused until after the decremented
2323 * mapcount is visible. So transitively, TLBs to
2324 * old page will be flushed before it can be reused.
2326 page_remove_rmap(old_page);
2329 /* Free the old page.. */
2330 new_page = old_page;
2331 ret |= VM_FAULT_WRITE;
2332 } else
2333 mem_cgroup_uncharge_page(new_page);
2335 if (new_page)
2336 page_cache_release(new_page);
2337 if (old_page)
2338 page_cache_release(old_page);
2339 unlock:
2340 pte_unmap_unlock(page_table, ptl);
2341 if (dirty_page) {
2343 * Yes, Virginia, this is actually required to prevent a race
2344 * with clear_page_dirty_for_io() from clearing the page dirty
2345 * bit after it clear all dirty ptes, but before a racing
2346 * do_wp_page installs a dirty pte.
2348 * do_no_page is protected similarly.
2350 if (!page_mkwrite) {
2351 wait_on_page_locked(dirty_page);
2352 set_page_dirty_balance(dirty_page, page_mkwrite);
2354 put_page(dirty_page);
2355 if (page_mkwrite) {
2356 struct address_space *mapping = dirty_page->mapping;
2358 set_page_dirty(dirty_page);
2359 unlock_page(dirty_page);
2360 page_cache_release(dirty_page);
2361 if (mapping) {
2363 * Some device drivers do not set page.mapping
2364 * but still dirty their pages
2366 balance_dirty_pages_ratelimited(mapping);
2370 /* file_update_time outside page_lock */
2371 if (vma->vm_file)
2372 file_update_time(vma->vm_file);
2374 return ret;
2375 oom_free_new:
2376 page_cache_release(new_page);
2377 oom:
2378 if (old_page) {
2379 if (page_mkwrite) {
2380 unlock_page(old_page);
2381 page_cache_release(old_page);
2383 page_cache_release(old_page);
2385 return VM_FAULT_OOM;
2387 unwritable_page:
2388 page_cache_release(old_page);
2389 return ret;
2393 * Helper functions for unmap_mapping_range().
2395 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2397 * We have to restart searching the prio_tree whenever we drop the lock,
2398 * since the iterator is only valid while the lock is held, and anyway
2399 * a later vma might be split and reinserted earlier while lock dropped.
2401 * The list of nonlinear vmas could be handled more efficiently, using
2402 * a placeholder, but handle it in the same way until a need is shown.
2403 * It is important to search the prio_tree before nonlinear list: a vma
2404 * may become nonlinear and be shifted from prio_tree to nonlinear list
2405 * while the lock is dropped; but never shifted from list to prio_tree.
2407 * In order to make forward progress despite restarting the search,
2408 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2409 * quickly skip it next time around. Since the prio_tree search only
2410 * shows us those vmas affected by unmapping the range in question, we
2411 * can't efficiently keep all vmas in step with mapping->truncate_count:
2412 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2413 * mapping->truncate_count and vma->vm_truncate_count are protected by
2414 * i_mmap_lock.
2416 * In order to make forward progress despite repeatedly restarting some
2417 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2418 * and restart from that address when we reach that vma again. It might
2419 * have been split or merged, shrunk or extended, but never shifted: so
2420 * restart_addr remains valid so long as it remains in the vma's range.
2421 * unmap_mapping_range forces truncate_count to leap over page-aligned
2422 * values so we can save vma's restart_addr in its truncate_count field.
2424 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2426 static void reset_vma_truncate_counts(struct address_space *mapping)
2428 struct vm_area_struct *vma;
2429 struct prio_tree_iter iter;
2431 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2432 vma->vm_truncate_count = 0;
2433 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2434 vma->vm_truncate_count = 0;
2437 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2438 unsigned long start_addr, unsigned long end_addr,
2439 struct zap_details *details)
2441 unsigned long restart_addr;
2442 int need_break;
2445 * files that support invalidating or truncating portions of the
2446 * file from under mmaped areas must have their ->fault function
2447 * return a locked page (and set VM_FAULT_LOCKED in the return).
2448 * This provides synchronisation against concurrent unmapping here.
2451 again:
2452 restart_addr = vma->vm_truncate_count;
2453 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2454 start_addr = restart_addr;
2455 if (start_addr >= end_addr) {
2456 /* Top of vma has been split off since last time */
2457 vma->vm_truncate_count = details->truncate_count;
2458 return 0;
2462 restart_addr = zap_page_range(vma, start_addr,
2463 end_addr - start_addr, details);
2464 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2466 if (restart_addr >= end_addr) {
2467 /* We have now completed this vma: mark it so */
2468 vma->vm_truncate_count = details->truncate_count;
2469 if (!need_break)
2470 return 0;
2471 } else {
2472 /* Note restart_addr in vma's truncate_count field */
2473 vma->vm_truncate_count = restart_addr;
2474 if (!need_break)
2475 goto again;
2478 spin_unlock(details->i_mmap_lock);
2479 cond_resched();
2480 spin_lock(details->i_mmap_lock);
2481 return -EINTR;
2484 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2485 struct zap_details *details)
2487 struct vm_area_struct *vma;
2488 struct prio_tree_iter iter;
2489 pgoff_t vba, vea, zba, zea;
2491 restart:
2492 vma_prio_tree_foreach(vma, &iter, root,
2493 details->first_index, details->last_index) {
2494 /* Skip quickly over those we have already dealt with */
2495 if (vma->vm_truncate_count == details->truncate_count)
2496 continue;
2498 vba = vma->vm_pgoff;
2499 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2500 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2501 zba = details->first_index;
2502 if (zba < vba)
2503 zba = vba;
2504 zea = details->last_index;
2505 if (zea > vea)
2506 zea = vea;
2508 if (unmap_mapping_range_vma(vma,
2509 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2510 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2511 details) < 0)
2512 goto restart;
2516 static inline void unmap_mapping_range_list(struct list_head *head,
2517 struct zap_details *details)
2519 struct vm_area_struct *vma;
2522 * In nonlinear VMAs there is no correspondence between virtual address
2523 * offset and file offset. So we must perform an exhaustive search
2524 * across *all* the pages in each nonlinear VMA, not just the pages
2525 * whose virtual address lies outside the file truncation point.
2527 restart:
2528 list_for_each_entry(vma, head, shared.vm_set.list) {
2529 /* Skip quickly over those we have already dealt with */
2530 if (vma->vm_truncate_count == details->truncate_count)
2531 continue;
2532 details->nonlinear_vma = vma;
2533 if (unmap_mapping_range_vma(vma, vma->vm_start,
2534 vma->vm_end, details) < 0)
2535 goto restart;
2540 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2541 * @mapping: the address space containing mmaps to be unmapped.
2542 * @holebegin: byte in first page to unmap, relative to the start of
2543 * the underlying file. This will be rounded down to a PAGE_SIZE
2544 * boundary. Note that this is different from truncate_pagecache(), which
2545 * must keep the partial page. In contrast, we must get rid of
2546 * partial pages.
2547 * @holelen: size of prospective hole in bytes. This will be rounded
2548 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2549 * end of the file.
2550 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2551 * but 0 when invalidating pagecache, don't throw away private data.
2553 void unmap_mapping_range(struct address_space *mapping,
2554 loff_t const holebegin, loff_t const holelen, int even_cows)
2556 struct zap_details details;
2557 pgoff_t hba = holebegin >> PAGE_SHIFT;
2558 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2560 /* Check for overflow. */
2561 if (sizeof(holelen) > sizeof(hlen)) {
2562 long long holeend =
2563 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2564 if (holeend & ~(long long)ULONG_MAX)
2565 hlen = ULONG_MAX - hba + 1;
2568 details.check_mapping = even_cows? NULL: mapping;
2569 details.nonlinear_vma = NULL;
2570 details.first_index = hba;
2571 details.last_index = hba + hlen - 1;
2572 if (details.last_index < details.first_index)
2573 details.last_index = ULONG_MAX;
2574 details.i_mmap_lock = &mapping->i_mmap_lock;
2576 spin_lock(&mapping->i_mmap_lock);
2578 /* Protect against endless unmapping loops */
2579 mapping->truncate_count++;
2580 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2581 if (mapping->truncate_count == 0)
2582 reset_vma_truncate_counts(mapping);
2583 mapping->truncate_count++;
2585 details.truncate_count = mapping->truncate_count;
2587 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2588 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2589 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2590 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2591 spin_unlock(&mapping->i_mmap_lock);
2593 EXPORT_SYMBOL(unmap_mapping_range);
2595 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2597 struct address_space *mapping = inode->i_mapping;
2600 * If the underlying filesystem is not going to provide
2601 * a way to truncate a range of blocks (punch a hole) -
2602 * we should return failure right now.
2604 if (!inode->i_op->truncate_range)
2605 return -ENOSYS;
2607 mutex_lock(&inode->i_mutex);
2608 down_write(&inode->i_alloc_sem);
2609 unmap_mapping_range(mapping, offset, (end - offset), 1);
2610 truncate_inode_pages_range(mapping, offset, end);
2611 unmap_mapping_range(mapping, offset, (end - offset), 1);
2612 inode->i_op->truncate_range(inode, offset, end);
2613 up_write(&inode->i_alloc_sem);
2614 mutex_unlock(&inode->i_mutex);
2616 return 0;
2620 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2621 * but allow concurrent faults), and pte mapped but not yet locked.
2622 * We return with mmap_sem still held, but pte unmapped and unlocked.
2624 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2625 unsigned long address, pte_t *page_table, pmd_t *pmd,
2626 unsigned int flags, pte_t orig_pte)
2628 spinlock_t *ptl;
2629 struct page *page;
2630 swp_entry_t entry;
2631 pte_t pte;
2632 struct mem_cgroup *ptr = NULL;
2633 int ret = 0;
2635 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2636 goto out;
2638 entry = pte_to_swp_entry(orig_pte);
2639 if (unlikely(non_swap_entry(entry))) {
2640 if (is_migration_entry(entry)) {
2641 migration_entry_wait(mm, pmd, address);
2642 } else if (is_hwpoison_entry(entry)) {
2643 ret = VM_FAULT_HWPOISON;
2644 } else {
2645 print_bad_pte(vma, address, orig_pte, NULL);
2646 ret = VM_FAULT_SIGBUS;
2648 goto out;
2650 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2651 page = lookup_swap_cache(entry);
2652 if (!page) {
2653 grab_swap_token(mm); /* Contend for token _before_ read-in */
2654 page = swapin_readahead(entry,
2655 GFP_HIGHUSER_MOVABLE, vma, address);
2656 if (!page) {
2658 * Back out if somebody else faulted in this pte
2659 * while we released the pte lock.
2661 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2662 if (likely(pte_same(*page_table, orig_pte)))
2663 ret = VM_FAULT_OOM;
2664 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2665 goto unlock;
2668 /* Had to read the page from swap area: Major fault */
2669 ret = VM_FAULT_MAJOR;
2670 count_vm_event(PGMAJFAULT);
2671 } else if (PageHWPoison(page)) {
2673 * hwpoisoned dirty swapcache pages are kept for killing
2674 * owner processes (which may be unknown at hwpoison time)
2676 ret = VM_FAULT_HWPOISON;
2677 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2678 goto out_release;
2681 lock_page(page);
2682 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2684 page = ksm_might_need_to_copy(page, vma, address);
2685 if (!page) {
2686 ret = VM_FAULT_OOM;
2687 goto out;
2690 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2691 ret = VM_FAULT_OOM;
2692 goto out_page;
2696 * Back out if somebody else already faulted in this pte.
2698 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2699 if (unlikely(!pte_same(*page_table, orig_pte)))
2700 goto out_nomap;
2702 if (unlikely(!PageUptodate(page))) {
2703 ret = VM_FAULT_SIGBUS;
2704 goto out_nomap;
2708 * The page isn't present yet, go ahead with the fault.
2710 * Be careful about the sequence of operations here.
2711 * To get its accounting right, reuse_swap_page() must be called
2712 * while the page is counted on swap but not yet in mapcount i.e.
2713 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2714 * must be called after the swap_free(), or it will never succeed.
2715 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2716 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2717 * in page->private. In this case, a record in swap_cgroup is silently
2718 * discarded at swap_free().
2721 inc_mm_counter_fast(mm, MM_ANONPAGES);
2722 dec_mm_counter_fast(mm, MM_SWAPENTS);
2723 pte = mk_pte(page, vma->vm_page_prot);
2724 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2725 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2726 flags &= ~FAULT_FLAG_WRITE;
2728 flush_icache_page(vma, page);
2729 set_pte_at(mm, address, page_table, pte);
2730 page_add_anon_rmap(page, vma, address);
2731 /* It's better to call commit-charge after rmap is established */
2732 mem_cgroup_commit_charge_swapin(page, ptr);
2734 swap_free(entry);
2735 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2736 try_to_free_swap(page);
2737 unlock_page(page);
2739 if (flags & FAULT_FLAG_WRITE) {
2740 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2741 if (ret & VM_FAULT_ERROR)
2742 ret &= VM_FAULT_ERROR;
2743 goto out;
2746 /* No need to invalidate - it was non-present before */
2747 update_mmu_cache(vma, address, page_table);
2748 unlock:
2749 pte_unmap_unlock(page_table, ptl);
2750 out:
2751 return ret;
2752 out_nomap:
2753 mem_cgroup_cancel_charge_swapin(ptr);
2754 pte_unmap_unlock(page_table, ptl);
2755 out_page:
2756 unlock_page(page);
2757 out_release:
2758 page_cache_release(page);
2759 return ret;
2763 * This is like a special single-page "expand_downwards()",
2764 * except we must first make sure that 'address-PAGE_SIZE'
2765 * doesn't hit another vma.
2767 * The "find_vma()" will do the right thing even if we wrap
2769 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2771 address &= PAGE_MASK;
2772 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2773 struct vm_area_struct *prev = vma->vm_prev;
2776 * Is there a mapping abutting this one below?
2778 * That's only ok if it's the same stack mapping
2779 * that has gotten split..
2781 if (prev && prev->vm_end == address)
2782 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2784 expand_stack(vma, address - PAGE_SIZE);
2786 return 0;
2790 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2791 * but allow concurrent faults), and pte mapped but not yet locked.
2792 * We return with mmap_sem still held, but pte unmapped and unlocked.
2794 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2795 unsigned long address, pte_t *page_table, pmd_t *pmd,
2796 unsigned int flags)
2798 struct page *page;
2799 spinlock_t *ptl;
2800 pte_t entry;
2802 pte_unmap(page_table);
2804 /* Check if we need to add a guard page to the stack */
2805 if (check_stack_guard_page(vma, address) < 0)
2806 return VM_FAULT_SIGBUS;
2808 /* Use the zero-page for reads */
2809 if (!(flags & FAULT_FLAG_WRITE)) {
2810 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2811 vma->vm_page_prot));
2812 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2813 if (!pte_none(*page_table))
2814 goto unlock;
2815 goto setpte;
2818 /* Allocate our own private page. */
2819 if (unlikely(anon_vma_prepare(vma)))
2820 goto oom;
2821 page = alloc_zeroed_user_highpage_movable(vma, address);
2822 if (!page)
2823 goto oom;
2824 __SetPageUptodate(page);
2826 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2827 goto oom_free_page;
2829 entry = mk_pte(page, vma->vm_page_prot);
2830 if (vma->vm_flags & VM_WRITE)
2831 entry = pte_mkwrite(pte_mkdirty(entry));
2833 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2834 if (!pte_none(*page_table))
2835 goto release;
2837 inc_mm_counter_fast(mm, MM_ANONPAGES);
2838 page_add_new_anon_rmap(page, vma, address);
2839 setpte:
2840 set_pte_at(mm, address, page_table, entry);
2842 /* No need to invalidate - it was non-present before */
2843 update_mmu_cache(vma, address, page_table);
2844 unlock:
2845 pte_unmap_unlock(page_table, ptl);
2846 return 0;
2847 release:
2848 mem_cgroup_uncharge_page(page);
2849 page_cache_release(page);
2850 goto unlock;
2851 oom_free_page:
2852 page_cache_release(page);
2853 oom:
2854 return VM_FAULT_OOM;
2858 * __do_fault() tries to create a new page mapping. It aggressively
2859 * tries to share with existing pages, but makes a separate copy if
2860 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2861 * the next page fault.
2863 * As this is called only for pages that do not currently exist, we
2864 * do not need to flush old virtual caches or the TLB.
2866 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2867 * but allow concurrent faults), and pte neither mapped nor locked.
2868 * We return with mmap_sem still held, but pte unmapped and unlocked.
2870 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2871 unsigned long address, pmd_t *pmd,
2872 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2874 pte_t *page_table;
2875 spinlock_t *ptl;
2876 struct page *page;
2877 pte_t entry;
2878 int anon = 0;
2879 int charged = 0;
2880 struct page *dirty_page = NULL;
2881 struct vm_fault vmf;
2882 int ret;
2883 int page_mkwrite = 0;
2885 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2886 vmf.pgoff = pgoff;
2887 vmf.flags = flags;
2888 vmf.page = NULL;
2890 ret = vma->vm_ops->fault(vma, &vmf);
2891 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2892 return ret;
2894 if (unlikely(PageHWPoison(vmf.page))) {
2895 if (ret & VM_FAULT_LOCKED)
2896 unlock_page(vmf.page);
2897 return VM_FAULT_HWPOISON;
2901 * For consistency in subsequent calls, make the faulted page always
2902 * locked.
2904 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2905 lock_page(vmf.page);
2906 else
2907 VM_BUG_ON(!PageLocked(vmf.page));
2910 * Should we do an early C-O-W break?
2912 page = vmf.page;
2913 if (flags & FAULT_FLAG_WRITE) {
2914 if (!(vma->vm_flags & VM_SHARED)) {
2915 anon = 1;
2916 if (unlikely(anon_vma_prepare(vma))) {
2917 ret = VM_FAULT_OOM;
2918 goto out;
2920 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2921 vma, address);
2922 if (!page) {
2923 ret = VM_FAULT_OOM;
2924 goto out;
2926 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2927 ret = VM_FAULT_OOM;
2928 page_cache_release(page);
2929 goto out;
2931 charged = 1;
2933 * Don't let another task, with possibly unlocked vma,
2934 * keep the mlocked page.
2936 if (vma->vm_flags & VM_LOCKED)
2937 clear_page_mlock(vmf.page);
2938 copy_user_highpage(page, vmf.page, address, vma);
2939 __SetPageUptodate(page);
2940 } else {
2942 * If the page will be shareable, see if the backing
2943 * address space wants to know that the page is about
2944 * to become writable
2946 if (vma->vm_ops->page_mkwrite) {
2947 int tmp;
2949 unlock_page(page);
2950 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2951 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2952 if (unlikely(tmp &
2953 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2954 ret = tmp;
2955 goto unwritable_page;
2957 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2958 lock_page(page);
2959 if (!page->mapping) {
2960 ret = 0; /* retry the fault */
2961 unlock_page(page);
2962 goto unwritable_page;
2964 } else
2965 VM_BUG_ON(!PageLocked(page));
2966 page_mkwrite = 1;
2972 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2975 * This silly early PAGE_DIRTY setting removes a race
2976 * due to the bad i386 page protection. But it's valid
2977 * for other architectures too.
2979 * Note that if FAULT_FLAG_WRITE is set, we either now have
2980 * an exclusive copy of the page, or this is a shared mapping,
2981 * so we can make it writable and dirty to avoid having to
2982 * handle that later.
2984 /* Only go through if we didn't race with anybody else... */
2985 if (likely(pte_same(*page_table, orig_pte))) {
2986 flush_icache_page(vma, page);
2987 entry = mk_pte(page, vma->vm_page_prot);
2988 if (flags & FAULT_FLAG_WRITE)
2989 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2990 if (anon) {
2991 inc_mm_counter_fast(mm, MM_ANONPAGES);
2992 page_add_new_anon_rmap(page, vma, address);
2993 } else {
2994 inc_mm_counter_fast(mm, MM_FILEPAGES);
2995 page_add_file_rmap(page);
2996 if (flags & FAULT_FLAG_WRITE) {
2997 dirty_page = page;
2998 get_page(dirty_page);
3001 set_pte_at(mm, address, page_table, entry);
3003 /* no need to invalidate: a not-present page won't be cached */
3004 update_mmu_cache(vma, address, page_table);
3005 } else {
3006 if (charged)
3007 mem_cgroup_uncharge_page(page);
3008 if (anon)
3009 page_cache_release(page);
3010 else
3011 anon = 1; /* no anon but release faulted_page */
3014 pte_unmap_unlock(page_table, ptl);
3016 out:
3017 if (dirty_page) {
3018 struct address_space *mapping = page->mapping;
3020 if (set_page_dirty(dirty_page))
3021 page_mkwrite = 1;
3022 unlock_page(dirty_page);
3023 put_page(dirty_page);
3024 if (page_mkwrite && mapping) {
3026 * Some device drivers do not set page.mapping but still
3027 * dirty their pages
3029 balance_dirty_pages_ratelimited(mapping);
3032 /* file_update_time outside page_lock */
3033 if (vma->vm_file)
3034 file_update_time(vma->vm_file);
3035 } else {
3036 unlock_page(vmf.page);
3037 if (anon)
3038 page_cache_release(vmf.page);
3041 return ret;
3043 unwritable_page:
3044 page_cache_release(page);
3045 return ret;
3048 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3049 unsigned long address, pte_t *page_table, pmd_t *pmd,
3050 unsigned int flags, pte_t orig_pte)
3052 pgoff_t pgoff = (((address & PAGE_MASK)
3053 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3055 pte_unmap(page_table);
3056 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3060 * Fault of a previously existing named mapping. Repopulate the pte
3061 * from the encoded file_pte if possible. This enables swappable
3062 * nonlinear vmas.
3064 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3065 * but allow concurrent faults), and pte mapped but not yet locked.
3066 * We return with mmap_sem still held, but pte unmapped and unlocked.
3068 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3069 unsigned long address, pte_t *page_table, pmd_t *pmd,
3070 unsigned int flags, pte_t orig_pte)
3072 pgoff_t pgoff;
3074 flags |= FAULT_FLAG_NONLINEAR;
3076 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3077 return 0;
3079 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3081 * Page table corrupted: show pte and kill process.
3083 print_bad_pte(vma, address, orig_pte, NULL);
3084 return VM_FAULT_SIGBUS;
3087 pgoff = pte_to_pgoff(orig_pte);
3088 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3092 * These routines also need to handle stuff like marking pages dirty
3093 * and/or accessed for architectures that don't do it in hardware (most
3094 * RISC architectures). The early dirtying is also good on the i386.
3096 * There is also a hook called "update_mmu_cache()" that architectures
3097 * with external mmu caches can use to update those (ie the Sparc or
3098 * PowerPC hashed page tables that act as extended TLBs).
3100 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3101 * but allow concurrent faults), and pte mapped but not yet locked.
3102 * We return with mmap_sem still held, but pte unmapped and unlocked.
3104 static inline int handle_pte_fault(struct mm_struct *mm,
3105 struct vm_area_struct *vma, unsigned long address,
3106 pte_t *pte, pmd_t *pmd, unsigned int flags)
3108 pte_t entry;
3109 spinlock_t *ptl;
3111 entry = *pte;
3112 if (!pte_present(entry)) {
3113 if (pte_none(entry)) {
3114 if (vma->vm_ops) {
3115 if (likely(vma->vm_ops->fault))
3116 return do_linear_fault(mm, vma, address,
3117 pte, pmd, flags, entry);
3119 return do_anonymous_page(mm, vma, address,
3120 pte, pmd, flags);
3122 if (pte_file(entry))
3123 return do_nonlinear_fault(mm, vma, address,
3124 pte, pmd, flags, entry);
3125 return do_swap_page(mm, vma, address,
3126 pte, pmd, flags, entry);
3129 ptl = pte_lockptr(mm, pmd);
3130 spin_lock(ptl);
3131 if (unlikely(!pte_same(*pte, entry)))
3132 goto unlock;
3133 if (flags & FAULT_FLAG_WRITE) {
3134 if (!pte_write(entry))
3135 return do_wp_page(mm, vma, address,
3136 pte, pmd, ptl, entry);
3137 entry = pte_mkdirty(entry);
3139 entry = pte_mkyoung(entry);
3140 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3141 update_mmu_cache(vma, address, pte);
3142 } else {
3144 * This is needed only for protection faults but the arch code
3145 * is not yet telling us if this is a protection fault or not.
3146 * This still avoids useless tlb flushes for .text page faults
3147 * with threads.
3149 if (flags & FAULT_FLAG_WRITE)
3150 flush_tlb_page(vma, address);
3152 unlock:
3153 pte_unmap_unlock(pte, ptl);
3154 return 0;
3158 * By the time we get here, we already hold the mm semaphore
3160 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3161 unsigned long address, unsigned int flags)
3163 pgd_t *pgd;
3164 pud_t *pud;
3165 pmd_t *pmd;
3166 pte_t *pte;
3168 __set_current_state(TASK_RUNNING);
3170 count_vm_event(PGFAULT);
3172 /* do counter updates before entering really critical section. */
3173 check_sync_rss_stat(current);
3175 if (unlikely(is_vm_hugetlb_page(vma)))
3176 return hugetlb_fault(mm, vma, address, flags);
3178 pgd = pgd_offset(mm, address);
3179 pud = pud_alloc(mm, pgd, address);
3180 if (!pud)
3181 return VM_FAULT_OOM;
3182 pmd = pmd_alloc(mm, pud, address);
3183 if (!pmd)
3184 return VM_FAULT_OOM;
3185 pte = pte_alloc_map(mm, pmd, address);
3186 if (!pte)
3187 return VM_FAULT_OOM;
3189 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3192 #ifndef __PAGETABLE_PUD_FOLDED
3194 * Allocate page upper directory.
3195 * We've already handled the fast-path in-line.
3197 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3199 pud_t *new = pud_alloc_one(mm, address);
3200 if (!new)
3201 return -ENOMEM;
3203 smp_wmb(); /* See comment in __pte_alloc */
3205 spin_lock(&mm->page_table_lock);
3206 if (pgd_present(*pgd)) /* Another has populated it */
3207 pud_free(mm, new);
3208 else
3209 pgd_populate(mm, pgd, new);
3210 spin_unlock(&mm->page_table_lock);
3211 return 0;
3213 #endif /* __PAGETABLE_PUD_FOLDED */
3215 #ifndef __PAGETABLE_PMD_FOLDED
3217 * Allocate page middle directory.
3218 * We've already handled the fast-path in-line.
3220 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3222 pmd_t *new = pmd_alloc_one(mm, address);
3223 if (!new)
3224 return -ENOMEM;
3226 smp_wmb(); /* See comment in __pte_alloc */
3228 spin_lock(&mm->page_table_lock);
3229 #ifndef __ARCH_HAS_4LEVEL_HACK
3230 if (pud_present(*pud)) /* Another has populated it */
3231 pmd_free(mm, new);
3232 else
3233 pud_populate(mm, pud, new);
3234 #else
3235 if (pgd_present(*pud)) /* Another has populated it */
3236 pmd_free(mm, new);
3237 else
3238 pgd_populate(mm, pud, new);
3239 #endif /* __ARCH_HAS_4LEVEL_HACK */
3240 spin_unlock(&mm->page_table_lock);
3241 return 0;
3243 #endif /* __PAGETABLE_PMD_FOLDED */
3245 int make_pages_present(unsigned long addr, unsigned long end)
3247 int ret, len, write;
3248 struct vm_area_struct * vma;
3250 vma = find_vma(current->mm, addr);
3251 if (!vma)
3252 return -ENOMEM;
3253 write = (vma->vm_flags & VM_WRITE) != 0;
3254 BUG_ON(addr >= end);
3255 BUG_ON(end > vma->vm_end);
3256 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3257 ret = get_user_pages(current, current->mm, addr,
3258 len, write, 0, NULL, NULL);
3259 if (ret < 0)
3260 return ret;
3261 return ret == len ? 0 : -EFAULT;
3264 #if !defined(__HAVE_ARCH_GATE_AREA)
3266 #if defined(AT_SYSINFO_EHDR)
3267 static struct vm_area_struct gate_vma;
3269 static int __init gate_vma_init(void)
3271 gate_vma.vm_mm = NULL;
3272 gate_vma.vm_start = FIXADDR_USER_START;
3273 gate_vma.vm_end = FIXADDR_USER_END;
3274 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3275 gate_vma.vm_page_prot = __P101;
3277 * Make sure the vDSO gets into every core dump.
3278 * Dumping its contents makes post-mortem fully interpretable later
3279 * without matching up the same kernel and hardware config to see
3280 * what PC values meant.
3282 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3283 return 0;
3285 __initcall(gate_vma_init);
3286 #endif
3288 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3290 #ifdef AT_SYSINFO_EHDR
3291 return &gate_vma;
3292 #else
3293 return NULL;
3294 #endif
3297 int in_gate_area_no_task(unsigned long addr)
3299 #ifdef AT_SYSINFO_EHDR
3300 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3301 return 1;
3302 #endif
3303 return 0;
3306 #endif /* __HAVE_ARCH_GATE_AREA */
3308 static int follow_pte(struct mm_struct *mm, unsigned long address,
3309 pte_t **ptepp, spinlock_t **ptlp)
3311 pgd_t *pgd;
3312 pud_t *pud;
3313 pmd_t *pmd;
3314 pte_t *ptep;
3316 pgd = pgd_offset(mm, address);
3317 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3318 goto out;
3320 pud = pud_offset(pgd, address);
3321 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3322 goto out;
3324 pmd = pmd_offset(pud, address);
3325 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3326 goto out;
3328 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3329 if (pmd_huge(*pmd))
3330 goto out;
3332 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3333 if (!ptep)
3334 goto out;
3335 if (!pte_present(*ptep))
3336 goto unlock;
3337 *ptepp = ptep;
3338 return 0;
3339 unlock:
3340 pte_unmap_unlock(ptep, *ptlp);
3341 out:
3342 return -EINVAL;
3346 * follow_pfn - look up PFN at a user virtual address
3347 * @vma: memory mapping
3348 * @address: user virtual address
3349 * @pfn: location to store found PFN
3351 * Only IO mappings and raw PFN mappings are allowed.
3353 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3355 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3356 unsigned long *pfn)
3358 int ret = -EINVAL;
3359 spinlock_t *ptl;
3360 pte_t *ptep;
3362 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3363 return ret;
3365 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3366 if (ret)
3367 return ret;
3368 *pfn = pte_pfn(*ptep);
3369 pte_unmap_unlock(ptep, ptl);
3370 return 0;
3372 EXPORT_SYMBOL(follow_pfn);
3374 #ifdef CONFIG_HAVE_IOREMAP_PROT
3375 int follow_phys(struct vm_area_struct *vma,
3376 unsigned long address, unsigned int flags,
3377 unsigned long *prot, resource_size_t *phys)
3379 int ret = -EINVAL;
3380 pte_t *ptep, pte;
3381 spinlock_t *ptl;
3383 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3384 goto out;
3386 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3387 goto out;
3388 pte = *ptep;
3390 if ((flags & FOLL_WRITE) && !pte_write(pte))
3391 goto unlock;
3393 *prot = pgprot_val(pte_pgprot(pte));
3394 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3396 ret = 0;
3397 unlock:
3398 pte_unmap_unlock(ptep, ptl);
3399 out:
3400 return ret;
3403 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3404 void *buf, int len, int write)
3406 resource_size_t phys_addr;
3407 unsigned long prot = 0;
3408 void __iomem *maddr;
3409 int offset = addr & (PAGE_SIZE-1);
3411 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3412 return -EINVAL;
3414 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3415 if (write)
3416 memcpy_toio(maddr + offset, buf, len);
3417 else
3418 memcpy_fromio(buf, maddr + offset, len);
3419 iounmap(maddr);
3421 return len;
3423 #endif
3426 * Access another process' address space.
3427 * Source/target buffer must be kernel space,
3428 * Do not walk the page table directly, use get_user_pages
3430 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3432 struct mm_struct *mm;
3433 struct vm_area_struct *vma;
3434 void *old_buf = buf;
3436 mm = get_task_mm(tsk);
3437 if (!mm)
3438 return 0;
3440 down_read(&mm->mmap_sem);
3441 /* ignore errors, just check how much was successfully transferred */
3442 while (len) {
3443 int bytes, ret, offset;
3444 void *maddr;
3445 struct page *page = NULL;
3447 ret = get_user_pages(tsk, mm, addr, 1,
3448 write, 1, &page, &vma);
3449 if (ret <= 0) {
3451 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3452 * we can access using slightly different code.
3454 #ifdef CONFIG_HAVE_IOREMAP_PROT
3455 vma = find_vma(mm, addr);
3456 if (!vma)
3457 break;
3458 if (vma->vm_ops && vma->vm_ops->access)
3459 ret = vma->vm_ops->access(vma, addr, buf,
3460 len, write);
3461 if (ret <= 0)
3462 #endif
3463 break;
3464 bytes = ret;
3465 } else {
3466 bytes = len;
3467 offset = addr & (PAGE_SIZE-1);
3468 if (bytes > PAGE_SIZE-offset)
3469 bytes = PAGE_SIZE-offset;
3471 maddr = kmap(page);
3472 if (write) {
3473 copy_to_user_page(vma, page, addr,
3474 maddr + offset, buf, bytes);
3475 set_page_dirty_lock(page);
3476 } else {
3477 copy_from_user_page(vma, page, addr,
3478 buf, maddr + offset, bytes);
3480 kunmap(page);
3481 page_cache_release(page);
3483 len -= bytes;
3484 buf += bytes;
3485 addr += bytes;
3487 up_read(&mm->mmap_sem);
3488 mmput(mm);
3490 return buf - old_buf;
3494 * Print the name of a VMA.
3496 void print_vma_addr(char *prefix, unsigned long ip)
3498 struct mm_struct *mm = current->mm;
3499 struct vm_area_struct *vma;
3502 * Do not print if we are in atomic
3503 * contexts (in exception stacks, etc.):
3505 if (preempt_count())
3506 return;
3508 down_read(&mm->mmap_sem);
3509 vma = find_vma(mm, ip);
3510 if (vma && vma->vm_file) {
3511 struct file *f = vma->vm_file;
3512 char *buf = (char *)__get_free_page(GFP_KERNEL);
3513 if (buf) {
3514 char *p, *s;
3516 p = d_path(&f->f_path, buf, PAGE_SIZE);
3517 if (IS_ERR(p))
3518 p = "?";
3519 s = strrchr(p, '/');
3520 if (s)
3521 p = s+1;
3522 printk("%s%s[%lx+%lx]", prefix, p,
3523 vma->vm_start,
3524 vma->vm_end - vma->vm_start);
3525 free_page((unsigned long)buf);
3528 up_read(&current->mm->mmap_sem);
3531 #ifdef CONFIG_PROVE_LOCKING
3532 void might_fault(void)
3535 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3536 * holding the mmap_sem, this is safe because kernel memory doesn't
3537 * get paged out, therefore we'll never actually fault, and the
3538 * below annotations will generate false positives.
3540 if (segment_eq(get_fs(), KERNEL_DS))
3541 return;
3543 might_sleep();
3545 * it would be nicer only to annotate paths which are not under
3546 * pagefault_disable, however that requires a larger audit and
3547 * providing helpers like get_user_atomic.
3549 if (!in_atomic() && current->mm)
3550 might_lock_read(&current->mm->mmap_sem);
3552 EXPORT_SYMBOL(might_fault);
3553 #endif