4 * Copyright (C) 2002, Linus Torvalds.
8 * 04Jul2002 Andrew Morton
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
42 * How many user pages to map in one call to get_user_pages(). This determines
43 * the size of a structure in the slab cache
48 * This code generally works in units of "dio_blocks". A dio_block is
49 * somewhere between the hard sector size and the filesystem block size. it
50 * is determined on a per-invocation basis. When talking to the filesystem
51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
53 * to bio_block quantities by shifting left by blkfactor.
55 * If blkfactor is zero then the user's request was aligned to the filesystem's
59 /* dio_state only used in the submission path */
62 struct bio
*bio
; /* bio under assembly */
63 unsigned blkbits
; /* doesn't change */
64 unsigned blkfactor
; /* When we're using an alignment which
65 is finer than the filesystem's soft
66 blocksize, this specifies how much
67 finer. blkfactor=2 means 1/4-block
68 alignment. Does not change */
69 unsigned start_zero_done
; /* flag: sub-blocksize zeroing has
70 been performed at the start of a
72 int pages_in_io
; /* approximate total IO pages */
73 sector_t block_in_file
; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available
; /* At block_in_file. changes */
76 int reap_counter
; /* rate limit reaping */
77 sector_t final_block_in_request
;/* doesn't change */
78 int boundary
; /* prev block is at a boundary */
79 get_block_t
*get_block
; /* block mapping function */
80 dio_submit_t
*submit_io
; /* IO submition function */
82 loff_t logical_offset_in_bio
; /* current first logical block in bio */
83 sector_t final_block_in_bio
; /* current final block in bio + 1 */
84 sector_t next_block_for_io
; /* next block to be put under IO,
85 in dio_blocks units */
88 * Deferred addition of a page to the dio. These variables are
89 * private to dio_send_cur_page(), submit_page_section() and
92 struct page
*cur_page
; /* The page */
93 unsigned cur_page_offset
; /* Offset into it, in bytes */
94 unsigned cur_page_len
; /* Nr of bytes at cur_page_offset */
95 sector_t cur_page_block
; /* Where it starts */
96 loff_t cur_page_fs_offset
; /* Offset in file */
98 struct iov_iter
*iter
;
100 * Page queue. These variables belong to dio_refill_pages() and
103 unsigned head
; /* next page to process */
104 unsigned tail
; /* last valid page + 1 */
108 /* dio_state communicated between submission path and end_io */
110 int flags
; /* doesn't change */
114 struct block_device
*bio_bdev
;
116 loff_t i_size
; /* i_size when submitted */
117 dio_iodone_t
*end_io
; /* IO completion function */
119 void *private; /* copy from map_bh.b_private */
121 /* BIO completion state */
122 spinlock_t bio_lock
; /* protects BIO fields below */
123 int page_errors
; /* errno from get_user_pages() */
124 int is_async
; /* is IO async ? */
125 bool defer_completion
; /* defer AIO completion to workqueue? */
126 bool should_dirty
; /* if pages should be dirtied */
127 int io_error
; /* IO error in completion path */
128 unsigned long refcount
; /* direct_io_worker() and bios */
129 struct bio
*bio_list
; /* singly linked via bi_private */
130 struct task_struct
*waiter
; /* waiting task (NULL if none) */
132 /* AIO related stuff */
133 struct kiocb
*iocb
; /* kiocb */
134 ssize_t result
; /* IO result */
137 * pages[] (and any fields placed after it) are not zeroed out at
138 * allocation time. Don't add new fields after pages[] unless you
139 * wish that they not be zeroed.
142 struct page
*pages
[DIO_PAGES
]; /* page buffer */
143 struct work_struct complete_work
;/* deferred AIO completion */
145 } ____cacheline_aligned_in_smp
;
147 static struct kmem_cache
*dio_cache __read_mostly
;
150 * How many pages are in the queue?
152 static inline unsigned dio_pages_present(struct dio_submit
*sdio
)
154 return sdio
->tail
- sdio
->head
;
158 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
160 static inline int dio_refill_pages(struct dio
*dio
, struct dio_submit
*sdio
)
164 ret
= iov_iter_get_pages(sdio
->iter
, dio
->pages
, LONG_MAX
, DIO_PAGES
,
167 if (ret
< 0 && sdio
->blocks_available
&& (dio
->op
== REQ_OP_WRITE
)) {
168 struct page
*page
= ZERO_PAGE(0);
170 * A memory fault, but the filesystem has some outstanding
171 * mapped blocks. We need to use those blocks up to avoid
172 * leaking stale data in the file.
174 if (dio
->page_errors
== 0)
175 dio
->page_errors
= ret
;
177 dio
->pages
[0] = page
;
181 sdio
->to
= PAGE_SIZE
;
186 iov_iter_advance(sdio
->iter
, ret
);
189 sdio
->tail
= (ret
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
190 sdio
->to
= ((ret
- 1) & (PAGE_SIZE
- 1)) + 1;
197 * Get another userspace page. Returns an ERR_PTR on error. Pages are
198 * buffered inside the dio so that we can call get_user_pages() against a
199 * decent number of pages, less frequently. To provide nicer use of the
202 static inline struct page
*dio_get_page(struct dio
*dio
,
203 struct dio_submit
*sdio
)
205 if (dio_pages_present(sdio
) == 0) {
208 ret
= dio_refill_pages(dio
, sdio
);
211 BUG_ON(dio_pages_present(sdio
) == 0);
213 return dio
->pages
[sdio
->head
];
217 * dio_complete() - called when all DIO BIO I/O has been completed
218 * @offset: the byte offset in the file of the completed operation
220 * This drops i_dio_count, lets interested parties know that a DIO operation
221 * has completed, and calculates the resulting return code for the operation.
223 * It lets the filesystem know if it registered an interest earlier via
224 * get_block. Pass the private field of the map buffer_head so that
225 * filesystems can use it to hold additional state between get_block calls and
228 static ssize_t
dio_complete(struct dio
*dio
, ssize_t ret
, bool is_async
)
230 loff_t offset
= dio
->iocb
->ki_pos
;
231 ssize_t transferred
= 0;
234 * AIO submission can race with bio completion to get here while
235 * expecting to have the last io completed by bio completion.
236 * In that case -EIOCBQUEUED is in fact not an error we want
237 * to preserve through this call.
239 if (ret
== -EIOCBQUEUED
)
243 transferred
= dio
->result
;
245 /* Check for short read case */
246 if ((dio
->op
== REQ_OP_READ
) &&
247 ((offset
+ transferred
) > dio
->i_size
))
248 transferred
= dio
->i_size
- offset
;
252 ret
= dio
->page_errors
;
262 err
= dio
->end_io(dio
->iocb
, offset
, ret
, dio
->private);
267 if (!(dio
->flags
& DIO_SKIP_DIO_COUNT
))
268 inode_dio_end(dio
->inode
);
272 * generic_write_sync expects ki_pos to have been updated
273 * already, but the submission path only does this for
276 dio
->iocb
->ki_pos
+= transferred
;
278 if (dio
->op
== REQ_OP_WRITE
)
279 ret
= generic_write_sync(dio
->iocb
, transferred
);
280 dio
->iocb
->ki_complete(dio
->iocb
, ret
, 0);
283 kmem_cache_free(dio_cache
, dio
);
287 static void dio_aio_complete_work(struct work_struct
*work
)
289 struct dio
*dio
= container_of(work
, struct dio
, complete_work
);
291 dio_complete(dio
, 0, true);
294 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
);
297 * Asynchronous IO callback.
299 static void dio_bio_end_aio(struct bio
*bio
)
301 struct dio
*dio
= bio
->bi_private
;
302 unsigned long remaining
;
305 /* cleanup the bio */
306 dio_bio_complete(dio
, bio
);
308 spin_lock_irqsave(&dio
->bio_lock
, flags
);
309 remaining
= --dio
->refcount
;
310 if (remaining
== 1 && dio
->waiter
)
311 wake_up_process(dio
->waiter
);
312 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
314 if (remaining
== 0) {
315 if (dio
->result
&& dio
->defer_completion
) {
316 INIT_WORK(&dio
->complete_work
, dio_aio_complete_work
);
317 queue_work(dio
->inode
->i_sb
->s_dio_done_wq
,
318 &dio
->complete_work
);
320 dio_complete(dio
, 0, true);
326 * The BIO completion handler simply queues the BIO up for the process-context
329 * During I/O bi_private points at the dio. After I/O, bi_private is used to
330 * implement a singly-linked list of completed BIOs, at dio->bio_list.
332 static void dio_bio_end_io(struct bio
*bio
)
334 struct dio
*dio
= bio
->bi_private
;
337 spin_lock_irqsave(&dio
->bio_lock
, flags
);
338 bio
->bi_private
= dio
->bio_list
;
340 if (--dio
->refcount
== 1 && dio
->waiter
)
341 wake_up_process(dio
->waiter
);
342 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
346 * dio_end_io - handle the end io action for the given bio
347 * @bio: The direct io bio thats being completed
348 * @error: Error if there was one
350 * This is meant to be called by any filesystem that uses their own dio_submit_t
351 * so that the DIO specific endio actions are dealt with after the filesystem
352 * has done it's completion work.
354 void dio_end_io(struct bio
*bio
, int error
)
356 struct dio
*dio
= bio
->bi_private
;
359 dio_bio_end_aio(bio
);
363 EXPORT_SYMBOL_GPL(dio_end_io
);
366 dio_bio_alloc(struct dio
*dio
, struct dio_submit
*sdio
,
367 struct block_device
*bdev
,
368 sector_t first_sector
, int nr_vecs
)
373 * bio_alloc() is guaranteed to return a bio when called with
374 * __GFP_RECLAIM and we request a valid number of vectors.
376 bio
= bio_alloc(GFP_KERNEL
, nr_vecs
);
379 bio
->bi_iter
.bi_sector
= first_sector
;
380 bio_set_op_attrs(bio
, dio
->op
, dio
->op_flags
);
382 bio
->bi_end_io
= dio_bio_end_aio
;
384 bio
->bi_end_io
= dio_bio_end_io
;
387 sdio
->logical_offset_in_bio
= sdio
->cur_page_fs_offset
;
391 * In the AIO read case we speculatively dirty the pages before starting IO.
392 * During IO completion, any of these pages which happen to have been written
393 * back will be redirtied by bio_check_pages_dirty().
395 * bios hold a dio reference between submit_bio and ->end_io.
397 static inline void dio_bio_submit(struct dio
*dio
, struct dio_submit
*sdio
)
399 struct bio
*bio
= sdio
->bio
;
402 bio
->bi_private
= dio
;
404 spin_lock_irqsave(&dio
->bio_lock
, flags
);
406 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
408 if (dio
->is_async
&& dio
->op
== REQ_OP_READ
&& dio
->should_dirty
)
409 bio_set_pages_dirty(bio
);
411 dio
->bio_bdev
= bio
->bi_bdev
;
413 if (sdio
->submit_io
) {
414 sdio
->submit_io(bio
, dio
->inode
, sdio
->logical_offset_in_bio
);
415 dio
->bio_cookie
= BLK_QC_T_NONE
;
417 dio
->bio_cookie
= submit_bio(bio
);
421 sdio
->logical_offset_in_bio
= 0;
425 * Release any resources in case of a failure
427 static inline void dio_cleanup(struct dio
*dio
, struct dio_submit
*sdio
)
429 while (sdio
->head
< sdio
->tail
)
430 put_page(dio
->pages
[sdio
->head
++]);
434 * Wait for the next BIO to complete. Remove it and return it. NULL is
435 * returned once all BIOs have been completed. This must only be called once
436 * all bios have been issued so that dio->refcount can only decrease. This
437 * requires that that the caller hold a reference on the dio.
439 static struct bio
*dio_await_one(struct dio
*dio
)
442 struct bio
*bio
= NULL
;
444 spin_lock_irqsave(&dio
->bio_lock
, flags
);
447 * Wait as long as the list is empty and there are bios in flight. bio
448 * completion drops the count, maybe adds to the list, and wakes while
449 * holding the bio_lock so we don't need set_current_state()'s barrier
450 * and can call it after testing our condition.
452 while (dio
->refcount
> 1 && dio
->bio_list
== NULL
) {
453 __set_current_state(TASK_UNINTERRUPTIBLE
);
454 dio
->waiter
= current
;
455 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
456 if (!(dio
->iocb
->ki_flags
& IOCB_HIPRI
) ||
457 !blk_poll(bdev_get_queue(dio
->bio_bdev
), dio
->bio_cookie
))
459 /* wake up sets us TASK_RUNNING */
460 spin_lock_irqsave(&dio
->bio_lock
, flags
);
465 dio
->bio_list
= bio
->bi_private
;
467 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
472 * Process one completed BIO. No locks are held.
474 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
)
476 struct bio_vec
*bvec
;
481 dio
->io_error
= -EIO
;
483 if (dio
->is_async
&& dio
->op
== REQ_OP_READ
&& dio
->should_dirty
) {
485 bio_check_pages_dirty(bio
); /* transfers ownership */
487 bio_for_each_segment_all(bvec
, bio
, i
) {
488 struct page
*page
= bvec
->bv_page
;
490 if (dio
->op
== REQ_OP_READ
&& !PageCompound(page
) &&
492 set_page_dirty_lock(page
);
502 * Wait on and process all in-flight BIOs. This must only be called once
503 * all bios have been issued so that the refcount can only decrease.
504 * This just waits for all bios to make it through dio_bio_complete. IO
505 * errors are propagated through dio->io_error and should be propagated via
508 static void dio_await_completion(struct dio
*dio
)
512 bio
= dio_await_one(dio
);
514 dio_bio_complete(dio
, bio
);
519 * A really large O_DIRECT read or write can generate a lot of BIOs. So
520 * to keep the memory consumption sane we periodically reap any completed BIOs
521 * during the BIO generation phase.
523 * This also helps to limit the peak amount of pinned userspace memory.
525 static inline int dio_bio_reap(struct dio
*dio
, struct dio_submit
*sdio
)
529 if (sdio
->reap_counter
++ >= 64) {
530 while (dio
->bio_list
) {
535 spin_lock_irqsave(&dio
->bio_lock
, flags
);
537 dio
->bio_list
= bio
->bi_private
;
538 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
539 ret2
= dio_bio_complete(dio
, bio
);
543 sdio
->reap_counter
= 0;
549 * Create workqueue for deferred direct IO completions. We allocate the
550 * workqueue when it's first needed. This avoids creating workqueue for
551 * filesystems that don't need it and also allows us to create the workqueue
552 * late enough so the we can include s_id in the name of the workqueue.
554 static int sb_init_dio_done_wq(struct super_block
*sb
)
556 struct workqueue_struct
*old
;
557 struct workqueue_struct
*wq
= alloc_workqueue("dio/%s",
563 * This has to be atomic as more DIOs can race to create the workqueue
565 old
= cmpxchg(&sb
->s_dio_done_wq
, NULL
, wq
);
566 /* Someone created workqueue before us? Free ours... */
568 destroy_workqueue(wq
);
572 static int dio_set_defer_completion(struct dio
*dio
)
574 struct super_block
*sb
= dio
->inode
->i_sb
;
576 if (dio
->defer_completion
)
578 dio
->defer_completion
= true;
579 if (!sb
->s_dio_done_wq
)
580 return sb_init_dio_done_wq(sb
);
585 * Call into the fs to map some more disk blocks. We record the current number
586 * of available blocks at sdio->blocks_available. These are in units of the
587 * fs blocksize, (1 << inode->i_blkbits).
589 * The fs is allowed to map lots of blocks at once. If it wants to do that,
590 * it uses the passed inode-relative block number as the file offset, as usual.
592 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
593 * has remaining to do. The fs should not map more than this number of blocks.
595 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
596 * indicate how much contiguous disk space has been made available at
599 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
600 * This isn't very efficient...
602 * In the case of filesystem holes: the fs may return an arbitrarily-large
603 * hole by returning an appropriate value in b_size and by clearing
604 * buffer_mapped(). However the direct-io code will only process holes one
605 * block at a time - it will repeatedly call get_block() as it walks the hole.
607 static int get_more_blocks(struct dio
*dio
, struct dio_submit
*sdio
,
608 struct buffer_head
*map_bh
)
611 sector_t fs_startblk
; /* Into file, in filesystem-sized blocks */
612 sector_t fs_endblk
; /* Into file, in filesystem-sized blocks */
613 unsigned long fs_count
; /* Number of filesystem-sized blocks */
615 unsigned int i_blkbits
= sdio
->blkbits
+ sdio
->blkfactor
;
618 * If there was a memory error and we've overwritten all the
619 * mapped blocks then we can now return that memory error
621 ret
= dio
->page_errors
;
623 BUG_ON(sdio
->block_in_file
>= sdio
->final_block_in_request
);
624 fs_startblk
= sdio
->block_in_file
>> sdio
->blkfactor
;
625 fs_endblk
= (sdio
->final_block_in_request
- 1) >>
627 fs_count
= fs_endblk
- fs_startblk
+ 1;
630 map_bh
->b_size
= fs_count
<< i_blkbits
;
633 * For writes that could fill holes inside i_size on a
634 * DIO_SKIP_HOLES filesystem we forbid block creations: only
635 * overwrites are permitted. We will return early to the caller
636 * once we see an unmapped buffer head returned, and the caller
637 * will fall back to buffered I/O.
639 * Otherwise the decision is left to the get_blocks method,
640 * which may decide to handle it or also return an unmapped
643 create
= dio
->op
== REQ_OP_WRITE
;
644 if (dio
->flags
& DIO_SKIP_HOLES
) {
645 if (fs_startblk
<= ((i_size_read(dio
->inode
) - 1) >>
650 ret
= (*sdio
->get_block
)(dio
->inode
, fs_startblk
,
653 /* Store for completion */
654 dio
->private = map_bh
->b_private
;
656 if (ret
== 0 && buffer_defer_completion(map_bh
))
657 ret
= dio_set_defer_completion(dio
);
663 * There is no bio. Make one now.
665 static inline int dio_new_bio(struct dio
*dio
, struct dio_submit
*sdio
,
666 sector_t start_sector
, struct buffer_head
*map_bh
)
671 ret
= dio_bio_reap(dio
, sdio
);
674 sector
= start_sector
<< (sdio
->blkbits
- 9);
675 nr_pages
= min(sdio
->pages_in_io
, BIO_MAX_PAGES
);
676 BUG_ON(nr_pages
<= 0);
677 dio_bio_alloc(dio
, sdio
, map_bh
->b_bdev
, sector
, nr_pages
);
684 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
685 * that was successful then update final_block_in_bio and take a ref against
686 * the just-added page.
688 * Return zero on success. Non-zero means the caller needs to start a new BIO.
690 static inline int dio_bio_add_page(struct dio_submit
*sdio
)
694 ret
= bio_add_page(sdio
->bio
, sdio
->cur_page
,
695 sdio
->cur_page_len
, sdio
->cur_page_offset
);
696 if (ret
== sdio
->cur_page_len
) {
698 * Decrement count only, if we are done with this page
700 if ((sdio
->cur_page_len
+ sdio
->cur_page_offset
) == PAGE_SIZE
)
702 get_page(sdio
->cur_page
);
703 sdio
->final_block_in_bio
= sdio
->cur_page_block
+
704 (sdio
->cur_page_len
>> sdio
->blkbits
);
713 * Put cur_page under IO. The section of cur_page which is described by
714 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
715 * starts on-disk at cur_page_block.
717 * We take a ref against the page here (on behalf of its presence in the bio).
719 * The caller of this function is responsible for removing cur_page from the
720 * dio, and for dropping the refcount which came from that presence.
722 static inline int dio_send_cur_page(struct dio
*dio
, struct dio_submit
*sdio
,
723 struct buffer_head
*map_bh
)
728 loff_t cur_offset
= sdio
->cur_page_fs_offset
;
729 loff_t bio_next_offset
= sdio
->logical_offset_in_bio
+
730 sdio
->bio
->bi_iter
.bi_size
;
733 * See whether this new request is contiguous with the old.
735 * Btrfs cannot handle having logically non-contiguous requests
736 * submitted. For example if you have
738 * Logical: [0-4095][HOLE][8192-12287]
739 * Physical: [0-4095] [4096-8191]
741 * We cannot submit those pages together as one BIO. So if our
742 * current logical offset in the file does not equal what would
743 * be the next logical offset in the bio, submit the bio we
746 if (sdio
->final_block_in_bio
!= sdio
->cur_page_block
||
747 cur_offset
!= bio_next_offset
)
748 dio_bio_submit(dio
, sdio
);
751 if (sdio
->bio
== NULL
) {
752 ret
= dio_new_bio(dio
, sdio
, sdio
->cur_page_block
, map_bh
);
757 if (dio_bio_add_page(sdio
) != 0) {
758 dio_bio_submit(dio
, sdio
);
759 ret
= dio_new_bio(dio
, sdio
, sdio
->cur_page_block
, map_bh
);
761 ret
= dio_bio_add_page(sdio
);
770 * An autonomous function to put a chunk of a page under deferred IO.
772 * The caller doesn't actually know (or care) whether this piece of page is in
773 * a BIO, or is under IO or whatever. We just take care of all possible
774 * situations here. The separation between the logic of do_direct_IO() and
775 * that of submit_page_section() is important for clarity. Please don't break.
777 * The chunk of page starts on-disk at blocknr.
779 * We perform deferred IO, by recording the last-submitted page inside our
780 * private part of the dio structure. If possible, we just expand the IO
781 * across that page here.
783 * If that doesn't work out then we put the old page into the bio and add this
784 * page to the dio instead.
787 submit_page_section(struct dio
*dio
, struct dio_submit
*sdio
, struct page
*page
,
788 unsigned offset
, unsigned len
, sector_t blocknr
,
789 struct buffer_head
*map_bh
)
793 if (dio
->op
== REQ_OP_WRITE
) {
795 * Read accounting is performed in submit_bio()
797 task_io_account_write(len
);
801 * Can we just grow the current page's presence in the dio?
803 if (sdio
->cur_page
== page
&&
804 sdio
->cur_page_offset
+ sdio
->cur_page_len
== offset
&&
805 sdio
->cur_page_block
+
806 (sdio
->cur_page_len
>> sdio
->blkbits
) == blocknr
) {
807 sdio
->cur_page_len
+= len
;
812 * If there's a deferred page already there then send it.
814 if (sdio
->cur_page
) {
815 ret
= dio_send_cur_page(dio
, sdio
, map_bh
);
816 put_page(sdio
->cur_page
);
817 sdio
->cur_page
= NULL
;
822 get_page(page
); /* It is in dio */
823 sdio
->cur_page
= page
;
824 sdio
->cur_page_offset
= offset
;
825 sdio
->cur_page_len
= len
;
826 sdio
->cur_page_block
= blocknr
;
827 sdio
->cur_page_fs_offset
= sdio
->block_in_file
<< sdio
->blkbits
;
830 * If sdio->boundary then we want to schedule the IO now to
831 * avoid metadata seeks.
833 if (sdio
->boundary
) {
834 ret
= dio_send_cur_page(dio
, sdio
, map_bh
);
835 dio_bio_submit(dio
, sdio
);
836 put_page(sdio
->cur_page
);
837 sdio
->cur_page
= NULL
;
843 * Clean any dirty buffers in the blockdev mapping which alias newly-created
844 * file blocks. Only called for S_ISREG files - blockdevs do not set
847 static void clean_blockdev_aliases(struct dio
*dio
, struct buffer_head
*map_bh
)
852 nblocks
= map_bh
->b_size
>> dio
->inode
->i_blkbits
;
854 for (i
= 0; i
< nblocks
; i
++) {
855 unmap_underlying_metadata(map_bh
->b_bdev
,
856 map_bh
->b_blocknr
+ i
);
861 * If we are not writing the entire block and get_block() allocated
862 * the block for us, we need to fill-in the unused portion of the
863 * block with zeros. This happens only if user-buffer, fileoffset or
864 * io length is not filesystem block-size multiple.
866 * `end' is zero if we're doing the start of the IO, 1 at the end of the
869 static inline void dio_zero_block(struct dio
*dio
, struct dio_submit
*sdio
,
870 int end
, struct buffer_head
*map_bh
)
872 unsigned dio_blocks_per_fs_block
;
873 unsigned this_chunk_blocks
; /* In dio_blocks */
874 unsigned this_chunk_bytes
;
877 sdio
->start_zero_done
= 1;
878 if (!sdio
->blkfactor
|| !buffer_new(map_bh
))
881 dio_blocks_per_fs_block
= 1 << sdio
->blkfactor
;
882 this_chunk_blocks
= sdio
->block_in_file
& (dio_blocks_per_fs_block
- 1);
884 if (!this_chunk_blocks
)
888 * We need to zero out part of an fs block. It is either at the
889 * beginning or the end of the fs block.
892 this_chunk_blocks
= dio_blocks_per_fs_block
- this_chunk_blocks
;
894 this_chunk_bytes
= this_chunk_blocks
<< sdio
->blkbits
;
897 if (submit_page_section(dio
, sdio
, page
, 0, this_chunk_bytes
,
898 sdio
->next_block_for_io
, map_bh
))
901 sdio
->next_block_for_io
+= this_chunk_blocks
;
905 * Walk the user pages, and the file, mapping blocks to disk and generating
906 * a sequence of (page,offset,len,block) mappings. These mappings are injected
907 * into submit_page_section(), which takes care of the next stage of submission
909 * Direct IO against a blockdev is different from a file. Because we can
910 * happily perform page-sized but 512-byte aligned IOs. It is important that
911 * blockdev IO be able to have fine alignment and large sizes.
913 * So what we do is to permit the ->get_block function to populate bh.b_size
914 * with the size of IO which is permitted at this offset and this i_blkbits.
916 * For best results, the blockdev should be set up with 512-byte i_blkbits and
917 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
918 * fine alignment but still allows this function to work in PAGE_SIZE units.
920 static int do_direct_IO(struct dio
*dio
, struct dio_submit
*sdio
,
921 struct buffer_head
*map_bh
)
923 const unsigned blkbits
= sdio
->blkbits
;
926 while (sdio
->block_in_file
< sdio
->final_block_in_request
) {
930 page
= dio_get_page(dio
, sdio
);
935 from
= sdio
->head
? 0 : sdio
->from
;
936 to
= (sdio
->head
== sdio
->tail
- 1) ? sdio
->to
: PAGE_SIZE
;
940 unsigned this_chunk_bytes
; /* # of bytes mapped */
941 unsigned this_chunk_blocks
; /* # of blocks */
944 if (sdio
->blocks_available
== 0) {
946 * Need to go and map some more disk
948 unsigned long blkmask
;
949 unsigned long dio_remainder
;
951 ret
= get_more_blocks(dio
, sdio
, map_bh
);
956 if (!buffer_mapped(map_bh
))
959 sdio
->blocks_available
=
960 map_bh
->b_size
>> sdio
->blkbits
;
961 sdio
->next_block_for_io
=
962 map_bh
->b_blocknr
<< sdio
->blkfactor
;
963 if (buffer_new(map_bh
))
964 clean_blockdev_aliases(dio
, map_bh
);
966 if (!sdio
->blkfactor
)
969 blkmask
= (1 << sdio
->blkfactor
) - 1;
970 dio_remainder
= (sdio
->block_in_file
& blkmask
);
973 * If we are at the start of IO and that IO
974 * starts partway into a fs-block,
975 * dio_remainder will be non-zero. If the IO
976 * is a read then we can simply advance the IO
977 * cursor to the first block which is to be
978 * read. But if the IO is a write and the
979 * block was newly allocated we cannot do that;
980 * the start of the fs block must be zeroed out
983 if (!buffer_new(map_bh
))
984 sdio
->next_block_for_io
+= dio_remainder
;
985 sdio
->blocks_available
-= dio_remainder
;
989 if (!buffer_mapped(map_bh
)) {
990 loff_t i_size_aligned
;
992 /* AKPM: eargh, -ENOTBLK is a hack */
993 if (dio
->op
== REQ_OP_WRITE
) {
999 * Be sure to account for a partial block as the
1000 * last block in the file
1002 i_size_aligned
= ALIGN(i_size_read(dio
->inode
),
1004 if (sdio
->block_in_file
>=
1005 i_size_aligned
>> blkbits
) {
1010 zero_user(page
, from
, 1 << blkbits
);
1011 sdio
->block_in_file
++;
1012 from
+= 1 << blkbits
;
1013 dio
->result
+= 1 << blkbits
;
1018 * If we're performing IO which has an alignment which
1019 * is finer than the underlying fs, go check to see if
1020 * we must zero out the start of this block.
1022 if (unlikely(sdio
->blkfactor
&& !sdio
->start_zero_done
))
1023 dio_zero_block(dio
, sdio
, 0, map_bh
);
1026 * Work out, in this_chunk_blocks, how much disk we
1027 * can add to this page
1029 this_chunk_blocks
= sdio
->blocks_available
;
1030 u
= (to
- from
) >> blkbits
;
1031 if (this_chunk_blocks
> u
)
1032 this_chunk_blocks
= u
;
1033 u
= sdio
->final_block_in_request
- sdio
->block_in_file
;
1034 if (this_chunk_blocks
> u
)
1035 this_chunk_blocks
= u
;
1036 this_chunk_bytes
= this_chunk_blocks
<< blkbits
;
1037 BUG_ON(this_chunk_bytes
== 0);
1039 if (this_chunk_blocks
== sdio
->blocks_available
)
1040 sdio
->boundary
= buffer_boundary(map_bh
);
1041 ret
= submit_page_section(dio
, sdio
, page
,
1044 sdio
->next_block_for_io
,
1050 sdio
->next_block_for_io
+= this_chunk_blocks
;
1052 sdio
->block_in_file
+= this_chunk_blocks
;
1053 from
+= this_chunk_bytes
;
1054 dio
->result
+= this_chunk_bytes
;
1055 sdio
->blocks_available
-= this_chunk_blocks
;
1057 BUG_ON(sdio
->block_in_file
> sdio
->final_block_in_request
);
1058 if (sdio
->block_in_file
== sdio
->final_block_in_request
)
1062 /* Drop the ref which was taken in get_user_pages() */
1069 static inline int drop_refcount(struct dio
*dio
)
1072 unsigned long flags
;
1075 * Sync will always be dropping the final ref and completing the
1076 * operation. AIO can if it was a broken operation described above or
1077 * in fact if all the bios race to complete before we get here. In
1078 * that case dio_complete() translates the EIOCBQUEUED into the proper
1079 * return code that the caller will hand to ->complete().
1081 * This is managed by the bio_lock instead of being an atomic_t so that
1082 * completion paths can drop their ref and use the remaining count to
1083 * decide to wake the submission path atomically.
1085 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1086 ret2
= --dio
->refcount
;
1087 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1092 * This is a library function for use by filesystem drivers.
1094 * The locking rules are governed by the flags parameter:
1095 * - if the flags value contains DIO_LOCKING we use a fancy locking
1096 * scheme for dumb filesystems.
1097 * For writes this function is called under i_mutex and returns with
1098 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1099 * taken and dropped again before returning.
1100 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1101 * internal locking but rather rely on the filesystem to synchronize
1102 * direct I/O reads/writes versus each other and truncate.
1104 * To help with locking against truncate we incremented the i_dio_count
1105 * counter before starting direct I/O, and decrement it once we are done.
1106 * Truncate can wait for it to reach zero to provide exclusion. It is
1107 * expected that filesystem provide exclusion between new direct I/O
1108 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1109 * but other filesystems need to take care of this on their own.
1111 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1112 * is always inlined. Otherwise gcc is unable to split the structure into
1113 * individual fields and will generate much worse code. This is important
1114 * for the whole file.
1116 static inline ssize_t
1117 do_blockdev_direct_IO(struct kiocb
*iocb
, struct inode
*inode
,
1118 struct block_device
*bdev
, struct iov_iter
*iter
,
1119 get_block_t get_block
, dio_iodone_t end_io
,
1120 dio_submit_t submit_io
, int flags
)
1122 unsigned i_blkbits
= ACCESS_ONCE(inode
->i_blkbits
);
1123 unsigned blkbits
= i_blkbits
;
1124 unsigned blocksize_mask
= (1 << blkbits
) - 1;
1125 ssize_t retval
= -EINVAL
;
1126 size_t count
= iov_iter_count(iter
);
1127 loff_t offset
= iocb
->ki_pos
;
1128 loff_t end
= offset
+ count
;
1130 struct dio_submit sdio
= { 0, };
1131 struct buffer_head map_bh
= { 0, };
1132 struct blk_plug plug
;
1133 unsigned long align
= offset
| iov_iter_alignment(iter
);
1136 * Avoid references to bdev if not absolutely needed to give
1137 * the early prefetch in the caller enough time.
1140 if (align
& blocksize_mask
) {
1142 blkbits
= blksize_bits(bdev_logical_block_size(bdev
));
1143 blocksize_mask
= (1 << blkbits
) - 1;
1144 if (align
& blocksize_mask
)
1148 /* watch out for a 0 len io from a tricksy fs */
1149 if (iov_iter_rw(iter
) == READ
&& !iov_iter_count(iter
))
1152 dio
= kmem_cache_alloc(dio_cache
, GFP_KERNEL
);
1157 * Believe it or not, zeroing out the page array caused a .5%
1158 * performance regression in a database benchmark. So, we take
1159 * care to only zero out what's needed.
1161 memset(dio
, 0, offsetof(struct dio
, pages
));
1164 if (dio
->flags
& DIO_LOCKING
) {
1165 if (iov_iter_rw(iter
) == READ
) {
1166 struct address_space
*mapping
=
1167 iocb
->ki_filp
->f_mapping
;
1169 /* will be released by direct_io_worker */
1172 retval
= filemap_write_and_wait_range(mapping
, offset
,
1175 inode_unlock(inode
);
1176 kmem_cache_free(dio_cache
, dio
);
1182 /* Once we sampled i_size check for reads beyond EOF */
1183 dio
->i_size
= i_size_read(inode
);
1184 if (iov_iter_rw(iter
) == READ
&& offset
>= dio
->i_size
) {
1185 if (dio
->flags
& DIO_LOCKING
)
1186 inode_unlock(inode
);
1187 kmem_cache_free(dio_cache
, dio
);
1193 * For file extending writes updating i_size before data writeouts
1194 * complete can expose uninitialized blocks in dumb filesystems.
1195 * In that case we need to wait for I/O completion even if asked
1196 * for an asynchronous write.
1198 if (is_sync_kiocb(iocb
))
1199 dio
->is_async
= false;
1200 else if (!(dio
->flags
& DIO_ASYNC_EXTEND
) &&
1201 iov_iter_rw(iter
) == WRITE
&& end
> i_size_read(inode
))
1202 dio
->is_async
= false;
1204 dio
->is_async
= true;
1207 if (iov_iter_rw(iter
) == WRITE
) {
1208 dio
->op
= REQ_OP_WRITE
;
1209 dio
->op_flags
= WRITE_ODIRECT
;
1211 dio
->op
= REQ_OP_READ
;
1215 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1216 * so that we can call ->fsync.
1218 if (dio
->is_async
&& iov_iter_rw(iter
) == WRITE
&&
1219 ((iocb
->ki_filp
->f_flags
& O_DSYNC
) ||
1220 IS_SYNC(iocb
->ki_filp
->f_mapping
->host
))) {
1221 retval
= dio_set_defer_completion(dio
);
1224 * We grab i_mutex only for reads so we don't have
1225 * to release it here
1227 kmem_cache_free(dio_cache
, dio
);
1233 * Will be decremented at I/O completion time.
1235 if (!(dio
->flags
& DIO_SKIP_DIO_COUNT
))
1236 inode_dio_begin(inode
);
1239 sdio
.blkbits
= blkbits
;
1240 sdio
.blkfactor
= i_blkbits
- blkbits
;
1241 sdio
.block_in_file
= offset
>> blkbits
;
1243 sdio
.get_block
= get_block
;
1244 dio
->end_io
= end_io
;
1245 sdio
.submit_io
= submit_io
;
1246 sdio
.final_block_in_bio
= -1;
1247 sdio
.next_block_for_io
= -1;
1251 spin_lock_init(&dio
->bio_lock
);
1254 dio
->should_dirty
= (iter
->type
== ITER_IOVEC
);
1256 sdio
.final_block_in_request
=
1257 (offset
+ iov_iter_count(iter
)) >> blkbits
;
1260 * In case of non-aligned buffers, we may need 2 more
1261 * pages since we need to zero out first and last block.
1263 if (unlikely(sdio
.blkfactor
))
1264 sdio
.pages_in_io
= 2;
1266 sdio
.pages_in_io
+= iov_iter_npages(iter
, INT_MAX
);
1268 blk_start_plug(&plug
);
1270 retval
= do_direct_IO(dio
, &sdio
, &map_bh
);
1272 dio_cleanup(dio
, &sdio
);
1274 if (retval
== -ENOTBLK
) {
1276 * The remaining part of the request will be
1277 * be handled by buffered I/O when we return
1282 * There may be some unwritten disk at the end of a part-written
1283 * fs-block-sized block. Go zero that now.
1285 dio_zero_block(dio
, &sdio
, 1, &map_bh
);
1287 if (sdio
.cur_page
) {
1290 ret2
= dio_send_cur_page(dio
, &sdio
, &map_bh
);
1293 put_page(sdio
.cur_page
);
1294 sdio
.cur_page
= NULL
;
1297 dio_bio_submit(dio
, &sdio
);
1299 blk_finish_plug(&plug
);
1302 * It is possible that, we return short IO due to end of file.
1303 * In that case, we need to release all the pages we got hold on.
1305 dio_cleanup(dio
, &sdio
);
1308 * All block lookups have been performed. For READ requests
1309 * we can let i_mutex go now that its achieved its purpose
1310 * of protecting us from looking up uninitialized blocks.
1312 if (iov_iter_rw(iter
) == READ
&& (dio
->flags
& DIO_LOCKING
))
1313 inode_unlock(dio
->inode
);
1316 * The only time we want to leave bios in flight is when a successful
1317 * partial aio read or full aio write have been setup. In that case
1318 * bio completion will call aio_complete. The only time it's safe to
1319 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1320 * This had *better* be the only place that raises -EIOCBQUEUED.
1322 BUG_ON(retval
== -EIOCBQUEUED
);
1323 if (dio
->is_async
&& retval
== 0 && dio
->result
&&
1324 (iov_iter_rw(iter
) == READ
|| dio
->result
== count
))
1325 retval
= -EIOCBQUEUED
;
1327 dio_await_completion(dio
);
1329 if (drop_refcount(dio
) == 0) {
1330 retval
= dio_complete(dio
, retval
, false);
1332 BUG_ON(retval
!= -EIOCBQUEUED
);
1338 ssize_t
__blockdev_direct_IO(struct kiocb
*iocb
, struct inode
*inode
,
1339 struct block_device
*bdev
, struct iov_iter
*iter
,
1340 get_block_t get_block
,
1341 dio_iodone_t end_io
, dio_submit_t submit_io
,
1345 * The block device state is needed in the end to finally
1346 * submit everything. Since it's likely to be cache cold
1347 * prefetch it here as first thing to hide some of the
1350 * Attempt to prefetch the pieces we likely need later.
1352 prefetch(&bdev
->bd_disk
->part_tbl
);
1353 prefetch(bdev
->bd_queue
);
1354 prefetch((char *)bdev
->bd_queue
+ SMP_CACHE_BYTES
);
1356 return do_blockdev_direct_IO(iocb
, inode
, bdev
, iter
, get_block
,
1357 end_io
, submit_io
, flags
);
1360 EXPORT_SYMBOL(__blockdev_direct_IO
);
1362 static __init
int dio_init(void)
1364 dio_cache
= KMEM_CACHE(dio
, SLAB_PANIC
);
1367 module_init(dio_init
)