2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
26 #include "print-tree.h"
29 #include "compression.h"
31 /* magic values for the inode_only field in btrfs_log_inode:
33 * LOG_INODE_ALL means to log everything
34 * LOG_INODE_EXISTS means to log just enough to recreate the inode
37 #define LOG_INODE_ALL 0
38 #define LOG_INODE_EXISTS 1
41 * directory trouble cases
43 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
44 * log, we must force a full commit before doing an fsync of the directory
45 * where the unlink was done.
46 * ---> record transid of last unlink/rename per directory
50 * rename foo/some_dir foo2/some_dir
52 * fsync foo/some_dir/some_file
54 * The fsync above will unlink the original some_dir without recording
55 * it in its new location (foo2). After a crash, some_dir will be gone
56 * unless the fsync of some_file forces a full commit
58 * 2) we must log any new names for any file or dir that is in the fsync
59 * log. ---> check inode while renaming/linking.
61 * 2a) we must log any new names for any file or dir during rename
62 * when the directory they are being removed from was logged.
63 * ---> check inode and old parent dir during rename
65 * 2a is actually the more important variant. With the extra logging
66 * a crash might unlink the old name without recreating the new one
68 * 3) after a crash, we must go through any directories with a link count
69 * of zero and redo the rm -rf
76 * The directory f1 was fully removed from the FS, but fsync was never
77 * called on f1, only its parent dir. After a crash the rm -rf must
78 * be replayed. This must be able to recurse down the entire
79 * directory tree. The inode link count fixup code takes care of the
84 * stages for the tree walking. The first
85 * stage (0) is to only pin down the blocks we find
86 * the second stage (1) is to make sure that all the inodes
87 * we find in the log are created in the subvolume.
89 * The last stage is to deal with directories and links and extents
90 * and all the other fun semantics
92 #define LOG_WALK_PIN_ONLY 0
93 #define LOG_WALK_REPLAY_INODES 1
94 #define LOG_WALK_REPLAY_DIR_INDEX 2
95 #define LOG_WALK_REPLAY_ALL 3
97 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
98 struct btrfs_root
*root
, struct inode
*inode
,
102 struct btrfs_log_ctx
*ctx
);
103 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
104 struct btrfs_root
*root
,
105 struct btrfs_path
*path
, u64 objectid
);
106 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
107 struct btrfs_root
*root
,
108 struct btrfs_root
*log
,
109 struct btrfs_path
*path
,
110 u64 dirid
, int del_all
);
113 * tree logging is a special write ahead log used to make sure that
114 * fsyncs and O_SYNCs can happen without doing full tree commits.
116 * Full tree commits are expensive because they require commonly
117 * modified blocks to be recowed, creating many dirty pages in the
118 * extent tree an 4x-6x higher write load than ext3.
120 * Instead of doing a tree commit on every fsync, we use the
121 * key ranges and transaction ids to find items for a given file or directory
122 * that have changed in this transaction. Those items are copied into
123 * a special tree (one per subvolume root), that tree is written to disk
124 * and then the fsync is considered complete.
126 * After a crash, items are copied out of the log-tree back into the
127 * subvolume tree. Any file data extents found are recorded in the extent
128 * allocation tree, and the log-tree freed.
130 * The log tree is read three times, once to pin down all the extents it is
131 * using in ram and once, once to create all the inodes logged in the tree
132 * and once to do all the other items.
136 * start a sub transaction and setup the log tree
137 * this increments the log tree writer count to make the people
138 * syncing the tree wait for us to finish
140 static int start_log_trans(struct btrfs_trans_handle
*trans
,
141 struct btrfs_root
*root
,
142 struct btrfs_log_ctx
*ctx
)
146 mutex_lock(&root
->log_mutex
);
148 if (root
->log_root
) {
149 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
154 if (!root
->log_start_pid
) {
155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
156 root
->log_start_pid
= current
->pid
;
157 } else if (root
->log_start_pid
!= current
->pid
) {
158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
161 mutex_lock(&root
->fs_info
->tree_log_mutex
);
162 if (!root
->fs_info
->log_root_tree
)
163 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
164 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
168 ret
= btrfs_add_log_tree(trans
, root
);
172 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
173 root
->log_start_pid
= current
->pid
;
176 atomic_inc(&root
->log_batch
);
177 atomic_inc(&root
->log_writers
);
179 int index
= root
->log_transid
% 2;
180 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
181 ctx
->log_transid
= root
->log_transid
;
185 mutex_unlock(&root
->log_mutex
);
190 * returns 0 if there was a log transaction running and we were able
191 * to join, or returns -ENOENT if there were not transactions
194 static int join_running_log_trans(struct btrfs_root
*root
)
202 mutex_lock(&root
->log_mutex
);
203 if (root
->log_root
) {
205 atomic_inc(&root
->log_writers
);
207 mutex_unlock(&root
->log_mutex
);
212 * This either makes the current running log transaction wait
213 * until you call btrfs_end_log_trans() or it makes any future
214 * log transactions wait until you call btrfs_end_log_trans()
216 int btrfs_pin_log_trans(struct btrfs_root
*root
)
220 mutex_lock(&root
->log_mutex
);
221 atomic_inc(&root
->log_writers
);
222 mutex_unlock(&root
->log_mutex
);
227 * indicate we're done making changes to the log tree
228 * and wake up anyone waiting to do a sync
230 void btrfs_end_log_trans(struct btrfs_root
*root
)
232 if (atomic_dec_and_test(&root
->log_writers
)) {
234 * Implicit memory barrier after atomic_dec_and_test
236 if (waitqueue_active(&root
->log_writer_wait
))
237 wake_up(&root
->log_writer_wait
);
243 * the walk control struct is used to pass state down the chain when
244 * processing the log tree. The stage field tells us which part
245 * of the log tree processing we are currently doing. The others
246 * are state fields used for that specific part
248 struct walk_control
{
249 /* should we free the extent on disk when done? This is used
250 * at transaction commit time while freeing a log tree
254 /* should we write out the extent buffer? This is used
255 * while flushing the log tree to disk during a sync
259 /* should we wait for the extent buffer io to finish? Also used
260 * while flushing the log tree to disk for a sync
264 /* pin only walk, we record which extents on disk belong to the
269 /* what stage of the replay code we're currently in */
272 /* the root we are currently replaying */
273 struct btrfs_root
*replay_dest
;
275 /* the trans handle for the current replay */
276 struct btrfs_trans_handle
*trans
;
278 /* the function that gets used to process blocks we find in the
279 * tree. Note the extent_buffer might not be up to date when it is
280 * passed in, and it must be checked or read if you need the data
283 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
284 struct walk_control
*wc
, u64 gen
);
288 * process_func used to pin down extents, write them or wait on them
290 static int process_one_buffer(struct btrfs_root
*log
,
291 struct extent_buffer
*eb
,
292 struct walk_control
*wc
, u64 gen
)
297 * If this fs is mixed then we need to be able to process the leaves to
298 * pin down any logged extents, so we have to read the block.
300 if (btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
)) {
301 ret
= btrfs_read_buffer(eb
, gen
);
307 ret
= btrfs_pin_extent_for_log_replay(log
->fs_info
->extent_root
,
310 if (!ret
&& btrfs_buffer_uptodate(eb
, gen
, 0)) {
311 if (wc
->pin
&& btrfs_header_level(eb
) == 0)
312 ret
= btrfs_exclude_logged_extents(log
, eb
);
314 btrfs_write_tree_block(eb
);
316 btrfs_wait_tree_block_writeback(eb
);
322 * Item overwrite used by replay and tree logging. eb, slot and key all refer
323 * to the src data we are copying out.
325 * root is the tree we are copying into, and path is a scratch
326 * path for use in this function (it should be released on entry and
327 * will be released on exit).
329 * If the key is already in the destination tree the existing item is
330 * overwritten. If the existing item isn't big enough, it is extended.
331 * If it is too large, it is truncated.
333 * If the key isn't in the destination yet, a new item is inserted.
335 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
336 struct btrfs_root
*root
,
337 struct btrfs_path
*path
,
338 struct extent_buffer
*eb
, int slot
,
339 struct btrfs_key
*key
)
343 u64 saved_i_size
= 0;
344 int save_old_i_size
= 0;
345 unsigned long src_ptr
;
346 unsigned long dst_ptr
;
347 int overwrite_root
= 0;
348 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
350 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
353 item_size
= btrfs_item_size_nr(eb
, slot
);
354 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
356 /* look for the key in the destination tree */
357 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
364 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
366 if (dst_size
!= item_size
)
369 if (item_size
== 0) {
370 btrfs_release_path(path
);
373 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
374 src_copy
= kmalloc(item_size
, GFP_NOFS
);
375 if (!dst_copy
|| !src_copy
) {
376 btrfs_release_path(path
);
382 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
384 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
385 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
387 ret
= memcmp(dst_copy
, src_copy
, item_size
);
392 * they have the same contents, just return, this saves
393 * us from cowing blocks in the destination tree and doing
394 * extra writes that may not have been done by a previous
398 btrfs_release_path(path
);
403 * We need to load the old nbytes into the inode so when we
404 * replay the extents we've logged we get the right nbytes.
407 struct btrfs_inode_item
*item
;
411 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
412 struct btrfs_inode_item
);
413 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
414 item
= btrfs_item_ptr(eb
, slot
,
415 struct btrfs_inode_item
);
416 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
419 * If this is a directory we need to reset the i_size to
420 * 0 so that we can set it up properly when replaying
421 * the rest of the items in this log.
423 mode
= btrfs_inode_mode(eb
, item
);
425 btrfs_set_inode_size(eb
, item
, 0);
427 } else if (inode_item
) {
428 struct btrfs_inode_item
*item
;
432 * New inode, set nbytes to 0 so that the nbytes comes out
433 * properly when we replay the extents.
435 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
436 btrfs_set_inode_nbytes(eb
, item
, 0);
439 * If this is a directory we need to reset the i_size to 0 so
440 * that we can set it up properly when replaying the rest of
441 * the items in this log.
443 mode
= btrfs_inode_mode(eb
, item
);
445 btrfs_set_inode_size(eb
, item
, 0);
448 btrfs_release_path(path
);
449 /* try to insert the key into the destination tree */
450 path
->skip_release_on_error
= 1;
451 ret
= btrfs_insert_empty_item(trans
, root
, path
,
453 path
->skip_release_on_error
= 0;
455 /* make sure any existing item is the correct size */
456 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
) {
458 found_size
= btrfs_item_size_nr(path
->nodes
[0],
460 if (found_size
> item_size
)
461 btrfs_truncate_item(root
, path
, item_size
, 1);
462 else if (found_size
< item_size
)
463 btrfs_extend_item(root
, path
,
464 item_size
- found_size
);
468 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
471 /* don't overwrite an existing inode if the generation number
472 * was logged as zero. This is done when the tree logging code
473 * is just logging an inode to make sure it exists after recovery.
475 * Also, don't overwrite i_size on directories during replay.
476 * log replay inserts and removes directory items based on the
477 * state of the tree found in the subvolume, and i_size is modified
480 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
481 struct btrfs_inode_item
*src_item
;
482 struct btrfs_inode_item
*dst_item
;
484 src_item
= (struct btrfs_inode_item
*)src_ptr
;
485 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
487 if (btrfs_inode_generation(eb
, src_item
) == 0) {
488 struct extent_buffer
*dst_eb
= path
->nodes
[0];
489 const u64 ino_size
= btrfs_inode_size(eb
, src_item
);
492 * For regular files an ino_size == 0 is used only when
493 * logging that an inode exists, as part of a directory
494 * fsync, and the inode wasn't fsynced before. In this
495 * case don't set the size of the inode in the fs/subvol
496 * tree, otherwise we would be throwing valid data away.
498 if (S_ISREG(btrfs_inode_mode(eb
, src_item
)) &&
499 S_ISREG(btrfs_inode_mode(dst_eb
, dst_item
)) &&
501 struct btrfs_map_token token
;
503 btrfs_init_map_token(&token
);
504 btrfs_set_token_inode_size(dst_eb
, dst_item
,
510 if (overwrite_root
&&
511 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
512 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
514 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
519 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
522 if (save_old_i_size
) {
523 struct btrfs_inode_item
*dst_item
;
524 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
525 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
528 /* make sure the generation is filled in */
529 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
530 struct btrfs_inode_item
*dst_item
;
531 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
532 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
533 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
538 btrfs_mark_buffer_dirty(path
->nodes
[0]);
539 btrfs_release_path(path
);
544 * simple helper to read an inode off the disk from a given root
545 * This can only be called for subvolume roots and not for the log
547 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
550 struct btrfs_key key
;
553 key
.objectid
= objectid
;
554 key
.type
= BTRFS_INODE_ITEM_KEY
;
556 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
559 } else if (is_bad_inode(inode
)) {
566 /* replays a single extent in 'eb' at 'slot' with 'key' into the
567 * subvolume 'root'. path is released on entry and should be released
570 * extents in the log tree have not been allocated out of the extent
571 * tree yet. So, this completes the allocation, taking a reference
572 * as required if the extent already exists or creating a new extent
573 * if it isn't in the extent allocation tree yet.
575 * The extent is inserted into the file, dropping any existing extents
576 * from the file that overlap the new one.
578 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
579 struct btrfs_root
*root
,
580 struct btrfs_path
*path
,
581 struct extent_buffer
*eb
, int slot
,
582 struct btrfs_key
*key
)
586 u64 start
= key
->offset
;
588 struct btrfs_file_extent_item
*item
;
589 struct inode
*inode
= NULL
;
593 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
594 found_type
= btrfs_file_extent_type(eb
, item
);
596 if (found_type
== BTRFS_FILE_EXTENT_REG
||
597 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
598 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
599 extent_end
= start
+ nbytes
;
602 * We don't add to the inodes nbytes if we are prealloc or a
605 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
607 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
608 size
= btrfs_file_extent_inline_len(eb
, slot
, item
);
609 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
610 extent_end
= ALIGN(start
+ size
, root
->sectorsize
);
616 inode
= read_one_inode(root
, key
->objectid
);
623 * first check to see if we already have this extent in the
624 * file. This must be done before the btrfs_drop_extents run
625 * so we don't try to drop this extent.
627 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
631 (found_type
== BTRFS_FILE_EXTENT_REG
||
632 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
633 struct btrfs_file_extent_item cmp1
;
634 struct btrfs_file_extent_item cmp2
;
635 struct btrfs_file_extent_item
*existing
;
636 struct extent_buffer
*leaf
;
638 leaf
= path
->nodes
[0];
639 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
640 struct btrfs_file_extent_item
);
642 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
644 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
648 * we already have a pointer to this exact extent,
649 * we don't have to do anything
651 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
652 btrfs_release_path(path
);
656 btrfs_release_path(path
);
658 /* drop any overlapping extents */
659 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, extent_end
, 1);
663 if (found_type
== BTRFS_FILE_EXTENT_REG
||
664 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
666 unsigned long dest_offset
;
667 struct btrfs_key ins
;
669 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
673 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
675 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
676 (unsigned long)item
, sizeof(*item
));
678 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
679 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
680 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
681 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
683 if (ins
.objectid
> 0) {
686 LIST_HEAD(ordered_sums
);
688 * is this extent already allocated in the extent
689 * allocation tree? If so, just add a reference
691 ret
= btrfs_lookup_data_extent(root
, ins
.objectid
,
694 ret
= btrfs_inc_extent_ref(trans
, root
,
695 ins
.objectid
, ins
.offset
,
696 0, root
->root_key
.objectid
,
697 key
->objectid
, offset
);
702 * insert the extent pointer in the extent
705 ret
= btrfs_alloc_logged_file_extent(trans
,
706 root
, root
->root_key
.objectid
,
707 key
->objectid
, offset
, &ins
);
711 btrfs_release_path(path
);
713 if (btrfs_file_extent_compression(eb
, item
)) {
714 csum_start
= ins
.objectid
;
715 csum_end
= csum_start
+ ins
.offset
;
717 csum_start
= ins
.objectid
+
718 btrfs_file_extent_offset(eb
, item
);
719 csum_end
= csum_start
+
720 btrfs_file_extent_num_bytes(eb
, item
);
723 ret
= btrfs_lookup_csums_range(root
->log_root
,
724 csum_start
, csum_end
- 1,
729 * Now delete all existing cums in the csum root that
730 * cover our range. We do this because we can have an
731 * extent that is completely referenced by one file
732 * extent item and partially referenced by another
733 * file extent item (like after using the clone or
734 * extent_same ioctls). In this case if we end up doing
735 * the replay of the one that partially references the
736 * extent first, and we do not do the csum deletion
737 * below, we can get 2 csum items in the csum tree that
738 * overlap each other. For example, imagine our log has
739 * the two following file extent items:
741 * key (257 EXTENT_DATA 409600)
742 * extent data disk byte 12845056 nr 102400
743 * extent data offset 20480 nr 20480 ram 102400
745 * key (257 EXTENT_DATA 819200)
746 * extent data disk byte 12845056 nr 102400
747 * extent data offset 0 nr 102400 ram 102400
749 * Where the second one fully references the 100K extent
750 * that starts at disk byte 12845056, and the log tree
751 * has a single csum item that covers the entire range
754 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
756 * After the first file extent item is replayed, the
757 * csum tree gets the following csum item:
759 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
761 * Which covers the 20K sub-range starting at offset 20K
762 * of our extent. Now when we replay the second file
763 * extent item, if we do not delete existing csum items
764 * that cover any of its blocks, we end up getting two
765 * csum items in our csum tree that overlap each other:
767 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
768 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
770 * Which is a problem, because after this anyone trying
771 * to lookup up for the checksum of any block of our
772 * extent starting at an offset of 40K or higher, will
773 * end up looking at the second csum item only, which
774 * does not contain the checksum for any block starting
775 * at offset 40K or higher of our extent.
777 while (!list_empty(&ordered_sums
)) {
778 struct btrfs_ordered_sum
*sums
;
779 sums
= list_entry(ordered_sums
.next
,
780 struct btrfs_ordered_sum
,
783 ret
= btrfs_del_csums(trans
,
784 root
->fs_info
->csum_root
,
788 ret
= btrfs_csum_file_blocks(trans
,
789 root
->fs_info
->csum_root
,
791 list_del(&sums
->list
);
797 btrfs_release_path(path
);
799 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
800 /* inline extents are easy, we just overwrite them */
801 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
806 inode_add_bytes(inode
, nbytes
);
807 ret
= btrfs_update_inode(trans
, root
, inode
);
815 * when cleaning up conflicts between the directory names in the
816 * subvolume, directory names in the log and directory names in the
817 * inode back references, we may have to unlink inodes from directories.
819 * This is a helper function to do the unlink of a specific directory
822 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
823 struct btrfs_root
*root
,
824 struct btrfs_path
*path
,
826 struct btrfs_dir_item
*di
)
831 struct extent_buffer
*leaf
;
832 struct btrfs_key location
;
835 leaf
= path
->nodes
[0];
837 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
838 name_len
= btrfs_dir_name_len(leaf
, di
);
839 name
= kmalloc(name_len
, GFP_NOFS
);
843 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
844 btrfs_release_path(path
);
846 inode
= read_one_inode(root
, location
.objectid
);
852 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
856 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
860 ret
= btrfs_run_delayed_items(trans
, root
);
868 * helper function to see if a given name and sequence number found
869 * in an inode back reference are already in a directory and correctly
870 * point to this inode
872 static noinline
int inode_in_dir(struct btrfs_root
*root
,
873 struct btrfs_path
*path
,
874 u64 dirid
, u64 objectid
, u64 index
,
875 const char *name
, int name_len
)
877 struct btrfs_dir_item
*di
;
878 struct btrfs_key location
;
881 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
882 index
, name
, name_len
, 0);
883 if (di
&& !IS_ERR(di
)) {
884 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
885 if (location
.objectid
!= objectid
)
889 btrfs_release_path(path
);
891 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
892 if (di
&& !IS_ERR(di
)) {
893 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
894 if (location
.objectid
!= objectid
)
900 btrfs_release_path(path
);
905 * helper function to check a log tree for a named back reference in
906 * an inode. This is used to decide if a back reference that is
907 * found in the subvolume conflicts with what we find in the log.
909 * inode backreferences may have multiple refs in a single item,
910 * during replay we process one reference at a time, and we don't
911 * want to delete valid links to a file from the subvolume if that
912 * link is also in the log.
914 static noinline
int backref_in_log(struct btrfs_root
*log
,
915 struct btrfs_key
*key
,
917 const char *name
, int namelen
)
919 struct btrfs_path
*path
;
920 struct btrfs_inode_ref
*ref
;
922 unsigned long ptr_end
;
923 unsigned long name_ptr
;
929 path
= btrfs_alloc_path();
933 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
937 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
939 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
940 if (btrfs_find_name_in_ext_backref(path
, ref_objectid
,
941 name
, namelen
, NULL
))
947 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
948 ptr_end
= ptr
+ item_size
;
949 while (ptr
< ptr_end
) {
950 ref
= (struct btrfs_inode_ref
*)ptr
;
951 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
952 if (found_name_len
== namelen
) {
953 name_ptr
= (unsigned long)(ref
+ 1);
954 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
961 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
964 btrfs_free_path(path
);
968 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
969 struct btrfs_root
*root
,
970 struct btrfs_path
*path
,
971 struct btrfs_root
*log_root
,
972 struct inode
*dir
, struct inode
*inode
,
973 struct extent_buffer
*eb
,
974 u64 inode_objectid
, u64 parent_objectid
,
975 u64 ref_index
, char *name
, int namelen
,
981 struct extent_buffer
*leaf
;
982 struct btrfs_dir_item
*di
;
983 struct btrfs_key search_key
;
984 struct btrfs_inode_extref
*extref
;
987 /* Search old style refs */
988 search_key
.objectid
= inode_objectid
;
989 search_key
.type
= BTRFS_INODE_REF_KEY
;
990 search_key
.offset
= parent_objectid
;
991 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
993 struct btrfs_inode_ref
*victim_ref
;
995 unsigned long ptr_end
;
997 leaf
= path
->nodes
[0];
999 /* are we trying to overwrite a back ref for the root directory
1000 * if so, just jump out, we're done
1002 if (search_key
.objectid
== search_key
.offset
)
1005 /* check all the names in this back reference to see
1006 * if they are in the log. if so, we allow them to stay
1007 * otherwise they must be unlinked as a conflict
1009 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1010 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1011 while (ptr
< ptr_end
) {
1012 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
1013 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
1015 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1019 read_extent_buffer(leaf
, victim_name
,
1020 (unsigned long)(victim_ref
+ 1),
1023 if (!backref_in_log(log_root
, &search_key
,
1028 btrfs_release_path(path
);
1030 ret
= btrfs_unlink_inode(trans
, root
, dir
,
1036 ret
= btrfs_run_delayed_items(trans
, root
);
1044 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
1048 * NOTE: we have searched root tree and checked the
1049 * corresponding ref, it does not need to check again.
1053 btrfs_release_path(path
);
1055 /* Same search but for extended refs */
1056 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
, namelen
,
1057 inode_objectid
, parent_objectid
, 0,
1059 if (!IS_ERR_OR_NULL(extref
)) {
1063 struct inode
*victim_parent
;
1065 leaf
= path
->nodes
[0];
1067 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1068 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1070 while (cur_offset
< item_size
) {
1071 extref
= (struct btrfs_inode_extref
*)(base
+ cur_offset
);
1073 victim_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1075 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
1078 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1081 read_extent_buffer(leaf
, victim_name
, (unsigned long)&extref
->name
,
1084 search_key
.objectid
= inode_objectid
;
1085 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1086 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
1090 if (!backref_in_log(log_root
, &search_key
,
1091 parent_objectid
, victim_name
,
1094 victim_parent
= read_one_inode(root
,
1096 if (victim_parent
) {
1098 btrfs_release_path(path
);
1100 ret
= btrfs_unlink_inode(trans
, root
,
1106 ret
= btrfs_run_delayed_items(
1109 iput(victim_parent
);
1120 cur_offset
+= victim_name_len
+ sizeof(*extref
);
1124 btrfs_release_path(path
);
1126 /* look for a conflicting sequence number */
1127 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1128 ref_index
, name
, namelen
, 0);
1129 if (di
&& !IS_ERR(di
)) {
1130 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1134 btrfs_release_path(path
);
1136 /* look for a conflicing name */
1137 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
1139 if (di
&& !IS_ERR(di
)) {
1140 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1144 btrfs_release_path(path
);
1149 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1150 u32
*namelen
, char **name
, u64
*index
,
1151 u64
*parent_objectid
)
1153 struct btrfs_inode_extref
*extref
;
1155 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1157 *namelen
= btrfs_inode_extref_name_len(eb
, extref
);
1158 *name
= kmalloc(*namelen
, GFP_NOFS
);
1162 read_extent_buffer(eb
, *name
, (unsigned long)&extref
->name
,
1165 *index
= btrfs_inode_extref_index(eb
, extref
);
1166 if (parent_objectid
)
1167 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1172 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1173 u32
*namelen
, char **name
, u64
*index
)
1175 struct btrfs_inode_ref
*ref
;
1177 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1179 *namelen
= btrfs_inode_ref_name_len(eb
, ref
);
1180 *name
= kmalloc(*namelen
, GFP_NOFS
);
1184 read_extent_buffer(eb
, *name
, (unsigned long)(ref
+ 1), *namelen
);
1186 *index
= btrfs_inode_ref_index(eb
, ref
);
1192 * replay one inode back reference item found in the log tree.
1193 * eb, slot and key refer to the buffer and key found in the log tree.
1194 * root is the destination we are replaying into, and path is for temp
1195 * use by this function. (it should be released on return).
1197 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1198 struct btrfs_root
*root
,
1199 struct btrfs_root
*log
,
1200 struct btrfs_path
*path
,
1201 struct extent_buffer
*eb
, int slot
,
1202 struct btrfs_key
*key
)
1204 struct inode
*dir
= NULL
;
1205 struct inode
*inode
= NULL
;
1206 unsigned long ref_ptr
;
1207 unsigned long ref_end
;
1211 int search_done
= 0;
1212 int log_ref_ver
= 0;
1213 u64 parent_objectid
;
1216 int ref_struct_size
;
1218 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1219 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
1221 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1222 struct btrfs_inode_extref
*r
;
1224 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1226 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1227 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1229 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1230 parent_objectid
= key
->offset
;
1232 inode_objectid
= key
->objectid
;
1235 * it is possible that we didn't log all the parent directories
1236 * for a given inode. If we don't find the dir, just don't
1237 * copy the back ref in. The link count fixup code will take
1240 dir
= read_one_inode(root
, parent_objectid
);
1246 inode
= read_one_inode(root
, inode_objectid
);
1252 while (ref_ptr
< ref_end
) {
1254 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1255 &ref_index
, &parent_objectid
);
1257 * parent object can change from one array
1261 dir
= read_one_inode(root
, parent_objectid
);
1267 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1273 /* if we already have a perfect match, we're done */
1274 if (!inode_in_dir(root
, path
, btrfs_ino(dir
), btrfs_ino(inode
),
1275 ref_index
, name
, namelen
)) {
1277 * look for a conflicting back reference in the
1278 * metadata. if we find one we have to unlink that name
1279 * of the file before we add our new link. Later on, we
1280 * overwrite any existing back reference, and we don't
1281 * want to create dangling pointers in the directory.
1285 ret
= __add_inode_ref(trans
, root
, path
, log
,
1289 ref_index
, name
, namelen
,
1298 /* insert our name */
1299 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
,
1304 btrfs_update_inode(trans
, root
, inode
);
1307 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + namelen
;
1316 /* finally write the back reference in the inode */
1317 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1319 btrfs_release_path(path
);
1326 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
1327 struct btrfs_root
*root
, u64 ino
)
1331 ret
= btrfs_insert_orphan_item(trans
, root
, ino
);
1338 static int count_inode_extrefs(struct btrfs_root
*root
,
1339 struct inode
*inode
, struct btrfs_path
*path
)
1343 unsigned int nlink
= 0;
1346 u64 inode_objectid
= btrfs_ino(inode
);
1349 struct btrfs_inode_extref
*extref
;
1350 struct extent_buffer
*leaf
;
1353 ret
= btrfs_find_one_extref(root
, inode_objectid
, offset
, path
,
1358 leaf
= path
->nodes
[0];
1359 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1360 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1363 while (cur_offset
< item_size
) {
1364 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1365 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1369 cur_offset
+= name_len
+ sizeof(*extref
);
1373 btrfs_release_path(path
);
1375 btrfs_release_path(path
);
1377 if (ret
< 0 && ret
!= -ENOENT
)
1382 static int count_inode_refs(struct btrfs_root
*root
,
1383 struct inode
*inode
, struct btrfs_path
*path
)
1386 struct btrfs_key key
;
1387 unsigned int nlink
= 0;
1389 unsigned long ptr_end
;
1391 u64 ino
= btrfs_ino(inode
);
1394 key
.type
= BTRFS_INODE_REF_KEY
;
1395 key
.offset
= (u64
)-1;
1398 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1402 if (path
->slots
[0] == 0)
1407 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1409 if (key
.objectid
!= ino
||
1410 key
.type
!= BTRFS_INODE_REF_KEY
)
1412 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1413 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1415 while (ptr
< ptr_end
) {
1416 struct btrfs_inode_ref
*ref
;
1418 ref
= (struct btrfs_inode_ref
*)ptr
;
1419 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1421 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1425 if (key
.offset
== 0)
1427 if (path
->slots
[0] > 0) {
1432 btrfs_release_path(path
);
1434 btrfs_release_path(path
);
1440 * There are a few corners where the link count of the file can't
1441 * be properly maintained during replay. So, instead of adding
1442 * lots of complexity to the log code, we just scan the backrefs
1443 * for any file that has been through replay.
1445 * The scan will update the link count on the inode to reflect the
1446 * number of back refs found. If it goes down to zero, the iput
1447 * will free the inode.
1449 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1450 struct btrfs_root
*root
,
1451 struct inode
*inode
)
1453 struct btrfs_path
*path
;
1456 u64 ino
= btrfs_ino(inode
);
1458 path
= btrfs_alloc_path();
1462 ret
= count_inode_refs(root
, inode
, path
);
1468 ret
= count_inode_extrefs(root
, inode
, path
);
1476 if (nlink
!= inode
->i_nlink
) {
1477 set_nlink(inode
, nlink
);
1478 btrfs_update_inode(trans
, root
, inode
);
1480 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1482 if (inode
->i_nlink
== 0) {
1483 if (S_ISDIR(inode
->i_mode
)) {
1484 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1489 ret
= insert_orphan_item(trans
, root
, ino
);
1493 btrfs_free_path(path
);
1497 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1498 struct btrfs_root
*root
,
1499 struct btrfs_path
*path
)
1502 struct btrfs_key key
;
1503 struct inode
*inode
;
1505 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1506 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1507 key
.offset
= (u64
)-1;
1509 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1514 if (path
->slots
[0] == 0)
1519 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1520 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1521 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1524 ret
= btrfs_del_item(trans
, root
, path
);
1528 btrfs_release_path(path
);
1529 inode
= read_one_inode(root
, key
.offset
);
1533 ret
= fixup_inode_link_count(trans
, root
, inode
);
1539 * fixup on a directory may create new entries,
1540 * make sure we always look for the highset possible
1543 key
.offset
= (u64
)-1;
1547 btrfs_release_path(path
);
1553 * record a given inode in the fixup dir so we can check its link
1554 * count when replay is done. The link count is incremented here
1555 * so the inode won't go away until we check it
1557 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1558 struct btrfs_root
*root
,
1559 struct btrfs_path
*path
,
1562 struct btrfs_key key
;
1564 struct inode
*inode
;
1566 inode
= read_one_inode(root
, objectid
);
1570 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1571 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1572 key
.offset
= objectid
;
1574 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1576 btrfs_release_path(path
);
1578 if (!inode
->i_nlink
)
1579 set_nlink(inode
, 1);
1582 ret
= btrfs_update_inode(trans
, root
, inode
);
1583 } else if (ret
== -EEXIST
) {
1586 BUG(); /* Logic Error */
1594 * when replaying the log for a directory, we only insert names
1595 * for inodes that actually exist. This means an fsync on a directory
1596 * does not implicitly fsync all the new files in it
1598 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1599 struct btrfs_root
*root
,
1600 u64 dirid
, u64 index
,
1601 char *name
, int name_len
,
1602 struct btrfs_key
*location
)
1604 struct inode
*inode
;
1608 inode
= read_one_inode(root
, location
->objectid
);
1612 dir
= read_one_inode(root
, dirid
);
1618 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1620 /* FIXME, put inode into FIXUP list */
1628 * Return true if an inode reference exists in the log for the given name,
1629 * inode and parent inode.
1631 static bool name_in_log_ref(struct btrfs_root
*log_root
,
1632 const char *name
, const int name_len
,
1633 const u64 dirid
, const u64 ino
)
1635 struct btrfs_key search_key
;
1637 search_key
.objectid
= ino
;
1638 search_key
.type
= BTRFS_INODE_REF_KEY
;
1639 search_key
.offset
= dirid
;
1640 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1643 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1644 search_key
.offset
= btrfs_extref_hash(dirid
, name
, name_len
);
1645 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1652 * take a single entry in a log directory item and replay it into
1655 * if a conflicting item exists in the subdirectory already,
1656 * the inode it points to is unlinked and put into the link count
1659 * If a name from the log points to a file or directory that does
1660 * not exist in the FS, it is skipped. fsyncs on directories
1661 * do not force down inodes inside that directory, just changes to the
1662 * names or unlinks in a directory.
1664 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1665 * non-existing inode) and 1 if the name was replayed.
1667 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1668 struct btrfs_root
*root
,
1669 struct btrfs_path
*path
,
1670 struct extent_buffer
*eb
,
1671 struct btrfs_dir_item
*di
,
1672 struct btrfs_key
*key
)
1676 struct btrfs_dir_item
*dst_di
;
1677 struct btrfs_key found_key
;
1678 struct btrfs_key log_key
;
1683 bool update_size
= (key
->type
== BTRFS_DIR_INDEX_KEY
);
1684 bool name_added
= false;
1686 dir
= read_one_inode(root
, key
->objectid
);
1690 name_len
= btrfs_dir_name_len(eb
, di
);
1691 name
= kmalloc(name_len
, GFP_NOFS
);
1697 log_type
= btrfs_dir_type(eb
, di
);
1698 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1701 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1702 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1707 btrfs_release_path(path
);
1709 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1710 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1712 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1713 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1722 if (IS_ERR_OR_NULL(dst_di
)) {
1723 /* we need a sequence number to insert, so we only
1724 * do inserts for the BTRFS_DIR_INDEX_KEY types
1726 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1731 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1732 /* the existing item matches the logged item */
1733 if (found_key
.objectid
== log_key
.objectid
&&
1734 found_key
.type
== log_key
.type
&&
1735 found_key
.offset
== log_key
.offset
&&
1736 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1737 update_size
= false;
1742 * don't drop the conflicting directory entry if the inode
1743 * for the new entry doesn't exist
1748 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1752 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1755 btrfs_release_path(path
);
1756 if (!ret
&& update_size
) {
1757 btrfs_i_size_write(dir
, dir
->i_size
+ name_len
* 2);
1758 ret
= btrfs_update_inode(trans
, root
, dir
);
1762 if (!ret
&& name_added
)
1767 if (name_in_log_ref(root
->log_root
, name
, name_len
,
1768 key
->objectid
, log_key
.objectid
)) {
1769 /* The dentry will be added later. */
1771 update_size
= false;
1774 btrfs_release_path(path
);
1775 ret
= insert_one_name(trans
, root
, key
->objectid
, key
->offset
,
1776 name
, name_len
, &log_key
);
1777 if (ret
&& ret
!= -ENOENT
&& ret
!= -EEXIST
)
1781 update_size
= false;
1787 * find all the names in a directory item and reconcile them into
1788 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1789 * one name in a directory item, but the same code gets used for
1790 * both directory index types
1792 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1793 struct btrfs_root
*root
,
1794 struct btrfs_path
*path
,
1795 struct extent_buffer
*eb
, int slot
,
1796 struct btrfs_key
*key
)
1799 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1800 struct btrfs_dir_item
*di
;
1803 unsigned long ptr_end
;
1804 struct btrfs_path
*fixup_path
= NULL
;
1806 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1807 ptr_end
= ptr
+ item_size
;
1808 while (ptr
< ptr_end
) {
1809 di
= (struct btrfs_dir_item
*)ptr
;
1810 if (verify_dir_item(root
, eb
, di
))
1812 name_len
= btrfs_dir_name_len(eb
, di
);
1813 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1816 ptr
= (unsigned long)(di
+ 1);
1820 * If this entry refers to a non-directory (directories can not
1821 * have a link count > 1) and it was added in the transaction
1822 * that was not committed, make sure we fixup the link count of
1823 * the inode it the entry points to. Otherwise something like
1824 * the following would result in a directory pointing to an
1825 * inode with a wrong link that does not account for this dir
1833 * ln testdir/bar testdir/bar_link
1834 * ln testdir/foo testdir/foo_link
1835 * xfs_io -c "fsync" testdir/bar
1839 * mount fs, log replay happens
1841 * File foo would remain with a link count of 1 when it has two
1842 * entries pointing to it in the directory testdir. This would
1843 * make it impossible to ever delete the parent directory has
1844 * it would result in stale dentries that can never be deleted.
1846 if (ret
== 1 && btrfs_dir_type(eb
, di
) != BTRFS_FT_DIR
) {
1847 struct btrfs_key di_key
;
1850 fixup_path
= btrfs_alloc_path();
1857 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1858 ret
= link_to_fixup_dir(trans
, root
, fixup_path
,
1865 btrfs_free_path(fixup_path
);
1870 * directory replay has two parts. There are the standard directory
1871 * items in the log copied from the subvolume, and range items
1872 * created in the log while the subvolume was logged.
1874 * The range items tell us which parts of the key space the log
1875 * is authoritative for. During replay, if a key in the subvolume
1876 * directory is in a logged range item, but not actually in the log
1877 * that means it was deleted from the directory before the fsync
1878 * and should be removed.
1880 static noinline
int find_dir_range(struct btrfs_root
*root
,
1881 struct btrfs_path
*path
,
1882 u64 dirid
, int key_type
,
1883 u64
*start_ret
, u64
*end_ret
)
1885 struct btrfs_key key
;
1887 struct btrfs_dir_log_item
*item
;
1891 if (*start_ret
== (u64
)-1)
1894 key
.objectid
= dirid
;
1895 key
.type
= key_type
;
1896 key
.offset
= *start_ret
;
1898 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1902 if (path
->slots
[0] == 0)
1907 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1909 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1913 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1914 struct btrfs_dir_log_item
);
1915 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1917 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1919 *start_ret
= key
.offset
;
1920 *end_ret
= found_end
;
1925 /* check the next slot in the tree to see if it is a valid item */
1926 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1927 if (path
->slots
[0] >= nritems
) {
1928 ret
= btrfs_next_leaf(root
, path
);
1935 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1937 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1941 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1942 struct btrfs_dir_log_item
);
1943 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1944 *start_ret
= key
.offset
;
1945 *end_ret
= found_end
;
1948 btrfs_release_path(path
);
1953 * this looks for a given directory item in the log. If the directory
1954 * item is not in the log, the item is removed and the inode it points
1957 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1958 struct btrfs_root
*root
,
1959 struct btrfs_root
*log
,
1960 struct btrfs_path
*path
,
1961 struct btrfs_path
*log_path
,
1963 struct btrfs_key
*dir_key
)
1966 struct extent_buffer
*eb
;
1969 struct btrfs_dir_item
*di
;
1970 struct btrfs_dir_item
*log_di
;
1973 unsigned long ptr_end
;
1975 struct inode
*inode
;
1976 struct btrfs_key location
;
1979 eb
= path
->nodes
[0];
1980 slot
= path
->slots
[0];
1981 item_size
= btrfs_item_size_nr(eb
, slot
);
1982 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1983 ptr_end
= ptr
+ item_size
;
1984 while (ptr
< ptr_end
) {
1985 di
= (struct btrfs_dir_item
*)ptr
;
1986 if (verify_dir_item(root
, eb
, di
)) {
1991 name_len
= btrfs_dir_name_len(eb
, di
);
1992 name
= kmalloc(name_len
, GFP_NOFS
);
1997 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
2000 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
2001 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
2004 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
2005 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
2011 if (!log_di
|| (IS_ERR(log_di
) && PTR_ERR(log_di
) == -ENOENT
)) {
2012 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
2013 btrfs_release_path(path
);
2014 btrfs_release_path(log_path
);
2015 inode
= read_one_inode(root
, location
.objectid
);
2021 ret
= link_to_fixup_dir(trans
, root
,
2022 path
, location
.objectid
);
2030 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
2033 ret
= btrfs_run_delayed_items(trans
, root
);
2039 /* there might still be more names under this key
2040 * check and repeat if required
2042 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
2048 } else if (IS_ERR(log_di
)) {
2050 return PTR_ERR(log_di
);
2052 btrfs_release_path(log_path
);
2055 ptr
= (unsigned long)(di
+ 1);
2060 btrfs_release_path(path
);
2061 btrfs_release_path(log_path
);
2065 static int replay_xattr_deletes(struct btrfs_trans_handle
*trans
,
2066 struct btrfs_root
*root
,
2067 struct btrfs_root
*log
,
2068 struct btrfs_path
*path
,
2071 struct btrfs_key search_key
;
2072 struct btrfs_path
*log_path
;
2077 log_path
= btrfs_alloc_path();
2081 search_key
.objectid
= ino
;
2082 search_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2083 search_key
.offset
= 0;
2085 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
2089 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2090 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2091 struct btrfs_key key
;
2092 struct btrfs_dir_item
*di
;
2093 struct btrfs_dir_item
*log_di
;
2097 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, i
);
2098 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
) {
2103 di
= btrfs_item_ptr(path
->nodes
[0], i
, struct btrfs_dir_item
);
2104 total_size
= btrfs_item_size_nr(path
->nodes
[0], i
);
2106 while (cur
< total_size
) {
2107 u16 name_len
= btrfs_dir_name_len(path
->nodes
[0], di
);
2108 u16 data_len
= btrfs_dir_data_len(path
->nodes
[0], di
);
2109 u32 this_len
= sizeof(*di
) + name_len
+ data_len
;
2112 name
= kmalloc(name_len
, GFP_NOFS
);
2117 read_extent_buffer(path
->nodes
[0], name
,
2118 (unsigned long)(di
+ 1), name_len
);
2120 log_di
= btrfs_lookup_xattr(NULL
, log
, log_path
, ino
,
2122 btrfs_release_path(log_path
);
2124 /* Doesn't exist in log tree, so delete it. */
2125 btrfs_release_path(path
);
2126 di
= btrfs_lookup_xattr(trans
, root
, path
, ino
,
2127 name
, name_len
, -1);
2134 ret
= btrfs_delete_one_dir_name(trans
, root
,
2138 btrfs_release_path(path
);
2143 if (IS_ERR(log_di
)) {
2144 ret
= PTR_ERR(log_di
);
2148 di
= (struct btrfs_dir_item
*)((char *)di
+ this_len
);
2151 ret
= btrfs_next_leaf(root
, path
);
2157 btrfs_free_path(log_path
);
2158 btrfs_release_path(path
);
2164 * deletion replay happens before we copy any new directory items
2165 * out of the log or out of backreferences from inodes. It
2166 * scans the log to find ranges of keys that log is authoritative for,
2167 * and then scans the directory to find items in those ranges that are
2168 * not present in the log.
2170 * Anything we don't find in the log is unlinked and removed from the
2173 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
2174 struct btrfs_root
*root
,
2175 struct btrfs_root
*log
,
2176 struct btrfs_path
*path
,
2177 u64 dirid
, int del_all
)
2181 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
2183 struct btrfs_key dir_key
;
2184 struct btrfs_key found_key
;
2185 struct btrfs_path
*log_path
;
2188 dir_key
.objectid
= dirid
;
2189 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
2190 log_path
= btrfs_alloc_path();
2194 dir
= read_one_inode(root
, dirid
);
2195 /* it isn't an error if the inode isn't there, that can happen
2196 * because we replay the deletes before we copy in the inode item
2200 btrfs_free_path(log_path
);
2208 range_end
= (u64
)-1;
2210 ret
= find_dir_range(log
, path
, dirid
, key_type
,
2211 &range_start
, &range_end
);
2216 dir_key
.offset
= range_start
;
2219 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
2224 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2225 if (path
->slots
[0] >= nritems
) {
2226 ret
= btrfs_next_leaf(root
, path
);
2230 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2232 if (found_key
.objectid
!= dirid
||
2233 found_key
.type
!= dir_key
.type
)
2236 if (found_key
.offset
> range_end
)
2239 ret
= check_item_in_log(trans
, root
, log
, path
,
2244 if (found_key
.offset
== (u64
)-1)
2246 dir_key
.offset
= found_key
.offset
+ 1;
2248 btrfs_release_path(path
);
2249 if (range_end
== (u64
)-1)
2251 range_start
= range_end
+ 1;
2256 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
2257 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2258 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
2259 btrfs_release_path(path
);
2263 btrfs_release_path(path
);
2264 btrfs_free_path(log_path
);
2270 * the process_func used to replay items from the log tree. This
2271 * gets called in two different stages. The first stage just looks
2272 * for inodes and makes sure they are all copied into the subvolume.
2274 * The second stage copies all the other item types from the log into
2275 * the subvolume. The two stage approach is slower, but gets rid of
2276 * lots of complexity around inodes referencing other inodes that exist
2277 * only in the log (references come from either directory items or inode
2280 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
2281 struct walk_control
*wc
, u64 gen
)
2284 struct btrfs_path
*path
;
2285 struct btrfs_root
*root
= wc
->replay_dest
;
2286 struct btrfs_key key
;
2291 ret
= btrfs_read_buffer(eb
, gen
);
2295 level
= btrfs_header_level(eb
);
2300 path
= btrfs_alloc_path();
2304 nritems
= btrfs_header_nritems(eb
);
2305 for (i
= 0; i
< nritems
; i
++) {
2306 btrfs_item_key_to_cpu(eb
, &key
, i
);
2308 /* inode keys are done during the first stage */
2309 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
2310 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
2311 struct btrfs_inode_item
*inode_item
;
2314 inode_item
= btrfs_item_ptr(eb
, i
,
2315 struct btrfs_inode_item
);
2316 ret
= replay_xattr_deletes(wc
->trans
, root
, log
,
2317 path
, key
.objectid
);
2320 mode
= btrfs_inode_mode(eb
, inode_item
);
2321 if (S_ISDIR(mode
)) {
2322 ret
= replay_dir_deletes(wc
->trans
,
2323 root
, log
, path
, key
.objectid
, 0);
2327 ret
= overwrite_item(wc
->trans
, root
, path
,
2332 /* for regular files, make sure corresponding
2333 * orhpan item exist. extents past the new EOF
2334 * will be truncated later by orphan cleanup.
2336 if (S_ISREG(mode
)) {
2337 ret
= insert_orphan_item(wc
->trans
, root
,
2343 ret
= link_to_fixup_dir(wc
->trans
, root
,
2344 path
, key
.objectid
);
2349 if (key
.type
== BTRFS_DIR_INDEX_KEY
&&
2350 wc
->stage
== LOG_WALK_REPLAY_DIR_INDEX
) {
2351 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2357 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2360 /* these keys are simply copied */
2361 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2362 ret
= overwrite_item(wc
->trans
, root
, path
,
2366 } else if (key
.type
== BTRFS_INODE_REF_KEY
||
2367 key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2368 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2370 if (ret
&& ret
!= -ENOENT
)
2373 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2374 ret
= replay_one_extent(wc
->trans
, root
, path
,
2378 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
) {
2379 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2385 btrfs_free_path(path
);
2389 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2390 struct btrfs_root
*root
,
2391 struct btrfs_path
*path
, int *level
,
2392 struct walk_control
*wc
)
2397 struct extent_buffer
*next
;
2398 struct extent_buffer
*cur
;
2399 struct extent_buffer
*parent
;
2403 WARN_ON(*level
< 0);
2404 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2406 while (*level
> 0) {
2407 WARN_ON(*level
< 0);
2408 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2409 cur
= path
->nodes
[*level
];
2411 WARN_ON(btrfs_header_level(cur
) != *level
);
2413 if (path
->slots
[*level
] >=
2414 btrfs_header_nritems(cur
))
2417 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2418 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2419 blocksize
= root
->nodesize
;
2421 parent
= path
->nodes
[*level
];
2422 root_owner
= btrfs_header_owner(parent
);
2424 next
= btrfs_find_create_tree_block(root
, bytenr
);
2429 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
);
2431 free_extent_buffer(next
);
2435 path
->slots
[*level
]++;
2437 ret
= btrfs_read_buffer(next
, ptr_gen
);
2439 free_extent_buffer(next
);
2444 btrfs_tree_lock(next
);
2445 btrfs_set_lock_blocking(next
);
2446 clean_tree_block(trans
, root
->fs_info
,
2448 btrfs_wait_tree_block_writeback(next
);
2449 btrfs_tree_unlock(next
);
2452 WARN_ON(root_owner
!=
2453 BTRFS_TREE_LOG_OBJECTID
);
2454 ret
= btrfs_free_and_pin_reserved_extent(root
,
2457 free_extent_buffer(next
);
2461 free_extent_buffer(next
);
2464 ret
= btrfs_read_buffer(next
, ptr_gen
);
2466 free_extent_buffer(next
);
2470 WARN_ON(*level
<= 0);
2471 if (path
->nodes
[*level
-1])
2472 free_extent_buffer(path
->nodes
[*level
-1]);
2473 path
->nodes
[*level
-1] = next
;
2474 *level
= btrfs_header_level(next
);
2475 path
->slots
[*level
] = 0;
2478 WARN_ON(*level
< 0);
2479 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2481 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2487 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2488 struct btrfs_root
*root
,
2489 struct btrfs_path
*path
, int *level
,
2490 struct walk_control
*wc
)
2497 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2498 slot
= path
->slots
[i
];
2499 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2502 WARN_ON(*level
== 0);
2505 struct extent_buffer
*parent
;
2506 if (path
->nodes
[*level
] == root
->node
)
2507 parent
= path
->nodes
[*level
];
2509 parent
= path
->nodes
[*level
+ 1];
2511 root_owner
= btrfs_header_owner(parent
);
2512 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2513 btrfs_header_generation(path
->nodes
[*level
]));
2518 struct extent_buffer
*next
;
2520 next
= path
->nodes
[*level
];
2523 btrfs_tree_lock(next
);
2524 btrfs_set_lock_blocking(next
);
2525 clean_tree_block(trans
, root
->fs_info
,
2527 btrfs_wait_tree_block_writeback(next
);
2528 btrfs_tree_unlock(next
);
2531 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
2532 ret
= btrfs_free_and_pin_reserved_extent(root
,
2533 path
->nodes
[*level
]->start
,
2534 path
->nodes
[*level
]->len
);
2538 free_extent_buffer(path
->nodes
[*level
]);
2539 path
->nodes
[*level
] = NULL
;
2547 * drop the reference count on the tree rooted at 'snap'. This traverses
2548 * the tree freeing any blocks that have a ref count of zero after being
2551 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2552 struct btrfs_root
*log
, struct walk_control
*wc
)
2557 struct btrfs_path
*path
;
2560 path
= btrfs_alloc_path();
2564 level
= btrfs_header_level(log
->node
);
2566 path
->nodes
[level
] = log
->node
;
2567 extent_buffer_get(log
->node
);
2568 path
->slots
[level
] = 0;
2571 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2579 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2588 /* was the root node processed? if not, catch it here */
2589 if (path
->nodes
[orig_level
]) {
2590 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2591 btrfs_header_generation(path
->nodes
[orig_level
]));
2595 struct extent_buffer
*next
;
2597 next
= path
->nodes
[orig_level
];
2600 btrfs_tree_lock(next
);
2601 btrfs_set_lock_blocking(next
);
2602 clean_tree_block(trans
, log
->fs_info
, next
);
2603 btrfs_wait_tree_block_writeback(next
);
2604 btrfs_tree_unlock(next
);
2607 WARN_ON(log
->root_key
.objectid
!=
2608 BTRFS_TREE_LOG_OBJECTID
);
2609 ret
= btrfs_free_and_pin_reserved_extent(log
, next
->start
,
2617 btrfs_free_path(path
);
2622 * helper function to update the item for a given subvolumes log root
2623 * in the tree of log roots
2625 static int update_log_root(struct btrfs_trans_handle
*trans
,
2626 struct btrfs_root
*log
)
2630 if (log
->log_transid
== 1) {
2631 /* insert root item on the first sync */
2632 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
2633 &log
->root_key
, &log
->root_item
);
2635 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
2636 &log
->root_key
, &log
->root_item
);
2641 static void wait_log_commit(struct btrfs_root
*root
, int transid
)
2644 int index
= transid
% 2;
2647 * we only allow two pending log transactions at a time,
2648 * so we know that if ours is more than 2 older than the
2649 * current transaction, we're done
2652 prepare_to_wait(&root
->log_commit_wait
[index
],
2653 &wait
, TASK_UNINTERRUPTIBLE
);
2654 mutex_unlock(&root
->log_mutex
);
2656 if (root
->log_transid_committed
< transid
&&
2657 atomic_read(&root
->log_commit
[index
]))
2660 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2661 mutex_lock(&root
->log_mutex
);
2662 } while (root
->log_transid_committed
< transid
&&
2663 atomic_read(&root
->log_commit
[index
]));
2666 static void wait_for_writer(struct btrfs_root
*root
)
2670 while (atomic_read(&root
->log_writers
)) {
2671 prepare_to_wait(&root
->log_writer_wait
,
2672 &wait
, TASK_UNINTERRUPTIBLE
);
2673 mutex_unlock(&root
->log_mutex
);
2674 if (atomic_read(&root
->log_writers
))
2676 finish_wait(&root
->log_writer_wait
, &wait
);
2677 mutex_lock(&root
->log_mutex
);
2681 static inline void btrfs_remove_log_ctx(struct btrfs_root
*root
,
2682 struct btrfs_log_ctx
*ctx
)
2687 mutex_lock(&root
->log_mutex
);
2688 list_del_init(&ctx
->list
);
2689 mutex_unlock(&root
->log_mutex
);
2693 * Invoked in log mutex context, or be sure there is no other task which
2694 * can access the list.
2696 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root
*root
,
2697 int index
, int error
)
2699 struct btrfs_log_ctx
*ctx
;
2702 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2706 list_for_each_entry(ctx
, &root
->log_ctxs
[index
], list
)
2707 ctx
->log_ret
= error
;
2709 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2713 * btrfs_sync_log does sends a given tree log down to the disk and
2714 * updates the super blocks to record it. When this call is done,
2715 * you know that any inodes previously logged are safely on disk only
2718 * Any other return value means you need to call btrfs_commit_transaction.
2719 * Some of the edge cases for fsyncing directories that have had unlinks
2720 * or renames done in the past mean that sometimes the only safe
2721 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2722 * that has happened.
2724 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
2725 struct btrfs_root
*root
, struct btrfs_log_ctx
*ctx
)
2731 struct btrfs_root
*log
= root
->log_root
;
2732 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
2733 int log_transid
= 0;
2734 struct btrfs_log_ctx root_log_ctx
;
2735 struct blk_plug plug
;
2737 mutex_lock(&root
->log_mutex
);
2738 log_transid
= ctx
->log_transid
;
2739 if (root
->log_transid_committed
>= log_transid
) {
2740 mutex_unlock(&root
->log_mutex
);
2741 return ctx
->log_ret
;
2744 index1
= log_transid
% 2;
2745 if (atomic_read(&root
->log_commit
[index1
])) {
2746 wait_log_commit(root
, log_transid
);
2747 mutex_unlock(&root
->log_mutex
);
2748 return ctx
->log_ret
;
2750 ASSERT(log_transid
== root
->log_transid
);
2751 atomic_set(&root
->log_commit
[index1
], 1);
2753 /* wait for previous tree log sync to complete */
2754 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2755 wait_log_commit(root
, log_transid
- 1);
2758 int batch
= atomic_read(&root
->log_batch
);
2759 /* when we're on an ssd, just kick the log commit out */
2760 if (!btrfs_test_opt(root
, SSD
) &&
2761 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
)) {
2762 mutex_unlock(&root
->log_mutex
);
2763 schedule_timeout_uninterruptible(1);
2764 mutex_lock(&root
->log_mutex
);
2766 wait_for_writer(root
);
2767 if (batch
== atomic_read(&root
->log_batch
))
2771 /* bail out if we need to do a full commit */
2772 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
2774 btrfs_free_logged_extents(log
, log_transid
);
2775 mutex_unlock(&root
->log_mutex
);
2779 if (log_transid
% 2 == 0)
2780 mark
= EXTENT_DIRTY
;
2784 /* we start IO on all the marked extents here, but we don't actually
2785 * wait for them until later.
2787 blk_start_plug(&plug
);
2788 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2790 blk_finish_plug(&plug
);
2791 btrfs_abort_transaction(trans
, root
, ret
);
2792 btrfs_free_logged_extents(log
, log_transid
);
2793 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2794 mutex_unlock(&root
->log_mutex
);
2798 btrfs_set_root_node(&log
->root_item
, log
->node
);
2800 root
->log_transid
++;
2801 log
->log_transid
= root
->log_transid
;
2802 root
->log_start_pid
= 0;
2804 * IO has been started, blocks of the log tree have WRITTEN flag set
2805 * in their headers. new modifications of the log will be written to
2806 * new positions. so it's safe to allow log writers to go in.
2808 mutex_unlock(&root
->log_mutex
);
2810 btrfs_init_log_ctx(&root_log_ctx
);
2812 mutex_lock(&log_root_tree
->log_mutex
);
2813 atomic_inc(&log_root_tree
->log_batch
);
2814 atomic_inc(&log_root_tree
->log_writers
);
2816 index2
= log_root_tree
->log_transid
% 2;
2817 list_add_tail(&root_log_ctx
.list
, &log_root_tree
->log_ctxs
[index2
]);
2818 root_log_ctx
.log_transid
= log_root_tree
->log_transid
;
2820 mutex_unlock(&log_root_tree
->log_mutex
);
2822 ret
= update_log_root(trans
, log
);
2824 mutex_lock(&log_root_tree
->log_mutex
);
2825 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2827 * Implicit memory barrier after atomic_dec_and_test
2829 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2830 wake_up(&log_root_tree
->log_writer_wait
);
2834 if (!list_empty(&root_log_ctx
.list
))
2835 list_del_init(&root_log_ctx
.list
);
2837 blk_finish_plug(&plug
);
2838 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2840 if (ret
!= -ENOSPC
) {
2841 btrfs_abort_transaction(trans
, root
, ret
);
2842 mutex_unlock(&log_root_tree
->log_mutex
);
2845 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2846 btrfs_free_logged_extents(log
, log_transid
);
2847 mutex_unlock(&log_root_tree
->log_mutex
);
2852 if (log_root_tree
->log_transid_committed
>= root_log_ctx
.log_transid
) {
2853 blk_finish_plug(&plug
);
2854 mutex_unlock(&log_root_tree
->log_mutex
);
2855 ret
= root_log_ctx
.log_ret
;
2859 index2
= root_log_ctx
.log_transid
% 2;
2860 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2861 blk_finish_plug(&plug
);
2862 ret
= btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
,
2864 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2865 wait_log_commit(log_root_tree
,
2866 root_log_ctx
.log_transid
);
2867 mutex_unlock(&log_root_tree
->log_mutex
);
2869 ret
= root_log_ctx
.log_ret
;
2872 ASSERT(root_log_ctx
.log_transid
== log_root_tree
->log_transid
);
2873 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2875 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2876 wait_log_commit(log_root_tree
,
2877 root_log_ctx
.log_transid
- 1);
2880 wait_for_writer(log_root_tree
);
2883 * now that we've moved on to the tree of log tree roots,
2884 * check the full commit flag again
2886 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
2887 blk_finish_plug(&plug
);
2888 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2889 btrfs_free_logged_extents(log
, log_transid
);
2890 mutex_unlock(&log_root_tree
->log_mutex
);
2892 goto out_wake_log_root
;
2895 ret
= btrfs_write_marked_extents(log_root_tree
,
2896 &log_root_tree
->dirty_log_pages
,
2897 EXTENT_DIRTY
| EXTENT_NEW
);
2898 blk_finish_plug(&plug
);
2900 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2901 btrfs_abort_transaction(trans
, root
, ret
);
2902 btrfs_free_logged_extents(log
, log_transid
);
2903 mutex_unlock(&log_root_tree
->log_mutex
);
2904 goto out_wake_log_root
;
2906 ret
= btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2908 ret
= btrfs_wait_marked_extents(log_root_tree
,
2909 &log_root_tree
->dirty_log_pages
,
2910 EXTENT_NEW
| EXTENT_DIRTY
);
2912 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2913 btrfs_free_logged_extents(log
, log_transid
);
2914 mutex_unlock(&log_root_tree
->log_mutex
);
2915 goto out_wake_log_root
;
2917 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2919 btrfs_set_super_log_root(root
->fs_info
->super_for_commit
,
2920 log_root_tree
->node
->start
);
2921 btrfs_set_super_log_root_level(root
->fs_info
->super_for_commit
,
2922 btrfs_header_level(log_root_tree
->node
));
2924 log_root_tree
->log_transid
++;
2925 mutex_unlock(&log_root_tree
->log_mutex
);
2928 * nobody else is going to jump in and write the the ctree
2929 * super here because the log_commit atomic below is protecting
2930 * us. We must be called with a transaction handle pinning
2931 * the running transaction open, so a full commit can't hop
2932 * in and cause problems either.
2934 ret
= write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2936 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2937 btrfs_abort_transaction(trans
, root
, ret
);
2938 goto out_wake_log_root
;
2941 mutex_lock(&root
->log_mutex
);
2942 if (root
->last_log_commit
< log_transid
)
2943 root
->last_log_commit
= log_transid
;
2944 mutex_unlock(&root
->log_mutex
);
2948 * We needn't get log_mutex here because we are sure all
2949 * the other tasks are blocked.
2951 btrfs_remove_all_log_ctxs(log_root_tree
, index2
, ret
);
2953 mutex_lock(&log_root_tree
->log_mutex
);
2954 log_root_tree
->log_transid_committed
++;
2955 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2956 mutex_unlock(&log_root_tree
->log_mutex
);
2959 * The barrier before waitqueue_active is implied by mutex_unlock
2961 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2962 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2965 btrfs_remove_all_log_ctxs(root
, index1
, ret
);
2967 mutex_lock(&root
->log_mutex
);
2968 root
->log_transid_committed
++;
2969 atomic_set(&root
->log_commit
[index1
], 0);
2970 mutex_unlock(&root
->log_mutex
);
2973 * The barrier before waitqueue_active is implied by mutex_unlock
2975 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2976 wake_up(&root
->log_commit_wait
[index1
]);
2980 static void free_log_tree(struct btrfs_trans_handle
*trans
,
2981 struct btrfs_root
*log
)
2986 struct walk_control wc
= {
2988 .process_func
= process_one_buffer
2991 ret
= walk_log_tree(trans
, log
, &wc
);
2992 /* I don't think this can happen but just in case */
2994 btrfs_abort_transaction(trans
, log
, ret
);
2997 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2998 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
,
3003 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
3004 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
3008 * We may have short-circuited the log tree with the full commit logic
3009 * and left ordered extents on our list, so clear these out to keep us
3010 * from leaking inodes and memory.
3012 btrfs_free_logged_extents(log
, 0);
3013 btrfs_free_logged_extents(log
, 1);
3015 free_extent_buffer(log
->node
);
3020 * free all the extents used by the tree log. This should be called
3021 * at commit time of the full transaction
3023 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
3025 if (root
->log_root
) {
3026 free_log_tree(trans
, root
->log_root
);
3027 root
->log_root
= NULL
;
3032 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
3033 struct btrfs_fs_info
*fs_info
)
3035 if (fs_info
->log_root_tree
) {
3036 free_log_tree(trans
, fs_info
->log_root_tree
);
3037 fs_info
->log_root_tree
= NULL
;
3043 * If both a file and directory are logged, and unlinks or renames are
3044 * mixed in, we have a few interesting corners:
3046 * create file X in dir Y
3047 * link file X to X.link in dir Y
3049 * unlink file X but leave X.link
3052 * After a crash we would expect only X.link to exist. But file X
3053 * didn't get fsync'd again so the log has back refs for X and X.link.
3055 * We solve this by removing directory entries and inode backrefs from the
3056 * log when a file that was logged in the current transaction is
3057 * unlinked. Any later fsync will include the updated log entries, and
3058 * we'll be able to reconstruct the proper directory items from backrefs.
3060 * This optimizations allows us to avoid relogging the entire inode
3061 * or the entire directory.
3063 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
3064 struct btrfs_root
*root
,
3065 const char *name
, int name_len
,
3066 struct inode
*dir
, u64 index
)
3068 struct btrfs_root
*log
;
3069 struct btrfs_dir_item
*di
;
3070 struct btrfs_path
*path
;
3074 u64 dir_ino
= btrfs_ino(dir
);
3076 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
3079 ret
= join_running_log_trans(root
);
3083 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
3085 log
= root
->log_root
;
3086 path
= btrfs_alloc_path();
3092 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
3093 name
, name_len
, -1);
3099 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3100 bytes_del
+= name_len
;
3106 btrfs_release_path(path
);
3107 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
3108 index
, name
, name_len
, -1);
3114 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3115 bytes_del
+= name_len
;
3122 /* update the directory size in the log to reflect the names
3126 struct btrfs_key key
;
3128 key
.objectid
= dir_ino
;
3130 key
.type
= BTRFS_INODE_ITEM_KEY
;
3131 btrfs_release_path(path
);
3133 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
3139 struct btrfs_inode_item
*item
;
3142 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3143 struct btrfs_inode_item
);
3144 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
3145 if (i_size
> bytes_del
)
3146 i_size
-= bytes_del
;
3149 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
3150 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3153 btrfs_release_path(path
);
3156 btrfs_free_path(path
);
3158 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
3159 if (ret
== -ENOSPC
) {
3160 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3163 btrfs_abort_transaction(trans
, root
, ret
);
3165 btrfs_end_log_trans(root
);
3170 /* see comments for btrfs_del_dir_entries_in_log */
3171 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
3172 struct btrfs_root
*root
,
3173 const char *name
, int name_len
,
3174 struct inode
*inode
, u64 dirid
)
3176 struct btrfs_root
*log
;
3180 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
3183 ret
= join_running_log_trans(root
);
3186 log
= root
->log_root
;
3187 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
3189 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
3191 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
3192 if (ret
== -ENOSPC
) {
3193 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3195 } else if (ret
< 0 && ret
!= -ENOENT
)
3196 btrfs_abort_transaction(trans
, root
, ret
);
3197 btrfs_end_log_trans(root
);
3203 * creates a range item in the log for 'dirid'. first_offset and
3204 * last_offset tell us which parts of the key space the log should
3205 * be considered authoritative for.
3207 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
3208 struct btrfs_root
*log
,
3209 struct btrfs_path
*path
,
3210 int key_type
, u64 dirid
,
3211 u64 first_offset
, u64 last_offset
)
3214 struct btrfs_key key
;
3215 struct btrfs_dir_log_item
*item
;
3217 key
.objectid
= dirid
;
3218 key
.offset
= first_offset
;
3219 if (key_type
== BTRFS_DIR_ITEM_KEY
)
3220 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
3222 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
3223 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
3227 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3228 struct btrfs_dir_log_item
);
3229 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
3230 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3231 btrfs_release_path(path
);
3236 * log all the items included in the current transaction for a given
3237 * directory. This also creates the range items in the log tree required
3238 * to replay anything deleted before the fsync
3240 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
3241 struct btrfs_root
*root
, struct inode
*inode
,
3242 struct btrfs_path
*path
,
3243 struct btrfs_path
*dst_path
, int key_type
,
3244 struct btrfs_log_ctx
*ctx
,
3245 u64 min_offset
, u64
*last_offset_ret
)
3247 struct btrfs_key min_key
;
3248 struct btrfs_root
*log
= root
->log_root
;
3249 struct extent_buffer
*src
;
3254 u64 first_offset
= min_offset
;
3255 u64 last_offset
= (u64
)-1;
3256 u64 ino
= btrfs_ino(inode
);
3258 log
= root
->log_root
;
3260 min_key
.objectid
= ino
;
3261 min_key
.type
= key_type
;
3262 min_key
.offset
= min_offset
;
3264 ret
= btrfs_search_forward(root
, &min_key
, path
, trans
->transid
);
3267 * we didn't find anything from this transaction, see if there
3268 * is anything at all
3270 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
3271 min_key
.objectid
= ino
;
3272 min_key
.type
= key_type
;
3273 min_key
.offset
= (u64
)-1;
3274 btrfs_release_path(path
);
3275 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3277 btrfs_release_path(path
);
3280 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3282 /* if ret == 0 there are items for this type,
3283 * create a range to tell us the last key of this type.
3284 * otherwise, there are no items in this directory after
3285 * *min_offset, and we create a range to indicate that.
3288 struct btrfs_key tmp
;
3289 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
3291 if (key_type
== tmp
.type
)
3292 first_offset
= max(min_offset
, tmp
.offset
) + 1;
3297 /* go backward to find any previous key */
3298 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3300 struct btrfs_key tmp
;
3301 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3302 if (key_type
== tmp
.type
) {
3303 first_offset
= tmp
.offset
;
3304 ret
= overwrite_item(trans
, log
, dst_path
,
3305 path
->nodes
[0], path
->slots
[0],
3313 btrfs_release_path(path
);
3315 /* find the first key from this transaction again */
3316 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3317 if (WARN_ON(ret
!= 0))
3321 * we have a block from this transaction, log every item in it
3322 * from our directory
3325 struct btrfs_key tmp
;
3326 src
= path
->nodes
[0];
3327 nritems
= btrfs_header_nritems(src
);
3328 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
3329 struct btrfs_dir_item
*di
;
3331 btrfs_item_key_to_cpu(src
, &min_key
, i
);
3333 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
3335 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
3343 * We must make sure that when we log a directory entry,
3344 * the corresponding inode, after log replay, has a
3345 * matching link count. For example:
3351 * xfs_io -c "fsync" mydir
3353 * <mount fs and log replay>
3355 * Would result in a fsync log that when replayed, our
3356 * file inode would have a link count of 1, but we get
3357 * two directory entries pointing to the same inode.
3358 * After removing one of the names, it would not be
3359 * possible to remove the other name, which resulted
3360 * always in stale file handle errors, and would not
3361 * be possible to rmdir the parent directory, since
3362 * its i_size could never decrement to the value
3363 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3365 di
= btrfs_item_ptr(src
, i
, struct btrfs_dir_item
);
3366 btrfs_dir_item_key_to_cpu(src
, di
, &tmp
);
3368 (btrfs_dir_transid(src
, di
) == trans
->transid
||
3369 btrfs_dir_type(src
, di
) == BTRFS_FT_DIR
) &&
3370 tmp
.type
!= BTRFS_ROOT_ITEM_KEY
)
3371 ctx
->log_new_dentries
= true;
3373 path
->slots
[0] = nritems
;
3376 * look ahead to the next item and see if it is also
3377 * from this directory and from this transaction
3379 ret
= btrfs_next_leaf(root
, path
);
3381 last_offset
= (u64
)-1;
3384 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3385 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
3386 last_offset
= (u64
)-1;
3389 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
3390 ret
= overwrite_item(trans
, log
, dst_path
,
3391 path
->nodes
[0], path
->slots
[0],
3396 last_offset
= tmp
.offset
;
3401 btrfs_release_path(path
);
3402 btrfs_release_path(dst_path
);
3405 *last_offset_ret
= last_offset
;
3407 * insert the log range keys to indicate where the log
3410 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
3411 ino
, first_offset
, last_offset
);
3419 * logging directories is very similar to logging inodes, We find all the items
3420 * from the current transaction and write them to the log.
3422 * The recovery code scans the directory in the subvolume, and if it finds a
3423 * key in the range logged that is not present in the log tree, then it means
3424 * that dir entry was unlinked during the transaction.
3426 * In order for that scan to work, we must include one key smaller than
3427 * the smallest logged by this transaction and one key larger than the largest
3428 * key logged by this transaction.
3430 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
3431 struct btrfs_root
*root
, struct inode
*inode
,
3432 struct btrfs_path
*path
,
3433 struct btrfs_path
*dst_path
,
3434 struct btrfs_log_ctx
*ctx
)
3439 int key_type
= BTRFS_DIR_ITEM_KEY
;
3445 ret
= log_dir_items(trans
, root
, inode
, path
,
3446 dst_path
, key_type
, ctx
, min_key
,
3450 if (max_key
== (u64
)-1)
3452 min_key
= max_key
+ 1;
3455 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
3456 key_type
= BTRFS_DIR_INDEX_KEY
;
3463 * a helper function to drop items from the log before we relog an
3464 * inode. max_key_type indicates the highest item type to remove.
3465 * This cannot be run for file data extents because it does not
3466 * free the extents they point to.
3468 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
3469 struct btrfs_root
*log
,
3470 struct btrfs_path
*path
,
3471 u64 objectid
, int max_key_type
)
3474 struct btrfs_key key
;
3475 struct btrfs_key found_key
;
3478 key
.objectid
= objectid
;
3479 key
.type
= max_key_type
;
3480 key
.offset
= (u64
)-1;
3483 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
3484 BUG_ON(ret
== 0); /* Logic error */
3488 if (path
->slots
[0] == 0)
3492 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3495 if (found_key
.objectid
!= objectid
)
3498 found_key
.offset
= 0;
3500 ret
= btrfs_bin_search(path
->nodes
[0], &found_key
, 0,
3503 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
3504 path
->slots
[0] - start_slot
+ 1);
3506 * If start slot isn't 0 then we don't need to re-search, we've
3507 * found the last guy with the objectid in this tree.
3509 if (ret
|| start_slot
!= 0)
3511 btrfs_release_path(path
);
3513 btrfs_release_path(path
);
3519 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3520 struct extent_buffer
*leaf
,
3521 struct btrfs_inode_item
*item
,
3522 struct inode
*inode
, int log_inode_only
,
3525 struct btrfs_map_token token
;
3527 btrfs_init_map_token(&token
);
3529 if (log_inode_only
) {
3530 /* set the generation to zero so the recover code
3531 * can tell the difference between an logging
3532 * just to say 'this inode exists' and a logging
3533 * to say 'update this inode with these values'
3535 btrfs_set_token_inode_generation(leaf
, item
, 0, &token
);
3536 btrfs_set_token_inode_size(leaf
, item
, logged_isize
, &token
);
3538 btrfs_set_token_inode_generation(leaf
, item
,
3539 BTRFS_I(inode
)->generation
,
3541 btrfs_set_token_inode_size(leaf
, item
, inode
->i_size
, &token
);
3544 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3545 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3546 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3547 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3549 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3550 inode
->i_atime
.tv_sec
, &token
);
3551 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3552 inode
->i_atime
.tv_nsec
, &token
);
3554 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3555 inode
->i_mtime
.tv_sec
, &token
);
3556 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3557 inode
->i_mtime
.tv_nsec
, &token
);
3559 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3560 inode
->i_ctime
.tv_sec
, &token
);
3561 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3562 inode
->i_ctime
.tv_nsec
, &token
);
3564 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3567 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3568 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3569 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3570 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3571 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3574 static int log_inode_item(struct btrfs_trans_handle
*trans
,
3575 struct btrfs_root
*log
, struct btrfs_path
*path
,
3576 struct inode
*inode
)
3578 struct btrfs_inode_item
*inode_item
;
3581 ret
= btrfs_insert_empty_item(trans
, log
, path
,
3582 &BTRFS_I(inode
)->location
,
3583 sizeof(*inode_item
));
3584 if (ret
&& ret
!= -EEXIST
)
3586 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3587 struct btrfs_inode_item
);
3588 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
, 0, 0);
3589 btrfs_release_path(path
);
3593 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
3594 struct inode
*inode
,
3595 struct btrfs_path
*dst_path
,
3596 struct btrfs_path
*src_path
, u64
*last_extent
,
3597 int start_slot
, int nr
, int inode_only
,
3600 unsigned long src_offset
;
3601 unsigned long dst_offset
;
3602 struct btrfs_root
*log
= BTRFS_I(inode
)->root
->log_root
;
3603 struct btrfs_file_extent_item
*extent
;
3604 struct btrfs_inode_item
*inode_item
;
3605 struct extent_buffer
*src
= src_path
->nodes
[0];
3606 struct btrfs_key first_key
, last_key
, key
;
3608 struct btrfs_key
*ins_keys
;
3612 struct list_head ordered_sums
;
3613 int skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3614 bool has_extents
= false;
3615 bool need_find_last_extent
= true;
3618 INIT_LIST_HEAD(&ordered_sums
);
3620 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
3621 nr
* sizeof(u32
), GFP_NOFS
);
3625 first_key
.objectid
= (u64
)-1;
3627 ins_sizes
= (u32
*)ins_data
;
3628 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
3630 for (i
= 0; i
< nr
; i
++) {
3631 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
3632 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
3634 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
3635 ins_keys
, ins_sizes
, nr
);
3641 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
3642 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
3643 dst_path
->slots
[0]);
3645 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
3647 if ((i
== (nr
- 1)))
3648 last_key
= ins_keys
[i
];
3650 if (ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
3651 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
3653 struct btrfs_inode_item
);
3654 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
3655 inode
, inode_only
== LOG_INODE_EXISTS
,
3658 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
3659 src_offset
, ins_sizes
[i
]);
3663 * We set need_find_last_extent here in case we know we were
3664 * processing other items and then walk into the first extent in
3665 * the inode. If we don't hit an extent then nothing changes,
3666 * we'll do the last search the next time around.
3668 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
) {
3670 if (first_key
.objectid
== (u64
)-1)
3671 first_key
= ins_keys
[i
];
3673 need_find_last_extent
= false;
3676 /* take a reference on file data extents so that truncates
3677 * or deletes of this inode don't have to relog the inode
3680 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
&&
3683 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
3684 struct btrfs_file_extent_item
);
3686 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
3689 found_type
= btrfs_file_extent_type(src
, extent
);
3690 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
3692 ds
= btrfs_file_extent_disk_bytenr(src
,
3694 /* ds == 0 is a hole */
3698 dl
= btrfs_file_extent_disk_num_bytes(src
,
3700 cs
= btrfs_file_extent_offset(src
, extent
);
3701 cl
= btrfs_file_extent_num_bytes(src
,
3703 if (btrfs_file_extent_compression(src
,
3709 ret
= btrfs_lookup_csums_range(
3710 log
->fs_info
->csum_root
,
3711 ds
+ cs
, ds
+ cs
+ cl
- 1,
3714 btrfs_release_path(dst_path
);
3722 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
3723 btrfs_release_path(dst_path
);
3727 * we have to do this after the loop above to avoid changing the
3728 * log tree while trying to change the log tree.
3731 while (!list_empty(&ordered_sums
)) {
3732 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3733 struct btrfs_ordered_sum
,
3736 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3737 list_del(&sums
->list
);
3744 if (need_find_last_extent
&& *last_extent
== first_key
.offset
) {
3746 * We don't have any leafs between our current one and the one
3747 * we processed before that can have file extent items for our
3748 * inode (and have a generation number smaller than our current
3751 need_find_last_extent
= false;
3755 * Because we use btrfs_search_forward we could skip leaves that were
3756 * not modified and then assume *last_extent is valid when it really
3757 * isn't. So back up to the previous leaf and read the end of the last
3758 * extent before we go and fill in holes.
3760 if (need_find_last_extent
) {
3763 ret
= btrfs_prev_leaf(BTRFS_I(inode
)->root
, src_path
);
3768 if (src_path
->slots
[0])
3769 src_path
->slots
[0]--;
3770 src
= src_path
->nodes
[0];
3771 btrfs_item_key_to_cpu(src
, &key
, src_path
->slots
[0]);
3772 if (key
.objectid
!= btrfs_ino(inode
) ||
3773 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3775 extent
= btrfs_item_ptr(src
, src_path
->slots
[0],
3776 struct btrfs_file_extent_item
);
3777 if (btrfs_file_extent_type(src
, extent
) ==
3778 BTRFS_FILE_EXTENT_INLINE
) {
3779 len
= btrfs_file_extent_inline_len(src
,
3782 *last_extent
= ALIGN(key
.offset
+ len
,
3785 len
= btrfs_file_extent_num_bytes(src
, extent
);
3786 *last_extent
= key
.offset
+ len
;
3790 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3791 * things could have happened
3793 * 1) A merge could have happened, so we could currently be on a leaf
3794 * that holds what we were copying in the first place.
3795 * 2) A split could have happened, and now not all of the items we want
3796 * are on the same leaf.
3798 * So we need to adjust how we search for holes, we need to drop the
3799 * path and re-search for the first extent key we found, and then walk
3800 * forward until we hit the last one we copied.
3802 if (need_find_last_extent
) {
3803 /* btrfs_prev_leaf could return 1 without releasing the path */
3804 btrfs_release_path(src_path
);
3805 ret
= btrfs_search_slot(NULL
, BTRFS_I(inode
)->root
, &first_key
,
3810 src
= src_path
->nodes
[0];
3811 i
= src_path
->slots
[0];
3817 * Ok so here we need to go through and fill in any holes we may have
3818 * to make sure that holes are punched for those areas in case they had
3819 * extents previously.
3825 if (i
>= btrfs_header_nritems(src_path
->nodes
[0])) {
3826 ret
= btrfs_next_leaf(BTRFS_I(inode
)->root
, src_path
);
3830 src
= src_path
->nodes
[0];
3834 btrfs_item_key_to_cpu(src
, &key
, i
);
3835 if (!btrfs_comp_cpu_keys(&key
, &last_key
))
3837 if (key
.objectid
!= btrfs_ino(inode
) ||
3838 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
3842 extent
= btrfs_item_ptr(src
, i
, struct btrfs_file_extent_item
);
3843 if (btrfs_file_extent_type(src
, extent
) ==
3844 BTRFS_FILE_EXTENT_INLINE
) {
3845 len
= btrfs_file_extent_inline_len(src
, i
, extent
);
3846 extent_end
= ALIGN(key
.offset
+ len
, log
->sectorsize
);
3848 len
= btrfs_file_extent_num_bytes(src
, extent
);
3849 extent_end
= key
.offset
+ len
;
3853 if (*last_extent
== key
.offset
) {
3854 *last_extent
= extent_end
;
3857 offset
= *last_extent
;
3858 len
= key
.offset
- *last_extent
;
3859 ret
= btrfs_insert_file_extent(trans
, log
, btrfs_ino(inode
),
3860 offset
, 0, 0, len
, 0, len
, 0,
3864 *last_extent
= extent_end
;
3867 * Need to let the callers know we dropped the path so they should
3870 if (!ret
&& need_find_last_extent
)
3875 static int extent_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3877 struct extent_map
*em1
, *em2
;
3879 em1
= list_entry(a
, struct extent_map
, list
);
3880 em2
= list_entry(b
, struct extent_map
, list
);
3882 if (em1
->start
< em2
->start
)
3884 else if (em1
->start
> em2
->start
)
3889 static int wait_ordered_extents(struct btrfs_trans_handle
*trans
,
3890 struct inode
*inode
,
3891 struct btrfs_root
*root
,
3892 const struct extent_map
*em
,
3893 const struct list_head
*logged_list
,
3894 bool *ordered_io_error
)
3896 struct btrfs_ordered_extent
*ordered
;
3897 struct btrfs_root
*log
= root
->log_root
;
3898 u64 mod_start
= em
->mod_start
;
3899 u64 mod_len
= em
->mod_len
;
3900 const bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3903 LIST_HEAD(ordered_sums
);
3906 *ordered_io_error
= false;
3908 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
3909 em
->block_start
== EXTENT_MAP_HOLE
)
3913 * Wait far any ordered extent that covers our extent map. If it
3914 * finishes without an error, first check and see if our csums are on
3915 * our outstanding ordered extents.
3917 list_for_each_entry(ordered
, logged_list
, log_list
) {
3918 struct btrfs_ordered_sum
*sum
;
3923 if (ordered
->file_offset
+ ordered
->len
<= mod_start
||
3924 mod_start
+ mod_len
<= ordered
->file_offset
)
3927 if (!test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) &&
3928 !test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
) &&
3929 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
)) {
3930 const u64 start
= ordered
->file_offset
;
3931 const u64 end
= ordered
->file_offset
+ ordered
->len
- 1;
3933 WARN_ON(ordered
->inode
!= inode
);
3934 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
3937 wait_event(ordered
->wait
,
3938 (test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) ||
3939 test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)));
3941 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)) {
3943 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3944 * i_mapping flags, so that the next fsync won't get
3945 * an outdated io error too.
3947 btrfs_inode_check_errors(inode
);
3948 *ordered_io_error
= true;
3952 * We are going to copy all the csums on this ordered extent, so
3953 * go ahead and adjust mod_start and mod_len in case this
3954 * ordered extent has already been logged.
3956 if (ordered
->file_offset
> mod_start
) {
3957 if (ordered
->file_offset
+ ordered
->len
>=
3958 mod_start
+ mod_len
)
3959 mod_len
= ordered
->file_offset
- mod_start
;
3961 * If we have this case
3963 * |--------- logged extent ---------|
3964 * |----- ordered extent ----|
3966 * Just don't mess with mod_start and mod_len, we'll
3967 * just end up logging more csums than we need and it
3971 if (ordered
->file_offset
+ ordered
->len
<
3972 mod_start
+ mod_len
) {
3973 mod_len
= (mod_start
+ mod_len
) -
3974 (ordered
->file_offset
+ ordered
->len
);
3975 mod_start
= ordered
->file_offset
+
3986 * To keep us from looping for the above case of an ordered
3987 * extent that falls inside of the logged extent.
3989 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM
,
3993 list_for_each_entry(sum
, &ordered
->list
, list
) {
3994 ret
= btrfs_csum_file_blocks(trans
, log
, sum
);
4000 if (*ordered_io_error
|| !mod_len
|| ret
|| skip_csum
)
4003 if (em
->compress_type
) {
4005 csum_len
= max(em
->block_len
, em
->orig_block_len
);
4007 csum_offset
= mod_start
- em
->start
;
4011 /* block start is already adjusted for the file extent offset. */
4012 ret
= btrfs_lookup_csums_range(log
->fs_info
->csum_root
,
4013 em
->block_start
+ csum_offset
,
4014 em
->block_start
+ csum_offset
+
4015 csum_len
- 1, &ordered_sums
, 0);
4019 while (!list_empty(&ordered_sums
)) {
4020 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
4021 struct btrfs_ordered_sum
,
4024 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
4025 list_del(&sums
->list
);
4032 static int log_one_extent(struct btrfs_trans_handle
*trans
,
4033 struct inode
*inode
, struct btrfs_root
*root
,
4034 const struct extent_map
*em
,
4035 struct btrfs_path
*path
,
4036 const struct list_head
*logged_list
,
4037 struct btrfs_log_ctx
*ctx
)
4039 struct btrfs_root
*log
= root
->log_root
;
4040 struct btrfs_file_extent_item
*fi
;
4041 struct extent_buffer
*leaf
;
4042 struct btrfs_map_token token
;
4043 struct btrfs_key key
;
4044 u64 extent_offset
= em
->start
- em
->orig_start
;
4047 int extent_inserted
= 0;
4048 bool ordered_io_err
= false;
4050 ret
= wait_ordered_extents(trans
, inode
, root
, em
, logged_list
,
4055 if (ordered_io_err
) {
4060 btrfs_init_map_token(&token
);
4062 ret
= __btrfs_drop_extents(trans
, log
, inode
, path
, em
->start
,
4063 em
->start
+ em
->len
, NULL
, 0, 1,
4064 sizeof(*fi
), &extent_inserted
);
4068 if (!extent_inserted
) {
4069 key
.objectid
= btrfs_ino(inode
);
4070 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4071 key
.offset
= em
->start
;
4073 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
4078 leaf
= path
->nodes
[0];
4079 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4080 struct btrfs_file_extent_item
);
4082 btrfs_set_token_file_extent_generation(leaf
, fi
, trans
->transid
,
4084 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4085 btrfs_set_token_file_extent_type(leaf
, fi
,
4086 BTRFS_FILE_EXTENT_PREALLOC
,
4089 btrfs_set_token_file_extent_type(leaf
, fi
,
4090 BTRFS_FILE_EXTENT_REG
,
4093 block_len
= max(em
->block_len
, em
->orig_block_len
);
4094 if (em
->compress_type
!= BTRFS_COMPRESS_NONE
) {
4095 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4098 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4100 } else if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
4101 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4103 extent_offset
, &token
);
4104 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4107 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
, 0, &token
);
4108 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, 0,
4112 btrfs_set_token_file_extent_offset(leaf
, fi
, extent_offset
, &token
);
4113 btrfs_set_token_file_extent_num_bytes(leaf
, fi
, em
->len
, &token
);
4114 btrfs_set_token_file_extent_ram_bytes(leaf
, fi
, em
->ram_bytes
, &token
);
4115 btrfs_set_token_file_extent_compression(leaf
, fi
, em
->compress_type
,
4117 btrfs_set_token_file_extent_encryption(leaf
, fi
, 0, &token
);
4118 btrfs_set_token_file_extent_other_encoding(leaf
, fi
, 0, &token
);
4119 btrfs_mark_buffer_dirty(leaf
);
4121 btrfs_release_path(path
);
4126 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
4127 struct btrfs_root
*root
,
4128 struct inode
*inode
,
4129 struct btrfs_path
*path
,
4130 struct list_head
*logged_list
,
4131 struct btrfs_log_ctx
*ctx
,
4135 struct extent_map
*em
, *n
;
4136 struct list_head extents
;
4137 struct extent_map_tree
*tree
= &BTRFS_I(inode
)->extent_tree
;
4142 INIT_LIST_HEAD(&extents
);
4144 write_lock(&tree
->lock
);
4145 test_gen
= root
->fs_info
->last_trans_committed
;
4147 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
4148 list_del_init(&em
->list
);
4151 * Just an arbitrary number, this can be really CPU intensive
4152 * once we start getting a lot of extents, and really once we
4153 * have a bunch of extents we just want to commit since it will
4156 if (++num
> 32768) {
4157 list_del_init(&tree
->modified_extents
);
4162 if (em
->generation
<= test_gen
)
4164 /* Need a ref to keep it from getting evicted from cache */
4165 atomic_inc(&em
->refs
);
4166 set_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4167 list_add_tail(&em
->list
, &extents
);
4171 list_sort(NULL
, &extents
, extent_cmp
);
4173 * Collect any new ordered extents within the range. This is to
4174 * prevent logging file extent items without waiting for the disk
4175 * location they point to being written. We do this only to deal
4176 * with races against concurrent lockless direct IO writes.
4178 btrfs_get_logged_extents(inode
, logged_list
, start
, end
);
4180 while (!list_empty(&extents
)) {
4181 em
= list_entry(extents
.next
, struct extent_map
, list
);
4183 list_del_init(&em
->list
);
4186 * If we had an error we just need to delete everybody from our
4190 clear_em_logging(tree
, em
);
4191 free_extent_map(em
);
4195 write_unlock(&tree
->lock
);
4197 ret
= log_one_extent(trans
, inode
, root
, em
, path
, logged_list
,
4199 write_lock(&tree
->lock
);
4200 clear_em_logging(tree
, em
);
4201 free_extent_map(em
);
4203 WARN_ON(!list_empty(&extents
));
4204 write_unlock(&tree
->lock
);
4206 btrfs_release_path(path
);
4210 static int logged_inode_size(struct btrfs_root
*log
, struct inode
*inode
,
4211 struct btrfs_path
*path
, u64
*size_ret
)
4213 struct btrfs_key key
;
4216 key
.objectid
= btrfs_ino(inode
);
4217 key
.type
= BTRFS_INODE_ITEM_KEY
;
4220 ret
= btrfs_search_slot(NULL
, log
, &key
, path
, 0, 0);
4223 } else if (ret
> 0) {
4226 struct btrfs_inode_item
*item
;
4228 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4229 struct btrfs_inode_item
);
4230 *size_ret
= btrfs_inode_size(path
->nodes
[0], item
);
4233 btrfs_release_path(path
);
4238 * At the moment we always log all xattrs. This is to figure out at log replay
4239 * time which xattrs must have their deletion replayed. If a xattr is missing
4240 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4241 * because if a xattr is deleted, the inode is fsynced and a power failure
4242 * happens, causing the log to be replayed the next time the fs is mounted,
4243 * we want the xattr to not exist anymore (same behaviour as other filesystems
4244 * with a journal, ext3/4, xfs, f2fs, etc).
4246 static int btrfs_log_all_xattrs(struct btrfs_trans_handle
*trans
,
4247 struct btrfs_root
*root
,
4248 struct inode
*inode
,
4249 struct btrfs_path
*path
,
4250 struct btrfs_path
*dst_path
)
4253 struct btrfs_key key
;
4254 const u64 ino
= btrfs_ino(inode
);
4259 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4262 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4267 int slot
= path
->slots
[0];
4268 struct extent_buffer
*leaf
= path
->nodes
[0];
4269 int nritems
= btrfs_header_nritems(leaf
);
4271 if (slot
>= nritems
) {
4273 u64 last_extent
= 0;
4275 ret
= copy_items(trans
, inode
, dst_path
, path
,
4276 &last_extent
, start_slot
,
4278 /* can't be 1, extent items aren't processed */
4284 ret
= btrfs_next_leaf(root
, path
);
4292 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4293 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
)
4303 u64 last_extent
= 0;
4305 ret
= copy_items(trans
, inode
, dst_path
, path
,
4306 &last_extent
, start_slot
,
4308 /* can't be 1, extent items aren't processed */
4318 * If the no holes feature is enabled we need to make sure any hole between the
4319 * last extent and the i_size of our inode is explicitly marked in the log. This
4320 * is to make sure that doing something like:
4322 * 1) create file with 128Kb of data
4323 * 2) truncate file to 64Kb
4324 * 3) truncate file to 256Kb
4326 * 5) <crash/power failure>
4327 * 6) mount fs and trigger log replay
4329 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4330 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4331 * file correspond to a hole. The presence of explicit holes in a log tree is
4332 * what guarantees that log replay will remove/adjust file extent items in the
4335 * Here we do not need to care about holes between extents, that is already done
4336 * by copy_items(). We also only need to do this in the full sync path, where we
4337 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4338 * lookup the list of modified extent maps and if any represents a hole, we
4339 * insert a corresponding extent representing a hole in the log tree.
4341 static int btrfs_log_trailing_hole(struct btrfs_trans_handle
*trans
,
4342 struct btrfs_root
*root
,
4343 struct inode
*inode
,
4344 struct btrfs_path
*path
)
4347 struct btrfs_key key
;
4350 struct extent_buffer
*leaf
;
4351 struct btrfs_root
*log
= root
->log_root
;
4352 const u64 ino
= btrfs_ino(inode
);
4353 const u64 i_size
= i_size_read(inode
);
4355 if (!btrfs_fs_incompat(root
->fs_info
, NO_HOLES
))
4359 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4360 key
.offset
= (u64
)-1;
4362 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4367 ASSERT(path
->slots
[0] > 0);
4369 leaf
= path
->nodes
[0];
4370 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4372 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
4373 /* inode does not have any extents */
4377 struct btrfs_file_extent_item
*extent
;
4381 * If there's an extent beyond i_size, an explicit hole was
4382 * already inserted by copy_items().
4384 if (key
.offset
>= i_size
)
4387 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
4388 struct btrfs_file_extent_item
);
4390 if (btrfs_file_extent_type(leaf
, extent
) ==
4391 BTRFS_FILE_EXTENT_INLINE
) {
4392 len
= btrfs_file_extent_inline_len(leaf
,
4395 ASSERT(len
== i_size
);
4399 len
= btrfs_file_extent_num_bytes(leaf
, extent
);
4400 /* Last extent goes beyond i_size, no need to log a hole. */
4401 if (key
.offset
+ len
> i_size
)
4403 hole_start
= key
.offset
+ len
;
4404 hole_size
= i_size
- hole_start
;
4406 btrfs_release_path(path
);
4408 /* Last extent ends at i_size. */
4412 hole_size
= ALIGN(hole_size
, root
->sectorsize
);
4413 ret
= btrfs_insert_file_extent(trans
, log
, ino
, hole_start
, 0, 0,
4414 hole_size
, 0, hole_size
, 0, 0, 0);
4419 * When we are logging a new inode X, check if it doesn't have a reference that
4420 * matches the reference from some other inode Y created in a past transaction
4421 * and that was renamed in the current transaction. If we don't do this, then at
4422 * log replay time we can lose inode Y (and all its files if it's a directory):
4425 * echo "hello world" > /mnt/x/foobar
4428 * mkdir /mnt/x # or touch /mnt/x
4429 * xfs_io -c fsync /mnt/x
4431 * mount fs, trigger log replay
4433 * After the log replay procedure, we would lose the first directory and all its
4434 * files (file foobar).
4435 * For the case where inode Y is not a directory we simply end up losing it:
4437 * echo "123" > /mnt/foo
4439 * mv /mnt/foo /mnt/bar
4440 * echo "abc" > /mnt/foo
4441 * xfs_io -c fsync /mnt/foo
4444 * We also need this for cases where a snapshot entry is replaced by some other
4445 * entry (file or directory) otherwise we end up with an unreplayable log due to
4446 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4447 * if it were a regular entry:
4450 * btrfs subvolume snapshot /mnt /mnt/x/snap
4451 * btrfs subvolume delete /mnt/x/snap
4454 * fsync /mnt/x or fsync some new file inside it
4457 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4458 * the same transaction.
4460 static int btrfs_check_ref_name_override(struct extent_buffer
*eb
,
4462 const struct btrfs_key
*key
,
4463 struct inode
*inode
)
4466 struct btrfs_path
*search_path
;
4469 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
4471 unsigned long ptr
= btrfs_item_ptr_offset(eb
, slot
);
4473 search_path
= btrfs_alloc_path();
4476 search_path
->search_commit_root
= 1;
4477 search_path
->skip_locking
= 1;
4479 while (cur_offset
< item_size
) {
4483 unsigned long name_ptr
;
4484 struct btrfs_dir_item
*di
;
4486 if (key
->type
== BTRFS_INODE_REF_KEY
) {
4487 struct btrfs_inode_ref
*iref
;
4489 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur_offset
);
4490 parent
= key
->offset
;
4491 this_name_len
= btrfs_inode_ref_name_len(eb
, iref
);
4492 name_ptr
= (unsigned long)(iref
+ 1);
4493 this_len
= sizeof(*iref
) + this_name_len
;
4495 struct btrfs_inode_extref
*extref
;
4497 extref
= (struct btrfs_inode_extref
*)(ptr
+
4499 parent
= btrfs_inode_extref_parent(eb
, extref
);
4500 this_name_len
= btrfs_inode_extref_name_len(eb
, extref
);
4501 name_ptr
= (unsigned long)&extref
->name
;
4502 this_len
= sizeof(*extref
) + this_name_len
;
4505 if (this_name_len
> name_len
) {
4508 new_name
= krealloc(name
, this_name_len
, GFP_NOFS
);
4513 name_len
= this_name_len
;
4517 read_extent_buffer(eb
, name
, name_ptr
, this_name_len
);
4518 di
= btrfs_lookup_dir_item(NULL
, BTRFS_I(inode
)->root
,
4519 search_path
, parent
,
4520 name
, this_name_len
, 0);
4521 if (di
&& !IS_ERR(di
)) {
4524 } else if (IS_ERR(di
)) {
4528 btrfs_release_path(search_path
);
4530 cur_offset
+= this_len
;
4534 btrfs_free_path(search_path
);
4539 /* log a single inode in the tree log.
4540 * At least one parent directory for this inode must exist in the tree
4541 * or be logged already.
4543 * Any items from this inode changed by the current transaction are copied
4544 * to the log tree. An extra reference is taken on any extents in this
4545 * file, allowing us to avoid a whole pile of corner cases around logging
4546 * blocks that have been removed from the tree.
4548 * See LOG_INODE_ALL and related defines for a description of what inode_only
4551 * This handles both files and directories.
4553 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
4554 struct btrfs_root
*root
, struct inode
*inode
,
4558 struct btrfs_log_ctx
*ctx
)
4560 struct btrfs_path
*path
;
4561 struct btrfs_path
*dst_path
;
4562 struct btrfs_key min_key
;
4563 struct btrfs_key max_key
;
4564 struct btrfs_root
*log
= root
->log_root
;
4565 struct extent_buffer
*src
= NULL
;
4566 LIST_HEAD(logged_list
);
4567 u64 last_extent
= 0;
4571 int ins_start_slot
= 0;
4573 bool fast_search
= false;
4574 u64 ino
= btrfs_ino(inode
);
4575 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4576 u64 logged_isize
= 0;
4577 bool need_log_inode_item
= true;
4579 path
= btrfs_alloc_path();
4582 dst_path
= btrfs_alloc_path();
4584 btrfs_free_path(path
);
4588 min_key
.objectid
= ino
;
4589 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
4592 max_key
.objectid
= ino
;
4595 /* today the code can only do partial logging of directories */
4596 if (S_ISDIR(inode
->i_mode
) ||
4597 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4598 &BTRFS_I(inode
)->runtime_flags
) &&
4599 inode_only
== LOG_INODE_EXISTS
))
4600 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4602 max_key
.type
= (u8
)-1;
4603 max_key
.offset
= (u64
)-1;
4606 * Only run delayed items if we are a dir or a new file.
4607 * Otherwise commit the delayed inode only, which is needed in
4608 * order for the log replay code to mark inodes for link count
4609 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4611 if (S_ISDIR(inode
->i_mode
) ||
4612 BTRFS_I(inode
)->generation
> root
->fs_info
->last_trans_committed
)
4613 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
4615 ret
= btrfs_commit_inode_delayed_inode(inode
);
4618 btrfs_free_path(path
);
4619 btrfs_free_path(dst_path
);
4623 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
4626 * Collect ordered extents only if we are logging data. This is to
4627 * ensure a subsequent request to log this inode in LOG_INODE_ALL mode
4628 * will process the ordered extents if they still exists at the time,
4629 * because when we collect them we test and set for the flag
4630 * BTRFS_ORDERED_LOGGED to prevent multiple log requests to process the
4631 * same ordered extents. The consequence for the LOG_INODE_ALL log mode
4632 * not processing the ordered extents is that we end up logging the
4633 * corresponding file extent items, based on the extent maps in the
4634 * inode's extent_map_tree's modified_list, without logging the
4635 * respective checksums (since the may still be only attached to the
4636 * ordered extents and have not been inserted in the csum tree by
4637 * btrfs_finish_ordered_io() yet).
4639 if (inode_only
== LOG_INODE_ALL
)
4640 btrfs_get_logged_extents(inode
, &logged_list
, start
, end
);
4643 * a brute force approach to making sure we get the most uptodate
4644 * copies of everything.
4646 if (S_ISDIR(inode
->i_mode
)) {
4647 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
4649 if (inode_only
== LOG_INODE_EXISTS
)
4650 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
4651 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
4653 if (inode_only
== LOG_INODE_EXISTS
) {
4655 * Make sure the new inode item we write to the log has
4656 * the same isize as the current one (if it exists).
4657 * This is necessary to prevent data loss after log
4658 * replay, and also to prevent doing a wrong expanding
4659 * truncate - for e.g. create file, write 4K into offset
4660 * 0, fsync, write 4K into offset 4096, add hard link,
4661 * fsync some other file (to sync log), power fail - if
4662 * we use the inode's current i_size, after log replay
4663 * we get a 8Kb file, with the last 4Kb extent as a hole
4664 * (zeroes), as if an expanding truncate happened,
4665 * instead of getting a file of 4Kb only.
4667 err
= logged_inode_size(log
, inode
, path
,
4672 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4673 &BTRFS_I(inode
)->runtime_flags
)) {
4674 if (inode_only
== LOG_INODE_EXISTS
) {
4675 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4676 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4679 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4680 &BTRFS_I(inode
)->runtime_flags
);
4681 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4682 &BTRFS_I(inode
)->runtime_flags
);
4684 ret
= btrfs_truncate_inode_items(trans
,
4690 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4691 &BTRFS_I(inode
)->runtime_flags
) ||
4692 inode_only
== LOG_INODE_EXISTS
) {
4693 if (inode_only
== LOG_INODE_ALL
)
4695 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4696 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4699 if (inode_only
== LOG_INODE_ALL
)
4712 ret
= btrfs_search_forward(root
, &min_key
,
4713 path
, trans
->transid
);
4717 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4718 if (min_key
.objectid
!= ino
)
4720 if (min_key
.type
> max_key
.type
)
4723 if (min_key
.type
== BTRFS_INODE_ITEM_KEY
)
4724 need_log_inode_item
= false;
4726 if ((min_key
.type
== BTRFS_INODE_REF_KEY
||
4727 min_key
.type
== BTRFS_INODE_EXTREF_KEY
) &&
4728 BTRFS_I(inode
)->generation
== trans
->transid
) {
4729 ret
= btrfs_check_ref_name_override(path
->nodes
[0],
4735 } else if (ret
> 0) {
4737 btrfs_set_log_full_commit(root
->fs_info
, trans
);
4742 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4743 if (min_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
4746 ret
= copy_items(trans
, inode
, dst_path
, path
,
4747 &last_extent
, ins_start_slot
,
4748 ins_nr
, inode_only
, logged_isize
);
4755 btrfs_release_path(path
);
4761 src
= path
->nodes
[0];
4762 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
4765 } else if (!ins_nr
) {
4766 ins_start_slot
= path
->slots
[0];
4771 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4772 ins_start_slot
, ins_nr
, inode_only
,
4780 btrfs_release_path(path
);
4784 ins_start_slot
= path
->slots
[0];
4787 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4789 if (path
->slots
[0] < nritems
) {
4790 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
4795 ret
= copy_items(trans
, inode
, dst_path
, path
,
4796 &last_extent
, ins_start_slot
,
4797 ins_nr
, inode_only
, logged_isize
);
4805 btrfs_release_path(path
);
4807 if (min_key
.offset
< (u64
)-1) {
4809 } else if (min_key
.type
< max_key
.type
) {
4817 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4818 ins_start_slot
, ins_nr
, inode_only
,
4828 btrfs_release_path(path
);
4829 btrfs_release_path(dst_path
);
4830 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
, dst_path
);
4833 if (max_key
.type
>= BTRFS_EXTENT_DATA_KEY
&& !fast_search
) {
4834 btrfs_release_path(path
);
4835 btrfs_release_path(dst_path
);
4836 err
= btrfs_log_trailing_hole(trans
, root
, inode
, path
);
4841 btrfs_release_path(path
);
4842 btrfs_release_path(dst_path
);
4843 if (need_log_inode_item
) {
4844 err
= log_inode_item(trans
, log
, dst_path
, inode
);
4850 * Some ordered extents started by fsync might have completed
4851 * before we collected the ordered extents in logged_list, which
4852 * means they're gone, not in our logged_list nor in the inode's
4853 * ordered tree. We want the application/user space to know an
4854 * error happened while attempting to persist file data so that
4855 * it can take proper action. If such error happened, we leave
4856 * without writing to the log tree and the fsync must report the
4857 * file data write error and not commit the current transaction.
4859 err
= btrfs_inode_check_errors(inode
);
4864 ret
= btrfs_log_changed_extents(trans
, root
, inode
, dst_path
,
4865 &logged_list
, ctx
, start
, end
);
4870 } else if (inode_only
== LOG_INODE_ALL
) {
4871 struct extent_map
*em
, *n
;
4873 write_lock(&em_tree
->lock
);
4875 * We can't just remove every em if we're called for a ranged
4876 * fsync - that is, one that doesn't cover the whole possible
4877 * file range (0 to LLONG_MAX). This is because we can have
4878 * em's that fall outside the range we're logging and therefore
4879 * their ordered operations haven't completed yet
4880 * (btrfs_finish_ordered_io() not invoked yet). This means we
4881 * didn't get their respective file extent item in the fs/subvol
4882 * tree yet, and need to let the next fast fsync (one which
4883 * consults the list of modified extent maps) find the em so
4884 * that it logs a matching file extent item and waits for the
4885 * respective ordered operation to complete (if it's still
4888 * Removing every em outside the range we're logging would make
4889 * the next fast fsync not log their matching file extent items,
4890 * therefore making us lose data after a log replay.
4892 list_for_each_entry_safe(em
, n
, &em_tree
->modified_extents
,
4894 const u64 mod_end
= em
->mod_start
+ em
->mod_len
- 1;
4896 if (em
->mod_start
>= start
&& mod_end
<= end
)
4897 list_del_init(&em
->list
);
4899 write_unlock(&em_tree
->lock
);
4902 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
4903 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
,
4911 spin_lock(&BTRFS_I(inode
)->lock
);
4912 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
4913 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->last_sub_trans
;
4914 spin_unlock(&BTRFS_I(inode
)->lock
);
4917 btrfs_put_logged_extents(&logged_list
);
4919 btrfs_submit_logged_extents(&logged_list
, log
);
4920 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
4922 btrfs_free_path(path
);
4923 btrfs_free_path(dst_path
);
4928 * Check if we must fallback to a transaction commit when logging an inode.
4929 * This must be called after logging the inode and is used only in the context
4930 * when fsyncing an inode requires the need to log some other inode - in which
4931 * case we can't lock the i_mutex of each other inode we need to log as that
4932 * can lead to deadlocks with concurrent fsync against other inodes (as we can
4933 * log inodes up or down in the hierarchy) or rename operations for example. So
4934 * we take the log_mutex of the inode after we have logged it and then check for
4935 * its last_unlink_trans value - this is safe because any task setting
4936 * last_unlink_trans must take the log_mutex and it must do this before it does
4937 * the actual unlink operation, so if we do this check before a concurrent task
4938 * sets last_unlink_trans it means we've logged a consistent version/state of
4939 * all the inode items, otherwise we are not sure and must do a transaction
4940 * commit (the concurrent task migth have only updated last_unlink_trans before
4941 * we logged the inode or it might have also done the unlink).
4943 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle
*trans
,
4944 struct inode
*inode
)
4946 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
4949 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
4950 if (BTRFS_I(inode
)->last_unlink_trans
> fs_info
->last_trans_committed
) {
4952 * Make sure any commits to the log are forced to be full
4955 btrfs_set_log_full_commit(fs_info
, trans
);
4958 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
4964 * follow the dentry parent pointers up the chain and see if any
4965 * of the directories in it require a full commit before they can
4966 * be logged. Returns zero if nothing special needs to be done or 1 if
4967 * a full commit is required.
4969 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
4970 struct inode
*inode
,
4971 struct dentry
*parent
,
4972 struct super_block
*sb
,
4976 struct dentry
*old_parent
= NULL
;
4977 struct inode
*orig_inode
= inode
;
4980 * for regular files, if its inode is already on disk, we don't
4981 * have to worry about the parents at all. This is because
4982 * we can use the last_unlink_trans field to record renames
4983 * and other fun in this file.
4985 if (S_ISREG(inode
->i_mode
) &&
4986 BTRFS_I(inode
)->generation
<= last_committed
&&
4987 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
4990 if (!S_ISDIR(inode
->i_mode
)) {
4991 if (!parent
|| d_really_is_negative(parent
) || sb
!= d_inode(parent
)->i_sb
)
4993 inode
= d_inode(parent
);
4998 * If we are logging a directory then we start with our inode,
4999 * not our parents inode, so we need to skipp setting the
5000 * logged_trans so that further down in the log code we don't
5001 * think this inode has already been logged.
5003 if (inode
!= orig_inode
)
5004 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
5007 if (btrfs_must_commit_transaction(trans
, inode
)) {
5012 if (!parent
|| d_really_is_negative(parent
) || sb
!= d_inode(parent
)->i_sb
)
5015 if (IS_ROOT(parent
))
5018 parent
= dget_parent(parent
);
5020 old_parent
= parent
;
5021 inode
= d_inode(parent
);
5029 struct btrfs_dir_list
{
5031 struct list_head list
;
5035 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5036 * details about the why it is needed.
5037 * This is a recursive operation - if an existing dentry corresponds to a
5038 * directory, that directory's new entries are logged too (same behaviour as
5039 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5040 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5041 * complains about the following circular lock dependency / possible deadlock:
5045 * lock(&type->i_mutex_dir_key#3/2);
5046 * lock(sb_internal#2);
5047 * lock(&type->i_mutex_dir_key#3/2);
5048 * lock(&sb->s_type->i_mutex_key#14);
5050 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5051 * sb_start_intwrite() in btrfs_start_transaction().
5052 * Not locking i_mutex of the inodes is still safe because:
5054 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5055 * that while logging the inode new references (names) are added or removed
5056 * from the inode, leaving the logged inode item with a link count that does
5057 * not match the number of logged inode reference items. This is fine because
5058 * at log replay time we compute the real number of links and correct the
5059 * link count in the inode item (see replay_one_buffer() and
5060 * link_to_fixup_dir());
5062 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5063 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5064 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5065 * has a size that doesn't match the sum of the lengths of all the logged
5066 * names. This does not result in a problem because if a dir_item key is
5067 * logged but its matching dir_index key is not logged, at log replay time we
5068 * don't use it to replay the respective name (see replay_one_name()). On the
5069 * other hand if only the dir_index key ends up being logged, the respective
5070 * name is added to the fs/subvol tree with both the dir_item and dir_index
5071 * keys created (see replay_one_name()).
5072 * The directory's inode item with a wrong i_size is not a problem as well,
5073 * since we don't use it at log replay time to set the i_size in the inode
5074 * item of the fs/subvol tree (see overwrite_item()).
5076 static int log_new_dir_dentries(struct btrfs_trans_handle
*trans
,
5077 struct btrfs_root
*root
,
5078 struct inode
*start_inode
,
5079 struct btrfs_log_ctx
*ctx
)
5081 struct btrfs_root
*log
= root
->log_root
;
5082 struct btrfs_path
*path
;
5083 LIST_HEAD(dir_list
);
5084 struct btrfs_dir_list
*dir_elem
;
5087 path
= btrfs_alloc_path();
5091 dir_elem
= kmalloc(sizeof(*dir_elem
), GFP_NOFS
);
5093 btrfs_free_path(path
);
5096 dir_elem
->ino
= btrfs_ino(start_inode
);
5097 list_add_tail(&dir_elem
->list
, &dir_list
);
5099 while (!list_empty(&dir_list
)) {
5100 struct extent_buffer
*leaf
;
5101 struct btrfs_key min_key
;
5105 dir_elem
= list_first_entry(&dir_list
, struct btrfs_dir_list
,
5108 goto next_dir_inode
;
5110 min_key
.objectid
= dir_elem
->ino
;
5111 min_key
.type
= BTRFS_DIR_ITEM_KEY
;
5114 btrfs_release_path(path
);
5115 ret
= btrfs_search_forward(log
, &min_key
, path
, trans
->transid
);
5117 goto next_dir_inode
;
5118 } else if (ret
> 0) {
5120 goto next_dir_inode
;
5124 leaf
= path
->nodes
[0];
5125 nritems
= btrfs_header_nritems(leaf
);
5126 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
5127 struct btrfs_dir_item
*di
;
5128 struct btrfs_key di_key
;
5129 struct inode
*di_inode
;
5130 struct btrfs_dir_list
*new_dir_elem
;
5131 int log_mode
= LOG_INODE_EXISTS
;
5134 btrfs_item_key_to_cpu(leaf
, &min_key
, i
);
5135 if (min_key
.objectid
!= dir_elem
->ino
||
5136 min_key
.type
!= BTRFS_DIR_ITEM_KEY
)
5137 goto next_dir_inode
;
5139 di
= btrfs_item_ptr(leaf
, i
, struct btrfs_dir_item
);
5140 type
= btrfs_dir_type(leaf
, di
);
5141 if (btrfs_dir_transid(leaf
, di
) < trans
->transid
&&
5142 type
!= BTRFS_FT_DIR
)
5144 btrfs_dir_item_key_to_cpu(leaf
, di
, &di_key
);
5145 if (di_key
.type
== BTRFS_ROOT_ITEM_KEY
)
5148 di_inode
= btrfs_iget(root
->fs_info
->sb
, &di_key
,
5150 if (IS_ERR(di_inode
)) {
5151 ret
= PTR_ERR(di_inode
);
5152 goto next_dir_inode
;
5155 if (btrfs_inode_in_log(di_inode
, trans
->transid
)) {
5160 ctx
->log_new_dentries
= false;
5161 if (type
== BTRFS_FT_DIR
)
5162 log_mode
= LOG_INODE_ALL
;
5163 btrfs_release_path(path
);
5164 ret
= btrfs_log_inode(trans
, root
, di_inode
,
5165 log_mode
, 0, LLONG_MAX
, ctx
);
5167 btrfs_must_commit_transaction(trans
, di_inode
))
5171 goto next_dir_inode
;
5172 if (ctx
->log_new_dentries
) {
5173 new_dir_elem
= kmalloc(sizeof(*new_dir_elem
),
5175 if (!new_dir_elem
) {
5177 goto next_dir_inode
;
5179 new_dir_elem
->ino
= di_key
.objectid
;
5180 list_add_tail(&new_dir_elem
->list
, &dir_list
);
5185 ret
= btrfs_next_leaf(log
, path
);
5187 goto next_dir_inode
;
5188 } else if (ret
> 0) {
5190 goto next_dir_inode
;
5194 if (min_key
.offset
< (u64
)-1) {
5199 list_del(&dir_elem
->list
);
5203 btrfs_free_path(path
);
5207 static int btrfs_log_all_parents(struct btrfs_trans_handle
*trans
,
5208 struct inode
*inode
,
5209 struct btrfs_log_ctx
*ctx
)
5212 struct btrfs_path
*path
;
5213 struct btrfs_key key
;
5214 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5215 const u64 ino
= btrfs_ino(inode
);
5217 path
= btrfs_alloc_path();
5220 path
->skip_locking
= 1;
5221 path
->search_commit_root
= 1;
5224 key
.type
= BTRFS_INODE_REF_KEY
;
5226 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5231 struct extent_buffer
*leaf
= path
->nodes
[0];
5232 int slot
= path
->slots
[0];
5237 if (slot
>= btrfs_header_nritems(leaf
)) {
5238 ret
= btrfs_next_leaf(root
, path
);
5246 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5247 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5248 if (key
.objectid
!= ino
|| key
.type
> BTRFS_INODE_EXTREF_KEY
)
5251 item_size
= btrfs_item_size_nr(leaf
, slot
);
5252 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
5253 while (cur_offset
< item_size
) {
5254 struct btrfs_key inode_key
;
5255 struct inode
*dir_inode
;
5257 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
5258 inode_key
.offset
= 0;
5260 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
5261 struct btrfs_inode_extref
*extref
;
5263 extref
= (struct btrfs_inode_extref
*)
5265 inode_key
.objectid
= btrfs_inode_extref_parent(
5267 cur_offset
+= sizeof(*extref
);
5268 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
5271 inode_key
.objectid
= key
.offset
;
5272 cur_offset
= item_size
;
5275 dir_inode
= btrfs_iget(root
->fs_info
->sb
, &inode_key
,
5277 /* If parent inode was deleted, skip it. */
5278 if (IS_ERR(dir_inode
))
5281 ret
= btrfs_log_inode(trans
, root
, dir_inode
,
5282 LOG_INODE_ALL
, 0, LLONG_MAX
, ctx
);
5284 btrfs_must_commit_transaction(trans
, dir_inode
))
5294 btrfs_free_path(path
);
5299 * helper function around btrfs_log_inode to make sure newly created
5300 * parent directories also end up in the log. A minimal inode and backref
5301 * only logging is done of any parent directories that are older than
5302 * the last committed transaction
5304 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
5305 struct btrfs_root
*root
, struct inode
*inode
,
5306 struct dentry
*parent
,
5310 struct btrfs_log_ctx
*ctx
)
5312 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
5313 struct super_block
*sb
;
5314 struct dentry
*old_parent
= NULL
;
5316 u64 last_committed
= root
->fs_info
->last_trans_committed
;
5317 bool log_dentries
= false;
5318 struct inode
*orig_inode
= inode
;
5322 if (btrfs_test_opt(root
, NOTREELOG
)) {
5328 * The prev transaction commit doesn't complete, we need do
5329 * full commit by ourselves.
5331 if (root
->fs_info
->last_trans_log_full_commit
>
5332 root
->fs_info
->last_trans_committed
) {
5337 if (root
!= BTRFS_I(inode
)->root
||
5338 btrfs_root_refs(&root
->root_item
) == 0) {
5343 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
5344 sb
, last_committed
);
5348 if (btrfs_inode_in_log(inode
, trans
->transid
)) {
5349 ret
= BTRFS_NO_LOG_SYNC
;
5353 ret
= start_log_trans(trans
, root
, ctx
);
5357 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
, start
, end
, ctx
);
5362 * for regular files, if its inode is already on disk, we don't
5363 * have to worry about the parents at all. This is because
5364 * we can use the last_unlink_trans field to record renames
5365 * and other fun in this file.
5367 if (S_ISREG(inode
->i_mode
) &&
5368 BTRFS_I(inode
)->generation
<= last_committed
&&
5369 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
) {
5374 if (S_ISDIR(inode
->i_mode
) && ctx
&& ctx
->log_new_dentries
)
5375 log_dentries
= true;
5378 * On unlink we must make sure all our current and old parent directores
5379 * inodes are fully logged. This is to prevent leaving dangling
5380 * directory index entries in directories that were our parents but are
5381 * not anymore. Not doing this results in old parent directory being
5382 * impossible to delete after log replay (rmdir will always fail with
5383 * error -ENOTEMPTY).
5389 * ln testdir/foo testdir/bar
5391 * unlink testdir/bar
5392 * xfs_io -c fsync testdir/foo
5394 * mount fs, triggers log replay
5396 * If we don't log the parent directory (testdir), after log replay the
5397 * directory still has an entry pointing to the file inode using the bar
5398 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5399 * the file inode has a link count of 1.
5405 * ln foo testdir/foo2
5406 * ln foo testdir/foo3
5408 * unlink testdir/foo3
5409 * xfs_io -c fsync foo
5411 * mount fs, triggers log replay
5413 * Similar as the first example, after log replay the parent directory
5414 * testdir still has an entry pointing to the inode file with name foo3
5415 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5416 * and has a link count of 2.
5418 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
5419 ret
= btrfs_log_all_parents(trans
, orig_inode
, ctx
);
5425 if (!parent
|| d_really_is_negative(parent
) || sb
!= d_inode(parent
)->i_sb
)
5428 inode
= d_inode(parent
);
5429 if (root
!= BTRFS_I(inode
)->root
)
5432 if (BTRFS_I(inode
)->generation
> last_committed
) {
5433 ret
= btrfs_log_inode(trans
, root
, inode
,
5439 if (IS_ROOT(parent
))
5442 parent
= dget_parent(parent
);
5444 old_parent
= parent
;
5447 ret
= log_new_dir_dentries(trans
, root
, orig_inode
, ctx
);
5453 btrfs_set_log_full_commit(root
->fs_info
, trans
);
5458 btrfs_remove_log_ctx(root
, ctx
);
5459 btrfs_end_log_trans(root
);
5465 * it is not safe to log dentry if the chunk root has added new
5466 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5467 * If this returns 1, you must commit the transaction to safely get your
5470 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
5471 struct btrfs_root
*root
, struct dentry
*dentry
,
5474 struct btrfs_log_ctx
*ctx
)
5476 struct dentry
*parent
= dget_parent(dentry
);
5479 ret
= btrfs_log_inode_parent(trans
, root
, d_inode(dentry
), parent
,
5480 start
, end
, 0, ctx
);
5487 * should be called during mount to recover any replay any log trees
5490 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
5493 struct btrfs_path
*path
;
5494 struct btrfs_trans_handle
*trans
;
5495 struct btrfs_key key
;
5496 struct btrfs_key found_key
;
5497 struct btrfs_key tmp_key
;
5498 struct btrfs_root
*log
;
5499 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
5500 struct walk_control wc
= {
5501 .process_func
= process_one_buffer
,
5505 path
= btrfs_alloc_path();
5509 fs_info
->log_root_recovering
= 1;
5511 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
5512 if (IS_ERR(trans
)) {
5513 ret
= PTR_ERR(trans
);
5520 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
5522 btrfs_std_error(fs_info
, ret
, "Failed to pin buffers while "
5523 "recovering log root tree.");
5528 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
5529 key
.offset
= (u64
)-1;
5530 key
.type
= BTRFS_ROOT_ITEM_KEY
;
5533 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
5536 btrfs_std_error(fs_info
, ret
,
5537 "Couldn't find tree log root.");
5541 if (path
->slots
[0] == 0)
5545 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
5547 btrfs_release_path(path
);
5548 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
5551 log
= btrfs_read_fs_root(log_root_tree
, &found_key
);
5554 btrfs_std_error(fs_info
, ret
,
5555 "Couldn't read tree log root.");
5559 tmp_key
.objectid
= found_key
.offset
;
5560 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
5561 tmp_key
.offset
= (u64
)-1;
5563 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
5564 if (IS_ERR(wc
.replay_dest
)) {
5565 ret
= PTR_ERR(wc
.replay_dest
);
5566 free_extent_buffer(log
->node
);
5567 free_extent_buffer(log
->commit_root
);
5569 btrfs_std_error(fs_info
, ret
, "Couldn't read target root "
5570 "for tree log recovery.");
5574 wc
.replay_dest
->log_root
= log
;
5575 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
5576 ret
= walk_log_tree(trans
, log
, &wc
);
5578 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
5579 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
5583 key
.offset
= found_key
.offset
- 1;
5584 wc
.replay_dest
->log_root
= NULL
;
5585 free_extent_buffer(log
->node
);
5586 free_extent_buffer(log
->commit_root
);
5592 if (found_key
.offset
== 0)
5595 btrfs_release_path(path
);
5597 /* step one is to pin it all, step two is to replay just inodes */
5600 wc
.process_func
= replay_one_buffer
;
5601 wc
.stage
= LOG_WALK_REPLAY_INODES
;
5604 /* step three is to replay everything */
5605 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
5610 btrfs_free_path(path
);
5612 /* step 4: commit the transaction, which also unpins the blocks */
5613 ret
= btrfs_commit_transaction(trans
, fs_info
->tree_root
);
5617 free_extent_buffer(log_root_tree
->node
);
5618 log_root_tree
->log_root
= NULL
;
5619 fs_info
->log_root_recovering
= 0;
5620 kfree(log_root_tree
);
5625 btrfs_end_transaction(wc
.trans
, fs_info
->tree_root
);
5626 btrfs_free_path(path
);
5631 * there are some corner cases where we want to force a full
5632 * commit instead of allowing a directory to be logged.
5634 * They revolve around files there were unlinked from the directory, and
5635 * this function updates the parent directory so that a full commit is
5636 * properly done if it is fsync'd later after the unlinks are done.
5638 * Must be called before the unlink operations (updates to the subvolume tree,
5639 * inodes, etc) are done.
5641 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
5642 struct inode
*dir
, struct inode
*inode
,
5646 * when we're logging a file, if it hasn't been renamed
5647 * or unlinked, and its inode is fully committed on disk,
5648 * we don't have to worry about walking up the directory chain
5649 * to log its parents.
5651 * So, we use the last_unlink_trans field to put this transid
5652 * into the file. When the file is logged we check it and
5653 * don't log the parents if the file is fully on disk.
5655 if (S_ISREG(inode
->i_mode
)) {
5656 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
5657 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
5658 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
5662 * if this directory was already logged any new
5663 * names for this file/dir will get recorded
5666 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
5670 * if the inode we're about to unlink was logged,
5671 * the log will be properly updated for any new names
5673 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
5677 * when renaming files across directories, if the directory
5678 * there we're unlinking from gets fsync'd later on, there's
5679 * no way to find the destination directory later and fsync it
5680 * properly. So, we have to be conservative and force commits
5681 * so the new name gets discovered.
5686 /* we can safely do the unlink without any special recording */
5690 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
5691 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
5692 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
5696 * Make sure that if someone attempts to fsync the parent directory of a deleted
5697 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5698 * that after replaying the log tree of the parent directory's root we will not
5699 * see the snapshot anymore and at log replay time we will not see any log tree
5700 * corresponding to the deleted snapshot's root, which could lead to replaying
5701 * it after replaying the log tree of the parent directory (which would replay
5702 * the snapshot delete operation).
5704 * Must be called before the actual snapshot destroy operation (updates to the
5705 * parent root and tree of tree roots trees, etc) are done.
5707 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle
*trans
,
5710 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
5711 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
5712 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
5716 * Call this after adding a new name for a file and it will properly
5717 * update the log to reflect the new name.
5719 * It will return zero if all goes well, and it will return 1 if a
5720 * full transaction commit is required.
5722 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
5723 struct inode
*inode
, struct inode
*old_dir
,
5724 struct dentry
*parent
)
5726 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
5729 * this will force the logging code to walk the dentry chain
5732 if (S_ISREG(inode
->i_mode
))
5733 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
5736 * if this inode hasn't been logged and directory we're renaming it
5737 * from hasn't been logged, we don't need to log it
5739 if (BTRFS_I(inode
)->logged_trans
<=
5740 root
->fs_info
->last_trans_committed
&&
5741 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
5742 root
->fs_info
->last_trans_committed
))
5745 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 0,
5746 LLONG_MAX
, 1, NULL
);